xref: /linux/drivers/net/ethernet/marvell/mvpp2/mvpp2_cls.c (revision daf9a92daeb85da233ffa68f9c297482273e8ae2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RSS and Classifier helpers for Marvell PPv2 Network Controller
4  *
5  * Copyright (C) 2014 Marvell
6  *
7  * Marcin Wojtas <mw@semihalf.com>
8  */
9 
10 #include "mvpp2.h"
11 #include "mvpp2_cls.h"
12 #include "mvpp2_prs.h"
13 
14 #define MVPP2_DEF_FLOW(_type, _id, _opts, _ri, _ri_mask)	\
15 {								\
16 	.flow_type = _type,					\
17 	.flow_id = _id,						\
18 	.supported_hash_opts = _opts,				\
19 	.prs_ri = {						\
20 		.ri = _ri,					\
21 		.ri_mask = _ri_mask				\
22 	}							\
23 }
24 
25 static const struct mvpp2_cls_flow cls_flows[MVPP2_N_PRS_FLOWS] = {
26 	/* TCP over IPv4 flows, Not fragmented, no vlan tag */
27 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
28 		       MVPP22_CLS_HEK_IP4_5T,
29 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
30 		       MVPP2_PRS_RI_L4_TCP,
31 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
32 
33 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
34 		       MVPP22_CLS_HEK_IP4_5T,
35 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
36 		       MVPP2_PRS_RI_L4_TCP,
37 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
38 
39 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
40 		       MVPP22_CLS_HEK_IP4_5T,
41 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
42 		       MVPP2_PRS_RI_L4_TCP,
43 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
44 
45 	/* TCP over IPv4 flows, Not fragmented, with vlan tag */
46 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
47 		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
48 		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP,
49 		       MVPP2_PRS_IP_MASK),
50 
51 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
52 		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
53 		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP,
54 		       MVPP2_PRS_IP_MASK),
55 
56 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
57 		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
58 		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP,
59 		       MVPP2_PRS_IP_MASK),
60 
61 	/* TCP over IPv4 flows, fragmented, no vlan tag */
62 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
63 		       MVPP22_CLS_HEK_IP4_2T,
64 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
65 		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
66 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
67 
68 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
69 		       MVPP22_CLS_HEK_IP4_2T,
70 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
71 		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
72 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
73 
74 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
75 		       MVPP22_CLS_HEK_IP4_2T,
76 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
77 		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
78 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
79 
80 	/* TCP over IPv4 flows, fragmented, with vlan tag */
81 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
82 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
83 		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_IP_FRAG_TRUE |
84 			   MVPP2_PRS_RI_L4_TCP,
85 		       MVPP2_PRS_IP_MASK),
86 
87 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
88 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
89 		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_IP_FRAG_TRUE |
90 			   MVPP2_PRS_RI_L4_TCP,
91 		       MVPP2_PRS_IP_MASK),
92 
93 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
94 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
95 		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_IP_FRAG_TRUE |
96 			   MVPP2_PRS_RI_L4_TCP,
97 		       MVPP2_PRS_IP_MASK),
98 
99 	/* UDP over IPv4 flows, Not fragmented, no vlan tag */
100 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
101 		       MVPP22_CLS_HEK_IP4_5T,
102 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
103 		       MVPP2_PRS_RI_L4_UDP,
104 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
105 
106 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
107 		       MVPP22_CLS_HEK_IP4_5T,
108 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
109 		       MVPP2_PRS_RI_L4_UDP,
110 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
111 
112 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
113 		       MVPP22_CLS_HEK_IP4_5T,
114 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
115 		       MVPP2_PRS_RI_L4_UDP,
116 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
117 
118 	/* UDP over IPv4 flows, Not fragmented, with vlan tag */
119 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
120 		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
121 		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP,
122 		       MVPP2_PRS_IP_MASK),
123 
124 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
125 		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
126 		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP,
127 		       MVPP2_PRS_IP_MASK),
128 
129 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
130 		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
131 		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP,
132 		       MVPP2_PRS_IP_MASK),
133 
134 	/* UDP over IPv4 flows, fragmented, no vlan tag */
135 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
136 		       MVPP22_CLS_HEK_IP4_2T,
137 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
138 		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
139 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
140 
141 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
142 		       MVPP22_CLS_HEK_IP4_2T,
143 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
144 		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
145 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
146 
147 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
148 		       MVPP22_CLS_HEK_IP4_2T,
149 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
150 		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
151 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
152 
153 	/* UDP over IPv4 flows, fragmented, with vlan tag */
154 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
155 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
156 		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_IP_FRAG_TRUE |
157 			   MVPP2_PRS_RI_L4_UDP,
158 		       MVPP2_PRS_IP_MASK),
159 
160 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
161 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
162 		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_IP_FRAG_TRUE |
163 			   MVPP2_PRS_RI_L4_UDP,
164 		       MVPP2_PRS_IP_MASK),
165 
166 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
167 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
168 		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_IP_FRAG_TRUE |
169 			   MVPP2_PRS_RI_L4_UDP,
170 		       MVPP2_PRS_IP_MASK),
171 
172 	/* TCP over IPv6 flows, not fragmented, no vlan tag */
173 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG,
174 		       MVPP22_CLS_HEK_IP6_5T,
175 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
176 		       MVPP2_PRS_RI_L4_TCP,
177 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
178 
179 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG,
180 		       MVPP22_CLS_HEK_IP6_5T,
181 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
182 		       MVPP2_PRS_RI_L4_TCP,
183 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
184 
185 	/* TCP over IPv6 flows, not fragmented, with vlan tag */
186 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG,
187 		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
188 		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_TCP,
189 		       MVPP2_PRS_IP_MASK),
190 
191 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG,
192 		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
193 		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_TCP,
194 		       MVPP2_PRS_IP_MASK),
195 
196 	/* TCP over IPv6 flows, fragmented, no vlan tag */
197 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG,
198 		       MVPP22_CLS_HEK_IP6_2T,
199 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
200 		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
201 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
202 
203 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG,
204 		       MVPP22_CLS_HEK_IP6_2T,
205 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
206 		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
207 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
208 
209 	/* TCP over IPv6 flows, fragmented, with vlan tag */
210 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG,
211 		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
212 		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE |
213 		       MVPP2_PRS_RI_L4_TCP,
214 		       MVPP2_PRS_IP_MASK),
215 
216 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG,
217 		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
218 		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE |
219 		       MVPP2_PRS_RI_L4_TCP,
220 		       MVPP2_PRS_IP_MASK),
221 
222 	/* UDP over IPv6 flows, not fragmented, no vlan tag */
223 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG,
224 		       MVPP22_CLS_HEK_IP6_5T,
225 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
226 		       MVPP2_PRS_RI_L4_UDP,
227 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
228 
229 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG,
230 		       MVPP22_CLS_HEK_IP6_5T,
231 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
