xref: /linux/drivers/net/ethernet/marvell/octeon_ep/octep_rx.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell Octeon EP (EndPoint) Ethernet Driver
3  *
4  * Copyright (C) 2020 Marvell.
5  *
6  */
7 
8 #include <linux/pci.h>
9 #include <linux/etherdevice.h>
10 #include <linux/vmalloc.h>
11 
12 #include "octep_config.h"
13 #include "octep_main.h"
14 
15 static void octep_oq_reset_indices(struct octep_oq *oq)
16 {
17 	oq->host_read_idx = 0;
18 	oq->host_refill_idx = 0;
19 	oq->refill_count = 0;
20 	oq->last_pkt_count = 0;
21 	oq->pkts_pending = 0;
22 }
23 
24 /**
25  * octep_oq_fill_ring_buffers() - fill initial receive buffers for Rx ring.
26  *
27  * @oq: Octeon Rx queue data structure.
28  *
29  * Return: 0, if successfully filled receive buffers for all descriptors.
30  *         -1, if failed to allocate a buffer or failed to map for DMA.
31  */
32 static int octep_oq_fill_ring_buffers(struct octep_oq *oq)
33 {
34 	struct octep_oq_desc_hw *desc_ring = oq->desc_ring;
35 	struct page *page;
36 	u32 i;
37 
38 	for (i = 0; i < oq->max_count; i++) {
39 		page = dev_alloc_page();
40 		if (unlikely(!page)) {
41 			dev_err(oq->dev, "Rx buffer alloc failed\n");
42 			goto rx_buf_alloc_err;
43 		}
44 		desc_ring[i].buffer_ptr = dma_map_page(oq->dev, page, 0,
45 						       PAGE_SIZE,
46 						       DMA_FROM_DEVICE);
47 		if (dma_mapping_error(oq->dev, desc_ring[i].buffer_ptr)) {
48 			dev_err(oq->dev,
49 				"OQ-%d buffer alloc: DMA mapping error!\n",
50 				oq->q_no);
51 			put_page(page);
52 			goto dma_map_err;
53 		}
54 		oq->buff_info[i].page = page;
55 	}
56 
57 	return 0;
58 
59 dma_map_err:
60 rx_buf_alloc_err:
61 	while (i) {
62 		i--;
63 		dma_unmap_page(oq->dev, desc_ring[i].buffer_ptr, PAGE_SIZE, DMA_FROM_DEVICE);
64 		put_page(oq->buff_info[i].page);
65 		oq->buff_info[i].page = NULL;
66 	}
67 
68 	return -1;
69 }
70 
71 /**
72  * octep_oq_refill() - refill buffers for used Rx ring descriptors.
73  *
74  * @oct: Octeon device private data structure.
75  * @oq: Octeon Rx queue data structure.
76  *
77  * Return: number of descriptors successfully refilled with receive buffers.
78  */
79 static int octep_oq_refill(struct octep_device *oct, struct octep_oq *oq)
80 {
81 	struct octep_oq_desc_hw *desc_ring = oq->desc_ring;
82 	struct page *page;
83 	u32 refill_idx, i;
84 
85 	refill_idx = oq->host_refill_idx;
86 	for (i = 0; i < oq->refill_count; i++) {
87 		page = dev_alloc_page();
88 		if (unlikely(!page)) {
89 			dev_err(oq->dev, "refill: rx buffer alloc failed\n");
90 			oq->stats->alloc_failures++;
91 			break;
92 		}
93 
94 		desc_ring[refill_idx].buffer_ptr = dma_map_page(oq->dev, page, 0,
95 								PAGE_SIZE, DMA_FROM_DEVICE);
96 		if (dma_mapping_error(oq->dev, desc_ring[refill_idx].buffer_ptr)) {
97 			dev_err(oq->dev,
98 				"OQ-%d buffer refill: DMA mapping error!\n",
99 				oq->q_no);
100 			put_page(page);
101 			oq->stats->alloc_failures++;
102 			break;
103 		}
104 		oq->buff_info[refill_idx].page = page;
105 		refill_idx++;
106 		if (refill_idx == oq->max_count)
107 			refill_idx = 0;
108 	}
109 	oq->host_refill_idx = refill_idx;
110 	oq->refill_count -= i;
111 
112 	return i;
113 }
114 
115 /**
116  * octep_setup_oq() - Setup a Rx queue.
