xref: /linux/drivers/net/ethernet/marvell/octeontx2/af/rvu.c (revision 0d2ab5f922e75d10162e7199826e14df9cfae5cc)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell.
5  *
6  */
7 
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/irq.h>
12 #include <linux/pci.h>
13 #include <linux/sysfs.h>
14 
15 #include "cgx.h"
16 #include "rvu.h"
17 #include "rvu_reg.h"
18 #include "ptp.h"
19 #include "mcs.h"
20 
21 #include "rvu_trace.h"
22 #include "rvu_npc_hash.h"
23 #include "cn20k/reg.h"
24 #include "cn20k/api.h"
25 
26 #define DRV_NAME	"rvu_af"
27 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
28 
29 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
30 				struct rvu_block *block, int lf);
31 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
32 				  struct rvu_block *block, int lf);
33 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
34 
35 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
36 			 int type, int num,
37 			 void (mbox_handler)(struct work_struct *),
38 			 void (mbox_up_handler)(struct work_struct *));
39 static irqreturn_t rvu_mbox_pf_intr_handler(int irq, void *rvu_irq);
40 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq);
41 
42 /* Supported devices */
43 static const struct pci_device_id rvu_id_table[] = {
44 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
45 	{ 0, }  /* end of table */
46 };
47 
48 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
49 MODULE_DESCRIPTION(DRV_STRING);
50 MODULE_LICENSE("GPL v2");
51 MODULE_DEVICE_TABLE(pci, rvu_id_table);
52 
53 static char *mkex_profile; /* MKEX profile name */
54 module_param(mkex_profile, charp, 0000);
55 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
56 
57 static char *kpu_profile; /* KPU profile name */
58 module_param(kpu_profile, charp, 0000);
59 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
60 
61 static void rvu_setup_hw_capabilities(struct rvu *rvu)
62 {
63 	struct rvu_hwinfo *hw = rvu->hw;
64 
65 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
66 	hw->cap.nix_fixed_txschq_mapping = false;
67 	hw->cap.nix_shaping = true;
68 	hw->cap.nix_tx_link_bp = true;
69 	hw->cap.nix_rx_multicast = true;
70 	hw->cap.nix_shaper_toggle_wait = false;
71 	hw->cap.npc_hash_extract = false;
72 	hw->cap.npc_exact_match_enabled = false;
73 	hw->rvu = rvu;
74 
75 	if (is_rvu_pre_96xx_C0(rvu)) {
76 		hw->cap.nix_fixed_txschq_mapping = true;
77 		hw->cap.nix_txsch_per_cgx_lmac = 4;
78 		hw->cap.nix_txsch_per_lbk_lmac = 132;
79 		hw->cap.nix_txsch_per_sdp_lmac = 76;
80 		hw->cap.nix_shaping = false;
81 		hw->cap.nix_tx_link_bp = false;
82 		if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
83 			hw->cap.nix_rx_multicast = false;
84 	}
85 	if (!is_rvu_pre_96xx_C0(rvu))
86 		hw->cap.nix_shaper_toggle_wait = true;
87 
88 	if (!is_rvu_otx2(rvu))
89 		hw->cap.per_pf_mbox_regs = true;
90 
91 	if (is_rvu_npc_hash_extract_en(rvu))
92 		hw->cap.npc_hash_extract = true;
93 }
94 
95 /* Poll a RVU block's register 'offset', for a 'zero'
96  * or 'nonzero' at bits specified by 'mask'
97  */
98 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
99 {
100 	unsigned long timeout = jiffies + usecs_to_jiffies(20000);
101 	bool twice = false;
102 	void __iomem *reg;
103 	u64 reg_val;
104 
105 	reg = rvu->afreg_base + ((block << 28) | offset);
106 again:
107 	reg_val = readq(reg);
108 	if (zero && !(reg_val & mask))
109 		return 0;
110 	if (!zero && (reg_val & mask))
111 		return 0;
112 	if (time_before(jiffies, timeout)) {
113 		usleep_range(1, 5);
114 		goto again;
115 	}
116 	/* In scenarios where CPU is scheduled out before checking
117 	 * 'time_before' (above) and gets scheduled in such that
118 	 * jiffies are beyond timeout value, then check again if HW is
119 	 * done with the operation in the meantime.
120 	 */
121 	if (!twice) {
122 		twice = true;
123 		goto again;
124 	}
125 	return -EBUSY;
126 }
127 
128 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
129 {
130 	int id;
131 
132 	if (!rsrc->bmap)
133 		return -EINVAL;
134 
135 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
136 	if (id >= rsrc->max)
137 		return -ENOSPC;
138 
139 	__set_bit(id, rsrc->bmap);
140 
141 	return id;
142 }
143 
144 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
145 {
146 	int start;
147 
148 	if (!rsrc->bmap)
149 		return -EINVAL;
150 
151 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
152 	if (start >= rsrc->max)
153 		return -ENOSPC;
154 
155 	bitmap_set(rsrc->bmap, start, nrsrc);
156 	return start;
157 }
158 
159 void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
160 {
161 	if (!rsrc->bmap)
162 		return;
163 	if (start >= rsrc->max)
164 		return;
165 
166 	bitmap_clear(rsrc->bmap, start, nrsrc);
167 }
168 
169 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
170 {
171 	int start;
172 
173 	if (!rsrc->bmap)
174 		return false;
175 
176 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
177 	if (start >= rsrc->max)
178 		return false;
179 
180 	return true;
181 }
182 
183 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
184 {
185 	if (!rsrc->bmap)
186 		return;
187 
188 	__clear_bit(id, rsrc->bmap);
189 }
190 
191 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
192 {
193 	int used;
194 
195 	if (!rsrc->bmap)
196 		return 0;
197 
198 	used = bitmap_weight(rsrc->bmap, rsrc->max);
199 	return (rsrc->max - used);
200 }
201 
202 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
203 {
204 	if (!rsrc->bmap)
205 		return false;
206 
207 	return !test_bit(id, rsrc->bmap);
208 }
209 
210 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
211 {
212 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
213 			     sizeof(long), GFP_KERNEL);
214 	if (!rsrc->bmap)
215 		return -ENOMEM;
216 	return 0;
217 }
218 
219 void rvu_free_bitmap(struct rsrc_bmap *rsrc)
220 {
221 	kfree(rsrc->bmap);
222 }
223 
224 /* Get block LF's HW index from a PF_FUNC's block slot number */
225 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
226 {
227 	u16 match = 0;
228 	int lf;
229 
230 	mutex_lock(&rvu->rsrc_lock);
231 	for (lf = 0; lf < block->lf.max; lf++) {
232 		if (block->fn_map[lf] == pcifunc) {
233 			if (slot == match) {
234 				mutex_unlock(&rvu->rsrc_lock);
235 				return lf;
236 			}
237 			match++;
238 		}
239 	}
240 	mutex_unlock(&rvu->rsrc_lock);
241 	return -ENODEV;
242 }
243 
244 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
245  * Some silicon variants of OcteonTX2 supports
246  * multiple blocks of same type.
247  *
248  * @pcifunc has to be zero when no LF is yet attached.
249  *
250  * For a pcifunc if LFs are attached from multiple blocks of same type, then
251  * return blkaddr of first encountered block.
252  */
253 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
254 {
255 	int devnum, blkaddr = -ENODEV;
256 	u64 cfg, reg;
257 	bool is_pf;
258 
259 	switch (blktype) {
260 	case BLKTYPE_NPC:
261 		blkaddr = BLKADDR_NPC;
262 		goto exit;
263 	case BLKTYPE_NPA:
264 		blkaddr = BLKADDR_NPA;
265 		goto exit;
266 	case BLKTYPE_NIX:
267 		/* For now assume NIX0 */
268 		if (!pcifunc) {
269 			blkaddr = BLKADDR_NIX0;
270 			goto exit;
271 		}
272 		break;
273 	case BLKTYPE_SSO:
274 		blkaddr = BLKADDR_SSO;
275 		goto exit;
276 	case BLKTYPE_SSOW:
277 		blkaddr = BLKADDR_SSOW;
278 		goto exit;
279 	case BLKTYPE_TIM:
280 		blkaddr = BLKADDR_TIM;
281 		goto exit;
282 	case BLKTYPE_CPT:
283 		/* For now assume CPT0 */
284 		if (!pcifunc) {
285 			blkaddr = BLKADDR_CPT0;
286 			goto exit;
287 		}
288 		break;
289 	}
290 
291 	/* Check if this is a RVU PF or VF */
292 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
293 		is_pf = false;
294 		devnum = rvu_get_hwvf(rvu, pcifunc);
295 	} else {
296 		is_pf = true;
297 		devnum = rvu_get_pf(rvu->pdev, pcifunc);
298 	}
299 
300 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
301 	 * 'BLKADDR_NIX1'.
302 	 */
303 	if (blktype == BLKTYPE_NIX) {
304 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
305 			RVU_PRIV_HWVFX_NIXX_CFG(0);
306 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
307 		if (cfg) {
308 			blkaddr = BLKADDR_NIX0;
309 			goto exit;
310 		}
311 
312 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
313 			RVU_PRIV_HWVFX_NIXX_CFG(1);
314 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
315 		if (cfg)
316 			blkaddr = BLKADDR_NIX1;
317 	}
318 
319 	if (blktype == BLKTYPE_CPT) {
320 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
321 			RVU_PRIV_HWVFX_CPTX_CFG(0);
322 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
323 		if (cfg) {
324 			blkaddr = BLKADDR_CPT0;
325 			goto exit;
326 		}
327 
328 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
329 			RVU_PRIV_HWVFX_CPTX_CFG(1);
330 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
331 		if (cfg)
332 			blkaddr = BLKADDR_CPT1;
333 	}
334 
335 exit:
336 	if (is_block_implemented(rvu->hw, blkaddr))
337 		return blkaddr;
338 	return -ENODEV;
339 }
340 
341 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
342 				struct rvu_block *block, u16 pcifunc,
343 				u16 lf, bool attach)
344 {
345 	int devnum, num_lfs = 0;
346 	bool is_pf;
347 	u64 reg;
348 
349 	if (lf >= block->lf.max) {
350 		dev_err(&rvu->pdev->dev,
351 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
352 			__func__, lf, block->name, block->lf.max);
353 		return;
354 	}
355 
356 	/* Check if this is for a RVU PF or VF */
357 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
358 		is_pf = false;
359 		devnum = rvu_get_hwvf(rvu, pcifunc);
360 	} else {
361 		is_pf = true;
362 		devnum = rvu_get_pf(rvu->pdev, pcifunc);
363 	}
364 
365 	block->fn_map[lf] = attach ? pcifunc : 0;
366 
367 	switch (block->addr) {
368 	case BLKADDR_NPA:
369 		pfvf->npalf = attach ? true : false;
370 		num_lfs = pfvf->npalf;
371 		break;
372 	case BLKADDR_NIX0:
373 	case BLKADDR_NIX1:
374 		pfvf->nixlf = attach ? true : false;
375 		num_lfs = pfvf->nixlf;
376 		break;
377 	case BLKADDR_SSO:
378 		attach ? pfvf->sso++ : pfvf->sso--;
379 		num_lfs = pfvf->sso;
380 		break;
381 	case BLKADDR_SSOW:
382 		attach ? pfvf->ssow++ : pfvf->ssow--;
383 		num_lfs = pfvf->ssow;
384 		break;
385 	case BLKADDR_TIM:
386 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
387 		num_lfs = pfvf->timlfs;
388 		break;
389 	case BLKADDR_CPT0:
390 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
391 		num_lfs = pfvf->cptlfs;
392 		break;
393 	case BLKADDR_CPT1:
394 		attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
395 		num_lfs = pfvf->cpt1_lfs;
396 		break;
397 	}
398 
399 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
400 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
401 }
402 
403 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
404 {
405 	u64 cfg;
406 
407 	/* Get numVFs attached to this PF and first HWVF */
408 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
409 	if (numvfs)
410 		*numvfs = (cfg >> 12) & 0xFF;
411 	if (hwvf)
412 		*hwvf = cfg & 0xFFF;
413 }
414 
415 int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
416 {
417 	int pf, func;
418 	u64 cfg;
419 
420 	pf = rvu_get_pf(rvu->pdev, pcifunc);
421 	func = pcifunc & RVU_PFVF_FUNC_MASK;
422 
423 	/* Get first HWVF attached to this PF */
424 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
425 
426 	return ((cfg & 0xFFF) + func - 1);
427 }
428 
429 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
430 {
431 	/* Check if it is a PF or VF */
432 	if (pcifunc & RVU_PFVF_FUNC_MASK)
433 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
434 	else
435 		return &rvu->pf[rvu_get_pf(rvu->pdev, pcifunc)];
436 }
437 
438 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
439 {
440 	int pf, vf, nvfs;
441 	u64 cfg;
442 
443 	pf = rvu_get_pf(rvu->pdev, pcifunc);
444 	if (pf >= rvu->hw->total_pfs)
445 		return false;
446 
447 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
448 		return true;
449 
450 	/* Check if VF is within number of VFs attached to this PF */
451 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
452 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
453 	nvfs = (cfg >> 12) & 0xFF;
454 	if (vf >= nvfs)
455 		return false;
456 
457 	return true;
458 }
459 
460 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
461 {
462 	struct rvu_block *block;
463 
464 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
465 		return false;
466 
467 	block = &hw->block[blkaddr];
468 	return block->implemented;
469 }
470 
471 static void rvu_check_block_implemented(struct rvu *rvu)
472 {
473 	struct rvu_hwinfo *hw = rvu->hw;
474 	struct rvu_block *block;
475 	int blkid;
476 	u64 cfg;
477 
478 	/* For each block check if 'implemented' bit is set */
479 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
480 		block = &hw->block[blkid];
481 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
482 		if (cfg & BIT_ULL(11))
483 			block->implemented = true;
484 	}
485 }
486 
487 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
488 {
489 	rvu_write64(rvu, BLKADDR_RVUM,
490 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
491 		    RVU_BLK_RVUM_REVID);
492 }
493 
494 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
495 {
496 	rvu_write64(rvu, BLKADDR_RVUM,
497 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
498 }
499 
500 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
501 {
502 	int err;
503 
504 	if (!block->implemented)
505 		return 0;
506 
507 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
508 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
509 			   true);
510 	return err;
511 }
512 
513 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
514 {
515 	struct rvu_block *block = &rvu->hw->block[blkaddr];
516 	int err;
517 
518 	if (!block->implemented)
519 		return;
520 
521 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
522 	err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
523 	if (err) {
524 		dev_err(rvu->dev, "HW block:%d reset timeout retrying again\n", blkaddr);
525 		while (rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true) == -EBUSY)
526 			;
527 	}
528 }
529 
530 static void rvu_reset_all_blocks(struct rvu *rvu)
531 {
532 	/* Do a HW reset of all RVU blocks */
533 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
534 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
535 	rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
536 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
537 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
538 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
539 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
540 	rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
541 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
542 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
543 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
544 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
545 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
546 }
547 
548 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
549 {
550 	struct rvu_pfvf *pfvf;
551 	u64 cfg;
552 	int lf;
553 
554 	for (lf = 0; lf < block->lf.max; lf++) {
555 		cfg = rvu_read64(rvu, block->addr,
556 				 block->lfcfg_reg | (lf << block->lfshift));
557 		if (!(cfg & BIT_ULL(63)))
558 			continue;
559 
560 		/* Set this resource as being used */
561 		__set_bit(lf, block->lf.bmap);
562 
563 		/* Get, to whom this LF is attached */
564 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
565 		rvu_update_rsrc_map(rvu, pfvf, block,
566 				    (cfg >> 8) & 0xFFFF, lf, true);
567 
568 		/* Set start MSIX vector for this LF within this PF/VF */
569 		rvu_set_msix_offset(rvu, pfvf, block, lf);
570 	}
571 }
572 
573 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
574 {
575 	int min_vecs;
576 
577 	if (!vf)
578 		goto check_pf;
579 
580 	if (!nvecs) {
581 		dev_warn(rvu->dev,
582 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
583 			 pf, vf - 1, nvecs);
584 	}
585 	return;
586 
587 check_pf:
588 	if (pf == 0)
589 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
590 	else
591 		min_vecs = RVU_PF_INT_VEC_CNT;
592 
593 	if (!(nvecs < min_vecs))
594 		return;
595 	dev_warn(rvu->dev,
596 		 "PF%d is configured with too few vectors, %d, min is %d\n",
597 		 pf, nvecs, min_vecs);
598 }
599 
600 static int rvu_setup_msix_resources(struct rvu *rvu)
601 {
602 	struct rvu_hwinfo *hw = rvu->hw;
603 	int pf, vf, numvfs, hwvf, err;
604 	int nvecs, offset, max_msix;
605 	struct rvu_pfvf *pfvf;
606 	u64 cfg, phy_addr;
607 	dma_addr_t iova;
608 
609 	for (pf = 0; pf < hw->total_pfs; pf++) {
610 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
611 		/* If PF is not enabled, nothing to do */
612 		if (!((cfg >> 20) & 0x01))
613 			continue;
614 
615 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
616 
617 		pfvf = &rvu->pf[pf];
618 		/* Get num of MSIX vectors attached to this PF */
619 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
620 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
621 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
622 
623 		/* Alloc msix bitmap for this PF */
624 		err = rvu_alloc_bitmap(&pfvf->msix);
625 		if (err)
626 			return err;
627 
628 		/* Allocate memory for MSIX vector to RVU block LF mapping */
629 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
630 						sizeof(u16), GFP_KERNEL);
631 		if (!pfvf->msix_lfmap)
632 			return -ENOMEM;
633 
634 		/* For PF0 (AF) firmware will set msix vector offsets for
635 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
636 		 */
637 		if (!pf)
638 			goto setup_vfmsix;
639 
640 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
641 		 * These are allocated on driver init and never freed,
642 		 * so no need to set 'msix_lfmap' for these.
