1 // SPDX-License-Identifier: GPL-2.0 2 /* Marvell Octeon EP (EndPoint) Ethernet Driver 3 * 4 * Copyright (C) 2020 Marvell. 5 * 6 */ 7 8 #include <linux/types.h> 9 #include <linux/module.h> 10 #include <linux/pci.h> 11 #include <linux/netdevice.h> 12 #include <linux/etherdevice.h> 13 #include <linux/rtnetlink.h> 14 #include <linux/vmalloc.h> 15 16 #include "octep_config.h" 17 #include "octep_main.h" 18 #include "octep_ctrl_net.h" 19 20 #define OCTEP_INTR_POLL_TIME_MSECS 100 21 struct workqueue_struct *octep_wq; 22 23 /* Supported Devices */ 24 static const struct pci_device_id octep_pci_id_tbl[] = { 25 {PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN93_PF)}, 26 {PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CNF95N_PF)}, 27 {0, }, 28 }; 29 MODULE_DEVICE_TABLE(pci, octep_pci_id_tbl); 30 31 MODULE_AUTHOR("Veerasenareddy Burru <vburru@marvell.com>"); 32 MODULE_DESCRIPTION(OCTEP_DRV_STRING); 33 MODULE_LICENSE("GPL"); 34 35 /** 36 * octep_alloc_ioq_vectors() - Allocate Tx/Rx Queue interrupt info. 37 * 38 * @oct: Octeon device private data structure. 39 * 40 * Allocate resources to hold per Tx/Rx queue interrupt info. 41 * This is the information passed to interrupt handler, from which napi poll 42 * is scheduled and includes quick access to private data of Tx/Rx queue 43 * corresponding to the interrupt being handled. 44 * 45 * Return: 0, on successful allocation of resources for all queue interrupts. 46 * -1, if failed to allocate any resource. 47 */ 48 static int octep_alloc_ioq_vectors(struct octep_device *oct) 49 { 50 int i; 51 struct octep_ioq_vector *ioq_vector; 52 53 for (i = 0; i < oct->num_oqs; i++) { 54 oct->ioq_vector[i] = vzalloc(sizeof(*oct->ioq_vector[i])); 55 if (!oct->ioq_vector[i]) 56 goto free_ioq_vector; 57 58 ioq_vector = oct->ioq_vector[i]; 59 ioq_vector->iq = oct->iq[i]; 60 ioq_vector->oq = oct->oq[i]; 61 ioq_vector->octep_dev = oct; 62 } 63 64 dev_info(&oct->pdev->dev, "Allocated %d IOQ vectors\n", oct->num_oqs); 65 return 0; 66 67 free_ioq_vector: 68 while (i) { 69 i--; 70 vfree(oct->ioq_vector[i]); 71 oct->ioq_vector[i] = NULL; 72 } 73 return -1; 74 } 75 76 /** 77 * octep_free_ioq_vectors() - Free Tx/Rx Queue interrupt vector info. 78 * 79 * @oct: Octeon device private data structure. 80 */ 81 static void octep_free_ioq_vectors(struct octep_device *oct) 82 { 83 int i; 84 85 for (i = 0; i < oct->num_oqs; i++) { 86 if (oct->ioq_vector[i]) { 87 vfree(oct->ioq_vector[i]); 88 oct->ioq_vector[i] = NULL; 89 } 90 } 91 netdev_info(oct->netdev, "Freed IOQ Vectors\n"); 92 } 93 94 /** 95 * octep_enable_msix_range() - enable MSI-x interrupts. 96 * 97 * @oct: Octeon device private data structure. 98 * 99 * Allocate and enable all MSI-x interrupts (queue and non-queue interrupts) 100 * for the Octeon device. 101 * 102 * Return: 0, on successfully enabling all MSI-x interrupts. 103 * -1, if failed to enable any MSI-x interrupt. 104 */ 105 static int octep_enable_msix_range(struct octep_device *oct) 106 { 107 int num_msix, msix_allocated; 108 int i; 109 110 /* Generic interrupts apart from input/output queues */ 111 num_msix = oct->num_oqs + CFG_GET_NON_IOQ_MSIX(oct->conf); 112 oct->msix_entries = kcalloc(num_msix, 113 sizeof(struct msix_entry), GFP_KERNEL); 114 if (!oct->msix_entries) 115 goto msix_alloc_err; 116 117 for (i = 0; i < num_msix; i++) 118 oct->msix_entries[i].entry = i; 119 120 msix_allocated = pci_enable_msix_range(oct->pdev, oct->msix_entries, 121 num_msix, num_msix); 122 if (msix_allocated != num_msix) { 123 dev_err(&oct->pdev->dev, 124 "Failed to enable %d msix irqs; got only %d\n", 125 num_msix, msix_allocated); 126 goto enable_msix_err; 127 } 128 oct->num_irqs = msix_allocated; 129 dev_info(&oct->pdev->dev, "MSI-X enabled successfully\n"); 130 131 return 0; 132 133 enable_msix_err: 134 if (msix_allocated > 0) 135 pci_disable_msix(oct->pdev); 136 kfree(oct->msix_entries); 137 oct->msix_entries = NULL; 138 msix_alloc_err: 139 return -1; 140 } 141 142 /** 143 * octep_disable_msix() - disable MSI-x interrupts. 144 * 145 * @oct: Octeon device private data structure. 146 * 147 * Disable MSI-x on the Octeon device. 148 */ 149 static void octep_disable_msix(struct octep_device *oct) 150 { 151 pci_disable_msix(oct->pdev); 152 kfree(oct->msix_entries); 153 oct->msix_entries = NULL; 154 dev_info(&oct->pdev->dev, "Disabled MSI-X\n"); 155 } 156 157 /** 158 * octep_oei_intr_handler() - common handler for output endpoint interrupts. 159 * 160 * @irq: Interrupt number. 161 * @data: interrupt data. 162 * 163 * this is common handler for all output endpoint interrupts. 164 */ 165 static irqreturn_t octep_oei_intr_handler(int irq, void *data) 166 { 167 struct octep_device *oct = data; 168 169 return oct->hw_ops.oei_intr_handler(oct); 170 } 171 172 /** 173 * octep_ire_intr_handler() - common handler for input ring error interrupts. 174 * 175 * @irq: Interrupt number. 176 * @data: interrupt data. 177 * 178 * this is common handler for input ring error interrupts. 179 */ 180 static irqreturn_t octep_ire_intr_handler(int irq, void *data) 181 { 182 struct octep_device *oct = data; 183 184 return oct->hw_ops.ire_intr_handler(oct); 185 } 186 187 /** 188 * octep_ore_intr_handler() - common handler for output ring error interrupts. 