xref: /linux/drivers/net/ethernet/marvell/octeontx2/af/rvu.c (revision 34f7c6e7d4396090692a09789db231e12cb4762b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell.
5  *
6  */
7 
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/irq.h>
12 #include <linux/pci.h>
13 #include <linux/sysfs.h>
14 
15 #include "cgx.h"
16 #include "rvu.h"
17 #include "rvu_reg.h"
18 #include "ptp.h"
19 
20 #include "rvu_trace.h"
21 
22 #define DRV_NAME	"rvu_af"
23 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
24 
25 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
26 
27 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
28 				struct rvu_block *block, int lf);
29 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
30 				  struct rvu_block *block, int lf);
31 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
32 
33 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
34 			 int type, int num,
35 			 void (mbox_handler)(struct work_struct *),
36 			 void (mbox_up_handler)(struct work_struct *));
37 enum {
38 	TYPE_AFVF,
39 	TYPE_AFPF,
40 };
41 
42 /* Supported devices */
43 static const struct pci_device_id rvu_id_table[] = {
44 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
45 	{ 0, }  /* end of table */
46 };
47 
48 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
49 MODULE_DESCRIPTION(DRV_STRING);
50 MODULE_LICENSE("GPL v2");
51 MODULE_DEVICE_TABLE(pci, rvu_id_table);
52 
53 static char *mkex_profile; /* MKEX profile name */
54 module_param(mkex_profile, charp, 0000);
55 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
56 
57 static char *kpu_profile; /* KPU profile name */
58 module_param(kpu_profile, charp, 0000);
59 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
60 
61 static void rvu_setup_hw_capabilities(struct rvu *rvu)
62 {
63 	struct rvu_hwinfo *hw = rvu->hw;
64 
65 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
66 	hw->cap.nix_fixed_txschq_mapping = false;
67 	hw->cap.nix_shaping = true;
68 	hw->cap.nix_tx_link_bp = true;
69 	hw->cap.nix_rx_multicast = true;
70 	hw->cap.nix_shaper_toggle_wait = false;
71 	hw->rvu = rvu;
72 
73 	if (is_rvu_pre_96xx_C0(rvu)) {
74 		hw->cap.nix_fixed_txschq_mapping = true;
75 		hw->cap.nix_txsch_per_cgx_lmac = 4;
76 		hw->cap.nix_txsch_per_lbk_lmac = 132;
77 		hw->cap.nix_txsch_per_sdp_lmac = 76;
78 		hw->cap.nix_shaping = false;
79 		hw->cap.nix_tx_link_bp = false;
80 		if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
81 			hw->cap.nix_rx_multicast = false;
82 	}
83 	if (!is_rvu_pre_96xx_C0(rvu))
84 		hw->cap.nix_shaper_toggle_wait = true;
85 
86 	if (!is_rvu_otx2(rvu))
87 		hw->cap.per_pf_mbox_regs = true;
88 }
89 
90 /* Poll a RVU block's register 'offset', for a 'zero'
91  * or 'nonzero' at bits specified by 'mask'
92  */
93 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
94 {
95 	unsigned long timeout = jiffies + usecs_to_jiffies(20000);
96 	bool twice = false;
97 	void __iomem *reg;
98 	u64 reg_val;
99 
100 	reg = rvu->afreg_base + ((block << 28) | offset);
101 again:
102 	reg_val = readq(reg);
103 	if (zero && !(reg_val & mask))
104 		return 0;
105 	if (!zero && (reg_val & mask))
106 		return 0;
107 	if (time_before(jiffies, timeout)) {
108 		usleep_range(1, 5);
109 		goto again;
110 	}
111 	/* In scenarios where CPU is scheduled out before checking
112 	 * 'time_before' (above) and gets scheduled in such that
113 	 * jiffies are beyond timeout value, then check again if HW is
114 	 * done with the operation in the meantime.
115 	 */
116 	if (!twice) {
117 		twice = true;
118 		goto again;
119 	}
120 	return -EBUSY;
121 }
122 
123 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
124 {
125 	int id;
126 
127 	if (!rsrc->bmap)
128 		return -EINVAL;
129 
130 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
131 	if (id >= rsrc->max)
132 		return -ENOSPC;
133 
134 	__set_bit(id, rsrc->bmap);
135 
136 	return id;
137 }
138 
139 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
140 {
141 	int start;
142 
143 	if (!rsrc->bmap)
144 		return -EINVAL;
145 
146 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
147 	if (start >= rsrc->max)
148 		return -ENOSPC;
149 
150 	bitmap_set(rsrc->bmap, start, nrsrc);
151 	return start;
152 }
153 
154 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
155 {
156 	if (!rsrc->bmap)
157 		return;
158 	if (start >= rsrc->max)
159 		return;
160 
161 	bitmap_clear(rsrc->bmap, start, nrsrc);
162 }
163 
164 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
165 {
166 	int start;
167 
168 	if (!rsrc->bmap)
169 		return false;
170 
171 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
172 	if (start >= rsrc->max)
173 		return false;
174 
175 	return true;
176 }
177 
178 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
179 {
180 	if (!rsrc->bmap)
181 		return;
182 
183 	__clear_bit(id, rsrc->bmap);
184 }
185 
186 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
187 {
188 	int used;
189 
190 	if (!rsrc->bmap)
191 		return 0;
192 
193 	used = bitmap_weight(rsrc->bmap, rsrc->max);
194 	return (rsrc->max - used);
195 }
196 
197 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
198 {
199 	if (!rsrc->bmap)
200 		return false;
201 
202 	return !test_bit(id, rsrc->bmap);
203 }
204 
205 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
206 {
207 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
208 			     sizeof(long), GFP_KERNEL);
209 	if (!rsrc->bmap)
210 		return -ENOMEM;
211 	return 0;
212 }
213 
214 void rvu_free_bitmap(struct rsrc_bmap *rsrc)
215 {
216 	kfree(rsrc->bmap);
217 }
218 
219 /* Get block LF's HW index from a PF_FUNC's block slot number */
220 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
221 {
222 	u16 match = 0;
223 	int lf;
224 
225 	mutex_lock(&rvu->rsrc_lock);
226 	for (lf = 0; lf < block->lf.max; lf++) {
227 		if (block->fn_map[lf] == pcifunc) {
228 			if (slot == match) {
229 				mutex_unlock(&rvu->rsrc_lock);
230 				return lf;
231 			}
232 			match++;
233 		}
234 	}
235 	mutex_unlock(&rvu->rsrc_lock);
236 	return -ENODEV;
237 }
238 
239 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
240  * Some silicon variants of OcteonTX2 supports
241  * multiple blocks of same type.
242  *
243  * @pcifunc has to be zero when no LF is yet attached.
244  *
245  * For a pcifunc if LFs are attached from multiple blocks of same type, then
246  * return blkaddr of first encountered block.
247  */
248 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
249 {
250 	int devnum, blkaddr = -ENODEV;
251 	u64 cfg, reg;
252 	bool is_pf;
253 
254 	switch (blktype) {
255 	case BLKTYPE_NPC:
256 		blkaddr = BLKADDR_NPC;
257 		goto exit;
258 	case BLKTYPE_NPA:
259 		blkaddr = BLKADDR_NPA;
260 		goto exit;
261 	case BLKTYPE_NIX:
262 		/* For now assume NIX0 */
263 		if (!pcifunc) {
264 			blkaddr = BLKADDR_NIX0;
265 			goto exit;
266 		}
267 		break;
268 	case BLKTYPE_SSO:
269 		blkaddr = BLKADDR_SSO;
270 		goto exit;
271 	case BLKTYPE_SSOW:
272 		blkaddr = BLKADDR_SSOW;
273 		goto exit;
274 	case BLKTYPE_TIM:
275 		blkaddr = BLKADDR_TIM;
276 		goto exit;
277 	case BLKTYPE_CPT:
278 		/* For now assume CPT0 */
279 		if (!pcifunc) {
280 			blkaddr = BLKADDR_CPT0;
281 			goto exit;
282 		}
283 		break;
284 	}
285 
286 	/* Check if this is a RVU PF or VF */
287 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
288 		is_pf = false;
289 		devnum = rvu_get_hwvf(rvu, pcifunc);
290 	} else {
291 		is_pf = true;
292 		devnum = rvu_get_pf(pcifunc);
293 	}
294 
295 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
296 	 * 'BLKADDR_NIX1'.
297 	 */
298 	if (blktype == BLKTYPE_NIX) {
299 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
300 			RVU_PRIV_HWVFX_NIXX_CFG(0);
301 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
302 		if (cfg) {
303 			blkaddr = BLKADDR_NIX0;
304 			goto exit;
305 		}
306 
307 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
308 			RVU_PRIV_HWVFX_NIXX_CFG(1);
309 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
310 		if (cfg)
311 			blkaddr = BLKADDR_NIX1;
312 	}
313 
314 	if (blktype == BLKTYPE_CPT) {
315 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
316 			RVU_PRIV_HWVFX_CPTX_CFG(0);
317 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
318 		if (cfg) {
319 			blkaddr = BLKADDR_CPT0;
320 			goto exit;
321 		}
322 
323 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
324 			RVU_PRIV_HWVFX_CPTX_CFG(1);
325 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
326 		if (cfg)
327 			blkaddr = BLKADDR_CPT1;
328 	}
329 
330 exit:
331 	if (is_block_implemented(rvu->hw, blkaddr))
332 		return blkaddr;
333 	return -ENODEV;
334 }
335 
336 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
337 				struct rvu_block *block, u16 pcifunc,
338 				u16 lf, bool attach)
339 {
340 	int devnum, num_lfs = 0;
341 	bool is_pf;
342 	u64 reg;
343 
344 	if (lf >= block->lf.max) {
345 		dev_err(&rvu->pdev->dev,
346 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
347 			__func__, lf, block->name, block->lf.max);
348 		return;
349 	}
350 
351 	/* Check if this is for a RVU PF or VF */
352 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
353 		is_pf = false;
354 		devnum = rvu_get_hwvf(rvu, pcifunc);
355 	} else {
356 		is_pf = true;
357 		devnum = rvu_get_pf(pcifunc);
358 	}
359 
360 	block->fn_map[lf] = attach ? pcifunc : 0;
361 
362 	switch (block->addr) {
363 	case BLKADDR_NPA:
364 		pfvf->npalf = attach ? true : false;
365 		num_lfs = pfvf->npalf;
366 		break;
367 	case BLKADDR_NIX0:
368 	case BLKADDR_NIX1:
369 		pfvf->nixlf = attach ? true : false;
370 		num_lfs = pfvf->nixlf;
371 		break;
372 	case BLKADDR_SSO:
373 		attach ? pfvf->sso++ : pfvf->sso--;
374 		num_lfs = pfvf->sso;
375 		break;
376 	case BLKADDR_SSOW:
377 		attach ? pfvf->ssow++ : pfvf->ssow--;
378 		num_lfs = pfvf->ssow;
379 		break;
380 	case BLKADDR_TIM:
381 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
382 		num_lfs = pfvf->timlfs;
383 		break;
384 	case BLKADDR_CPT0:
385 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
386 		num_lfs = pfvf->cptlfs;
387 		break;
388 	case BLKADDR_CPT1:
389 		attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
390 		num_lfs = pfvf->cpt1_lfs;
391 		break;
392 	}
393 
394 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
395 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
396 }
397 
398 inline int rvu_get_pf(u16 pcifunc)
399 {
400 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
401 }
402 
403 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
404 {
405 	u64 cfg;
406 
407 	/* Get numVFs attached to this PF and first HWVF */
408 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
409 	if (numvfs)
410 		*numvfs = (cfg >> 12) & 0xFF;
411 	if (hwvf)
412 		*hwvf = cfg & 0xFFF;
413 }
414 
415 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
416 {
417 	int pf, func;
418 	u64 cfg;
419 
420 	pf = rvu_get_pf(pcifunc);
421 	func = pcifunc & RVU_PFVF_FUNC_MASK;
422 
423 	/* Get first HWVF attached to this PF */
424 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
425 
426 	return ((cfg & 0xFFF) + func - 1);
427 }
428 
429 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
430 {
431 	/* Check if it is a PF or VF */
432 	if (pcifunc & RVU_PFVF_FUNC_MASK)
433 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
434 	else
435 		return &rvu->pf[rvu_get_pf(pcifunc)];
436 }
437 
438 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
439 {
440 	int pf, vf, nvfs;
441 	u64 cfg;
442 
443 	pf = rvu_get_pf(pcifunc);
444 	if (pf >= rvu->hw->total_pfs)
445 		return false;
446 
447 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
448 		return true;
449 
450 	/* Check if VF is within number of VFs attached to this PF */
451 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
452 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
453 	nvfs = (cfg >> 12) & 0xFF;
454 	if (vf >= nvfs)
455 		return false;
456 
457 	return true;
458 }
459 
460 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
461 {
462 	struct rvu_block *block;
463 
464 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
465 		return false;
466 
467 	block = &hw->block[blkaddr];
468 	return block->implemented;
469 }
470 
471 static void rvu_check_block_implemented(struct rvu *rvu)
472 {
473 	struct rvu_hwinfo *hw = rvu->hw;
474 	struct rvu_block *block;
475 	int blkid;
476 	u64 cfg;
477 
478 	/* For each block check if 'implemented' bit is set */