232 		       MVPP2_PRS_RI_L4_UDP,
233 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
234 
235 	/* UDP over IPv6 flows, not fragmented, with vlan tag */
236 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG,
237 		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
238 		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_UDP,
239 		       MVPP2_PRS_IP_MASK),
240 
241 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG,
242 		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
243 		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_UDP,
244 		       MVPP2_PRS_IP_MASK),
245 
246 	/* UDP over IPv6 flows, fragmented, no vlan tag */
247 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG,
248 		       MVPP22_CLS_HEK_IP6_2T,
249 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
250 		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
251 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
252 
253 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG,
254 		       MVPP22_CLS_HEK_IP6_2T,
255 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
256 		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
257 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
258 
259 	/* UDP over IPv6 flows, fragmented, with vlan tag */
260 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG,
261 		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
262 		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE |
263 		       MVPP2_PRS_RI_L4_UDP,
264 		       MVPP2_PRS_IP_MASK),
265 
266 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG,
267 		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
268 		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE |
269 		       MVPP2_PRS_RI_L4_UDP,
270 		       MVPP2_PRS_IP_MASK),
271 
272 	/* IPv4 flows, no vlan tag */
273 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
274 		       MVPP22_CLS_HEK_IP4_2T,
275 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4,
276 		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
277 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
278 		       MVPP22_CLS_HEK_IP4_2T,
279 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT,
280 		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
281 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
282 		       MVPP22_CLS_HEK_IP4_2T,
283 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER,
284 		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
285 
286 	/* IPv4 flows, with vlan tag */
287 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
288 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
289 		       MVPP2_PRS_RI_L3_IP4,
290 		       MVPP2_PRS_RI_L3_PROTO_MASK),
291 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
292 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
293 		       MVPP2_PRS_RI_L3_IP4_OPT,
294 		       MVPP2_PRS_RI_L3_PROTO_MASK),
295 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
296 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
297 		       MVPP2_PRS_RI_L3_IP4_OTHER,
298 		       MVPP2_PRS_RI_L3_PROTO_MASK),
299 
300 	/* IPv6 flows, no vlan tag */
301 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG,
302 		       MVPP22_CLS_HEK_IP6_2T,
303 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6,
304 		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
305 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG,
306 		       MVPP22_CLS_HEK_IP6_2T,
307 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6,
308 		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
309 
310 	/* IPv6 flows, with vlan tag */
311 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG,
312 		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
313 		       MVPP2_PRS_RI_L3_IP6,
314 		       MVPP2_PRS_RI_L3_PROTO_MASK),
315 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG,
316 		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
317 		       MVPP2_PRS_RI_L3_IP6,
318 		       MVPP2_PRS_RI_L3_PROTO_MASK),
319 
320 	/* Non IP flow, no vlan tag */
321 	MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_UNTAG,
322 		       0,
323 		       MVPP2_PRS_RI_VLAN_NONE,
324 		       MVPP2_PRS_RI_VLAN_MASK),
325 	/* Non IP flow, with vlan tag */
326 	MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_TAG,
327 		       MVPP22_CLS_HEK_OPT_VLAN,
328 		       0, 0),
329 };
330 
331 u32 mvpp2_cls_flow_hits(struct mvpp2 *priv, int index)
332 {
333 	mvpp2_write(priv, MVPP2_CTRS_IDX, index);
334 
335 	return mvpp2_read(priv, MVPP2_CLS_FLOW_TBL_HIT_CTR);
336 }
337 
338 void mvpp2_cls_flow_read(struct mvpp2 *priv, int index,
339 			 struct mvpp2_cls_flow_entry *fe)
340 {
341 	fe->index = index;
342 	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, index);
343 	fe->data[0] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL0_REG);
344 	fe->data[1] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL1_REG);
345 	fe->data[2] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL2_REG);
346 }
347 
348 /* Update classification flow table registers */
349 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
350 				 struct mvpp2_cls_flow_entry *fe)
351 {
352 	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
353 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
354 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
355 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
356 }
357 
358 u32 mvpp2_cls_lookup_hits(struct mvpp2 *priv, int index)
359 {
360 	mvpp2_write(priv, MVPP2_CTRS_IDX, index);
361 
362 	return mvpp2_read(priv, MVPP2_CLS_DEC_TBL_HIT_CTR);
363 }
364 
365 void mvpp2_cls_lookup_read(struct mvpp2 *priv, int lkpid, int way,
366 			   struct mvpp2_cls_lookup_entry *le)
367 {
368 	u32 val;
369 
370 	val = (way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | lkpid;
371 	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
372 	le->way = way;
373 	le->lkpid = lkpid;
374 	le->data = mvpp2_read(priv, MVPP2_CLS_LKP_TBL_REG);
375 }
376 
377 /* Update classification lookup table register */
378 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
379 				   struct mvpp2_cls_lookup_entry *le)
380 {
381 	u32 val;
382 
383 	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
384 	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
385 	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
386 }
387 
388 /* Operations on flow entry */
389 static int mvpp2_cls_flow_hek_num_get(struct mvpp2_cls_flow_entry *fe)
390 {
391 	return fe->data[1] & MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK;
392 }
393 
394 static void mvpp2_cls_flow_hek_num_set(struct mvpp2_cls_flow_entry *fe,
395 				       int num_of_fields)
396 {
397 	fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK;
398 	fe->data[1] |= MVPP2_CLS_FLOW_TBL1_N_FIELDS(num_of_fields);
399 }
400 
401 static int mvpp2_cls_flow_hek_get(struct mvpp2_cls_flow_entry *fe,
402 				  int field_index)
403 {
404 	return (fe->data[2] >> MVPP2_CLS_FLOW_TBL2_FLD_OFFS(field_index)) &
405 		MVPP2_CLS_FLOW_TBL2_FLD_MASK;
406 }
407 
408 static void mvpp2_cls_flow_hek_set(struct mvpp2_cls_flow_entry *fe,
409 				   int field_index, int field_id)
410 {
411 	fe->data[2] &= ~MVPP2_CLS_FLOW_TBL2_FLD(field_index,
412 						MVPP2_CLS_FLOW_TBL2_FLD_MASK);
413 	fe->data[2] |= MVPP2_CLS_FLOW_TBL2_FLD(field_index, field_id);
414 }
415 
416 static void mvpp2_cls_flow_eng_set(struct mvpp2_cls_flow_entry *fe,
417 				   int engine)
418 {
419 	fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_ENG(MVPP2_CLS_FLOW_TBL0_ENG_MASK);
420 	fe->data[0] |= MVPP2_CLS_FLOW_TBL0_ENG(engine);
421 }
422 
423 int mvpp2_cls_flow_eng_get(struct mvpp2_cls_flow_entry *fe)
424 {
425 	return (fe->data[0] >> MVPP2_CLS_FLOW_TBL0_OFFS) &
426 		MVPP2_CLS_FLOW_TBL0_ENG_MASK;
427 }
428 
429 static void mvpp2_cls_flow_port_id_sel(struct mvpp2_cls_flow_entry *fe,
430 				       bool from_packet)
431 {
432 	if (from_packet)
433 		fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL;
434 	else
435 		fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL;
436 }
437 
438 static void mvpp2_cls_flow_last_set(struct mvpp2_cls_flow_entry *fe,
439 				    bool is_last)
440 {
441 	fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_LAST;
442 	fe->data[0] |= !!is_last;
443 }
444 
445 static void mvpp2_cls_flow_pri_set(struct mvpp2_cls_flow_entry *fe, int prio)
446 {
447 	fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_PRIO(MVPP2_CLS_FLOW_TBL1_PRIO_MASK);
448 	fe->data[1] |= MVPP2_CLS_FLOW_TBL1_PRIO(prio);
449 }
450 
451 static void mvpp2_cls_flow_port_add(struct mvpp2_cls_flow_entry *fe,
452 				    u32 port)
453 {
454 	fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID(port);
455 }
456 
457 static void mvpp2_cls_flow_port_remove(struct mvpp2_cls_flow_entry *fe,
458 				       u32 port)
459 {
460 	fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID(port);
461 }
462 
463 static void mvpp2_cls_flow_lu_type_set(struct mvpp2_cls_flow_entry *fe,
464 				       u8 lu_type)
465 {
466 	fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK);
467 	fe->data[1] |= MVPP2_CLS_FLOW_TBL1_LU_TYPE(lu_type);
468 }
469 
470 /* Initialize the parser entry for the given flow */
471 static void mvpp2_cls_flow_prs_init(struct mvpp2 *priv,
472 				    const struct mvpp2_cls_flow *flow)
473 {
474 	mvpp2_prs_add_flow(priv, flow->flow_id, flow->prs_ri.ri,
475 			   flow->prs_ri.ri_mask);
476 }
477 
478 /* Initialize the Lookup Id table entry for the given flow */
479 static void mvpp2_cls_flow_lkp_init(struct mvpp2 *priv,
480 				    const struct mvpp2_cls_flow *flow)
481 {
482 	struct mvpp2_cls_lookup_entry le;
483 
484 	le.way = 0;
485 	le.lkpid = flow->flow_id;
486 
487 	/* The default RxQ for this port is set in the C2 lookup */
488 	le.data = 0;
489 
490 	/* We point on the first lookup in the sequence for the flow, that is
491 	 * the C2 lookup.