643 		 */
644 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
645 		nvecs = (cfg >> 12) & 0xFF;
646 		cfg &= ~0x7FFULL;
647 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
648 		rvu_write64(rvu, BLKADDR_RVUM,
649 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
650 setup_vfmsix:
651 		/* Alloc msix bitmap for VFs */
652 		for (vf = 0; vf < numvfs; vf++) {
653 			pfvf =  &rvu->hwvf[hwvf + vf];
654 			/* Get num of MSIX vectors attached to this VF */
655 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
656 					 RVU_PRIV_PFX_MSIX_CFG(pf));
657 			pfvf->msix.max = (cfg & 0xFFF) + 1;
658 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
659 
660 			/* Alloc msix bitmap for this VF */
661 			err = rvu_alloc_bitmap(&pfvf->msix);
662 			if (err)
663 				return err;
664 
665 			pfvf->msix_lfmap =
666 				devm_kcalloc(rvu->dev, pfvf->msix.max,
667 					     sizeof(u16), GFP_KERNEL);
668 			if (!pfvf->msix_lfmap)
669 				return -ENOMEM;
670 
671 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
672 			 * These are allocated on driver init and never freed,
673 			 * so no need to set 'msix_lfmap' for these.
674 			 */
675 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
676 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
677 			nvecs = (cfg >> 12) & 0xFF;
678 			cfg &= ~0x7FFULL;
679 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
680 			rvu_write64(rvu, BLKADDR_RVUM,
681 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
682 				    cfg | offset);
683 		}
684 	}
685 
686 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
687 	 * create an IOMMU mapping for the physical address configured by
688 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
689 	 */
690 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
691 	max_msix = cfg & 0xFFFFF;
692 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
693 		phy_addr = rvu->fwdata->msixtr_base;
694 	else
695 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
696 
697 	iova = dma_map_resource(rvu->dev, phy_addr,
698 				max_msix * PCI_MSIX_ENTRY_SIZE,
699 				DMA_BIDIRECTIONAL, 0);
700 
701 	if (dma_mapping_error(rvu->dev, iova))
702 		return -ENOMEM;
703 
704 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
705 	rvu->msix_base_iova = iova;
706 	rvu->msixtr_base_phy = phy_addr;
707 
708 	return 0;
709 }
710 
711 static void rvu_reset_msix(struct rvu *rvu)
712 {
713 	/* Restore msixtr base register */
714 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
715 		    rvu->msixtr_base_phy);
716 }
717 
718 static void rvu_free_hw_resources(struct rvu *rvu)
719 {
720 	struct rvu_hwinfo *hw = rvu->hw;
721 	struct rvu_block *block;
722 	struct rvu_pfvf  *pfvf;
723 	int id, max_msix;
724 	u64 cfg;
725 
726 	rvu_npa_freemem(rvu);
727 	rvu_npc_freemem(rvu);
728 	rvu_nix_freemem(rvu);
729 
730 	/* Free block LF bitmaps */
731 	for (id = 0; id < BLK_COUNT; id++) {
732 		block = &hw->block[id];
733 		kfree(block->lf.bmap);
734 	}
735 
736 	/* Free MSIX bitmaps */
737 	for (id = 0; id < hw->total_pfs; id++) {
738 		pfvf = &rvu->pf[id];
739 		kfree(pfvf->msix.bmap);
740 	}
741 
742 	for (id = 0; id < hw->total_vfs; id++) {
743 		pfvf = &rvu->hwvf[id];
744 		kfree(pfvf->msix.bmap);
745 	}
746 
747 	/* Unmap MSIX vector base IOVA mapping */
748 	if (!rvu->msix_base_iova)
749 		return;
750 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
751 	max_msix = cfg & 0xFFFFF;
752 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
753 			   max_msix * PCI_MSIX_ENTRY_SIZE,
754 			   DMA_BIDIRECTIONAL, 0);
755 
756 	rvu_reset_msix(rvu);
757 	mutex_destroy(&rvu->rsrc_lock);
758 
759 	/* Free the QINT/CINT memory */
760 	pfvf = &rvu->pf[RVU_AFPF];
761 	qmem_free(rvu->dev, pfvf->nix_qints_ctx);
762 	qmem_free(rvu->dev, pfvf->cq_ints_ctx);
763 }
764 
765 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
766 {
767 	struct rvu_hwinfo *hw = rvu->hw;
768 	int pf, vf, numvfs, hwvf;
769 	struct rvu_pfvf *pfvf;
770 	u64 *mac;
771 
772 	for (pf = 0; pf < hw->total_pfs; pf++) {
773 		/* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
774 		if (!pf)
775 			goto lbkvf;
776 
777 		if (!is_pf_cgxmapped(rvu, pf))
778 			continue;
779 		/* Assign MAC address to PF */
780 		pfvf = &rvu->pf[pf];
781 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
782 			mac = &rvu->fwdata->pf_macs[pf];
783 			if (*mac)
784 				u64_to_ether_addr(*mac, pfvf->mac_addr);
785 			else
786 				eth_random_addr(pfvf->mac_addr);
787 		} else {
788 			eth_random_addr(pfvf->mac_addr);
789 		}
790 		ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
791 
792 lbkvf:
793 		/* Assign MAC address to VFs*/
794 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
795 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
796 			pfvf = &rvu->hwvf[hwvf];
797 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
798 				mac = &rvu->fwdata->vf_macs[hwvf];
799 				if (*mac)
800 					u64_to_ether_addr(*mac, pfvf->mac_addr);
801 				else
802 					eth_random_addr(pfvf->mac_addr);
803 			} else {
804 				eth_random_addr(pfvf->mac_addr);
805 			}
806 			ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
807 		}
808 	}
809 }
810 
811 static int rvu_fwdata_init(struct rvu *rvu)
812 {
813 	u64 fwdbase;
814 	int err;
815 
816 	/* Get firmware data base address */
817 	err = cgx_get_fwdata_base(&fwdbase);
818 	if (err)
819 		goto fail;
820 
821 	BUILD_BUG_ON(offsetof(struct rvu_fwdata, cgx_fw_data) > FWDATA_CGX_LMAC_OFFSET);
822 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
823 	if (!rvu->fwdata)
824 		goto fail;
825 	if (!is_rvu_fwdata_valid(rvu)) {
826 		dev_err(rvu->dev,
827 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
828 		iounmap(rvu->fwdata);
829 		rvu->fwdata = NULL;
830 		return -EINVAL;
831 	}
832 	return 0;
833 fail:
834 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
835 	return -EIO;
836 }
837 
838 static void rvu_fwdata_exit(struct rvu *rvu)
839 {
840 	if (rvu->fwdata)
841 		iounmap(rvu->fwdata);
842 }
843 
844 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
845 {
846 	struct rvu_hwinfo *hw = rvu->hw;
847 	struct rvu_block *block;
848 	int blkid;
849 	u64 cfg;
850 
851 	/* Init NIX LF's bitmap */
852 	block = &hw->block[blkaddr];
853 	if (!block->implemented)
854 		return 0;
855 	blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
856 	cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
857 	block->lf.max = cfg & 0xFFF;
858 	block->addr = blkaddr;
859 	block->type = BLKTYPE_NIX;
860 	block->lfshift = 8;
861 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
862 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
863 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
864 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
865 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
866 	block->lfreset_reg = NIX_AF_LF_RST;
867 	block->rvu = rvu;
868 	sprintf(block->name, "NIX%d", blkid);
869 	rvu->nix_blkaddr[blkid] = blkaddr;
870 	return rvu_alloc_bitmap(&block->lf);
871 }
872 
873 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
874 {
875 	struct rvu_hwinfo *hw = rvu->hw;
876 	struct rvu_block *block;
877 	int blkid;
878 	u64 cfg;
879 
880 	/* Init CPT LF's bitmap */
881 	block = &hw->block[blkaddr];
882 	if (!block->implemented)
883 		return 0;
884 	blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
885 	cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
886 	block->lf.max = cfg & 0xFF;
887 	block->addr = blkaddr;
888 	block->type = BLKTYPE_CPT;
889 	block->multislot = true;
890 	block->lfshift = 3;
891 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
892 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
893 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
894 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
895 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
896 	block->lfreset_reg = CPT_AF_LF_RST;
897 	block->rvu = rvu;
898 	sprintf(block->name, "CPT%d", blkid);
899 	return rvu_alloc_bitmap(&block->lf);
900 }
901 
902 static void rvu_get_lbk_bufsize(struct rvu *rvu)
903 {
904 	struct pci_dev *pdev = NULL;
905 	void __iomem *base;
906 	u64 lbk_const;
907 
908 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
909 			      PCI_DEVID_OCTEONTX2_LBK, pdev);
910 	if (!pdev)
911 		return;
912 
913 	base = pci_ioremap_bar(pdev, 0);
914 	if (!base)
915 		goto err_put;
916 
917 	lbk_const = readq(base + LBK_CONST);
918 
919 	/* cache fifo size */
920 	rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
921 
922 	iounmap(base);
923 err_put:
924 	pci_dev_put(pdev);
925 }
926 
927 static int rvu_setup_hw_resources(struct rvu *rvu)
928 {
929 	struct rvu_hwinfo *hw = rvu->hw;
930 	struct rvu_block *block;
931 	int blkid, err;
932 	u64 cfg;
933 
934 	/* Get HW supported max RVU PF & VF count */
935 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
936 	hw->total_pfs = (cfg >> 32) & 0xFF;
937 	hw->total_vfs = (cfg >> 20) & 0xFFF;
938 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
939 
940 	if (!is_rvu_otx2(rvu))
941 		rvu_apr_block_cn10k_init(rvu);
942 
943 	/* Init NPA LF's bitmap */
944 	block = &hw->block[BLKADDR_NPA];
945 	if (!block->implemented)
946 		goto nix;
947 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
948 	block->lf.max = (cfg >> 16) & 0xFFF;
949 	block->addr = BLKADDR_NPA;
950 	block->type = BLKTYPE_NPA;
951 	block->lfshift = 8;
952 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
953 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
954 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
955 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
956 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
957 	block->lfreset_reg = NPA_AF_LF_RST;
958 	block->rvu = rvu;
959 	sprintf(block->name, "NPA");
960 	err = rvu_alloc_bitmap(&block->lf);
961 	if (err) {
962 		dev_err(rvu->dev,
963 			"%s: Failed to allocate NPA LF bitmap\n", __func__);
964 		return err;
965 	}
966 
967 nix:
968 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
969 	if (err) {
970 		dev_err(rvu->dev,
971 			"%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
972 		return err;
973 	}
974 
975 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
976 	if (err) {
977 		dev_err(rvu->dev,
978 			"%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
979 		return err;
980 	}
981 
982 	/* Init SSO group's bitmap */
983 	block = &hw->block[BLKADDR_SSO];
984 	if (!block->implemented)
985 		goto ssow;
986 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
987 	block->lf.max = cfg & 0xFFFF;
988 	block->addr = BLKADDR_SSO;
989 	block->type = BLKTYPE_SSO;
990 	block->multislot = true;
991 	block->lfshift = 3;
992 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
993 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
994 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
995 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
996 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
997 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
998 	block->rvu = rvu;
999 	sprintf(block->name, "SSO GROUP");
1000 	err = rvu_alloc_bitmap(&block->lf);
1001 	if (err) {
1002 		dev_err(rvu->dev,
1003 			"%s: Failed to allocate SSO LF bitmap\n", __func__);
1004 		return err;
1005 	}
1006 
1007 ssow:
1008 	/* Init SSO workslot's bitmap */
1009 	block = &hw->block[BLKADDR_SSOW];
1010 	if (!block->implemented)
1011 		goto tim;
1012 	block->lf.max = (cfg >> 56) & 0xFF;
1013 	block->addr = BLKADDR_SSOW;
1014 	block->type = BLKTYPE_SSOW;
1015 	block->multislot = true;
1016 	block->lfshift = 3;
1017 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
1018 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
1019 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
1020 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
