xref: /linux/drivers/net/ethernet/marvell/octeon_ep/octep_cnxk_pf.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell Octeon EP (EndPoint) Ethernet Driver
3  *
4  * Copyright (C) 2020 Marvell.
5  *
6  */
7 
8 #include <linux/pci.h>
9 #include <linux/netdevice.h>
10 #include <linux/etherdevice.h>
11 
12 #include "octep_config.h"
13 #include "octep_main.h"
14 #include "octep_regs_cnxk_pf.h"
15 
16 /* We will support 128 pf's in control mbox */
17 #define CTRL_MBOX_MAX_PF	128
18 #define CTRL_MBOX_SZ		((size_t)(0x400000 / CTRL_MBOX_MAX_PF))
19 
20 /* Names of Hardware non-queue generic interrupts */
21 static char *cnxk_non_ioq_msix_names[] = {
22 	"epf_ire_rint",
23 	"epf_ore_rint",
24 	"epf_vfire_rint",
25 	"epf_rsvd0",
26 	"epf_vfore_rint",
27 	"epf_rsvd1",
28 	"epf_mbox_rint",
29 	"epf_rsvd2_0",
30 	"epf_rsvd2_1",
31 	"epf_dma_rint",
32 	"epf_dma_vf_rint",
33 	"epf_rsvd3",
34 	"epf_pp_vf_rint",
35 	"epf_rsvd3",
36 	"epf_misc_rint",
37 	"epf_rsvd5",
38 	/* Next 16 are for OEI_RINT */
39 	"epf_oei_rint0",
40 	"epf_oei_rint1",
41 	"epf_oei_rint2",
42 	"epf_oei_rint3",
43 	"epf_oei_rint4",
44 	"epf_oei_rint5",
45 	"epf_oei_rint6",
46 	"epf_oei_rint7",
47 	"epf_oei_rint8",
48 	"epf_oei_rint9",
49 	"epf_oei_rint10",
50 	"epf_oei_rint11",
51 	"epf_oei_rint12",
52 	"epf_oei_rint13",
53 	"epf_oei_rint14",
54 	"epf_oei_rint15",
55 	/* IOQ interrupt */
56 	"octeon_ep"
57 };
58 
59 /* Dump useful hardware CSRs for debug purpose */
60 static void cnxk_dump_regs(struct octep_device *oct, int qno)
61 {
62 	struct device *dev = &oct->pdev->dev;
63 
64 	dev_info(dev, "IQ-%d register dump\n", qno);
65 	dev_info(dev, "R[%d]_IN_INSTR_DBELL[0x%llx]: 0x%016llx\n",
66 		 qno, CNXK_SDP_R_IN_INSTR_DBELL(qno),
67 		 octep_read_csr64(oct, CNXK_SDP_R_IN_INSTR_DBELL(qno)));
68 	dev_info(dev, "R[%d]_IN_CONTROL[0x%llx]: 0x%016llx\n",
69 		 qno, CNXK_SDP_R_IN_CONTROL(qno),
70 		 octep_read_csr64(oct, CNXK_SDP_R_IN_CONTROL(qno)));
71 	dev_info(dev, "R[%d]_IN_ENABLE[0x%llx]: 0x%016llx\n",
72 		 qno, CNXK_SDP_R_IN_ENABLE(qno),
73 		 octep_read_csr64(oct, CNXK_SDP_R_IN_ENABLE(qno)));
74 	dev_info(dev, "R[%d]_IN_INSTR_BADDR[0x%llx]: 0x%016llx\n",
75 		 qno, CNXK_SDP_R_IN_INSTR_BADDR(qno),
76 		 octep_read_csr64(oct, CNXK_SDP_R_IN_INSTR_BADDR(qno)));
77 	dev_info(dev, "R[%d]_IN_INSTR_RSIZE[0x%llx]: 0x%016llx\n",
78 		 qno, CNXK_SDP_R_IN_INSTR_RSIZE(qno),
79 		 octep_read_csr64(oct, CNXK_SDP_R_IN_INSTR_RSIZE(qno)));
80 	dev_info(dev, "R[%d]_IN_CNTS[0x%llx]: 0x%016llx\n",
81 		 qno, CNXK_SDP_R_IN_CNTS(qno),
82 		 octep_read_csr64(oct, CNXK_SDP_R_IN_CNTS(qno)));
83 	dev_info(dev, "R[%d]_IN_INT_LEVELS[0x%llx]: 0x%016llx\n",
84 		 qno, CNXK_SDP_R_IN_INT_LEVELS(qno),
85 		 octep_read_csr64(oct, CNXK_SDP_R_IN_INT_LEVELS(qno)));
86 	dev_info(dev, "R[%d]_IN_PKT_CNT[0x%llx]: 0x%016llx\n",
87 		 qno, CNXK_SDP_R_IN_PKT_CNT(qno),
88 		 octep_read_csr64(oct, CNXK_SDP_R_IN_PKT_CNT(qno)));
89 	dev_info(dev, "R[%d]_IN_BYTE_CNT[0x%llx]: 0x%016llx\n",
90 		 qno, CNXK_SDP_R_IN_BYTE_CNT(qno),
91 		 octep_read_csr64(oct, CNXK_SDP_R_IN_BYTE_CNT(qno)));
92 
93 	dev_info(dev, "OQ-%d register dump\n", qno);
94 	dev_info(dev, "R[%d]_OUT_SLIST_DBELL[0x%llx]: 0x%016llx\n",
95 		 qno, CNXK_SDP_R_OUT_SLIST_DBELL(qno),
96 		 octep_read_csr64(oct, CNXK_SDP_R_OUT_SLIST_DBELL(qno)));
97 	dev_info(dev, "R[%d]_OUT_CONTROL[0x%llx]: 0x%016llx\n",
98 		 qno, CNXK_SDP_R_OUT_CONTROL(qno),
99 		 octep_read_csr64(oct, CNXK_SDP_R_OUT_CONTROL(qno)));
100 	dev_info(dev, "R[%d]_OUT_ENABLE[0x%llx]: 0x%016llx\n",
101 		 qno, CNXK_SDP_R_OUT_ENABLE(qno),
102 		 octep_read_csr64(oct, CNXK_SDP_R_OUT_ENABLE(qno)));
103 	dev_info(dev, "R[%d]_OUT_SLIST_BADDR[0x%llx]: 0x%016llx\n",
104 		 qno, CNXK_SDP_R_OUT_SLIST_BADDR(qno),
105 		 octep_read_csr64(oct, CNXK_SDP_R_OUT_SLIST_BADDR(qno)));
106 	dev_info(dev, "R[%d]_OUT_SLIST_RSIZE[0x%llx]: 0x%016llx\n",
107 		 qno, CNXK_SDP_R_OUT_SLIST_RSIZE(qno),
108 		 octep_read_csr64(oct, CNXK_SDP_R_OUT_SLIST_RSIZE(qno)));
109 	dev_info(dev, "R[%d]_OUT_CNTS[0x%llx]: 0x%016llx\n",
110 		 qno, CNXK_SDP_R_OUT_CNTS(qno),