189 * 190 * @irq: Interrupt number. 191 * @data: interrupt data. 192 * 193 * this is common handler for output ring error interrupts. 194 */ 195 static irqreturn_t octep_ore_intr_handler(int irq, void *data) 196 { 197 struct octep_device *oct = data; 198 199 return oct->hw_ops.ore_intr_handler(oct); 200 } 201 202 /** 203 * octep_vfire_intr_handler() - common handler for vf input ring error interrupts. 204 * 205 * @irq: Interrupt number. 206 * @data: interrupt data. 207 * 208 * this is common handler for vf input ring error interrupts. 209 */ 210 static irqreturn_t octep_vfire_intr_handler(int irq, void *data) 211 { 212 struct octep_device *oct = data; 213 214 return oct->hw_ops.vfire_intr_handler(oct); 215 } 216 217 /** 218 * octep_vfore_intr_handler() - common handler for vf output ring error interrupts. 219 * 220 * @irq: Interrupt number. 221 * @data: interrupt data. 222 * 223 * this is common handler for vf output ring error interrupts. 224 */ 225 static irqreturn_t octep_vfore_intr_handler(int irq, void *data) 226 { 227 struct octep_device *oct = data; 228 229 return oct->hw_ops.vfore_intr_handler(oct); 230 } 231 232 /** 233 * octep_dma_intr_handler() - common handler for dpi dma related interrupts. 234 * 235 * @irq: Interrupt number. 236 * @data: interrupt data. 237 * 238 * this is common handler for dpi dma related interrupts. 239 */ 240 static irqreturn_t octep_dma_intr_handler(int irq, void *data) 241 { 242 struct octep_device *oct = data; 243 244 return oct->hw_ops.dma_intr_handler(oct); 245 } 246 247 /** 248 * octep_dma_vf_intr_handler() - common handler for dpi dma transaction error interrupts for VFs. 249 * 250 * @irq: Interrupt number. 251 * @data: interrupt data. 252 * 253 * this is common handler for dpi dma transaction error interrupts for VFs. 254 */ 255 static irqreturn_t octep_dma_vf_intr_handler(int irq, void *data) 256 { 257 struct octep_device *oct = data; 258 259 return oct->hw_ops.dma_vf_intr_handler(oct); 260 } 261 262 /** 263 * octep_pp_vf_intr_handler() - common handler for pp transaction error interrupts for VFs. 264 * 265 * @irq: Interrupt number. 266 * @data: interrupt data. 267 * 268 * this is common handler for pp transaction error interrupts for VFs. 269 */ 270 static irqreturn_t octep_pp_vf_intr_handler(int irq, void *data) 271 { 272 struct octep_device *oct = data; 273 274 return oct->hw_ops.pp_vf_intr_handler(oct); 275 } 276 277 /** 278 * octep_misc_intr_handler() - common handler for mac related interrupts. 279 * 280 * @irq: Interrupt number. 281 * @data: interrupt data. 282 * 283 * this is common handler for mac related interrupts. 284 */ 285 static irqreturn_t octep_misc_intr_handler(int irq, void *data) 286 { 287 struct octep_device *oct = data; 288 289 return oct->hw_ops.misc_intr_handler(oct); 290 } 291 292 /** 293 * octep_rsvd_intr_handler() - common handler for reserved interrupts (future use). 294 * 295 * @irq: Interrupt number. 296 * @data: interrupt data. 297 * 298 * this is common handler for all reserved interrupts. 299 */ 300 static irqreturn_t octep_rsvd_intr_handler(int irq, void *data) 301 { 302 struct octep_device *oct = data; 303 304 return oct->hw_ops.rsvd_intr_handler(oct); 305 } 306 307 /** 308 * octep_ioq_intr_handler() - handler for all Tx/Rx queue interrupts. 309 * 310 * @irq: Interrupt number. 311 * @data: interrupt data contains pointers to Tx/Rx queue private data 312 * and correspong NAPI context. 313 * 314 * this is common handler for all non-queue (generic) interrupts. 315 */ 316 static irqreturn_t octep_ioq_intr_handler(int irq, void *data) 317 { 318 struct octep_ioq_vector *ioq_vector = data; 319 struct octep_device *oct = ioq_vector->octep_dev; 320 321 return oct->hw_ops.ioq_intr_handler(ioq_vector); 322 } 323 324 /** 325 * octep_request_irqs() - Register interrupt handlers. 326 * 327 * @oct: Octeon device private data structure. 328 * 329 * Register handlers for all queue and non-queue interrupts. 330 * 331 * Return: 0, on successful registration of all interrupt handlers. 332 * -1, on any error. 333 */ 334 static int octep_request_irqs(struct octep_device *oct) 335 { 336 struct net_device *netdev = oct->netdev; 337 struct octep_ioq_vector *ioq_vector; 338 struct msix_entry *msix_entry; 339 char **non_ioq_msix_names; 340 int num_non_ioq_msix; 341 int ret, i, j; 342 343 num_non_ioq_msix = CFG_GET_NON_IOQ_MSIX(oct->conf); 344 non_ioq_msix_names = CFG_GET_NON_IOQ_MSIX_NAMES(oct->conf); 345 346 oct->non_ioq_irq_names = kcalloc(num_non_ioq_msix, 347 OCTEP_MSIX_NAME_SIZE, GFP_KERNEL); 348 if (!oct->non_ioq_irq_names) 349 goto alloc_err; 350 351 /* First few MSI-X interrupts are non-queue interrupts */ 352 for (i = 0; i < num_non_ioq_msix; i++) { 353 char *irq_name; 354 355 irq_name = &oct->non_ioq_irq_names[i * OCTEP_MSIX_NAME_SIZE]; 356 msix_entry = &oct->msix_entries[i]; 357 358 snprintf(irq_name, OCTEP_MSIX_NAME_SIZE, 359 "%s-%s", netdev->name, non_ioq_msix_names[i]); 360 if (!strncmp(non_ioq_msix_names[i], "epf_oei_rint", 361 strlen("epf_oei_rint"))) { 362 ret = request_irq(msix_entry->vector, 363 octep_oei_intr_handler, 0, 364 irq_name, oct); 365 } else if (!strncmp(non_ioq_msix_names[i], "epf_ire_rint", 