1021 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
1022 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
1023 	block->rvu = rvu;
1024 	sprintf(block->name, "SSOWS");
1025 	err = rvu_alloc_bitmap(&block->lf);
1026 	if (err) {
1027 		dev_err(rvu->dev,
1028 			"%s: Failed to allocate SSOW LF bitmap\n", __func__);
1029 		return err;
1030 	}
1031 
1032 tim:
1033 	/* Init TIM LF's bitmap */
1034 	block = &hw->block[BLKADDR_TIM];
1035 	if (!block->implemented)
1036 		goto cpt;
1037 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1038 	block->lf.max = cfg & 0xFFFF;
1039 	block->addr = BLKADDR_TIM;
1040 	block->type = BLKTYPE_TIM;
1041 	block->multislot = true;
1042 	block->lfshift = 3;
1043 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1044 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1045 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1046 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1047 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1048 	block->lfreset_reg = TIM_AF_LF_RST;
1049 	block->rvu = rvu;
1050 	sprintf(block->name, "TIM");
1051 	err = rvu_alloc_bitmap(&block->lf);
1052 	if (err) {
1053 		dev_err(rvu->dev,
1054 			"%s: Failed to allocate TIM LF bitmap\n", __func__);
1055 		return err;
1056 	}
1057 
1058 cpt:
1059 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1060 	if (err) {
1061 		dev_err(rvu->dev,
1062 			"%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1063 		return err;
1064 	}
1065 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1066 	if (err) {
1067 		dev_err(rvu->dev,
1068 			"%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1069 		return err;
1070 	}
1071 
1072 	/* Allocate memory for PFVF data */
1073 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1074 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
1075 	if (!rvu->pf) {
1076 		dev_err(rvu->dev,
1077 			"%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1078 		return -ENOMEM;
1079 	}
1080 
1081 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1082 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
1083 	if (!rvu->hwvf) {
1084 		dev_err(rvu->dev,
1085 			"%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1086 		return -ENOMEM;
1087 	}
1088 
1089 	mutex_init(&rvu->rsrc_lock);
1090 
1091 	rvu_fwdata_init(rvu);
1092 
1093 	err = rvu_setup_msix_resources(rvu);
1094 	if (err) {
1095 		dev_err(rvu->dev,
1096 			"%s: Failed to setup MSIX resources\n", __func__);
1097 		return err;
1098 	}
1099 
1100 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1101 		block = &hw->block[blkid];
1102 		if (!block->lf.bmap)
1103 			continue;
1104 
1105 		/* Allocate memory for block LF/slot to pcifunc mapping info */
1106 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1107 					     sizeof(u16), GFP_KERNEL);
1108 		if (!block->fn_map) {
1109 			err = -ENOMEM;
1110 			goto msix_err;
1111 		}
1112 
1113 		/* Scan all blocks to check if low level firmware has
1114 		 * already provisioned any of the resources to a PF/VF.
1115 		 */
1116 		rvu_scan_block(rvu, block);
1117 	}
1118 
1119 	err = rvu_set_channels_base(rvu);
1120 	if (err)
1121 		goto msix_err;
1122 
1123 	err = rvu_npc_init(rvu);
1124 	if (err) {
1125 		dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1126 		goto npc_err;
1127 	}
1128 
1129 	err = rvu_cgx_init(rvu);
1130 	if (err) {
1131 		dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1132 		goto cgx_err;
1133 	}
1134 
1135 	err = rvu_npc_exact_init(rvu);
1136 	if (err) {
1137 		dev_err(rvu->dev, "failed to initialize exact match table\n");
1138 		return err;
1139 	}
1140 
1141 	/* Assign MACs for CGX mapped functions */
1142 	rvu_setup_pfvf_macaddress(rvu);
1143 
1144 	err = rvu_npa_init(rvu);
1145 	if (err) {
1146 		dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1147 		goto npa_err;
1148 	}
1149 
1150 	rvu_get_lbk_bufsize(rvu);
1151 
1152 	err = rvu_nix_init(rvu);
1153 	if (err) {
1154 		dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1155 		goto nix_err;
1156 	}
1157 
1158 	err = rvu_sdp_init(rvu);
1159 	if (err) {
1160 		dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1161 		goto nix_err;
1162 	}
1163 
1164 	rvu_program_channels(rvu);
1165 	cgx_start_linkup(rvu);
1166 
1167 	rvu_block_bcast_xon(rvu, BLKADDR_NIX0);
1168 	rvu_block_bcast_xon(rvu, BLKADDR_NIX1);
1169 
1170 	err = rvu_mcs_init(rvu);
1171 	if (err) {
1172 		dev_err(rvu->dev, "%s: Failed to initialize mcs\n", __func__);
1173 		goto nix_err;
1174 	}
1175 
1176 	err = rvu_cpt_init(rvu);
1177 	if (err) {
1178 		dev_err(rvu->dev, "%s: Failed to initialize cpt\n", __func__);
1179 		goto mcs_err;
1180 	}
1181 
1182 	return 0;
1183 
1184 mcs_err:
1185 	rvu_mcs_exit(rvu);
1186 nix_err:
1187 	rvu_nix_freemem(rvu);
1188 npa_err:
1189 	rvu_npa_freemem(rvu);
1190 cgx_err:
1191 	rvu_cgx_exit(rvu);
1192 npc_err:
1193 	rvu_npc_freemem(rvu);
1194 	rvu_fwdata_exit(rvu);
1195 msix_err:
1196 	rvu_reset_msix(rvu);
1197 	return err;
1198 }
1199 
1200 /* NPA and NIX admin queue APIs */
1201 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1202 {
1203 	if (!aq)
1204 		return;
1205 
1206 	qmem_free(rvu->dev, aq->inst);
1207 	qmem_free(rvu->dev, aq->res);
1208 	devm_kfree(rvu->dev, aq);
1209 }
1210 
1211 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1212 		 int qsize, int inst_size, int res_size)
1213 {
1214 	struct admin_queue *aq;
1215 	int err;
1216 
1217 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1218 	if (!*ad_queue)
1219 		return -ENOMEM;
1220 	aq = *ad_queue;
1221 
1222 	/* Alloc memory for instructions i.e AQ */
1223 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1224 	if (err) {
1225 		devm_kfree(rvu->dev, aq);
1226 		return err;
1227 	}
1228 
1229 	/* Alloc memory for results */
1230 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1231 	if (err) {
1232 		rvu_aq_free(rvu, aq);
1233 		return err;
1234 	}
1235 
1236 	spin_lock_init(&aq->lock);
1237 	return 0;
1238 }
1239 
1240 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1241 			   struct ready_msg_rsp *rsp)
1242 {
1243 	if (rvu->fwdata) {
1244 		rsp->rclk_freq = rvu->fwdata->rclk;
1245 		rsp->sclk_freq = rvu->fwdata->sclk;
1246 	}
1247 	return 0;
1248 }
1249 
1250 /* Get current count of a RVU block's LF/slots
1251  * provisioned to a given RVU func.
1252  */
1253 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1254 {
1255 	switch (blkaddr) {
1256 	case BLKADDR_NPA:
1257 		return pfvf->npalf ? 1 : 0;
1258 	case BLKADDR_NIX0:
1259 	case BLKADDR_NIX1:
1260 		return pfvf->nixlf ? 1 : 0;
1261 	case BLKADDR_SSO:
1262 		return pfvf->sso;
1263 	case BLKADDR_SSOW:
1264 		return pfvf->ssow;
1265 	case BLKADDR_TIM:
1266 		return pfvf->timlfs;
1267 	case BLKADDR_CPT0:
1268 		return pfvf->cptlfs;
1269 	case BLKADDR_CPT1:
1270 		return pfvf->cpt1_lfs;
1271 	}
1272 	return 0;
1273 }
1274 
1275 /* Return true if LFs of block type are attached to pcifunc */
1276 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1277 {
1278 	switch (blktype) {
1279 	case BLKTYPE_NPA:
1280 		return pfvf->npalf ? 1 : 0;
1281 	case BLKTYPE_NIX:
1282 		return pfvf->nixlf ? 1 : 0;
1283 	case BLKTYPE_SSO:
1284 		return !!pfvf->sso;
1285 	case BLKTYPE_SSOW:
1286 		return !!pfvf->ssow;
1287 	case BLKTYPE_TIM:
1288 		return !!pfvf->timlfs;
1289 	case BLKTYPE_CPT:
1290 		return pfvf->cptlfs || pfvf->cpt1_lfs;
1291 	}
1292 
1293 	return false;
1294 }
1295 
1296 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1297 {
1298 	struct rvu_pfvf *pfvf;
1299 
1300 	if (!is_pf_func_valid(rvu, pcifunc))
1301 		return false;
1302 
1303 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1304 
1305 	/* Check if this PFFUNC has a LF of type blktype attached */
1306 	if (!is_blktype_attached(pfvf, blktype))
1307 		return false;
1308 
1309 	return true;
1310 }
1311 
1312 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1313 			   int pcifunc, int slot)
1314 {
1315 	u64 val;
1316 
1317 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1318 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1319 	/* Wait for the lookup to finish */
1320 	/* TODO: put some timeout here */
1321 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1322 		;
1323 
1324 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1325 
1326 	/* Check LF valid bit */
1327 	if (!(val & (1ULL << 12)))
1328 		return -1;
1329 
1330 	return (val & 0xFFF);
1331 }
1332 
1333 int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc,
1334 			      u16 global_slot, u16 *slot_in_block)
1335 {
1336 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1337 	int numlfs, total_lfs = 0, nr_blocks = 0;
1338 	int i, num_blkaddr[BLK_COUNT] = { 0 };
1339 	struct rvu_block *block;
1340 	int blkaddr;
1341 	u16 start_slot;
1342 
1343 	if (!is_blktype_attached(pfvf, blktype))
1344 		return -ENODEV;
1345 
1346 	/* Get all the block addresses from which LFs are attached to
1347 	 * the given pcifunc in num_blkaddr[].
1348 	 */
1349 	for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) {
1350 		block = &rvu->hw->block[blkaddr];
1351 		if (block->type != blktype)
1352 			continue;
1353 		if (!is_block_implemented(rvu->hw, blkaddr))
1354 			continue;
1355 
1356 		numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr);
1357 		if (numlfs) {
1358 			total_lfs += numlfs;
1359 			num_blkaddr[nr_blocks] = blkaddr;
1360 			nr_blocks++;
1361 		}
1362 	}
1363 
1364 	if (global_slot >= total_lfs)
1365 		return -ENODEV;
1366 
1367 	/* Based on the given global slot number retrieve the
1368 	 * correct block address out of all attached block
1369 	 * addresses and slot number in that block.
1370 	 */
1371 	total_lfs = 0;
1372 	blkaddr = -ENODEV;
1373 	for (i = 0; i < nr_blocks; i++) {
1374 		numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]);
1375 		total_lfs += numlfs;
1376 		if (global_slot < total_lfs) {
1377 			blkaddr = num_blkaddr[i];
1378 			start_slot = total_lfs - numlfs;
1379 			*slot_in_block = global_slot - start_slot;
1380 			break;
1381 		}
1382 	}
1383 
1384 	return blkaddr;
1385 }
1386 
1387 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1388 {
1389 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1390 	struct rvu_hwinfo *hw = rvu->hw;
1391 	struct rvu_block *block;
1392 	int slot, lf, num_lfs;
1393 	int blkaddr;
1394 
1395 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1396 	if (blkaddr < 0)
1397 		return;
1398 
1399 
1400 	block = &hw->block[blkaddr];
1401 
1402 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1403 	if (!num_lfs)
1404 		return;
1405 
1406 	for (slot = 0; slot < num_lfs; slot++) {
1407 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1408 		if (lf < 0) /* This should never happen */
1409 			continue;
1410 
1411 		if (blktype == BLKTYPE_NIX) {
1412 			rvu_nix_reset_mac(pfvf, pcifunc);
1413 			rvu_npc_clear_ucast_entry(rvu, pcifunc, lf);
1414 		}
1415 		/* Disable the LF */
1416 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1417 			    (lf << block->lfshift), 0x00ULL);
1418 
1419 		/* Update SW maintained mapping info as well */
1420 		rvu_update_rsrc_map(rvu, pfvf, block,
1421 				    pcifunc, lf, false);
1422 
1423 		/* Free the resource */
1424 		rvu_free_rsrc(&block->lf, lf);
1425 
1426 		/* Clear MSIX vector offset for this LF */
1427 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1428 	}
1429 }
1430 
1431 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1432 			    u16 pcifunc)
1433 {
1434 	struct rvu_hwinfo *hw = rvu->hw;
1435 	bool detach_all = true;
1436 	struct rvu_block *block;
1437 	int blkid;
1438 
1439 	mutex_lock(&rvu->rsrc_lock);
1440 
1441 	/* Check for partial resource detach */
1442 	if (detach && detach->partial)
1443 		detach_all = false;
1444 
1445 	/* Check for RVU block's LFs attached to this func,
1446 	 * if so, detach them.