492 	 */
493 	le.data |= MVPP2_CLS_LKP_FLOW_PTR(MVPP2_CLS_FLT_FIRST(flow->flow_id));
494 
495 	/* CLS is always enabled, RSS is enabled/disabled in C2 lookup */
496 	le.data |= MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
497 
498 	mvpp2_cls_lookup_write(priv, &le);
499 }
500 
501 static void mvpp2_cls_c2_write(struct mvpp2 *priv,
502 			       struct mvpp2_cls_c2_entry *c2)
503 {
504 	u32 val;
505 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2->index);
506 
507 	val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV);
508 	if (c2->valid)
509 		val &= ~MVPP22_CLS_C2_TCAM_INV_BIT;
510 	else
511 		val |= MVPP22_CLS_C2_TCAM_INV_BIT;
512 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_INV, val);
513 
514 	mvpp2_write(priv, MVPP22_CLS_C2_ACT, c2->act);
515 
516 	mvpp2_write(priv, MVPP22_CLS_C2_ATTR0, c2->attr[0]);
517 	mvpp2_write(priv, MVPP22_CLS_C2_ATTR1, c2->attr[1]);
518 	mvpp2_write(priv, MVPP22_CLS_C2_ATTR2, c2->attr[2]);
519 	mvpp2_write(priv, MVPP22_CLS_C2_ATTR3, c2->attr[3]);
520 
521 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA0, c2->tcam[0]);
522 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA1, c2->tcam[1]);
523 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA2, c2->tcam[2]);
524 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA3, c2->tcam[3]);
525 	/* Writing TCAM_DATA4 flushes writes to TCAM_DATA0-4 and INV to HW */
526 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA4, c2->tcam[4]);
527 }
528 
529 void mvpp2_cls_c2_read(struct mvpp2 *priv, int index,
530 		       struct mvpp2_cls_c2_entry *c2)
531 {
532 	u32 val;
533 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, index);
534 
535 	c2->index = index;
536 
537 	c2->tcam[0] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA0);
538 	c2->tcam[1] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA1);
539 	c2->tcam[2] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA2);
540 	c2->tcam[3] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA3);
541 	c2->tcam[4] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA4);
542 
543 	c2->act = mvpp2_read(priv, MVPP22_CLS_C2_ACT);
544 
545 	c2->attr[0] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR0);
546 	c2->attr[1] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR1);
547 	c2->attr[2] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR2);
548 	c2->attr[3] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR3);
549 
550 	val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV);
551 	c2->valid = !(val & MVPP22_CLS_C2_TCAM_INV_BIT);
552 }
553 
554 static int mvpp2_cls_ethtool_flow_to_type(int flow_type)
555 {
556 	switch (flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS)) {
557 	case ETHER_FLOW:
558 		return MVPP22_FLOW_ETHERNET;
559 	case TCP_V4_FLOW:
560 		return MVPP22_FLOW_TCP4;
561 	case TCP_V6_FLOW:
562 		return MVPP22_FLOW_TCP6;
563 	case UDP_V4_FLOW:
564 		return MVPP22_FLOW_UDP4;
565 	case UDP_V6_FLOW:
566 		return MVPP22_FLOW_UDP6;
567 	case IPV4_FLOW:
568 		return MVPP22_FLOW_IP4;
569 	case IPV6_FLOW:
570 		return MVPP22_FLOW_IP6;
571 	default:
572 		return -EOPNOTSUPP;
573 	}
574 }
575 
576 static int mvpp2_cls_c2_port_flow_index(struct mvpp2_port *port, int loc)
577 {
578 	return MVPP22_CLS_C2_RFS_LOC(port->id, loc);
579 }
580 
581 /* Initialize the flow table entries for the given flow */
582 static void mvpp2_cls_flow_init(struct mvpp2 *priv,
583 				const struct mvpp2_cls_flow *flow)
584 {
585 	struct mvpp2_cls_flow_entry fe;
586 	int i, pri = 0;
587 
588 	/* Assign default values to all entries in the flow */
589 	for (i = MVPP2_CLS_FLT_FIRST(flow->flow_id);
590 	     i <= MVPP2_CLS_FLT_LAST(flow->flow_id); i++) {
591 		memset(&fe, 0, sizeof(fe));
592 		fe.index = i;
593 		mvpp2_cls_flow_pri_set(&fe, pri++);
594 
595 		if (i == MVPP2_CLS_FLT_LAST(flow->flow_id))
596 			mvpp2_cls_flow_last_set(&fe, 1);
597 
598 		mvpp2_cls_flow_write(priv, &fe);
599 	}
600 
601 	/* RSS config C2 lookup */
602 	mvpp2_cls_flow_read(priv, MVPP2_CLS_FLT_C2_RSS_ENTRY(flow->flow_id),
603 			    &fe);
604 
605 	mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C2);
606 	mvpp2_cls_flow_port_id_sel(&fe, true);
607 	mvpp2_cls_flow_lu_type_set(&fe, MVPP22_CLS_LU_TYPE_ALL);
608 
609 	/* Add all ports */
610 	for (i = 0; i < MVPP2_MAX_PORTS; i++)
611 		mvpp2_cls_flow_port_add(&fe, BIT(i));
612 
613 	mvpp2_cls_flow_write(priv, &fe);
614 
615 	/* C3Hx lookups */
616 	for (i = 0; i < MVPP2_MAX_PORTS; i++) {
617 		mvpp2_cls_flow_read(priv,
618 				    MVPP2_CLS_FLT_HASH_ENTRY(i, flow->flow_id),
619 				    &fe);
620 
621 		/* Set a default engine. Will be overwritten when setting the
622 		 * real HEK parameters
623 		 */
624 		mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C3HA);
625 		mvpp2_cls_flow_port_id_sel(&fe, true);
626 		mvpp2_cls_flow_port_add(&fe, BIT(i));
627 
628 		mvpp2_cls_flow_write(priv, &fe);
629 	}
630 }
631 
632 /* Adds a field to the Header Extracted Key generation parameters*/
633 static int mvpp2_flow_add_hek_field(struct mvpp2_cls_flow_entry *fe,
634 				    u32 field_id)
635 {
636 	int nb_fields = mvpp2_cls_flow_hek_num_get(fe);
637 
638 	if (nb_fields == MVPP2_FLOW_N_FIELDS)
639 		return -EINVAL;
640 
641 	mvpp2_cls_flow_hek_set(fe, nb_fields, field_id);
642 
643 	mvpp2_cls_flow_hek_num_set(fe, nb_fields + 1);