479 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
480 		block = &hw->block[blkid];
481 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
482 		if (cfg & BIT_ULL(11))
483 			block->implemented = true;
484 	}
485 }
486 
487 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
488 {
489 	rvu_write64(rvu, BLKADDR_RVUM,
490 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
491 		    RVU_BLK_RVUM_REVID);
492 }
493 
494 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
495 {
496 	rvu_write64(rvu, BLKADDR_RVUM,
497 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
498 }
499 
500 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
501 {
502 	int err;
503 
504 	if (!block->implemented)
505 		return 0;
506 
507 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
508 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
509 			   true);
510 	return err;
511 }
512 
513 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
514 {
515 	struct rvu_block *block = &rvu->hw->block[blkaddr];
516 	int err;
517 
518 	if (!block->implemented)
519 		return;
520 
521 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
522 	err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
523 	if (err) {
524 		dev_err(rvu->dev, "HW block:%d reset timeout retrying again\n", blkaddr);
525 		while (rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true) == -EBUSY)
526 			;
527 	}
528 }
529 
530 static void rvu_reset_all_blocks(struct rvu *rvu)
531 {
532 	/* Do a HW reset of all RVU blocks */
533 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
534 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
535 	rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
536 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
537 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
538 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
539 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
540 	rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
541 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
542 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
543 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
544 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
545 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
546 }
547 
548 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
549 {
550 	struct rvu_pfvf *pfvf;
551 	u64 cfg;
552 	int lf;
553 
554 	for (lf = 0; lf < block->lf.max; lf++) {
555 		cfg = rvu_read64(rvu, block->addr,
556 				 block->lfcfg_reg | (lf << block->lfshift));
557 		if (!(cfg & BIT_ULL(63)))
558 			continue;
559 
560 		/* Set this resource as being used */
561 		__set_bit(lf, block->lf.bmap);
562 
563 		/* Get, to whom this LF is attached */
564 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
565 		rvu_update_rsrc_map(rvu, pfvf, block,
566 				    (cfg >> 8) & 0xFFFF, lf, true);
567 
568 		/* Set start MSIX vector for this LF within this PF/VF */
569 		rvu_set_msix_offset(rvu, pfvf, block, lf);
570 	}
571 }
572 
573 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
574 {
575 	int min_vecs;
576 
577 	if (!vf)
578 		goto check_pf;
579 
580 	if (!nvecs) {
581 		dev_warn(rvu->dev,
582 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
583 			 pf, vf - 1, nvecs);
584 	}
585 	return;
586 
587 check_pf:
588 	if (pf == 0)
589 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
590 	else
591 		min_vecs = RVU_PF_INT_VEC_CNT;
592 
593 	if (!(nvecs < min_vecs))
594 		return;
595 	dev_warn(rvu->dev,
596 		 "PF%d is configured with too few vectors, %d, min is %d\n",
597 		 pf, nvecs, min_vecs);
598 }
599 
600 static int rvu_setup_msix_resources(struct rvu *rvu)
601 {
602 	struct rvu_hwinfo *hw = rvu->hw;
603 	int pf, vf, numvfs, hwvf, err;
604 	int nvecs, offset, max_msix;
605 	struct rvu_pfvf *pfvf;
606 	u64 cfg, phy_addr;
607 	dma_addr_t iova;
608 
609 	for (pf = 0; pf < hw->total_pfs; pf++) {
610 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
611 		/* If PF is not enabled, nothing to do */
612 		if (!((cfg >> 20) & 0x01))
613 			continue;
614 
615 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
616 
617 		pfvf = &rvu->pf[pf];
618 		/* Get num of MSIX vectors attached to this PF */
619 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
620 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
621 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
622 
623 		/* Alloc msix bitmap for this PF */
624 		err = rvu_alloc_bitmap(&pfvf->msix);
625 		if (err)
626 			return err;
627 
628 		/* Allocate memory for MSIX vector to RVU block LF mapping */
629 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
630 						sizeof(u16), GFP_KERNEL);
631 		if (!pfvf->msix_lfmap)
632 			return -ENOMEM;
633 
634 		/* For PF0 (AF) firmware will set msix vector offsets for
635 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
636 		 */
637 		if (!pf)
638 			goto setup_vfmsix;
639 
640 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
641 		 * These are allocated on driver init and never freed,
642 		 * so no need to set 'msix_lfmap' for these.
643 		 */
644 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
645 		nvecs = (cfg >> 12) & 0xFF;
646 		cfg &= ~0x7FFULL;
647 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
648 		rvu_write64(rvu, BLKADDR_RVUM,
649 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
650 setup_vfmsix:
651 		/* Alloc msix bitmap for VFs */
652 		for (vf = 0; vf < numvfs; vf++) {
653 			pfvf =  &rvu->hwvf[hwvf + vf];
654 			/* Get num of MSIX vectors attached to this VF */
655 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
656 					 RVU_PRIV_PFX_MSIX_CFG(pf));
657 			pfvf->msix.max = (cfg & 0xFFF) + 1;
658 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
659 
660 			/* Alloc msix bitmap for this VF */
661 			err = rvu_alloc_bitmap(&pfvf->msix);
662 			if (err)
663 				return err;
664 
665 			pfvf->msix_lfmap =
666 				devm_kcalloc(rvu->dev, pfvf->msix.max,
667 					     sizeof(u16), GFP_KERNEL);
668 			if (!pfvf->msix_lfmap)
669 				return -ENOMEM;
670 
671 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
672 			 * These are allocated on driver init and never freed,
673 			 * so no need to set 'msix_lfmap' for these.
674 			 */
675 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
676 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
677 			nvecs = (cfg >> 12) & 0xFF;
678 			cfg &= ~0x7FFULL;
679 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
680 			rvu_write64(rvu, BLKADDR_RVUM,
681 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
682 				    cfg | offset);
683 		}
684 	}
685 
686 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
687 	 * create an IOMMU mapping for the physical address configured by
688 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
689 	 */
690 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
691 	max_msix = cfg & 0xFFFFF;
692 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
693 		phy_addr = rvu->fwdata->msixtr_base;
694 	else
695 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
696 
697 	iova = dma_map_resource(rvu->dev, phy_addr,
698 				max_msix * PCI_MSIX_ENTRY_SIZE,
699 				DMA_BIDIRECTIONAL, 0);
700 
701 	if (dma_mapping_error(rvu->dev, iova))
702 		return -ENOMEM;
703 
704 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
705 	rvu->msix_base_iova = iova;
706 	rvu->msixtr_base_phy = phy_addr;
707 
708 	return 0;
709 }
710 
711 static void rvu_reset_msix(struct rvu *rvu)
712 {
713 	/* Restore msixtr base register */
714 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
715 		    rvu->msixtr_base_phy);
716 }
717 
718 static void rvu_free_hw_resources(struct rvu *rvu)
719 {
720 	struct rvu_hwinfo *hw = rvu->hw;
721 	struct rvu_block *block;
722 	struct rvu_pfvf  *pfvf;
723 	int id, max_msix;
724 	u64 cfg;
725 
726 	rvu_npa_freemem(rvu);
727 	rvu_npc_freemem(rvu);
728 	rvu_nix_freemem(rvu);
729 
730 	/* Free block LF bitmaps */
731 	for (id = 0; id < BLK_COUNT; id++) {
732 		block = &hw->block[id];
733 		kfree(block->lf.bmap);
734 	}
735 
736 	/* Free MSIX bitmaps */
737 	for (id = 0; id < hw->total_pfs; id++) {
738 		pfvf = &rvu->pf[id];
739 		kfree(pfvf->msix.bmap);
740 	}
741 
742 	for (id = 0; id < hw->total_vfs; id++) {
743 		pfvf = &rvu->hwvf[id];
744 		kfree(pfvf->msix.bmap);
745 	}
746 
747 	/* Unmap MSIX vector base IOVA mapping */
748 	if (!rvu->msix_base_iova)
749 		return;
750 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
751 	max_msix = cfg & 0xFFFFF;
752 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
753 			   max_msix * PCI_MSIX_ENTRY_SIZE,
754 			   DMA_BIDIRECTIONAL, 0);
755 
756 	rvu_reset_msix(rvu);
757 	mutex_destroy(&rvu->rsrc_lock);
758 }
759 
760 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
761 {
762 	struct rvu_hwinfo *hw = rvu->hw;
763 	int pf, vf, numvfs, hwvf;
764 	struct rvu_pfvf *pfvf;
765 	u64 *mac;
766 
767 	for (pf = 0; pf < hw->total_pfs; pf++) {
768 		/* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
769 		if (!pf)
770 			goto lbkvf;
771 
772 		if (!is_pf_cgxmapped(rvu, pf))
773 			continue;
774 		/* Assign MAC address to PF */
775 		pfvf = &rvu->pf[pf];
776 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
777 			mac = &rvu->fwdata->pf_macs[pf];
778 			if (*mac)
779 				u64_to_ether_addr(*mac, pfvf->mac_addr);
780 			else
781 				eth_random_addr(pfvf->mac_addr);
782 		} else {
783 			eth_random_addr(pfvf->mac_addr);
784 		}
785 		ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
786 
787 lbkvf:
788 		/* Assign MAC address to VFs*/
789 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
790 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
791 			pfvf = &rvu->hwvf[hwvf];
792 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
793 				mac = &rvu->fwdata->vf_macs[hwvf];
794 				if (*mac)
795 					u64_to_ether_addr(*mac, pfvf->mac_addr);
796 				else
797 					eth_random_addr(pfvf->mac_addr);
798 			} else {
799 				eth_random_addr(pfvf->mac_addr);
800 			}
801 			ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
802 		}
803 	}
804 }
805 
806 static int rvu_fwdata_init(struct rvu *rvu)
807 {
808 	u64 fwdbase;
809 	int err;
810 
811 	/* Get firmware data base address */
812 	err = cgx_get_fwdata_base(&fwdbase);
813 	if (err)
814 		goto fail;
815 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
816 	if (!rvu->fwdata)
817 		goto fail;
818 	if (!is_rvu_fwdata_valid(rvu)) {
819 		dev_err(rvu->dev,
820 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
821 		iounmap(rvu->fwdata);
822 		rvu->fwdata = NULL;
823 		return -EINVAL;
824 	}
825 	return 0;
826 fail:
827 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
828 	return -EIO;
829 }
830 
831 static void rvu_fwdata_exit(struct rvu *rvu)
832 {
833 	if (rvu->fwdata)
834 		iounmap(rvu->fwdata);
835 }
836 
837 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
838 {
839 	struct rvu_hwinfo *hw = rvu->hw;
840 	struct rvu_block *block;
841 	int blkid;
842 	u64 cfg;
843 
844 	/* Init NIX LF's bitmap */
845 	block = &hw->block[blkaddr];
846 	if (!block->implemented)
847 		return 0;
848 	blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
849 	cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
850 	block->lf.max = cfg & 0xFFF;
851 	block->addr = blkaddr;
852 	block->type = BLKTYPE_NIX;
853 	block->lfshift = 8;
854 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
855 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
856 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
857 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
858 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
859 	block->lfreset_reg = NIX_AF_LF_RST;
860 	block->rvu = rvu;
861 	sprintf(block->name, "NIX%d", blkid);
862 	rvu->nix_blkaddr[blkid] = blkaddr;
863 	return rvu_alloc_bitmap(&block->lf);
864 }
865 
866 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
867 {
868 	struct rvu_hwinfo *hw = rvu->hw;
869 	struct rvu_block *block;
870 	int blkid;
871 	u64 cfg;
872 
873 	/* Init CPT LF's bitmap */
874 	block = &hw->block[blkaddr];
875 	if (!block->implemented)
876 		return 0;
877 	blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
878 	cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
879 	block->lf.max = cfg & 0xFF;
880 	block->addr = blkaddr;
881 	block->type = BLKTYPE_CPT;
882 	block->multislot = true;
883 	block->lfshift = 3;
884 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