1447 	 */
1448 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1449 		block = &hw->block[blkid];
1450 		if (!block->lf.bmap)
1451 			continue;
1452 		if (!detach_all && detach) {
1453 			if (blkid == BLKADDR_NPA && !detach->npalf)
1454 				continue;
1455 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1456 				continue;
1457 			else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1458 				continue;
1459 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1460 				continue;
1461 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1462 				continue;
1463 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1464 				continue;
1465 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1466 				continue;
1467 			else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1468 				continue;
1469 		}
1470 		rvu_detach_block(rvu, pcifunc, block->type);
1471 	}
1472 
1473 	mutex_unlock(&rvu->rsrc_lock);
1474 	return 0;
1475 }
1476 
1477 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1478 				      struct rsrc_detach *detach,
1479 				      struct msg_rsp *rsp)
1480 {
1481 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1482 }
1483 
1484 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1485 {
1486 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1487 	int blkaddr = BLKADDR_NIX0, vf;
1488 	struct rvu_pfvf *pf;
1489 
1490 	pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1491 
1492 	/* All CGX mapped PFs are set with assigned NIX block during init */
1493 	if (is_pf_cgxmapped(rvu, rvu_get_pf(rvu->pdev, pcifunc))) {
1494 		blkaddr = pf->nix_blkaddr;
1495 	} else if (is_lbk_vf(rvu, pcifunc)) {
1496 		vf = pcifunc - 1;
1497 		/* Assign NIX based on VF number. All even numbered VFs get
1498 		 * NIX0 and odd numbered gets NIX1
1499 		 */
1500 		blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1501 		/* NIX1 is not present on all silicons */
1502 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1503 			blkaddr = BLKADDR_NIX0;
1504 	}
1505 
1506 	/* if SDP1 then the blkaddr is NIX1 */
1507 	if (is_sdp_pfvf(rvu, pcifunc) && pf->sdp_info->node_id == 1)
1508 		blkaddr = BLKADDR_NIX1;
1509 
1510 	switch (blkaddr) {
1511 	case BLKADDR_NIX1:
1512 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1513 		pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1514 		pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1515 		break;
1516 	case BLKADDR_NIX0:
1517 	default:
1518 		pfvf->nix_blkaddr = BLKADDR_NIX0;
1519 		pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1520 		pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1521 		break;
1522 	}
1523 
1524 	return pfvf->nix_blkaddr;
1525 }
1526 
1527 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1528 				  u16 pcifunc, struct rsrc_attach *attach)
1529 {
1530 	int blkaddr;
1531 
1532 	switch (blktype) {
1533 	case BLKTYPE_NIX:
1534 		blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1535 		break;
1536 	case BLKTYPE_CPT:
1537 		if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1538 			return rvu_get_blkaddr(rvu, blktype, 0);
1539 		blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1540 			  BLKADDR_CPT0;
1541 		if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1542 			return -ENODEV;
1543 		break;
1544 	default:
1545 		return rvu_get_blkaddr(rvu, blktype, 0);
1546 	}
1547 
1548 	if (is_block_implemented(rvu->hw, blkaddr))
1549 		return blkaddr;
1550 
1551 	return -ENODEV;
1552 }
1553 
1554 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1555 			     int num_lfs, struct rsrc_attach *attach)
1556 {
1557 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1558 	struct rvu_hwinfo *hw = rvu->hw;
1559 	struct rvu_block *block;
1560 	int slot, lf;
1561 	int blkaddr;
1562 	u64 cfg;
1563 
1564 	if (!num_lfs)
1565 		return;
1566 
1567 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1568 	if (blkaddr < 0)
1569 		return;
1570 
1571 	block = &hw->block[blkaddr];
1572 	if (!block->lf.bmap)
1573 		return;
1574 
1575 	for (slot = 0; slot < num_lfs; slot++) {
1576 		/* Allocate the resource */
1577 		lf = rvu_alloc_rsrc(&block->lf);
1578 		if (lf < 0)
1579 			return;
1580 
1581 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1582 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1583 			    (lf << block->lfshift), cfg);
1584 		rvu_update_rsrc_map(rvu, pfvf, block,
1585 				    pcifunc, lf, true);
1586 
1587 		/* Set start MSIX vector for this LF within this PF/VF */
1588 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1589 	}
1590 }
1591 
1592 static int rvu_check_rsrc_availability(struct rvu *rvu,
1593 				       struct rsrc_attach *req, u16 pcifunc)
1594 {
1595 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1596 	int free_lfs, mappedlfs, blkaddr;
1597 	struct rvu_hwinfo *hw = rvu->hw;
1598 	struct rvu_block *block;
1599 
1600 	/* Only one NPA LF can be attached */
1601 	if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1602 		block = &hw->block[BLKADDR_NPA];
1603 		free_lfs = rvu_rsrc_free_count(&block->lf);
1604 		if (!free_lfs)
1605 			goto fail;
1606 	} else if (req->npalf) {
1607 		dev_err(&rvu->pdev->dev,
1608 			"Func 0x%x: Invalid req, already has NPA\n",
1609 			 pcifunc);
1610 		return -EINVAL;
1611 	}
1612 
1613 	/* Only one NIX LF can be attached */
1614 	if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1615 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1616 						 pcifunc, req);
1617 		if (blkaddr < 0)
1618 			return blkaddr;
1619 		block = &hw->block[blkaddr];
1620 		free_lfs = rvu_rsrc_free_count(&block->lf);
1621 		if (!free_lfs)
1622 			goto fail;
1623 	} else if (req->nixlf) {
1624 		dev_err(&rvu->pdev->dev,
1625 			"Func 0x%x: Invalid req, already has NIX\n",
1626 			pcifunc);
1627 		return -EINVAL;
1628 	}
1629 
1630 	if (req->sso) {
1631 		block = &hw->block[BLKADDR_SSO];
1632 		/* Is request within limits ? */
1633 		if (req->sso > block->lf.max) {
1634 			dev_err(&rvu->pdev->dev,
1635 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1636 				 pcifunc, req->sso, block->lf.max);
1637 			return -EINVAL;
1638 		}
1639 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1640 		free_lfs = rvu_rsrc_free_count(&block->lf);
1641 		/* Check if additional resources are available */
1642 		if (req->sso > mappedlfs &&
1643 		    ((req->sso - mappedlfs) > free_lfs))
1644 			goto fail;
1645 	}
1646 
1647 	if (req->ssow) {
1648 		block = &hw->block[BLKADDR_SSOW];
1649 		if (req->ssow > block->lf.max) {
1650 			dev_err(&rvu->pdev->dev,
1651 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1652 				 pcifunc, req->ssow, block->lf.max);
1653 			return -EINVAL;
1654 		}
1655 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1656 		free_lfs = rvu_rsrc_free_count(&block->lf);
1657 		if (req->ssow > mappedlfs &&
1658 		    ((req->ssow - mappedlfs) > free_lfs))
1659 			goto fail;
1660 	}
1661 
1662 	if (req->timlfs) {
1663 		block = &hw->block[BLKADDR_TIM];
1664 		if (req->timlfs > block->lf.max) {
1665 			dev_err(&rvu->pdev->dev,
1666 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1667 				 pcifunc, req->timlfs, block->lf.max);
1668 			return -EINVAL;
1669 		}
1670 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1671 		free_lfs = rvu_rsrc_free_count(&block->lf);
1672 		if (req->timlfs > mappedlfs &&
1673 		    ((req->timlfs - mappedlfs) > free_lfs))
1674 			goto fail;
1675 	}
1676 
1677 	if (req->cptlfs) {
1678 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1679 						 pcifunc, req);
1680 		if (blkaddr < 0)
1681 			return blkaddr;
1682 		block = &hw->block[blkaddr];
1683 		if (req->cptlfs > block->lf.max) {
1684 			dev_err(&rvu->pdev->dev,
1685 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1686 				 pcifunc, req->cptlfs, block->lf.max);
1687 			return -EINVAL;
1688 		}
1689 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1690 		free_lfs = rvu_rsrc_free_count(&block->lf);
1691 		if (req->cptlfs > mappedlfs &&
1692 		    ((req->cptlfs - mappedlfs) > free_lfs))
1693 			goto fail;
1694 	}
1695 
1696 	return 0;
1697 
1698 fail:
1699 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1700 	return -ENOSPC;
1701 }
1702 
1703 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1704 				       struct rsrc_attach *attach)
1705 {
1706 	int blkaddr, num_lfs;
1707 
1708 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1709 					 attach->hdr.pcifunc, attach);
1710 	if (blkaddr < 0)
1711 		return false;
1712 
1713 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1714 					blkaddr);
1715 	/* Requester already has LFs from given block ? */
1716 	return !!num_lfs;
1717 }
1718 
1719 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1720 				      struct rsrc_attach *attach,
1721 				      struct msg_rsp *rsp)
1722 {
1723 	u16 pcifunc = attach->hdr.pcifunc;
1724 	int err;
1725 
1726 	/* If first request, detach all existing attached resources */
1727 	if (!attach->modify)
1728 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1729 
1730 	mutex_lock(&rvu->rsrc_lock);
1731 
1732 	/* Check if the request can be accommodated */
1733 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1734 	if (err)
1735 		goto exit;
1736 
1737 	/* Now attach the requested resources */
1738 	if (attach->npalf)
1739 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1740 
1741 	if (attach->nixlf)
1742 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1743 
1744 	if (attach->sso) {
1745 		/* RVU func doesn't know which exact LF or slot is attached
1746 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1747 		 * request, simply detach all existing attached LFs/slots
1748 		 * and attach a fresh.