366 strlen("epf_ire_rint"))) { 367 ret = request_irq(msix_entry->vector, 368 octep_ire_intr_handler, 0, 369 irq_name, oct); 370 } else if (!strncmp(non_ioq_msix_names[i], "epf_ore_rint", 371 strlen("epf_ore_rint"))) { 372 ret = request_irq(msix_entry->vector, 373 octep_ore_intr_handler, 0, 374 irq_name, oct); 375 } else if (!strncmp(non_ioq_msix_names[i], "epf_vfire_rint", 376 strlen("epf_vfire_rint"))) { 377 ret = request_irq(msix_entry->vector, 378 octep_vfire_intr_handler, 0, 379 irq_name, oct); 380 } else if (!strncmp(non_ioq_msix_names[i], "epf_vfore_rint", 381 strlen("epf_vfore_rint"))) { 382 ret = request_irq(msix_entry->vector, 383 octep_vfore_intr_handler, 0, 384 irq_name, oct); 385 } else if (!strncmp(non_ioq_msix_names[i], "epf_dma_rint", 386 strlen("epf_dma_rint"))) { 387 ret = request_irq(msix_entry->vector, 388 octep_dma_intr_handler, 0, 389 irq_name, oct); 390 } else if (!strncmp(non_ioq_msix_names[i], "epf_dma_vf_rint", 391 strlen("epf_dma_vf_rint"))) { 392 ret = request_irq(msix_entry->vector, 393 octep_dma_vf_intr_handler, 0, 394 irq_name, oct); 395 } else if (!strncmp(non_ioq_msix_names[i], "epf_pp_vf_rint", 396 strlen("epf_pp_vf_rint"))) { 397 ret = request_irq(msix_entry->vector, 398 octep_pp_vf_intr_handler, 0, 399 irq_name, oct); 400 } else if (!strncmp(non_ioq_msix_names[i], "epf_misc_rint", 401 strlen("epf_misc_rint"))) { 402 ret = request_irq(msix_entry->vector, 403 octep_misc_intr_handler, 0, 404 irq_name, oct); 405 } else { 406 ret = request_irq(msix_entry->vector, 407 octep_rsvd_intr_handler, 0, 408 irq_name, oct); 409 } 410 411 if (ret) { 412 netdev_err(netdev, 413 "request_irq failed for %s; err=%d", 414 irq_name, ret); 415 goto non_ioq_irq_err; 416 } 417 } 418 419 /* Request IRQs for Tx/Rx queues */ 420 for (j = 0; j < oct->num_oqs; j++) { 421 ioq_vector = oct->ioq_vector[j]; 422 msix_entry = &oct->msix_entries[j + num_non_ioq_msix]; 423 424 snprintf(ioq_vector->name, sizeof(ioq_vector->name), 425 "%s-q%d", netdev->name, j); 426 ret = request_irq(msix_entry->vector, 427 octep_ioq_intr_handler, 0, 428 ioq_vector->name, ioq_vector); 429 if (ret) { 430 netdev_err(netdev, 431 "request_irq failed for Q-%d; err=%d", 432 j, ret); 433 goto ioq_irq_err; 434 } 435 436 cpumask_set_cpu(j % num_online_cpus(), 437 &ioq_vector->affinity_mask); 438 irq_set_affinity_hint(msix_entry->vector, 439 &ioq_vector->affinity_mask); 440 } 441 442 return 0; 443 ioq_irq_err: 444 while (j) { 445 --j; 446 ioq_vector = oct->ioq_vector[j]; 447 msix_entry = &oct->msix_entries[j + num_non_ioq_msix]; 448 449 irq_set_affinity_hint(msix_entry->vector, NULL); 450 free_irq(msix_entry->vector, ioq_vector); 451 } 452 non_ioq_irq_err: 453 while (i) { 454 --i; 455 free_irq(oct->msix_entries[i].vector, oct); 456 } 457 kfree(oct->non_ioq_irq_names); 458 oct->non_ioq_irq_names = NULL; 459 alloc_err: 460 return -1; 461 } 462 463 /** 464 * octep_free_irqs() - free all registered interrupts. 465 * 466 * @oct: Octeon device private data structure. 467 * 468 * Free all queue and non-queue interrupts of the Octeon device. 469 */ 470 static void octep_free_irqs(struct octep_device *oct) 471 { 472 int i; 473 474 /* First few MSI-X interrupts are non queue interrupts; free them */ 475 for (i = 0; i < CFG_GET_NON_IOQ_MSIX(oct->conf); i++) 476 free_irq(oct->msix_entries[i].vector, oct); 477 kfree(oct->non_ioq_irq_names); 478 479 /* Free IRQs for Input/Output (Tx/Rx) queues */ 480 for (i = CFG_GET_NON_IOQ_MSIX(oct->conf); i < oct->num_irqs; i++) { 481 irq_set_affinity_hint(oct->msix_entries[i].vector, NULL); 482 free_irq(oct->msix_entries[i].vector, 483 oct->ioq_vector[i - CFG_GET_NON_IOQ_MSIX(oct->conf)]); 484 } 485 netdev_info(oct->netdev, "IRQs freed\n"); 486 } 487 488 /** 489 * octep_setup_irqs() - setup interrupts for the Octeon device. 490 * 491 * @oct: Octeon device private data structure. 492 * 493 * Allocate data structures to hold per interrupt information, allocate/enable 494 * MSI-x interrupt and register interrupt handlers. 495 * 496 * Return: 0, on successful allocation and registration of all interrupts. 497 * -1, on any error. 498 */ 499 static int octep_setup_irqs(struct octep_device *oct) 500 { 501 if (octep_alloc_ioq_vectors(oct)) 502 goto ioq_vector_err; 503 504 if (octep_enable_msix_range(oct)) 505 goto enable_msix_err; 506 507 if (octep_request_irqs(oct)) 508 goto request_irq_err; 509 510 return 0; 511 512 request_irq_err: 513 octep_disable_msix(oct); 514 enable_msix_err: 515 octep_free_ioq_vectors(oct); 516 ioq_vector_err: 517 return -1; 518 } 519 520 /** 521 * octep_clean_irqs() - free all interrupts and its resources. 522 * 523 * @oct: Octeon device private data structure. 524 */ 525 static void octep_clean_irqs(struct octep_device *oct) 526 { 527 octep_free_irqs(oct); 528 octep_disable_msix(oct); 529 octep_free_ioq_vectors(oct); 530 } 531 532 /** 533 * octep_enable_ioq_irq() - Enable MSI-x interrupt of a Tx/Rx queue. 534 * 535 * @iq: Octeon Tx queue data structure. 536 * @oq: Octeon Rx queue data structure. 