117  *
118  * @oct: Octeon device private data structure.
119  * @q_no: Rx queue number to be setup.
120  *
121  * Allocate resources for a Rx queue.
122  */
123 static int octep_setup_oq(struct octep_device *oct, int q_no)
124 {
125 	struct octep_oq *oq;
126 	u32 desc_ring_size;
127 
128 	oq = vzalloc(sizeof(*oq));
129 	if (!oq)
130 		goto create_oq_fail;
131 	oct->oq[q_no] = oq;
132 
133 	oq->octep_dev = oct;
134 	oq->netdev = oct->netdev;
135 	oq->dev = &oct->pdev->dev;
136 	oq->q_no = q_no;
137 	oq->stats = &oct->stats_oq[q_no];
138 	oq->max_count = CFG_GET_OQ_NUM_DESC(oct->conf);
139 	oq->ring_size_mask = oq->max_count - 1;
140 	oq->buffer_size = CFG_GET_OQ_BUF_SIZE(oct->conf);
141 	oq->max_single_buffer_size = oq->buffer_size - OCTEP_OQ_RESP_HW_SIZE;
142 
143 	/* When the hardware/firmware supports additional capabilities,
144 	 * additional header is filled-in by Octeon after length field in
145 	 * Rx packets. this header contains additional packet information.
146 	 */
147 	if (oct->conf->fw_info.rx_ol_flags)
148 		oq->max_single_buffer_size -= OCTEP_OQ_RESP_HW_EXT_SIZE;
149 
150 	oq->refill_threshold = CFG_GET_OQ_REFILL_THRESHOLD(oct->conf);
151 
152 	desc_ring_size = oq->max_count * OCTEP_OQ_DESC_SIZE;
153 	oq->desc_ring = dma_alloc_coherent(oq->dev, desc_ring_size,
154 					   &oq->desc_ring_dma, GFP_KERNEL);
155 
156 	if (unlikely(!oq->desc_ring)) {
157 		dev_err(oq->dev,
158 			"Failed to allocate DMA memory for OQ-%d !!\n", q_no);
159 		goto desc_dma_alloc_err;
160 	}
161 
162 	oq->buff_info = vcalloc(oq->max_count, OCTEP_OQ_RECVBUF_SIZE);
163 	if (unlikely(!oq->buff_info)) {
164 		dev_err(&oct->pdev->dev,
165 			"Failed to allocate buffer info for OQ-%d\n", q_no);
166 		goto buf_list_err;
167 	}
168 
169 	if (octep_oq_fill_ring_buffers(oq))
170 		goto oq_fill_buff_err;
171 
172 	octep_oq_reset_indices(oq);
173 	oct->hw_ops.setup_oq_regs(oct, q_no);
174 	oct->num_oqs++;
175 
176 	return 0;
177 
178 oq_fill_buff_err:
179 	vfree(oq->buff_info);
180 	oq->buff_info = NULL;
181 buf_list_err:
182 	dma_free_coherent(oq->dev, desc_ring_size,
183 			  oq->desc_ring, oq->desc_ring_dma);
184 	oq->desc_ring = NULL;
185 desc_dma_alloc_err:
186 	vfree(oq);
187 	oct->oq[q_no] = NULL;
188 create_oq_fail:
189 	return -1;
190 }
191 
192 /**
193  * octep_oq_free_ring_buffers() - Free ring buffers.
194  *
195  * @oq: Octeon Rx queue data structure.
196  *
197  * Free receive buffers in unused Rx queue descriptors.
198  */
199 static void octep_oq_free_ring_buffers(struct octep_oq *oq)
200 {
201 	struct octep_oq_desc_hw *desc_ring = oq->desc_ring;
202 	int  i;
203 
204 	if (!oq->desc_ring || !oq->buff_info)
205 		return;
206 
207 	for (i = 0; i < oq->max_count; i++)  {
208 		if (oq->buff_info[i].page) {
209 			dma_unmap_page(oq->dev, desc_ring[i].buffer_ptr,
210 				       PAGE_SIZE, DMA_FROM_DEVICE);
211 			put_page(oq->buff_info[i].page);
212 			oq->buff_info[i].page = NULL;
213 			desc_ring[i].buffer_ptr = 0;
214 		}
215 	}
216 	octep_oq_reset_indices(oq);
217 }
218 
219 /**
220  * octep_free_oq() - Free Rx queue resources.