1749 		 */
1750 		if (attach->modify)
1751 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1752 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1753 				 attach->sso, attach);
1754 	}
1755 
1756 	if (attach->ssow) {
1757 		if (attach->modify)
1758 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1759 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1760 				 attach->ssow, attach);
1761 	}
1762 
1763 	if (attach->timlfs) {
1764 		if (attach->modify)
1765 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1766 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1767 				 attach->timlfs, attach);
1768 	}
1769 
1770 	if (attach->cptlfs) {
1771 		if (attach->modify &&
1772 		    rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1773 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1774 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1775 				 attach->cptlfs, attach);
1776 	}
1777 
1778 exit:
1779 	mutex_unlock(&rvu->rsrc_lock);
1780 	return err;
1781 }
1782 
1783 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1784 			       int blkaddr, int lf)
1785 {
1786 	u16 vec;
1787 
1788 	if (lf < 0)
1789 		return MSIX_VECTOR_INVALID;
1790 
1791 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1792 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1793 			return vec;
1794 	}
1795 	return MSIX_VECTOR_INVALID;
1796 }
1797 
1798 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1799 				struct rvu_block *block, int lf)
1800 {
1801 	u16 nvecs, vec, offset;
1802 	u64 cfg;
1803 
1804 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1805 			 (lf << block->lfshift));
1806 	nvecs = (cfg >> 12) & 0xFF;
1807 
1808 	/* Check and alloc MSIX vectors, must be contiguous */
1809 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1810 		return;
1811 
1812 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1813 
1814 	/* Config MSIX offset in LF */
1815 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1816 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1817 
1818 	/* Update the bitmap as well */
1819 	for (vec = 0; vec < nvecs; vec++)
1820 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1821 }
1822 
1823 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1824 				  struct rvu_block *block, int lf)
1825 {
1826 	u16 nvecs, vec, offset;
1827 	u64 cfg;
1828 
1829 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1830 			 (lf << block->lfshift));
1831 	nvecs = (cfg >> 12) & 0xFF;
1832 
1833 	/* Clear MSIX offset in LF */
1834 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1835 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1836 
1837 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1838 
1839 	/* Update the mapping */
1840 	for (vec = 0; vec < nvecs; vec++)
1841 		pfvf->msix_lfmap[offset + vec] = 0;
1842 
1843 	/* Free the same in MSIX bitmap */
1844 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1845 }
1846 
1847 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1848 				 struct msix_offset_rsp *rsp)
1849 {
1850 	struct rvu_hwinfo *hw = rvu->hw;
1851 	u16 pcifunc = req->hdr.pcifunc;
1852 	struct rvu_pfvf *pfvf;
1853 	int lf, slot, blkaddr;
1854 
1855 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1856 	if (!pfvf->msix.bmap)
1857 		return 0;
1858 
1859 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1860 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1861 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1862 
1863 	/* Get BLKADDR from which LFs are attached to pcifunc */
1864 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1865 	if (blkaddr < 0) {
1866 		rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1867 	} else {
1868 		lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1869 		rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1870 	}
1871 
1872 	rsp->sso = pfvf->sso;
1873 	for (slot = 0; slot < rsp->sso; slot++) {
1874 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1875 		rsp->sso_msixoff[slot] =
1876 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1877 	}
1878 
1879 	rsp->ssow = pfvf->ssow;
1880 	for (slot = 0; slot < rsp->ssow; slot++) {
1881 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1882 		rsp->ssow_msixoff[slot] =
1883 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1884 	}
1885 
1886 	rsp->timlfs = pfvf->timlfs;
1887 	for (slot = 0; slot < rsp->timlfs; slot++) {
1888 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1889 		rsp->timlf_msixoff[slot] =
1890 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1891 	}
1892 
1893 	rsp->cptlfs = pfvf->cptlfs;
1894 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1895 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1896 		rsp->cptlf_msixoff[slot] =
1897 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1898 	}
1899 
1900 	rsp->cpt1_lfs = pfvf->cpt1_lfs;
1901 	for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1902 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1903 		rsp->cpt1_lf_msixoff[slot] =
1904 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1905 	}
1906 
1907 	return 0;
1908 }
1909 
1910 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1911 				   struct free_rsrcs_rsp *rsp)
1912 {
1913 	struct rvu_hwinfo *hw = rvu->hw;
1914 	struct rvu_block *block;
1915 	struct nix_txsch *txsch;
1916 	struct nix_hw *nix_hw;
1917 
1918 	mutex_lock(&rvu->rsrc_lock);
1919 
1920 	block = &hw->block[BLKADDR_NPA];
1921 	rsp->npa = rvu_rsrc_free_count(&block->lf);
1922 
1923 	block = &hw->block[BLKADDR_NIX0];
1924 	rsp->nix = rvu_rsrc_free_count(&block->lf);
1925 
1926 	block = &hw->block[BLKADDR_NIX1];
1927 	rsp->nix1 = rvu_rsrc_free_count(&block->lf);
1928 
1929 	block = &hw->block[BLKADDR_SSO];
1930 	rsp->sso = rvu_rsrc_free_count(&block->lf);
1931 
1932 	block = &hw->block[BLKADDR_SSOW];
1933 	rsp->ssow = rvu_rsrc_free_count(&block->lf);
1934 
1935 	block = &hw->block[BLKADDR_TIM];
1936 	rsp->tim = rvu_rsrc_free_count(&block->lf);
1937 
1938 	block = &hw->block[BLKADDR_CPT0];
1939 	rsp->cpt = rvu_rsrc_free_count(&block->lf);
1940 
1941 	block = &hw->block[BLKADDR_CPT1];
1942 	rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
1943 
1944 	if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1945 		rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1946 		rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1947 		rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1948 		rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1949 		/* NIX1 */
1950 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1951 			goto out;
1952 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1953 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1954 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1955 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1956 	} else {
1957 		nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
1958 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1959 		rsp->schq[NIX_TXSCH_LVL_SMQ] =
1960 				rvu_rsrc_free_count(&txsch->schq);
1961 
1962 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1963 		rsp->schq[NIX_TXSCH_LVL_TL4] =
1964 				rvu_rsrc_free_count(&txsch->schq);
1965 
1966 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1967 		rsp->schq[NIX_TXSCH_LVL_TL3] =
1968 				rvu_rsrc_free_count(&txsch->schq);
1969 
1970 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1971 		rsp->schq[NIX_TXSCH_LVL_TL2] =
1972 				rvu_rsrc_free_count(&txsch->schq);
1973 
1974 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1975 			goto out;
1976 
1977 		nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
1978 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1979 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
1980 				rvu_rsrc_free_count(&txsch->schq);
1981 
1982 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1983 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
1984 				rvu_rsrc_free_count(&txsch->schq);
1985 
1986 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1987 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
1988 				rvu_rsrc_free_count(&txsch->schq);
1989 
1990 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1991 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
1992 				rvu_rsrc_free_count(&txsch->schq);
1993 	}
1994 
1995 	rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
1996 out:
1997 	rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
1998 	mutex_unlock(&rvu->rsrc_lock);
1999 
2000 	return 0;
2001 }
2002 
2003 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
2004 			    struct msg_rsp *rsp)
2005 {
2006 	u16 pcifunc = req->hdr.pcifunc;
2007 	u16 vf, numvfs;
2008 	u64 cfg;
2009 
2010 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
2011 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
2012 			 RVU_PRIV_PFX_CFG(rvu_get_pf(rvu->pdev, pcifunc)));
2013 	numvfs = (cfg >> 12) & 0xFF;
2014 
2015 	if (vf && vf <= numvfs)
2016 		__rvu_flr_handler(rvu, pcifunc);
2017 	else
2018 		return RVU_INVALID_VF_ID;
2019 
2020 	return 0;
2021 }
2022 
2023 int rvu_ndc_sync(struct rvu *rvu, int lfblkaddr, int lfidx, u64 lfoffset)
2024 {
2025 	/* Sync cached info for this LF in NDC to LLC/DRAM */
2026 	rvu_write64(rvu, lfblkaddr, lfoffset, BIT_ULL(12) | lfidx);
2027 	return rvu_poll_reg(rvu, lfblkaddr, lfoffset, BIT_ULL(12), true);
2028 }
2029 
2030 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
2031 				struct get_hw_cap_rsp *rsp)
2032 {
2033 	struct rvu_hwinfo *hw = rvu->hw;
2034 
2035 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
2036 	rsp->nix_shaping = hw->cap.nix_shaping;
2037 	rsp->npc_hash_extract = hw->cap.npc_hash_extract;
2038 
2039 	if (rvu->mcs_blk_cnt)
2040 		rsp->hw_caps = HW_CAP_MACSEC;
2041 
2042 	return 0;
2043 }
2044 
2045 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
2046 				 struct msg_rsp *rsp)
2047 {
2048 	struct rvu_hwinfo *hw = rvu->hw;
2049 	u16 pcifunc = req->hdr.pcifunc;
2050 	struct rvu_pfvf *pfvf;
2051 	int blkaddr, nixlf;
2052 	u16 target;
2053 
2054 	/* Only PF can add VF permissions */
2055 	if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_lbk_vf(rvu, pcifunc))
2056 		return -EOPNOTSUPP;
2057 
2058 	target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
2059 	pfvf = rvu_get_pfvf(rvu, target);
2060 
2061 	if (req->flags & RESET_VF_PERM) {
2062 		pfvf->flags &= RVU_CLEAR_VF_PERM;
2063 	} else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
2064 		 (req->flags & VF_TRUSTED)) {
2065 		change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
2066 		/* disable multicast and promisc entries */
2067 		if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
2068 			blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
2069 			if (blkaddr < 0)
2070 				return 0;
2071 			nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
2072 					   target, 0);
2073 			if (nixlf < 0)
2074 				return 0;
2075 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2076 						     NIXLF_ALLMULTI_ENTRY,
2077 						     false);
2078 			npc_enadis_default_mce_entry(rvu, target, nixlf,
2079 						     NIXLF_PROMISC_ENTRY,
2080 						     false);
2081 		}
2082 	}
2083 
2084 	return 0;
2085 }
2086 
2087 int rvu_mbox_handler_ndc_sync_op(struct rvu *rvu,
2088 				 struct ndc_sync_op *req,
2089 				 struct msg_rsp *rsp)
2090 {
2091 	struct rvu_hwinfo *hw = rvu->hw;
2092 	u16 pcifunc = req->hdr.pcifunc;
2093 	int err, lfidx, lfblkaddr;
2094 
2095 	if (req->npa_lf_sync) {
2096 		/* Get NPA LF data */
2097 		lfblkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NPA, pcifunc);
2098 		if (lfblkaddr < 0)
2099 			return NPA_AF_ERR_AF_LF_INVALID;
2100 
2101 		lfidx = rvu_get_lf(rvu, &hw->block[lfblkaddr], pcifunc, 0);
2102 		if (lfidx < 0)
2103 			return NPA_AF_ERR_AF_LF_INVALID;
2104 
2105 		/* Sync NPA NDC */
2106 		err = rvu_ndc_sync(rvu, lfblkaddr,
2107 				   lfidx, NPA_AF_NDC_SYNC);
2108 		if (err)
2109 			dev_err(rvu->dev,
2110 				"NDC-NPA sync failed for LF %u\n", lfidx);
2111 	}
2112 
2113 	if (!req->nix_lf_tx_sync && !req->nix_lf_rx_sync)
2114 		return 0;
2115 
2116 	/* Get NIX LF data */
2117 	lfblkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
2118 	if (lfblkaddr < 0)
2119 		return NIX_AF_ERR_AF_LF_INVALID;
2120 
2121 	lfidx = rvu_get_lf(rvu, &hw->block[lfblkaddr], pcifunc, 0);
2122 	if (lfidx < 0)
2123 		return NIX_AF_ERR_AF_LF_INVALID;
2124 
2125 	if (req->nix_lf_tx_sync) {
2126 		/* Sync NIX TX NDC */
2127 		err = rvu_ndc_sync(rvu, lfblkaddr,
2128 				   lfidx, NIX_AF_NDC_TX_SYNC);
2129 		if (err)
2130 			dev_err(rvu->dev,
2131 				"NDC-NIX-TX sync fail for LF %u\n", lfidx);
2132 	}
2133 
2134 	if (req->nix_lf_rx_sync) {
2135 		/* Sync NIX RX NDC */
2136 		err = rvu_ndc_sync(rvu, lfblkaddr,
2137 				   lfidx, NIX_AF_NDC_RX_SYNC);
2138 		if (err)
2139 			dev_err(rvu->dev,
2140 				"NDC-NIX-RX sync failed for LF %u\n", lfidx);
2141 	}
2142 
2143 	return 0;
2144 }
2145 
2146 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
2147 				struct mbox_msghdr *req)
2148 {
2149 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
2150 
2151 	/* Check if valid, if not reply with a invalid msg */
2152 	if (req->sig != OTX2_MBOX_REQ_SIG)
2153 		goto bad_message;
2154 
2155 	switch (req->id) {
2156 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
2157 	case _id: {							\
2158 		struct _rsp_type *rsp;					\
2159 		int err;						\
2160 									\
2161 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
2162 			mbox, devid,					\
2163 			sizeof(struct _rsp_type));			\
2164 		/* some handlers should complete even if reply */	\
2165 		/* could not be allocated */				\
2166 		if (!rsp &&						\
2167 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
2168 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
2169 		    _id != MBOX_MSG_VF_FLR)				\
2170 			return -ENOMEM;					\
2171 		if (rsp) {						\
2172 			rsp->hdr.id = _id;				\
2173 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
2174 			rsp->hdr.pcifunc = req->pcifunc;		\
2175 			rsp->hdr.rc = 0;				\
2176 		}							\
2177 									\
2178 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
2179 						    (struct _req_type *)req, \
2180 						    rsp);		\
2181 		if (rsp && err)						\
2182 			rsp->hdr.rc = err;				\
2183 									\
2184 		trace_otx2_msg_process(mbox->pdev, _id, err, req->pcifunc); \
2185 		return rsp ? err : -ENOMEM;				\
2186 	}
2187 MBOX_MESSAGES
2188 #undef M
2189 
2190 bad_message:
2191 	default:
2192 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
2193 		return -ENODEV;
2194 	}
2195 }
2196 
2197 static void __rvu_mbox_handler(struct rvu_work *mwork, int type, bool poll)
2198 {
2199 	struct rvu *rvu = mwork->rvu;
2200 	int offset, err, id, devid;
2201 	struct otx2_mbox_dev *mdev;
2202 	struct mbox_hdr *req_hdr;
2203 	struct mbox_msghdr *msg;
2204 	struct mbox_wq_info *mw;
2205 	struct otx2_mbox *mbox;
2206 
2207 	switch (type) {
2208 	case TYPE_AFPF:
2209 		mw = &rvu->afpf_wq_info;
2210 		break;
2211 	case TYPE_AFVF:
2212 		mw = &rvu->afvf_wq_info;
2213 		break;
2214 	default:
2215 		return;
2216 	}
2217 
2218 	devid = mwork - mw->mbox_wrk;
2219 	mbox = &mw->mbox;
2220 	mdev = &mbox->dev[devid];
2221 
2222 	/* Process received mbox messages */
2223 	req_hdr = mdev->mbase + mbox->rx_start;
2224 	if (mw->mbox_wrk[devid].num_msgs == 0)
2225 		return;
2226 
2227 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2228 
2229 	if (req_hdr->sig && !(is_rvu_otx2(rvu) || is_cn20k(rvu->pdev))) {
2230 		req_hdr->opt_msg = mw->mbox_wrk[devid].num_msgs;
2231 		rvu_write64(rvu, BLKADDR_NIX0, RVU_AF_BAR2_SEL,
2232 			    RVU_AF_BAR2_PFID);
2233 		if (type == TYPE_AFPF)
2234 			rvu_write64(rvu, BLKADDR_NIX0,
2235 				    AF_BAR2_ALIASX(0, NIX_CINTX_INT_W1S(devid)),
2236 				    0x1);
2237 		else
2238 			rvu_write64(rvu, BLKADDR_NIX0,
2239 				    AF_BAR2_ALIASX(0, NIX_QINTX_CNT(devid)),
2240 				    0x1);
2241 		usleep_range(5000, 6000);
2242 		goto done;
2243 	}
2244 
2245 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2246 		msg = mdev->mbase + offset;
2247 
2248 		/* Set which PF/VF sent this message based on mbox IRQ */
2249 		switch (type) {
2250 		case TYPE_AFPF:
2251 			msg->pcifunc &= rvu_pcifunc_pf_mask(rvu->pdev);
2252 			msg->pcifunc |= rvu_make_pcifunc(rvu->pdev, devid, 0);
2253 			break;
2254 		case TYPE_AFVF:
2255 			msg->pcifunc &=
2256 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2257 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2258 			break;
2259 		}
2260 
2261 		err = rvu_process_mbox_msg(mbox, devid, msg);
2262 		if (!err) {
2263 			offset = mbox->rx_start + msg->next_msgoff;
2264 			continue;
2265 		}
2266 
2267 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2268 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2269 				 err, otx2_mbox_id2name(msg->id),
2270 				 msg->id, rvu_get_pf(rvu->pdev, msg->pcifunc),
2271 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2272 		else
2273 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2274 				 err, otx2_mbox_id2name(msg->id),
2275 				 msg->id, devid);
2276 	}
2277 done:
2278 	mw->mbox_wrk[devid].num_msgs = 0;
2279 
2280 	if (!is_cn20k(mbox->pdev) && poll)
2281 		otx2_mbox_wait_for_zero(mbox, devid);
2282 
2283 	/* Send mbox responses to VF/PF */
2284 	otx2_mbox_msg_send(mbox, devid);
2285 }
2286 
2287 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2288 {
2289 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2290 	struct rvu *rvu = mwork->rvu;
2291 
2292 	mutex_lock(&rvu->mbox_lock);
2293 	__rvu_mbox_handler(mwork, TYPE_AFPF, true);
2294 	mutex_unlock(&rvu->mbox_lock);
2295 }
2296 
2297 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2298 {
2299 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2300 
2301 	__rvu_mbox_handler(mwork, TYPE_AFVF, false);
2302 }
2303 
2304 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2305 {
2306 	struct rvu *rvu = mwork->rvu;
2307 	struct otx2_mbox_dev *mdev;
2308 	struct mbox_hdr *rsp_hdr;
2309 	struct mbox_msghdr *msg;
2310 	struct mbox_wq_info *mw;
2311 	struct otx2_mbox *mbox;
2312 	int offset, id, devid;
2313 
2314 	switch (type) {
2315 	case TYPE_AFPF:
2316 		mw = &rvu->afpf_wq_info;
2317 		break;
2318 	case TYPE_AFVF:
2319 		mw = &rvu->afvf_wq_info;
2320 		break;
2321 	default:
2322 		return;
2323 	}
2324 
2325 	devid = mwork - mw->mbox_wrk_up;
2326 	mbox = &mw->mbox_up;
2327 	mdev = &mbox->dev[devid];
2328 
2329 	rsp_hdr = mdev->mbase + mbox->rx_start;
2330 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2331 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2332 		return;
2333 	}
2334 
2335 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2336 
2337 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2338 		msg = mdev->mbase + offset;
2339 
2340 		if (msg->id >= MBOX_MSG_MAX) {
2341 			dev_err(rvu->dev,
2342 				"Mbox msg with unknown ID 0x%x\n", msg->id);
2343 			goto end;
2344 		}
2345 
2346 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
2347 			dev_err(rvu->dev,
2348 				"Mbox msg with wrong signature %x, ID 0x%x\n",
2349 				msg->sig, msg->id);
2350 			goto end;
2351 		}
2352 
2353 		switch (msg->id) {
2354 		case MBOX_MSG_CGX_LINK_EVENT:
2355 			break;
2356 		default:
2357 			if (msg->rc)
2358 				dev_err(rvu->dev,
2359 					"Mbox msg response has err %d, ID 0x%x\n",
2360 					msg->rc, msg->id);
2361 			break;
2362 		}
2363 end:
2364 		offset = mbox->rx_start + msg->next_msgoff;
2365 		mdev->msgs_acked++;
2366 	}
2367 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
2368 
2369 	otx2_mbox_reset(mbox, devid);
2370 }
2371 
2372 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2373 {
2374 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2375 
2376 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
2377 }
2378 
2379 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2380 {
2381 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2382 
2383 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
2384 }
2385 
2386 static int rvu_get_mbox_regions(struct rvu *rvu, void __iomem **mbox_addr,
2387 				int num, int type, unsigned long *pf_bmap)
2388 {
2389 	struct rvu_hwinfo *hw = rvu->hw;
2390 	int region;
2391 	u64 bar4;
2392 
2393 	/* For cn20k platform AF mailbox region is allocated by software
2394 	 * and the corresponding IOVA is programmed in hardware unlike earlier
2395 	 * silicons where software uses the hardware region after ioremap.