537 */ 538 static void octep_enable_ioq_irq(struct octep_iq *iq, struct octep_oq *oq) 539 { 540 u32 pkts_pend = oq->pkts_pending; 541 542 netdev_dbg(iq->netdev, "enabling intr for Q-%u\n", iq->q_no); 543 if (iq->pkts_processed) { 544 writel(iq->pkts_processed, iq->inst_cnt_reg); 545 iq->pkt_in_done -= iq->pkts_processed; 546 iq->pkts_processed = 0; 547 } 548 if (oq->last_pkt_count - pkts_pend) { 549 writel(oq->last_pkt_count - pkts_pend, oq->pkts_sent_reg); 550 oq->last_pkt_count = pkts_pend; 551 } 552 553 /* Flush the previous wrties before writing to RESEND bit */ 554 wmb(); 555 writeq(1UL << OCTEP_OQ_INTR_RESEND_BIT, oq->pkts_sent_reg); 556 writeq(1UL << OCTEP_IQ_INTR_RESEND_BIT, iq->inst_cnt_reg); 557 } 558 559 /** 560 * octep_napi_poll() - NAPI poll function for Tx/Rx. 561 * 562 * @napi: pointer to napi context. 563 * @budget: max number of packets to be processed in single invocation. 564 */ 565 static int octep_napi_poll(struct napi_struct *napi, int budget) 566 { 567 struct octep_ioq_vector *ioq_vector = 568 container_of(napi, struct octep_ioq_vector, napi); 569 u32 tx_pending, rx_done; 570 571 tx_pending = octep_iq_process_completions(ioq_vector->iq, budget); 572 rx_done = octep_oq_process_rx(ioq_vector->oq, budget); 573 574 /* need more polling if tx completion processing is still pending or 575 * processed at least 'budget' number of rx packets. 576 */ 577 if (tx_pending || rx_done >= budget) 578 return budget; 579 580 napi_complete(napi); 581 octep_enable_ioq_irq(ioq_vector->iq, ioq_vector->oq); 582 return rx_done; 583 } 584 585 /** 586 * octep_napi_add() - Add NAPI poll for all Tx/Rx queues. 587 * 588 * @oct: Octeon device private data structure. 589 */ 590 static void octep_napi_add(struct octep_device *oct) 591 { 592 int i; 593 594 for (i = 0; i < oct->num_oqs; i++) { 595 netdev_dbg(oct->netdev, "Adding NAPI on Q-%d\n", i); 596 netif_napi_add(oct->netdev, &oct->ioq_vector[i]->napi, 597 octep_napi_poll); 598 oct->oq[i]->napi = &oct->ioq_vector[i]->napi; 599 } 600 } 601 602 /** 603 * octep_napi_delete() - delete NAPI poll callback for all Tx/Rx queues. 604 * 605 * @oct: Octeon device private data structure. 606 */ 607 static void octep_napi_delete(struct octep_device *oct) 608 { 609 int i; 610 611 for (i = 0; i < oct->num_oqs; i++) { 612 netdev_dbg(oct->netdev, "Deleting NAPI on Q-%d\n", i); 613 netif_napi_del(&oct->ioq_vector[i]->napi); 614 oct->oq[i]->napi = NULL; 615 } 616 } 617 618 /** 619 * octep_napi_enable() - enable NAPI for all Tx/Rx queues. 620 * 621 * @oct: Octeon device private data structure. 622 */ 623 static void octep_napi_enable(struct octep_device *oct) 624 { 625 int i; 626 627 for (i = 0; i < oct->num_oqs; i++) { 628 netdev_dbg(oct->netdev, "Enabling NAPI on Q-%d\n", i); 629 napi_enable(&oct->ioq_vector[i]->napi); 630 } 631 } 632 633 /** 634 * octep_napi_disable() - disable NAPI for all Tx/Rx queues. 635 * 636 * @oct: Octeon device private data structure. 637 */ 638 static void octep_napi_disable(struct octep_device *oct) 639 { 640 int i; 641 642 for (i = 0; i < oct->num_oqs; i++) { 643 netdev_dbg(oct->netdev, "Disabling NAPI on Q-%d\n", i); 644 napi_disable(&oct->ioq_vector[i]->napi); 645 } 646 } 647 648 static void octep_link_up(struct net_device *netdev) 649 { 650 netif_carrier_on(netdev); 651 netif_tx_start_all_queues(netdev); 652 } 653 654 /** 655 * octep_open() - start the octeon network device. 656 * 657 * @netdev: pointer to kernel network device. 658 * 659 * setup Tx/Rx queues, interrupts and enable hardware operation of Tx/Rx queues 660 * and interrupts.. 661 * 662 * Return: 0, on successfully setting up device and bring it up. 663 * -1, on any error. 664 */ 665 static int octep_open(struct net_device *netdev) 666 { 667 struct octep_device *oct = netdev_priv(netdev); 668 int err, ret; 669 670 netdev_info(netdev, "Starting netdev ...\n"); 671 netif_carrier_off(netdev); 672 673 oct->hw_ops.reset_io_queues(oct); 674 675 if (octep_setup_iqs(oct)) 676 goto setup_iq_err; 677 if (octep_setup_oqs(oct)) 678 goto setup_oq_err; 679 if (octep_setup_irqs(oct)) 680 goto setup_irq_err; 681 682 err = netif_set_real_num_tx_queues(netdev, oct->num_oqs); 683 if (err) 684 goto set_queues_err; 685 err = netif_set_real_num_rx_queues(netdev, oct->num_iqs); 686 if (err) 687 goto set_queues_err; 688 689 octep_napi_add(oct); 690 octep_napi_enable(oct); 691 692 oct->link_info.admin_up = 1; 693 octep_ctrl_net_set_rx_state(oct, OCTEP_CTRL_NET_INVALID_VFID, true, 694 false); 695 octep_ctrl_net_set_link_status(oct, OCTEP_CTRL_NET_INVALID_VFID, true, 696 false); 697 oct->poll_non_ioq_intr = false; 698 699 /* Enable the input and output queues for this Octeon device */ 700 oct->hw_ops.enable_io_queues(oct); 701 702 /* Enable Octeon device interrupts */ 703 oct->hw_ops.enable_interrupts(oct); 704 705 octep_oq_dbell_init(oct); 706 707 ret = octep_ctrl_net_get_link_status(oct, OCTEP_CTRL_NET_INVALID_VFID); 708 if (ret > 0) 709 octep_link_up(netdev); 710 711 return 0; 712 713 set_queues_err: 714 octep_clean_irqs(oct); 715 setup_irq_err: 716 octep_free_oqs(oct); 717 setup_oq_err: 718 octep_free_iqs(oct); 719 setup_iq_err: 720 return -1; 721 } 722 723 /** 724 * octep_stop() - stop the octeon network device. 725 * 726 * @netdev: pointer to kernel network device. 727 * 728 * stop the device Tx/Rx operations, bring down the link and 729 * free up all resources allocated for Tx/Rx queues and interrupts. 