885 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
886 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
887 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
888 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
889 	block->lfreset_reg = CPT_AF_LF_RST;
890 	block->rvu = rvu;
891 	sprintf(block->name, "CPT%d", blkid);
892 	return rvu_alloc_bitmap(&block->lf);
893 }
894 
895 static void rvu_get_lbk_bufsize(struct rvu *rvu)
896 {
897 	struct pci_dev *pdev = NULL;
898 	void __iomem *base;
899 	u64 lbk_const;
900 
901 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
902 			      PCI_DEVID_OCTEONTX2_LBK, pdev);
903 	if (!pdev)
904 		return;
905 
906 	base = pci_ioremap_bar(pdev, 0);
907 	if (!base)
908 		goto err_put;
909 
910 	lbk_const = readq(base + LBK_CONST);
911 
912 	/* cache fifo size */
913 	rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
914 
915 	iounmap(base);
916 err_put:
917 	pci_dev_put(pdev);
918 }
919 
920 static int rvu_setup_hw_resources(struct rvu *rvu)
921 {
922 	struct rvu_hwinfo *hw = rvu->hw;
923 	struct rvu_block *block;
924 	int blkid, err;
925 	u64 cfg;
926 
927 	/* Get HW supported max RVU PF & VF count */
928 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
929 	hw->total_pfs = (cfg >> 32) & 0xFF;
930 	hw->total_vfs = (cfg >> 20) & 0xFFF;
931 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
932 
933 	/* Init NPA LF's bitmap */
934 	block = &hw->block[BLKADDR_NPA];
935 	if (!block->implemented)
936 		goto nix;
937 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
938 	block->lf.max = (cfg >> 16) & 0xFFF;
939 	block->addr = BLKADDR_NPA;
940 	block->type = BLKTYPE_NPA;
941 	block->lfshift = 8;
942 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
943 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
944 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
945 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
946 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
947 	block->lfreset_reg = NPA_AF_LF_RST;
948 	block->rvu = rvu;
949 	sprintf(block->name, "NPA");
950 	err = rvu_alloc_bitmap(&block->lf);
951 	if (err) {
952 		dev_err(rvu->dev,
953 			"%s: Failed to allocate NPA LF bitmap\n", __func__);
954 		return err;
955 	}
956 
957 nix:
958 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
959 	if (err) {
960 		dev_err(rvu->dev,
961 			"%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
962 		return err;
963 	}
964 
965 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
966 	if (err) {
967 		dev_err(rvu->dev,
968 			"%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
969 		return err;
970 	}
971 
972 	/* Init SSO group's bitmap */
973 	block = &hw->block[BLKADDR_SSO];
974 	if (!block->implemented)
975 		goto ssow;
976 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
977 	block->lf.max = cfg & 0xFFFF;
978 	block->addr = BLKADDR_SSO;
979 	block->type = BLKTYPE_SSO;
980 	block->multislot = true;
981 	block->lfshift = 3;
982 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
983 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
984 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
985 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
986 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
987 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
988 	block->rvu = rvu;
989 	sprintf(block->name, "SSO GROUP");
990 	err = rvu_alloc_bitmap(&block->lf);
991 	if (err) {
992 		dev_err(rvu->dev,
993 			"%s: Failed to allocate SSO LF bitmap\n", __func__);
994 		return err;
995 	}
996 
997 ssow:
998 	/* Init SSO workslot's bitmap */
999 	block = &hw->block[BLKADDR_SSOW];
1000 	if (!block->implemented)
1001 		goto tim;
1002 	block->lf.max = (cfg >> 56) & 0xFF;
1003 	block->addr = BLKADDR_SSOW;
1004 	block->type = BLKTYPE_SSOW;
1005 	block->multislot = true;
1006 	block->lfshift = 3;
1007 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
1008 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
1009 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
1010 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
1011 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
1012 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
1013 	block->rvu = rvu;
1014 	sprintf(block->name, "SSOWS");
1015 	err = rvu_alloc_bitmap(&block->lf);
1016 	if (err) {
1017 		dev_err(rvu->dev,
1018 			"%s: Failed to allocate SSOW LF bitmap\n", __func__);
1019 		return err;
1020 	}
1021 
1022 tim:
1023 	/* Init TIM LF's bitmap */
1024 	block = &hw->block[BLKADDR_TIM];
1025 	if (!block->implemented)
1026 		goto cpt;
1027 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1028 	block->lf.max = cfg & 0xFFFF;
1029 	block->addr = BLKADDR_TIM;
1030 	block->type = BLKTYPE_TIM;
1031 	block->multislot = true;
1032 	block->lfshift = 3;
1033 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1034 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1035 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1036 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1037 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1038 	block->lfreset_reg = TIM_AF_LF_RST;
1039 	block->rvu = rvu;
1040 	sprintf(block->name, "TIM");
1041 	err = rvu_alloc_bitmap(&block->lf);
1042 	if (err) {
1043 		dev_err(rvu->dev,
1044 			"%s: Failed to allocate TIM LF bitmap\n", __func__);
1045 		return err;
1046 	}
1047 
1048 cpt:
1049 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1050 	if (err) {
1051 		dev_err(rvu->dev,
1052 			"%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1053 		return err;
1054 	}
1055 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1056 	if (err) {
1057 		dev_err(rvu->dev,
1058 			"%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1059 		return err;
1060 	}
1061 
1062 	/* Allocate memory for PFVF data */
1063 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1064 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
1065 	if (!rvu->pf) {
1066 		dev_err(rvu->dev,
1067 			"%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1068 		return -ENOMEM;
1069 	}
1070 
1071 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1072 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
1073 	if (!rvu->hwvf) {
1074 		dev_err(rvu->dev,
1075 			"%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1076 		return -ENOMEM;
1077 	}
1078 
1079 	mutex_init(&rvu->rsrc_lock);
1080 
1081 	rvu_fwdata_init(rvu);
1082 
1083 	err = rvu_setup_msix_resources(rvu);
1084 	if (err) {
1085 		dev_err(rvu->dev,
1086 			"%s: Failed to setup MSIX resources\n", __func__);
1087 		return err;
1088 	}
1089 
1090 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1091 		block = &hw->block[blkid];
1092 		if (!block->lf.bmap)
1093 			continue;
1094 
1095 		/* Allocate memory for block LF/slot to pcifunc mapping info */
1096 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1097 					     sizeof(u16), GFP_KERNEL);
1098 		if (!block->fn_map) {
1099 			err = -ENOMEM;
1100 			goto msix_err;
1101 		}
1102 
1103 		/* Scan all blocks to check if low level firmware has
1104 		 * already provisioned any of the resources to a PF/VF.
1105 		 */
1106 		rvu_scan_block(rvu, block);
1107 	}
1108 
1109 	err = rvu_set_channels_base(rvu);
1110 	if (err)
1111 		goto msix_err;
1112 
1113 	err = rvu_npc_init(rvu);
1114 	if (err) {
1115 		dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1116 		goto npc_err;
1117 	}
1118 
1119 	err = rvu_cgx_init(rvu);
1120 	if (err) {
1121 		dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1122 		goto cgx_err;
1123 	}
1124 
1125 	/* Assign MACs for CGX mapped functions */
1126 	rvu_setup_pfvf_macaddress(rvu);
1127 
1128 	err = rvu_npa_init(rvu);
1129 	if (err) {
1130 		dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1131 		goto npa_err;
1132 	}
1133 
1134 	rvu_get_lbk_bufsize(rvu);
1135 
1136 	err = rvu_nix_init(rvu);
1137 	if (err) {
1138 		dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1139 		goto nix_err;
1140 	}
1141 
1142 	err = rvu_sdp_init(rvu);
1143 	if (err) {
1144 		dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1145 		goto nix_err;
1146 	}
1147 
1148 	rvu_program_channels(rvu);
1149 
1150 	return 0;
1151 
1152 nix_err:
1153 	rvu_nix_freemem(rvu);
1154 npa_err:
1155 	rvu_npa_freemem(rvu);
1156 cgx_err:
1157 	rvu_cgx_exit(rvu);
1158 npc_err:
1159 	rvu_npc_freemem(rvu);
1160 	rvu_fwdata_exit(rvu);
1161 msix_err:
1162 	rvu_reset_msix(rvu);
1163 	return err;
1164 }
1165 
1166 /* NPA and NIX admin queue APIs */
1167 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1168 {
1169 	if (!aq)
1170 		return;
1171 
1172 	qmem_free(rvu->dev, aq->inst);
1173 	qmem_free(rvu->dev, aq->res);
1174 	devm_kfree(rvu->dev, aq);
1175 }
1176 
1177 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1178 		 int qsize, int inst_size, int res_size)
1179 {
1180 	struct admin_queue *aq;
1181 	int err;
1182 
1183 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1184 	if (!*ad_queue)
1185 		return -ENOMEM;
1186 	aq = *ad_queue;
1187 
1188 	/* Alloc memory for instructions i.e AQ */
1189 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1190 	if (err) {
1191 		devm_kfree(rvu->dev, aq);
1192 		return err;
1193 	}
1194 
1195 	/* Alloc memory for results */
1196 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1197 	if (err) {
1198 		rvu_aq_free(rvu, aq);
1199 		return err;
1200 	}
1201 
1202 	spin_lock_init(&aq->lock);
1203 	return 0;
1204 }
1205 
1206 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1207 			   struct ready_msg_rsp *rsp)
1208 {
1209 	if (rvu->fwdata) {
1210 		rsp->rclk_freq = rvu->fwdata->rclk;
1211 		rsp->sclk_freq = rvu->fwdata->sclk;
1212 	}
1213 	return 0;
1214 }
1215 
1216 /* Get current count of a RVU block's LF/slots
1217  * provisioned to a given RVU func.
1218  */
1219 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1220 {
1221 	switch (blkaddr) {
1222 	case BLKADDR_NPA:
1223 		return pfvf->npalf ? 1 : 0;
1224 	case BLKADDR_NIX0:
1225 	case BLKADDR_NIX1:
1226 		return pfvf->nixlf ? 1 : 0;
1227 	case BLKADDR_SSO:
1228 		return pfvf->sso;
1229 	case BLKADDR_SSOW:
1230 		return pfvf->ssow;
1231 	case BLKADDR_TIM:
1232 		return pfvf->timlfs;
1233 	case BLKADDR_CPT0:
1234 		return pfvf->cptlfs;
1235 	case BLKADDR_CPT1:
1236 		return pfvf->cpt1_lfs;
1237 	}
1238 	return 0;
1239 }
1240 
1241 /* Return true if LFs of block type are attached to pcifunc */
1242 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1243 {
1244 	switch (blktype) {
1245 	case BLKTYPE_NPA:
1246 		return pfvf->npalf ? 1 : 0;
1247 	case BLKTYPE_NIX:
1248 		return pfvf->nixlf ? 1 : 0;
1249 	case BLKTYPE_SSO:
1250 		return !!pfvf->sso;
1251 	case BLKTYPE_SSOW:
1252 		return !!pfvf->ssow;
1253 	case BLKTYPE_TIM:
1254 		return !!pfvf->timlfs;
1255 	case BLKTYPE_CPT:
1256 		return pfvf->cptlfs || pfvf->cpt1_lfs;
1257 	}
1258 
1259 	return false;
1260 }
1261 
1262 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1263 {
1264 	struct rvu_pfvf *pfvf;
1265 
1266 	if (!is_pf_func_valid(rvu, pcifunc))
1267 		return false;
1268 
1269 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1270 
1271 	/* Check if this PFFUNC has a LF of type blktype attached */
1272 	if (!is_blktype_attached(pfvf, blktype))
1273 		return false;
1274 
1275 	return true;
1276 }
1277 
1278 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1279 			   int pcifunc, int slot)
1280 {
1281 	u64 val;
1282 
1283 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1284 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1285 	/* Wait for the lookup to finish */
1286 	/* TODO: put some timeout here */
1287 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1288 		;
1289 
1290 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1291 
1292 	/* Check LF valid bit */
1293 	if (!(val & (1ULL << 12)))
1294 		return -1;
1295 
1296 	return (val & 0xFFF);
1297 }
1298 
1299 int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc,
1300 			      u16 global_slot, u16 *slot_in_block)
1301 {
1302 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1303 	int numlfs, total_lfs = 0, nr_blocks = 0;
1304 	int i, num_blkaddr[BLK_COUNT] = { 0 };
1305 	struct rvu_block *block;
1306 	int blkaddr;
1307 	u16 start_slot;
1308 
1309 	if (!is_blktype_attached(pfvf, blktype))
1310 		return -ENODEV;
1311 
1312 	/* Get all the block addresses from which LFs are attached to
1313 	 * the given pcifunc in num_blkaddr[].