2396 	 */
2397 	if (is_cn20k(rvu->pdev))
2398 		return cn20k_rvu_get_mbox_regions(rvu, (void *)mbox_addr,
2399 						  num, type, pf_bmap);
2400 
2401 	/* For cn10k platform VF mailbox regions of a PF follows after the
2402 	 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2403 	 * RVU_PF_VF_BAR4_ADDR register.
2404 	 */
2405 	if (type == TYPE_AFVF) {
2406 		for (region = 0; region < num; region++) {
2407 			if (!test_bit(region, pf_bmap))
2408 				continue;
2409 
2410 			if (hw->cap.per_pf_mbox_regs) {
2411 				bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2412 						  RVU_AF_PFX_BAR4_ADDR(0)) +
2413 						  MBOX_SIZE;
2414 				bar4 += region * MBOX_SIZE;
2415 			} else {
2416 				bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2417 				bar4 += region * MBOX_SIZE;
2418 			}
2419 			mbox_addr[region] = ioremap_wc(bar4, MBOX_SIZE);
2420 			if (!mbox_addr[region])
2421 				goto error;
2422 		}
2423 		return 0;
2424 	}
2425 
2426 	/* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2427 	 * PF registers. Whereas for Octeontx2 it is read from
2428 	 * RVU_AF_PF_BAR4_ADDR register.
2429 	 */
2430 	for (region = 0; region < num; region++) {
2431 		if (!test_bit(region, pf_bmap))
2432 			continue;
2433 
2434 		if (hw->cap.per_pf_mbox_regs) {
2435 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2436 					  RVU_AF_PFX_BAR4_ADDR(region));
2437 		} else {
2438 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2439 					  RVU_AF_PF_BAR4_ADDR);
2440 			bar4 += region * MBOX_SIZE;
2441 		}
2442 		mbox_addr[region] = ioremap_wc(bar4, MBOX_SIZE);
2443 		if (!mbox_addr[region])
2444 			goto error;
2445 	}
2446 	return 0;
2447 
2448 error:
2449 	while (region--)
2450 		iounmap(mbox_addr[region]);
2451 	return -ENOMEM;
2452 }
2453 
2454 static struct mbox_ops rvu_mbox_ops = {
2455 	.pf_intr_handler = rvu_mbox_pf_intr_handler,
2456 	.afvf_intr_handler = rvu_mbox_intr_handler,
2457 };
2458 
2459 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2460 			 int type, int num,
2461 			 void (mbox_handler)(struct work_struct *),
2462 			 void (mbox_up_handler)(struct work_struct *))
2463 {
2464 	void __iomem **mbox_regions;
2465 	struct ng_rvu *ng_rvu_mbox;
2466 	int err, i, dir, dir_up;
2467 	void __iomem *reg_base;
2468 	struct rvu_work *mwork;
2469 	unsigned long *pf_bmap;
2470 	const char *name;
2471 	u64 cfg;
2472 
2473 	pf_bmap = bitmap_zalloc(num, GFP_KERNEL);
2474 	if (!pf_bmap)
2475 		return -ENOMEM;
2476 
2477 	ng_rvu_mbox = kzalloc(sizeof(*ng_rvu_mbox), GFP_KERNEL);
2478 	if (!ng_rvu_mbox) {
2479 		err = -ENOMEM;
2480 		goto free_bitmap;
2481 	}
2482 
2483 	/* RVU VFs */
2484 	if (type == TYPE_AFVF)
2485 		bitmap_set(pf_bmap, 0, num);
2486 
2487 	if (type == TYPE_AFPF) {
2488 		/* Mark enabled PFs in bitmap */
2489 		for (i = 0; i < num; i++) {
2490 			cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(i));
2491 			if (cfg & BIT_ULL(20))
2492 				set_bit(i, pf_bmap);
2493 		}
2494 	}
2495 
2496 	rvu->ng_rvu = ng_rvu_mbox;
2497 
2498 	rvu->ng_rvu->rvu_mbox_ops = &rvu_mbox_ops;
2499 
2500 	err = cn20k_rvu_mbox_init(rvu, type, num);
2501 	if (err)
2502 		goto free_mem;
2503 
2504 	mutex_init(&rvu->mbox_lock);
2505 
2506 	mbox_regions = kcalloc(num, sizeof(void __iomem *), GFP_KERNEL);
2507 	if (!mbox_regions) {
2508 		err = -ENOMEM;
2509 		goto free_qmem;
2510 	}
2511 
2512 	switch (type) {
2513 	case TYPE_AFPF:
2514 		name = "rvu_afpf_mailbox";
2515 		dir = MBOX_DIR_AFPF;
2516 		dir_up = MBOX_DIR_AFPF_UP;
2517 		reg_base = rvu->afreg_base;
2518 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF, pf_bmap);
2519 		if (err)
2520 			goto free_regions;
2521 		break;
2522 	case TYPE_AFVF:
2523 		name = "rvu_afvf_mailbox";
2524 		dir = MBOX_DIR_PFVF;
2525 		dir_up = MBOX_DIR_PFVF_UP;
2526 		reg_base = rvu->pfreg_base;
2527 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF, pf_bmap);
2528 		if (err)
2529 			goto free_regions;
2530 		break;
2531 	default:
2532 		err = -EINVAL;
2533 		goto free_regions;
2534 	}
2535 
2536 	mw->mbox_wq = alloc_workqueue("%s",
2537 				      WQ_HIGHPRI | WQ_MEM_RECLAIM,
2538 				      num, name);
2539 	if (!mw->mbox_wq) {
2540 		err = -ENOMEM;
2541 		goto unmap_regions;
2542 	}
2543 
2544 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2545 				    sizeof(struct rvu_work), GFP_KERNEL);
2546 	if (!mw->mbox_wrk) {
2547 		err = -ENOMEM;
2548 		goto exit;
2549 	}
2550 
2551 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2552 				       sizeof(struct rvu_work), GFP_KERNEL);
2553 	if (!mw->mbox_wrk_up) {
2554 		err = -ENOMEM;
2555 		goto exit;
2556 	}
2557 
2558 	err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2559 				     reg_base, dir, num, pf_bmap);
2560 	if (err)
2561 		goto exit;
2562 
2563 	err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2564 				     reg_base, dir_up, num, pf_bmap);
2565 	if (err)
2566 		goto exit;
2567 
2568 	for (i = 0; i < num; i++) {
2569 		if (!test_bit(i, pf_bmap))
2570 			continue;
2571 
2572 		mwork = &mw->mbox_wrk[i];
2573 		mwork->rvu = rvu;
2574 		INIT_WORK(&mwork->work, mbox_handler);
2575 
2576 		mwork = &mw->mbox_wrk_up[i];
2577 		mwork->rvu = rvu;
2578 		INIT_WORK(&mwork->work, mbox_up_handler);
2579 	}
2580 
2581 	kfree(mbox_regions);
2582 	bitmap_free(pf_bmap);
2583 
2584 	return 0;
2585 
2586 exit:
2587 	destroy_workqueue(mw->mbox_wq);
2588 unmap_regions:
2589 	while (num--)
2590 		iounmap((void __iomem *)mbox_regions[num]);
2591 free_regions:
2592 	kfree(mbox_regions);
2593 free_qmem:
2594 	cn20k_free_mbox_memory(rvu);
2595 free_mem:
2596 	kfree(rvu->ng_rvu);
2597 free_bitmap:
2598 	bitmap_free(pf_bmap);
2599 	return err;
2600 }
2601 
2602 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2603 {
2604 	struct otx2_mbox *mbox = &mw->mbox;
2605 	struct otx2_mbox_dev *mdev;
2606 	int devid;
2607 
2608 	if (mw->mbox_wq) {
2609 		destroy_workqueue(mw->mbox_wq);
2610 		mw->mbox_wq = NULL;
2611 	}
2612 
2613 	for (devid = 0; devid < mbox->ndevs; devid++) {
2614 		mdev = &mbox->dev[devid];
2615 		if (mdev->hwbase)
2616 			iounmap((void __iomem *)mdev->hwbase);
2617 	}
2618 
2619 	otx2_mbox_destroy(&mw->mbox);
2620 	otx2_mbox_destroy(&mw->mbox_up);
2621 }
2622 
2623 void rvu_queue_work(struct mbox_wq_info *mw, int first,
2624 		    int mdevs, u64 intr)
2625 {
2626 	struct otx2_mbox_dev *mdev;
2627 	struct otx2_mbox *mbox;
2628 	struct mbox_hdr *hdr;
2629 	int i;
2630 
2631 	for (i = first; i < mdevs; i++) {
2632 		/* start from 0 */
2633 		if (!(intr & BIT_ULL(i - first)))
2634 			continue;
2635 
2636 		mbox = &mw->mbox;
2637 		mdev = &mbox->dev[i];
2638 		hdr = mdev->mbase + mbox->rx_start;
2639 
2640 		/*The hdr->num_msgs is set to zero immediately in the interrupt
2641 		 * handler to  ensure that it holds a correct value next time
2642 		 * when the interrupt handler is called.
2643 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2644 		 * pf>mbox.up_num_msgs holds the data for use in
2645 		 * pfaf_mbox_up_handler.