730 */ 731 static int octep_stop(struct net_device *netdev) 732 { 733 struct octep_device *oct = netdev_priv(netdev); 734 735 netdev_info(netdev, "Stopping the device ...\n"); 736 737 octep_ctrl_net_set_link_status(oct, OCTEP_CTRL_NET_INVALID_VFID, false, 738 false); 739 octep_ctrl_net_set_rx_state(oct, OCTEP_CTRL_NET_INVALID_VFID, false, 740 false); 741 742 /* Stop Tx from stack */ 743 netif_tx_stop_all_queues(netdev); 744 netif_carrier_off(netdev); 745 netif_tx_disable(netdev); 746 747 oct->link_info.admin_up = 0; 748 oct->link_info.oper_up = 0; 749 750 oct->hw_ops.disable_interrupts(oct); 751 octep_napi_disable(oct); 752 octep_napi_delete(oct); 753 754 octep_clean_irqs(oct); 755 octep_clean_iqs(oct); 756 757 oct->hw_ops.disable_io_queues(oct); 758 oct->hw_ops.reset_io_queues(oct); 759 octep_free_oqs(oct); 760 octep_free_iqs(oct); 761 762 oct->poll_non_ioq_intr = true; 763 queue_delayed_work(octep_wq, &oct->intr_poll_task, 764 msecs_to_jiffies(OCTEP_INTR_POLL_TIME_MSECS)); 765 766 netdev_info(netdev, "Device stopped !!\n"); 767 return 0; 768 } 769 770 /** 771 * octep_iq_full_check() - check if a Tx queue is full. 772 * 773 * @iq: Octeon Tx queue data structure. 774 * 775 * Return: 0, if the Tx queue is not full. 776 * 1, if the Tx queue is full. 777 */ 778 static inline int octep_iq_full_check(struct octep_iq *iq) 779 { 780 if (likely((iq->max_count - atomic_read(&iq->instr_pending)) >= 781 OCTEP_WAKE_QUEUE_THRESHOLD)) 782 return 0; 783 784 /* Stop the queue if unable to send */ 785 netif_stop_subqueue(iq->netdev, iq->q_no); 786 787 /* check again and restart the queue, in case NAPI has just freed 788 * enough Tx ring entries. 789 */ 790 if (unlikely((iq->max_count - atomic_read(&iq->instr_pending)) >= 791 OCTEP_WAKE_QUEUE_THRESHOLD)) { 792 netif_start_subqueue(iq->netdev, iq->q_no); 793 iq->stats.restart_cnt++; 794 return 0; 795 } 796 797 return 1; 798 } 799 800 /** 801 * octep_start_xmit() - Enqueue packet to Octoen hardware Tx Queue. 802 * 803 * @skb: packet skbuff pointer. 804 * @netdev: kernel network device. 805 * 806 * Return: NETDEV_TX_BUSY, if Tx Queue is full. 807 * NETDEV_TX_OK, if successfully enqueued to hardware Tx queue. 808 */ 809 static netdev_tx_t octep_start_xmit(struct sk_buff *skb, 810 struct net_device *netdev) 811 { 812 struct octep_device *oct = netdev_priv(netdev); 813 struct octep_tx_sglist_desc *sglist; 814 struct octep_tx_buffer *tx_buffer; 815 struct octep_tx_desc_hw *hw_desc; 816 struct skb_shared_info *shinfo; 817 struct octep_instr_hdr *ih; 818 struct octep_iq *iq; 819 skb_frag_t *frag; 820 u16 nr_frags, si; 821 u16 q_no, wi; 822 823 q_no = skb_get_queue_mapping(skb); 824 if (q_no >= oct->num_iqs) { 825 netdev_err(netdev, "Invalid Tx skb->queue_mapping=%d\n", q_no); 826 q_no = q_no % oct->num_iqs; 827 } 828 829 iq = oct->iq[q_no]; 830 if (octep_iq_full_check(iq)) { 831 iq->stats.tx_busy++; 832 return NETDEV_TX_BUSY; 833 } 834 835 shinfo = skb_shinfo(skb); 836 nr_frags = shinfo->nr_frags; 837 838 wi = iq->host_write_index; 839 hw_desc = &iq->desc_ring[wi]; 840 hw_desc->ih64 = 0; 841 842 tx_buffer = iq->buff_info + wi; 843 tx_buffer->skb = skb; 844 845 ih = &hw_desc->ih; 846 ih->tlen = skb->len; 847 ih->pkind = oct->pkind; 848 849 if (!nr_frags) { 850 tx_buffer->gather = 0; 851 tx_buffer->dma = dma_map_single(iq->dev, skb->data, 852 skb->len, DMA_TO_DEVICE); 853 if (dma_mapping_error(iq->dev, tx_buffer->dma)) 854 goto dma_map_err; 855 hw_desc->dptr = tx_buffer->dma; 856 } else { 857 /* Scatter/Gather */ 858 dma_addr_t dma; 859 u16 len; 860 861 sglist = tx_buffer->sglist; 862 863 ih->gsz = nr_frags + 1; 864 ih->gather = 1; 865 tx_buffer->gather = 1; 866 867 len = skb_headlen(skb); 868 dma = dma_map_single(iq->dev, skb->data, len, DMA_TO_DEVICE); 869 if (dma_mapping_error(iq->dev, dma)) 870 goto dma_map_err; 871 872 dma_sync_single_for_cpu(iq->dev, tx_buffer->sglist_dma, 873 OCTEP_SGLIST_SIZE_PER_PKT, 874 DMA_TO_DEVICE); 875 memset(sglist, 0, OCTEP_SGLIST_SIZE_PER_PKT); 876 sglist[0].len[3] = len; 877 sglist[0].dma_ptr[0] = dma; 878 879 si = 1; /* entry 0 is main skb, mapped above */ 880 frag = &shinfo->frags[0]; 881 while (nr_frags--) { 882 len = skb_frag_size(frag); 883 dma = skb_frag_dma_map(iq->dev, frag, 0, 884 len, DMA_TO_DEVICE); 885 if (dma_mapping_error(iq->dev, dma)) 886 goto dma_map_sg_err; 887 888 sglist[si >> 2].len[3 - (si & 3)] = len; 889 sglist[si >> 2].dma_ptr[si & 3] = dma; 890 891 frag++; 892 si++; 893 } 894 dma_sync_single_for_device(iq->dev, tx_buffer->sglist_dma, 895 OCTEP_SGLIST_SIZE_PER_PKT, 896 DMA_TO_DEVICE); 897 898 hw_desc->dptr = tx_buffer->sglist_dma; 899 } 900 901 netdev_tx_sent_queue(iq->netdev_q, skb->len); 902 skb_tx_timestamp(skb); 903 atomic_inc(&iq->instr_pending); 904 wi++; 905 if (wi == iq->max_count) 906 wi = 0; 907 iq->host_write_index = wi; 908 /* Flush the hw descriptor before writing to doorbell */ 909 wmb(); 910 911 /* Ring Doorbell to notify the NIC there is a new packet */ 912 writel(1, iq->doorbell_reg); 913 iq->stats.instr_posted++; 914 return NETDEV_TX_OK; 915 916 dma_map_sg_err: 917 if (si > 0) { 918 dma_unmap_single(iq->dev, sglist[0].dma_ptr[0], 919 sglist[0].len[3], DMA_TO_DEVICE); 920 sglist[0].len[3] = 0; 921 } 922 while (si > 1) { 923 dma_unmap_page(iq->dev, sglist[si >> 2].dma_ptr[si & 3], 924 sglist[si >> 2].len[3 - (si & 3)], DMA_TO_DEVICE); 925 sglist[si >> 2].len[3 - (si & 3)] = 0; 926 si--; 927 } 928 tx_buffer->gather = 0; 929 dma_map_err: 930 dev_kfree_skb_any(skb); 931 return NETDEV_TX_OK; 932 } 933 934 /** 935 * octep_get_stats64() - Get Octeon network device statistics. 