xref: /linux/drivers/net/ethernet/marvell/octeon_ep/octep_main.c (revision f4fee216df7d28b87d1c9cc60bcebfecb51c1a05)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell Octeon EP (EndPoint) Ethernet Driver
3  *
4  * Copyright (C) 2020 Marvell.
5  *
6  */
7 
8 #include <linux/types.h>
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include <linux/netdevice.h>
12 #include <linux/etherdevice.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/vmalloc.h>
15 
16 #include "octep_config.h"
17 #include "octep_main.h"
18 #include "octep_ctrl_net.h"
19 #include "octep_pfvf_mbox.h"
20 
21 #define OCTEP_INTR_POLL_TIME_MSECS    100
22 struct workqueue_struct *octep_wq;
23 
24 /* Supported Devices */
25 static const struct pci_device_id octep_pci_id_tbl[] = {
26 	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN98_PF)},
27 	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN93_PF)},
28 	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CNF95N_PF)},
29 	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN10KA_PF)},
30 	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CNF10KA_PF)},
31 	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CNF10KB_PF)},
32 	{PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, OCTEP_PCI_DEVICE_ID_CN10KB_PF)},
33 	{0, },
34 };
35 MODULE_DEVICE_TABLE(pci, octep_pci_id_tbl);
36 
37 MODULE_AUTHOR("Veerasenareddy Burru <vburru@marvell.com>");
38 MODULE_DESCRIPTION(OCTEP_DRV_STRING);
39 MODULE_LICENSE("GPL");
40 
41 /**
42  * octep_alloc_ioq_vectors() - Allocate Tx/Rx Queue interrupt info.
43  *
44  * @oct: Octeon device private data structure.
45  *
46  * Allocate resources to hold per Tx/Rx queue interrupt info.
47  * This is the information passed to interrupt handler, from which napi poll
48  * is scheduled and includes quick access to private data of Tx/Rx queue
49  * corresponding to the interrupt being handled.
50  *
51  * Return: 0, on successful allocation of resources for all queue interrupts.
52  *         -1, if failed to allocate any resource.
53  */
54 static int octep_alloc_ioq_vectors(struct octep_device *oct)
55 {
56 	int i;
57 	struct octep_ioq_vector *ioq_vector;
58 
59 	for (i = 0; i < oct->num_oqs; i++) {
60 		oct->ioq_vector[i] = vzalloc(sizeof(*oct->ioq_vector[i]));
61 		if (!oct->ioq_vector[i])
62 			goto free_ioq_vector;
63 
64 		ioq_vector = oct->ioq_vector[i];
65 		ioq_vector->iq = oct->iq[i];
66 		ioq_vector->oq = oct->oq[i];
67 		ioq_vector->octep_dev = oct;
68 	}
69 
70 	dev_info(&oct->pdev->dev, "Allocated %d IOQ vectors\n", oct->num_oqs);
71 	return 0;
72 
73 free_ioq_vector:
74 	while (i) {
75 		i--;
76 		vfree(oct->ioq_vector[i]);
77 		oct->ioq_vector[i] = NULL;
78 	}
79 	return -1;
80 }
81 
82 /**
83  * octep_free_ioq_vectors() - Free Tx/Rx Queue interrupt vector info.
84  *
85  * @oct: Octeon device private data structure.
86  */
87 static void octep_free_ioq_vectors(struct octep_device *oct)
88 {
89 	int i;
90 
91 	for (i = 0; i < oct->num_oqs; i++) {
92 		if (oct->ioq_vector[i]) {
93 			vfree(oct->ioq_vector[i]);
94 			oct->ioq_vector[i] = NULL;
95 		}
96 	}
97 	netdev_info(oct->netdev, "Freed IOQ Vectors\n");
98 }
99 
100 /**
101  * octep_enable_msix_range() - enable MSI-x interrupts.
102  *
103  * @oct: Octeon device private data structure.
104  *
105  * Allocate and enable all MSI-x interrupts (queue and non-queue interrupts)
106  * for the Octeon device.
107  *
108  * Return: 0, on successfully enabling all MSI-x interrupts.
109  *         -1, if failed to enable any MSI-x interrupt.
110  */
111 static int octep_enable_msix_range(struct octep_device *oct)
112 {
113 	int num_msix, msix_allocated;
114 	int i;
115 
116 	/* Generic interrupts apart from input/output queues */
117 	num_msix = oct->num_oqs + CFG_GET_NON_IOQ_MSIX(oct->conf);
118 	oct->msix_entries = kcalloc(num_msix,
119 				    sizeof(struct msix_entry), GFP_KERNEL);
120 	if (!oct->msix_entries)
121 		goto msix_alloc_err;
122 
123 	for (i = 0; i < num_msix; i++)
124 		oct->msix_entries[i].entry = i;
125 
126 	msix_allocated = pci_enable_msix_range(oct->pdev, oct->msix_entries,
127 					       num_msix, num_msix);
128 	if (msix_allocated != num_msix) {
129 		dev_err(&oct->pdev->dev,
130 			"Failed to enable %d msix irqs; got only %d\n",
131 			num_msix, msix_allocated);
132 		goto enable_msix_err;
133 	}
134 	oct->num_irqs = msix_allocated;
135 	dev_info(&oct->pdev->dev, "MSI-X enabled successfully\n");
136 
137 	return 0;
138 
139 enable_msix_err:
140 	if (msix_allocated > 0)
141 		pci_disable_msix(oct->pdev);
142 	kfree(oct->msix_entries);
143 	oct->msix_entries = NULL;
144 msix_alloc_err:
145 	return -1;
146 }
147 
148 /**
149  * octep_disable_msix() - disable MSI-x interrupts.
150  *
151  * @oct: Octeon device private data structure.
152  *
153  * Disable MSI-x on the Octeon device.
154  */
155 static void octep_disable_msix(struct octep_device *oct)
156 {
157 	pci_disable_msix(oct->pdev);
158 	kfree(oct->msix_entries);
159 	oct->msix_entries = NULL;
160 	dev_info(&oct->pdev->dev, "Disabled MSI-X\n");
161 }
162 
163 /**
164  * octep_mbox_intr_handler() - common handler for pfvf mbox interrupts.
165  *
166  * @irq: Interrupt number.
167  * @data: interrupt data.
168  *
169  * this is common handler for pfvf mbox interrupts.
170  */
171 static irqreturn_t octep_mbox_intr_handler(int irq, void *data)
172 {
173 	struct octep_device *oct = data;
174 
175 	return oct->hw_ops.mbox_intr_handler(oct);
176 }
177 
178 /**
179  * octep_oei_intr_handler() - common handler for output endpoint interrupts.
180  *
181  * @irq: Interrupt number.
182  * @data: interrupt data.
183  *
184  * this is common handler for all output endpoint interrupts.
185  */
186 static irqreturn_t octep_oei_intr_handler(int irq, void *data)
187 {
188 	struct octep_device *oct = data;
189 
190 	return oct->hw_ops.oei_intr_handler(oct);
191 }
192 
193 /**
194  * octep_ire_intr_handler() - common handler for input ring error interrupts.
195  *
196  * @irq: Interrupt number.
197  * @data: interrupt data.
198  *
199  * this is common handler for input ring error interrupts.
200  */
201 static irqreturn_t octep_ire_intr_handler(int irq, void *data)
202 {
203 	struct octep_device *oct = data;
204 
205 	return oct->hw_ops.ire_intr_handler(oct);
206 }
207 
208 /**
209  * octep_ore_intr_handler() - common handler for output ring error interrupts.
210  *
211  * @irq: Interrupt number.
212  * @data: interrupt data.
213  *
214  * this is common handler for output ring error interrupts.
215  */
216 static irqreturn_t octep_ore_intr_handler(int irq, void *data)
217 {
218 	struct octep_device *oct = data;
219 
220 	return oct->hw_ops.ore_intr_handler(oct);
221 }
222 
223 /**
224  * octep_vfire_intr_handler() - common handler for vf input ring error interrupts.
225  *
226  * @irq: Interrupt number.
227  * @data: interrupt data.
228  *
229  * this is common handler for vf input ring error interrupts.