2646 		 */
2647 
2648 		if (hdr->num_msgs) {
2649 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2650 			hdr->num_msgs = 0;
2651 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2652 		}
2653 		mbox = &mw->mbox_up;
2654 		mdev = &mbox->dev[i];
2655 		hdr = mdev->mbase + mbox->rx_start;
2656 		if (hdr->num_msgs) {
2657 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2658 			hdr->num_msgs = 0;
2659 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2660 		}
2661 	}
2662 }
2663 
2664 static irqreturn_t rvu_mbox_pf_intr_handler(int irq, void *rvu_irq)
2665 {
2666 	struct rvu *rvu = (struct rvu *)rvu_irq;
2667 	u64 intr;
2668 
2669 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2670 	/* Clear interrupts */
2671 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2672 	if (intr)
2673 		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2674 
2675 	/* Sync with mbox memory region */
2676 	rmb();
2677 
2678 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2679 
2680 	return IRQ_HANDLED;
2681 }
2682 
2683 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2684 {
2685 	struct rvu *rvu = (struct rvu *)rvu_irq;
2686 	int vfs = rvu->vfs;
2687 	u64 intr;
2688 
2689 	/* Sync with mbox memory region */
2690 	rmb();
2691 
2692 	/* Handle VF interrupts */
2693 	if (vfs > 64) {
2694 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2695 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2696 
2697 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2698 		vfs = 64;
2699 	}
2700 
2701 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2702 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2703 	if (intr)
2704 		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2705 
2706 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2707 
2708 	return IRQ_HANDLED;
2709 }
2710 
2711 static void rvu_enable_mbox_intr(struct rvu *rvu)
2712 {
2713 	struct rvu_hwinfo *hw = rvu->hw;
2714 
2715 	if (is_cn20k(rvu->pdev)) {
2716 		cn20k_rvu_enable_mbox_intr(rvu);
2717 		return;
2718 	}
2719 
2720 	/* Clear spurious irqs, if any */
2721 	rvu_write64(rvu, BLKADDR_RVUM,
2722 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2723 
2724 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2725 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2726 		    INTR_MASK(hw->total_pfs) & ~1ULL);
2727 }
2728 
2729 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2730 {
2731 	struct rvu_block *block;
2732 	int slot, lf, num_lfs;
2733 	int err;
2734 
2735 	block = &rvu->hw->block[blkaddr];
2736 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2737 					block->addr);
2738 	if (!num_lfs)
2739 		return;
2740 	for (slot = 0; slot < num_lfs; slot++) {
2741 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
2742 		if (lf < 0)
2743 			continue;
2744 
2745 		/* Cleanup LF and reset it */
2746 		if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2747 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2748 		else if (block->addr == BLKADDR_NPA)
2749 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
2750 		else if ((block->addr == BLKADDR_CPT0) ||
2751 			 (block->addr == BLKADDR_CPT1))
2752 			rvu_cpt_lf_teardown(rvu, pcifunc, block->addr, lf,
2753 					    slot);
2754 
2755 		err = rvu_lf_reset(rvu, block, lf);
2756 		if (err) {
2757 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2758 				block->addr, lf);
2759 		}
2760 	}
2761 }
2762 
2763 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2764 {
2765 	if (rvu_npc_exact_has_match_table(rvu))
2766 		rvu_npc_exact_reset(rvu, pcifunc);
2767 
2768 	mutex_lock(&rvu->flr_lock);
2769 	/* Reset order should reflect inter-block dependencies:
2770 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2771 	 * 2. Flush and reset SSO/SSOW
2772 	 * 3. Cleanup pools (NPA)
2773 	 */
2774 
2775 	/* Free allocated BPIDs */
2776 	rvu_nix_flr_free_bpids(rvu, pcifunc);
2777 
2778 	/* Free multicast/mirror node associated with the 'pcifunc' */
2779 	rvu_nix_mcast_flr_free_entries(rvu, pcifunc);
2780 
2781 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2782 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2783 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2784 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2785 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2786 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2787 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2788 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2789 	rvu_reset_lmt_map_tbl(rvu, pcifunc);
2790 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
2791 	/* In scenarios where PF/VF drivers detach NIXLF without freeing MCAM
2792 	 * entries, check and free the MCAM entries explicitly to avoid leak.
2793 	 * Since LF is detached use LF number as -1.
2794 	 */
2795 	rvu_npc_free_mcam_entries(rvu, pcifunc, -1);
2796 	rvu_mac_reset(rvu, pcifunc);
2797 
2798 	if (rvu->mcs_blk_cnt)
2799 		rvu_mcs_flr_handler(rvu, pcifunc);
2800 
2801 	mutex_unlock(&rvu->flr_lock);
2802 }
2803 
2804 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2805 {
2806 	int reg = 0;
2807 
2808 	/* pcifunc = 0(PF0) | (vf + 1) */
2809 	__rvu_flr_handler(rvu, vf + 1);
2810 
2811 	if (vf >= 64) {
2812 		reg = 1;
2813 		vf = vf - 64;
2814 	}
2815 
2816 	/* Signal FLR finish and enable IRQ */
2817 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2818 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2819 }
2820 
2821 static void rvu_flr_handler(struct work_struct *work)
2822 {
2823 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2824 	struct rvu *rvu = flrwork->rvu;
2825 	u16 pcifunc, numvfs, vf;
2826 	u64 cfg;
2827 	int pf;
2828 
2829 	pf = flrwork - rvu->flr_wrk;
2830 	if (pf >= rvu->hw->total_pfs) {
2831 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2832 		return;
2833 	}
2834 
2835 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2836 	numvfs = (cfg >> 12) & 0xFF;
2837 	pcifunc  = rvu_make_pcifunc(rvu->pdev, pf, 0);
2838 
2839 	for (vf = 0; vf < numvfs; vf++)
2840 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2841 
2842 	__rvu_flr_handler(rvu, pcifunc);
2843 
2844 	/* Signal FLR finish */
2845 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2846 
2847 	/* Enable interrupt */
2848 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2849 }
2850 
2851 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2852 {
2853 	int dev, vf, reg = 0;
2854 	u64 intr;
2855 
2856 	if (start_vf >= 64)
2857 		reg = 1;
2858 
2859 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2860 	if (!intr)
2861 		return;
2862 
2863 	for (vf = 0; vf < numvfs; vf++) {
2864 		if (!(intr & BIT_ULL(vf)))
2865 			continue;
2866 		/* Clear and disable the interrupt */
2867 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2868 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2869 
2870 		dev = vf + start_vf + rvu->hw->total_pfs;
2871 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2872 	}
2873 }
2874 
2875 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2876 {
2877 	struct rvu *rvu = (struct rvu *)rvu_irq;
2878 	u64 intr;
2879 	u8  pf;
2880 
2881 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2882 	if (!intr)
2883 		goto afvf_flr;
2884 
2885 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2886 		if (intr & (1ULL << pf)) {
2887 			/* clear interrupt */
2888 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2889 				    BIT_ULL(pf));
2890 			/* Disable the interrupt */
2891 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2892 				    BIT_ULL(pf));
2893 			/* PF is already dead do only AF related operations */
2894 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2895 		}
2896 	}
2897 
2898 afvf_flr:
2899 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2900 	if (rvu->vfs > 64)
2901 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2902 
2903 	return IRQ_HANDLED;
2904 }
2905 
2906 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2907 {
2908 	int vf;
2909 
2910 	/* Nothing to be done here other than clearing the
2911 	 * TRPEND bit.
2912 	 */
2913 	for (vf = 0; vf < 64; vf++) {
2914 		if (intr & (1ULL << vf)) {
2915 			/* clear the trpend due to ME(master enable) */
2916 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2917 			/* clear interrupt */
2918 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2919 		}
2920 	}
2921 }
2922 
2923 /* Handles ME interrupts from VFs of AF */
2924 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2925 {
2926 	struct rvu *rvu = (struct rvu *)rvu_irq;
2927 	int vfset;
2928 	u64 intr;
2929 
2930 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2931 
2932 	for (vfset = 0; vfset <= 1; vfset++) {
2933 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2934 		if (intr)
2935 			rvu_me_handle_vfset(rvu, vfset, intr);
2936 	}
2937 
2938 	return IRQ_HANDLED;
2939 }
2940 
2941 /* Handles ME interrupts from PFs */
2942 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2943 {
2944 	struct rvu *rvu = (struct rvu *)rvu_irq;
2945 	u64 intr;
2946 	u8  pf;
2947 
2948 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2949 
2950 	/* Nothing to be done here other than clearing the
2951 	 * TRPEND bit.
2952 	 */
2953 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2954 		if (intr & (1ULL << pf)) {
2955 			/* clear the trpend due to ME(master enable) */
2956 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2957 				    BIT_ULL(pf));
2958 			/* clear interrupt */
2959 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2960 				    BIT_ULL(pf));
2961 		}
2962 	}
2963 
2964 	return IRQ_HANDLED;
2965 }
2966 
2967 static void rvu_unregister_interrupts(struct rvu *rvu)
2968 {
2969 	int irq;
2970 
2971 	rvu_cpt_unregister_interrupts(rvu);
2972 
2973 	if (!is_cn20k(rvu->pdev))
2974 		/* Disable the Mbox interrupt */
2975 		rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2976 			    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2977 	else
2978 		cn20k_rvu_unregister_interrupts(rvu);
2979 
2980 	/* Disable the PF FLR interrupt */
2981 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2982 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2983 
2984 	/* Disable the PF ME interrupt */
2985 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2986 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2987 
2988 	for (irq = 0; irq < rvu->num_vec; irq++) {
2989 		if (rvu->irq_allocated[irq]) {
2990 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2991 			rvu->irq_allocated[irq] = false;
2992 		}
2993 	}
2994 
2995 	pci_free_irq_vectors(rvu->pdev);
2996 	rvu->num_vec = 0;
2997 }
2998 
2999 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
3000 {
3001 	struct rvu_pfvf *pfvf = &rvu->pf[0];
3002 	int offset;
3003 
3004 	pfvf = &rvu->pf[0];
3005 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
3006 
3007 	/* Make sure there are enough MSIX vectors configured so that
3008 	 * VF interrupts can be handled. Offset equal to zero means
3009 	 * that PF vectors are not configured and overlapping AF vectors.
3010 	 */
3011 	if (is_cn20k(rvu->pdev))
3012 		return (pfvf->msix.max >= RVU_AF_CN20K_INT_VEC_CNT +
3013 			RVU_MBOX_PF_INT_VEC_CNT) && offset;
3014 
3015 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
3016 	       offset;
3017 }
3018 
3019 static int rvu_register_interrupts(struct rvu *rvu)
3020 {
3021 	int ret, offset, pf_vec_start;
3022 
3023 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
3024 
3025 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
3026 					   NAME_SIZE, GFP_KERNEL);
3027 	if (!rvu->irq_name)
3028 		return -ENOMEM;
3029 
3030 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
3031 					  sizeof(bool), GFP_KERNEL);
3032 	if (!rvu->irq_allocated)
3033 		return -ENOMEM;
3034 
3035 	/* Enable MSI-X */
3036 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
3037 				    rvu->num_vec, PCI_IRQ_MSIX);
3038 	if (ret < 0) {
3039 		dev_err(rvu->dev,
3040 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
3041 			rvu->num_vec, ret);
3042 		return ret;
3043 	}
3044 
3045 	if (!is_cn20k(rvu->pdev)) {
3046 		/* Register mailbox interrupt handler */
3047 		sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE],
3048 			"RVUAF Mbox");
3049 		ret = request_irq(pci_irq_vector
3050 				  (rvu->pdev, RVU_AF_INT_VEC_MBOX),
3051 				  rvu->ng_rvu->rvu_mbox_ops->pf_intr_handler, 0,
3052 				  &rvu->irq_name[RVU_AF_INT_VEC_MBOX *
3053 				  NAME_SIZE], rvu);
3054 		if (ret) {
3055 			dev_err(rvu->dev,
3056 				"RVUAF: IRQ registration failed for mbox\n");
3057 			goto fail;
3058 		}
3059 
3060 		rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
3061 	} else {
3062 		ret = cn20k_register_afpf_mbox_intr(rvu);
3063 		if (ret) {
3064 			dev_err(rvu->dev,
3065 				"RVUAF: IRQ registration failed for mbox\n");
3066 			goto fail;
3067 		}
3068 	}
3069 
3070 	/* Enable mailbox interrupts from all PFs */
3071 	rvu_enable_mbox_intr(rvu);
3072 
3073 	/* Register FLR interrupt handler */
3074 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
3075 		"RVUAF FLR");
3076 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
3077 			  rvu_flr_intr_handler, 0,
3078 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
3079 			  rvu);
3080 	if (ret) {
3081 		dev_err(rvu->dev,
3082 			"RVUAF: IRQ registration failed for FLR\n");
3083 		goto fail;
3084 	}
3085 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
3086 
3087 	/* Enable FLR interrupt for all PFs*/
3088 	rvu_write64(rvu, BLKADDR_RVUM,
3089 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
3090 
3091 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
3092 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
3093 
3094 	/* Register ME interrupt handler */
3095 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
3096 		"RVUAF ME");
3097 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
3098 			  rvu_me_pf_intr_handler, 0,
3099 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
3100 			  rvu);
3101 	if (ret) {
3102 		dev_err(rvu->dev,
3103 			"RVUAF: IRQ registration failed for ME\n");
3104 	}
3105 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
3106 
3107 	/* Clear TRPEND bit for all PF */
3108 	rvu_write64(rvu, BLKADDR_RVUM,
3109 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
3110 	/* Enable ME interrupt for all PFs*/
3111 	rvu_write64(rvu, BLKADDR_RVUM,
3112 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
3113 
3114 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
3115 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
3116 
3117 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
3118 		return 0;
3119 
3120 	/* Get PF MSIX vectors offset. */
3121 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
3122 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
3123 	if (!is_cn20k(rvu->pdev)) {
3124 		/* Register MBOX0 interrupt. */
3125 		offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
3126 		sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
3127 		ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3128 				  rvu->ng_rvu->rvu_mbox_ops->afvf_intr_handler, 0,
3129 				  &rvu->irq_name[offset * NAME_SIZE],
3130 				  rvu);
3131 		if (ret)
3132 			dev_err(rvu->dev,
3133 				"RVUAF: IRQ registration failed for Mbox0\n");
3134 
3135 		rvu->irq_allocated[offset] = true;
3136 
3137 		/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
3138 		 * simply increment current offset by 1.