936 * 937 * @netdev: kernel network device. 938 * @stats: pointer to stats structure to be filled in. 939 */ 940 static void octep_get_stats64(struct net_device *netdev, 941 struct rtnl_link_stats64 *stats) 942 { 943 u64 tx_packets, tx_bytes, rx_packets, rx_bytes; 944 struct octep_device *oct = netdev_priv(netdev); 945 int q; 946 947 if (netif_running(netdev)) 948 octep_ctrl_net_get_if_stats(oct, 949 OCTEP_CTRL_NET_INVALID_VFID, 950 &oct->iface_rx_stats, 951 &oct->iface_tx_stats); 952 953 tx_packets = 0; 954 tx_bytes = 0; 955 rx_packets = 0; 956 rx_bytes = 0; 957 for (q = 0; q < oct->num_oqs; q++) { 958 struct octep_iq *iq = oct->iq[q]; 959 struct octep_oq *oq = oct->oq[q]; 960 961 tx_packets += iq->stats.instr_completed; 962 tx_bytes += iq->stats.bytes_sent; 963 rx_packets += oq->stats.packets; 964 rx_bytes += oq->stats.bytes; 965 } 966 stats->tx_packets = tx_packets; 967 stats->tx_bytes = tx_bytes; 968 stats->rx_packets = rx_packets; 969 stats->rx_bytes = rx_bytes; 970 stats->multicast = oct->iface_rx_stats.mcast_pkts; 971 stats->rx_errors = oct->iface_rx_stats.err_pkts; 972 stats->collisions = oct->iface_tx_stats.xscol; 973 stats->tx_fifo_errors = oct->iface_tx_stats.undflw; 974 } 975 976 /** 977 * octep_tx_timeout_task - work queue task to Handle Tx queue timeout. 978 * 979 * @work: pointer to Tx queue timeout work_struct 980 * 981 * Stop and start the device so that it frees up all queue resources 982 * and restarts the queues, that potentially clears a Tx queue timeout 983 * condition. 984 **/ 985 static void octep_tx_timeout_task(struct work_struct *work) 986 { 987 struct octep_device *oct = container_of(work, struct octep_device, 988 tx_timeout_task); 989 struct net_device *netdev = oct->netdev; 990 991 rtnl_lock(); 992 if (netif_running(netdev)) { 993 octep_stop(netdev); 994 octep_open(netdev); 995 } 996 rtnl_unlock(); 997 } 998 999 /** 1000 * octep_tx_timeout() - Handle Tx Queue timeout. 1001 * 1002 * @netdev: pointer to kernel network device. 1003 * @txqueue: Timed out Tx queue number. 1004 * 1005 * Schedule a work to handle Tx queue timeout. 1006 */ 1007 static void octep_tx_timeout(struct net_device *netdev, unsigned int txqueue) 1008 { 1009 struct octep_device *oct = netdev_priv(netdev); 1010 1011 queue_work(octep_wq, &oct->tx_timeout_task); 1012 } 1013 1014 static int octep_set_mac(struct net_device *netdev, void *p) 1015 { 1016 struct octep_device *oct = netdev_priv(netdev); 1017 struct sockaddr *addr = (struct sockaddr *)p; 1018 int err; 1019 1020 if (!is_valid_ether_addr(addr->sa_data)) 1021 return -EADDRNOTAVAIL; 1022 1023 err = octep_ctrl_net_set_mac_addr(oct, OCTEP_CTRL_NET_INVALID_VFID, 1024 addr->sa_data, true); 1025 if (err) 1026 return err; 1027 1028 memcpy(oct->mac_addr, addr->sa_data, ETH_ALEN); 1029 eth_hw_addr_set(netdev, addr->sa_data); 1030 1031 return 0; 1032 } 1033 1034 static int octep_change_mtu(struct net_device *netdev, int new_mtu) 1035 { 1036 struct octep_device *oct = netdev_priv(netdev); 1037 struct octep_iface_link_info *link_info; 1038 int err = 0; 1039 1040 link_info = &oct->link_info; 1041 if (link_info->mtu == new_mtu) 1042 return 0; 1043 1044 err = octep_ctrl_net_set_mtu(oct, OCTEP_CTRL_NET_INVALID_VFID, new_mtu, 1045 true); 1046 if (!err) { 1047 oct->link_info.mtu = new_mtu; 1048 netdev->mtu = new_mtu; 1049 } 1050 1051 return err; 1052 } 1053 1054 static const struct net_device_ops octep_netdev_ops = { 1055 .ndo_open = octep_open, 1056 .ndo_stop = octep_stop, 1057 .ndo_start_xmit = octep_start_xmit, 1058 .ndo_get_stats64 = octep_get_stats64, 1059 .ndo_tx_timeout = octep_tx_timeout, 1060 .ndo_set_mac_address = octep_set_mac, 1061 .ndo_change_mtu = octep_change_mtu, 1062 }; 1063 1064 /** 1065 * octep_intr_poll_task - work queue task to process non-ioq interrupts. 1066 * 1067 * @work: pointer to mbox work_struct 1068 * 1069 * Process non-ioq interrupts to handle control mailbox, pfvf mailbox. 1070 **/ 1071 static void octep_intr_poll_task(struct work_struct *work) 1072 { 1073 struct octep_device *oct = container_of(work, struct octep_device, 1074 intr_poll_task.work); 1075 1076 if (!oct->poll_non_ioq_intr) { 1077 dev_info(&oct->pdev->dev, "Interrupt poll task stopped.\n"); 1078 return; 1079 } 1080 1081 oct->hw_ops.poll_non_ioq_interrupts(oct); 1082 queue_delayed_work(octep_wq, &oct->intr_poll_task, 1083 msecs_to_jiffies(OCTEP_INTR_POLL_TIME_MSECS)); 1084 } 1085 1086 /** 1087 * octep_hb_timeout_task - work queue task to check firmware heartbeat. 1088 * 1089 * @work: pointer to hb work_struct 1090 * 1091 * Check for heartbeat miss count. Uninitialize oct device if miss count 1092 * exceeds configured max heartbeat miss count. 