xref: /linux/drivers/net/ethernet/marvell/octeontx2/af/rvu.c (revision 086099893fcebeae50f9020588080de43c82e4c0)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2018 Marvell.
5  *
6  */
7 
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/irq.h>
12 #include <linux/pci.h>
13 #include <linux/sysfs.h>
14 
15 #include "cgx.h"
16 #include "rvu.h"
17 #include "rvu_reg.h"
18 #include "ptp.h"
19 
20 #include "rvu_trace.h"
21 
22 #define DRV_NAME	"rvu_af"
23 #define DRV_STRING      "Marvell OcteonTX2 RVU Admin Function Driver"
24 
25 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc);
26 
27 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
28 				struct rvu_block *block, int lf);
29 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
30 				  struct rvu_block *block, int lf);
31 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
32 
33 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
34 			 int type, int num,
35 			 void (mbox_handler)(struct work_struct *),
36 			 void (mbox_up_handler)(struct work_struct *));
37 enum {
38 	TYPE_AFVF,
39 	TYPE_AFPF,
40 };
41 
42 /* Supported devices */
43 static const struct pci_device_id rvu_id_table[] = {
44 	{ PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
45 	{ 0, }  /* end of table */
46 };
47 
48 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
49 MODULE_DESCRIPTION(DRV_STRING);
50 MODULE_LICENSE("GPL v2");
51 MODULE_DEVICE_TABLE(pci, rvu_id_table);
52 
53 static char *mkex_profile; /* MKEX profile name */
54 module_param(mkex_profile, charp, 0000);
55 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
56 
57 static char *kpu_profile; /* KPU profile name */
58 module_param(kpu_profile, charp, 0000);
59 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
60 
61 static void rvu_setup_hw_capabilities(struct rvu *rvu)
62 {
63 	struct rvu_hwinfo *hw = rvu->hw;
64 
65 	hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
66 	hw->cap.nix_fixed_txschq_mapping = false;
67 	hw->cap.nix_shaping = true;
68 	hw->cap.nix_tx_link_bp = true;
69 	hw->cap.nix_rx_multicast = true;
70 	hw->cap.nix_shaper_toggle_wait = false;
71 	hw->rvu = rvu;
72 
73 	if (is_rvu_pre_96xx_C0(rvu)) {
74 		hw->cap.nix_fixed_txschq_mapping = true;
75 		hw->cap.nix_txsch_per_cgx_lmac = 4;
76 		hw->cap.nix_txsch_per_lbk_lmac = 132;
77 		hw->cap.nix_txsch_per_sdp_lmac = 76;
78 		hw->cap.nix_shaping = false;
79 		hw->cap.nix_tx_link_bp = false;
80 		if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
81 			hw->cap.nix_rx_multicast = false;
82 	}
83 	if (!is_rvu_pre_96xx_C0(rvu))
84 		hw->cap.nix_shaper_toggle_wait = true;
85 
86 	if (!is_rvu_otx2(rvu))
87 		hw->cap.per_pf_mbox_regs = true;
88 }
89 
90 /* Poll a RVU block's register 'offset', for a 'zero'
91  * or 'nonzero' at bits specified by 'mask'
92  */
93 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
94 {
95 	unsigned long timeout = jiffies + usecs_to_jiffies(20000);
96 	bool twice = false;
97 	void __iomem *reg;
98 	u64 reg_val;
99 
100 	reg = rvu->afreg_base + ((block << 28) | offset);
101 again:
102 	reg_val = readq(reg);
103 	if (zero && !(reg_val & mask))
104 		return 0;
105 	if (!zero && (reg_val & mask))
106 		return 0;
107 	if (time_before(jiffies, timeout)) {
108 		usleep_range(1, 5);
109 		goto again;
110 	}
111 	/* In scenarios where CPU is scheduled out before checking
112 	 * 'time_before' (above) and gets scheduled in such that
113 	 * jiffies are beyond timeout value, then check again if HW is
114 	 * done with the operation in the meantime.
115 	 */
116 	if (!twice) {
117 		twice = true;
118 		goto again;
119 	}
120 	return -EBUSY;
121 }
122 
123 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
124 {
125 	int id;
126 
127 	if (!rsrc->bmap)
128 		return -EINVAL;
129 
130 	id = find_first_zero_bit(rsrc->bmap, rsrc->max);
131 	if (id >= rsrc->max)
132 		return -ENOSPC;
133 
134 	__set_bit(id, rsrc->bmap);
135 
136 	return id;
137 }
138 
139 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
140 {
141 	int start;
142 
143 	if (!rsrc->bmap)
144 		return -EINVAL;
145 
146 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
147 	if (start >= rsrc->max)
148 		return -ENOSPC;
149 
150 	bitmap_set(rsrc->bmap, start, nrsrc);
151 	return start;
152 }
153 
154 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
155 {
156 	if (!rsrc->bmap)
157 		return;
158 	if (start >= rsrc->max)
159 		return;
160 
161 	bitmap_clear(rsrc->bmap, start, nrsrc);
162 }
163 
164 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
165 {
166 	int start;
167 
168 	if (!rsrc->bmap)
169 		return false;
170 
171 	start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
172 	if (start >= rsrc->max)
173 		return false;
174 
175 	return true;
176 }
177 
178 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
179 {
180 	if (!rsrc->bmap)
181 		return;
182 
183 	__clear_bit(id, rsrc->bmap);
184 }
185 
186 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
187 {
188 	int used;
189 
190 	if (!rsrc->bmap)
191 		return 0;
192 
193 	used = bitmap_weight(rsrc->bmap, rsrc->max);
194 	return (rsrc->max - used);
195 }
196 
197 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
198 {
199 	if (!rsrc->bmap)
200 		return false;
201 
202 	return !test_bit(id, rsrc->bmap);
203 }
204 
205 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
206 {
207 	rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
208 			     sizeof(long), GFP_KERNEL);
209 	if (!rsrc->bmap)
210 		return -ENOMEM;
211 	return 0;
212 }
213 
214 void rvu_free_bitmap(struct rsrc_bmap *rsrc)
215 {
216 	kfree(rsrc->bmap);
217 }
218 
219 /* Get block LF's HW index from a PF_FUNC's block slot number */
220 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
221 {
222 	u16 match = 0;
223 	int lf;
224 
225 	mutex_lock(&rvu->rsrc_lock);
226 	for (lf = 0; lf < block->lf.max; lf++) {
227 		if (block->fn_map[lf] == pcifunc) {
228 			if (slot == match) {
229 				mutex_unlock(&rvu->rsrc_lock);
230 				return lf;
231 			}
232 			match++;
233 		}
234 	}
235 	mutex_unlock(&rvu->rsrc_lock);
236 	return -ENODEV;
237 }
238 
239 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
240  * Some silicon variants of OcteonTX2 supports
241  * multiple blocks of same type.
242  *
243  * @pcifunc has to be zero when no LF is yet attached.
244  *
245  * For a pcifunc if LFs are attached from multiple blocks of same type, then
246  * return blkaddr of first encountered block.
247  */
248 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
249 {
250 	int devnum, blkaddr = -ENODEV;
251 	u64 cfg, reg;
252 	bool is_pf;
253 
254 	switch (blktype) {
255 	case BLKTYPE_NPC:
256 		blkaddr = BLKADDR_NPC;
257 		goto exit;
258 	case BLKTYPE_NPA:
259 		blkaddr = BLKADDR_NPA;
260 		goto exit;
261 	case BLKTYPE_NIX:
262 		/* For now assume NIX0 */
263 		if (!pcifunc) {
264 			blkaddr = BLKADDR_NIX0;
265 			goto exit;
266 		}
267 		break;
268 	case BLKTYPE_SSO:
269 		blkaddr = BLKADDR_SSO;
270 		goto exit;
271 	case BLKTYPE_SSOW:
272 		blkaddr = BLKADDR_SSOW;
273 		goto exit;
274 	case BLKTYPE_TIM:
275 		blkaddr = BLKADDR_TIM;
276 		goto exit;
277 	case BLKTYPE_CPT:
278 		/* For now assume CPT0 */
279 		if (!pcifunc) {
280 			blkaddr = BLKADDR_CPT0;
281 			goto exit;
282 		}
283 		break;
284 	}
285 
286 	/* Check if this is a RVU PF or VF */
287 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
288 		is_pf = false;
289 		devnum = rvu_get_hwvf(rvu, pcifunc);
290 	} else {
291 		is_pf = true;
292 		devnum = rvu_get_pf(pcifunc);
293 	}
294 
295 	/* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
296 	 * 'BLKADDR_NIX1'.
297 	 */
298 	if (blktype == BLKTYPE_NIX) {
299 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
300 			RVU_PRIV_HWVFX_NIXX_CFG(0);
301 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
302 		if (cfg) {
303 			blkaddr = BLKADDR_NIX0;
304 			goto exit;
305 		}
306 
307 		reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
308 			RVU_PRIV_HWVFX_NIXX_CFG(1);
309 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
310 		if (cfg)
311 			blkaddr = BLKADDR_NIX1;
312 	}
313 
314 	if (blktype == BLKTYPE_CPT) {
315 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
316 			RVU_PRIV_HWVFX_CPTX_CFG(0);
317 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
318 		if (cfg) {
319 			blkaddr = BLKADDR_CPT0;
320 			goto exit;
321 		}
322 
323 		reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
324 			RVU_PRIV_HWVFX_CPTX_CFG(1);
325 		cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
326 		if (cfg)
327 			blkaddr = BLKADDR_CPT1;
328 	}
329 
330 exit:
331 	if (is_block_implemented(rvu->hw, blkaddr))
332 		return blkaddr;
333 	return -ENODEV;
334 }
335 
336 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
337 				struct rvu_block *block, u16 pcifunc,
338 				u16 lf, bool attach)
339 {
340 	int devnum, num_lfs = 0;
341 	bool is_pf;
342 	u64 reg;
343 
344 	if (lf >= block->lf.max) {
345 		dev_err(&rvu->pdev->dev,
346 			"%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
347 			__func__, lf, block->name, block->lf.max);
348 		return;
349 	}
350 
351 	/* Check if this is for a RVU PF or VF */
352 	if (pcifunc & RVU_PFVF_FUNC_MASK) {
353 		is_pf = false;
354 		devnum = rvu_get_hwvf(rvu, pcifunc);
355 	} else {
356 		is_pf = true;
357 		devnum = rvu_get_pf(pcifunc);
358 	}
359 
360 	block->fn_map[lf] = attach ? pcifunc : 0;
361 
362 	switch (block->addr) {
363 	case BLKADDR_NPA:
364 		pfvf->npalf = attach ? true : false;
365 		num_lfs = pfvf->npalf;
366 		break;
367 	case BLKADDR_NIX0:
368 	case BLKADDR_NIX1:
369 		pfvf->nixlf = attach ? true : false;
370 		num_lfs = pfvf->nixlf;
371 		break;
372 	case BLKADDR_SSO:
373 		attach ? pfvf->sso++ : pfvf->sso--;
374 		num_lfs = pfvf->sso;
375 		break;
376 	case BLKADDR_SSOW:
377 		attach ? pfvf->ssow++ : pfvf->ssow--;
378 		num_lfs = pfvf->ssow;
379 		break;
380 	case BLKADDR_TIM:
381 		attach ? pfvf->timlfs++ : pfvf->timlfs--;
382 		num_lfs = pfvf->timlfs;
383 		break;
384 	case BLKADDR_CPT0:
385 		attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
386 		num_lfs = pfvf->cptlfs;
387 		break;
388 	case BLKADDR_CPT1:
389 		attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
390 		num_lfs = pfvf->cpt1_lfs;
391 		break;
392 	}
393 
394 	reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
395 	rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
396 }
397 
398 inline int rvu_get_pf(u16 pcifunc)
399 {
400 	return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
401 }
402 
403 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
404 {
405 	u64 cfg;
406 
407 	/* Get numVFs attached to this PF and first HWVF */
408 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
409 	if (numvfs)
410 		*numvfs = (cfg >> 12) & 0xFF;
411 	if (hwvf)
412 		*hwvf = cfg & 0xFFF;
413 }
414 
415 static int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
416 {
417 	int pf, func;
418 	u64 cfg;
419 
420 	pf = rvu_get_pf(pcifunc);
421 	func = pcifunc & RVU_PFVF_FUNC_MASK;
422 
423 	/* Get first HWVF attached to this PF */
424 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
425 
426 	return ((cfg & 0xFFF) + func - 1);
427 }
428 
429 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
430 {
431 	/* Check if it is a PF or VF */
432 	if (pcifunc & RVU_PFVF_FUNC_MASK)
433 		return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
434 	else
435 		return &rvu->pf[rvu_get_pf(pcifunc)];
436 }
437 
438 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
439 {
440 	int pf, vf, nvfs;
441 	u64 cfg;
442 