644 
645 	return 0;
646 }
647 
648 static int mvpp2_flow_set_hek_fields(struct mvpp2_cls_flow_entry *fe,
649 				     unsigned long hash_opts)
650 {
651 	u32 field_id;
652 	int i;
653 
654 	/* Clear old fields */
655 	mvpp2_cls_flow_hek_num_set(fe, 0);
656 	fe->data[2] = 0;
657 
658 	for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) {
659 		switch (BIT(i)) {
660 		case MVPP22_CLS_HEK_OPT_MAC_DA:
661 			field_id = MVPP22_CLS_FIELD_MAC_DA;
662 			break;
663 		case MVPP22_CLS_HEK_OPT_VLAN:
664 			field_id = MVPP22_CLS_FIELD_VLAN;
665 			break;
666 		case MVPP22_CLS_HEK_OPT_VLAN_PRI:
667 			field_id = MVPP22_CLS_FIELD_VLAN_PRI;
668 			break;
669 		case MVPP22_CLS_HEK_OPT_IP4SA:
670 			field_id = MVPP22_CLS_FIELD_IP4SA;
671 			break;
672 		case MVPP22_CLS_HEK_OPT_IP4DA:
673 			field_id = MVPP22_CLS_FIELD_IP4DA;
674 			break;
675 		case MVPP22_CLS_HEK_OPT_IP6SA:
676 			field_id = MVPP22_CLS_FIELD_IP6SA;
677 			break;
678 		case MVPP22_CLS_HEK_OPT_IP6DA:
679 			field_id = MVPP22_CLS_FIELD_IP6DA;
680 			break;
681 		case MVPP22_CLS_HEK_OPT_L4SIP:
682 			field_id = MVPP22_CLS_FIELD_L4SIP;
683 			break;
684 		case MVPP22_CLS_HEK_OPT_L4DIP:
685 			field_id = MVPP22_CLS_FIELD_L4DIP;
686 			break;
687 		default:
688 			return -EINVAL;
689 		}
690 		if (mvpp2_flow_add_hek_field(fe, field_id))
691 			return -EINVAL;
692 	}
693 
694 	return 0;
695 }
696 
697 /* Returns the size, in bits, of the corresponding HEK field */
698 static int mvpp2_cls_hek_field_size(u32 field)
699 {
700 	switch (field) {
701 	case MVPP22_CLS_HEK_OPT_MAC_DA:
702 		return 48;
703 	case MVPP22_CLS_HEK_OPT_VLAN:
704 		return 12;
705 	case MVPP22_CLS_HEK_OPT_VLAN_PRI:
706 		return 3;
707 	case MVPP22_CLS_HEK_OPT_IP4SA:
708 	case MVPP22_CLS_HEK_OPT_IP4DA:
709 		return 32;
710 	case MVPP22_CLS_HEK_OPT_IP6SA:
711 	case MVPP22_CLS_HEK_OPT_IP6DA:
712 		return 128;
713 	case MVPP22_CLS_HEK_OPT_L4SIP:
714 	case MVPP22_CLS_HEK_OPT_L4DIP:
715 		return 16;
716 	default:
717 		return -1;
718 	}
719 }
720 
721 const struct mvpp2_cls_flow *mvpp2_cls_flow_get(int flow)
722 {
723 	if (flow >= MVPP2_N_PRS_FLOWS)
724 		return NULL;
725 
726 	return &cls_flows[flow];
727 }
728 
729 /* Set the hash generation options for the given traffic flow.
730  * One traffic flow (in the ethtool sense) has multiple classification flows,
731  * to handle specific cases such as fragmentation, or the presence of a
732  * VLAN / DSA Tag.
733  *
734  * Each of these individual flows has different constraints, for example we
735  * can't hash fragmented packets on L4 data (else we would risk having packet
736  * re-ordering), so each classification flows masks the options with their
737  * supported ones.
738  *
739  */
740 static int mvpp2_port_rss_hash_opts_set(struct mvpp2_port *port, int flow_type,
741 					u16 requested_opts)
742 {
743 	const struct mvpp2_cls_flow *flow;
744 	struct mvpp2_cls_flow_entry fe;
745 	int i, engine, flow_index;
746 	u16 hash_opts;
747 
748 	for_each_cls_flow_id_with_type(i, flow_type) {
749 		flow = mvpp2_cls_flow_get(i);
750 		if (!flow)
751 			return -EINVAL;
752 
753 		flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id);
754 
755 		mvpp2_cls_flow_read(port->priv, flow_index, &fe);
756 
757 		hash_opts = flow->supported_hash_opts & requested_opts;
758 
759 		/* Use C3HB engine to access L4 infos. This adds L4 infos to the
760 		 * hash parameters
761 		 */
762 		if (hash_opts & MVPP22_CLS_HEK_L4_OPTS)
763 			engine = MVPP22_CLS_ENGINE_C3HB;
764 		else
765 			engine = MVPP22_CLS_ENGINE_C3HA;
766 
767 		if (mvpp2_flow_set_hek_fields(&fe, hash_opts))
768 			return -EINVAL;
769 
770 		mvpp2_cls_flow_eng_set(&fe, engine);
771 
772 		mvpp2_cls_flow_write(port->priv, &fe);
773 	}
774 
775 	return 0;
776 }
777 
778 u16 mvpp2_flow_get_hek_fields(struct mvpp2_cls_flow_entry *fe)
779 {
780 	u16 hash_opts = 0;
781 	int n_fields, i, field;
782 
783 	n_fields = mvpp2_cls_flow_hek_num_get(fe);
784 
785 	for (i = 0; i < n_fields; i++) {
786 		field = mvpp2_cls_flow_hek_get(fe, i);
787 
788 		switch (field) {
789 		case MVPP22_CLS_FIELD_MAC_DA:
790 			hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA;
791 			break;
792 		case MVPP22_CLS_FIELD_VLAN:
793 			hash_opts |= MVPP22_CLS_HEK_OPT_VLAN;
794 			break;
795 		case MVPP22_CLS_FIELD_VLAN_PRI:
796 			hash_opts |= MVPP22_CLS_HEK_OPT_VLAN_PRI;
797 			break;
798 		case MVPP22_CLS_FIELD_L3_PROTO:
799 			hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO;
800 			break;
801 		case MVPP22_CLS_FIELD_IP4SA:
802 			hash_opts |= MVPP22_CLS_HEK_OPT_IP4SA;
803 			break;
804 		case MVPP22_CLS_FIELD_IP4DA:
805 			hash_opts |= MVPP22_CLS_HEK_OPT_IP4DA;
806 			break;
807 		case MVPP22_CLS_FIELD_IP6SA:
808 			hash_opts |= MVPP22_CLS_HEK_OPT_IP6SA;
809 			break;
810 		case MVPP22_CLS_FIELD_IP6DA:
811 			hash_opts |= MVPP22_CLS_HEK_OPT_IP6DA;
812 			break;
813 		case MVPP22_CLS_FIELD_L4SIP:
814 			hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP;
815 			break;
816 		case MVPP22_CLS_FIELD_L4DIP:
817 			hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP;
818 			break;
819 		default:
820 			break;
821 		}
822 	}
823 	return hash_opts;
824 }
825 
826 /* Returns the hash opts for this flow. There are several classifier flows
827  * for one traffic flow, this returns an aggregation of all configurations.