230  */
231 static irqreturn_t octep_vfire_intr_handler(int irq, void *data)
232 {
233 	struct octep_device *oct = data;
234 
235 	return oct->hw_ops.vfire_intr_handler(oct);
236 }
237 
238 /**
239  * octep_vfore_intr_handler() - common handler for vf output ring error interrupts.
240  *
241  * @irq: Interrupt number.
242  * @data: interrupt data.
243  *
244  * this is common handler for vf output ring error interrupts.
245  */
246 static irqreturn_t octep_vfore_intr_handler(int irq, void *data)
247 {
248 	struct octep_device *oct = data;
249 
250 	return oct->hw_ops.vfore_intr_handler(oct);
251 }
252 
253 /**
254  * octep_dma_intr_handler() - common handler for dpi dma related interrupts.
255  *
256  * @irq: Interrupt number.
257  * @data: interrupt data.
258  *
259  * this is common handler for dpi dma related interrupts.
260  */
261 static irqreturn_t octep_dma_intr_handler(int irq, void *data)
262 {
263 	struct octep_device *oct = data;
264 
265 	return oct->hw_ops.dma_intr_handler(oct);
266 }
267 
268 /**
269  * octep_dma_vf_intr_handler() - common handler for dpi dma transaction error interrupts for VFs.
270  *
271  * @irq: Interrupt number.
272  * @data: interrupt data.
273  *
274  * this is common handler for dpi dma transaction error interrupts for VFs.
275  */
276 static irqreturn_t octep_dma_vf_intr_handler(int irq, void *data)
277 {
278 	struct octep_device *oct = data;
279 
280 	return oct->hw_ops.dma_vf_intr_handler(oct);
281 }
282 
283 /**
284  * octep_pp_vf_intr_handler() - common handler for pp transaction error interrupts for VFs.
285  *
286  * @irq: Interrupt number.
287  * @data: interrupt data.
288  *
289  * this is common handler for pp transaction error interrupts for VFs.
290  */
291 static irqreturn_t octep_pp_vf_intr_handler(int irq, void *data)
292 {
293 	struct octep_device *oct = data;
294 
295 	return oct->hw_ops.pp_vf_intr_handler(oct);
296 }
297 
298 /**
299  * octep_misc_intr_handler() - common handler for mac related interrupts.
300  *
301  * @irq: Interrupt number.
302  * @data: interrupt data.
303  *
304  * this is common handler for mac related interrupts.
305  */
306 static irqreturn_t octep_misc_intr_handler(int irq, void *data)
307 {
308 	struct octep_device *oct = data;
309 
310 	return oct->hw_ops.misc_intr_handler(oct);
311 }
312 
313 /**
314  * octep_rsvd_intr_handler() - common handler for reserved interrupts (future use).
315  *
316  * @irq: Interrupt number.
317  * @data: interrupt data.
318  *
319  * this is common handler for all reserved interrupts.
320  */
321 static irqreturn_t octep_rsvd_intr_handler(int irq, void *data)
322 {
323 	struct octep_device *oct = data;
324 
325 	return oct->hw_ops.rsvd_intr_handler(oct);
326 }
327 
328 /**
329  * octep_ioq_intr_handler() - handler for all Tx/Rx queue interrupts.
330  *
331  * @irq: Interrupt number.
332  * @data: interrupt data contains pointers to Tx/Rx queue private data
333  *         and correspong NAPI context.
334  *
335  * this is common handler for all non-queue (generic) interrupts.
336  */
337 static irqreturn_t octep_ioq_intr_handler(int irq, void *data)
338 {
339 	struct octep_ioq_vector *ioq_vector = data;
340 	struct octep_device *oct = ioq_vector->octep_dev;
341 
342 	return oct->hw_ops.ioq_intr_handler(ioq_vector);
343 }
344 
345 /**
346  * octep_request_irqs() - Register interrupt handlers.
347  *
348  * @oct: Octeon device private data structure.
349  *
350  * Register handlers for all queue and non-queue interrupts.
351  *
352  * Return: 0, on successful registration of all interrupt handlers.
353  *         -1, on any error.
354  */
355 static int octep_request_irqs(struct octep_device *oct)
356 {
357 	struct net_device *netdev = oct->netdev;
358 	struct octep_ioq_vector *ioq_vector;
359 	struct msix_entry *msix_entry;
360 	char **non_ioq_msix_names;
361 	int num_non_ioq_msix;
362 	int ret, i, j;
363 
364 	num_non_ioq_msix = CFG_GET_NON_IOQ_MSIX(oct->conf);
365 	non_ioq_msix_names = CFG_GET_NON_IOQ_MSIX_NAMES(oct->conf);
366 
367 	oct->non_ioq_irq_names = kcalloc(num_non_ioq_msix,
368 					 OCTEP_MSIX_NAME_SIZE, GFP_KERNEL);
369 	if (!oct->non_ioq_irq_names)
370 		goto alloc_err;
371 
372 	/* First few MSI-X interrupts are non-queue interrupts */
373 	for (i = 0; i < num_non_ioq_msix; i++) {
374 		char *irq_name;
375 
376 		irq_name = &oct->non_ioq_irq_names[i * OCTEP_MSIX_NAME_SIZE];
377 		msix_entry = &oct->msix_entries[i];
378 
379 		snprintf(irq_name, OCTEP_MSIX_NAME_SIZE,
380 			 "%s-%s", netdev->name, non_ioq_msix_names[i]);
381 		if (!strncmp(non_ioq_msix_names[i], "epf_mbox_rint", strlen("epf_mbox_rint"))) {
382 			ret = request_irq(msix_entry->vector,
383 					  octep_mbox_intr_handler, 0,
384 					  irq_name, oct);
385 		} else if (!strncmp(non_ioq_msix_names[i], "epf_oei_rint",
386 			   strlen("epf_oei_rint"))) {
387 			ret = request_irq(msix_entry->vector,
388 					  octep_oei_intr_handler, 0,
389 					  irq_name, oct);
390 		} else if (!strncmp(non_ioq_msix_names[i], "epf_ire_rint",
391 			   strlen("epf_ire_rint"))) {
392 			ret = request_irq(msix_entry->vector,
393 					  octep_ire_intr_handler, 0,
394 					  irq_name, oct);
395 		} else if (!strncmp(non_ioq_msix_names[i], "epf_ore_rint",
396 			   strlen("epf_ore_rint"))) {
397 			ret = request_irq(msix_entry->vector,
398 					  octep_ore_intr_handler, 0,
399 					  irq_name, oct);
400 		} else if (!strncmp(non_ioq_msix_names[i], "epf_vfire_rint",
401 			   strlen("epf_vfire_rint"))) {
402 			ret = request_irq(msix_entry->vector,
403 					  octep_vfire_intr_handler, 0,
404 					  irq_name, oct);
405 		} else if (!strncmp(non_ioq_msix_names[i], "epf_vfore_rint",
406 			   strlen("epf_vfore_rint"))) {
407 			ret = request_irq(msix_entry->vector,
408 					  octep_vfore_intr_handler, 0,
409 					  irq_name, oct);
410 		} else if (!strncmp(non_ioq_msix_names[i], "epf_dma_rint",
411 			   strlen("epf_dma_rint"))) {
412 			ret = request_irq(msix_entry->vector,
413 					  octep_dma_intr_handler, 0,
414 					  irq_name, oct);
415 		} else if (!strncmp(non_ioq_msix_names[i], "epf_dma_vf_rint",
416 			   strlen("epf_dma_vf_rint"))) {
417 			ret = request_irq(msix_entry->vector,
418 					  octep_dma_vf_intr_handler, 0,
419 					  irq_name, oct);
420 		} else if (!strncmp(non_ioq_msix_names[i], "epf_pp_vf_rint",
421 			   strlen("epf_pp_vf_rint"))) {
422 			ret = request_irq(msix_entry->vector,
423 					  octep_pp_vf_intr_handler, 0,
424 					  irq_name, oct);
425 		} else if (!strncmp(non_ioq_msix_names[i], "epf_misc_rint",
426 			   strlen("epf_misc_rint"))) {
427 			ret = request_irq(msix_entry->vector,
428 					  octep_misc_intr_handler, 0,
429 					  irq_name, oct);
430 		} else {
431 			ret = request_irq(msix_entry->vector,
432 					  octep_rsvd_intr_handler, 0,
433 					  irq_name, oct);
434 		}
435 
436 		if (ret) {
437 			netdev_err(netdev,
438 				   "request_irq failed for %s; err=%d",
439 				   irq_name, ret);
440 			goto non_ioq_irq_err;
441 		}
442 	}
443 
444 	/* Request IRQs for Tx/Rx queues */
445 	for (j = 0; j < oct->num_oqs; j++) {
446 		ioq_vector = oct->ioq_vector[j];
447 		msix_entry = &oct->msix_entries[j + num_non_ioq_msix];
448 
449 		snprintf(ioq_vector->name, sizeof(ioq_vector->name),
450 			 "%s-q%d", netdev->name, j);
451 		ret = request_irq(msix_entry->vector,
452 				  octep_ioq_intr_handler, 0,
453 				  ioq_vector->name, ioq_vector);
454 		if (ret) {
455 			netdev_err(netdev,
456 				   "request_irq failed for Q-%d; err=%d",
457 				   j, ret);
458 			goto ioq_irq_err;
459 		}
460 
461 		cpumask_set_cpu(j % num_online_cpus(),
462 				&ioq_vector->affinity_mask);
463 		irq_set_affinity_hint(msix_entry->vector,
464 				      &ioq_vector->affinity_mask);
465 	}
466 
467 	return 0;
468 ioq_irq_err:
469 	while (j) {
470 		--j;
471 		ioq_vector = oct->ioq_vector[j];
472 		msix_entry = &oct->msix_entries[j + num_non_ioq_msix];
473 
474 		irq_set_affinity_hint(msix_entry->vector, NULL);
475 		free_irq(msix_entry->vector, ioq_vector);
476 	}
477 non_ioq_irq_err:
478 	while (i) {
479 		--i;
480 		free_irq(oct->msix_entries[i].vector, oct);
481 	}
482 	kfree(oct->non_ioq_irq_names);
483 	oct->non_ioq_irq_names = NULL;
484 alloc_err:
485 	return -1;
486 }
487 
488 /**
489  * octep_free_irqs() - free all registered interrupts.