443 	pf = rvu_get_pf(pcifunc);
444 	if (pf >= rvu->hw->total_pfs)
445 		return false;
446 
447 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
448 		return true;
449 
450 	/* Check if VF is within number of VFs attached to this PF */
451 	vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
452 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
453 	nvfs = (cfg >> 12) & 0xFF;
454 	if (vf >= nvfs)
455 		return false;
456 
457 	return true;
458 }
459 
460 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
461 {
462 	struct rvu_block *block;
463 
464 	if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
465 		return false;
466 
467 	block = &hw->block[blkaddr];
468 	return block->implemented;
469 }
470 
471 static void rvu_check_block_implemented(struct rvu *rvu)
472 {
473 	struct rvu_hwinfo *hw = rvu->hw;
474 	struct rvu_block *block;
475 	int blkid;
476 	u64 cfg;
477 
478 	/* For each block check if 'implemented' bit is set */
479 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
480 		block = &hw->block[blkid];
481 		cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
482 		if (cfg & BIT_ULL(11))
483 			block->implemented = true;
484 	}
485 }
486 
487 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
488 {
489 	rvu_write64(rvu, BLKADDR_RVUM,
490 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
491 		    RVU_BLK_RVUM_REVID);
492 }
493 
494 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
495 {
496 	rvu_write64(rvu, BLKADDR_RVUM,
497 		    RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
498 }
499 
500 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
501 {
502 	int err;
503 
504 	if (!block->implemented)
505 		return 0;
506 
507 	rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
508 	err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
509 			   true);
510 	return err;
511 }
512 
513 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
514 {
515 	struct rvu_block *block = &rvu->hw->block[blkaddr];
516 	int err;
517 
518 	if (!block->implemented)
519 		return;
520 
521 	rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
522 	err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
523 	if (err)
524 		dev_err(rvu->dev, "HW block:%d reset failed\n", blkaddr);
525 }
526 
527 static void rvu_reset_all_blocks(struct rvu *rvu)
528 {
529 	/* Do a HW reset of all RVU blocks */
530 	rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
531 	rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
532 	rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
533 	rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
534 	rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
535 	rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
536 	rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
537 	rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
538 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
539 	rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
540 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
541 	rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
542 	rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
543 }
544 
545 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
546 {
547 	struct rvu_pfvf *pfvf;
548 	u64 cfg;
549 	int lf;
550 
551 	for (lf = 0; lf < block->lf.max; lf++) {
552 		cfg = rvu_read64(rvu, block->addr,
553 				 block->lfcfg_reg | (lf << block->lfshift));
554 		if (!(cfg & BIT_ULL(63)))
555 			continue;
556 
557 		/* Set this resource as being used */
558 		__set_bit(lf, block->lf.bmap);
559 
560 		/* Get, to whom this LF is attached */
561 		pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
562 		rvu_update_rsrc_map(rvu, pfvf, block,
563 				    (cfg >> 8) & 0xFFFF, lf, true);
564 
565 		/* Set start MSIX vector for this LF within this PF/VF */
566 		rvu_set_msix_offset(rvu, pfvf, block, lf);
567 	}
568 }
569 
570 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
571 {
572 	int min_vecs;
573 
574 	if (!vf)
575 		goto check_pf;
576 
577 	if (!nvecs) {
578 		dev_warn(rvu->dev,
579 			 "PF%d:VF%d is configured with zero msix vectors, %d\n",
580 			 pf, vf - 1, nvecs);
581 	}
582 	return;
583 
584 check_pf:
585 	if (pf == 0)
586 		min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
587 	else
588 		min_vecs = RVU_PF_INT_VEC_CNT;
589 
590 	if (!(nvecs < min_vecs))
591 		return;
592 	dev_warn(rvu->dev,
593 		 "PF%d is configured with too few vectors, %d, min is %d\n",
594 		 pf, nvecs, min_vecs);
595 }
596 
597 static int rvu_setup_msix_resources(struct rvu *rvu)
598 {
599 	struct rvu_hwinfo *hw = rvu->hw;
600 	int pf, vf, numvfs, hwvf, err;
601 	int nvecs, offset, max_msix;
602 	struct rvu_pfvf *pfvf;
603 	u64 cfg, phy_addr;
604 	dma_addr_t iova;
605 
606 	for (pf = 0; pf < hw->total_pfs; pf++) {
607 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
608 		/* If PF is not enabled, nothing to do */
609 		if (!((cfg >> 20) & 0x01))
610 			continue;
611 
612 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
613 
614 		pfvf = &rvu->pf[pf];
615 		/* Get num of MSIX vectors attached to this PF */
616 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
617 		pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
618 		rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
619 
620 		/* Alloc msix bitmap for this PF */
621 		err = rvu_alloc_bitmap(&pfvf->msix);
622 		if (err)
623 			return err;
624 
625 		/* Allocate memory for MSIX vector to RVU block LF mapping */
626 		pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
627 						sizeof(u16), GFP_KERNEL);
628 		if (!pfvf->msix_lfmap)
629 			return -ENOMEM;
630 
631 		/* For PF0 (AF) firmware will set msix vector offsets for
632 		 * AF, block AF and PF0_INT vectors, so jump to VFs.
633 		 */
634 		if (!pf)
635 			goto setup_vfmsix;
636 
637 		/* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
638 		 * These are allocated on driver init and never freed,
639 		 * so no need to set 'msix_lfmap' for these.
640 		 */
641 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
642 		nvecs = (cfg >> 12) & 0xFF;
643 		cfg &= ~0x7FFULL;
644 		offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
645 		rvu_write64(rvu, BLKADDR_RVUM,
646 			    RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
647 setup_vfmsix:
648 		/* Alloc msix bitmap for VFs */
649 		for (vf = 0; vf < numvfs; vf++) {
650 			pfvf =  &rvu->hwvf[hwvf + vf];
651 			/* Get num of MSIX vectors attached to this VF */
652 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
653 					 RVU_PRIV_PFX_MSIX_CFG(pf));
654 			pfvf->msix.max = (cfg & 0xFFF) + 1;
655 			rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
656 
657 			/* Alloc msix bitmap for this VF */
658 			err = rvu_alloc_bitmap(&pfvf->msix);
659 			if (err)
660 				return err;
661 
662 			pfvf->msix_lfmap =
663 				devm_kcalloc(rvu->dev, pfvf->msix.max,
664 					     sizeof(u16), GFP_KERNEL);
665 			if (!pfvf->msix_lfmap)
666 				return -ENOMEM;
667 
668 			/* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
669 			 * These are allocated on driver init and never freed,
670 			 * so no need to set 'msix_lfmap' for these.
671 			 */
672 			cfg = rvu_read64(rvu, BLKADDR_RVUM,
673 					 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
674 			nvecs = (cfg >> 12) & 0xFF;
675 			cfg &= ~0x7FFULL;
676 			offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
677 			rvu_write64(rvu, BLKADDR_RVUM,
678 				    RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
679 				    cfg | offset);
680 		}
681 	}
682 
683 	/* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
684 	 * create an IOMMU mapping for the physical address configured by
685 	 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
686 	 */
687 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
688 	max_msix = cfg & 0xFFFFF;
689 	if (rvu->fwdata && rvu->fwdata->msixtr_base)
690 		phy_addr = rvu->fwdata->msixtr_base;
691 	else
692 		phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
693 
694 	iova = dma_map_resource(rvu->dev, phy_addr,
695 				max_msix * PCI_MSIX_ENTRY_SIZE,
696 				DMA_BIDIRECTIONAL, 0);
697 
698 	if (dma_mapping_error(rvu->dev, iova))
699 		return -ENOMEM;
700 
701 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
702 	rvu->msix_base_iova = iova;
703 	rvu->msixtr_base_phy = phy_addr;
704 
705 	return 0;
706 }
707 
708 static void rvu_reset_msix(struct rvu *rvu)
709 {
710 	/* Restore msixtr base register */
711 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
712 		    rvu->msixtr_base_phy);
713 }
714 
715 static void rvu_free_hw_resources(struct rvu *rvu)
716 {
717 	struct rvu_hwinfo *hw = rvu->hw;
718 	struct rvu_block *block;
719 	struct rvu_pfvf  *pfvf;
720 	int id, max_msix;
721 	u64 cfg;
722 
723 	rvu_npa_freemem(rvu);
724 	rvu_npc_freemem(rvu);
725 	rvu_nix_freemem(rvu);
726 
727 	/* Free block LF bitmaps */
728 	for (id = 0; id < BLK_COUNT; id++) {
729 		block = &hw->block[id];
730 		kfree(block->lf.bmap);
731 	}
732 
733 	/* Free MSIX bitmaps */
734 	for (id = 0; id < hw->total_pfs; id++) {
735 		pfvf = &rvu->pf[id];
736 		kfree(pfvf->msix.bmap);
737 	}
738 
739 	for (id = 0; id < hw->total_vfs; id++) {
740 		pfvf = &rvu->hwvf[id];
741 		kfree(pfvf->msix.bmap);
742 	}
743 
744 	/* Unmap MSIX vector base IOVA mapping */
745 	if (!rvu->msix_base_iova)
746 		return;
747 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
748 	max_msix = cfg & 0xFFFFF;
749 	dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
750 			   max_msix * PCI_MSIX_ENTRY_SIZE,
751 			   DMA_BIDIRECTIONAL, 0);
752 
753 	rvu_reset_msix(rvu);
754 	mutex_destroy(&rvu->rsrc_lock);
755 }
756 
757 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
758 {
759 	struct rvu_hwinfo *hw = rvu->hw;
760 	int pf, vf, numvfs, hwvf;
761 	struct rvu_pfvf *pfvf;
762 	u64 *mac;
763 
764 	for (pf = 0; pf < hw->total_pfs; pf++) {
765 		/* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
766 		if (!pf)
767 			goto lbkvf;
768 
769 		if (!is_pf_cgxmapped(rvu, pf))
770 			continue;
771 		/* Assign MAC address to PF */
772 		pfvf = &rvu->pf[pf];
773 		if (rvu->fwdata && pf < PF_MACNUM_MAX) {
774 			mac = &rvu->fwdata->pf_macs[pf];
775 			if (*mac)
776 				u64_to_ether_addr(*mac, pfvf->mac_addr);
777 			else
778 				eth_random_addr(pfvf->mac_addr);
779 		} else {
780 			eth_random_addr(pfvf->mac_addr);
781 		}
782 		ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
783 
784 lbkvf:
785 		/* Assign MAC address to VFs*/
786 		rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
787 		for (vf = 0; vf < numvfs; vf++, hwvf++) {
788 			pfvf = &rvu->hwvf[hwvf];
789 			if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
790 				mac = &rvu->fwdata->vf_macs[hwvf];
791 				if (*mac)
792 					u64_to_ether_addr(*mac, pfvf->mac_addr);
793 				else
794 					eth_random_addr(pfvf->mac_addr);
795 			} else {
796 				eth_random_addr(pfvf->mac_addr);
797 			}
798 			ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
799 		}
800 	}
801 }
802 
803 static int rvu_fwdata_init(struct rvu *rvu)
804 {
805 	u64 fwdbase;
806 	int err;
807 
808 	/* Get firmware data base address */
809 	err = cgx_get_fwdata_base(&fwdbase);
810 	if (err)
811 		goto fail;
812 	rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
813 	if (!rvu->fwdata)
814 		goto fail;
815 	if (!is_rvu_fwdata_valid(rvu)) {
816 		dev_err(rvu->dev,
817 			"Mismatch in 'fwdata' struct btw kernel and firmware\n");
818 		iounmap(rvu->fwdata);
819 		rvu->fwdata = NULL;
820 		return -EINVAL;
821 	}
822 	return 0;