221  *
222  * @oq: Octeon Rx queue data structure.
223  *
224  * Free all resources of a Rx queue.
225  */
226 static int octep_free_oq(struct octep_oq *oq)
227 {
228 	struct octep_device *oct = oq->octep_dev;
229 	int q_no = oq->q_no;
230 
231 	octep_oq_free_ring_buffers(oq);
232 
233 	vfree(oq->buff_info);
234 
235 	if (oq->desc_ring)
236 		dma_free_coherent(oq->dev,
237 				  oq->max_count * OCTEP_OQ_DESC_SIZE,
238 				  oq->desc_ring, oq->desc_ring_dma);
239 
240 	vfree(oq);
241 	oct->oq[q_no] = NULL;
242 	oct->num_oqs--;
243 	return 0;
244 }
245 
246 /**
247  * octep_setup_oqs() - setup resources for all Rx queues.
248  *
249  * @oct: Octeon device private data structure.
250  */
251 int octep_setup_oqs(struct octep_device *oct)
252 {
253 	int i, retval = 0;
254 
255 	oct->num_oqs = 0;
256 	for (i = 0; i < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); i++) {
257 		retval = octep_setup_oq(oct, i);
258 		if (retval) {
259 			dev_err(&oct->pdev->dev,
260 				"Failed to setup OQ(RxQ)-%d.\n", i);
261 			goto oq_setup_err;
262 		}
263 		dev_dbg(&oct->pdev->dev, "Successfully setup OQ(RxQ)-%d.\n", i);
264 	}
265 
266 	return 0;
267 
268 oq_setup_err:
269 	while (i) {
270 		i--;
271 		octep_free_oq(oct->oq[i]);
272 	}
273 	return -1;
274 }
275 
276 /**
277  * octep_oq_dbell_init() - Initialize Rx queue doorbell.
278  *
279  * @oct: Octeon device private data structure.
280  *
281  * Write number of descriptors to Rx queue doorbell register.
282  */
283 void octep_oq_dbell_init(struct octep_device *oct)
284 {
285 	int i;
286 
287 	for (i = 0; i < oct->num_oqs; i++)
288 		writel(oct->oq[i]->max_count, oct->oq[i]->pkts_credit_reg);
289 }
290 
291 /**
292  * octep_free_oqs() - Free resources of all Rx queues.
293  *
294  * @oct: Octeon device private data structure.
295  */
296 void octep_free_oqs(struct octep_device *oct)
297 {
298 	int i;
299 
300 	for (i = 0; i < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); i++) {
301 		if (!oct->oq[i])
302 			continue;
303 		octep_free_oq(oct->oq[i]);
304 		dev_dbg(&oct->pdev->dev,
305 			"Successfully freed OQ(RxQ)-%d.\n", i);
306 	}
307 }
308 
309 /**
310  * octep_oq_check_hw_for_pkts() - Check for new Rx packets.
311  *
312  * @oct: Octeon device private data structure.
313  * @oq: Octeon Rx queue data structure.
314  *
315  * Return: packets received after previous check.
316  */
317 static int octep_oq_check_hw_for_pkts(struct octep_device *oct,
318 				      struct octep_oq *oq)
319 {
320 	u32 pkt_count, new_pkts;
321 
322 	pkt_count = readl(oq->pkts_sent_reg);
323 	new_pkts = pkt_count - oq->last_pkt_count;
324 
325 	/* Clear the hardware packets counter register if the rx queue is
326 	 * being processed continuously with-in a single interrupt and
327 	 * reached half its max value.
328 	 * this counter is not cleared every time read, to save write cycles.
329 	 */
330 	if (unlikely(pkt_count > 0xF0000000U)) {
331 		writel(pkt_count, oq->pkts_sent_reg);
332 		pkt_count = readl(oq->pkts_sent_reg);
333 		new_pkts += pkt_count;
334 	}
335 	oq->last_pkt_count = pkt_count;
336 	oq->pkts_pending += new_pkts;
337 	return new_pkts;
338 }
339 
340 /**
341  * octep_oq_next_pkt() - Move to the next packet in Rx queue.