111 		 octep_read_csr64(oct, CNXK_SDP_R_OUT_CNTS(qno)));
112 	dev_info(dev, "R[%d]_OUT_INT_LEVELS[0x%llx]: 0x%016llx\n",
113 		 qno, CNXK_SDP_R_OUT_INT_LEVELS(qno),
114 		 octep_read_csr64(oct, CNXK_SDP_R_OUT_INT_LEVELS(qno)));
115 	dev_info(dev, "R[%d]_OUT_PKT_CNT[0x%llx]: 0x%016llx\n",
116 		 qno, CNXK_SDP_R_OUT_PKT_CNT(qno),
117 		 octep_read_csr64(oct, CNXK_SDP_R_OUT_PKT_CNT(qno)));
118 	dev_info(dev, "R[%d]_OUT_BYTE_CNT[0x%llx]: 0x%016llx\n",
119 		 qno, CNXK_SDP_R_OUT_BYTE_CNT(qno),
120 		 octep_read_csr64(oct, CNXK_SDP_R_OUT_BYTE_CNT(qno)));
121 	dev_info(dev, "R[%d]_ERR_TYPE[0x%llx]: 0x%016llx\n",
122 		 qno, CNXK_SDP_R_ERR_TYPE(qno),
123 		 octep_read_csr64(oct, CNXK_SDP_R_ERR_TYPE(qno)));
124 }
125 
126 /* Reset Hardware Tx queue */
127 static int cnxk_reset_iq(struct octep_device *oct, int q_no)
128 {
129 	struct octep_config *conf = oct->conf;
130 	u64 val = 0ULL;
131 
132 	dev_dbg(&oct->pdev->dev, "Reset PF IQ-%d\n", q_no);
133 
134 	/* Get absolute queue number */
135 	q_no += conf->pf_ring_cfg.srn;
136 
137 	/* Disable the Tx/Instruction Ring */
138 	octep_write_csr64(oct, CNXK_SDP_R_IN_ENABLE(q_no), val);
139 
140 	/* clear the Instruction Ring packet/byte counts and doorbell CSRs */
141 	octep_write_csr64(oct, CNXK_SDP_R_IN_CNTS(q_no), val);
142 	octep_write_csr64(oct, CNXK_SDP_R_IN_INT_LEVELS(q_no), val);
143 	octep_write_csr64(oct, CNXK_SDP_R_IN_PKT_CNT(q_no), val);
144 	octep_write_csr64(oct, CNXK_SDP_R_IN_BYTE_CNT(q_no), val);
145 	octep_write_csr64(oct, CNXK_SDP_R_IN_INSTR_BADDR(q_no), val);
146 	octep_write_csr64(oct, CNXK_SDP_R_IN_INSTR_RSIZE(q_no), val);
147 
148 	val = 0xFFFFFFFF;
149 	octep_write_csr64(oct, CNXK_SDP_R_IN_INSTR_DBELL(q_no), val);
150 
151 	return 0;
152 }
153 
154 /* Reset Hardware Rx queue */
155 static void cnxk_reset_oq(struct octep_device *oct, int q_no)
156 {
157 	u64 val = 0ULL;
158 
159 	q_no += CFG_GET_PORTS_PF_SRN(oct->conf);
160 
161 	/* Disable Output (Rx) Ring */
162 	octep_write_csr64(oct, CNXK_SDP_R_OUT_ENABLE(q_no), val);
163 	octep_write_csr64(oct, CNXK_SDP_R_OUT_SLIST_BADDR(q_no), val);
164 	octep_write_csr64(oct, CNXK_SDP_R_OUT_SLIST_RSIZE(q_no), val);
165 	octep_write_csr64(oct, CNXK_SDP_R_OUT_INT_LEVELS(q_no), val);
166 
167 	/* Clear count CSRs */
168 	val = octep_read_csr(oct, CNXK_SDP_R_OUT_CNTS(q_no));
169 	octep_write_csr(oct, CNXK_SDP_R_OUT_CNTS(q_no), val);
170 
171 	octep_write_csr64(oct, CNXK_SDP_R_OUT_PKT_CNT(q_no), 0xFFFFFFFFFULL);
172 	octep_write_csr64(oct, CNXK_SDP_R_OUT_SLIST_DBELL(q_no), 0xFFFFFFFF);
173 }
174 
175 /* Reset all hardware Tx/Rx queues */
176 static void octep_reset_io_queues_cnxk_pf(struct octep_device *oct)
177 {
178 	struct pci_dev *pdev = oct->pdev;
179 	int q;
180 
181 	dev_dbg(&pdev->dev, "Reset OCTEP_CNXK PF IO Queues\n");
182 
183 	for (q = 0; q < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); q++) {
184 		cnxk_reset_iq(oct, q);
185 		cnxk_reset_oq(oct, q);
186 	}
187 }
188 
189 /* Initialize windowed addresses to access some hardware registers */
190 static void octep_setup_pci_window_regs_cnxk_pf(struct octep_device *oct)
191 {
192 	u8 __iomem *bar0_pciaddr = oct->mmio[0].hw_addr;
193 
194 	oct->pci_win_regs.pci_win_wr_addr = (u8 __iomem *)(bar0_pciaddr + CNXK_SDP_WIN_WR_ADDR64);
195 	oct->pci_win_regs.pci_win_rd_addr = (u8 __iomem *)(bar0_pciaddr + CNXK_SDP_WIN_RD_ADDR64);
196 	oct->pci_win_regs.pci_win_wr_data = (u8 __iomem *)(bar0_pciaddr + CNXK_SDP_WIN_WR_DATA64);
197 	oct->pci_win_regs.pci_win_rd_data = (u8 __iomem *)(bar0_pciaddr + CNXK_SDP_WIN_RD_DATA64);
198 }
199 
200 /* Configure Hardware mapping: inform hardware which rings belong to PF. */
201 static void octep_configure_ring_mapping_cnxk_pf(struct octep_device *oct)
202 {
203 	struct octep_config *conf = oct->conf;
204 	struct pci_dev *pdev = oct->pdev;
205 	u64 pf_srn = CFG_GET_PORTS_PF_SRN(oct->conf);
206 	int q;
207 
208 	for (q = 0; q < CFG_GET_PORTS_ACTIVE_IO_RINGS(conf); q++) {
209 		u64 regval = 0;
210 
211 		if (oct->pcie_port)
212 			regval = 8 << CNXK_SDP_FUNC_SEL_EPF_BIT_POS;