1314 	 */
1315 	for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) {
1316 		block = &rvu->hw->block[blkaddr];
1317 		if (block->type != blktype)
1318 			continue;
1319 		if (!is_block_implemented(rvu->hw, blkaddr))
1320 			continue;
1321 
1322 		numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr);
1323 		if (numlfs) {
1324 			total_lfs += numlfs;
1325 			num_blkaddr[nr_blocks] = blkaddr;
1326 			nr_blocks++;
1327 		}
1328 	}
1329 
1330 	if (global_slot >= total_lfs)
1331 		return -ENODEV;
1332 
1333 	/* Based on the given global slot number retrieve the
1334 	 * correct block address out of all attached block
1335 	 * addresses and slot number in that block.
1336 	 */
1337 	total_lfs = 0;
1338 	blkaddr = -ENODEV;
1339 	for (i = 0; i < nr_blocks; i++) {
1340 		numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]);
1341 		total_lfs += numlfs;
1342 		if (global_slot < total_lfs) {
1343 			blkaddr = num_blkaddr[i];
1344 			start_slot = total_lfs - numlfs;
1345 			*slot_in_block = global_slot - start_slot;
1346 			break;
1347 		}
1348 	}
1349 
1350 	return blkaddr;
1351 }
1352 
1353 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1354 {
1355 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1356 	struct rvu_hwinfo *hw = rvu->hw;
1357 	struct rvu_block *block;
1358 	int slot, lf, num_lfs;
1359 	int blkaddr;
1360 
1361 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1362 	if (blkaddr < 0)
1363 		return;
1364 
1365 	if (blktype == BLKTYPE_NIX)
1366 		rvu_nix_reset_mac(pfvf, pcifunc);
1367 
1368 	block = &hw->block[blkaddr];
1369 
1370 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1371 	if (!num_lfs)
1372 		return;
1373 
1374 	for (slot = 0; slot < num_lfs; slot++) {
1375 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1376 		if (lf < 0) /* This should never happen */
1377 			continue;
1378 
1379 		/* Disable the LF */
1380 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1381 			    (lf << block->lfshift), 0x00ULL);
1382 
1383 		/* Update SW maintained mapping info as well */
1384 		rvu_update_rsrc_map(rvu, pfvf, block,
1385 				    pcifunc, lf, false);
1386 
1387 		/* Free the resource */
1388 		rvu_free_rsrc(&block->lf, lf);
1389 
1390 		/* Clear MSIX vector offset for this LF */
1391 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1392 	}
1393 }
1394 
1395 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1396 			    u16 pcifunc)
1397 {
1398 	struct rvu_hwinfo *hw = rvu->hw;
1399 	bool detach_all = true;
1400 	struct rvu_block *block;
1401 	int blkid;
1402 
1403 	mutex_lock(&rvu->rsrc_lock);
1404 
1405 	/* Check for partial resource detach */
1406 	if (detach && detach->partial)
1407 		detach_all = false;
1408 
1409 	/* Check for RVU block's LFs attached to this func,
1410 	 * if so, detach them.
1411 	 */
1412 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1413 		block = &hw->block[blkid];
1414 		if (!block->lf.bmap)
1415 			continue;
1416 		if (!detach_all && detach) {
1417 			if (blkid == BLKADDR_NPA && !detach->npalf)
1418 				continue;
1419 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1420 				continue;
1421 			else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1422 				continue;
1423 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1424 				continue;
1425 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1426 				continue;
1427 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1428 				continue;
1429 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1430 				continue;
1431 			else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1432 				continue;
1433 		}
1434 		rvu_detach_block(rvu, pcifunc, block->type);
1435 	}
1436 
1437 	mutex_unlock(&rvu->rsrc_lock);
1438 	return 0;
1439 }
1440 
1441 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1442 				      struct rsrc_detach *detach,
1443 				      struct msg_rsp *rsp)
1444 {
1445 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1446 }
1447 
1448 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1449 {
1450 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1451 	int blkaddr = BLKADDR_NIX0, vf;
1452 	struct rvu_pfvf *pf;
1453 
1454 	pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1455 
1456 	/* All CGX mapped PFs are set with assigned NIX block during init */
1457 	if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1458 		blkaddr = pf->nix_blkaddr;
1459 	} else if (is_afvf(pcifunc)) {
1460 		vf = pcifunc - 1;
1461 		/* Assign NIX based on VF number. All even numbered VFs get
1462 		 * NIX0 and odd numbered gets NIX1
1463 		 */
1464 		blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1465 		/* NIX1 is not present on all silicons */
1466 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1467 			blkaddr = BLKADDR_NIX0;
1468 	}
1469 
1470 	/* if SDP1 then the blkaddr is NIX1 */
1471 	if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
1472 		blkaddr = BLKADDR_NIX1;
1473 
1474 	switch (blkaddr) {
1475 	case BLKADDR_NIX1:
1476 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1477 		pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1478 		pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1479 		break;
1480 	case BLKADDR_NIX0:
1481 	default:
1482 		pfvf->nix_blkaddr = BLKADDR_NIX0;
1483 		pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1484 		pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1485 		break;
1486 	}
1487 
1488 	return pfvf->nix_blkaddr;
1489 }
1490 
1491 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1492 				  u16 pcifunc, struct rsrc_attach *attach)
1493 {
1494 	int blkaddr;
1495 
1496 	switch (blktype) {
1497 	case BLKTYPE_NIX:
1498 		blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1499 		break;
1500 	case BLKTYPE_CPT:
1501 		if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1502 			return rvu_get_blkaddr(rvu, blktype, 0);
1503 		blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1504 			  BLKADDR_CPT0;
1505 		if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1506 			return -ENODEV;
1507 		break;
1508 	default:
1509 		return rvu_get_blkaddr(rvu, blktype, 0);
1510 	}
1511 
1512 	if (is_block_implemented(rvu->hw, blkaddr))
1513 		return blkaddr;
1514 
1515 	return -ENODEV;
1516 }
1517 
1518 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1519 			     int num_lfs, struct rsrc_attach *attach)
1520 {
1521 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1522 	struct rvu_hwinfo *hw = rvu->hw;
1523 	struct rvu_block *block;
1524 	int slot, lf;
1525 	int blkaddr;
1526 	u64 cfg;
1527 
1528 	if (!num_lfs)
1529 		return;
1530 
1531 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1532 	if (blkaddr < 0)
1533 		return;
1534 
1535 	block = &hw->block[blkaddr];
1536 	if (!block->lf.bmap)
1537 		return;
1538 
1539 	for (slot = 0; slot < num_lfs; slot++) {
1540 		/* Allocate the resource */
1541 		lf = rvu_alloc_rsrc(&block->lf);
1542 		if (lf < 0)
1543 			return;
1544 
1545 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1546 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1547 			    (lf << block->lfshift), cfg);
1548 		rvu_update_rsrc_map(rvu, pfvf, block,
1549 				    pcifunc, lf, true);
1550 
1551 		/* Set start MSIX vector for this LF within this PF/VF */
1552 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1553 	}
1554 }
1555 
1556 static int rvu_check_rsrc_availability(struct rvu *rvu,
1557 				       struct rsrc_attach *req, u16 pcifunc)
1558 {
1559 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1560 	int free_lfs, mappedlfs, blkaddr;
1561 	struct rvu_hwinfo *hw = rvu->hw;
1562 	struct rvu_block *block;
1563 
1564 	/* Only one NPA LF can be attached */
1565 	if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1566 		block = &hw->block[BLKADDR_NPA];
1567 		free_lfs = rvu_rsrc_free_count(&block->lf);
1568 		if (!free_lfs)
1569 			goto fail;
1570 	} else if (req->npalf) {
1571 		dev_err(&rvu->pdev->dev,
1572 			"Func 0x%x: Invalid req, already has NPA\n",
1573 			 pcifunc);
1574 		return -EINVAL;
1575 	}
1576 
1577 	/* Only one NIX LF can be attached */
1578 	if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1579 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1580 						 pcifunc, req);
1581 		if (blkaddr < 0)
1582 			return blkaddr;
1583 		block = &hw->block[blkaddr];
1584 		free_lfs = rvu_rsrc_free_count(&block->lf);
1585 		if (!free_lfs)
1586 			goto fail;
1587 	} else if (req->nixlf) {
1588 		dev_err(&rvu->pdev->dev,
1589 			"Func 0x%x: Invalid req, already has NIX\n",
1590 			pcifunc);
1591 		return -EINVAL;
1592 	}
1593 
1594 	if (req->sso) {
1595 		block = &hw->block[BLKADDR_SSO];
1596 		/* Is request within limits ? */
1597 		if (req->sso > block->lf.max) {
1598 			dev_err(&rvu->pdev->dev,
1599 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1600 				 pcifunc, req->sso, block->lf.max);
1601 			return -EINVAL;
1602 		}
1603 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1604 		free_lfs = rvu_rsrc_free_count(&block->lf);
1605 		/* Check if additional resources are available */
1606 		if (req->sso > mappedlfs &&
1607 		    ((req->sso - mappedlfs) > free_lfs))
1608 			goto fail;
1609 	}
1610 
1611 	if (req->ssow) {
1612 		block = &hw->block[BLKADDR_SSOW];
1613 		if (req->ssow > block->lf.max) {
1614 			dev_err(&rvu->pdev->dev,
1615 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1616 				 pcifunc, req->sso, block->lf.max);
1617 			return -EINVAL;
1618 		}
1619 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1620 		free_lfs = rvu_rsrc_free_count(&block->lf);
1621 		if (req->ssow > mappedlfs &&
1622 		    ((req->ssow - mappedlfs) > free_lfs))
1623 			goto fail;
1624 	}
1625 
1626 	if (req->timlfs) {
1627 		block = &hw->block[BLKADDR_TIM];
1628 		if (req->timlfs > block->lf.max) {
1629 			dev_err(&rvu->pdev->dev,
1630 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1631 				 pcifunc, req->timlfs, block->lf.max);
1632 			return -EINVAL;
1633 		}
1634 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1635 		free_lfs = rvu_rsrc_free_count(&block->lf);
1636 		if (req->timlfs > mappedlfs &&
1637 		    ((req->timlfs - mappedlfs) > free_lfs))
1638 			goto fail;
1639 	}
1640 
1641 	if (req->cptlfs) {
1642 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1643 						 pcifunc, req);
1644 		if (blkaddr < 0)
1645 			return blkaddr;
1646 		block = &hw->block[blkaddr];
1647 		if (req->cptlfs > block->lf.max) {
1648 			dev_err(&rvu->pdev->dev,
1649 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1650 				 pcifunc, req->cptlfs, block->lf.max);
1651 			return -EINVAL;
1652 		}
1653 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1654 		free_lfs = rvu_rsrc_free_count(&block->lf);
1655 		if (req->cptlfs > mappedlfs &&
1656 		    ((req->cptlfs - mappedlfs) > free_lfs))
1657 			goto fail;
1658 	}
1659 
1660 	return 0;
1661 
1662 fail:
1663 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1664 	return -ENOSPC;
1665 }
1666 
1667 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1668 				       struct rsrc_attach *attach)
1669 {
1670 	int blkaddr, num_lfs;
1671 
1672 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1673 					 attach->hdr.pcifunc, attach);
1674 	if (blkaddr < 0)
1675 		return false;
1676 
1677 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1678 					blkaddr);
1679 	/* Requester already has LFs from given block ? */
1680 	return !!num_lfs;
1681 }
1682 
1683 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1684 				      struct rsrc_attach *attach,
1685 				      struct msg_rsp *rsp)
1686 {
1687 	u16 pcifunc = attach->hdr.pcifunc;
1688 	int err;
1689 
1690 	/* If first request, detach all existing attached resources */
1691 	if (!attach->modify)
1692 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1693 
1694 	mutex_lock(&rvu->rsrc_lock);
1695 
1696 	/* Check if the request can be accommodated */
1697 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1698 	if (err)
1699 		goto exit;
1700 
1701 	/* Now attach the requested resources */
1702 	if (attach->npalf)
1703 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1704 
1705 	if (attach->nixlf)
1706 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1707 
1708 	if (attach->sso) {
1709 		/* RVU func doesn't know which exact LF or slot is attached
1710 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1711 		 * request, simply detach all existing attached LFs/slots
1712 		 * and attach a fresh.