828  */
829 static u16 mvpp2_port_rss_hash_opts_get(struct mvpp2_port *port, int flow_type)
830 {
831 	const struct mvpp2_cls_flow *flow;
832 	struct mvpp2_cls_flow_entry fe;
833 	int i, flow_index;
834 	u16 hash_opts = 0;
835 
836 	for_each_cls_flow_id_with_type(i, flow_type) {
837 		flow = mvpp2_cls_flow_get(i);
838 		if (!flow)
839 			return 0;
840 
841 		flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id);
842 
843 		mvpp2_cls_flow_read(port->priv, flow_index, &fe);
844 
845 		hash_opts |= mvpp2_flow_get_hek_fields(&fe);
846 	}
847 
848 	return hash_opts;
849 }
850 
851 static void mvpp2_cls_port_init_flows(struct mvpp2 *priv)
852 {
853 	const struct mvpp2_cls_flow *flow;
854 	int i;
855 
856 	for (i = 0; i < MVPP2_N_PRS_FLOWS; i++) {
857 		flow = mvpp2_cls_flow_get(i);
858 		if (!flow)
859 			break;
860 
861 		mvpp2_cls_flow_prs_init(priv, flow);
862 		mvpp2_cls_flow_lkp_init(priv, flow);
863 		mvpp2_cls_flow_init(priv, flow);
864 	}
865 }
866 
867 static void mvpp2_port_c2_cls_init(struct mvpp2_port *port)
868 {
869 	struct mvpp2_cls_c2_entry c2;
870 	u8 qh, ql, pmap;
871 
872 	memset(&c2, 0, sizeof(c2));
873 
874 	c2.index = MVPP22_CLS_C2_RSS_ENTRY(port->id);
875 
876 	pmap = BIT(port->id);
877 	c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap);
878 	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap));
879 
880 	/* Match on Lookup Type */
881 	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK));
882 	c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(MVPP22_CLS_LU_TYPE_ALL);
883 
884 	/* Update RSS status after matching this entry */
885 	c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK);
886 
887 	/* Mark packet as "forwarded to software", needed for RSS */
888 	c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK);
889 
890 	/* Configure the default rx queue : Update Queue Low and Queue High, but
891 	 * don't lock, since the rx queue selection might be overridden by RSS
892 	 */
893 	c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD) |
894 		   MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD);
895 
896 	qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
897 	ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
898 
899 	c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
900 		      MVPP22_CLS_C2_ATTR0_QLOW(ql);
901 
902 	c2.valid = true;
903 
904 	mvpp2_cls_c2_write(port->priv, &c2);
905 }
906 
907 /* Classifier default initialization */
908 void mvpp2_cls_init(struct mvpp2 *priv)
909 {
910 	struct mvpp2_cls_lookup_entry le;
911 	struct mvpp2_cls_flow_entry fe;
912 	struct mvpp2_cls_c2_entry c2;
913 	int index;
914 
915 	/* Enable classifier */
916 	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
917 
918 	/* Clear classifier flow table */
919 	memset(&fe.data, 0, sizeof(fe.data));
920 	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
921 		fe.index = index;
922 		mvpp2_cls_flow_write(priv, &fe);
923 	}
924 
925 	/* Clear classifier lookup table */
926 	le.data = 0;
927 	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
928 		le.lkpid = index;
929 		le.way = 0;
930 		mvpp2_cls_lookup_write(priv, &le);
931 
932 		le.way = 1;
933 		mvpp2_cls_lookup_write(priv, &le);
934 	}
935 
936 	/* Clear C2 TCAM engine table */
937 	memset(&c2, 0, sizeof(c2));
938 	c2.valid = false;
939 	for (index = 0; index < MVPP22_CLS_C2_N_ENTRIES; index++) {
940 		c2.index = index;
941 		mvpp2_cls_c2_write(priv, &c2);
942 	}
943 
944 	/* Disable the FIFO stages in C2 engine, which are only used in BIST
945 	 * mode
946 	 */
947 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_CTRL,
948 		    MVPP22_CLS_C2_TCAM_BYPASS_FIFO);
949 
950 	mvpp2_cls_port_init_flows(priv);
951 }
952 
953 void mvpp2_cls_port_config(struct mvpp2_port *port)
954 {
955 	struct mvpp2_cls_lookup_entry le;
956 	u32 val;
957 
958 	/* Set way for the port */
959 	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
960 	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
961 	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
962 
963 	/* Pick the entry to be accessed in lookup ID decoding table
964 	 * according to the way and lkpid.
965 	 */
966 	le.lkpid = port->id;
967 	le.way = 0;
968 	le.data = 0;
969 
970 	/* Set initial CPU queue for receiving packets */
971 	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
972 	le.data |= port->first_rxq;
973 
974 	/* Disable classification engines */
975 	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
976 
977 	/* Update lookup ID table entry */
978 	mvpp2_cls_lookup_write(port->priv, &le);
979 
980 	mvpp2_port_c2_cls_init(port);
981 }
982 
983 u32 mvpp2_cls_c2_hit_count(struct mvpp2 *priv, int c2_index)
984 {
985 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2_index);
986 
987 	return mvpp2_read(priv, MVPP22_CLS_C2_HIT_CTR);
988 }
989 
990 static void mvpp2_rss_port_c2_enable(struct mvpp2_port *port, u32 ctx)
991 {
992 	struct mvpp2_cls_c2_entry c2;
993 	u8 qh, ql;
994 
995 	mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2);
996 
997 	/* The RxQ number is used to select the RSS table. It that case, we set
998 	 * it to be the ctx number.
999 	 */
1000 	qh = (ctx >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
1001 	ql = ctx & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
1002 
1003 	c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
1004 		     MVPP22_CLS_C2_ATTR0_QLOW(ql);
1005 
1006 	c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN;
1007 
1008 	mvpp2_cls_c2_write(port->priv, &c2);
1009 }
1010 
1011 static void mvpp2_rss_port_c2_disable(struct mvpp2_port *port)
1012 {
1013 	struct mvpp2_cls_c2_entry c2;
1014 	u8 qh, ql;
1015 
1016 	mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2);
1017 
1018 	/* Reset the default destination RxQ to the port's first rx queue. */
1019 	qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
1020 	ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
1021 
1022 	c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
1023 		      MVPP22_CLS_C2_ATTR0_QLOW(ql);
1024 
1025 	c2.attr[2] &= ~MVPP22_CLS_C2_ATTR2_RSS_EN;
1026 
1027 	mvpp2_cls_c2_write(port->priv, &c2);
1028 }
1029 
1030 static inline int mvpp22_rss_ctx(struct mvpp2_port *port, int port_rss_ctx)
1031 {
1032 	return port->rss_ctx[port_rss_ctx];
1033 }
1034 
1035 int mvpp22_port_rss_enable(struct mvpp2_port *port)
1036 {
1037 	if (mvpp22_rss_ctx(port, 0) < 0)
1038 		return -EINVAL;
1039 
1040 	mvpp2_rss_port_c2_enable(port, mvpp22_rss_ctx(port, 0));
1041 
1042 	return 0;
1043 }
1044 
1045 int mvpp22_port_rss_disable(struct mvpp2_port *port)
1046 {
1047 	if (mvpp22_rss_ctx(port, 0) < 0)
1048 		return -EINVAL;
1049 
1050 	mvpp2_rss_port_c2_disable(port);
1051 
1052 	return 0;
1053 }
1054 
1055 static void mvpp22_port_c2_lookup_disable(struct mvpp2_port *port, int entry)
1056 {
1057 	struct mvpp2_cls_c2_entry c2;
1058 
1059 	mvpp2_cls_c2_read(port->priv, entry, &c2);
1060 
1061 	/* Clear the port map so that the entry doesn't match anymore */
1062 	c2.tcam[4] &= ~(MVPP22_CLS_C2_PORT_ID(BIT(port->id)));
1063 
1064 	mvpp2_cls_c2_write(port->priv, &c2);
1065 }
1066 
1067 /* Set CPU queue number for oversize packets */
1068 void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