213 
214 		octep_write_csr64(oct, CNXK_SDP_EPVF_RING(pf_srn + q), regval);
215 
216 		regval = octep_read_csr64(oct, CNXK_SDP_EPVF_RING(pf_srn + q));
217 		dev_dbg(&pdev->dev, "Write SDP_EPVF_RING[0x%llx] = 0x%llx\n",
218 			CNXK_SDP_EPVF_RING(pf_srn + q), regval);
219 	}
220 }
221 
222 /* Initialize configuration limits and initial active config */
223 static void octep_init_config_cnxk_pf(struct octep_device *oct)
224 {
225 	struct octep_config *conf = oct->conf;
226 	struct pci_dev *pdev = oct->pdev;
227 	u8 link = 0;
228 	u64 val;
229 	int pos;
230 
231 	/* Read ring configuration:
232 	 * PF ring count, number of VFs and rings per VF supported
233 	 */
234 	val = octep_read_csr64(oct, CNXK_SDP_EPF_RINFO);
235 	dev_info(&pdev->dev, "SDP_EPF_RINFO[0x%x]:0x%llx\n", CNXK_SDP_EPF_RINFO, val);
236 	conf->sriov_cfg.max_rings_per_vf = CNXK_SDP_EPF_RINFO_RPVF(val);
237 	conf->sriov_cfg.active_rings_per_vf = conf->sriov_cfg.max_rings_per_vf;
238 	conf->sriov_cfg.max_vfs = CNXK_SDP_EPF_RINFO_NVFS(val);
239 	conf->sriov_cfg.active_vfs = conf->sriov_cfg.max_vfs;
240 	conf->sriov_cfg.vf_srn = CNXK_SDP_EPF_RINFO_SRN(val);
241 
242 	val = octep_read_csr64(oct, CNXK_SDP_MAC_PF_RING_CTL(oct->pcie_port));
243 	dev_info(&pdev->dev, "SDP_MAC_PF_RING_CTL[%d]:0x%llx\n", oct->pcie_port, val);
244 	conf->pf_ring_cfg.srn =  CNXK_SDP_MAC_PF_RING_CTL_SRN(val);
245 	conf->pf_ring_cfg.max_io_rings = CNXK_SDP_MAC_PF_RING_CTL_RPPF(val);
246 	conf->pf_ring_cfg.active_io_rings = conf->pf_ring_cfg.max_io_rings;
247 	dev_info(&pdev->dev, "pf_srn=%u rpvf=%u nvfs=%u rppf=%u\n",
248 		 conf->pf_ring_cfg.srn, conf->sriov_cfg.active_rings_per_vf,
249 		 conf->sriov_cfg.active_vfs, conf->pf_ring_cfg.active_io_rings);
250 
251 	conf->iq.num_descs = OCTEP_IQ_MAX_DESCRIPTORS;
252 	conf->iq.instr_type = OCTEP_64BYTE_INSTR;
253 	conf->iq.db_min = OCTEP_DB_MIN;
254 	conf->iq.intr_threshold = OCTEP_IQ_INTR_THRESHOLD;
255 
256 	conf->oq.num_descs = OCTEP_OQ_MAX_DESCRIPTORS;
257 	conf->oq.buf_size = OCTEP_OQ_BUF_SIZE;
258 	conf->oq.refill_threshold = OCTEP_OQ_REFILL_THRESHOLD;
259 	conf->oq.oq_intr_pkt = OCTEP_OQ_INTR_PKT_THRESHOLD;
260 	conf->oq.oq_intr_time = OCTEP_OQ_INTR_TIME_THRESHOLD;
261 	conf->oq.wmark = OCTEP_OQ_WMARK_MIN;
262 
263 	conf->msix_cfg.non_ioq_msix = CNXK_NUM_NON_IOQ_INTR;
264 	conf->msix_cfg.ioq_msix = conf->pf_ring_cfg.active_io_rings;
265 	conf->msix_cfg.non_ioq_msix_names = cnxk_non_ioq_msix_names;
266 
267 	pos = pci_find_ext_capability(oct->pdev, PCI_EXT_CAP_ID_SRIOV);
268 	if (pos) {
269 		pci_read_config_byte(oct->pdev,
270 				     pos + PCI_SRIOV_FUNC_LINK,
271 				     &link);
272 		link = PCI_DEVFN(PCI_SLOT(oct->pdev->devfn), link);
273 	}
274 	conf->ctrl_mbox_cfg.barmem_addr = (void __iomem *)oct->mmio[2].hw_addr +
275 					   CNXK_PEM_BAR4_INDEX_OFFSET +
276 					   (link * CTRL_MBOX_SZ);
277 
278 	conf->fw_info.hb_interval = OCTEP_DEFAULT_FW_HB_INTERVAL;
279 	conf->fw_info.hb_miss_count = OCTEP_DEFAULT_FW_HB_MISS_COUNT;
280 }
281 
282 /* Setup registers for a hardware Tx Queue  */
283 static void octep_setup_iq_regs_cnxk_pf(struct octep_device *oct, int iq_no)
284 {
285 	struct octep_iq *iq = oct->iq[iq_no];
286 	u32 reset_instr_cnt;
287 	u64 reg_val;
288 
289 	iq_no += CFG_GET_PORTS_PF_SRN(oct->conf);
290 	reg_val = octep_read_csr64(oct, CNXK_SDP_R_IN_CONTROL(iq_no));
291 
292 	/* wait for IDLE to set to 1 */
293 	if (!(reg_val & CNXK_R_IN_CTL_IDLE)) {
294 		do {
295 			reg_val = octep_read_csr64(oct, CNXK_SDP_R_IN_CONTROL(iq_no));
296 		} while (!(reg_val & CNXK_R_IN_CTL_IDLE));
297 	}
298 
299 	reg_val |= CNXK_R_IN_CTL_RDSIZE;
300 	reg_val |= CNXK_R_IN_CTL_IS_64B;
301 	reg_val |= CNXK_R_IN_CTL_ESR;
302 	octep_write_csr64(oct, CNXK_SDP_R_IN_CONTROL(iq_no), reg_val);
303 
304 	/* Write the start of the input queue's ring and its size  */
305 	octep_write_csr64(oct, CNXK_SDP_R_IN_INSTR_BADDR(iq_no),
306 			  iq->desc_ring_dma);
307 	octep_write_csr64(oct, CNXK_SDP_R_IN_INSTR_RSIZE(iq_no),
308 			  iq->max_count);
309 
310 	/* Remember the doorbell & instruction count register addr