490  *
491  * @oct: Octeon device private data structure.
492  *
493  * Free all queue and non-queue interrupts of the Octeon device.
494  */
495 static void octep_free_irqs(struct octep_device *oct)
496 {
497 	int i;
498 
499 	/* First few MSI-X interrupts are non queue interrupts; free them */
500 	for (i = 0; i < CFG_GET_NON_IOQ_MSIX(oct->conf); i++)
501 		free_irq(oct->msix_entries[i].vector, oct);
502 	kfree(oct->non_ioq_irq_names);
503 
504 	/* Free IRQs for Input/Output (Tx/Rx) queues */
505 	for (i = CFG_GET_NON_IOQ_MSIX(oct->conf); i < oct->num_irqs; i++) {
506 		irq_set_affinity_hint(oct->msix_entries[i].vector, NULL);
507 		free_irq(oct->msix_entries[i].vector,
508 			 oct->ioq_vector[i - CFG_GET_NON_IOQ_MSIX(oct->conf)]);
509 	}
510 	netdev_info(oct->netdev, "IRQs freed\n");
511 }
512 
513 /**
514  * octep_setup_irqs() - setup interrupts for the Octeon device.
515  *
516  * @oct: Octeon device private data structure.
517  *
518  * Allocate data structures to hold per interrupt information, allocate/enable
519  * MSI-x interrupt and register interrupt handlers.
520  *
521  * Return: 0, on successful allocation and registration of all interrupts.
522  *         -1, on any error.
523  */
524 static int octep_setup_irqs(struct octep_device *oct)
525 {
526 	if (octep_alloc_ioq_vectors(oct))
527 		goto ioq_vector_err;
528 
529 	if (octep_enable_msix_range(oct))
530 		goto enable_msix_err;
531 
532 	if (octep_request_irqs(oct))
533 		goto request_irq_err;
534 
535 	return 0;
536 
537 request_irq_err:
538 	octep_disable_msix(oct);
539 enable_msix_err:
540 	octep_free_ioq_vectors(oct);
541 ioq_vector_err:
542 	return -1;
543 }
544 
545 /**
546  * octep_clean_irqs() - free all interrupts and its resources.
547  *
548  * @oct: Octeon device private data structure.
549  */
550 static void octep_clean_irqs(struct octep_device *oct)
551 {
552 	octep_free_irqs(oct);
553 	octep_disable_msix(oct);
554 	octep_free_ioq_vectors(oct);
555 }
556 
557 /**
558  * octep_enable_ioq_irq() - Enable MSI-x interrupt of a Tx/Rx queue.
559  *
560  * @iq: Octeon Tx queue data structure.
561  * @oq: Octeon Rx queue data structure.
562  */
563 static void octep_enable_ioq_irq(struct octep_iq *iq, struct octep_oq *oq)
564 {
565 	u32 pkts_pend = oq->pkts_pending;
566 
567 	netdev_dbg(iq->netdev, "enabling intr for Q-%u\n", iq->q_no);
568 	if (iq->pkts_processed) {
569 		writel(iq->pkts_processed, iq->inst_cnt_reg);
570 		iq->pkt_in_done -= iq->pkts_processed;
571 		iq->pkts_processed = 0;
572 	}
573 	if (oq->last_pkt_count - pkts_pend) {
574 		writel(oq->last_pkt_count - pkts_pend, oq->pkts_sent_reg);
575 		oq->last_pkt_count = pkts_pend;
576 	}
577 
578 	/* Flush the previous wrties before writing to RESEND bit */
579 	wmb();
580 	writeq(1UL << OCTEP_OQ_INTR_RESEND_BIT, oq->pkts_sent_reg);
581 	writeq(1UL << OCTEP_IQ_INTR_RESEND_BIT, iq->inst_cnt_reg);
582 }
583 
584 /**
585  * octep_napi_poll() - NAPI poll function for Tx/Rx.
586  *
587  * @napi: pointer to napi context.
588  * @budget: max number of packets to be processed in single invocation.
589  */
590 static int octep_napi_poll(struct napi_struct *napi, int budget)
591 {
592 	struct octep_ioq_vector *ioq_vector =
593 		container_of(napi, struct octep_ioq_vector, napi);
594 	u32 tx_pending, rx_done;
595 
596 	tx_pending = octep_iq_process_completions(ioq_vector->iq, budget);
597 	rx_done = octep_oq_process_rx(ioq_vector->oq, budget);
598 
599 	/* need more polling if tx completion processing is still pending or
600 	 * processed at least 'budget' number of rx packets.
601 	 */
602 	if (tx_pending || rx_done >= budget)
603 		return budget;
604 
605 	napi_complete(napi);
606 	octep_enable_ioq_irq(ioq_vector->iq, ioq_vector->oq);
607 	return rx_done;
608 }
609 
610 /**
611  * octep_napi_add() - Add NAPI poll for all Tx/Rx queues.
612  *
613  * @oct: Octeon device private data structure.
614  */
615 static void octep_napi_add(struct octep_device *oct)
616 {
617 	int i;
618 
619 	for (i = 0; i < oct->num_oqs; i++) {
620 		netdev_dbg(oct->netdev, "Adding NAPI on Q-%d\n", i);
621 		netif_napi_add(oct->netdev, &oct->ioq_vector[i]->napi,
622 			       octep_napi_poll);
623 		oct->oq[i]->napi = &oct->ioq_vector[i]->napi;
624 	}
625 }
626 
627 /**
628  * octep_napi_delete() - delete NAPI poll callback for all Tx/Rx queues.
629  *
630  * @oct: Octeon device private data structure.
631  */
632 static void octep_napi_delete(struct octep_device *oct)
633 {
634 	int i;
635 
636 	for (i = 0; i < oct->num_oqs; i++) {
637 		netdev_dbg(oct->netdev, "Deleting NAPI on Q-%d\n", i);
638 		netif_napi_del(&oct->ioq_vector[i]->napi);
639 		oct->oq[i]->napi = NULL;
640 	}
641 }
642 
643 /**
644  * octep_napi_enable() - enable NAPI for all Tx/Rx queues.
645  *
646  * @oct: Octeon device private data structure.