1069 {
1070 	u32 val;
1071 
1072 	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
1073 		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
1074 
1075 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
1076 		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
1077 
1078 	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
1079 	val &= ~MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
1080 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
1081 }
1082 
1083 static int mvpp2_port_c2_tcam_rule_add(struct mvpp2_port *port,
1084 				       struct mvpp2_rfs_rule *rule)
1085 {
1086 	struct flow_action_entry *act;
1087 	struct mvpp2_cls_c2_entry c2;
1088 	u8 qh, ql, pmap;
1089 	int index, ctx;
1090 
1091 	if (!flow_action_basic_hw_stats_check(&rule->flow->action, NULL))
1092 		return -EOPNOTSUPP;
1093 
1094 	memset(&c2, 0, sizeof(c2));
1095 
1096 	index = mvpp2_cls_c2_port_flow_index(port, rule->loc);
1097 	if (index < 0)
1098 		return -EINVAL;
1099 	c2.index = index;
1100 
1101 	act = &rule->flow->action.entries[0];
1102 
1103 	rule->c2_index = c2.index;
1104 
1105 	c2.tcam[3] = (rule->c2_tcam & 0xffff) |
1106 		     ((rule->c2_tcam_mask & 0xffff) << 16);
1107 	c2.tcam[2] = ((rule->c2_tcam >> 16) & 0xffff) |
1108 		     (((rule->c2_tcam_mask >> 16) & 0xffff) << 16);
1109 	c2.tcam[1] = ((rule->c2_tcam >> 32) & 0xffff) |
1110 		     (((rule->c2_tcam_mask >> 32) & 0xffff) << 16);
1111 	c2.tcam[0] = ((rule->c2_tcam >> 48) & 0xffff) |
1112 		     (((rule->c2_tcam_mask >> 48) & 0xffff) << 16);
1113 
1114 	pmap = BIT(port->id);
1115 	c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap);
1116 	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap));
1117 
1118 	/* Match on Lookup Type */
1119 	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK));
1120 	c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(rule->loc);
1121 
1122 	if (act->id == FLOW_ACTION_DROP) {
1123 		c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_RED_LOCK);
1124 	} else {
1125 		/* We want to keep the default color derived from the Header
1126 		 * Parser drop entries, for VLAN and MAC filtering. This will
1127 		 * assign a default color of Green or Red, and we want matches
1128 		 * with a non-drop action to keep that color.
1129 		 */
1130 		c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_NO_UPD_LOCK);
1131 
1132 		/* Update RSS status after matching this entry */
1133 		if (act->queue.ctx)
1134 			c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN;
1135 
1136 		/* Always lock the RSS_EN decision. We might have high prio
1137 		 * rules steering to an RXQ, and a lower one steering to RSS,
1138 		 * we don't want the low prio RSS rule overwriting this flag.
1139 		 */
1140 		c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK);
1141 
1142 		/* Mark packet as "forwarded to software", needed for RSS */
1143 		c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK);
1144 
1145 		c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD_LOCK) |
1146 			   MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD_LOCK);
1147 
1148 		if (act->queue.ctx) {
1149 			/* Get the global ctx number */
1150 			ctx = mvpp22_rss_ctx(port, act->queue.ctx);
1151 			if (ctx < 0)
1152 				return -EINVAL;
1153 
1154 			qh = (ctx >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
1155 			ql = ctx & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
1156 		} else {
1157 			qh = ((act->queue.index + port->first_rxq) >> 3) &
1158 			      MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
1159 			ql = (act->queue.index + port->first_rxq) &
1160 			      MVPP22_CLS_C2_ATTR0_QLOW_MASK;
1161 		}
1162 
1163 		c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
1164 			      MVPP22_CLS_C2_ATTR0_QLOW(ql);
1165 	}
1166 
1167 	c2.valid = true;
1168 
1169 	mvpp2_cls_c2_write(port->priv, &c2);
1170 
1171 	return 0;
1172 }
1173 
1174 static int mvpp2_port_c2_rfs_rule_insert(struct mvpp2_port *port,
1175 					 struct mvpp2_rfs_rule *rule)
1176 {
1177 	return mvpp2_port_c2_tcam_rule_add(port, rule);
1178 }
1179 
1180 static int mvpp2_port_cls_rfs_rule_remove(struct mvpp2_port *port,
1181 					  struct mvpp2_rfs_rule *rule)
1182 {
1183 	const struct mvpp2_cls_flow *flow;
1184 	struct mvpp2_cls_flow_entry fe;
1185 	int index, i;
1186 
1187 	for_each_cls_flow_id_containing_type(i, rule->flow_type) {
1188 		flow = mvpp2_cls_flow_get(i);
1189 		if (!flow)
1190 			return 0;
1191 
1192 		index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc);
1193 
1194 		mvpp2_cls_flow_read(port->priv, index, &fe);
1195 		mvpp2_cls_flow_port_remove(&fe, BIT(port->id));
1196 		mvpp2_cls_flow_write(port->priv, &fe);
1197 	}
1198 
1199 	if (rule->c2_index >= 0)
1200 		mvpp22_port_c2_lookup_disable(port, rule->c2_index);
1201 
1202 	return 0;
1203 }
1204 
1205 static int mvpp2_port_flt_rfs_rule_insert(struct mvpp2_port *port,
1206 					  struct mvpp2_rfs_rule *rule)
1207 {
1208 	const struct mvpp2_cls_flow *flow;
1209 	struct mvpp2 *priv = port->priv;
1210 	struct mvpp2_cls_flow_entry fe;
1211 	int index, ret, i;
1212 
1213 	if (rule->engine != MVPP22_CLS_ENGINE_C2)
1214 		return -EOPNOTSUPP;
1215 
1216 	ret = mvpp2_port_c2_rfs_rule_insert(port, rule);
1217 	if (ret)
1218 		return ret;
1219 
1220 	for_each_cls_flow_id_containing_type(i, rule->flow_type) {
1221 		flow = mvpp2_cls_flow_get(i);
1222 		if (!flow)
1223 			return 0;
1224 
1225 		if ((rule->hek_fields & flow->supported_hash_opts) != rule->hek_fields)
1226 			continue;
1227 
1228 		index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc);
1229 
1230 		mvpp2_cls_flow_read(priv, index, &fe);
1231 		mvpp2_cls_flow_eng_set(&fe, rule->engine);
1232 		mvpp2_cls_flow_port_id_sel(&fe, true);
1233 		mvpp2_flow_set_hek_fields(&fe, rule->hek_fields);
1234 		mvpp2_cls_flow_lu_type_set(&fe, rule->loc);
1235 		mvpp2_cls_flow_port_add(&fe, 0xf);
1236 
1237 		mvpp2_cls_flow_write(priv, &fe);
1238 	}
1239 
1240 	return 0;
1241 }
1242 
1243 static int mvpp2_cls_c2_build_match(struct mvpp2_rfs_rule *rule)
1244 {
1245 	struct flow_rule *flow = rule->flow;
1246 	int offs = 0;
1247 
1248 	/* The order of insertion in C2 tcam must match the order in which
1249 	 * the fields are found in the header
1250 	 */
1251 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_VLAN)) {
1252 		struct flow_match_vlan match;
1253 
1254 		flow_rule_match_vlan(flow, &match);
1255 		if (match.mask->vlan_id) {
1256 			rule->hek_fields |= MVPP22_CLS_HEK_OPT_VLAN;
1257 
1258 			rule->c2_tcam |= ((u64)match.key->vlan_id) << offs;
1259 			rule->c2_tcam_mask |= ((u64)match.mask->vlan_id) << offs;
1260 
1261 			/* Don't update the offset yet */
1262 		}
1263 
1264 		if (match.mask->vlan_priority) {
1265 			rule->hek_fields |= MVPP22_CLS_HEK_OPT_VLAN_PRI;
1266 
1267 			/* VLAN pri is always at offset 13 relative to the
1268 			 * current offset
1269 			 */
1270 			rule->c2_tcam |= ((u64)match.key->vlan_priority) <<
1271 				(offs + 13);
1272 			rule->c2_tcam_mask |= ((u64)match.mask->vlan_priority) <<
1273 				(offs + 13);
1274 		}
1275 
1276 		if (match.mask->vlan_dei)
1277 			return -EOPNOTSUPP;
1278 
1279 		/* vlan id and prio always seem to take a full 16-bit slot in
1280 		 * the Header Extracted Key.