311 	 * for this queue
312 	 */
313 	iq->doorbell_reg = oct->mmio[0].hw_addr +
314 			   CNXK_SDP_R_IN_INSTR_DBELL(iq_no);
315 	iq->inst_cnt_reg = oct->mmio[0].hw_addr +
316 			   CNXK_SDP_R_IN_CNTS(iq_no);
317 	iq->intr_lvl_reg = oct->mmio[0].hw_addr +
318 			   CNXK_SDP_R_IN_INT_LEVELS(iq_no);
319 
320 	/* Store the current instruction counter (used in flush_iq calculation) */
321 	reset_instr_cnt = readl(iq->inst_cnt_reg);
322 	writel(reset_instr_cnt, iq->inst_cnt_reg);
323 
324 	/* INTR_THRESHOLD is set to max(FFFFFFFF) to disable the INTR */
325 	reg_val = CFG_GET_IQ_INTR_THRESHOLD(oct->conf) & 0xffffffff;
326 	octep_write_csr64(oct, CNXK_SDP_R_IN_INT_LEVELS(iq_no), reg_val);
327 }
328 
329 /* Setup registers for a hardware Rx Queue  */
330 static void octep_setup_oq_regs_cnxk_pf(struct octep_device *oct, int oq_no)
331 {
332 	u64 reg_val;
333 	u64 oq_ctl = 0ULL;
334 	u32 time_threshold = 0;
335 	struct octep_oq *oq = oct->oq[oq_no];
336 
337 	oq_no += CFG_GET_PORTS_PF_SRN(oct->conf);
338 	reg_val = octep_read_csr64(oct, CNXK_SDP_R_OUT_CONTROL(oq_no));
339 
340 	/* wait for IDLE to set to 1 */
341 	if (!(reg_val & CNXK_R_OUT_CTL_IDLE)) {
342 		do {
343 			reg_val = octep_read_csr64(oct, CNXK_SDP_R_OUT_CONTROL(oq_no));
344 		} while (!(reg_val & CNXK_R_OUT_CTL_IDLE));
345 	}
346 
347 	reg_val &= ~(CNXK_R_OUT_CTL_IMODE);
348 	reg_val &= ~(CNXK_R_OUT_CTL_ROR_P);
349 	reg_val &= ~(CNXK_R_OUT_CTL_NSR_P);
350 	reg_val &= ~(CNXK_R_OUT_CTL_ROR_I);
351 	reg_val &= ~(CNXK_R_OUT_CTL_NSR_I);
352 	reg_val &= ~(CNXK_R_OUT_CTL_ES_I);
353 	reg_val &= ~(CNXK_R_OUT_CTL_ROR_D);
354 	reg_val &= ~(CNXK_R_OUT_CTL_NSR_D);
355 	reg_val &= ~(CNXK_R_OUT_CTL_ES_D);
356 	reg_val |= (CNXK_R_OUT_CTL_ES_P);
357 
358 	octep_write_csr64(oct, CNXK_SDP_R_OUT_CONTROL(oq_no), reg_val);
359 	octep_write_csr64(oct, CNXK_SDP_R_OUT_SLIST_BADDR(oq_no),
360 			  oq->desc_ring_dma);
361 	octep_write_csr64(oct, CNXK_SDP_R_OUT_SLIST_RSIZE(oq_no),
362 			  oq->max_count);
363 
364 	oq_ctl = octep_read_csr64(oct, CNXK_SDP_R_OUT_CONTROL(oq_no));
365 
366 	/* Clear the ISIZE and BSIZE (22-0) */
367 	oq_ctl &= ~0x7fffffULL;
368 
369 	/* Populate the BSIZE (15-0) */
370 	oq_ctl |= (oq->buffer_size & 0xffff);
371 	octep_write_csr64(oct, CNXK_SDP_R_OUT_CONTROL(oq_no), oq_ctl);
372 
373 	/* Get the mapped address of the pkt_sent and pkts_credit regs */
374 	oq->pkts_sent_reg = oct->mmio[0].hw_addr + CNXK_SDP_R_OUT_CNTS(oq_no);
375 	oq->pkts_credit_reg = oct->mmio[0].hw_addr +
376 			      CNXK_SDP_R_OUT_SLIST_DBELL(oq_no);
377 
378 	time_threshold = CFG_GET_OQ_INTR_TIME(oct->conf);
379 	reg_val = ((u64)time_threshold << 32) |
380 		  CFG_GET_OQ_INTR_PKT(oct->conf);
381 	octep_write_csr64(oct, CNXK_SDP_R_OUT_INT_LEVELS(oq_no), reg_val);
382 
383 	/* set watermark for backpressure */
384 	reg_val = octep_read_csr64(oct, CNXK_SDP_R_OUT_WMARK(oq_no));
385 	reg_val &= ~0xFFFFFFFFULL;
386 	reg_val |= CFG_GET_OQ_WMARK(oct->conf);
387 	octep_write_csr64(oct, CNXK_SDP_R_OUT_WMARK(oq_no), reg_val);
388 }
389 
390 /* Setup registers for a PF mailbox */
391 static void octep_setup_mbox_regs_cnxk_pf(struct octep_device *oct, int q_no)
392 {
393 	struct octep_mbox *mbox = oct->mbox[q_no];
394 
395 	/* PF to VF DATA reg. PF writes into this reg */
396 	mbox->pf_vf_data_reg = oct->mmio[0].hw_addr + CNXK_SDP_MBOX_PF_VF_DATA(q_no);
397 
398 	/* VF to PF DATA reg. PF reads from this reg */
399 	mbox->vf_pf_data_reg = oct->mmio[0].hw_addr + CNXK_SDP_MBOX_VF_PF_DATA(q_no);
400 }
401 
402 static void octep_poll_pfvf_mailbox_cnxk_pf(struct octep_device *oct)
403 {
404 	u32 vf, active_vfs, active_rings_per_vf, vf_mbox_queue;
405 	u64 reg0;
406 
407 	reg0 = octep_read_csr64(oct, CNXK_SDP_EPF_MBOX_RINT(0));
408 	if (reg0) {
409 		active_vfs = CFG_GET_ACTIVE_VFS(oct->conf);
410 		active_rings_per_vf = CFG_GET_ACTIVE_RPVF(oct->conf);
411 		for (vf = 0; vf < active_vfs; vf++) {
412 			vf_mbox_queue = vf * active_rings_per_vf;
413 			if (!(reg0 & (0x1UL << vf_mbox_queue)))
414 				continue;
415 
416 			if (!oct->mbox[vf_mbox_queue]) {