823 fail:
824 	dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
825 	return -EIO;
826 }
827 
828 static void rvu_fwdata_exit(struct rvu *rvu)
829 {
830 	if (rvu->fwdata)
831 		iounmap(rvu->fwdata);
832 }
833 
834 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
835 {
836 	struct rvu_hwinfo *hw = rvu->hw;
837 	struct rvu_block *block;
838 	int blkid;
839 	u64 cfg;
840 
841 	/* Init NIX LF's bitmap */
842 	block = &hw->block[blkaddr];
843 	if (!block->implemented)
844 		return 0;
845 	blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
846 	cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
847 	block->lf.max = cfg & 0xFFF;
848 	block->addr = blkaddr;
849 	block->type = BLKTYPE_NIX;
850 	block->lfshift = 8;
851 	block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
852 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
853 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
854 	block->lfcfg_reg = NIX_PRIV_LFX_CFG;
855 	block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
856 	block->lfreset_reg = NIX_AF_LF_RST;
857 	sprintf(block->name, "NIX%d", blkid);
858 	rvu->nix_blkaddr[blkid] = blkaddr;
859 	return rvu_alloc_bitmap(&block->lf);
860 }
861 
862 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
863 {
864 	struct rvu_hwinfo *hw = rvu->hw;
865 	struct rvu_block *block;
866 	int blkid;
867 	u64 cfg;
868 
869 	/* Init CPT LF's bitmap */
870 	block = &hw->block[blkaddr];
871 	if (!block->implemented)
872 		return 0;
873 	blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
874 	cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
875 	block->lf.max = cfg & 0xFF;
876 	block->addr = blkaddr;
877 	block->type = BLKTYPE_CPT;
878 	block->multislot = true;
879 	block->lfshift = 3;
880 	block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
881 	block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
882 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
883 	block->lfcfg_reg = CPT_PRIV_LFX_CFG;
884 	block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
885 	block->lfreset_reg = CPT_AF_LF_RST;
886 	sprintf(block->name, "CPT%d", blkid);
887 	return rvu_alloc_bitmap(&block->lf);
888 }
889 
890 static void rvu_get_lbk_bufsize(struct rvu *rvu)
891 {
892 	struct pci_dev *pdev = NULL;
893 	void __iomem *base;
894 	u64 lbk_const;
895 
896 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
897 			      PCI_DEVID_OCTEONTX2_LBK, pdev);
898 	if (!pdev)
899 		return;
900 
901 	base = pci_ioremap_bar(pdev, 0);
902 	if (!base)
903 		goto err_put;
904 
905 	lbk_const = readq(base + LBK_CONST);
906 
907 	/* cache fifo size */
908 	rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
909 
910 	iounmap(base);
911 err_put:
912 	pci_dev_put(pdev);
913 }
914 
915 static int rvu_setup_hw_resources(struct rvu *rvu)
916 {
917 	struct rvu_hwinfo *hw = rvu->hw;
918 	struct rvu_block *block;
919 	int blkid, err;
920 	u64 cfg;
921 
922 	/* Get HW supported max RVU PF & VF count */
923 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
924 	hw->total_pfs = (cfg >> 32) & 0xFF;
925 	hw->total_vfs = (cfg >> 20) & 0xFFF;
926 	hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
927 
928 	/* Init NPA LF's bitmap */
929 	block = &hw->block[BLKADDR_NPA];
930 	if (!block->implemented)
931 		goto nix;
932 	cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
933 	block->lf.max = (cfg >> 16) & 0xFFF;
934 	block->addr = BLKADDR_NPA;
935 	block->type = BLKTYPE_NPA;
936 	block->lfshift = 8;
937 	block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
938 	block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
939 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
940 	block->lfcfg_reg = NPA_PRIV_LFX_CFG;
941 	block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
942 	block->lfreset_reg = NPA_AF_LF_RST;
943 	sprintf(block->name, "NPA");
944 	err = rvu_alloc_bitmap(&block->lf);
945 	if (err) {
946 		dev_err(rvu->dev,
947 			"%s: Failed to allocate NPA LF bitmap\n", __func__);
948 		return err;
949 	}
950 
951 nix:
952 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
953 	if (err) {
954 		dev_err(rvu->dev,
955 			"%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
956 		return err;
957 	}
958 
959 	err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
960 	if (err) {
961 		dev_err(rvu->dev,
962 			"%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
963 		return err;
964 	}
965 
966 	/* Init SSO group's bitmap */
967 	block = &hw->block[BLKADDR_SSO];
968 	if (!block->implemented)
969 		goto ssow;
970 	cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
971 	block->lf.max = cfg & 0xFFFF;
972 	block->addr = BLKADDR_SSO;
973 	block->type = BLKTYPE_SSO;
974 	block->multislot = true;
975 	block->lfshift = 3;
976 	block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
977 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
978 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
979 	block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
980 	block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
981 	block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
982 	sprintf(block->name, "SSO GROUP");
983 	err = rvu_alloc_bitmap(&block->lf);
984 	if (err) {
985 		dev_err(rvu->dev,
986 			"%s: Failed to allocate SSO LF bitmap\n", __func__);
987 		return err;
988 	}
989 
990 ssow:
991 	/* Init SSO workslot's bitmap */
992 	block = &hw->block[BLKADDR_SSOW];
993 	if (!block->implemented)
994 		goto tim;
995 	block->lf.max = (cfg >> 56) & 0xFF;
996 	block->addr = BLKADDR_SSOW;
997 	block->type = BLKTYPE_SSOW;
998 	block->multislot = true;
999 	block->lfshift = 3;
1000 	block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
1001 	block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
1002 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
1003 	block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
1004 	block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
1005 	block->lfreset_reg = SSOW_AF_LF_HWS_RST;
1006 	sprintf(block->name, "SSOWS");
1007 	err = rvu_alloc_bitmap(&block->lf);
1008 	if (err) {
1009 		dev_err(rvu->dev,
1010 			"%s: Failed to allocate SSOW LF bitmap\n", __func__);
1011 		return err;
1012 	}
1013 
1014 tim:
1015 	/* Init TIM LF's bitmap */
1016 	block = &hw->block[BLKADDR_TIM];
1017 	if (!block->implemented)
1018 		goto cpt;
1019 	cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1020 	block->lf.max = cfg & 0xFFFF;
1021 	block->addr = BLKADDR_TIM;
1022 	block->type = BLKTYPE_TIM;
1023 	block->multislot = true;
1024 	block->lfshift = 3;
1025 	block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1026 	block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1027 	block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1028 	block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1029 	block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1030 	block->lfreset_reg = TIM_AF_LF_RST;
1031 	sprintf(block->name, "TIM");
1032 	err = rvu_alloc_bitmap(&block->lf);
1033 	if (err) {
1034 		dev_err(rvu->dev,
1035 			"%s: Failed to allocate TIM LF bitmap\n", __func__);
1036 		return err;
1037 	}
1038 
1039 cpt:
1040 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1041 	if (err) {
1042 		dev_err(rvu->dev,
1043 			"%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1044 		return err;
1045 	}
1046 	err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1047 	if (err) {
1048 		dev_err(rvu->dev,
1049 			"%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1050 		return err;
1051 	}
1052 
1053 	/* Allocate memory for PFVF data */
1054 	rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1055 			       sizeof(struct rvu_pfvf), GFP_KERNEL);
1056 	if (!rvu->pf) {
1057 		dev_err(rvu->dev,
1058 			"%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1059 		return -ENOMEM;
1060 	}
1061 
1062 	rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1063 				 sizeof(struct rvu_pfvf), GFP_KERNEL);
1064 	if (!rvu->hwvf) {
1065 		dev_err(rvu->dev,
1066 			"%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1067 		return -ENOMEM;
1068 	}
1069 
1070 	mutex_init(&rvu->rsrc_lock);
1071 
1072 	rvu_fwdata_init(rvu);
1073 
1074 	err = rvu_setup_msix_resources(rvu);
1075 	if (err) {
1076 		dev_err(rvu->dev,
1077 			"%s: Failed to setup MSIX resources\n", __func__);
1078 		return err;
1079 	}
1080 
1081 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1082 		block = &hw->block[blkid];
1083 		if (!block->lf.bmap)
1084 			continue;
1085 
1086 		/* Allocate memory for block LF/slot to pcifunc mapping info */
1087 		block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1088 					     sizeof(u16), GFP_KERNEL);
1089 		if (!block->fn_map) {
1090 			err = -ENOMEM;
1091 			goto msix_err;
1092 		}
1093 
1094 		/* Scan all blocks to check if low level firmware has
1095 		 * already provisioned any of the resources to a PF/VF.
1096 		 */
1097 		rvu_scan_block(rvu, block);
1098 	}
1099 
1100 	err = rvu_set_channels_base(rvu);
1101 	if (err)
1102 		goto msix_err;
1103 
1104 	err = rvu_npc_init(rvu);
1105 	if (err) {
1106 		dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1107 		goto npc_err;
1108 	}
1109 
1110 	err = rvu_cgx_init(rvu);
1111 	if (err) {
1112 		dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1113 		goto cgx_err;
1114 	}
1115 
1116 	/* Assign MACs for CGX mapped functions */
1117 	rvu_setup_pfvf_macaddress(rvu);
1118 
1119 	err = rvu_npa_init(rvu);
1120 	if (err) {
1121 		dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1122 		goto npa_err;
1123 	}
1124 
1125 	rvu_get_lbk_bufsize(rvu);
1126 
1127 	err = rvu_nix_init(rvu);
1128 	if (err) {
1129 		dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1130 		goto nix_err;
1131 	}
1132 
1133 	err = rvu_sdp_init(rvu);
1134 	if (err) {
1135 		dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1136 		goto nix_err;
1137 	}
1138 
1139 	rvu_program_channels(rvu);
1140 
1141 	return 0;
1142 
1143 nix_err:
1144 	rvu_nix_freemem(rvu);
1145 npa_err:
1146 	rvu_npa_freemem(rvu);
1147 cgx_err:
1148 	rvu_cgx_exit(rvu);
1149 npc_err:
1150 	rvu_npc_freemem(rvu);
1151 	rvu_fwdata_exit(rvu);
1152 msix_err:
1153 	rvu_reset_msix(rvu);
1154 	return err;
1155 }
1156 
1157 /* NPA and NIX admin queue APIs */
1158 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1159 {
1160 	if (!aq)
1161 		return;
1162 
1163 	qmem_free(rvu->dev, aq->inst);
1164 	qmem_free(rvu->dev, aq->res);
1165 	devm_kfree(rvu->dev, aq);
1166 }
1167 
1168 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1169 		 int qsize, int inst_size, int res_size)
1170 {
1171 	struct admin_queue *aq;
1172 	int err;
1173 
1174 	*ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1175 	if (!*ad_queue)
1176 		return -ENOMEM;
1177 	aq = *ad_queue;
1178 
1179 	/* Alloc memory for instructions i.e AQ */
1180 	err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1181 	if (err) {
1182 		devm_kfree(rvu->dev, aq);
1183 		return err;
1184 	}
1185 
1186 	/* Alloc memory for results */
1187 	err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1188 	if (err) {
1189 		rvu_aq_free(rvu, aq);
1190 		return err;
1191 	}
1192 
1193 	spin_lock_init(&aq->lock);
1194 	return 0;
1195 }
1196 
1197 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1198 			   struct ready_msg_rsp *rsp)
1199 {
1200 	if (rvu->fwdata) {
1201 		rsp->rclk_freq = rvu->fwdata->rclk;
1202 		rsp->sclk_freq = rvu->fwdata->sclk;
1203 	}
1204 	return 0;
1205 }
1206 
1207 /* Get current count of a RVU block's LF/slots
1208  * provisioned to a given RVU func.