1281 		 */
1282 		offs += 16;
1283 	}
1284 
1285 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_PORTS)) {
1286 		struct flow_match_ports match;
1287 
1288 		flow_rule_match_ports(flow, &match);
1289 		if (match.mask->src) {
1290 			rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4SIP;
1291 
1292 			rule->c2_tcam |= ((u64)ntohs(match.key->src)) << offs;
1293 			rule->c2_tcam_mask |= ((u64)ntohs(match.mask->src)) << offs;
1294 			offs += mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4SIP);
1295 		}
1296 
1297 		if (match.mask->dst) {
1298 			rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4DIP;
1299 
1300 			rule->c2_tcam |= ((u64)ntohs(match.key->dst)) << offs;
1301 			rule->c2_tcam_mask |= ((u64)ntohs(match.mask->dst)) << offs;
1302 			offs += mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4DIP);
1303 		}
1304 	}
1305 
1306 	if (hweight16(rule->hek_fields) > MVPP2_FLOW_N_FIELDS)
1307 		return -EOPNOTSUPP;
1308 
1309 	return 0;
1310 }
1311 
1312 static int mvpp2_cls_rfs_parse_rule(struct mvpp2_rfs_rule *rule)
1313 {
1314 	struct flow_rule *flow = rule->flow;
1315 	struct flow_action_entry *act;
1316 
1317 	if (!flow_action_basic_hw_stats_check(&rule->flow->action, NULL))
1318 		return -EOPNOTSUPP;
1319 
1320 	act = &flow->action.entries[0];
1321 	if (act->id != FLOW_ACTION_QUEUE && act->id != FLOW_ACTION_DROP)
1322 		return -EOPNOTSUPP;
1323 
1324 	/* When both an RSS context and an queue index are set, the index
1325 	 * is considered as an offset to be added to the indirection table
1326 	 * entries. We don't support this, so reject this rule.
1327 	 */
1328 	if (act->queue.ctx && act->queue.index)
1329 		return -EOPNOTSUPP;
1330 
1331 	/* For now, only use the C2 engine which has a HEK size limited to 64
1332 	 * bits for TCAM matching.
1333 	 */
1334 	rule->engine = MVPP22_CLS_ENGINE_C2;
1335 
1336 	if (mvpp2_cls_c2_build_match(rule))
1337 		return -EINVAL;
1338 
1339 	return 0;
1340 }
1341 
1342 int mvpp2_ethtool_cls_rule_get(struct mvpp2_port *port,
1343 			       struct ethtool_rxnfc *rxnfc)
1344 {
1345 	struct mvpp2_ethtool_fs *efs;
1346 
1347 	if (rxnfc->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
1348 		return -EINVAL;
1349 
1350 	efs = port->rfs_rules[rxnfc->fs.location];
1351 	if (!efs)
1352 		return -ENOENT;
1353 
1354 	memcpy(rxnfc, &efs->rxnfc, sizeof(efs->rxnfc));
1355 
1356 	return 0;
1357 }
1358 
1359 int mvpp2_ethtool_cls_rule_ins(struct mvpp2_port *port,
1360 			       struct ethtool_rxnfc *info)
1361 {
1362 	struct ethtool_rx_flow_spec_input input = {};
1363 	struct ethtool_rx_flow_rule *ethtool_rule;
1364 	struct mvpp2_ethtool_fs *efs, *old_efs;
1365 	int ret = 0;
1366 
1367 	if (info->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
1368 		return -EINVAL;
1369 
1370 	efs = kzalloc(sizeof(*efs), GFP_KERNEL);
1371 	if (!efs)
1372 		return -ENOMEM;
1373 
1374 	input.fs = &info->fs;
1375 
1376 	/* We need to manually set the rss_ctx, since this info isn't present
1377 	 * in info->fs
1378 	 */
1379 	if (info->fs.flow_type & FLOW_RSS)
1380 		input.rss_ctx = info->rss_context;
1381 
1382 	ethtool_rule = ethtool_rx_flow_rule_create(&input);
1383 	if (IS_ERR(ethtool_rule)) {
1384 		ret = PTR_ERR(ethtool_rule);
1385 		goto clean_rule;
1386 	}
1387 
1388 	efs->rule.flow = ethtool_rule->rule;
1389 	efs->rule.flow_type = mvpp2_cls_ethtool_flow_to_type(info->fs.flow_type);
1390 	if (efs->rule.flow_type < 0) {
1391 		ret = efs->rule.flow_type;
1392 		goto clean_rule;
1393 	}
1394 
1395 	ret = mvpp2_cls_rfs_parse_rule(&efs->rule);
1396 	if (ret)
1397 		goto clean_eth_rule;
1398 
1399 	efs->rule.loc = info->fs.location;
1400 
1401 	/* Replace an already existing rule */
1402 	if (port->rfs_rules[efs->rule.loc]) {
1403 		old_efs = port->rfs_rules[efs->rule.loc];
1404 		ret = mvpp2_port_cls_rfs_rule_remove(port, &old_efs->rule);
1405 		if (ret)
1406 			goto clean_eth_rule;
1407 		kfree(old_efs);
1408 		port->n_rfs_rules--;
1409 	}
1410 
1411 	ret = mvpp2_port_flt_rfs_rule_insert(port, &efs->rule);
1412 	if (ret)
1413 		goto clean_eth_rule;
1414 
1415 	ethtool_rx_flow_rule_destroy(ethtool_rule);
1416 	efs->rule.flow = NULL;
1417 
1418 	memcpy(&efs->rxnfc, info, sizeof(*info));
1419 	port->rfs_rules[efs->rule.loc] = efs;
1420 	port->n_rfs_rules++;
1421 
1422 	return ret;
1423 
1424 clean_eth_rule:
1425 	ethtool_rx_flow_rule_destroy(ethtool_rule);
1426 clean_rule:
1427 	kfree(efs);
1428 	return ret;
1429 }
1430 
1431 int mvpp2_ethtool_cls_rule_del(struct mvpp2_port *port,
1432 			       struct ethtool_rxnfc *info)
1433 {
1434 	struct mvpp2_ethtool_fs *efs;
1435 	int ret;
1436 
1437 	if (info->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
1438 		return -EINVAL;
1439 
1440 	efs = port->rfs_rules[info->fs.location];
1441 	if (!efs)
1442 		return -EINVAL;
1443 
1444 	/* Remove the rule from the engines. */
1445 	ret = mvpp2_port_cls_rfs_rule_remove(port, &efs->rule);
1446 	if (ret)
1447 		return ret;
1448 
1449 	port->n_rfs_rules--;
1450 	port->rfs_rules[info->fs.location] = NULL;
1451 	kfree(efs);
1452 
1453 	return 0;
1454 }
1455 
1456 static inline u32 mvpp22_rxfh_indir(struct mvpp2_port *port, u32 rxq)
1457 {
1458 	int nrxqs, cpu, cpus = num_possible_cpus();
1459 
1460 	/* Number of RXQs per CPU */
1461 	nrxqs = port->nrxqs / cpus;
1462 
1463 	/* CPU that will handle this rx queue */
1464 	cpu = rxq / nrxqs;
1465 
1466 	if (!cpu_online(cpu))
1467 		return port->first_rxq;
1468 
1469 	/* Indirection to better distribute the paquets on the CPUs when
1470 	 * configuring the RSS queues.