417 				dev_err(&oct->pdev->dev, "bad mbox vf %d\n", vf);
418 				continue;
419 			}
420 			schedule_work(&oct->mbox[vf_mbox_queue]->wk.work);
421 		}
422 		if (reg0)
423 			octep_write_csr64(oct, CNXK_SDP_EPF_MBOX_RINT(0), reg0);
424 	}
425 }
426 
427 static irqreturn_t octep_pfvf_mbox_intr_handler_cnxk_pf(void *dev)
428 {
429 	struct octep_device *oct = (struct octep_device *)dev;
430 
431 	octep_poll_pfvf_mailbox_cnxk_pf(oct);
432 	return IRQ_HANDLED;
433 }
434 
435 /* Poll OEI events like heartbeat */
436 static void octep_poll_oei_cnxk_pf(struct octep_device *oct)
437 {
438 	u64 reg0;
439 
440 	/* Check for OEI INTR */
441 	reg0 = octep_read_csr64(oct, CNXK_SDP_EPF_OEI_RINT);
442 	if (reg0) {
443 		octep_write_csr64(oct, CNXK_SDP_EPF_OEI_RINT, reg0);
444 		if (reg0 & CNXK_SDP_EPF_OEI_RINT_DATA_BIT_MBOX)
445 			queue_work(octep_wq, &oct->ctrl_mbox_task);
446 		if (reg0 & CNXK_SDP_EPF_OEI_RINT_DATA_BIT_HBEAT)
447 			atomic_set(&oct->hb_miss_cnt, 0);
448 	}
449 }
450 
451 /* OEI interrupt handler */
452 static irqreturn_t octep_oei_intr_handler_cnxk_pf(void *dev)
453 {
454 	struct octep_device *oct = (struct octep_device *)dev;
455 
456 	octep_poll_oei_cnxk_pf(oct);
457 	return IRQ_HANDLED;
458 }
459 
460 /* Process non-ioq interrupts required to keep pf interface running.
461  * OEI_RINT is needed for control mailbox
462  * MBOX_RINT is needed for pfvf mailbox
463  */
464 static void octep_poll_non_ioq_interrupts_cnxk_pf(struct octep_device *oct)
465 {
466 	octep_poll_pfvf_mailbox_cnxk_pf(oct);
467 	octep_poll_oei_cnxk_pf(oct);
468 }
469 
470 /* Interrupt handler for input ring error interrupts. */
471 static irqreturn_t octep_ire_intr_handler_cnxk_pf(void *dev)
472 {
473 	struct octep_device *oct = (struct octep_device *)dev;
474 	struct pci_dev *pdev = oct->pdev;
475 	u64 reg_val = 0;
476 	int i = 0;
477 
478 	/* Check for IRERR INTR */
479 	reg_val = octep_read_csr64(oct, CNXK_SDP_EPF_IRERR_RINT);
480 	if (reg_val) {
481 		dev_info(&pdev->dev,
482 			 "received IRERR_RINT intr: 0x%llx\n", reg_val);
483 		octep_write_csr64(oct, CNXK_SDP_EPF_IRERR_RINT, reg_val);
484 
485 		for (i = 0; i < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); i++) {
486 			reg_val = octep_read_csr64(oct,
487 						   CNXK_SDP_R_ERR_TYPE(i));
488 			if (reg_val) {
489 				dev_info(&pdev->dev,
490 					 "Received err type on IQ-%d: 0x%llx\n",
491 					 i, reg_val);
492 				octep_write_csr64(oct, CNXK_SDP_R_ERR_TYPE(i),
493 						  reg_val);
494 			}
495 		}
496 	}
497 	return IRQ_HANDLED;
498 }
499 
500 /* Interrupt handler for output ring error interrupts. */
501 static irqreturn_t octep_ore_intr_handler_cnxk_pf(void *dev)
502 {
503 	struct octep_device *oct = (struct octep_device *)dev;
504 	struct pci_dev *pdev = oct->pdev;
505 	u64 reg_val = 0;
506 	int i = 0;
507 
508 	/* Check for ORERR INTR */
509 	reg_val = octep_read_csr64(oct, CNXK_SDP_EPF_ORERR_RINT);
510 	if (reg_val) {
511 		dev_info(&pdev->dev,
512 			 "Received ORERR_RINT intr: 0x%llx\n", reg_val);
513 		octep_write_csr64(oct, CNXK_SDP_EPF_ORERR_RINT, reg_val);
514 		for (i = 0; i < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); i++) {
515 			reg_val = octep_read_csr64(oct, CNXK_SDP_R_ERR_TYPE(i));
516 			if (reg_val) {
517 				dev_info(&pdev->dev,
518 					 "Received err type on OQ-%d: 0x%llx\n",
519 					 i, reg_val);
520 				octep_write_csr64(oct, CNXK_SDP_R_ERR_TYPE(i),
521 						  reg_val);
522 			}
523 		}
524 	}
525 	return IRQ_HANDLED;
526 }
527 
528 /* Interrupt handler for vf input ring error interrupts. */
529 static irqreturn_t octep_vfire_intr_handler_cnxk_pf(void *dev)
530 {
531 	struct octep_device *oct = (struct octep_device *)dev;
532 	struct pci_dev *pdev = oct->pdev;
533 	u64 reg_val = 0;
534 
535 	/* Check for VFIRE INTR */
536 	reg_val = octep_read_csr64(oct, CNXK_SDP_EPF_VFIRE_RINT(0));
537 	if (reg_val) {
538 		dev_info(&pdev->dev,
539 			 "Received VFIRE_RINT intr: 0x%llx\n", reg_val);
540 		octep_write_csr64(oct, CNXK_SDP_EPF_VFIRE_RINT(0), reg_val);
541 	}