3139 		 */
3140 		offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
3141 		sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
3142 		ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3143 				  rvu->ng_rvu->rvu_mbox_ops->afvf_intr_handler, 0,
3144 				  &rvu->irq_name[offset * NAME_SIZE],
3145 				  rvu);
3146 		if (ret)
3147 			dev_err(rvu->dev,
3148 				"RVUAF: IRQ registration failed for Mbox1\n");
3149 
3150 		rvu->irq_allocated[offset] = true;
3151 	} else {
3152 		ret = cn20k_register_afvf_mbox_intr(rvu, pf_vec_start);
3153 		if (ret)
3154 			dev_err(rvu->dev,
3155 				"RVUAF: IRQ registration failed for Mbox\n");
3156 	}
3157 
3158 	/* Register FLR interrupt handler for AF's VFs */
3159 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
3160 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
3161 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3162 			  rvu_flr_intr_handler, 0,
3163 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3164 	if (ret) {
3165 		dev_err(rvu->dev,
3166 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
3167 		goto fail;
3168 	}
3169 	rvu->irq_allocated[offset] = true;
3170 
3171 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
3172 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
3173 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3174 			  rvu_flr_intr_handler, 0,
3175 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3176 	if (ret) {
3177 		dev_err(rvu->dev,
3178 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
3179 		goto fail;
3180 	}
3181 	rvu->irq_allocated[offset] = true;
3182 
3183 	/* Register ME interrupt handler for AF's VFs */
3184 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
3185 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
3186 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3187 			  rvu_me_vf_intr_handler, 0,
3188 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3189 	if (ret) {
3190 		dev_err(rvu->dev,
3191 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
3192 		goto fail;
3193 	}
3194 	rvu->irq_allocated[offset] = true;
3195 
3196 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
3197 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
3198 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3199 			  rvu_me_vf_intr_handler, 0,
3200 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
3201 	if (ret) {
3202 		dev_err(rvu->dev,
3203 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
3204 		goto fail;
3205 	}
3206 	rvu->irq_allocated[offset] = true;
3207 
3208 	ret = rvu_cpt_register_interrupts(rvu);
3209 	if (ret)
3210 		goto fail;
3211 
3212 	return 0;
3213 
3214 fail:
3215 	rvu_unregister_interrupts(rvu);
3216 	return ret;
3217 }
3218 
3219 static void rvu_flr_wq_destroy(struct rvu *rvu)
3220 {
3221 	if (rvu->flr_wq) {
3222 		destroy_workqueue(rvu->flr_wq);
3223 		rvu->flr_wq = NULL;
3224 	}
3225 }
3226 
3227 static int rvu_flr_init(struct rvu *rvu)
3228 {
3229 	int dev, num_devs;
3230 	u64 cfg;
3231 	int pf;
3232 
3233 	/* Enable FLR for all PFs*/
3234 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
3235 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
3236 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
3237 			    cfg | BIT_ULL(22));
3238 	}
3239 
3240 	rvu->flr_wq = alloc_ordered_workqueue("rvu_afpf_flr",
3241 					      WQ_HIGHPRI | WQ_MEM_RECLAIM);
3242 	if (!rvu->flr_wq)
3243 		return -ENOMEM;
3244 
3245 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
3246 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
3247 				    sizeof(struct rvu_work), GFP_KERNEL);
3248 	if (!rvu->flr_wrk) {
3249 		destroy_workqueue(rvu->flr_wq);
3250 		return -ENOMEM;
3251 	}
3252 
3253 	for (dev = 0; dev < num_devs; dev++) {
3254 		rvu->flr_wrk[dev].rvu = rvu;
3255 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
3256 	}
3257 
3258 	mutex_init(&rvu->flr_lock);
3259 
3260 	return 0;
3261 }
3262 
3263 static void rvu_disable_afvf_intr(struct rvu *rvu)
3264 {
3265 	int vfs = rvu->vfs;
3266 
3267 	if (is_cn20k(rvu->pdev))
3268 		return cn20k_rvu_disable_afvf_intr(rvu, vfs);
3269 
3270 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
3271 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
3272 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
3273 	if (vfs <= 64)
3274 		return;
3275 
3276 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
3277 		      INTR_MASK(vfs - 64));
3278 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3279 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3280 }
3281 
3282 static void rvu_enable_afvf_intr(struct rvu *rvu)
3283 {
3284 	int vfs = rvu->vfs;
3285 
3286 	if (is_cn20k(rvu->pdev))
3287 		return cn20k_rvu_enable_afvf_intr(rvu, vfs);
3288 
3289 	/* Clear any pending interrupts and enable AF VF interrupts for
3290 	 * the first 64 VFs.
3291 	 */
3292 	/* Mbox */
3293 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
3294 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
3295 
3296 	/* FLR */
3297 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
3298 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
3299 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
3300 
3301 	/* Same for remaining VFs, if any. */
3302 	if (vfs <= 64)
3303 		return;
3304 
3305 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
3306 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
3307 		      INTR_MASK(vfs - 64));
3308 
3309 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
3310 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3311 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3312 }
3313 
3314 int rvu_get_num_lbk_chans(void)
3315 {
3316 	struct pci_dev *pdev;
3317 	void __iomem *base;
3318 	int ret = -EIO;
3319 
3320 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
3321 			      NULL);
3322 	if (!pdev)
3323 		goto err;
3324 
3325 	base = pci_ioremap_bar(pdev, 0);
3326 	if (!base)
3327 		goto err_put;
3328 
3329 	/* Read number of available LBK channels from LBK(0)_CONST register. */
3330 	ret = (readq(base + 0x10) >> 32) & 0xffff;
3331 	iounmap(base);
3332 err_put:
3333 	pci_dev_put(pdev);
3334 err:
3335 	return ret;
3336 }
3337 
3338 static int rvu_enable_sriov(struct rvu *rvu)
3339 {
3340 	struct pci_dev *pdev = rvu->pdev;
3341 	int err, chans, vfs;
3342 	int pos = 0;
3343 
3344 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
3345 		dev_warn(&pdev->dev,
3346 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
3347 		return 0;
3348 	}
3349 
3350 	/* Get RVU VFs device id */
3351 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
3352 	if (!pos)
3353 		return 0;
3354 	pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID, &rvu->vf_devid);
3355 
3356 	chans = rvu_get_num_lbk_chans();
3357 	if (chans < 0)
3358 		return chans;
3359 
3360 	vfs = pci_sriov_get_totalvfs(pdev);
3361 
3362 	/* Limit VFs in case we have more VFs than LBK channels available. */
3363 	if (vfs > chans)
3364 		vfs = chans;
3365 
3366 	if (!vfs)
3367 		return 0;
3368 
3369 	/* LBK channel number 63 is used for switching packets between
3370 	 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3371 	 */
3372 	if (vfs > 62)
3373 		vfs = 62;
3374 
3375 	/* Save VFs number for reference in VF interrupts handlers.
3376 	 * Since interrupts might start arriving during SRIOV enablement
3377 	 * ordinary API cannot be used to get number of enabled VFs.
3378 	 */
3379 	rvu->vfs = vfs;
3380 
3381 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
3382 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
3383 	if (err)
3384 		return err;
3385 
3386 	rvu_enable_afvf_intr(rvu);
3387 	/* Make sure IRQs are enabled before SRIOV. */
3388 	mb();
3389 
3390 	err = pci_enable_sriov(pdev, vfs);
3391 	if (err) {
3392 		rvu_disable_afvf_intr(rvu);
3393 		rvu_mbox_destroy(&rvu->afvf_wq_info);
3394 		return err;
3395 	}
3396 
3397 	return 0;
3398 }
3399 
3400 static void rvu_disable_sriov(struct rvu *rvu)
3401 {
3402 	rvu_disable_afvf_intr(rvu);
3403 	rvu_mbox_destroy(&rvu->afvf_wq_info);
3404 	pci_disable_sriov(rvu->pdev);
3405 }
3406 
3407 static void rvu_update_module_params(struct rvu *rvu)
3408 {
3409 	const char *default_pfl_name = "default";
3410 
3411 	strscpy(rvu->mkex_pfl_name,
3412 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3413 	strscpy(rvu->kpu_pfl_name,
3414 		kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3415 }
3416 
3417 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3418 {
3419 	struct device *dev = &pdev->dev;
3420 	struct rvu *rvu;
3421 	int    err;
3422 
3423 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
3424 	if (!rvu)
3425 		return -ENOMEM;
3426 
3427 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
3428 	if (!rvu->hw) {
3429 		devm_kfree(dev, rvu);
3430 		return -ENOMEM;
3431 	}
3432 
3433 	pci_set_drvdata(pdev, rvu);
3434 	rvu->pdev = pdev;
3435 	rvu->dev = &pdev->dev;
3436 
3437 	err = pci_enable_device(pdev);
3438 	if (err) {
3439 		dev_err(dev, "Failed to enable PCI device\n");
3440 		goto err_freemem;
3441 	}
3442 
3443 	err = pci_request_regions(pdev, DRV_NAME);
3444 	if (err) {
3445 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
3446 		goto err_disable_device;
3447 	}
3448 
3449 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3450 	if (err) {
3451 		dev_err(dev, "DMA mask config failed, abort\n");
3452 		goto err_release_regions;
3453 	}
3454 
3455 	pci_set_master(pdev);
3456 
3457 	rvu->ptp = ptp_get();
3458 	if (IS_ERR(rvu->ptp)) {
3459 		err = PTR_ERR(rvu->ptp);
3460 		if (err)
3461 			goto err_release_regions;
3462 		rvu->ptp = NULL;
3463 	}
3464 
3465 	/* Map Admin function CSRs */
3466 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3467 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3468 	if (!rvu->afreg_base || !rvu->pfreg_base) {
3469 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3470 		err = -ENOMEM;
3471 		goto err_put_ptp;
3472 	}
3473 
3474 	/* Store module params in rvu structure */
3475 	rvu_update_module_params(rvu);
3476 
3477 	/* Check which blocks the HW supports */
3478 	rvu_check_block_implemented(rvu);
3479 
3480 	rvu_reset_all_blocks(rvu);
3481 
3482 	rvu_setup_hw_capabilities(rvu);
3483 
3484 	err = rvu_setup_hw_resources(rvu);
3485 	if (err)
3486 		goto err_put_ptp;
3487 
3488 	/* Init mailbox btw AF and PFs */
3489 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3490 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3491 			    rvu_afpf_mbox_up_handler);
3492 	if (err) {
3493 		dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3494 		goto err_hwsetup;
3495 	}
3496 
3497 	err = rvu_flr_init(rvu);
3498 	if (err) {
3499 		dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3500 		goto err_mbox;
3501 	}
3502 
3503 	err = rvu_register_interrupts(rvu);
3504 	if (err) {
3505 		dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3506 		goto err_flr;
3507 	}
3508 
3509 	err = rvu_register_dl(rvu);
3510 	if (err) {
3511 		dev_err(dev, "%s: Failed to register devlink\n", __func__);
3512 		goto err_irq;
3513 	}
3514 
3515 	rvu_setup_rvum_blk_revid(rvu);
3516 
3517 	/* Enable AF's VFs (if any) */
3518 	err = rvu_enable_sriov(rvu);
3519 	if (err) {
3520 		dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3521 		goto err_dl;
3522 	}
3523 
3524 	/* Initialize debugfs */
3525 	rvu_dbg_init(rvu);
3526 
3527 	mutex_init(&rvu->rswitch.switch_lock);
3528 
3529 	if (rvu->fwdata)
3530 		ptp_start(rvu, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate,
3531 			  rvu->fwdata->ptp_ext_tstamp);
3532 
3533 	/* Alloc CINT and QINT memory */
3534 	rvu_alloc_cint_qint_mem(rvu, &rvu->pf[RVU_AFPF], BLKADDR_NIX0,
3535 				(rvu->hw->block[BLKADDR_NIX0].lf.max));
3536 	return 0;
3537 err_dl:
3538 	rvu_unregister_dl(rvu);
3539 err_irq:
3540 	rvu_unregister_interrupts(rvu);
3541 err_flr:
3542 	rvu_flr_wq_destroy(rvu);
3543 err_mbox:
3544 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3545 err_hwsetup:
3546 	rvu_cgx_exit(rvu);
3547 	rvu_fwdata_exit(rvu);
3548 	rvu_mcs_exit(rvu);
3549 	rvu_reset_all_blocks(rvu);
3550 	rvu_free_hw_resources(rvu);
3551 	rvu_clear_rvum_blk_revid(rvu);
3552 err_put_ptp:
3553 	ptp_put(rvu->ptp);
3554 err_release_regions:
3555 	pci_release_regions(pdev);
3556 err_disable_device:
3557 	pci_disable_device(pdev);
3558 err_freemem:
3559 	pci_set_drvdata(pdev, NULL);
3560 	devm_kfree(&pdev->dev, rvu->hw);
3561 	devm_kfree(dev, rvu);
3562 	return err;
3563 }
3564 
3565 static void rvu_remove(struct pci_dev *pdev)
3566 {
3567 	struct rvu *rvu = pci_get_drvdata(pdev);
3568 
3569 	rvu_dbg_exit(rvu);
3570 	rvu_unregister_dl(rvu);
3571 	rvu_unregister_interrupts(rvu);
3572 	rvu_flr_wq_destroy(rvu);
3573 	rvu_cgx_exit(rvu);
3574 	rvu_fwdata_exit(rvu);
3575 	rvu_mcs_exit(rvu);
3576 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3577 	rvu_disable_sriov(rvu);
3578 	rvu_reset_all_blocks(rvu);
3579 	rvu_free_hw_resources(rvu);
3580 	rvu_clear_rvum_blk_revid(rvu);
3581 	ptp_put(rvu->ptp);
3582 	pci_release_regions(pdev);
3583 	pci_disable_device(pdev);
3584 	pci_set_drvdata(pdev, NULL);
3585 
3586 	devm_kfree(&pdev->dev, rvu->hw);
3587 	if (is_cn20k(rvu->pdev))
3588 		cn20k_free_mbox_memory(rvu);
3589 	kfree(rvu->ng_rvu);
3590 	devm_kfree(&pdev->dev, rvu);
3591 }
3592 
3593 static struct pci_driver rvu_driver = {
3594 	.name = DRV_NAME,
3595 	.id_table = rvu_id_table,
3596 	.probe = rvu_probe,
3597 	.remove = rvu_remove,
3598 };
3599 
3600 static int __init rvu_init_module(void)
3601 {
3602 	int err;
3603 
3604 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3605 
3606 	err = pci_register_driver(&cgx_driver);
3607 	if (err < 0)
3608 		return err;
3609 
3610 	err = pci_register_driver(&ptp_driver);
3611 	if (err < 0)
3612 		goto ptp_err;
3613 
3614 	err = pci_register_driver(&mcs_driver);
3615 	if (err < 0)
3616 		goto mcs_err;
3617 
3618 	err =  pci_register_driver(&rvu_driver);
3619 	if (err < 0)
3620 		goto rvu_err;
3621 
3622 	return 0;
3623 rvu_err:
3624 	pci_unregister_driver(&mcs_driver);
3625 mcs_err:
3626 	pci_unregister_driver(&ptp_driver);
3627 ptp_err:
3628 	pci_unregister_driver(&cgx_driver);
3629 
3630 	return err;
3631 }
3632 
3633 static void __exit rvu_cleanup_module(void)
3634 {
3635 	pci_unregister_driver(&rvu_driver);
3636 	pci_unregister_driver(&mcs_driver);
3637 	pci_unregister_driver(&ptp_driver);
3638 	pci_unregister_driver(&cgx_driver);
3639 }
3640 
3641 module_init(rvu_init_module);
3642 module_exit(rvu_cleanup_module);
3643