1209  */
1210 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1211 {
1212 	switch (blkaddr) {
1213 	case BLKADDR_NPA:
1214 		return pfvf->npalf ? 1 : 0;
1215 	case BLKADDR_NIX0:
1216 	case BLKADDR_NIX1:
1217 		return pfvf->nixlf ? 1 : 0;
1218 	case BLKADDR_SSO:
1219 		return pfvf->sso;
1220 	case BLKADDR_SSOW:
1221 		return pfvf->ssow;
1222 	case BLKADDR_TIM:
1223 		return pfvf->timlfs;
1224 	case BLKADDR_CPT0:
1225 		return pfvf->cptlfs;
1226 	case BLKADDR_CPT1:
1227 		return pfvf->cpt1_lfs;
1228 	}
1229 	return 0;
1230 }
1231 
1232 /* Return true if LFs of block type are attached to pcifunc */
1233 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1234 {
1235 	switch (blktype) {
1236 	case BLKTYPE_NPA:
1237 		return pfvf->npalf ? 1 : 0;
1238 	case BLKTYPE_NIX:
1239 		return pfvf->nixlf ? 1 : 0;
1240 	case BLKTYPE_SSO:
1241 		return !!pfvf->sso;
1242 	case BLKTYPE_SSOW:
1243 		return !!pfvf->ssow;
1244 	case BLKTYPE_TIM:
1245 		return !!pfvf->timlfs;
1246 	case BLKTYPE_CPT:
1247 		return pfvf->cptlfs || pfvf->cpt1_lfs;
1248 	}
1249 
1250 	return false;
1251 }
1252 
1253 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1254 {
1255 	struct rvu_pfvf *pfvf;
1256 
1257 	if (!is_pf_func_valid(rvu, pcifunc))
1258 		return false;
1259 
1260 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1261 
1262 	/* Check if this PFFUNC has a LF of type blktype attached */
1263 	if (!is_blktype_attached(pfvf, blktype))
1264 		return false;
1265 
1266 	return true;
1267 }
1268 
1269 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1270 			   int pcifunc, int slot)
1271 {
1272 	u64 val;
1273 
1274 	val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1275 	rvu_write64(rvu, block->addr, block->lookup_reg, val);
1276 	/* Wait for the lookup to finish */
1277 	/* TODO: put some timeout here */
1278 	while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1279 		;
1280 
1281 	val = rvu_read64(rvu, block->addr, block->lookup_reg);
1282 
1283 	/* Check LF valid bit */
1284 	if (!(val & (1ULL << 12)))
1285 		return -1;
1286 
1287 	return (val & 0xFFF);
1288 }
1289 
1290 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1291 {
1292 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1293 	struct rvu_hwinfo *hw = rvu->hw;
1294 	struct rvu_block *block;
1295 	int slot, lf, num_lfs;
1296 	int blkaddr;
1297 
1298 	blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1299 	if (blkaddr < 0)
1300 		return;
1301 
1302 	if (blktype == BLKTYPE_NIX)
1303 		rvu_nix_reset_mac(pfvf, pcifunc);
1304 
1305 	block = &hw->block[blkaddr];
1306 
1307 	num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1308 	if (!num_lfs)
1309 		return;
1310 
1311 	for (slot = 0; slot < num_lfs; slot++) {
1312 		lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1313 		if (lf < 0) /* This should never happen */
1314 			continue;
1315 
1316 		/* Disable the LF */
1317 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1318 			    (lf << block->lfshift), 0x00ULL);
1319 
1320 		/* Update SW maintained mapping info as well */
1321 		rvu_update_rsrc_map(rvu, pfvf, block,
1322 				    pcifunc, lf, false);
1323 
1324 		/* Free the resource */
1325 		rvu_free_rsrc(&block->lf, lf);
1326 
1327 		/* Clear MSIX vector offset for this LF */
1328 		rvu_clear_msix_offset(rvu, pfvf, block, lf);
1329 	}
1330 }
1331 
1332 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1333 			    u16 pcifunc)
1334 {
1335 	struct rvu_hwinfo *hw = rvu->hw;
1336 	bool detach_all = true;
1337 	struct rvu_block *block;
1338 	int blkid;
1339 
1340 	mutex_lock(&rvu->rsrc_lock);
1341 
1342 	/* Check for partial resource detach */
1343 	if (detach && detach->partial)
1344 		detach_all = false;
1345 
1346 	/* Check for RVU block's LFs attached to this func,
1347 	 * if so, detach them.
1348 	 */
1349 	for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1350 		block = &hw->block[blkid];
1351 		if (!block->lf.bmap)
1352 			continue;
1353 		if (!detach_all && detach) {
1354 			if (blkid == BLKADDR_NPA && !detach->npalf)
1355 				continue;
1356 			else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1357 				continue;
1358 			else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1359 				continue;
1360 			else if ((blkid == BLKADDR_SSO) && !detach->sso)
1361 				continue;
1362 			else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1363 				continue;
1364 			else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1365 				continue;
1366 			else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1367 				continue;
1368 			else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1369 				continue;
1370 		}
1371 		rvu_detach_block(rvu, pcifunc, block->type);
1372 	}
1373 
1374 	mutex_unlock(&rvu->rsrc_lock);
1375 	return 0;
1376 }
1377 
1378 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1379 				      struct rsrc_detach *detach,
1380 				      struct msg_rsp *rsp)
1381 {
1382 	return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1383 }
1384 
1385 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1386 {
1387 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1388 	int blkaddr = BLKADDR_NIX0, vf;
1389 	struct rvu_pfvf *pf;
1390 
1391 	pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1392 
1393 	/* All CGX mapped PFs are set with assigned NIX block during init */
1394 	if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1395 		blkaddr = pf->nix_blkaddr;
1396 	} else if (is_afvf(pcifunc)) {
1397 		vf = pcifunc - 1;
1398 		/* Assign NIX based on VF number. All even numbered VFs get
1399 		 * NIX0 and odd numbered gets NIX1
1400 		 */
1401 		blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1402 		/* NIX1 is not present on all silicons */
1403 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1404 			blkaddr = BLKADDR_NIX0;
1405 	}
1406 
1407 	/* if SDP1 then the blkaddr is NIX1 */
1408 	if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
1409 		blkaddr = BLKADDR_NIX1;
1410 
1411 	switch (blkaddr) {
1412 	case BLKADDR_NIX1:
1413 		pfvf->nix_blkaddr = BLKADDR_NIX1;
1414 		pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1415 		pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1416 		break;
1417 	case BLKADDR_NIX0:
1418 	default:
1419 		pfvf->nix_blkaddr = BLKADDR_NIX0;
1420 		pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1421 		pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1422 		break;
1423 	}
1424 
1425 	return pfvf->nix_blkaddr;
1426 }
1427 
1428 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1429 				  u16 pcifunc, struct rsrc_attach *attach)
1430 {
1431 	int blkaddr;
1432 
1433 	switch (blktype) {
1434 	case BLKTYPE_NIX:
1435 		blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1436 		break;
1437 	case BLKTYPE_CPT:
1438 		if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1439 			return rvu_get_blkaddr(rvu, blktype, 0);
1440 		blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1441 			  BLKADDR_CPT0;
1442 		if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1443 			return -ENODEV;
1444 		break;
1445 	default:
1446 		return rvu_get_blkaddr(rvu, blktype, 0);
1447 	}
1448 
1449 	if (is_block_implemented(rvu->hw, blkaddr))
1450 		return blkaddr;
1451 
1452 	return -ENODEV;
1453 }
1454 
1455 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1456 			     int num_lfs, struct rsrc_attach *attach)
1457 {
1458 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1459 	struct rvu_hwinfo *hw = rvu->hw;
1460 	struct rvu_block *block;
1461 	int slot, lf;
1462 	int blkaddr;
1463 	u64 cfg;
1464 
1465 	if (!num_lfs)
1466 		return;
1467 
1468 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1469 	if (blkaddr < 0)
1470 		return;
1471 
1472 	block = &hw->block[blkaddr];
1473 	if (!block->lf.bmap)
1474 		return;
1475 
1476 	for (slot = 0; slot < num_lfs; slot++) {
1477 		/* Allocate the resource */
1478 		lf = rvu_alloc_rsrc(&block->lf);
1479 		if (lf < 0)
1480 			return;
1481 
1482 		cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1483 		rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1484 			    (lf << block->lfshift), cfg);
1485 		rvu_update_rsrc_map(rvu, pfvf, block,
1486 				    pcifunc, lf, true);
1487 
1488 		/* Set start MSIX vector for this LF within this PF/VF */
1489 		rvu_set_msix_offset(rvu, pfvf, block, lf);
1490 	}
1491 }
1492 
1493 static int rvu_check_rsrc_availability(struct rvu *rvu,
1494 				       struct rsrc_attach *req, u16 pcifunc)
1495 {
1496 	struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1497 	int free_lfs, mappedlfs, blkaddr;
1498 	struct rvu_hwinfo *hw = rvu->hw;
1499 	struct rvu_block *block;
1500 
1501 	/* Only one NPA LF can be attached */
1502 	if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1503 		block = &hw->block[BLKADDR_NPA];
1504 		free_lfs = rvu_rsrc_free_count(&block->lf);
1505 		if (!free_lfs)
1506 			goto fail;
1507 	} else if (req->npalf) {
1508 		dev_err(&rvu->pdev->dev,
1509 			"Func 0x%x: Invalid req, already has NPA\n",
1510 			 pcifunc);
1511 		return -EINVAL;
1512 	}
1513 
1514 	/* Only one NIX LF can be attached */
1515 	if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1516 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1517 						 pcifunc, req);
1518 		if (blkaddr < 0)
1519 			return blkaddr;
1520 		block = &hw->block[blkaddr];
1521 		free_lfs = rvu_rsrc_free_count(&block->lf);
1522 		if (!free_lfs)
1523 			goto fail;
1524 	} else if (req->nixlf) {
1525 		dev_err(&rvu->pdev->dev,
1526 			"Func 0x%x: Invalid req, already has NIX\n",
1527 			pcifunc);
1528 		return -EINVAL;
1529 	}
1530 
1531 	if (req->sso) {
1532 		block = &hw->block[BLKADDR_SSO];
1533 		/* Is request within limits ? */
1534 		if (req->sso > block->lf.max) {
1535 			dev_err(&rvu->pdev->dev,
1536 				"Func 0x%x: Invalid SSO req, %d > max %d\n",
1537 				 pcifunc, req->sso, block->lf.max);
1538 			return -EINVAL;
1539 		}
1540 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1541 		free_lfs = rvu_rsrc_free_count(&block->lf);
1542 		/* Check if additional resources are available */
1543 		if (req->sso > mappedlfs &&
1544 		    ((req->sso - mappedlfs) > free_lfs))
1545 			goto fail;
1546 	}
1547 
1548 	if (req->ssow) {
1549 		block = &hw->block[BLKADDR_SSOW];
1550 		if (req->ssow > block->lf.max) {
1551 			dev_err(&rvu->pdev->dev,
1552 				"Func 0x%x: Invalid SSOW req, %d > max %d\n",
1553 				 pcifunc, req->sso, block->lf.max);
1554 			return -EINVAL;
1555 		}
1556 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1557 		free_lfs = rvu_rsrc_free_count(&block->lf);
1558 		if (req->ssow > mappedlfs &&
1559 		    ((req->ssow - mappedlfs) > free_lfs))
1560 			goto fail;
1561 	}
1562 
1563 	if (req->timlfs) {
1564 		block = &hw->block[BLKADDR_TIM];
1565 		if (req->timlfs > block->lf.max) {
1566 			dev_err(&rvu->pdev->dev,
1567 				"Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1568 				 pcifunc, req->timlfs, block->lf.max);
1569 			return -EINVAL;
1570 		}
1571 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1572 		free_lfs = rvu_rsrc_free_count(&block->lf);
1573 		if (req->timlfs > mappedlfs &&
1574 		    ((req->timlfs - mappedlfs) > free_lfs))
1575 			goto fail;
1576 	}
1577 
1578 	if (req->cptlfs) {
1579 		blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1580 						 pcifunc, req);
1581 		if (blkaddr < 0)
1582 			return blkaddr;
1583 		block = &hw->block[blkaddr];
1584 		if (req->cptlfs > block->lf.max) {
1585 			dev_err(&rvu->pdev->dev,
1586 				"Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1587 				 pcifunc, req->cptlfs, block->lf.max);
1588 			return -EINVAL;
1589 		}
1590 		mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1591 		free_lfs = rvu_rsrc_free_count(&block->lf);
1592 		if (req->cptlfs > mappedlfs &&
1593 		    ((req->cptlfs - mappedlfs) > free_lfs))
1594 			goto fail;
1595 	}
1596 
1597 	return 0;
1598 
1599 fail:
1600 	dev_info(rvu->dev, "Request for %s failed\n", block->name);
1601 	return -ENOSPC;
1602 }
1603 
1604 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1605 				       struct rsrc_attach *attach)
1606 {
1607 	int blkaddr, num_lfs;
1608 
1609 	blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1610 					 attach->hdr.pcifunc, attach);
1611 	if (blkaddr < 0)
1612 		return false;
1613 
1614 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1615 					blkaddr);
1616 	/* Requester already has LFs from given block ? */
1617 	return !!num_lfs;
1618 }
1619 
1620 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1621 				      struct rsrc_attach *attach,
1622 				      struct msg_rsp *rsp)
1623 {
1624 	u16 pcifunc = attach->hdr.pcifunc;
1625 	int err;
1626 
1627 	/* If first request, detach all existing attached resources */
1628 	if (!attach->modify)
1629 		rvu_detach_rsrcs(rvu, NULL, pcifunc);
1630 
1631 	mutex_lock(&rvu->rsrc_lock);
1632 
1633 	/* Check if the request can be accommodated */
1634 	err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1635 	if (err)
1636 		goto exit;
1637 
1638 	/* Now attach the requested resources */
1639 	if (attach->npalf)
1640 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1641 
1642 	if (attach->nixlf)
1643 		rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1644 
1645 	if (attach->sso) {
1646 		/* RVU func doesn't know which exact LF or slot is attached
1647 		 * to it, it always sees as slot 0,1,2. So for a 'modify'
1648 		 * request, simply detach all existing attached LFs/slots
1649 		 * and attach a fresh.