542 	return IRQ_HANDLED;
543 }
544 
545 /* Interrupt handler for vf output ring error interrupts. */
546 static irqreturn_t octep_vfore_intr_handler_cnxk_pf(void *dev)
547 {
548 	struct octep_device *oct = (struct octep_device *)dev;
549 	struct pci_dev *pdev = oct->pdev;
550 	u64 reg_val = 0;
551 
552 	/* Check for VFORE INTR */
553 	reg_val = octep_read_csr64(oct, CNXK_SDP_EPF_VFORE_RINT(0));
554 	if (reg_val) {
555 		dev_info(&pdev->dev,
556 			 "Received VFORE_RINT intr: 0x%llx\n", reg_val);
557 		octep_write_csr64(oct, CNXK_SDP_EPF_VFORE_RINT(0), reg_val);
558 	}
559 	return IRQ_HANDLED;
560 }
561 
562 /* Interrupt handler for dpi dma related interrupts. */
563 static irqreturn_t octep_dma_intr_handler_cnxk_pf(void *dev)
564 {
565 	struct octep_device *oct = (struct octep_device *)dev;
566 	u64 reg_val = 0;
567 
568 	/* Check for DMA INTR */
569 	reg_val = octep_read_csr64(oct, CNXK_SDP_EPF_DMA_RINT);
570 	if (reg_val)
571 		octep_write_csr64(oct, CNXK_SDP_EPF_DMA_RINT, reg_val);
572 
573 	return IRQ_HANDLED;
574 }
575 
576 /* Interrupt handler for dpi dma transaction error interrupts for VFs  */
577 static irqreturn_t octep_dma_vf_intr_handler_cnxk_pf(void *dev)
578 {
579 	struct octep_device *oct = (struct octep_device *)dev;
580 	struct pci_dev *pdev = oct->pdev;
581 	u64 reg_val = 0;
582 
583 	/* Check for DMA VF INTR */
584 	reg_val = octep_read_csr64(oct, CNXK_SDP_EPF_DMA_VF_RINT(0));
585 	if (reg_val) {
586 		dev_info(&pdev->dev,
587 			 "Received DMA_VF_RINT intr: 0x%llx\n", reg_val);
588 		octep_write_csr64(oct, CNXK_SDP_EPF_DMA_VF_RINT(0), reg_val);
589 	}
590 	return IRQ_HANDLED;
591 }
592 
593 /* Interrupt handler for pp transaction error interrupts for VFs  */
594 static irqreturn_t octep_pp_vf_intr_handler_cnxk_pf(void *dev)
595 {
596 	struct octep_device *oct = (struct octep_device *)dev;
597 	struct pci_dev *pdev = oct->pdev;
598 	u64 reg_val = 0;
599 
600 	/* Check for PPVF INTR */
601 	reg_val = octep_read_csr64(oct, CNXK_SDP_EPF_PP_VF_RINT(0));
602 	if (reg_val) {
603 		dev_info(&pdev->dev,
604 			 "Received PP_VF_RINT intr: 0x%llx\n", reg_val);
605 		octep_write_csr64(oct, CNXK_SDP_EPF_PP_VF_RINT(0), reg_val);
606 	}
607 	return IRQ_HANDLED;
608 }
609 
610 /* Interrupt handler for mac related interrupts. */
611 static irqreturn_t octep_misc_intr_handler_cnxk_pf(void *dev)
612 {
613 	struct octep_device *oct = (struct octep_device *)dev;
614 	struct pci_dev *pdev = oct->pdev;
615 	u64 reg_val = 0;
616 
617 	/* Check for MISC INTR */
618 	reg_val = octep_read_csr64(oct, CNXK_SDP_EPF_MISC_RINT);
619 	if (reg_val) {
620 		dev_info(&pdev->dev,
621 			 "Received MISC_RINT intr: 0x%llx\n", reg_val);
622 		octep_write_csr64(oct, CNXK_SDP_EPF_MISC_RINT, reg_val);
623 	}
624 	return IRQ_HANDLED;
625 }
626 
627 /* Interrupts handler for all reserved interrupts. */
628 static irqreturn_t octep_rsvd_intr_handler_cnxk_pf(void *dev)
629 {
630 	struct octep_device *oct = (struct octep_device *)dev;
631 	struct pci_dev *pdev = oct->pdev;
632 
633 	dev_info(&pdev->dev, "Reserved interrupts raised; Ignore\n");
634 	return IRQ_HANDLED;
635 }
636 
637 /* Tx/Rx queue interrupt handler */
638 static irqreturn_t octep_ioq_intr_handler_cnxk_pf(void *data)
639 {
640 	struct octep_ioq_vector *vector = (struct octep_ioq_vector *)data;
641 	struct octep_oq *oq = vector->oq;
642 
643 	napi_schedule_irqoff(oq->napi);
644 	return IRQ_HANDLED;
645 }
646 
647 /* soft reset */
648 static int octep_soft_reset_cnxk_pf(struct octep_device *oct)
649 {
650 	dev_info(&oct->pdev->dev, "CNXKXX: Doing soft reset\n");
651 
652 	octep_write_csr64(oct, CNXK_SDP_WIN_WR_MASK_REG, 0xFF);
653 
654 	/* Firmware status CSR is supposed to be cleared by
655 	 * core domain reset, but due to a hw bug, it is not.
656 	 * Set it to RUNNING right before reset so that it is not
657 	 * left in READY (1) state after a reset.  This is required
658 	 * in addition to the early setting to handle the case where
659 	 * the OcteonTX is unexpectedly reset, reboots, and then
660 	 * the module is removed.