1093 * 1094 **/ 1095 static void octep_hb_timeout_task(struct work_struct *work) 1096 { 1097 struct octep_device *oct = container_of(work, struct octep_device, 1098 hb_task.work); 1099 1100 int miss_cnt; 1101 1102 miss_cnt = atomic_inc_return(&oct->hb_miss_cnt); 1103 if (miss_cnt < oct->conf->fw_info.hb_miss_count) { 1104 queue_delayed_work(octep_wq, &oct->hb_task, 1105 msecs_to_jiffies(oct->conf->fw_info.hb_interval)); 1106 return; 1107 } 1108 1109 dev_err(&oct->pdev->dev, "Missed %u heartbeats. Uninitializing\n", 1110 miss_cnt); 1111 rtnl_lock(); 1112 if (netif_running(oct->netdev)) 1113 octep_stop(oct->netdev); 1114 rtnl_unlock(); 1115 } 1116 1117 /** 1118 * octep_ctrl_mbox_task - work queue task to handle ctrl mbox messages. 1119 * 1120 * @work: pointer to ctrl mbox work_struct 1121 * 1122 * Poll ctrl mbox message queue and handle control messages from firmware. 1123 **/ 1124 static void octep_ctrl_mbox_task(struct work_struct *work) 1125 { 1126 struct octep_device *oct = container_of(work, struct octep_device, 1127 ctrl_mbox_task); 1128 1129 octep_ctrl_net_recv_fw_messages(oct); 1130 } 1131 1132 static const char *octep_devid_to_str(struct octep_device *oct) 1133 { 1134 switch (oct->chip_id) { 1135 case OCTEP_PCI_DEVICE_ID_CN93_PF: 1136 return "CN93XX"; 1137 case OCTEP_PCI_DEVICE_ID_CNF95N_PF: 1138 return "CNF95N"; 1139 default: 1140 return "Unsupported"; 1141 } 1142 } 1143 1144 /** 1145 * octep_device_setup() - Setup Octeon Device. 1146 * 1147 * @oct: Octeon device private data structure. 1148 * 1149 * Setup Octeon device hardware operations, configuration, etc ... 1150 */ 1151 int octep_device_setup(struct octep_device *oct) 1152 { 1153 struct pci_dev *pdev = oct->pdev; 1154 int i, ret; 1155 1156 /* allocate memory for oct->conf */ 1157 oct->conf = kzalloc(sizeof(*oct->conf), GFP_KERNEL); 1158 if (!oct->conf) 1159 return -ENOMEM; 1160 1161 /* Map BAR regions */ 1162 for (i = 0; i < OCTEP_MMIO_REGIONS; i++) { 1163 oct->mmio[i].hw_addr = 1164 ioremap(pci_resource_start(oct->pdev, i * 2), 1165 pci_resource_len(oct->pdev, i * 2)); 1166 if (!oct->mmio[i].hw_addr) 1167 goto unmap_prev; 1168 1169 oct->mmio[i].mapped = 1; 1170 } 1171 1172 oct->chip_id = pdev->device; 1173 oct->rev_id = pdev->revision; 1174 dev_info(&pdev->dev, "chip_id = 0x%x\n", pdev->device); 1175 1176 switch (oct->chip_id) { 1177 case OCTEP_PCI_DEVICE_ID_CN93_PF: 1178 case OCTEP_PCI_DEVICE_ID_CNF95N_PF: 1179 dev_info(&pdev->dev, "Setting up OCTEON %s PF PASS%d.%d\n", 1180 octep_devid_to_str(oct), OCTEP_MAJOR_REV(oct), 1181 OCTEP_MINOR_REV(oct)); 1182 octep_device_setup_cn93_pf(oct); 1183 break; 1184 default: 1185 dev_err(&pdev->dev, 1186 "%s: unsupported device\n", __func__); 1187 goto unsupported_dev; 1188 } 1189 1190 oct->pkind = CFG_GET_IQ_PKIND(oct->conf); 1191 1192 ret = octep_ctrl_net_init(oct); 1193 if (ret) 1194 return ret; 1195 1196 atomic_set(&oct->hb_miss_cnt, 0); 1197 INIT_DELAYED_WORK(&oct->hb_task, octep_hb_timeout_task); 1198 1199 return 0; 1200 1201 unsupported_dev: 1202 i = OCTEP_MMIO_REGIONS; 1203 unmap_prev: 1204 while (i--) 1205 iounmap(oct->mmio[i].hw_addr); 1206 1207 kfree(oct->conf); 1208 return -1; 1209 } 1210 1211 /** 1212 * octep_device_cleanup() - Cleanup Octeon Device. 1213 * 1214 * @oct: Octeon device private data structure. 1215 * 1216 * Cleanup Octeon device allocated resources. 1217 */ 1218 static void octep_device_cleanup(struct octep_device *oct) 1219 { 1220 int i; 1221 1222 oct->poll_non_ioq_intr = false; 1223 cancel_delayed_work_sync(&oct->intr_poll_task); 1224 cancel_work_sync(&oct->ctrl_mbox_task); 1225 1226 dev_info(&oct->pdev->dev, "Cleaning up Octeon Device ...\n"); 1227 1228 for (i = 0; i < OCTEP_MAX_VF; i++) { 1229 vfree(oct->mbox[i]); 1230 oct->mbox[i] = NULL; 1231 } 1232 1233 octep_ctrl_net_uninit(oct); 1234 cancel_delayed_work_sync(&oct->hb_task); 1235 1236 oct->hw_ops.soft_reset(oct); 1237 for (i = 0; i < OCTEP_MMIO_REGIONS; i++) { 1238 if (oct->mmio[i].mapped) 1239 iounmap(oct->mmio[i].hw_addr); 1240 } 1241 1242 kfree(oct->conf); 1243 oct->conf = NULL; 1244 } 1245 1246 static bool get_fw_ready_status(struct pci_dev *pdev) 1247 { 1248 u32 pos = 0; 1249 u16 vsec_id; 1250 u8 status; 1251 1252 while ((pos = pci_find_next_ext_capability(pdev, pos, 1253 PCI_EXT_CAP_ID_VNDR))) { 1254 pci_read_config_word(pdev, pos + 4, &vsec_id); 1255 #define FW_STATUS_VSEC_ID 0xA3 1256 if (vsec_id != FW_STATUS_VSEC_ID) 1257 continue; 1258 1259 pci_read_config_byte(pdev, (pos + 8), &status); 1260 dev_info(&pdev->dev, "Firmware ready status = %u\n", status); 1261 return status; 1262 } 1263 return false; 1264 } 1265 1266 /** 1267 * octep_probe() - Octeon PCI device probe handler. 1268 * 1269 * @pdev: PCI device structure. 1270 * @ent: entry in Octeon PCI device ID table. 1271 * 1272 * Initializes and enables the Octeon PCI device for network operations. 1273 * Initializes Octeon private data structure and registers a network device. 1274 */ 1275 static int octep_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1276 { 1277 struct octep_device *octep_dev = NULL; 1278 struct net_device *netdev; 1279 int err; 1280 1281 err = pci_enable_device(pdev); 1282 if (err) { 1283 dev_err(&pdev->dev, "Failed to enable PCI device\n"); 1284 return err; 1285 } 1286 1287 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 1288 if (err) { 1289 dev_err(&pdev->dev, "Failed to set DMA mask !!