647  */
648 static void octep_napi_enable(struct octep_device *oct)
649 {
650 	int i;
651 
652 	for (i = 0; i < oct->num_oqs; i++) {
653 		netdev_dbg(oct->netdev, "Enabling NAPI on Q-%d\n", i);
654 		napi_enable(&oct->ioq_vector[i]->napi);
655 	}
656 }
657 
658 /**
659  * octep_napi_disable() - disable NAPI for all Tx/Rx queues.
660  *
661  * @oct: Octeon device private data structure.
662  */
663 static void octep_napi_disable(struct octep_device *oct)
664 {
665 	int i;
666 
667 	for (i = 0; i < oct->num_oqs; i++) {
668 		netdev_dbg(oct->netdev, "Disabling NAPI on Q-%d\n", i);
669 		napi_disable(&oct->ioq_vector[i]->napi);
670 	}
671 }
672 
673 static void octep_link_up(struct net_device *netdev)
674 {
675 	netif_carrier_on(netdev);
676 	netif_tx_start_all_queues(netdev);
677 }
678 
679 /**
680  * octep_open() - start the octeon network device.
681  *
682  * @netdev: pointer to kernel network device.
683  *
684  * setup Tx/Rx queues, interrupts and enable hardware operation of Tx/Rx queues
685  * and interrupts..
686  *
687  * Return: 0, on successfully setting up device and bring it up.
688  *         -1, on any error.
689  */
690 static int octep_open(struct net_device *netdev)
691 {
692 	struct octep_device *oct = netdev_priv(netdev);
693 	int err, ret;
694 
695 	netdev_info(netdev, "Starting netdev ...\n");
696 	netif_carrier_off(netdev);
697 
698 	oct->hw_ops.reset_io_queues(oct);
699 
700 	if (octep_setup_iqs(oct))
701 		goto setup_iq_err;
702 	if (octep_setup_oqs(oct))
703 		goto setup_oq_err;
704 	if (octep_setup_irqs(oct))
705 		goto setup_irq_err;
706 
707 	err = netif_set_real_num_tx_queues(netdev, oct->num_oqs);
708 	if (err)
709 		goto set_queues_err;
710 	err = netif_set_real_num_rx_queues(netdev, oct->num_iqs);
711 	if (err)
712 		goto set_queues_err;
713 
714 	octep_napi_add(oct);
715 	octep_napi_enable(oct);
716 
717 	oct->link_info.admin_up = 1;
718 	octep_ctrl_net_set_rx_state(oct, OCTEP_CTRL_NET_INVALID_VFID, true,
719 				    false);
720 	octep_ctrl_net_set_link_status(oct, OCTEP_CTRL_NET_INVALID_VFID, true,
721 				       false);
722 	oct->poll_non_ioq_intr = false;
723 
724 	/* Enable the input and output queues for this Octeon device */
725 	oct->hw_ops.enable_io_queues(oct);
726 
727 	/* Enable Octeon device interrupts */
728 	oct->hw_ops.enable_interrupts(oct);
729 
730 	octep_oq_dbell_init(oct);
731 
732 	ret = octep_ctrl_net_get_link_status(oct, OCTEP_CTRL_NET_INVALID_VFID);
733 	if (ret > 0)
734 		octep_link_up(netdev);
735 
736 	return 0;
737 
738 set_queues_err:
739 	octep_clean_irqs(oct);
740 setup_irq_err:
741 	octep_free_oqs(oct);
742 setup_oq_err:
743 	octep_free_iqs(oct);
744 setup_iq_err:
745 	return -1;
746 }
747 
748 /**
749  * octep_stop() - stop the octeon network device.
750  *
751  * @netdev: pointer to kernel network device.
752  *
753  * stop the device Tx/Rx operations, bring down the link and
754  * free up all resources allocated for Tx/Rx queues and interrupts.
755  */
756 static int octep_stop(struct net_device *netdev)
757 {
758 	struct octep_device *oct = netdev_priv(netdev);
759 
760 	netdev_info(netdev, "Stopping the device ...\n");
761 
762 	octep_ctrl_net_set_link_status(oct, OCTEP_CTRL_NET_INVALID_VFID, false,
763 				       false);
764 	octep_ctrl_net_set_rx_state(oct, OCTEP_CTRL_NET_INVALID_VFID, false,
765 				    false);
766 
767 	/* Stop Tx from stack */
768 	netif_tx_stop_all_queues(netdev);
769 	netif_carrier_off(netdev);
770 	netif_tx_disable(netdev);
771 
772 	oct->link_info.admin_up = 0;
773 	oct->link_info.oper_up = 0;
774 
775 	oct->hw_ops.disable_interrupts(oct);
776 	octep_napi_disable(oct);
777 	octep_napi_delete(oct);
778 
779 	octep_clean_irqs(oct);
780 	octep_clean_iqs(oct);
781 
782 	oct->hw_ops.disable_io_queues(oct);
783 	oct->hw_ops.reset_io_queues(oct);
784 	octep_free_oqs(oct);
785 	octep_free_iqs(oct);
786 
787 	oct->poll_non_ioq_intr = true;
788 	queue_delayed_work(octep_wq, &oct->intr_poll_task,
789 			   msecs_to_jiffies(OCTEP_INTR_POLL_TIME_MSECS));
790 
791 	netdev_info(netdev, "Device stopped !!\n");
792 	return 0;
793 }
794 
795 /**
796  * octep_iq_full_check() - check if a Tx queue is full.
797  *
798  * @iq: Octeon Tx queue data structure.
799  *
800  * Return: 0, if the Tx queue is not full.
801  *         1, if the Tx queue is full.
802  */
803 static inline int octep_iq_full_check(struct octep_iq *iq)
804 {
805 	if (likely((IQ_INSTR_SPACE(iq)) >
806 		   OCTEP_WAKE_QUEUE_THRESHOLD))
807 		return 0;
808 
809 	/* Stop the queue if unable to send */
810 	netif_stop_subqueue(iq->netdev, iq->q_no);
811 
812 	/* Allow for pending updates in write index
813 	 * from iq_process_completion in other cpus
814 	 * to reflect, in case queue gets free
815 	 * entries.
816 	 */
817 	smp_mb();
818 
819 	/* check again and restart the queue, in case NAPI has just freed
820 	 * enough Tx ring entries.
821 	 */
822 	if (unlikely(IQ_INSTR_SPACE(iq) >
823 		     OCTEP_WAKE_QUEUE_THRESHOLD)) {
824 		netif_start_subqueue(iq->netdev, iq->q_no);
825 		iq->stats.restart_cnt++;
826 		return 0;
827 	}
828 
829 	return 1;
830 }
831 
832 /**
833  * octep_start_xmit() - Enqueue packet to Octoen hardware Tx Queue.
834  *
835  * @skb: packet skbuff pointer.
836  * @netdev: kernel network device.
837  *
838  * Return: NETDEV_TX_BUSY, if Tx Queue is full.
839  *         NETDEV_TX_OK, if successfully enqueued to hardware Tx queue.