661 	 */
662 	OCTEP_PCI_WIN_WRITE(oct, CNXK_PEMX_PFX_CSX_PFCFGX(0, 0, CNXK_PCIEEP_VSECST_CTL),
663 			    FW_STATUS_RUNNING);
664 
665 	/* Set chip domain reset bit */
666 	OCTEP_PCI_WIN_WRITE(oct, CNXK_RST_CHIP_DOMAIN_W1S, 1);
667 	/* Wait till Octeon resets. */
668 	mdelay(10);
669 	/* restore the  reset value */
670 	octep_write_csr64(oct, CNXK_SDP_WIN_WR_MASK_REG, 0xFF);
671 
672 	return 0;
673 }
674 
675 /* Re-initialize Octeon hardware registers */
676 static void octep_reinit_regs_cnxk_pf(struct octep_device *oct)
677 {
678 	u32 i;
679 
680 	for (i = 0; i < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); i++)
681 		oct->hw_ops.setup_iq_regs(oct, i);
682 
683 	for (i = 0; i < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); i++)
684 		oct->hw_ops.setup_oq_regs(oct, i);
685 
686 	oct->hw_ops.enable_interrupts(oct);
687 	oct->hw_ops.enable_io_queues(oct);
688 
689 	for (i = 0; i < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); i++)
690 		writel(oct->oq[i]->max_count, oct->oq[i]->pkts_credit_reg);
691 }
692 
693 /* Enable all interrupts */
694 static void octep_enable_interrupts_cnxk_pf(struct octep_device *oct)
695 {
696 	u64 intr_mask = 0ULL;
697 	int srn, num_rings, i;
698 
699 	srn = CFG_GET_PORTS_PF_SRN(oct->conf);
700 	num_rings = CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf);
701 
702 	for (i = 0; i < num_rings; i++)
703 		intr_mask |= (0x1ULL << (srn + i));
704 
705 	octep_write_csr64(oct, CNXK_SDP_EPF_IRERR_RINT_ENA_W1S, intr_mask);
706 	octep_write_csr64(oct, CNXK_SDP_EPF_ORERR_RINT_ENA_W1S, intr_mask);
707 	octep_write_csr64(oct, CNXK_SDP_EPF_OEI_RINT_ENA_W1S, -1ULL);
708 
709 	octep_write_csr64(oct, CNXK_SDP_EPF_VFIRE_RINT_ENA_W1S(0), -1ULL);
710 	octep_write_csr64(oct, CNXK_SDP_EPF_VFORE_RINT_ENA_W1S(0), -1ULL);
711 
712 	octep_write_csr64(oct, CNXK_SDP_EPF_MISC_RINT_ENA_W1S, intr_mask);
713 	octep_write_csr64(oct, CNXK_SDP_EPF_DMA_RINT_ENA_W1S, intr_mask);
714 	octep_write_csr64(oct, CNXK_SDP_EPF_MBOX_RINT_ENA_W1S(0), -1ULL);
715 
716 	octep_write_csr64(oct, CNXK_SDP_EPF_DMA_VF_RINT_ENA_W1S(0), -1ULL);
717 	octep_write_csr64(oct, CNXK_SDP_EPF_PP_VF_RINT_ENA_W1S(0), -1ULL);
718 }
719 
720 /* Disable all interrupts */
721 static void octep_disable_interrupts_cnxk_pf(struct octep_device *oct)
722 {
723 	u64 intr_mask = 0ULL;
724 	int srn, num_rings, i;
725 
726 	srn = CFG_GET_PORTS_PF_SRN(oct->conf);
727 	num_rings = CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf);
728 
729 	for (i = 0; i < num_rings; i++)
730 		intr_mask |= (0x1ULL << (srn + i));
731 
732 	octep_write_csr64(oct, CNXK_SDP_EPF_IRERR_RINT_ENA_W1C, intr_mask);
733 	octep_write_csr64(oct, CNXK_SDP_EPF_ORERR_RINT_ENA_W1C, intr_mask);
734 	octep_write_csr64(oct, CNXK_SDP_EPF_OEI_RINT_ENA_W1C, -1ULL);
735 
736 	octep_write_csr64(oct, CNXK_SDP_EPF_VFIRE_RINT_ENA_W1C(0), -1ULL);
737 	octep_write_csr64(oct, CNXK_SDP_EPF_VFORE_RINT_ENA_W1C(0), -1ULL);
738 
739 	octep_write_csr64(oct, CNXK_SDP_EPF_MISC_RINT_ENA_W1C, intr_mask);
740 	octep_write_csr64(oct, CNXK_SDP_EPF_DMA_RINT_ENA_W1C, intr_mask);
741 	octep_write_csr64(oct, CNXK_SDP_EPF_MBOX_RINT_ENA_W1C(0), -1ULL);
742 
743 	octep_write_csr64(oct, CNXK_SDP_EPF_DMA_VF_RINT_ENA_W1C(0), -1ULL);
744 	octep_write_csr64(oct, CNXK_SDP_EPF_PP_VF_RINT_ENA_W1C(0), -1ULL);
745 }
746 
747 /* Get new Octeon Read Index: index of descriptor that Octeon reads next. */
748 static u32 octep_update_iq_read_index_cnxk_pf(struct octep_iq *iq)
749 {
750 	u32 pkt_in_done = readl(iq->inst_cnt_reg);
751 	u32 last_done, new_idx;
752 
753 	last_done = pkt_in_done - iq->pkt_in_done;
754 	iq->pkt_in_done = pkt_in_done;
755 
756 	new_idx = (iq->octep_read_index + last_done) % iq->max_count;
757 
758 	return new_idx;
759 }
760 
761 /* Enable a hardware Tx Queue */
762 static void octep_enable_iq_cnxk_pf(struct octep_device *oct, int iq_no)
763 {
764 	u64 loop = HZ;
765 	u64 reg_val;
766 
767 	iq_no += CFG_GET_PORTS_PF_SRN(oct->conf);
768 
769 	octep_write_csr64(oct, CNXK_SDP_R_IN_INSTR_DBELL(iq_no), 0xFFFFFFFF);
770 
771 	while (octep_read_csr64(oct, CNXK_SDP_R_IN_INSTR_DBELL(iq_no)) &&
772 	       loop--) {
773 		schedule_timeout_interruptible(1);
774 	}
775 
776 	reg_val = octep_read_csr64(oct,  CNXK_SDP_R_IN_INT_LEVELS(iq_no));
777 	reg_val |= (0x1ULL << 62);
778 	octep_write_csr64(oct, CNXK_SDP_R_IN_INT_LEVELS(iq_no), reg_val);
779 
780 	reg_val = octep_read_csr64(oct, CNXK_SDP_R_IN_ENABLE(iq_no));
781 	reg_val |= 0x1ULL;
782 	octep_write_csr64(oct, CNXK_SDP_R_IN_ENABLE(iq_no), reg_val);
783 }
784 
785 /* Enable a hardware Rx Queue */
786 static void octep_enable_oq_cnxk_pf(struct octep_device *oct, int oq_no)
787 {
788 	u64 reg_val = 0ULL;
789 
790 	oq_no += CFG_GET_PORTS_PF_SRN(oct->conf);
791 
792 	reg_val = octep_read_csr64(oct,  CNXK_SDP_R_OUT_INT_LEVELS(oq_no));
793 	reg_val |= (0x1ULL << 62);
794 	octep_write_csr64(oct, CNXK_SDP_R_OUT_INT_LEVELS(oq_no), reg_val);
795 
796 	octep_write_csr64(oct, CNXK_SDP_R_OUT_SLIST_DBELL(oq_no), 0xFFFFFFFF);
797 
798 	reg_val = octep_read_csr64(oct, CNXK_SDP_R_OUT_ENABLE(oq_no));