1650 		 */
1651 		if (attach->modify)
1652 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1653 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1654 				 attach->sso, attach);
1655 	}
1656 
1657 	if (attach->ssow) {
1658 		if (attach->modify)
1659 			rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1660 		rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1661 				 attach->ssow, attach);
1662 	}
1663 
1664 	if (attach->timlfs) {
1665 		if (attach->modify)
1666 			rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1667 		rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1668 				 attach->timlfs, attach);
1669 	}
1670 
1671 	if (attach->cptlfs) {
1672 		if (attach->modify &&
1673 		    rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1674 			rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1675 		rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1676 				 attach->cptlfs, attach);
1677 	}
1678 
1679 exit:
1680 	mutex_unlock(&rvu->rsrc_lock);
1681 	return err;
1682 }
1683 
1684 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1685 			       int blkaddr, int lf)
1686 {
1687 	u16 vec;
1688 
1689 	if (lf < 0)
1690 		return MSIX_VECTOR_INVALID;
1691 
1692 	for (vec = 0; vec < pfvf->msix.max; vec++) {
1693 		if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1694 			return vec;
1695 	}
1696 	return MSIX_VECTOR_INVALID;
1697 }
1698 
1699 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1700 				struct rvu_block *block, int lf)
1701 {
1702 	u16 nvecs, vec, offset;
1703 	u64 cfg;
1704 
1705 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1706 			 (lf << block->lfshift));
1707 	nvecs = (cfg >> 12) & 0xFF;
1708 
1709 	/* Check and alloc MSIX vectors, must be contiguous */
1710 	if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1711 		return;
1712 
1713 	offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1714 
1715 	/* Config MSIX offset in LF */
1716 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1717 		    (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1718 
1719 	/* Update the bitmap as well */
1720 	for (vec = 0; vec < nvecs; vec++)
1721 		pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1722 }
1723 
1724 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1725 				  struct rvu_block *block, int lf)
1726 {
1727 	u16 nvecs, vec, offset;
1728 	u64 cfg;
1729 
1730 	cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1731 			 (lf << block->lfshift));
1732 	nvecs = (cfg >> 12) & 0xFF;
1733 
1734 	/* Clear MSIX offset in LF */
1735 	rvu_write64(rvu, block->addr, block->msixcfg_reg |
1736 		    (lf << block->lfshift), cfg & ~0x7FFULL);
1737 
1738 	offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1739 
1740 	/* Update the mapping */
1741 	for (vec = 0; vec < nvecs; vec++)
1742 		pfvf->msix_lfmap[offset + vec] = 0;
1743 
1744 	/* Free the same in MSIX bitmap */
1745 	rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1746 }
1747 
1748 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1749 				 struct msix_offset_rsp *rsp)
1750 {
1751 	struct rvu_hwinfo *hw = rvu->hw;
1752 	u16 pcifunc = req->hdr.pcifunc;
1753 	struct rvu_pfvf *pfvf;
1754 	int lf, slot, blkaddr;
1755 
1756 	pfvf = rvu_get_pfvf(rvu, pcifunc);
1757 	if (!pfvf->msix.bmap)
1758 		return 0;
1759 
1760 	/* Set MSIX offsets for each block's LFs attached to this PF/VF */
1761 	lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1762 	rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1763 
1764 	/* Get BLKADDR from which LFs are attached to pcifunc */
1765 	blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1766 	if (blkaddr < 0) {
1767 		rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1768 	} else {
1769 		lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1770 		rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1771 	}
1772 
1773 	rsp->sso = pfvf->sso;
1774 	for (slot = 0; slot < rsp->sso; slot++) {
1775 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1776 		rsp->sso_msixoff[slot] =
1777 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1778 	}
1779 
1780 	rsp->ssow = pfvf->ssow;
1781 	for (slot = 0; slot < rsp->ssow; slot++) {
1782 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1783 		rsp->ssow_msixoff[slot] =
1784 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1785 	}
1786 
1787 	rsp->timlfs = pfvf->timlfs;
1788 	for (slot = 0; slot < rsp->timlfs; slot++) {
1789 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1790 		rsp->timlf_msixoff[slot] =
1791 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1792 	}
1793 
1794 	rsp->cptlfs = pfvf->cptlfs;
1795 	for (slot = 0; slot < rsp->cptlfs; slot++) {
1796 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1797 		rsp->cptlf_msixoff[slot] =
1798 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1799 	}
1800 
1801 	rsp->cpt1_lfs = pfvf->cpt1_lfs;
1802 	for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1803 		lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1804 		rsp->cpt1_lf_msixoff[slot] =
1805 			rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1806 	}
1807 
1808 	return 0;
1809 }
1810 
1811 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1812 				   struct free_rsrcs_rsp *rsp)
1813 {
1814 	struct rvu_hwinfo *hw = rvu->hw;
1815 	struct rvu_block *block;
1816 	struct nix_txsch *txsch;
1817 	struct nix_hw *nix_hw;
1818 
1819 	mutex_lock(&rvu->rsrc_lock);
1820 
1821 	block = &hw->block[BLKADDR_NPA];
1822 	rsp->npa = rvu_rsrc_free_count(&block->lf);
1823 
1824 	block = &hw->block[BLKADDR_NIX0];
1825 	rsp->nix = rvu_rsrc_free_count(&block->lf);
1826 
1827 	block = &hw->block[BLKADDR_NIX1];
1828 	rsp->nix1 = rvu_rsrc_free_count(&block->lf);
1829 
1830 	block = &hw->block[BLKADDR_SSO];
1831 	rsp->sso = rvu_rsrc_free_count(&block->lf);
1832 
1833 	block = &hw->block[BLKADDR_SSOW];
1834 	rsp->ssow = rvu_rsrc_free_count(&block->lf);
1835 
1836 	block = &hw->block[BLKADDR_TIM];
1837 	rsp->tim = rvu_rsrc_free_count(&block->lf);
1838 
1839 	block = &hw->block[BLKADDR_CPT0];
1840 	rsp->cpt = rvu_rsrc_free_count(&block->lf);
1841 
1842 	block = &hw->block[BLKADDR_CPT1];
1843 	rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
1844 
1845 	if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1846 		rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1847 		rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1848 		rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1849 		rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1850 		/* NIX1 */
1851 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1852 			goto out;
1853 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1854 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1855 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1856 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1857 	} else {
1858 		nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
1859 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1860 		rsp->schq[NIX_TXSCH_LVL_SMQ] =
1861 				rvu_rsrc_free_count(&txsch->schq);
1862 
1863 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1864 		rsp->schq[NIX_TXSCH_LVL_TL4] =
1865 				rvu_rsrc_free_count(&txsch->schq);
1866 
1867 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1868 		rsp->schq[NIX_TXSCH_LVL_TL3] =
1869 				rvu_rsrc_free_count(&txsch->schq);
1870 
1871 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1872 		rsp->schq[NIX_TXSCH_LVL_TL2] =
1873 				rvu_rsrc_free_count(&txsch->schq);
1874 
1875 		if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1876 			goto out;
1877 
1878 		nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
1879 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1880 		rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
1881 				rvu_rsrc_free_count(&txsch->schq);
1882 
1883 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1884 		rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
1885 				rvu_rsrc_free_count(&txsch->schq);
1886 
1887 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1888 		rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
1889 				rvu_rsrc_free_count(&txsch->schq);
1890 
1891 		txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1892 		rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
1893 				rvu_rsrc_free_count(&txsch->schq);
1894 	}
1895 
1896 	rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
1897 out:
1898 	rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
1899 	mutex_unlock(&rvu->rsrc_lock);
1900 
1901 	return 0;
1902 }
1903 
1904 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1905 			    struct msg_rsp *rsp)
1906 {
1907 	u16 pcifunc = req->hdr.pcifunc;
1908 	u16 vf, numvfs;
1909 	u64 cfg;
1910 
1911 	vf = pcifunc & RVU_PFVF_FUNC_MASK;
1912 	cfg = rvu_read64(rvu, BLKADDR_RVUM,
1913 			 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
1914 	numvfs = (cfg >> 12) & 0xFF;
1915 
1916 	if (vf && vf <= numvfs)
1917 		__rvu_flr_handler(rvu, pcifunc);
1918 	else
1919 		return RVU_INVALID_VF_ID;
1920 
1921 	return 0;
1922 }
1923 
1924 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
1925 				struct get_hw_cap_rsp *rsp)
1926 {
1927 	struct rvu_hwinfo *hw = rvu->hw;
1928 
1929 	rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
1930 	rsp->nix_shaping = hw->cap.nix_shaping;
1931 
1932 	return 0;
1933 }
1934 
1935 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
1936 				 struct msg_rsp *rsp)
1937 {
1938 	struct rvu_hwinfo *hw = rvu->hw;
1939 	u16 pcifunc = req->hdr.pcifunc;
1940 	struct rvu_pfvf *pfvf;
1941 	int blkaddr, nixlf;
1942 	u16 target;
1943 
1944 	/* Only PF can add VF permissions */
1945 	if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc))
1946 		return -EOPNOTSUPP;
1947 
1948 	target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
1949 	pfvf = rvu_get_pfvf(rvu, target);
1950 
1951 	if (req->flags & RESET_VF_PERM) {
1952 		pfvf->flags &= RVU_CLEAR_VF_PERM;
1953 	} else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
1954 		 (req->flags & VF_TRUSTED)) {
1955 		change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
1956 		/* disable multicast and promisc entries */
1957 		if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
1958 			blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
1959 			if (blkaddr < 0)
1960 				return 0;
1961 			nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
1962 					   target, 0);
1963 			if (nixlf < 0)
1964 				return 0;
1965 			npc_enadis_default_mce_entry(rvu, target, nixlf,
1966 						     NIXLF_ALLMULTI_ENTRY,
1967 						     false);
1968 			npc_enadis_default_mce_entry(rvu, target, nixlf,
1969 						     NIXLF_PROMISC_ENTRY,
1970 						     false);
1971 		}
1972 	}
1973 
1974 	return 0;
1975 }
1976 
1977 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
1978 				struct mbox_msghdr *req)
1979 {
1980 	struct rvu *rvu = pci_get_drvdata(mbox->pdev);
1981 
1982 	/* Check if valid, if not reply with a invalid msg */
1983 	if (req->sig != OTX2_MBOX_REQ_SIG)
1984 		goto bad_message;
1985 
1986 	switch (req->id) {
1987 #define M(_name, _id, _fn_name, _req_type, _rsp_type)			\
1988 	case _id: {							\
1989 		struct _rsp_type *rsp;					\
1990 		int err;						\
1991 									\
1992 		rsp = (struct _rsp_type *)otx2_mbox_alloc_msg(		\