840  */
841 static netdev_tx_t octep_start_xmit(struct sk_buff *skb,
842 				    struct net_device *netdev)
843 {
844 	struct octep_device *oct = netdev_priv(netdev);
845 	netdev_features_t feat  = netdev->features;
846 	struct octep_tx_sglist_desc *sglist;
847 	struct octep_tx_buffer *tx_buffer;
848 	struct octep_tx_desc_hw *hw_desc;
849 	struct skb_shared_info *shinfo;
850 	struct octep_instr_hdr *ih;
851 	struct octep_iq *iq;
852 	skb_frag_t *frag;
853 	u16 nr_frags, si;
854 	int xmit_more;
855 	u16 q_no, wi;
856 
857 	if (skb_put_padto(skb, ETH_ZLEN))
858 		return NETDEV_TX_OK;
859 
860 	q_no = skb_get_queue_mapping(skb);
861 	if (q_no >= oct->num_iqs) {
862 		netdev_err(netdev, "Invalid Tx skb->queue_mapping=%d\n", q_no);
863 		q_no = q_no % oct->num_iqs;
864 	}
865 
866 	iq = oct->iq[q_no];
867 
868 	shinfo = skb_shinfo(skb);
869 	nr_frags = shinfo->nr_frags;
870 
871 	wi = iq->host_write_index;
872 	hw_desc = &iq->desc_ring[wi];
873 	hw_desc->ih64 = 0;
874 
875 	tx_buffer = iq->buff_info + wi;
876 	tx_buffer->skb = skb;
877 
878 	ih = &hw_desc->ih;
879 	ih->pkind = oct->conf->fw_info.pkind;
880 	ih->fsz = oct->conf->fw_info.fsz;
881 	ih->tlen = skb->len + ih->fsz;
882 
883 	if (!nr_frags) {
884 		tx_buffer->gather = 0;
885 		tx_buffer->dma = dma_map_single(iq->dev, skb->data,
886 						skb->len, DMA_TO_DEVICE);
887 		if (dma_mapping_error(iq->dev, tx_buffer->dma))
888 			goto dma_map_err;
889 		hw_desc->dptr = tx_buffer->dma;
890 	} else {
891 		/* Scatter/Gather */
892 		dma_addr_t dma;
893 		u16 len;
894 
895 		sglist = tx_buffer->sglist;
896 
897 		ih->gsz = nr_frags + 1;
898 		ih->gather = 1;
899 		tx_buffer->gather = 1;
900 
901 		len = skb_headlen(skb);
902 		dma = dma_map_single(iq->dev, skb->data, len, DMA_TO_DEVICE);
903 		if (dma_mapping_error(iq->dev, dma))
904 			goto dma_map_err;
905 
906 		memset(sglist, 0, OCTEP_SGLIST_SIZE_PER_PKT);
907 		sglist[0].len[3] = len;
908 		sglist[0].dma_ptr[0] = dma;
909 
910 		si = 1; /* entry 0 is main skb, mapped above */
911 		frag = &shinfo->frags[0];
912 		while (nr_frags--) {
913 			len = skb_frag_size(frag);
914 			dma = skb_frag_dma_map(iq->dev, frag, 0,
915 					       len, DMA_TO_DEVICE);
916 			if (dma_mapping_error(iq->dev, dma))
917 				goto dma_map_sg_err;
918 
919 			sglist[si >> 2].len[3 - (si & 3)] = len;
920 			sglist[si >> 2].dma_ptr[si & 3] = dma;
921 
922 			frag++;
923 			si++;
924 		}
925 		hw_desc->dptr = tx_buffer->sglist_dma;
926 	}
927 
928 	if (oct->conf->fw_info.tx_ol_flags) {
929 		if ((feat & (NETIF_F_TSO)) && (skb_is_gso(skb))) {
930 			hw_desc->txm.ol_flags = OCTEP_TX_OFFLOAD_CKSUM;
931 			hw_desc->txm.ol_flags |= OCTEP_TX_OFFLOAD_TSO;
932 			hw_desc->txm.gso_size =  skb_shinfo(skb)->gso_size;
933 			hw_desc->txm.gso_segs =  skb_shinfo(skb)->gso_segs;
934 		} else if (feat & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
935 			hw_desc->txm.ol_flags = OCTEP_TX_OFFLOAD_CKSUM;
936 		}
937 		/* due to ESR txm will be swapped by hw */
938 		hw_desc->txm64[0] = (__force u64)cpu_to_be64(hw_desc->txm64[0]);
939 	}
940 
941 	xmit_more = netdev_xmit_more();
942 
943 	__netdev_tx_sent_queue(iq->netdev_q, skb->len, xmit_more);
944 
945 	skb_tx_timestamp(skb);
946 	iq->fill_cnt++;
947 	wi++;
948 	iq->host_write_index = wi & iq->ring_size_mask;
949 
950 	/* octep_iq_full_check stops the queue and returns
951 	 * true if so, in case the queue has become full
952 	 * by inserting current packet. If so, we can
953 	 * go ahead and ring doorbell.
954 	 */
955 	if (!octep_iq_full_check(iq) && xmit_more &&
956 	    iq->fill_cnt < iq->fill_threshold)
957 		return NETDEV_TX_OK;
958 
959 	/* Flush the hw descriptor before writing to doorbell */
960 	wmb();
961 	/* Ring Doorbell to notify the NIC of new packets */
962 	writel(iq->fill_cnt, iq->doorbell_reg);
963 	iq->stats.instr_posted += iq->fill_cnt;
964 	iq->fill_cnt = 0;
965 	return NETDEV_TX_OK;
966 
967 dma_map_sg_err:
968 	if (si > 0) {
969 		dma_unmap_single(iq->dev, sglist[0].dma_ptr[0],
970 				 sglist[0].len[3], DMA_TO_DEVICE);
971 		sglist[0].len[3] = 0;
972 	}
973 	while (si > 1) {
974 		dma_unmap_page(iq->dev, sglist[si >> 2].dma_ptr[si & 3],
975 			       sglist[si >> 2].len[3 - (si & 3)], DMA_TO_DEVICE);
976 		sglist[si >> 2].len[3 - (si & 3)] = 0;
977 		si--;
978 	}
979 	tx_buffer->gather = 0;
980 dma_map_err:
981 	dev_kfree_skb_any(skb);
982 	return NETDEV_TX_OK;
983 }
984 
985 /**
986  * octep_get_stats64() - Get Octeon network device statistics.
987  *
988  * @netdev: kernel network device.
989  * @stats: pointer to stats structure to be filled in.
990  */
991 static void octep_get_stats64(struct net_device *netdev,
992 			      struct rtnl_link_stats64 *stats)
993 {
994 	u64 tx_packets, tx_bytes, rx_packets, rx_bytes;
995 	struct octep_device *oct = netdev_priv(netdev);
996 	int q;
997 
998 	if (netif_running(netdev))
999 		octep_ctrl_net_get_if_stats(oct,
1000 					    OCTEP_CTRL_NET_INVALID_VFID,
1001 					    &oct->iface_rx_stats,
1002 					    &oct->iface_tx_stats);
1003 
1004 	tx_packets = 0;
1005 	tx_bytes = 0;
1006 	rx_packets = 0;
1007 	rx_bytes = 0;
1008 	for (q = 0; q < oct->num_oqs; q++) {
1009 		struct octep_iq *iq = oct->iq[q];
1010 		struct octep_oq *oq = oct->oq[q];
1011 
1012 		tx_packets += iq->stats.instr_completed;
1013 		tx_bytes += iq->stats.bytes_sent;
1014 		rx_packets += oq->stats.packets;
1015 		rx_bytes += oq->stats.bytes;
1016 	}
1017 	stats->tx_packets = tx_packets;
1018 	stats->tx_bytes = tx_bytes;
1019 	stats->rx_packets = rx_packets;
1020 	stats->rx_bytes = rx_bytes;
1021 	stats->multicast = oct->iface_rx_stats.mcast_pkts;
1022 	stats->rx_errors = oct->iface_rx_stats.err_pkts;
1023 	stats->collisions = oct->iface_tx_stats.xscol;
1024 	stats->tx_fifo_errors = oct->iface_tx_stats.undflw;
1025 }
1026 
1027 /**
1028  * octep_tx_timeout_task - work queue task to Handle Tx queue timeout.
1029  *
1030  * @work: pointer to Tx queue timeout work_struct
1031  *
1032  * Stop and start the device so that it frees up all queue resources
1033  * and restarts the queues, that potentially clears a Tx queue timeout
1034  * condition.
1035  **/
1036 static void octep_tx_timeout_task(struct work_struct *work)
1037 {
1038 	struct octep_device *oct = container_of(work, struct octep_device,
1039 						tx_timeout_task);
1040 	struct net_device *netdev = oct->netdev;
1041 
1042 	rtnl_lock();
1043 	if (netif_running(netdev)) {
1044 		octep_stop(netdev);
1045 		octep_open(netdev);
1046 	}
1047 	rtnl_unlock();
1048 }
1049 
1050 /**
1051  * octep_tx_timeout() - Handle Tx Queue timeout.
1052  *
1053  * @netdev: pointer to kernel network device.
1054  * @txqueue: Timed out Tx queue number.
1055  *
1056  * Schedule a work to handle Tx queue timeout.