\n"); 1290 goto err_dma_mask; 1291 } 1292 1293 err = pci_request_mem_regions(pdev, OCTEP_DRV_NAME); 1294 if (err) { 1295 dev_err(&pdev->dev, "Failed to map PCI memory regions\n"); 1296 goto err_pci_regions; 1297 } 1298 1299 pci_set_master(pdev); 1300 1301 if (!get_fw_ready_status(pdev)) { 1302 dev_notice(&pdev->dev, "Firmware not ready; defer probe.\n"); 1303 err = -EPROBE_DEFER; 1304 goto err_alloc_netdev; 1305 } 1306 1307 netdev = alloc_etherdev_mq(sizeof(struct octep_device), 1308 OCTEP_MAX_QUEUES); 1309 if (!netdev) { 1310 dev_err(&pdev->dev, "Failed to allocate netdev\n"); 1311 err = -ENOMEM; 1312 goto err_alloc_netdev; 1313 } 1314 SET_NETDEV_DEV(netdev, &pdev->dev); 1315 1316 octep_dev = netdev_priv(netdev); 1317 octep_dev->netdev = netdev; 1318 octep_dev->pdev = pdev; 1319 octep_dev->dev = &pdev->dev; 1320 pci_set_drvdata(pdev, octep_dev); 1321 1322 err = octep_device_setup(octep_dev); 1323 if (err) { 1324 dev_err(&pdev->dev, "Device setup failed\n"); 1325 goto err_octep_config; 1326 } 1327 1328 octep_ctrl_net_get_info(octep_dev, OCTEP_CTRL_NET_INVALID_VFID, 1329 &octep_dev->conf->fw_info); 1330 dev_info(&octep_dev->pdev->dev, "Heartbeat interval %u msecs Heartbeat miss count %u\n", 1331 octep_dev->conf->fw_info.hb_interval, 1332 octep_dev->conf->fw_info.hb_miss_count); 1333 queue_delayed_work(octep_wq, &octep_dev->hb_task, 1334 msecs_to_jiffies(octep_dev->conf->fw_info.hb_interval)); 1335 1336 INIT_WORK(&octep_dev->tx_timeout_task, octep_tx_timeout_task); 1337 INIT_WORK(&octep_dev->ctrl_mbox_task, octep_ctrl_mbox_task); 1338 INIT_DELAYED_WORK(&octep_dev->intr_poll_task, octep_intr_poll_task); 1339 octep_dev->poll_non_ioq_intr = true; 1340 queue_delayed_work(octep_wq, &octep_dev->intr_poll_task, 1341 msecs_to_jiffies(OCTEP_INTR_POLL_TIME_MSECS)); 1342 1343 netdev->netdev_ops = &octep_netdev_ops; 1344 octep_set_ethtool_ops(netdev); 1345 netif_carrier_off(netdev); 1346 1347 netdev->hw_features = NETIF_F_SG; 1348 netdev->features |= netdev->hw_features; 1349 netdev->min_mtu = OCTEP_MIN_MTU; 1350 netdev->max_mtu = OCTEP_MAX_MTU; 1351 netdev->mtu = OCTEP_DEFAULT_MTU; 1352 1353 err = octep_ctrl_net_get_mac_addr(octep_dev, OCTEP_CTRL_NET_INVALID_VFID, 1354 octep_dev->mac_addr); 1355 if (err) { 1356 dev_err(&pdev->dev, "Failed to get mac address\n"); 1357 goto register_dev_err; 1358 } 1359 eth_hw_addr_set(netdev, octep_dev->mac_addr); 1360 1361 err = register_netdev(netdev); 1362 if (err) { 1363 dev_err(&pdev->dev, "Failed to register netdev\n"); 1364 goto register_dev_err; 1365 } 1366 dev_info(&pdev->dev, "Device probe successful\n"); 1367 return 0; 1368 1369 register_dev_err: 1370 octep_device_cleanup(octep_dev); 1371 err_octep_config: 1372 free_netdev(netdev); 1373 err_alloc_netdev: 1374 pci_release_mem_regions(pdev); 1375 err_pci_regions: 1376 err_dma_mask: 1377 pci_disable_device(pdev); 1378 return err; 1379 } 1380 1381 /** 1382 * octep_remove() - Remove Octeon PCI device from driver control. 1383 * 1384 * @pdev: PCI device structure of the Octeon device. 1385 * 1386 * Cleanup all resources allocated for the Octeon device. 1387 * Unregister from network device and disable the PCI device. 1388 */ 1389 static void octep_remove(struct pci_dev *pdev) 1390 { 1391 struct octep_device *oct = pci_get_drvdata(pdev); 1392 struct net_device *netdev; 1393 1394 if (!oct) 1395 return; 1396 1397 netdev = oct->netdev; 1398 if (netdev->reg_state == NETREG_REGISTERED) 1399 unregister_netdev(netdev); 1400 1401 cancel_work_sync(&oct->tx_timeout_task); 1402 octep_device_cleanup(oct); 1403 pci_release_mem_regions(pdev); 1404 free_netdev(netdev); 1405 pci_disable_device(pdev); 1406 } 1407 1408 static struct pci_driver octep_driver = { 1409 .name = OCTEP_DRV_NAME, 1410 .id_table = octep_pci_id_tbl, 1411 .probe = octep_probe, 1412 .remove = octep_remove, 1413 }; 1414 1415 /** 1416 * octep_init_module() - Module initialiation. 1417 * 1418 * create common resource for the driver and register PCI driver. 1419 */ 1420 static int __init octep_init_module(void) 1421 { 1422 int ret; 1423 1424 pr_info("%s: Loading %s ...\n", OCTEP_DRV_NAME, OCTEP_DRV_STRING); 1425 1426 /* work queue for all deferred tasks */ 1427 octep_wq = create_singlethread_workqueue(OCTEP_DRV_NAME); 1428 if (!octep_wq) { 1429 pr_err("%s: Failed to create common workqueue\n", 1430 OCTEP_DRV_NAME); 1431 return -ENOMEM; 1432 } 1433 1434 ret = pci_register_driver(&octep_driver); 1435 if (ret < 0) { 1436 pr_err("%s: Failed to register PCI driver; err=%d\n", 1437 OCTEP_DRV_NAME, ret); 1438 destroy_workqueue(octep_wq); 1439 return ret; 1440 } 1441 1442 pr_info("%s: Loaded successfully !\n", OCTEP_DRV_NAME); 1443 1444 return ret; 1445 } 1446 1447 /** 1448 * octep_exit_module() - Module exit routine. 1449 * 1450 * unregister the driver with PCI subsystem and cleanup common resources. 1451 */ 1452 static void __exit octep_exit_module(void) 1453 { 1454 pr_info("%s: Unloading ...\n", OCTEP_DRV_NAME); 1455 1456 pci_unregister_driver(&octep_driver); 1457 destroy_workqueue(octep_wq); 1458 1459 pr_info("%s: Unloading complete\n", OCTEP_DRV_NAME); 1460 } 1461 1462 module_init(octep_init_module); 1463 module_exit(octep_exit_module); 1464