799 	reg_val |= 0x1ULL;
800 	octep_write_csr64(oct, CNXK_SDP_R_OUT_ENABLE(oq_no), reg_val);
801 }
802 
803 /* Enable all hardware Tx/Rx Queues assined to PF */
804 static void octep_enable_io_queues_cnxk_pf(struct octep_device *oct)
805 {
806 	u8 q;
807 
808 	for (q = 0; q < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); q++) {
809 		octep_enable_iq_cnxk_pf(oct, q);
810 		octep_enable_oq_cnxk_pf(oct, q);
811 	}
812 }
813 
814 /* Disable a hardware Tx Queue assined to PF */
815 static void octep_disable_iq_cnxk_pf(struct octep_device *oct, int iq_no)
816 {
817 	u64 reg_val = 0ULL;
818 
819 	iq_no += CFG_GET_PORTS_PF_SRN(oct->conf);
820 
821 	reg_val = octep_read_csr64(oct, CNXK_SDP_R_IN_ENABLE(iq_no));
822 	reg_val &= ~0x1ULL;
823 	octep_write_csr64(oct, CNXK_SDP_R_IN_ENABLE(iq_no), reg_val);
824 }
825 
826 /* Disable a hardware Rx Queue assined to PF */
827 static void octep_disable_oq_cnxk_pf(struct octep_device *oct, int oq_no)
828 {
829 	u64 reg_val = 0ULL;
830 
831 	oq_no += CFG_GET_PORTS_PF_SRN(oct->conf);
832 	reg_val = octep_read_csr64(oct, CNXK_SDP_R_OUT_ENABLE(oq_no));
833 	reg_val &= ~0x1ULL;
834 	octep_write_csr64(oct, CNXK_SDP_R_OUT_ENABLE(oq_no), reg_val);
835 }
836 
837 /* Disable all hardware Tx/Rx Queues assined to PF */
838 static void octep_disable_io_queues_cnxk_pf(struct octep_device *oct)
839 {
840 	int q = 0;
841 
842 	for (q = 0; q < CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf); q++) {
843 		octep_disable_iq_cnxk_pf(oct, q);
844 		octep_disable_oq_cnxk_pf(oct, q);
845 	}
846 }
847 
848 /* Dump hardware registers (including Tx/Rx queues) for debugging. */
849 static void octep_dump_registers_cnxk_pf(struct octep_device *oct)
850 {
851 	u8 srn, num_rings, q;
852 
853 	srn = CFG_GET_PORTS_PF_SRN(oct->conf);
854 	num_rings = CFG_GET_PORTS_ACTIVE_IO_RINGS(oct->conf);
855 
856 	for (q = srn; q < srn + num_rings; q++)
857 		cnxk_dump_regs(oct, q);
858 }
859 
860 /**
861  * octep_device_setup_cnxk_pf() - Setup Octeon device.
862  *
863  * @oct: Octeon device private data structure.
864  *
865  * - initialize hardware operations.
866  * - get target side pcie port number for the device.
867  * - setup window access to hardware registers.
868  * - set initial configuration and max limits.
869  * - setup hardware mapping of rings to the PF device.
870  */
871 void octep_device_setup_cnxk_pf(struct octep_device *oct)
872 {
873 	oct->hw_ops.setup_iq_regs = octep_setup_iq_regs_cnxk_pf;
874 	oct->hw_ops.setup_oq_regs = octep_setup_oq_regs_cnxk_pf;
875 	oct->hw_ops.setup_mbox_regs = octep_setup_mbox_regs_cnxk_pf;
876 
877 	oct->hw_ops.mbox_intr_handler = octep_pfvf_mbox_intr_handler_cnxk_pf;
878 	oct->hw_ops.oei_intr_handler = octep_oei_intr_handler_cnxk_pf;
879 	oct->hw_ops.ire_intr_handler = octep_ire_intr_handler_cnxk_pf;
880 	oct->hw_ops.ore_intr_handler = octep_ore_intr_handler_cnxk_pf;
881 	oct->hw_ops.vfire_intr_handler = octep_vfire_intr_handler_cnxk_pf;
882 	oct->hw_ops.vfore_intr_handler = octep_vfore_intr_handler_cnxk_pf;
883 	oct->hw_ops.dma_intr_handler = octep_dma_intr_handler_cnxk_pf;
884 	oct->hw_ops.dma_vf_intr_handler = octep_dma_vf_intr_handler_cnxk_pf;
885 	oct->hw_ops.pp_vf_intr_handler = octep_pp_vf_intr_handler_cnxk_pf;
886 	oct->hw_ops.misc_intr_handler = octep_misc_intr_handler_cnxk_pf;
887 	oct->hw_ops.rsvd_intr_handler = octep_rsvd_intr_handler_cnxk_pf;
888 	oct->hw_ops.ioq_intr_handler = octep_ioq_intr_handler_cnxk_pf;
889 	oct->hw_ops.soft_reset = octep_soft_reset_cnxk_pf;
890 	oct->hw_ops.reinit_regs = octep_reinit_regs_cnxk_pf;
891 
892 	oct->hw_ops.enable_interrupts = octep_enable_interrupts_cnxk_pf;
893 	oct->hw_ops.disable_interrupts = octep_disable_interrupts_cnxk_pf;
894 	oct->hw_ops.poll_non_ioq_interrupts = octep_poll_non_ioq_interrupts_cnxk_pf;
895 
896 	oct->hw_ops.update_iq_read_idx = octep_update_iq_read_index_cnxk_pf;
897 
898 	oct->hw_ops.enable_iq = octep_enable_iq_cnxk_pf;
899 	oct->hw_ops.enable_oq = octep_enable_oq_cnxk_pf;
900 	oct->hw_ops.enable_io_queues = octep_enable_io_queues_cnxk_pf;
901 
902 	oct->hw_ops.disable_iq = octep_disable_iq_cnxk_pf;
903 	oct->hw_ops.disable_oq = octep_disable_oq_cnxk_pf;
904 	oct->hw_ops.disable_io_queues = octep_disable_io_queues_cnxk_pf;
905 	oct->hw_ops.reset_io_queues = octep_reset_io_queues_cnxk_pf;
906 
907 	oct->hw_ops.dump_registers = octep_dump_registers_cnxk_pf;
908 
909 	octep_setup_pci_window_regs_cnxk_pf(oct);
910 
911 	oct->pcie_port = octep_read_csr64(oct, CNXK_SDP_MAC_NUMBER) & 0xff;
912 	dev_info(&oct->pdev->dev,
913 		 "Octeon device using PCIE Port %d\n", oct->pcie_port);
914 
915 	octep_init_config_cnxk_pf(oct);
916 	octep_configure_ring_mapping_cnxk_pf(oct);
917 
918 	/* Firmware status CSR is supposed to be cleared by
919 	 * core domain reset, but due to IPBUPEM-38842, it is not.
920 	 * Set it to RUNNING early in boot, so that unexpected resets
921 	 * leave it in a state that is not READY (1).
922 	 */
923 	OCTEP_PCI_WIN_WRITE(oct, CNXK_PEMX_PFX_CSX_PFCFGX(0, 0, CNXK_PCIEEP_VSECST_CTL),
924 			    FW_STATUS_RUNNING);
925 }
926