1057  */
1058 static void octep_tx_timeout(struct net_device *netdev, unsigned int txqueue)
1059 {
1060 	struct octep_device *oct = netdev_priv(netdev);
1061 
1062 	queue_work(octep_wq, &oct->tx_timeout_task);
1063 }
1064 
1065 static int octep_set_mac(struct net_device *netdev, void *p)
1066 {
1067 	struct octep_device *oct = netdev_priv(netdev);
1068 	struct sockaddr *addr = (struct sockaddr *)p;
1069 	int err;
1070 
1071 	if (!is_valid_ether_addr(addr->sa_data))
1072 		return -EADDRNOTAVAIL;
1073 
1074 	err = octep_ctrl_net_set_mac_addr(oct, OCTEP_CTRL_NET_INVALID_VFID,
1075 					  addr->sa_data, true);
1076 	if (err)
1077 		return err;
1078 
1079 	memcpy(oct->mac_addr, addr->sa_data, ETH_ALEN);
1080 	eth_hw_addr_set(netdev, addr->sa_data);
1081 
1082 	return 0;
1083 }
1084 
1085 static int octep_change_mtu(struct net_device *netdev, int new_mtu)
1086 {
1087 	struct octep_device *oct = netdev_priv(netdev);
1088 	struct octep_iface_link_info *link_info;
1089 	int err = 0;
1090 
1091 	link_info = &oct->link_info;
1092 	if (link_info->mtu == new_mtu)
1093 		return 0;
1094 
1095 	err = octep_ctrl_net_set_mtu(oct, OCTEP_CTRL_NET_INVALID_VFID, new_mtu,
1096 				     true);
1097 	if (!err) {
1098 		oct->link_info.mtu = new_mtu;
1099 		netdev->mtu = new_mtu;
1100 	}
1101 
1102 	return err;
1103 }
1104 
1105 static int octep_set_features(struct net_device *dev, netdev_features_t features)
1106 {
1107 	struct octep_ctrl_net_offloads offloads = { 0 };
1108 	struct octep_device *oct = netdev_priv(dev);
1109 	int err;
1110 
1111 	/* We only support features received from firmware */
1112 	if ((features & dev->hw_features) != features)
1113 		return -EINVAL;
1114 
1115 	if (features & NETIF_F_TSO)
1116 		offloads.tx_offloads |= OCTEP_TX_OFFLOAD_TSO;
1117 
1118 	if (features & NETIF_F_TSO6)
1119 		offloads.tx_offloads |= OCTEP_TX_OFFLOAD_TSO;
1120 
1121 	if (features & NETIF_F_IP_CSUM)
1122 		offloads.tx_offloads |= OCTEP_TX_OFFLOAD_CKSUM;
1123 
1124 	if (features & NETIF_F_IPV6_CSUM)
1125 		offloads.tx_offloads |= OCTEP_TX_OFFLOAD_CKSUM;
1126 
1127 	if (features & NETIF_F_RXCSUM)
1128 		offloads.rx_offloads |= OCTEP_RX_OFFLOAD_CKSUM;
1129 
1130 	err = octep_ctrl_net_set_offloads(oct,
1131 					  OCTEP_CTRL_NET_INVALID_VFID,
1132 					  &offloads,
1133 					  true);
1134 	if (!err)
1135 		dev->features = features;
1136 
1137 	return err;
1138 }
1139 
1140 static const struct net_device_ops octep_netdev_ops = {
1141 	.ndo_open                = octep_open,
1142 	.ndo_stop                = octep_stop,
1143 	.ndo_start_xmit          = octep_start_xmit,
1144 	.ndo_get_stats64         = octep_get_stats64,
1145 	.ndo_tx_timeout          = octep_tx_timeout,
1146 	.ndo_set_mac_address     = octep_set_mac,
1147 	.ndo_change_mtu          = octep_change_mtu,
1148 	.ndo_set_features        = octep_set_features,
1149 };
1150 
1151 /**
1152  * octep_intr_poll_task - work queue task to process non-ioq interrupts.
1153  *
1154  * @work: pointer to mbox work_struct
1155  *
1156  * Process non-ioq interrupts to handle control mailbox, pfvf mailbox.
1157  **/
1158 static void octep_intr_poll_task(struct work_struct *work)
1159 {
1160 	struct octep_device *oct = container_of(work, struct octep_device,
1161 						intr_poll_task.work);
1162 
1163 	if (!oct->poll_non_ioq_intr) {
1164 		dev_info(&oct->pdev->dev, "Interrupt poll task stopped.\n");
1165 		return;
1166 	}
1167 
1168 	oct->hw_ops.poll_non_ioq_interrupts(oct);
1169 	queue_delayed_work(octep_wq, &oct->intr_poll_task,
1170 			   msecs_to_jiffies(OCTEP_INTR_POLL_TIME_MSECS));
1171 }
1172 
1173 /**
1174  * octep_hb_timeout_task - work queue task to check firmware heartbeat.
1175  *
1176  * @work: pointer to hb work_struct
1177  *
1178  * Check for heartbeat miss count. Uninitialize oct device if miss count
1179  * exceeds configured max heartbeat miss count.
1180  *
1181  **/
1182 static void octep_hb_timeout_task(struct work_struct *work)
1183 {
1184 	struct octep_device *oct = container_of(work, struct octep_device,
1185 						hb_task.work);
1186 
1187 	int miss_cnt;
1188 
1189 	miss_cnt = atomic_inc_return(&oct->hb_miss_cnt);
1190 	if (miss_cnt < oct->conf->fw_info.hb_miss_count) {
1191 		queue_delayed_work(octep_wq, &oct->hb_task,
1192 				   msecs_to_jiffies(oct->conf->fw_info.hb_interval));
1193 		return;
1194 	}
1195 
1196 	dev_err(&oct->pdev->dev, "Missed %u heartbeats. Uninitializing\n",
1197 		miss_cnt);
1198 	rtnl_lock();
1199 	if (netif_running(oct->netdev))
1200 		octep_stop(oct->netdev);
1201 	rtnl_unlock();
1202 }
1203 
1204 /**
1205  * octep_ctrl_mbox_task - work queue task to handle ctrl mbox messages.
1206  *
1207  * @work: pointer to ctrl mbox work_struct
1208  *
1209  * Poll ctrl mbox message queue and handle control messages from firmware.
1210  **/
1211 static void octep_ctrl_mbox_task(struct work_struct *work)
1212 {
1213 	struct octep_device *oct = container_of(work, struct octep_device,
1214 						ctrl_mbox_task);
1215 
1216 	octep_ctrl_net_recv_fw_messages(oct);
1217 }
1218 
1219 static const char *octep_devid_to_str(struct octep_device *oct)
1220 {
1221 	switch (oct->chip_id) {
1222 	case OCTEP_PCI_DEVICE_ID_CN98_PF:
1223 		return "CN98XX";
1224 	case OCTEP_PCI_DEVICE_ID_CN93_PF:
1225 		return "CN93XX";
1226 	case OCTEP_PCI_DEVICE_ID_CNF95N_PF:
1227 		return "CNF95N";
1228 	case OCTEP_PCI_DEVICE_ID_CN10KA_PF:
1229 		return "CN10KA";
1230 	case OCTEP_PCI_DEVICE_ID_CNF10KA_PF:
1231 		return "CNF10KA";
1232 	case OCTEP_PCI_DEVICE_ID_CNF10KB_PF:
1233 		return "CNF10KB";
1234 	case OCTEP_PCI_DEVICE_ID_CN10KB_PF:
1235 		return "CN10KB";
1236 	default:
1237 		return "Unsupported";
1238 	}
1239 }
1240 
1241 /**
1242  * octep_device_setup() - Setup Octeon Device.
1243  *
1244  * @oct: Octeon device private data structure.
1245  *
1246  * Setup Octeon device hardware operations, configuration, etc ...