1993 			mbox, devid,					\
1994 			sizeof(struct _rsp_type));			\
1995 		/* some handlers should complete even if reply */	\
1996 		/* could not be allocated */				\
1997 		if (!rsp &&						\
1998 		    _id != MBOX_MSG_DETACH_RESOURCES &&			\
1999 		    _id != MBOX_MSG_NIX_TXSCH_FREE &&			\
2000 		    _id != MBOX_MSG_VF_FLR)				\
2001 			return -ENOMEM;					\
2002 		if (rsp) {						\
2003 			rsp->hdr.id = _id;				\
2004 			rsp->hdr.sig = OTX2_MBOX_RSP_SIG;		\
2005 			rsp->hdr.pcifunc = req->pcifunc;		\
2006 			rsp->hdr.rc = 0;				\
2007 		}							\
2008 									\
2009 		err = rvu_mbox_handler_ ## _fn_name(rvu,		\
2010 						    (struct _req_type *)req, \
2011 						    rsp);		\
2012 		if (rsp && err)						\
2013 			rsp->hdr.rc = err;				\
2014 									\
2015 		trace_otx2_msg_process(mbox->pdev, _id, err);		\
2016 		return rsp ? err : -ENOMEM;				\
2017 	}
2018 MBOX_MESSAGES
2019 #undef M
2020 
2021 bad_message:
2022 	default:
2023 		otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
2024 		return -ENODEV;
2025 	}
2026 }
2027 
2028 static void __rvu_mbox_handler(struct rvu_work *mwork, int type)
2029 {
2030 	struct rvu *rvu = mwork->rvu;
2031 	int offset, err, id, devid;
2032 	struct otx2_mbox_dev *mdev;
2033 	struct mbox_hdr *req_hdr;
2034 	struct mbox_msghdr *msg;
2035 	struct mbox_wq_info *mw;
2036 	struct otx2_mbox *mbox;
2037 
2038 	switch (type) {
2039 	case TYPE_AFPF:
2040 		mw = &rvu->afpf_wq_info;
2041 		break;
2042 	case TYPE_AFVF:
2043 		mw = &rvu->afvf_wq_info;
2044 		break;
2045 	default:
2046 		return;
2047 	}
2048 
2049 	devid = mwork - mw->mbox_wrk;
2050 	mbox = &mw->mbox;
2051 	mdev = &mbox->dev[devid];
2052 
2053 	/* Process received mbox messages */
2054 	req_hdr = mdev->mbase + mbox->rx_start;
2055 	if (mw->mbox_wrk[devid].num_msgs == 0)
2056 		return;
2057 
2058 	offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2059 
2060 	for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2061 		msg = mdev->mbase + offset;
2062 
2063 		/* Set which PF/VF sent this message based on mbox IRQ */
2064 		switch (type) {
2065 		case TYPE_AFPF:
2066 			msg->pcifunc &=
2067 				~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
2068 			msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
2069 			break;
2070 		case TYPE_AFVF:
2071 			msg->pcifunc &=
2072 				~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2073 			msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2074 			break;
2075 		}
2076 
2077 		err = rvu_process_mbox_msg(mbox, devid, msg);
2078 		if (!err) {
2079 			offset = mbox->rx_start + msg->next_msgoff;
2080 			continue;
2081 		}
2082 
2083 		if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2084 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2085 				 err, otx2_mbox_id2name(msg->id),
2086 				 msg->id, rvu_get_pf(msg->pcifunc),
2087 				 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2088 		else
2089 			dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2090 				 err, otx2_mbox_id2name(msg->id),
2091 				 msg->id, devid);
2092 	}
2093 	mw->mbox_wrk[devid].num_msgs = 0;
2094 
2095 	/* Send mbox responses to VF/PF */
2096 	otx2_mbox_msg_send(mbox, devid);
2097 }
2098 
2099 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2100 {
2101 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2102 
2103 	__rvu_mbox_handler(mwork, TYPE_AFPF);
2104 }
2105 
2106 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2107 {
2108 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2109 
2110 	__rvu_mbox_handler(mwork, TYPE_AFVF);
2111 }
2112 
2113 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2114 {
2115 	struct rvu *rvu = mwork->rvu;
2116 	struct otx2_mbox_dev *mdev;
2117 	struct mbox_hdr *rsp_hdr;
2118 	struct mbox_msghdr *msg;
2119 	struct mbox_wq_info *mw;
2120 	struct otx2_mbox *mbox;
2121 	int offset, id, devid;
2122 
2123 	switch (type) {
2124 	case TYPE_AFPF:
2125 		mw = &rvu->afpf_wq_info;
2126 		break;
2127 	case TYPE_AFVF:
2128 		mw = &rvu->afvf_wq_info;
2129 		break;
2130 	default:
2131 		return;
2132 	}
2133 
2134 	devid = mwork - mw->mbox_wrk_up;
2135 	mbox = &mw->mbox_up;
2136 	mdev = &mbox->dev[devid];
2137 
2138 	rsp_hdr = mdev->mbase + mbox->rx_start;
2139 	if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2140 		dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2141 		return;
2142 	}
2143 
2144 	offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2145 
2146 	for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2147 		msg = mdev->mbase + offset;
2148 
2149 		if (msg->id >= MBOX_MSG_MAX) {
2150 			dev_err(rvu->dev,
2151 				"Mbox msg with unknown ID 0x%x\n", msg->id);
2152 			goto end;
2153 		}
2154 
2155 		if (msg->sig != OTX2_MBOX_RSP_SIG) {
2156 			dev_err(rvu->dev,
2157 				"Mbox msg with wrong signature %x, ID 0x%x\n",
2158 				msg->sig, msg->id);
2159 			goto end;
2160 		}
2161 
2162 		switch (msg->id) {
2163 		case MBOX_MSG_CGX_LINK_EVENT:
2164 			break;
2165 		default:
2166 			if (msg->rc)
2167 				dev_err(rvu->dev,
2168 					"Mbox msg response has err %d, ID 0x%x\n",
2169 					msg->rc, msg->id);
2170 			break;
2171 		}
2172 end:
2173 		offset = mbox->rx_start + msg->next_msgoff;
2174 		mdev->msgs_acked++;
2175 	}
2176 	mw->mbox_wrk_up[devid].up_num_msgs = 0;
2177 
2178 	otx2_mbox_reset(mbox, devid);
2179 }
2180 
2181 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2182 {
2183 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2184 
2185 	__rvu_mbox_up_handler(mwork, TYPE_AFPF);
2186 }
2187 
2188 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2189 {
2190 	struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2191 
2192 	__rvu_mbox_up_handler(mwork, TYPE_AFVF);
2193 }
2194 
2195 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2196 				int num, int type)
2197 {
2198 	struct rvu_hwinfo *hw = rvu->hw;
2199 	int region;
2200 	u64 bar4;
2201 
2202 	/* For cn10k platform VF mailbox regions of a PF follows after the
2203 	 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2204 	 * RVU_PF_VF_BAR4_ADDR register.
2205 	 */
2206 	if (type == TYPE_AFVF) {
2207 		for (region = 0; region < num; region++) {
2208 			if (hw->cap.per_pf_mbox_regs) {
2209 				bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2210 						  RVU_AF_PFX_BAR4_ADDR(0)) +
2211 						  MBOX_SIZE;
2212 				bar4 += region * MBOX_SIZE;
2213 			} else {
2214 				bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2215 				bar4 += region * MBOX_SIZE;
2216 			}
2217 			mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2218 			if (!mbox_addr[region])
2219 				goto error;
2220 		}
2221 		return 0;
2222 	}
2223 
2224 	/* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2225 	 * PF registers. Whereas for Octeontx2 it is read from
2226 	 * RVU_AF_PF_BAR4_ADDR register.
2227 	 */
2228 	for (region = 0; region < num; region++) {
2229 		if (hw->cap.per_pf_mbox_regs) {
2230 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2231 					  RVU_AF_PFX_BAR4_ADDR(region));
2232 		} else {
2233 			bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2234 					  RVU_AF_PF_BAR4_ADDR);
2235 			bar4 += region * MBOX_SIZE;
2236 		}
2237 		mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2238 		if (!mbox_addr[region])
2239 			goto error;
2240 	}
2241 	return 0;
2242 
2243 error:
2244 	while (region--)
2245 		iounmap((void __iomem *)mbox_addr[region]);
2246 	return -ENOMEM;
2247 }
2248 
2249 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2250 			 int type, int num,
2251 			 void (mbox_handler)(struct work_struct *),
2252 			 void (mbox_up_handler)(struct work_struct *))
2253 {
2254 	int err = -EINVAL, i, dir, dir_up;
2255 	void __iomem *reg_base;
2256 	struct rvu_work *mwork;
2257 	void **mbox_regions;
2258 	const char *name;
2259 
2260 	mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2261 	if (!mbox_regions)
2262 		return -ENOMEM;
2263 
2264 	switch (type) {
2265 	case TYPE_AFPF:
2266 		name = "rvu_afpf_mailbox";
2267 		dir = MBOX_DIR_AFPF;
2268 		dir_up = MBOX_DIR_AFPF_UP;
2269 		reg_base = rvu->afreg_base;
2270 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF);
2271 		if (err)
2272 			goto free_regions;
2273 		break;
2274 	case TYPE_AFVF:
2275 		name = "rvu_afvf_mailbox";
2276 		dir = MBOX_DIR_PFVF;
2277 		dir_up = MBOX_DIR_PFVF_UP;
2278 		reg_base = rvu->pfreg_base;
2279 		err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF);
2280 		if (err)
2281 			goto free_regions;
2282 		break;
2283 	default:
2284 		return err;
2285 	}
2286 
2287 	mw->mbox_wq = alloc_workqueue(name,
2288 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2289 				      num);
2290 	if (!mw->mbox_wq) {
2291 		err = -ENOMEM;
2292 		goto unmap_regions;
2293 	}
2294 
2295 	mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2296 				    sizeof(struct rvu_work), GFP_KERNEL);
2297 	if (!mw->mbox_wrk) {
2298 		err = -ENOMEM;
2299 		goto exit;
2300 	}
2301 
2302 	mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2303 				       sizeof(struct rvu_work), GFP_KERNEL);
2304 	if (!mw->mbox_wrk_up) {
2305 		err = -ENOMEM;
2306 		goto exit;
2307 	}
2308 
2309 	err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2310 				     reg_base, dir, num);
2311 	if (err)
2312 		goto exit;
2313 
2314 	err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2315 				     reg_base, dir_up, num);
2316 	if (err)
2317 		goto exit;
2318 
2319 	for (i = 0; i < num; i++) {
2320 		mwork = &mw->mbox_wrk[i];
2321 		mwork->rvu = rvu;
2322 		INIT_WORK(&mwork->work, mbox_handler);
2323 
2324 		mwork = &mw->mbox_wrk_up[i];
2325 		mwork->rvu = rvu;
2326 		INIT_WORK(&mwork->work, mbox_up_handler);
2327 	}
2328 	kfree(mbox_regions);
2329 	return 0;
2330 
2331 exit:
2332 	destroy_workqueue(mw->mbox_wq);
2333 unmap_regions:
2334 	while (num--)
2335 		iounmap((void __iomem *)mbox_regions[num]);
2336 free_regions:
2337 	kfree(mbox_regions);
2338 	return err;
2339 }
2340 
2341 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2342 {
2343 	struct otx2_mbox *mbox = &mw->mbox;
2344 	struct otx2_mbox_dev *mdev;
2345 	int devid;
2346 
2347 	if (mw->mbox_wq) {
2348 		flush_workqueue(mw->mbox_wq);
2349 		destroy_workqueue(mw->mbox_wq);
2350 		mw->mbox_wq = NULL;
2351 	}
2352 
2353 	for (devid = 0; devid < mbox->ndevs; devid++) {
2354 		mdev = &mbox->dev[devid];
2355 		if (mdev->hwbase)
2356 			iounmap((void __iomem *)mdev->hwbase);
2357 	}
2358 
2359 	otx2_mbox_destroy(&mw->mbox);
2360 	otx2_mbox_destroy(&mw->mbox_up);
2361 }
2362 
2363 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2364 			   int mdevs, u64 intr)
2365 {
2366 	struct otx2_mbox_dev *mdev;
2367 	struct otx2_mbox *mbox;
2368 	struct mbox_hdr *hdr;
2369 	int i;
2370 
2371 	for (i = first; i < mdevs; i++) {
2372 		/* start from 0 */
2373 		if (!(intr & BIT_ULL(i - first)))
2374 			continue;
2375 
2376 		mbox = &mw->mbox;
2377 		mdev = &mbox->dev[i];
2378 		hdr = mdev->mbase + mbox->rx_start;
2379 
2380 		/*The hdr->num_msgs is set to zero immediately in the interrupt
2381 		 * handler to  ensure that it holds a correct value next time
2382 		 * when the interrupt handler is called.
2383 		 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2384 		 * pf>mbox.up_num_msgs holds the data for use in
2385 		 * pfaf_mbox_up_handler.