342  *
343  * @oq: Octeon Rx queue data structure.
344  * @buff_info: Current packet buffer info.
345  * @read_idx: Current packet index in the ring.
346  * @desc_used: Current packet descriptor number.
347  *
348  * Free the resources associated with a packet.
349  * Increment packet index in the ring and packet descriptor number.
350  */
351 static void octep_oq_next_pkt(struct octep_oq *oq,
352 			      struct octep_rx_buffer *buff_info,
353 			      u32 *read_idx, u32 *desc_used)
354 {
355 	dma_unmap_page(oq->dev, oq->desc_ring[*read_idx].buffer_ptr,
356 		       PAGE_SIZE, DMA_FROM_DEVICE);
357 	buff_info->page = NULL;
358 	(*read_idx)++;
359 	(*desc_used)++;
360 	if (*read_idx == oq->max_count)
361 		*read_idx = 0;
362 }
363 
364 /**
365  * octep_oq_drop_rx() - Free the resources associated with a packet.
366  *
367  * @oq: Octeon Rx queue data structure.
368  * @buff_info: Current packet buffer info.
369  * @read_idx: Current packet index in the ring.
370  * @desc_used: Current packet descriptor number.
371  *
372  */
373 static void octep_oq_drop_rx(struct octep_oq *oq,
374 			     struct octep_rx_buffer *buff_info,
375 			     u32 *read_idx, u32 *desc_used)
376 {
377 	int data_len = buff_info->len - oq->max_single_buffer_size;
378 
379 	while (data_len > 0) {
380 		octep_oq_next_pkt(oq, buff_info, read_idx, desc_used);
381 		data_len -= oq->buffer_size;
382 	};
383 }
384 
385 /**
386  * __octep_oq_process_rx() - Process hardware Rx queue and push to stack.
387  *
388  * @oct: Octeon device private data structure.
389  * @oq: Octeon Rx queue data structure.
390  * @pkts_to_process: number of packets to be processed.
391  *
392  * Process the new packets in Rx queue.
393  * Packets larger than single Rx buffer arrive in consecutive descriptors.
394  * But, count returned by the API only accounts full packets, not fragments.
395  *
396  * Return: number of packets processed and pushed to stack.
397  */
398 static int __octep_oq_process_rx(struct octep_device *oct,
399 				 struct octep_oq *oq, u16 pkts_to_process)
400 {
401 	struct octep_oq_resp_hw_ext *resp_hw_ext = NULL;
402 	netdev_features_t feat = oq->netdev->features;
403 	struct octep_rx_buffer *buff_info;
404 	struct octep_oq_resp_hw *resp_hw;
405 	u32 pkt, rx_bytes, desc_used;
406 	struct sk_buff *skb;
407 	u16 data_offset;
408 	u16 rx_ol_flags;
409 	u32 read_idx;
410 
411 	read_idx = oq->host_read_idx;
412 	rx_bytes = 0;
413 	desc_used = 0;
414 	for (pkt = 0; pkt < pkts_to_process; pkt++) {
415 		buff_info = (struct octep_rx_buffer *)&oq->buff_info[read_idx];
416 		resp_hw = page_address(buff_info->page);
417 
418 		/* Swap the length field that is in Big-Endian to CPU */
419 		buff_info->len = be64_to_cpu(resp_hw->length);
420 		if (oct->conf->fw_info.rx_ol_flags) {
421 			/* Extended response header is immediately after
422 			 * response header (resp_hw)
423 			 */
424 			resp_hw_ext = (struct octep_oq_resp_hw_ext *)
425 				      (resp_hw + 1);
426 			buff_info->len -= OCTEP_OQ_RESP_HW_EXT_SIZE;
427 			/* Packet Data is immediately after
428 			 * extended response header.
429 			 */
430 			data_offset = OCTEP_OQ_RESP_HW_SIZE +
431 				      OCTEP_OQ_RESP_HW_EXT_SIZE;
432 			rx_ol_flags = resp_hw_ext->rx_ol_flags;
433 		} else {
434 			/* Data is immediately after
435 			 * Hardware Rx response header.