1713 		 */
1714 		if (attach->modify)
1715 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1716 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1717 				 attach->sso, attach);
1718 	}
1719 
1720 	if (attach->ssow) {
1721 		if (attach->modify)
1722 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1723 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1724 				 attach->ssow, attach);
1725 	}
1726 
1727 	if (attach->timlfs) {
1728 		if (attach->modify)
1729 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1730 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1731 				 attach->timlfs, attach);
1732 	}
1733 
1734 	if (attach->cptlfs) {
1735 		if (attach->modify &&
1736 		    rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1737 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1738 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1739 				 attach->cptlfs, attach);
1740 	}
1741 
1742 exit:
1743 	mutex_unlock(&rvu->rsrc_lock);
1744 	return err;
1745 }
1746 
1747 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1748 			       int blkaddr, int lf)
1749 {
1750 	u16 vec;
1751 
1752 	if (lf < 0)
1753 		return MSIX_VECTOR_INVALID;
1754 
1755 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1756 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1757 			return vec;
1758 	}
1759 	return MSIX_VECTOR_INVALID;
1760 }
1761 
1762 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1763 				struct rvu_block *block, int lf)
1764 {
1765 	u16 nvecs, vec, offset;
1766 	u64 cfg;
1767 
1768 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1769 			 (lf << block->lfshift));
1770 	nvecs = (cfg >> 12) & 0xFF;
1771 
1772 	/* Check and alloc MSIX vectors, must be contiguous */
1773 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1774 		return;
1775 
1776 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1777 
1778 	/* Config MSIX offset in LF */
1779 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1780 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1781 
1782 	/* Update the bitmap as well */
1783 	for (vec = 0; vec < nvecs; vec++)
1784 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1785 }
1786 
1787 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1788 				  struct rvu_block *block, int lf)
1789 {
1790 	u16 nvecs, vec, offset;
1791 	u64 cfg;
1792 
1793 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1794 			 (lf << block->lfshift));
1795 	nvecs = (cfg >> 12) & 0xFF;
1796 
1797 	/* Clear MSIX offset in LF */
1798 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1799 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1800 
1801 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1802 
1803 	/* Update the mapping */
1804 	for (vec = 0; vec < nvecs; vec++)
1805 		pfvf->msix_lfmap[offset + vec] = 0;
1806 
1807 	/* Free the same in MSIX bitmap */
1808 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1809 }
1810 
1811 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1812 				 struct msix_offset_rsp *rsp)
1813 {
1814 	struct rvu_hwinfo *hw = rvu->hw;
1815 	u16 pcifunc = req->hdr.pcifunc;
1816 	struct rvu_pfvf *pfvf;
1817 	int lf, slot, blkaddr;
1818 
1819 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1820 	if (!pfvf->msix.bmap)
1821 		return 0;
1822 
1823 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1824 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1825 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1826 
1827 	/* Get BLKADDR from which LFs are attached to pcifunc */
1828 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1829 	if (blkaddr < 0) {
1830 		rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1831 	} else {
1832 		lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1833 		rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1834 	}
1835 
1836 	rsp->sso = pfvf->sso;
1837 	for (slot = 0; slot < rsp->sso; slot++) {
1838 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1839 		rsp->sso_msixoff[slot] =
1840 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1841 	}
1842 
1843 	rsp->ssow = pfvf->ssow;
1844 	for (slot = 0; slot < rsp->ssow; slot++) {
1845 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1846 		rsp->ssow_msixoff[slot] =
1847 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1848 	}
1849 
1850 	rsp->timlfs = pfvf->timlfs;
1851 	for (slot = 0; slot < rsp->timlfs; slot++) {
1852 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1853 		rsp->timlf_msixoff[slot] =
1854 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1855 	}
1856 
1857 	rsp->cptlfs = pfvf->cptlfs;
1858 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1859 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1860 		rsp->cptlf_msixoff[slot] =
1861 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1862 	}
1863 
1864 	rsp->cpt1_lfs = pfvf->cpt1_lfs;
1865 	for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1866 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1867 		rsp->cpt1_lf_msixoff[slot] =
1868 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1869 	}
1870 
1871 	return 0;
1872 }
1873 
1874 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1875 				   struct free_rsrcs_rsp *rsp)
1876 {
1877 	struct rvu_hwinfo *hw = rvu->hw;
1878 	struct rvu_block *block;
1879 	struct nix_txsch *txsch;
1880 	struct nix_hw *nix_hw;
1881 
1882 	mutex_lock(&rvu->rsrc_lock);
1883 
1884 	block = &hw->block[BLKADDR_NPA];
1885 	rsp->npa = rvu_rsrc_free_count(&block->lf);
1886 
1887 	block = &hw->block[BLKADDR_NIX0];
1888 	rsp->nix = rvu_rsrc_free_count(&block->lf);
1889 
1890 	block = &hw->block[BLKADDR_NIX1];
1891 	rsp->nix1 = rvu_rsrc_free_count(&block->lf);
1892 
1893 	block = &hw->block[BLKADDR_SSO];
1894 	rsp->sso = rvu_rsrc_free_count(&block->lf);
1895 
1896 	block = &hw->block[BLKADDR_SSOW];
1897 	rsp->ssow = rvu_rsrc_free_count(&block->lf);
1898 
1899 	block = &hw->block[BLKADDR_TIM];
1900 	rsp->tim = rvu_rsrc_free_count(&block->lf);
1901 
1902 	block = &hw->block[BLKADDR_CPT0];
1903 	rsp->cpt = rvu_rsrc_free_count(&block->lf);
1904 
1905 	block = &hw->block[BLKADDR_CPT1];
1906 	rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
1907 
1908 	if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1909 		rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1910 		rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1911 		rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1912 		rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1913 		/* NIX1 */
1914 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1915 			goto out;
1916 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1917 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1918 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1919 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1920 	} else {
1921 		nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
1922 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1923 		rsp->schq[NIX_TXSCH_LVL_SMQ] =
1924 				rvu_rsrc_free_count(&txsch->schq);
1925 
1926 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1927 		rsp->schq[NIX_TXSCH_LVL_TL4] =
1928 				rvu_rsrc_free_count(&txsch->schq);
1929 
1930 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1931 		rsp->schq[NIX_TXSCH_LVL_TL3] =
1932 				rvu_rsrc_free_count(&txsch->schq);
1933 
1934 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1935 		rsp->schq[NIX_TXSCH_LVL_TL2] =
1936 				rvu_rsrc_free_count(&txsch->schq);
1937 
1938 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1939 			goto out;
1940 
1941 		nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
1942 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1943 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
1944 				rvu_rsrc_free_count(&txsch->schq);
1945 
1946 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1947 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
1948 				rvu_rsrc_free_count(&txsch->schq);
1949 
1950 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1951 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
1952 				rvu_rsrc_free_count(&txsch->schq);
1953 
1954 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1955 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
1956 				rvu_rsrc_free_count(&txsch->schq);
1957 	}
1958 
1959 	rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
1960 out:
1961 	rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
1962 	mutex_unlock(&rvu->rsrc_lock);
1963 
1964 	return 0;
1965 }
1966 
1967 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1968 			    struct msg_rsp *rsp)
1969 {
1970 	u16 pcifunc = req->hdr.pcifunc;
1971 	u16 vf, numvfs;
1972 	u64 cfg;
1973 
1974 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
1975 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
1976 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1977 	numvfs = (cfg >> 12) & 0xFF;
1978 
1979 	if (vf && vf <= numvfs)
1980 		__rvu_flr_handler(rvu, pcifunc);
1981 	else
1982 		return RVU_INVALID_VF_ID;
1983 
1984 	return 0;
1985 }
1986 
1987 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
1988 				struct get_hw_cap_rsp *rsp)
1989 {
1990 	struct rvu_hwinfo *hw = rvu->hw;
1991 
1992 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
1993 	rsp->nix_shaping = hw->cap.nix_shaping;
1994 
1995 	return 0;
1996 }
1997 
1998 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
1999 				 struct msg_rsp *rsp)
2000 {
2001 	struct rvu_hwinfo *hw = rvu->hw;
2002 	u16 pcifunc = req->hdr.pcifunc;
2003 	struct rvu_pfvf *pfvf;
2004 	int blkaddr, nixlf;
2005 	u16 target;
2006 
2007 	/* Only PF can add VF permissions */
2008 	if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc))
2009 		return -EOPNOTSUPP;
2010 
2011 	target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
2012 	pfvf = rvu_get_pfvf(rvu, target);
2013 
2014 	if (req->flags & RESET_VF_PERM) {
2015 		pfvf->flags &= RVU_CLEAR_VF_PERM;
2016 	} else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
2017 		 (req->flags & VF_TRUSTED)) {
2018 		change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
2019 		/* disable multicast and promisc entries */
2020 		if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
2021 			blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
2022 			if (blkaddr < 0)
2023 				return 0;
2024 			nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
2025 					   target, 0);
2026 			if (nixlf < 0)
2027 				return 0;
2028 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2029 						     NIXLF_ALLMULTI_ENTRY,
2030 						     false);
2031 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2032 						     NIXLF_PROMISC_ENTRY,
2033 						     false);
2034 		}
2035 	}
2036 
2037 	return 0;
2038 }
2039 
2040 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
2041 				struct mbox_msghdr *req)
2042 {
2043 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
2044 
2045 	/* Check if valid, if not reply with a invalid msg */
2046 	if (req->sig != OTX2_MBOX_REQ_SIG)
2047 		goto bad_message;
2048 
2049 	switch (req->id) {
2050 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
2051 	case _id: {							\
2052 		struct _rsp_type *rsp;					\
2053 		int err;						\
2054 									\
2055 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