2386 		 */
2387 
2388 		if (hdr->num_msgs) {
2389 			mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2390 			hdr->num_msgs = 0;
2391 			queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2392 		}
2393 		mbox = &mw->mbox_up;
2394 		mdev = &mbox->dev[i];
2395 		hdr = mdev->mbase + mbox->rx_start;
2396 		if (hdr->num_msgs) {
2397 			mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2398 			hdr->num_msgs = 0;
2399 			queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2400 		}
2401 	}
2402 }
2403 
2404 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2405 {
2406 	struct rvu *rvu = (struct rvu *)rvu_irq;
2407 	int vfs = rvu->vfs;
2408 	u64 intr;
2409 
2410 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2411 	/* Clear interrupts */
2412 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2413 	if (intr)
2414 		trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2415 
2416 	/* Sync with mbox memory region */
2417 	rmb();
2418 
2419 	rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2420 
2421 	/* Handle VF interrupts */
2422 	if (vfs > 64) {
2423 		intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2424 		rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2425 
2426 		rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2427 		vfs -= 64;
2428 	}
2429 
2430 	intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2431 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2432 	if (intr)
2433 		trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2434 
2435 	rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2436 
2437 	return IRQ_HANDLED;
2438 }
2439 
2440 static void rvu_enable_mbox_intr(struct rvu *rvu)
2441 {
2442 	struct rvu_hwinfo *hw = rvu->hw;
2443 
2444 	/* Clear spurious irqs, if any */
2445 	rvu_write64(rvu, BLKADDR_RVUM,
2446 		    RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2447 
2448 	/* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2449 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2450 		    INTR_MASK(hw->total_pfs) & ~1ULL);
2451 }
2452 
2453 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2454 {
2455 	struct rvu_block *block;
2456 	int slot, lf, num_lfs;
2457 	int err;
2458 
2459 	block = &rvu->hw->block[blkaddr];
2460 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2461 					block->addr);
2462 	if (!num_lfs)
2463 		return;
2464 	for (slot = 0; slot < num_lfs; slot++) {
2465 		lf = rvu_get_lf(rvu, block, pcifunc, slot);
2466 		if (lf < 0)
2467 			continue;
2468 
2469 		/* Cleanup LF and reset it */
2470 		if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2471 			rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2472 		else if (block->addr == BLKADDR_NPA)
2473 			rvu_npa_lf_teardown(rvu, pcifunc, lf);
2474 		else if ((block->addr == BLKADDR_CPT0) ||
2475 			 (block->addr == BLKADDR_CPT1))
2476 			rvu_cpt_lf_teardown(rvu, pcifunc, lf, slot);
2477 
2478 		err = rvu_lf_reset(rvu, block, lf);
2479 		if (err) {
2480 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2481 				block->addr, lf);
2482 		}
2483 	}
2484 }
2485 
2486 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2487 {
2488 	mutex_lock(&rvu->flr_lock);
2489 	/* Reset order should reflect inter-block dependencies:
2490 	 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2491 	 * 2. Flush and reset SSO/SSOW
2492 	 * 3. Cleanup pools (NPA)
2493 	 */
2494 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2495 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2496 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2497 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2498 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2499 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2500 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2501 	rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2502 	rvu_reset_lmt_map_tbl(rvu, pcifunc);
2503 	rvu_detach_rsrcs(rvu, NULL, pcifunc);
2504 	mutex_unlock(&rvu->flr_lock);
2505 }
2506 
2507 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2508 {
2509 	int reg = 0;
2510 
2511 	/* pcifunc = 0(PF0) | (vf + 1) */
2512 	__rvu_flr_handler(rvu, vf + 1);
2513 
2514 	if (vf >= 64) {
2515 		reg = 1;
2516 		vf = vf - 64;
2517 	}
2518 
2519 	/* Signal FLR finish and enable IRQ */
2520 	rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2521 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2522 }
2523 
2524 static void rvu_flr_handler(struct work_struct *work)
2525 {
2526 	struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2527 	struct rvu *rvu = flrwork->rvu;
2528 	u16 pcifunc, numvfs, vf;
2529 	u64 cfg;
2530 	int pf;
2531 
2532 	pf = flrwork - rvu->flr_wrk;
2533 	if (pf >= rvu->hw->total_pfs) {
2534 		rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2535 		return;
2536 	}
2537 
2538 	cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2539 	numvfs = (cfg >> 12) & 0xFF;
2540 	pcifunc  = pf << RVU_PFVF_PF_SHIFT;
2541 
2542 	for (vf = 0; vf < numvfs; vf++)
2543 		__rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2544 
2545 	__rvu_flr_handler(rvu, pcifunc);
2546 
2547 	/* Signal FLR finish */
2548 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2549 
2550 	/* Enable interrupt */
2551 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,  BIT_ULL(pf));
2552 }
2553 
2554 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2555 {
2556 	int dev, vf, reg = 0;
2557 	u64 intr;
2558 
2559 	if (start_vf >= 64)
2560 		reg = 1;
2561 
2562 	intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2563 	if (!intr)
2564 		return;
2565 
2566 	for (vf = 0; vf < numvfs; vf++) {
2567 		if (!(intr & BIT_ULL(vf)))
2568 			continue;
2569 		/* Clear and disable the interrupt */
2570 		rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2571 		rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2572 
2573 		dev = vf + start_vf + rvu->hw->total_pfs;
2574 		queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2575 	}
2576 }
2577 
2578 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2579 {
2580 	struct rvu *rvu = (struct rvu *)rvu_irq;
2581 	u64 intr;
2582 	u8  pf;
2583 
2584 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2585 	if (!intr)
2586 		goto afvf_flr;
2587 
2588 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2589 		if (intr & (1ULL << pf)) {
2590 			/* clear interrupt */
2591 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2592 				    BIT_ULL(pf));
2593 			/* Disable the interrupt */
2594 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2595 				    BIT_ULL(pf));
2596 			/* PF is already dead do only AF related operations */
2597 			queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2598 		}
2599 	}
2600 
2601 afvf_flr:
2602 	rvu_afvf_queue_flr_work(rvu, 0, 64);
2603 	if (rvu->vfs > 64)
2604 		rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2605 
2606 	return IRQ_HANDLED;
2607 }
2608 
2609 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2610 {
2611 	int vf;
2612 
2613 	/* Nothing to be done here other than clearing the
2614 	 * TRPEND bit.
2615 	 */
2616 	for (vf = 0; vf < 64; vf++) {
2617 		if (intr & (1ULL << vf)) {
2618 			/* clear the trpend due to ME(master enable) */
2619 			rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2620 			/* clear interrupt */
2621 			rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2622 		}
2623 	}
2624 }
2625 
2626 /* Handles ME interrupts from VFs of AF */
2627 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2628 {
2629 	struct rvu *rvu = (struct rvu *)rvu_irq;
2630 	int vfset;
2631 	u64 intr;
2632 
2633 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2634 
2635 	for (vfset = 0; vfset <= 1; vfset++) {
2636 		intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2637 		if (intr)
2638 			rvu_me_handle_vfset(rvu, vfset, intr);
2639 	}
2640 
2641 	return IRQ_HANDLED;
2642 }
2643 
2644 /* Handles ME interrupts from PFs */
2645 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2646 {
2647 	struct rvu *rvu = (struct rvu *)rvu_irq;
2648 	u64 intr;
2649 	u8  pf;
2650 
2651 	intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2652 
2653 	/* Nothing to be done here other than clearing the
2654 	 * TRPEND bit.
2655 	 */
2656 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2657 		if (intr & (1ULL << pf)) {
2658 			/* clear the trpend due to ME(master enable) */
2659 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2660 				    BIT_ULL(pf));
2661 			/* clear interrupt */
2662 			rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2663 				    BIT_ULL(pf));
2664 		}
2665 	}
2666 
2667 	return IRQ_HANDLED;
2668 }
2669 
2670 static void rvu_unregister_interrupts(struct rvu *rvu)
2671 {
2672 	int irq;
2673 
2674 	/* Disable the Mbox interrupt */
2675 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2676 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2677 
2678 	/* Disable the PF FLR interrupt */
2679 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2680 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2681 
2682 	/* Disable the PF ME interrupt */
2683 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2684 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2685 
2686 	for (irq = 0; irq < rvu->num_vec; irq++) {
2687 		if (rvu->irq_allocated[irq]) {
2688 			free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2689 			rvu->irq_allocated[irq] = false;
2690 		}
2691 	}
2692 
2693 	pci_free_irq_vectors(rvu->pdev);
2694 	rvu->num_vec = 0;
2695 }
2696 
2697 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2698 {
2699 	struct rvu_pfvf *pfvf = &rvu->pf[0];
2700 	int offset;
2701 
2702 	pfvf = &rvu->pf[0];
2703 	offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2704 
2705 	/* Make sure there are enough MSIX vectors configured so that
2706 	 * VF interrupts can be handled. Offset equal to zero means
2707 	 * that PF vectors are not configured and overlapping AF vectors.
2708 	 */
2709 	return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2710 	       offset;
2711 }
2712 
2713 static int rvu_register_interrupts(struct rvu *rvu)
2714 {
2715 	int ret, offset, pf_vec_start;
2716 
2717 	rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2718 
2719 	rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2720 					   NAME_SIZE, GFP_KERNEL);
2721 	if (!rvu->irq_name)
2722 		return -ENOMEM;
2723 
2724 	rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2725 					  sizeof(bool), GFP_KERNEL);
2726 	if (!rvu->irq_allocated)
2727 		return -ENOMEM;
2728 
2729 	/* Enable MSI-X */
2730 	ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2731 				    rvu->num_vec, PCI_IRQ_MSIX);
2732 	if (ret < 0) {
2733 		dev_err(rvu->dev,
2734 			"RVUAF: Request for %d msix vectors failed, ret %d\n",
2735 			rvu->num_vec, ret);
2736 		return ret;
2737 	}
2738 
2739 	/* Register mailbox interrupt handler */
2740 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2741 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2742 			  rvu_mbox_intr_handler, 0,
2743 			  &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2744 	if (ret) {
2745 		dev_err(rvu->dev,
2746 			"RVUAF: IRQ registration failed for mbox irq\n");
2747 		goto fail;
2748 	}
2749 
2750 	rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2751 
2752 	/* Enable mailbox interrupts from all PFs */
2753 	rvu_enable_mbox_intr(rvu);
2754 
2755 	/* Register FLR interrupt handler */
2756 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2757 		"RVUAF FLR");
2758 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2759 			  rvu_flr_intr_handler, 0,
2760 			  &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2761 			  rvu);
2762 	if (ret) {
2763 		dev_err(rvu->dev,
2764 			"RVUAF: IRQ registration failed for FLR\n");
2765 		goto fail;
2766 	}
2767 	rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2768 
2769 	/* Enable FLR interrupt for all PFs*/
2770 	rvu_write64(rvu, BLKADDR_RVUM,
2771 		    RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2772 
2773 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2774 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2775 
2776 	/* Register ME interrupt handler */
2777 	sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2778 		"RVUAF ME");
2779 	ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2780 			  rvu_me_pf_intr_handler, 0,
2781 			  &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2782 			  rvu);
2783 	if (ret) {
2784 		dev_err(rvu->dev,
2785 			"RVUAF: IRQ registration failed for ME\n");
2786 	}
2787 	rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2788 
2789 	/* Clear TRPEND bit for all PF */
2790 	rvu_write64(rvu, BLKADDR_RVUM,
2791 		    RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2792 	/* Enable ME interrupt for all PFs*/
2793 	rvu_write64(rvu, BLKADDR_RVUM,
2794 		    RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2795 
2796 	rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2797 		    INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2798 
2799 	if (!rvu_afvf_msix_vectors_num_ok(rvu))
2800 		return 0;
2801 
2802 	/* Get PF MSIX vectors offset. */
2803 	pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2804 				  RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2805 
2806 	/* Register MBOX0 interrupt. */
2807 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2808 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2809 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2810 			  rvu_mbox_intr_handler, 0,
2811 			  &rvu->irq_name[offset * NAME_SIZE],
2812 			  rvu);
2813 	if (ret)
2814 		dev_err(rvu->dev,
2815 			"RVUAF: IRQ registration failed for Mbox0\n");
2816 
2817 	rvu->irq_allocated[offset] = true;
2818 
2819 	/* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2820 	 * simply increment current offset by 1.