436 			 */
437 			data_offset = OCTEP_OQ_RESP_HW_SIZE;
438 			rx_ol_flags = 0;
439 		}
440 
441 		octep_oq_next_pkt(oq, buff_info, &read_idx, &desc_used);
442 
443 		skb = build_skb((void *)resp_hw, PAGE_SIZE);
444 		if (!skb) {
445 			octep_oq_drop_rx(oq, buff_info,
446 					 &read_idx, &desc_used);
447 			oq->stats->alloc_failures++;
448 			continue;
449 		}
450 		skb_reserve(skb, data_offset);
451 
452 		rx_bytes += buff_info->len;
453 
454 		if (buff_info->len <= oq->max_single_buffer_size) {
455 			skb_put(skb, buff_info->len);
456 		} else {
457 			struct skb_shared_info *shinfo;
458 			u16 data_len;
459 
460 			/* Head fragment includes response header(s);
461 			 * subsequent fragments contains only data.
462 			 */
463 			skb_put(skb, oq->max_single_buffer_size);
464 			shinfo = skb_shinfo(skb);
465 			data_len = buff_info->len - oq->max_single_buffer_size;
466 			while (data_len) {
467 				buff_info = (struct octep_rx_buffer *)
468 					    &oq->buff_info[read_idx];
469 				if (data_len < oq->buffer_size) {
470 					buff_info->len = data_len;
471 					data_len = 0;
472 				} else {
473 					buff_info->len = oq->buffer_size;
474 					data_len -= oq->buffer_size;
475 				}
476 
477 				skb_add_rx_frag(skb, shinfo->nr_frags,
478 						buff_info->page, 0,
479 						buff_info->len,
480 						buff_info->len);
481 
482 				octep_oq_next_pkt(oq, buff_info, &read_idx, &desc_used);
483 			}
484 		}
485 
486 		skb->dev = oq->netdev;
487 		skb->protocol =  eth_type_trans(skb, skb->dev);
488 		if (feat & NETIF_F_RXCSUM &&
489 		    OCTEP_RX_CSUM_VERIFIED(rx_ol_flags))
490 			skb->ip_summed = CHECKSUM_UNNECESSARY;
491 		else
492 			skb->ip_summed = CHECKSUM_NONE;
493 		napi_gro_receive(oq->napi, skb);
494 	}
495 
496 	oq->host_read_idx = read_idx;
497 	oq->refill_count += desc_used;
498 	oq->stats->packets += pkt;
499 	oq->stats->bytes += rx_bytes;
500 
501 	return pkt;
502 }
503 
504 /**
505  * octep_oq_process_rx() - Process Rx queue.
506  *
507  * @oq: Octeon Rx queue data structure.
508  * @budget: max number of packets can be processed in one invocation.
509  *
510  * Check for newly received packets and process them.
511  * Keeps checking for new packets until budget is used or no new packets seen.
512  *
513  * Return: number of packets processed.
514  */
515 int octep_oq_process_rx(struct octep_oq *oq, int budget)
516 {
517 	u32 pkts_available, pkts_processed, total_pkts_processed;
518 	struct octep_device *oct = oq->octep_dev;
519 
520 	pkts_available = 0;
521 	pkts_processed = 0;
522 	total_pkts_processed = 0;
523 	while (total_pkts_processed < budget) {
524 		 /* update pending count only when current one exhausted */
525 		if (oq->pkts_pending == 0)
526 			octep_oq_check_hw_for_pkts(oct, oq);
527 		pkts_available = min(budget - total_pkts_processed,
528 				     oq->pkts_pending);
529 		if (!pkts_available)
530 			break;
531 
532 		pkts_processed = __octep_oq_process_rx(oct, oq,
533 						       pkts_available);
534 		oq->pkts_pending -= pkts_processed;
535 		total_pkts_processed += pkts_processed;
536 	}
537 
538 	if (oq->refill_count >= oq->refill_threshold) {
539 		u32 desc_refilled = octep_oq_refill(oct, oq);
540 
541 		/* flush pending writes before updating credits */
542 		wmb();
543 		writel(desc_refilled, oq->pkts_credit_reg);
544 	}
545 
546 	return total_pkts_processed;
547 }
548