2056 			mbox, devid,					\
2057 			sizeof(struct _rsp_type));			\
2058 		/* some handlers should complete even if reply */	\
2059 		/* could not be allocated */				\
2060 		if (!rsp &&						\
2061 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
2062 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
2063 		    _id != MBOX_MSG_VF_FLR)				\
2064 			return -ENOMEM;					\
2065 		if (rsp) {						\
2066 			rsp->hdr.id = _id;				\
2067 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
2068 			rsp->hdr.pcifunc = req->pcifunc;		\
2069 			rsp->hdr.rc = 0;				\
2070 		}							\
2071 									\
2072 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
2073 						    (struct _req_type *)req, \
2074 						    rsp);		\
2075 		if (rsp && err)						\
2076 			rsp->hdr.rc = err;				\
2077 									\
2078 		trace_otx2_msg_process(mbox->pdev, _id, err);		\
2079 		return rsp ? err : -ENOMEM;				\
2080 	}
2081 MBOX_MESSAGES
2082 #undef M
2083 
2084 bad_message:
2085 	default:
2086 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
2087 		return -ENODEV;
2088 	}
2089 }
2090 
2091 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
2092 {
2093 	struct rvu *rvu = mwork->rvu;
2094 	int offset, err, id, devid;
2095 	struct otx2_mbox_dev *mdev;
2096 	struct mbox_hdr *req_hdr;
2097 	struct mbox_msghdr *msg;
2098 	struct mbox_wq_info *mw;
2099 	struct otx2_mbox *mbox;
2100 
2101 	switch (type) {
2102 	case TYPE_AFPF:
2103 		mw = &rvu->afpf_wq_info;
2104 		break;
2105 	case TYPE_AFVF:
2106 		mw = &rvu->afvf_wq_info;
2107 		break;
2108 	default:
2109 		return;
2110 	}
2111 
2112 	devid = mwork - mw->mbox_wrk;
2113 	mbox = &mw->mbox;
2114 	mdev = &mbox->dev[devid];
2115 
2116 	/* Process received mbox messages */
2117 	req_hdr = mdev->mbase + mbox->rx_start;
2118 	if (mw->mbox_wrk[devid].num_msgs == 0)
2119 		return;
2120 
2121 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2122 
2123 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2124 		msg = mdev->mbase + offset;
2125 
2126 		/* Set which PF/VF sent this message based on mbox IRQ */
2127 		switch (type) {
2128 		case TYPE_AFPF:
2129 			msg->pcifunc &=
2130 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
2131 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
2132 			break;
2133 		case TYPE_AFVF:
2134 			msg->pcifunc &=
2135 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2136 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2137 			break;
2138 		}
2139 
2140 		err = rvu_process_mbox_msg(mbox, devid, msg);
2141 		if (!err) {
2142 			offset = mbox->rx_start + msg->next_msgoff;
2143 			continue;
2144 		}
2145 
2146 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2147 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2148 				 err, otx2_mbox_id2name(msg->id),
2149 				 msg->id, rvu_get_pf(msg->pcifunc),
2150 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2151 		else
2152 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2153 				 err, otx2_mbox_id2name(msg->id),
2154 				 msg->id, devid);
2155 	}
2156 	mw->mbox_wrk[devid].num_msgs = 0;
2157 
2158 	/* Send mbox responses to VF/PF */
2159 	otx2_mbox_msg_send(mbox, devid);
2160 }
2161 
2162 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2163 {
2164 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2165 
2166 	__rvu_mbox_handler(mwork, TYPE_AFPF);
2167 }
2168 
2169 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2170 {
2171 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2172 
2173 	__rvu_mbox_handler(mwork, TYPE_AFVF);
2174 }
2175 
2176 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2177 {
2178 	struct rvu *rvu = mwork->rvu;
2179 	struct otx2_mbox_dev *mdev;
2180 	struct mbox_hdr *rsp_hdr;
2181 	struct mbox_msghdr *msg;
2182 	struct mbox_wq_info *mw;
2183 	struct otx2_mbox *mbox;
2184 	int offset, id, devid;
2185 
2186 	switch (type) {
2187 	case TYPE_AFPF:
2188 		mw = &rvu->afpf_wq_info;
2189 		break;
2190 	case TYPE_AFVF:
2191 		mw = &rvu->afvf_wq_info;
2192 		break;
2193 	default:
2194 		return;
2195 	}
2196 
2197 	devid = mwork - mw->mbox_wrk_up;
2198 	mbox = &mw->mbox_up;
2199 	mdev = &mbox->dev[devid];
2200 
2201 	rsp_hdr = mdev->mbase + mbox->rx_start;
2202 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2203 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2204 		return;
2205 	}
2206 
2207 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2208 
2209 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2210 		msg = mdev->mbase + offset;
2211 
2212 		if (msg->id >= MBOX_MSG_MAX) {
2213 			dev_err(rvu->dev,
2214 				"Mbox msg with unknown ID 0x%x\n", msg->id);
2215 			goto end;
2216 		}
2217 
2218 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
2219 			dev_err(rvu->dev,
2220 				"Mbox msg with wrong signature %x, ID 0x%x\n",
2221 				msg->sig, msg->id);
2222 			goto end;
2223 		}
2224 
2225 		switch (msg->id) {
2226 		case MBOX_MSG_CGX_LINK_EVENT:
2227 			break;
2228 		default:
2229 			if (msg->rc)
2230 				dev_err(rvu->dev,
2231 					"Mbox msg response has err %d, ID 0x%x\n",
2232 					msg->rc, msg->id);
2233 			break;
2234 		}
2235 end:
2236 		offset = mbox->rx_start + msg->next_msgoff;
2237 		mdev->msgs_acked++;
2238 	}
2239 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
2240 
2241 	otx2_mbox_reset(mbox, devid);
2242 }
2243 
2244 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2245 {
2246 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2247 
2248 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
2249 }
2250 
2251 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2252 {
2253 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2254 
2255 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
2256 }
2257 
2258 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2259 				int num, int type)
2260 {
2261 	struct rvu_hwinfo *hw = rvu->hw;
2262 	int region;
2263 	u64 bar4;
2264 
2265 	/* For cn10k platform VF mailbox regions of a PF follows after the
2266 	 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2267 	 * RVU_PF_VF_BAR4_ADDR register.
2268 	 */
2269 	if (type == TYPE_AFVF) {
2270 		for (region = 0; region < num; region++) {
2271 			if (hw->cap.per_pf_mbox_regs) {
2272 				bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2273 						  RVU_AF_PFX_BAR4_ADDR(0)) +
2274 						  MBOX_SIZE;
2275 				bar4 += region * MBOX_SIZE;
2276 			} else {
2277 				bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2278 				bar4 += region * MBOX_SIZE;
2279 			}
2280 			mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2281 			if (!mbox_addr[region])
2282 				goto error;
2283 		}
2284 		return 0;
2285 	}
2286 
2287 	/* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2288 	 * PF registers. Whereas for Octeontx2 it is read from
2289 	 * RVU_AF_PF_BAR4_ADDR register.
2290 	 */
2291 	for (region = 0; region < num; region++) {
2292 		if (hw->cap.per_pf_mbox_regs) {
2293 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2294 					  RVU_AF_PFX_BAR4_ADDR(region));
2295 		} else {
2296 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2297 					  RVU_AF_PF_BAR4_ADDR);
2298 			bar4 += region * MBOX_SIZE;
2299 		}
2300 		mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2301 		if (!mbox_addr[region])
2302 			goto error;
2303 	}
2304 	return 0;
2305 
2306 error:
2307 	while (region--)
2308 		iounmap((void __iomem *)mbox_addr[region]);
2309 	return -ENOMEM;
2310 }
2311 
2312 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2313 			 int type, int num,
2314 			 void (mbox_handler)(struct work_struct *),
2315 			 void (mbox_up_handler)(struct work_struct *))
2316 {
2317 	int err = -EINVAL, i, dir, dir_up;
2318 	void __iomem *reg_base;
2319 	struct rvu_work *mwork;
2320 	void **mbox_regions;
2321 	const char *name;
2322 
2323 	mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2324 	if (!mbox_regions)
2325 		return -ENOMEM;
2326 
2327 	switch (type) {
2328 	case TYPE_AFPF:
2329 		name = "rvu_afpf_mailbox";
2330 		dir = MBOX_DIR_AFPF;
2331 		dir_up = MBOX_DIR_AFPF_UP;
2332 		reg_base = rvu->afreg_base;
2333 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF);
2334 		if (err)
2335 			goto free_regions;
2336 		break;
2337 	case TYPE_AFVF:
2338 		name = "rvu_afvf_mailbox";
2339 		dir = MBOX_DIR_PFVF;
2340 		dir_up = MBOX_DIR_PFVF_UP;
2341 		reg_base = rvu->pfreg_base;
2342 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF);
2343 		if (err)
2344 			goto free_regions;
2345 		break;
2346 	default:
2347 		goto free_regions;
2348 	}
2349 
2350 	mw->mbox_wq = alloc_workqueue(name,
2351 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2352 				      num);
2353 	if (!mw->mbox_wq) {
2354 		err = -ENOMEM;
2355 		goto unmap_regions;
2356 	}
2357 
2358 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2359 				    sizeof(struct rvu_work), GFP_KERNEL);
2360 	if (!mw->mbox_wrk) {
2361 		err = -ENOMEM;
2362 		goto exit;
2363 	}
2364 
2365 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2366 				       sizeof(struct rvu_work), GFP_KERNEL);
2367 	if (!mw->mbox_wrk_up) {
2368 		err = -ENOMEM;
2369 		goto exit;
2370 	}
2371 
2372 	err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2373 				     reg_base, dir, num);
2374 	if (err)
2375 		goto exit;
2376 
2377 	err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2378 				     reg_base, dir_up, num);
2379 	if (err)
2380 		goto exit;
2381 
2382 	for (i = 0; i < num; i++) {
2383 		mwork = &mw->mbox_wrk[i];
2384 		mwork->rvu = rvu;
2385 		INIT_WORK(&mwork->work, mbox_handler);
2386 
2387 		mwork = &mw->mbox_wrk_up[i];
2388 		mwork->rvu = rvu;
2389 		INIT_WORK(&mwork->work, mbox_up_handler);
2390 	}
2391 	kfree(mbox_regions);
2392 	return 0;
2393 
2394 exit:
2395 	destroy_workqueue(mw->mbox_wq);
2396 unmap_regions:
2397 	while (num--)
2398 		iounmap((void __iomem *)mbox_regions[num]);
2399 free_regions:
2400 	kfree(mbox_regions);
2401 	return err;
2402 }
2403 
2404 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2405 {
2406 	struct otx2_mbox *mbox = &mw->mbox;
2407 	struct otx2_mbox_dev *mdev;
2408 	int devid;
2409 
2410 	if (mw->mbox_wq) {
2411 		destroy_workqueue(mw->mbox_wq);
2412 		mw->mbox_wq = NULL;
2413 	}
2414 
2415 	for (devid = 0; devid < mbox->ndevs; devid++) {
2416 		mdev = &mbox->dev[devid];
2417 		if (mdev->hwbase)
2418 			iounmap((void __iomem *)mdev->hwbase);
2419 	}
2420 
2421 	otx2_mbox_destroy(&mw->mbox);
2422 	otx2_mbox_destroy(&mw->mbox_up);
2423 }
2424 
2425 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2426 			   int mdevs, u64 intr)
2427 {
2428 	struct otx2_mbox_dev *mdev;
2429 	struct otx2_mbox *mbox;
2430 	struct mbox_hdr *hdr;
2431 	int i;
2432 
2433 	for (i = first; i < mdevs; i++) {
2434 		/* start from 0 */
2435 		if (!(intr & BIT_ULL(i - first)))
2436 			continue;
2437 
2438 		mbox = &mw->mbox;
2439 		mdev = &mbox->dev[i];
2440 		hdr = mdev->mbase + mbox->rx_start;
2441 
2442 		/*The hdr->num_msgs is set to zero immediately in the interrupt
2443 		 * handler to  ensure that it holds a correct value next time
2444 		 * when the interrupt handler is called.
2445 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2446 		 * pf>mbox.up_num_msgs holds the data for use in
2447 		 * pfaf_mbox_up_handler.