2821 	 */
2822 	offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2823 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2824 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2825 			  rvu_mbox_intr_handler, 0,
2826 			  &rvu->irq_name[offset * NAME_SIZE],
2827 			  rvu);
2828 	if (ret)
2829 		dev_err(rvu->dev,
2830 			"RVUAF: IRQ registration failed for Mbox1\n");
2831 
2832 	rvu->irq_allocated[offset] = true;
2833 
2834 	/* Register FLR interrupt handler for AF's VFs */
2835 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2836 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2837 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2838 			  rvu_flr_intr_handler, 0,
2839 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2840 	if (ret) {
2841 		dev_err(rvu->dev,
2842 			"RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2843 		goto fail;
2844 	}
2845 	rvu->irq_allocated[offset] = true;
2846 
2847 	offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
2848 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
2849 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2850 			  rvu_flr_intr_handler, 0,
2851 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2852 	if (ret) {
2853 		dev_err(rvu->dev,
2854 			"RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
2855 		goto fail;
2856 	}
2857 	rvu->irq_allocated[offset] = true;
2858 
2859 	/* Register ME interrupt handler for AF's VFs */
2860 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
2861 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
2862 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2863 			  rvu_me_vf_intr_handler, 0,
2864 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2865 	if (ret) {
2866 		dev_err(rvu->dev,
2867 			"RVUAF: IRQ registration failed for RVUAFVF ME0\n");
2868 		goto fail;
2869 	}
2870 	rvu->irq_allocated[offset] = true;
2871 
2872 	offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
2873 	sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
2874 	ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2875 			  rvu_me_vf_intr_handler, 0,
2876 			  &rvu->irq_name[offset * NAME_SIZE], rvu);
2877 	if (ret) {
2878 		dev_err(rvu->dev,
2879 			"RVUAF: IRQ registration failed for RVUAFVF ME1\n");
2880 		goto fail;
2881 	}
2882 	rvu->irq_allocated[offset] = true;
2883 	return 0;
2884 
2885 fail:
2886 	rvu_unregister_interrupts(rvu);
2887 	return ret;
2888 }
2889 
2890 static void rvu_flr_wq_destroy(struct rvu *rvu)
2891 {
2892 	if (rvu->flr_wq) {
2893 		flush_workqueue(rvu->flr_wq);
2894 		destroy_workqueue(rvu->flr_wq);
2895 		rvu->flr_wq = NULL;
2896 	}
2897 }
2898 
2899 static int rvu_flr_init(struct rvu *rvu)
2900 {
2901 	int dev, num_devs;
2902 	u64 cfg;
2903 	int pf;
2904 
2905 	/* Enable FLR for all PFs*/
2906 	for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2907 		cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2908 		rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
2909 			    cfg | BIT_ULL(22));
2910 	}
2911 
2912 	rvu->flr_wq = alloc_workqueue("rvu_afpf_flr",
2913 				      WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2914 				       1);
2915 	if (!rvu->flr_wq)
2916 		return -ENOMEM;
2917 
2918 	num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
2919 	rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
2920 				    sizeof(struct rvu_work), GFP_KERNEL);
2921 	if (!rvu->flr_wrk) {
2922 		destroy_workqueue(rvu->flr_wq);
2923 		return -ENOMEM;
2924 	}
2925 
2926 	for (dev = 0; dev < num_devs; dev++) {
2927 		rvu->flr_wrk[dev].rvu = rvu;
2928 		INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
2929 	}
2930 
2931 	mutex_init(&rvu->flr_lock);
2932 
2933 	return 0;
2934 }
2935 
2936 static void rvu_disable_afvf_intr(struct rvu *rvu)
2937 {
2938 	int vfs = rvu->vfs;
2939 
2940 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
2941 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
2942 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
2943 	if (vfs <= 64)
2944 		return;
2945 
2946 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
2947 		      INTR_MASK(vfs - 64));
2948 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2949 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
2950 }
2951 
2952 static void rvu_enable_afvf_intr(struct rvu *rvu)
2953 {
2954 	int vfs = rvu->vfs;
2955 
2956 	/* Clear any pending interrupts and enable AF VF interrupts for
2957 	 * the first 64 VFs.
2958 	 */
2959 	/* Mbox */
2960 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
2961 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
2962 
2963 	/* FLR */
2964 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
2965 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
2966 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
2967 
2968 	/* Same for remaining VFs, if any. */
2969 	if (vfs <= 64)
2970 		return;
2971 
2972 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
2973 	rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
2974 		      INTR_MASK(vfs - 64));
2975 
2976 	rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
2977 	rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2978 	rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
2979 }
2980 
2981 int rvu_get_num_lbk_chans(void)
2982 {
2983 	struct pci_dev *pdev;
2984 	void __iomem *base;
2985 	int ret = -EIO;
2986 
2987 	pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
2988 			      NULL);
2989 	if (!pdev)
2990 		goto err;
2991 
2992 	base = pci_ioremap_bar(pdev, 0);
2993 	if (!base)
2994 		goto err_put;
2995 
2996 	/* Read number of available LBK channels from LBK(0)_CONST register. */
2997 	ret = (readq(base + 0x10) >> 32) & 0xffff;
2998 	iounmap(base);
2999 err_put:
3000 	pci_dev_put(pdev);
3001 err:
3002 	return ret;
3003 }
3004 
3005 static int rvu_enable_sriov(struct rvu *rvu)
3006 {
3007 	struct pci_dev *pdev = rvu->pdev;
3008 	int err, chans, vfs;
3009 
3010 	if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
3011 		dev_warn(&pdev->dev,
3012 			 "Skipping SRIOV enablement since not enough IRQs are available\n");
3013 		return 0;
3014 	}
3015 
3016 	chans = rvu_get_num_lbk_chans();
3017 	if (chans < 0)
3018 		return chans;
3019 
3020 	vfs = pci_sriov_get_totalvfs(pdev);
3021 
3022 	/* Limit VFs in case we have more VFs than LBK channels available. */
3023 	if (vfs > chans)
3024 		vfs = chans;
3025 
3026 	if (!vfs)
3027 		return 0;
3028 
3029 	/* LBK channel number 63 is used for switching packets between
3030 	 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3031 	 */
3032 	if (vfs > 62)
3033 		vfs = 62;
3034 
3035 	/* Save VFs number for reference in VF interrupts handlers.
3036 	 * Since interrupts might start arriving during SRIOV enablement
3037 	 * ordinary API cannot be used to get number of enabled VFs.
3038 	 */
3039 	rvu->vfs = vfs;
3040 
3041 	err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
3042 			    rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
3043 	if (err)
3044 		return err;
3045 
3046 	rvu_enable_afvf_intr(rvu);
3047 	/* Make sure IRQs are enabled before SRIOV. */
3048 	mb();
3049 
3050 	err = pci_enable_sriov(pdev, vfs);
3051 	if (err) {
3052 		rvu_disable_afvf_intr(rvu);
3053 		rvu_mbox_destroy(&rvu->afvf_wq_info);
3054 		return err;
3055 	}
3056 
3057 	return 0;
3058 }
3059 
3060 static void rvu_disable_sriov(struct rvu *rvu)
3061 {
3062 	rvu_disable_afvf_intr(rvu);
3063 	rvu_mbox_destroy(&rvu->afvf_wq_info);
3064 	pci_disable_sriov(rvu->pdev);
3065 }
3066 
3067 static void rvu_update_module_params(struct rvu *rvu)
3068 {
3069 	const char *default_pfl_name = "default";
3070 
3071 	strscpy(rvu->mkex_pfl_name,
3072 		mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3073 	strscpy(rvu->kpu_pfl_name,
3074 		kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3075 }
3076 
3077 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3078 {
3079 	struct device *dev = &pdev->dev;
3080 	struct rvu *rvu;
3081 	int    err;
3082 
3083 	rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
3084 	if (!rvu)
3085 		return -ENOMEM;
3086 
3087 	rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
3088 	if (!rvu->hw) {
3089 		devm_kfree(dev, rvu);
3090 		return -ENOMEM;
3091 	}
3092 
3093 	pci_set_drvdata(pdev, rvu);
3094 	rvu->pdev = pdev;
3095 	rvu->dev = &pdev->dev;
3096 
3097 	err = pci_enable_device(pdev);
3098 	if (err) {
3099 		dev_err(dev, "Failed to enable PCI device\n");
3100 		goto err_freemem;
3101 	}
3102 
3103 	err = pci_request_regions(pdev, DRV_NAME);
3104 	if (err) {
3105 		dev_err(dev, "PCI request regions failed 0x%x\n", err);
3106 		goto err_disable_device;
3107 	}
3108 
3109 	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3110 	if (err) {
3111 		dev_err(dev, "DMA mask config failed, abort\n");
3112 		goto err_release_regions;
3113 	}
3114 
3115 	pci_set_master(pdev);
3116 
3117 	rvu->ptp = ptp_get();
3118 	if (IS_ERR(rvu->ptp)) {
3119 		err = PTR_ERR(rvu->ptp);
3120 		if (err == -EPROBE_DEFER)
3121 			goto err_release_regions;
3122 		rvu->ptp = NULL;
3123 	}
3124 
3125 	/* Map Admin function CSRs */
3126 	rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3127 	rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3128 	if (!rvu->afreg_base || !rvu->pfreg_base) {
3129 		dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3130 		err = -ENOMEM;
3131 		goto err_put_ptp;
3132 	}
3133 
3134 	/* Store module params in rvu structure */
3135 	rvu_update_module_params(rvu);
3136 
3137 	/* Check which blocks the HW supports */
3138 	rvu_check_block_implemented(rvu);
3139 
3140 	rvu_reset_all_blocks(rvu);
3141 
3142 	rvu_setup_hw_capabilities(rvu);
3143 
3144 	err = rvu_setup_hw_resources(rvu);
3145 	if (err)
3146 		goto err_put_ptp;
3147 
3148 	/* Init mailbox btw AF and PFs */
3149 	err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3150 			    rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3151 			    rvu_afpf_mbox_up_handler);
3152 	if (err) {
3153 		dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3154 		goto err_hwsetup;
3155 	}
3156 
3157 	err = rvu_flr_init(rvu);
3158 	if (err) {
3159 		dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3160 		goto err_mbox;
3161 	}
3162 
3163 	err = rvu_register_interrupts(rvu);
3164 	if (err) {
3165 		dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3166 		goto err_flr;
3167 	}
3168 
3169 	err = rvu_register_dl(rvu);
3170 	if (err) {
3171 		dev_err(dev, "%s: Failed to register devlink\n", __func__);
3172 		goto err_irq;
3173 	}
3174 
3175 	rvu_setup_rvum_blk_revid(rvu);
3176 
3177 	/* Enable AF's VFs (if any) */
3178 	err = rvu_enable_sriov(rvu);
3179 	if (err) {
3180 		dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3181 		goto err_dl;
3182 	}
3183 
3184 	/* Initialize debugfs */
3185 	rvu_dbg_init(rvu);
3186 
3187 	mutex_init(&rvu->rswitch.switch_lock);
3188 
3189 	return 0;
3190 err_dl:
3191 	rvu_unregister_dl(rvu);
3192 err_irq:
3193 	rvu_unregister_interrupts(rvu);
3194 err_flr:
3195 	rvu_flr_wq_destroy(rvu);
3196 err_mbox:
3197 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3198 err_hwsetup:
3199 	rvu_cgx_exit(rvu);
3200 	rvu_fwdata_exit(rvu);
3201 	rvu_reset_all_blocks(rvu);
3202 	rvu_free_hw_resources(rvu);
3203 	rvu_clear_rvum_blk_revid(rvu);
3204 err_put_ptp:
3205 	ptp_put(rvu->ptp);
3206 err_release_regions:
3207 	pci_release_regions(pdev);
3208 err_disable_device:
3209 	pci_disable_device(pdev);
3210 err_freemem:
3211 	pci_set_drvdata(pdev, NULL);
3212 	devm_kfree(&pdev->dev, rvu->hw);
3213 	devm_kfree(dev, rvu);
3214 	return err;
3215 }
3216 
3217 static void rvu_remove(struct pci_dev *pdev)
3218 {
3219 	struct rvu *rvu = pci_get_drvdata(pdev);
3220 
3221 	rvu_dbg_exit(rvu);
3222 	rvu_unregister_dl(rvu);
3223 	rvu_unregister_interrupts(rvu);
3224 	rvu_flr_wq_destroy(rvu);
3225 	rvu_cgx_exit(rvu);
3226 	rvu_fwdata_exit(rvu);
3227 	rvu_mbox_destroy(&rvu->afpf_wq_info);
3228 	rvu_disable_sriov(rvu);
3229 	rvu_reset_all_blocks(rvu);
3230 	rvu_free_hw_resources(rvu);
3231 	rvu_clear_rvum_blk_revid(rvu);
3232 	ptp_put(rvu->ptp);
3233 	pci_release_regions(pdev);
3234 	pci_disable_device(pdev);
3235 	pci_set_drvdata(pdev, NULL);
3236 
3237 	devm_kfree(&pdev->dev, rvu->hw);
3238 	devm_kfree(&pdev->dev, rvu);
3239 }
3240 
3241 static struct pci_driver rvu_driver = {
3242 	.name = DRV_NAME,
3243 	.id_table = rvu_id_table,
3244 	.probe = rvu_probe,
3245 	.remove = rvu_remove,
3246 };
3247 
3248 static int __init rvu_init_module(void)
3249 {
3250 	int err;
3251 
3252 	pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3253 
3254 	err = pci_register_driver(&cgx_driver);
3255 	if (err < 0)
3256 		return err;
3257 
3258 	err = pci_register_driver(&ptp_driver);
3259 	if (err < 0)
3260 		goto ptp_err;
3261 
3262 	err =  pci_register_driver(&rvu_driver);
3263 	if (err < 0)
3264 		goto rvu_err;
3265 
3266 	return 0;
3267 rvu_err:
3268 	pci_unregister_driver(&ptp_driver);
3269 ptp_err:
3270 	pci_unregister_driver(&cgx_driver);
3271 
3272 	return err;
3273 }
3274 
3275 static void __exit rvu_cleanup_module(void)
3276 {
3277 	pci_unregister_driver(&rvu_driver);
3278 	pci_unregister_driver(&ptp_driver);
3279 	pci_unregister_driver(&cgx_driver);
3280 }
3281 
3282 module_init(rvu_init_module);
3283 module_exit(rvu_cleanup_module);
3284