1247  */
1248 int octep_device_setup(struct octep_device *oct)
1249 {
1250 	struct pci_dev *pdev = oct->pdev;
1251 	int i, ret;
1252 
1253 	/* allocate memory for oct->conf */
1254 	oct->conf = kzalloc(sizeof(*oct->conf), GFP_KERNEL);
1255 	if (!oct->conf)
1256 		return -ENOMEM;
1257 
1258 	/* Map BAR regions */
1259 	for (i = 0; i < OCTEP_MMIO_REGIONS; i++) {
1260 		oct->mmio[i].hw_addr =
1261 			ioremap(pci_resource_start(oct->pdev, i * 2),
1262 				pci_resource_len(oct->pdev, i * 2));
1263 		if (!oct->mmio[i].hw_addr)
1264 			goto unmap_prev;
1265 
1266 		oct->mmio[i].mapped = 1;
1267 	}
1268 
1269 	oct->chip_id = pdev->device;
1270 	oct->rev_id = pdev->revision;
1271 	dev_info(&pdev->dev, "chip_id = 0x%x\n", pdev->device);
1272 
1273 	switch (oct->chip_id) {
1274 	case OCTEP_PCI_DEVICE_ID_CN98_PF:
1275 	case OCTEP_PCI_DEVICE_ID_CN93_PF:
1276 	case OCTEP_PCI_DEVICE_ID_CNF95N_PF:
1277 		dev_info(&pdev->dev, "Setting up OCTEON %s PF PASS%d.%d\n",
1278 			 octep_devid_to_str(oct), OCTEP_MAJOR_REV(oct),
1279 			 OCTEP_MINOR_REV(oct));
1280 		octep_device_setup_cn93_pf(oct);
1281 		break;
1282 	case OCTEP_PCI_DEVICE_ID_CNF10KA_PF:
1283 	case OCTEP_PCI_DEVICE_ID_CN10KA_PF:
1284 	case OCTEP_PCI_DEVICE_ID_CNF10KB_PF:
1285 	case OCTEP_PCI_DEVICE_ID_CN10KB_PF:
1286 		dev_info(&pdev->dev, "Setting up OCTEON %s PF PASS%d.%d\n",
1287 			 octep_devid_to_str(oct), OCTEP_MAJOR_REV(oct), OCTEP_MINOR_REV(oct));
1288 		octep_device_setup_cnxk_pf(oct);
1289 		break;
1290 	default:
1291 		dev_err(&pdev->dev,
1292 			"%s: unsupported device\n", __func__);
1293 		goto unsupported_dev;
1294 	}
1295 
1296 
1297 	ret = octep_ctrl_net_init(oct);
1298 	if (ret)
1299 		return ret;
1300 
1301 	INIT_WORK(&oct->tx_timeout_task, octep_tx_timeout_task);
1302 	INIT_WORK(&oct->ctrl_mbox_task, octep_ctrl_mbox_task);
1303 	INIT_DELAYED_WORK(&oct->intr_poll_task, octep_intr_poll_task);
1304 	oct->poll_non_ioq_intr = true;
1305 	queue_delayed_work(octep_wq, &oct->intr_poll_task,
1306 			   msecs_to_jiffies(OCTEP_INTR_POLL_TIME_MSECS));
1307 
1308 	atomic_set(&oct->hb_miss_cnt, 0);
1309 	INIT_DELAYED_WORK(&oct->hb_task, octep_hb_timeout_task);
1310 
1311 	return 0;
1312 
1313 unsupported_dev:
1314 	i = OCTEP_MMIO_REGIONS;
1315 unmap_prev:
1316 	while (i--)
1317 		iounmap(oct->mmio[i].hw_addr);
1318 
1319 	kfree(oct->conf);
1320 	return -1;
1321 }
1322 
1323 /**
1324  * octep_device_cleanup() - Cleanup Octeon Device.
1325  *
1326  * @oct: Octeon device private data structure.
1327  *
1328  * Cleanup Octeon device allocated resources.
1329  */
1330 static void octep_device_cleanup(struct octep_device *oct)
1331 {
1332 	int i;
1333 
1334 	oct->poll_non_ioq_intr = false;
1335 	cancel_delayed_work_sync(&oct->intr_poll_task);
1336 	cancel_work_sync(&oct->ctrl_mbox_task);
1337 
1338 	dev_info(&oct->pdev->dev, "Cleaning up Octeon Device ...\n");
1339 
1340 	for (i = 0; i < OCTEP_MAX_VF; i++) {
1341 		vfree(oct->mbox[i]);
1342 		oct->mbox[i] = NULL;
1343 	}
1344 
1345 	octep_delete_pfvf_mbox(oct);
1346 	octep_ctrl_net_uninit(oct);
1347 	cancel_delayed_work_sync(&oct->hb_task);
1348 
1349 	oct->hw_ops.soft_reset(oct);
1350 	for (i = 0; i < OCTEP_MMIO_REGIONS; i++) {
1351 		if (oct->mmio[i].mapped)
1352 			iounmap(oct->mmio[i].hw_addr);
1353 	}
1354 
1355 	kfree(oct->conf);
1356 	oct->conf = NULL;
1357 }
1358 
1359 static bool get_fw_ready_status(struct pci_dev *pdev)
1360 {
1361 	u32 pos = 0;
1362 	u16 vsec_id;
1363 	u8 status;
1364 
1365 	while ((pos = pci_find_next_ext_capability(pdev, pos,
1366 						   PCI_EXT_CAP_ID_VNDR))) {
1367 		pci_read_config_word(pdev, pos + 4, &vsec_id);
1368 #define FW_STATUS_VSEC_ID  0xA3
1369 		if (vsec_id != FW_STATUS_VSEC_ID)
1370 			continue;
1371 
1372 		pci_read_config_byte(pdev, (pos + 8), &status);
1373 		dev_info(&pdev->dev, "Firmware ready status = %u\n", status);
1374 #define FW_STATUS_READY 1ULL
1375 		return status == FW_STATUS_READY;
1376 	}
1377 	return false;
1378 }
1379 
1380 /**
1381  * octep_probe() - Octeon PCI device probe handler.
1382  *
1383  * @pdev: PCI device structure.
1384  * @ent: entry in Octeon PCI device ID table.
1385  *
1386  * Initializes and enables the Octeon PCI device for network operations.
1387  * Initializes Octeon private data structure and registers a network device.
1388  */
1389 static int octep_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1390 {
1391 	struct octep_device *octep_dev = NULL;
1392 	struct net_device *netdev;
1393 	int max_rx_pktlen;
1394 	int err;
1395 
1396 	err = pci_enable_device(pdev);
1397 	if (err) {
1398 		dev_err(&pdev->dev, "Failed to enable PCI device\n");
1399 		return  err;
1400 	}
1401 
1402 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1403 	if (err) {
1404 		dev_err(&pdev->dev, "Failed to set DMA mask !!\n");
1405 		goto err_dma_mask;
1406 	}
1407 
1408 	err = pci_request_mem_regions(pdev, OCTEP_DRV_NAME);
1409 	if (err) {
1410 		dev_err(&pdev->dev, "Failed to map PCI memory regions\n");
1411 		goto err_pci_regions;
1412 	}
1413 
1414 	pci_set_master(pdev);
1415 
1416 	if (!get_fw_ready_status(pdev)) {
1417 		dev_notice(&pdev->dev, "Firmware not ready; defer probe.\n");
1418 		err = -EPROBE_DEFER;
1419 		goto err_alloc_netdev;
1420 	}
1421 
1422 	netdev = alloc_etherdev_mq(sizeof(struct octep_device),
1423 				   OCTEP_MAX_QUEUES);
1424 	if (!netdev) {
1425 		dev_err(&pdev->dev, "Failed to allocate netdev\n");
1426 		err = -ENOMEM;
1427 		goto err_alloc_netdev;
1428 	}
1429 	SET_NETDEV_DEV(netdev, &pdev->dev);
1430 
1431 	octep_dev = netdev_priv(netdev);
1432 	octep_dev->netdev = netdev;
1433 	octep_dev->pdev = pdev;
1434 	octep_dev->dev = &pdev->dev;
1435 	pci_set_drvdata(pdev, octep_dev);
1436 
1437 	err = octep_device_setup(octep_dev);
1438 	if (err) {
1439 		dev_err(&pdev->dev, "Device setup failed\n");
1440 		goto err_octep_config;
1441 	}
1442 
1443 	err = octep_setup_pfvf_mbox(octep_dev);
1444 	if (err) {
1445 		dev_err(&pdev->dev, "PF-VF mailbox setup failed\n");
1446 		goto register_dev_err;
1447 	}
1448 
1449 	err = octep_ctrl_net_get_info(octep_dev, OCTEP_CTRL_NET_INVALID_VFID,
1450 				      &octep_dev->conf->fw_info);