2448 		 */
2449 
2450 		if (hdr->num_msgs) {
2451 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2452 			hdr->num_msgs = 0;
2453 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2454 		}
2455 		mbox = &mw->mbox_up;
2456 		mdev = &mbox->dev[i];
2457 		hdr = mdev->mbase + mbox->rx_start;
2458 		if (hdr->num_msgs) {
2459 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2460 			hdr->num_msgs = 0;
2461 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2462 		}
2463 	}
2464 }
2465 
2466 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2467 {
2468 	struct rvu *rvu = (struct rvu *)rvu_irq;
2469 	int vfs = rvu->vfs;
2470 	u64 intr;
2471 
2472 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2473 	/* Clear interrupts */
2474 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2475 	if (intr)
2476 		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2477 
2478 	/* Sync with mbox memory region */
2479 	rmb();
2480 
2481 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2482 
2483 	/* Handle VF interrupts */
2484 	if (vfs > 64) {
2485 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2486 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2487 
2488 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2489 		vfs -= 64;
2490 	}
2491 
2492 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2493 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2494 	if (intr)
2495 		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2496 
2497 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2498 
2499 	return IRQ_HANDLED;
2500 }
2501 
2502 static void rvu_enable_mbox_intr(struct rvu *rvu)
2503 {
2504 	struct rvu_hwinfo *hw = rvu->hw;
2505 
2506 	/* Clear spurious irqs, if any */
2507 	rvu_write64(rvu, BLKADDR_RVUM,
2508 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2509 
2510 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2511 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2512 		    INTR_MASK(hw->total_pfs) & ~1ULL);
2513 }
2514 
2515 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2516 {
2517 	struct rvu_block *block;
2518 	int slot, lf, num_lfs;
2519 	int err;
2520 
2521 	block = &rvu->hw->block[blkaddr];
2522 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2523 					block->addr);
2524 	if (!num_lfs)
2525 		return;
2526 	for (slot = 0; slot < num_lfs; slot++) {
2527 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
2528 		if (lf < 0)
2529 			continue;
2530 
2531 		/* Cleanup LF and reset it */
2532 		if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2533 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2534 		else if (block->addr == BLKADDR_NPA)
2535 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
2536 		else if ((block->addr == BLKADDR_CPT0) ||
2537 			 (block->addr == BLKADDR_CPT1))
2538 			rvu_cpt_lf_teardown(rvu, pcifunc, block->addr, lf,
2539 					    slot);
2540 
2541 		err = rvu_lf_reset(rvu, block, lf);
2542 		if (err) {
2543 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2544 				block->addr, lf);
2545 		}
2546 	}
2547 }
2548 
2549 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2550 {
2551 	mutex_lock(&rvu->flr_lock);
2552 	/* Reset order should reflect inter-block dependencies:
2553 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2554 	 * 2. Flush and reset SSO/SSOW
2555 	 * 3. Cleanup pools (NPA)
2556 	 */
2557 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2558 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2559 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2560 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2561 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2562 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2563 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2564 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2565 	rvu_reset_lmt_map_tbl(rvu, pcifunc);
2566 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
2567 	mutex_unlock(&rvu->flr_lock);
2568 }
2569 
2570 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2571 {
2572 	int reg = 0;
2573 
2574 	/* pcifunc = 0(PF0) | (vf + 1) */
2575 	__rvu_flr_handler(rvu, vf + 1);
2576 
2577 	if (vf >= 64) {
2578 		reg = 1;
2579 		vf = vf - 64;
2580 	}
2581 
2582 	/* Signal FLR finish and enable IRQ */
2583 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2584 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2585 }
2586 
2587 static void rvu_flr_handler(struct work_struct *work)
2588 {
2589 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2590 	struct rvu *rvu = flrwork->rvu;
2591 	u16 pcifunc, numvfs, vf;
2592 	u64 cfg;
2593 	int pf;
2594 
2595 	pf = flrwork - rvu->flr_wrk;
2596 	if (pf >= rvu->hw->total_pfs) {
2597 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2598 		return;
2599 	}
2600 
2601 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2602 	numvfs = (cfg >> 12) & 0xFF;
2603 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2604 
2605 	for (vf = 0; vf < numvfs; vf++)
2606 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2607 
2608 	__rvu_flr_handler(rvu, pcifunc);
2609 
2610 	/* Signal FLR finish */
2611 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2612 
2613 	/* Enable interrupt */
2614 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2615 }
2616 
2617 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2618 {
2619 	int dev, vf, reg = 0;
2620 	u64 intr;
2621 
2622 	if (start_vf >= 64)
2623 		reg = 1;
2624 
2625 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2626 	if (!intr)
2627 		return;
2628 
2629 	for (vf = 0; vf < numvfs; vf++) {
2630 		if (!(intr & BIT_ULL(vf)))
2631 			continue;
2632 		/* Clear and disable the interrupt */
2633 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2634 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2635 
2636 		dev = vf + start_vf + rvu->hw->total_pfs;
2637 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2638 	}
2639 }
2640 
2641 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2642 {
2643 	struct rvu *rvu = (struct rvu *)rvu_irq;
2644 	u64 intr;
2645 	u8  pf;
2646 
2647 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2648 	if (!intr)
2649 		goto afvf_flr;
2650 
2651 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2652 		if (intr & (1ULL << pf)) {
2653 			/* clear interrupt */
2654 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2655 				    BIT_ULL(pf));
2656 			/* Disable the interrupt */
2657 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2658 				    BIT_ULL(pf));
2659 			/* PF is already dead do only AF related operations */
2660 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2661 		}
2662 	}
2663 
2664 afvf_flr:
2665 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2666 	if (rvu->vfs > 64)
2667 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2668 
2669 	return IRQ_HANDLED;
2670 }
2671 
2672 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2673 {
2674 	int vf;
2675 
2676 	/* Nothing to be done here other than clearing the
2677 	 * TRPEND bit.
2678 	 */
2679 	for (vf = 0; vf < 64; vf++) {
2680 		if (intr & (1ULL << vf)) {
2681 			/* clear the trpend due to ME(master enable) */
2682 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2683 			/* clear interrupt */
2684 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2685 		}
2686 	}
2687 }
2688 
2689 /* Handles ME interrupts from VFs of AF */
2690 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2691 {
2692 	struct rvu *rvu = (struct rvu *)rvu_irq;
2693 	int vfset;
2694 	u64 intr;
2695 
2696 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2697 
2698 	for (vfset = 0; vfset <= 1; vfset++) {
2699 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2700 		if (intr)
2701 			rvu_me_handle_vfset(rvu, vfset, intr);
2702 	}
2703 
2704 	return IRQ_HANDLED;
2705 }
2706 
2707 /* Handles ME interrupts from PFs */
2708 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2709 {
2710 	struct rvu *rvu = (struct rvu *)rvu_irq;
2711 	u64 intr;
2712 	u8  pf;
2713 
2714 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2715 
2716 	/* Nothing to be done here other than clearing the
2717 	 * TRPEND bit.
2718 	 */
2719 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2720 		if (intr & (1ULL << pf)) {
2721 			/* clear the trpend due to ME(master enable) */
2722 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2723 				    BIT_ULL(pf));
2724 			/* clear interrupt */
2725 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2726 				    BIT_ULL(pf));
2727 		}
2728 	}
2729 
2730 	return IRQ_HANDLED;
2731 }
2732 
2733 static void rvu_unregister_interrupts(struct rvu *rvu)
2734 {
2735 	int irq;
2736 
2737 	rvu_cpt_unregister_interrupts(rvu);
2738 
2739 	/* Disable the Mbox interrupt */
2740 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2741 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2742 
2743 	/* Disable the PF FLR interrupt */
2744 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2745 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2746 
2747 	/* Disable the PF ME interrupt */
2748 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2749 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2750 
2751 	for (irq = 0; irq < rvu->num_vec; irq++) {
2752 		if (rvu->irq_allocated[irq]) {
2753 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2754 			rvu->irq_allocated[irq] = false;
2755 		}
2756 	}
2757 
2758 	pci_free_irq_vectors(rvu->pdev);
2759 	rvu->num_vec = 0;
2760 }
2761 
2762 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2763 {
2764 	struct rvu_pfvf *pfvf = &rvu->pf[0];
2765 	int offset;
2766 
2767 	pfvf = &rvu->pf[0];
2768 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2769 
2770 	/* Make sure there are enough MSIX vectors configured so that
2771 	 * VF interrupts can be handled. Offset equal to zero means
2772 	 * that PF vectors are not configured and overlapping AF vectors.
2773 	 */
2774 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2775 	       offset;
2776 }
2777 
2778 static int rvu_register_interrupts(struct rvu *rvu)
2779 {
2780 	int ret, offset, pf_vec_start;
2781 
2782 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2783 
2784 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2785 					   NAME_SIZE, GFP_KERNEL);
2786 	if (!rvu->irq_name)
2787 		return -ENOMEM;
2788 
2789 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2790 					  sizeof(bool), GFP_KERNEL);
2791 	if (!rvu->irq_allocated)
2792 		return -ENOMEM;
2793 
2794 	/* Enable MSI-X */
2795 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2796 				    rvu->num_vec, PCI_IRQ_MSIX);
2797 	if (ret < 0) {
2798 		dev_err(rvu->dev,
2799 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2800 			rvu->num_vec, ret);
2801 		return ret;
2802 	}
2803 
2804 	/* Register mailbox interrupt handler */
2805 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2806 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2807 			  rvu_mbox_intr_handler, 0,
2808 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2809 	if (ret) {
2810 		dev_err(rvu->dev,
2811 			"RVUAF: IRQ registration failed for mbox irq\n");
2812 		goto fail;
2813 	}
2814 
2815 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2816 
2817 	/* Enable mailbox interrupts from all PFs */
2818 	rvu_enable_mbox_intr(rvu);
2819 
2820 	/* Register FLR interrupt handler */
2821 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2822 		"RVUAF FLR");
2823 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2824 			  rvu_flr_intr_handler, 0,
2825 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2826 			  rvu);
2827 	if (ret) {
2828 		dev_err(rvu->dev,
2829 			"RVUAF: IRQ registration failed for FLR\n");
2830 		goto fail;
2831 	}
2832 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2833 
2834 	/* Enable FLR interrupt for all PFs*/
2835 	rvu_write64(rvu, BLKADDR_RVUM,
2836 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2837 
2838 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2839 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2840 
2841 	/* Register ME interrupt handler */
2842 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2843 		"RVUAF ME");
2844 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2845 			  rvu_me_pf_intr_handler, 0,
2846 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2847 			  rvu);
2848 	if (ret) {
2849 		dev_err(rvu->dev,
2850 			"RVUAF: IRQ registration failed for ME\n");
2851 	}
2852 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2853 
2854 	/* Clear TRPEND bit for all PF */
2855 	rvu_write64(rvu, BLKADDR_RVUM,
2856 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2857 	/* Enable ME interrupt for all PFs*/
2858 	rvu_write64(rvu, BLKADDR_RVUM,
2859 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2860 
2861 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2862 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2863 
2864 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2865 		return 0;
2866 
2867 	/* Get PF MSIX vectors offset. */
2868 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2869 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2870 
2871 	/* Register MBOX0 interrupt. */
2872 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2873 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2874 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2875 			  rvu_mbox_intr_handler, 0,
2876 			  &rvu->irq_name[offset * NAME_SIZE],
2877 			  rvu);
2878 	if (ret)
2879 		dev_err(rvu->dev,
2880 			"RVUAF: IRQ registration failed for Mbox0\n");
2881 
2882 	rvu->irq_allocated[offset] = true;
2883 
2884 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2885 	 * simply increment current offset by 1.
2886 	 */
2887 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2888 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2889 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2890 			  rvu_mbox_intr_handler, 0,
2891 			  &rvu->irq_name[offset * NAME_SIZE],
2892 			  rvu);
2893 	if (ret)
2894 		dev_err(rvu->dev,
2895 			"RVUAF: IRQ registration failed for Mbox1\n");
2896 
2897 	rvu->irq_allocated[offset] = true;
2898 
2899 	/* Register FLR interrupt handler for AF's VFs */
2900 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2901 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2902 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2903 			  rvu_flr_intr_handler, 0,
2904 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2905 	if (ret) {
2906 		dev_err(rvu->dev,
2907 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2908 		goto fail;
2909 	}
2910 	rvu->irq_allocated[offset] = true;
2911 
2912 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2913 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2914 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2915 			  rvu_flr_intr_handler, 0,
2916 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2917 	if (ret) {
2918 		dev_err(rvu->dev,
2919 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2920 		goto fail;
2921 	}
2922 	rvu->irq_allocated[offset] = true;
2923 
2924 	/* Register ME interrupt handler for AF's VFs */
2925 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2926 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2927 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2928 			  rvu_me_vf_intr_handler, 0,
2929 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2930 	if (ret) {
2931 		dev_err(rvu->dev,
2932 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2933 		goto fail;
2934 	}
2935 	rvu->irq_allocated[offset] = true;
2936 
2937 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2938 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2939 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2940 			  rvu_me_vf_intr_handler, 0,
2941 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2942 	if (ret) {
2943 		dev_err(rvu->dev,
2944 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2945 		goto fail;
2946 	}
2947 	rvu->irq_allocated[offset] = true;
2948 
2949 	ret = rvu_cpt_register_interrupts(rvu);
2950 	if (ret)
2951 		goto fail;
2952 
2953 	return 0;
2954 
2955 fail:
2956 	rvu_unregister_interrupts(rvu);
2957 	return ret;
2958 }
2959 
2960 static void rvu_flr_wq_destroy(struct rvu *rvu)
2961 {
2962 	if (rvu->flr_wq) {
2963 		destroy_workqueue(rvu->flr_wq);
2964 		rvu->flr_wq = NULL;
2965 	}
2966 }
2967 
2968 static int rvu_flr_init(struct rvu *rvu)
2969 {
2970 	int dev, num_devs;
2971 	u64 cfg;
2972 	int pf;
2973 
2974 	/* Enable FLR for all PFs*/
2975 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2976 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2977 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2978 			    cfg | BIT_ULL(22));
2979 	}
2980 
2981 	rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2982 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2983 				       1);
2984 	if (!rvu->flr_wq)
2985 		return -ENOMEM;
2986 
2987 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
2988 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
2989 				    sizeof(struct rvu_work), GFP_KERNEL);
2990 	if (!rvu->flr_wrk) {
2991 		destroy_workqueue(rvu->flr_wq);
2992 		return -ENOMEM;
2993 	}
2994 
2995 	for (dev = 0; dev < num_devs; dev++) {
2996 		rvu->flr_wrk[dev].rvu = rvu;
2997 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
2998 	}
2999 
3000 	mutex_init(&rvu->flr_lock);
3001 
3002 	return 0;
3003 }
3004 
3005 static void rvu_disable_afvf_intr(struct rvu *rvu)
3006 {
3007 	int vfs = rvu->vfs;
3008 
3009 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
3010 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
3011 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
3012 	if (vfs <= 64)
3013 		return;
3014 
3015 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
3016 		      INTR_MASK(vfs - 64));
3017 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3018 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3019 }
3020 
3021 static void rvu_enable_afvf_intr(struct rvu *rvu)
3022 {
3023 	int vfs = rvu->vfs;
3024 
3025 	/* Clear any pending interrupts and enable AF VF interrupts for
3026 	 * the first 64 VFs.
3027 	 */
3028 	/* Mbox */
3029 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
3030 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
3031 
3032 	/* FLR */
3033 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
3034 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
3035 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
3036 
3037 	/* Same for remaining VFs, if any. */
3038 	if (vfs <= 64)
3039 		return;
3040 
3041 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
3042 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
3043 		      INTR_MASK(vfs - 64));
3044 
3045 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
3046 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3047 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3048 }
3049 
3050 int rvu_get_num_lbk_chans(void)
3051 {
3052 	struct pci_dev *pdev;
3053 	void __iomem *base;
3054 	int ret = -EIO;
3055 
3056 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
3057 			      NULL);
3058 	if (!pdev)
3059 		goto err;
3060 
3061 	base = pci_ioremap_bar(pdev, 0);
3062 	if (!base)
3063 		goto err_put;
3064 
3065 	/* Read number of available LBK channels from LBK(0)_CONST register. */
3066 	ret = (readq(base + 0x10) >> 32) & 0xffff;
3067 	iounmap(base);
3068 err_put:
3069 	pci_dev_put(pdev);
3070 err:
3071 	return ret;
3072 }
3073 
3074 static int rvu_enable_sriov(struct rvu *rvu)
3075 {
3076 	struct pci_dev *pdev = rvu->pdev;
3077 	int err, chans, vfs;
3078 
3079 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
3080 		dev_warn(&pdev->dev,
3081 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
3082 		return 0;
3083 	}
3084 
3085 	chans = rvu_get_num_lbk_chans();
3086 	if (chans < 0)
3087 		return chans;
3088 
3089 	vfs = pci_sriov_get_totalvfs(pdev);
3090 
3091 	/* Limit VFs in case we have more VFs than LBK channels available. */
3092 	if (vfs > chans)
3093 		vfs = chans;
3094 
3095 	if (!vfs)
3096 		return 0;
3097 
3098 	/* LBK channel number 63 is used for switching packets between
3099 	 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3100 	 */
3101 	if (vfs > 62)
3102 		vfs = 62;
3103 
3104 	/* Save VFs number for reference in VF interrupts handlers.
3105 	 * Since interrupts might start arriving during SRIOV enablement
3106 	 * ordinary API cannot be used to get number of enabled VFs.
3107 	 */
3108 	rvu->vfs = vfs;
3109 
3110 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
3111 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
3112 	if (err)
3113 		return err;
3114 
3115 	rvu_enable_afvf_intr(rvu);
3116 	/* Make sure IRQs are enabled before SRIOV. */
3117 	mb();
3118 
3119 	err = pci_enable_sriov(pdev, vfs);
3120 	if (err) {
3121 		rvu_disable_afvf_intr(rvu);
3122 		rvu_mbox_destroy(&rvu->afvf_wq_info);
3123 		return err;
3124 	}
3125 
3126 	return 0;
3127 }
3128 
3129 static void rvu_disable_sriov(struct rvu *rvu)
3130 {
3131 	rvu_disable_afvf_intr(rvu);
3132 	rvu_mbox_destroy(&rvu->afvf_wq_info);
3133 	pci_disable_sriov(rvu->pdev);
3134 }
3135 
3136 static void rvu_update_module_params(struct rvu *rvu)
3137 {
3138 	const char *default_pfl_name = "default";
3139 
3140 	strscpy(rvu->mkex_pfl_name,
3141 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3142 	strscpy(rvu->kpu_pfl_name,
3143 		kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3144 }
3145 
3146 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3147 {
3148 	struct device *dev = &pdev->dev;
3149 	struct rvu *rvu;
3150 	int    err;
3151 
3152 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
3153 	if (!rvu)
3154 		return -ENOMEM;
3155 
3156 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
3157 	if (!rvu->hw) {
3158 		devm_kfree(dev, rvu);
3159 		return -ENOMEM;
3160 	}
3161 
3162 	pci_set_drvdata(pdev, rvu);
3163 	rvu->pdev = pdev;
3164 	rvu->dev = &pdev->dev;
3165 
3166 	err = pci_enable_device(pdev);
3167 	if (err) {
3168 		dev_err(dev, "Failed to enable PCI device\n");
3169 		goto err_freemem;
3170 	}
3171 
3172 	err = pci_request_regions(pdev, DRV_NAME);
3173 	if (err) {
3174 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
3175 		goto err_disable_device;
3176 	}
3177 
3178 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3179 	if (err) {
3180 		dev_err(dev, "DMA mask config failed, abort\n");
3181 		goto err_release_regions;
3182 	}
3183 
3184 	pci_set_master(pdev);
3185 
3186 	rvu->ptp = ptp_get();
3187 	if (IS_ERR(rvu->ptp)) {
3188 		err = PTR_ERR(rvu->ptp);
3189 		if (err == -EPROBE_DEFER)
3190 			goto err_release_regions;
3191 		rvu->ptp = NULL;
3192 	}
3193 
3194 	/* Map Admin function CSRs */
3195 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3196 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3197 	if (!rvu->afreg_base || !rvu->pfreg_base) {
3198 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3199 		err = -ENOMEM;
3200 		goto err_put_ptp;
3201 	}
3202 
3203 	/* Store module params in rvu structure */
3204 	rvu_update_module_params(rvu);
3205 
3206 	/* Check which blocks the HW supports */
3207 	rvu_check_block_implemented(rvu);
3208 
3209 	rvu_reset_all_blocks(rvu);
3210 
3211 	rvu_setup_hw_capabilities(rvu);
3212 
3213 	err = rvu_setup_hw_resources(rvu);
3214 	if (err)
3215 		goto err_put_ptp;
3216 
3217 	/* Init mailbox btw AF and PFs */
3218 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3219 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3220 			    rvu_afpf_mbox_up_handler);
3221 	if (err) {
3222 		dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3223 		goto err_hwsetup;
3224 	}
3225 
3226 	err = rvu_flr_init(rvu);
3227 	if (err) {
3228 		dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3229 		goto err_mbox;
3230 	}
3231 
3232 	err = rvu_register_interrupts(rvu);
3233 	if (err) {
3234 		dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3235 		goto err_flr;
3236 	}
3237 
3238 	err = rvu_register_dl(rvu);
3239 	if (err) {
3240 		dev_err(dev, "%s: Failed to register devlink\n", __func__);
3241 		goto err_irq;
3242 	}
3243 
3244 	rvu_setup_rvum_blk_revid(rvu);
3245 
3246 	/* Enable AF's VFs (if any) */
3247 	err = rvu_enable_sriov(rvu);
3248 	if (err) {
3249 		dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3250 		goto err_dl;
3251 	}
3252 
3253 	/* Initialize debugfs */
3254 	rvu_dbg_init(rvu);
3255 
3256 	mutex_init(&rvu->rswitch.switch_lock);
3257 
3258 	if (rvu->fwdata)
3259 		ptp_start(rvu->ptp, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate,
3260 			  rvu->fwdata->ptp_ext_tstamp);
3261 
3262 	return 0;
3263 err_dl:
3264 	rvu_unregister_dl(rvu);
3265 err_irq:
3266 	rvu_unregister_interrupts(rvu);
3267 err_flr:
3268 	rvu_flr_wq_destroy(rvu);
3269 err_mbox:
3270 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3271 err_hwsetup:
3272 	rvu_cgx_exit(rvu);
3273 	rvu_fwdata_exit(rvu);
3274 	rvu_reset_all_blocks(rvu);
3275 	rvu_free_hw_resources(rvu);
3276 	rvu_clear_rvum_blk_revid(rvu);
3277 err_put_ptp:
3278 	ptp_put(rvu->ptp);
3279 err_release_regions:
3280 	pci_release_regions(pdev);
3281 err_disable_device:
3282 	pci_disable_device(pdev);
3283 err_freemem:
3284 	pci_set_drvdata(pdev, NULL);
3285 	devm_kfree(&pdev->dev, rvu->hw);
3286 	devm_kfree(dev, rvu);
3287 	return err;
3288 }
3289 
3290 static void rvu_remove(struct pci_dev *pdev)
3291 {
3292 	struct rvu *rvu = pci_get_drvdata(pdev);
3293 
3294 	rvu_dbg_exit(rvu);
3295 	rvu_unregister_dl(rvu);
3296 	rvu_unregister_interrupts(rvu);
3297 	rvu_flr_wq_destroy(rvu);
3298 	rvu_cgx_exit(rvu);
3299 	rvu_fwdata_exit(rvu);
3300 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3301 	rvu_disable_sriov(rvu);
3302 	rvu_reset_all_blocks(rvu);
3303 	rvu_free_hw_resources(rvu);
3304 	rvu_clear_rvum_blk_revid(rvu);
3305 	ptp_put(rvu->ptp);
3306 	pci_release_regions(pdev);
3307 	pci_disable_device(pdev);
3308 	pci_set_drvdata(pdev, NULL);
3309 
3310 	devm_kfree(&pdev->dev, rvu->hw);
3311 	devm_kfree(&pdev->dev, rvu);
3312 }
3313 
3314 static struct pci_driver rvu_driver = {
3315 	.name = DRV_NAME,
3316 	.id_table = rvu_id_table,
3317 	.probe = rvu_probe,
3318 	.remove = rvu_remove,
3319 };
3320 
3321 static int __init rvu_init_module(void)
3322 {
3323 	int err;
3324 
3325 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3326 
3327 	err = pci_register_driver(&cgx_driver);
3328 	if (err < 0)
3329 		return err;
3330 
3331 	err = pci_register_driver(&ptp_driver);
3332 	if (err < 0)
3333 		goto ptp_err;
3334 
3335 	err =  pci_register_driver(&rvu_driver);
3336 	if (err < 0)
3337 		goto rvu_err;
3338 
3339 	return 0;
3340 rvu_err:
3341 	pci_unregister_driver(&ptp_driver);
3342 ptp_err:
3343 	pci_unregister_driver(&cgx_driver);
3344 
3345 	return err;
3346 }
3347 
3348 static void __exit rvu_cleanup_module(void)
3349 {
3350 	pci_unregister_driver(&rvu_driver);
3351 	pci_unregister_driver(&ptp_driver);
3352 	pci_unregister_driver(&cgx_driver);
3353 }
3354 
3355 module_init(rvu_init_module);
3356 module_exit(rvu_cleanup_module);
3357