1451 	if (err) {
1452 		dev_err(&pdev->dev, "Failed to get firmware info\n");
1453 		goto register_dev_err;
1454 	}
1455 	dev_info(&octep_dev->pdev->dev, "Heartbeat interval %u msecs Heartbeat miss count %u\n",
1456 		 octep_dev->conf->fw_info.hb_interval,
1457 		 octep_dev->conf->fw_info.hb_miss_count);
1458 	queue_delayed_work(octep_wq, &octep_dev->hb_task,
1459 			   msecs_to_jiffies(octep_dev->conf->fw_info.hb_interval));
1460 
1461 	netdev->netdev_ops = &octep_netdev_ops;
1462 	octep_set_ethtool_ops(netdev);
1463 	netif_carrier_off(netdev);
1464 
1465 	netdev->hw_features = NETIF_F_SG;
1466 	if (OCTEP_TX_IP_CSUM(octep_dev->conf->fw_info.tx_ol_flags))
1467 		netdev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
1468 
1469 	if (OCTEP_RX_IP_CSUM(octep_dev->conf->fw_info.rx_ol_flags))
1470 		netdev->hw_features |= NETIF_F_RXCSUM;
1471 
1472 	max_rx_pktlen = octep_ctrl_net_get_mtu(octep_dev, OCTEP_CTRL_NET_INVALID_VFID);
1473 	if (max_rx_pktlen < 0) {
1474 		dev_err(&octep_dev->pdev->dev,
1475 			"Failed to get max receive packet size; err = %d\n", max_rx_pktlen);
1476 		err = max_rx_pktlen;
1477 		goto register_dev_err;
1478 	}
1479 	netdev->min_mtu = OCTEP_MIN_MTU;
1480 	netdev->max_mtu = max_rx_pktlen - (ETH_HLEN + ETH_FCS_LEN);
1481 	netdev->mtu = OCTEP_DEFAULT_MTU;
1482 
1483 	if (OCTEP_TX_TSO(octep_dev->conf->fw_info.tx_ol_flags)) {
1484 		netdev->hw_features |= NETIF_F_TSO;
1485 		netif_set_tso_max_size(netdev, netdev->max_mtu);
1486 	}
1487 
1488 	netdev->features |= netdev->hw_features;
1489 	err = octep_ctrl_net_get_mac_addr(octep_dev, OCTEP_CTRL_NET_INVALID_VFID,
1490 					  octep_dev->mac_addr);
1491 	if (err) {
1492 		dev_err(&pdev->dev, "Failed to get mac address\n");
1493 		goto register_dev_err;
1494 	}
1495 	eth_hw_addr_set(netdev, octep_dev->mac_addr);
1496 
1497 	err = register_netdev(netdev);
1498 	if (err) {
1499 		dev_err(&pdev->dev, "Failed to register netdev\n");
1500 		goto register_dev_err;
1501 	}
1502 	dev_info(&pdev->dev, "Device probe successful\n");
1503 	return 0;
1504 
1505 register_dev_err:
1506 	octep_device_cleanup(octep_dev);
1507 err_octep_config:
1508 	free_netdev(netdev);
1509 err_alloc_netdev:
1510 	pci_release_mem_regions(pdev);
1511 err_pci_regions:
1512 err_dma_mask:
1513 	pci_disable_device(pdev);
1514 	return err;
1515 }
1516 
1517 static int octep_sriov_disable(struct octep_device *oct)
1518 {
1519 	struct pci_dev *pdev = oct->pdev;
1520 
1521 	if (pci_vfs_assigned(oct->pdev)) {
1522 		dev_warn(&pdev->dev, "Can't disable SRIOV while VFs are assigned\n");
1523 		return -EPERM;
1524 	}
1525 
1526 	pci_disable_sriov(pdev);
1527 	CFG_GET_ACTIVE_VFS(oct->conf) = 0;
1528 
1529 	return 0;
1530 }
1531 
1532 /**
1533  * octep_remove() - Remove Octeon PCI device from driver control.
1534  *
1535  * @pdev: PCI device structure of the Octeon device.
1536  *
1537  * Cleanup all resources allocated for the Octeon device.
1538  * Unregister from network device and disable the PCI device.
1539  */
1540 static void octep_remove(struct pci_dev *pdev)
1541 {
1542 	struct octep_device *oct = pci_get_drvdata(pdev);
1543 	struct net_device *netdev;
1544 
1545 	if (!oct)
1546 		return;
1547 
1548 	netdev = oct->netdev;
1549 	octep_sriov_disable(oct);
1550 	if (netdev->reg_state == NETREG_REGISTERED)
1551 		unregister_netdev(netdev);
1552 
1553 	cancel_work_sync(&oct->tx_timeout_task);
1554 	octep_device_cleanup(oct);
1555 	pci_release_mem_regions(pdev);
1556 	free_netdev(netdev);
1557 	pci_disable_device(pdev);
1558 }
1559 
1560 static int octep_sriov_enable(struct octep_device *oct, int num_vfs)
1561 {
1562 	struct pci_dev *pdev = oct->pdev;
1563 	int err;
1564 
1565 	CFG_GET_ACTIVE_VFS(oct->conf) = num_vfs;
1566 	err = pci_enable_sriov(pdev, num_vfs);
1567 	if (err) {
1568 		dev_warn(&pdev->dev, "Failed to enable SRIOV err=%d\n", err);
1569 		CFG_GET_ACTIVE_VFS(oct->conf) = 0;
1570 		return err;
1571 	}
1572 
1573 	return num_vfs;
1574 }
1575 
1576 static int octep_sriov_configure(struct pci_dev *pdev, int num_vfs)
1577 {
1578 	struct octep_device *oct = pci_get_drvdata(pdev);
1579 	int max_nvfs;
1580 
1581 	if (num_vfs == 0)
1582 		return octep_sriov_disable(oct);
1583 
1584 	max_nvfs = CFG_GET_MAX_VFS(oct->conf);
1585 
1586 	if (num_vfs > max_nvfs) {
1587 		dev_err(&pdev->dev, "Invalid VF count Max supported VFs = %d\n",
1588 			max_nvfs);
1589 		return -EINVAL;
1590 	}
1591 
1592 	return octep_sriov_enable(oct, num_vfs);
1593 }
1594 
1595 static struct pci_driver octep_driver = {
1596 	.name = OCTEP_DRV_NAME,
1597 	.id_table = octep_pci_id_tbl,
1598 	.probe = octep_probe,
1599 	.remove = octep_remove,
1600 	.sriov_configure = octep_sriov_configure,
1601 };
1602 
1603 /**
1604  * octep_init_module() - Module initialiation.
1605  *
1606  * create common resource for the driver and register PCI driver.
1607  */
1608 static int __init octep_init_module(void)
1609 {
1610 	int ret;
1611 
1612 	pr_info("%s: Loading %s ...\n", OCTEP_DRV_NAME, OCTEP_DRV_STRING);
1613 
1614 	/* work queue for all deferred tasks */
1615 	octep_wq = create_singlethread_workqueue(OCTEP_DRV_NAME);
1616 	if (!octep_wq) {
1617 		pr_err("%s: Failed to create common workqueue\n",
1618 		       OCTEP_DRV_NAME);
1619 		return -ENOMEM;
1620 	}
1621 
1622 	ret = pci_register_driver(&octep_driver);
1623 	if (ret < 0) {
1624 		pr_err("%s: Failed to register PCI driver; err=%d\n",
1625 		       OCTEP_DRV_NAME, ret);
1626 		destroy_workqueue(octep_wq);
1627 		return ret;
1628 	}
1629 
1630 	pr_info("%s: Loaded successfully !\n", OCTEP_DRV_NAME);
1631 
1632 	return ret;
1633 }
1634 
1635 /**
1636  * octep_exit_module() - Module exit routine.
1637  *
1638  * unregister the driver with PCI subsystem and cleanup common resources.
1639  */
1640 static void __exit octep_exit_module(void)
1641 {
1642 	pr_info("%s: Unloading ...\n", OCTEP_DRV_NAME);
1643 
1644 	pci_unregister_driver(&octep_driver);
1645 	destroy_workqueue(octep_wq);
1646 
1647 	pr_info("%s: Unloading complete\n", OCTEP_DRV_NAME);
1648 }
1649 
1650 module_init(octep_init_module);
1651 module_exit(octep_exit_module);
1652