1471 	 */
1472 	return port->first_rxq + ((rxq * nrxqs + rxq / cpus) % port->nrxqs);
1473 }
1474 
1475 static void mvpp22_rss_fill_table(struct mvpp2_port *port,
1476 				  struct mvpp2_rss_table *table,
1477 				  u32 rss_ctx)
1478 {
1479 	struct mvpp2 *priv = port->priv;
1480 	int i;
1481 
1482 	for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++) {
1483 		u32 sel = MVPP22_RSS_INDEX_TABLE(rss_ctx) |
1484 			  MVPP22_RSS_INDEX_TABLE_ENTRY(i);
1485 		mvpp2_write(priv, MVPP22_RSS_INDEX, sel);
1486 
1487 		mvpp2_write(priv, MVPP22_RSS_TABLE_ENTRY,
1488 			    mvpp22_rxfh_indir(port, table->indir[i]));
1489 	}
1490 }
1491 
1492 static int mvpp22_rss_context_create(struct mvpp2_port *port, u32 *rss_ctx)
1493 {
1494 	struct mvpp2 *priv = port->priv;
1495 	u32 ctx;
1496 
1497 	/* Find the first free RSS table */
1498 	for (ctx = 0; ctx < MVPP22_N_RSS_TABLES; ctx++) {
1499 		if (!priv->rss_tables[ctx])
1500 			break;
1501 	}
1502 
1503 	if (ctx == MVPP22_N_RSS_TABLES)
1504 		return -EINVAL;
1505 
1506 	priv->rss_tables[ctx] = kzalloc(sizeof(*priv->rss_tables[ctx]),
1507 					GFP_KERNEL);
1508 	if (!priv->rss_tables[ctx])
1509 		return -ENOMEM;
1510 
1511 	*rss_ctx = ctx;
1512 
1513 	/* Set the table width: replace the whole classifier Rx queue number
1514 	 * with the ones configured in RSS table entries.
1515 	 */
1516 	mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_TABLE(ctx));
1517 	mvpp2_write(priv, MVPP22_RSS_WIDTH, 8);
1518 
1519 	mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_QUEUE(ctx));
1520 	mvpp2_write(priv, MVPP22_RXQ2RSS_TABLE, MVPP22_RSS_TABLE_POINTER(ctx));
1521 
1522 	return 0;
1523 }
1524 
1525 int mvpp22_port_rss_ctx_create(struct mvpp2_port *port, u32 port_ctx)
1526 {
1527 	u32 rss_ctx;
1528 	int ret;
1529 
1530 	ret = mvpp22_rss_context_create(port, &rss_ctx);
1531 	if (ret)
1532 		return ret;
1533 
1534 	if (WARN_ON_ONCE(port->rss_ctx[port_ctx] >= 0))
1535 		return -EINVAL;
1536 
1537 	port->rss_ctx[port_ctx] = rss_ctx;
1538 	return 0;
1539 }
1540 
1541 static struct mvpp2_rss_table *mvpp22_rss_table_get(struct mvpp2 *priv,
1542 						    int rss_ctx)
1543 {
1544 	if (rss_ctx < 0 || rss_ctx >= MVPP22_N_RSS_TABLES)
1545 		return NULL;
1546 
1547 	return priv->rss_tables[rss_ctx];
1548 }
1549 
1550 int mvpp22_port_rss_ctx_delete(struct mvpp2_port *port, u32 port_ctx)
1551 {
1552 	struct mvpp2 *priv = port->priv;
1553 	struct ethtool_rxnfc *rxnfc;
1554 	int i, rss_ctx, ret;
1555 
1556 	rss_ctx = mvpp22_rss_ctx(port, port_ctx);
1557 
1558 	if (rss_ctx < 0 || rss_ctx >= MVPP22_N_RSS_TABLES)
1559 		return -EINVAL;
1560 
1561 	/* Invalidate any active classification rule that use this context */
1562 	for (i = 0; i < MVPP2_N_RFS_ENTRIES_PER_FLOW; i++) {
1563 		if (!port->rfs_rules[i])
1564 			continue;
1565 
1566 		rxnfc = &port->rfs_rules[i]->rxnfc;
1567 		if (!(rxnfc->fs.flow_type & FLOW_RSS) ||
1568 		    rxnfc->rss_context != port_ctx)
1569 			continue;
1570 
1571 		ret = mvpp2_ethtool_cls_rule_del(port, rxnfc);
1572 		if (ret) {
1573 			netdev_warn(port->dev,
1574 				    "couldn't remove classification rule %d associated to this context",
1575 				    rxnfc->fs.location);
1576 		}
1577 	}
1578 
1579 	kfree(priv->rss_tables[rss_ctx]);
1580 
1581 	priv->rss_tables[rss_ctx] = NULL;
1582 	port->rss_ctx[port_ctx] = -1;
1583 
1584 	return 0;
1585 }
1586 
1587 int mvpp22_port_rss_ctx_indir_set(struct mvpp2_port *port, u32 port_ctx,
1588 				  const u32 *indir)
1589 {
1590 	int rss_ctx = mvpp22_rss_ctx(port, port_ctx);
1591 	struct mvpp2_rss_table *rss_table = mvpp22_rss_table_get(port->priv,
1592 								 rss_ctx);
1593 
1594 	if (!rss_table)
1595 		return -EINVAL;
1596 
1597 	memcpy(rss_table->indir, indir,
1598 	       MVPP22_RSS_TABLE_ENTRIES * sizeof(rss_table->indir[0]));
1599 
1600 	mvpp22_rss_fill_table(port, rss_table, rss_ctx);
1601 
1602 	return 0;
1603 }
1604 
1605 int mvpp22_port_rss_ctx_indir_get(struct mvpp2_port *port, u32 port_ctx,
1606 				  u32 *indir)
1607 {
1608 	int rss_ctx =  mvpp22_rss_ctx(port, port_ctx);
1609 	struct mvpp2_rss_table *rss_table = mvpp22_rss_table_get(port->priv,
1610 								 rss_ctx);
1611 
1612 	if (!rss_table)
1613 		return -EINVAL;
1614 
1615 	memcpy(indir, rss_table->indir,
1616 	       MVPP22_RSS_TABLE_ENTRIES * sizeof(rss_table->indir[0]));
1617 
1618 	return 0;
1619 }
1620 
1621 int mvpp2_ethtool_rxfh_set(struct mvpp2_port *port, struct ethtool_rxnfc *info)
1622 {
1623 	u16 hash_opts = 0;
1624 	u32 flow_type;
1625 
1626 	flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type);
1627 
1628 	switch (flow_type) {
1629 	case MVPP22_FLOW_TCP4:
1630 	case MVPP22_FLOW_UDP4:
1631 	case MVPP22_FLOW_TCP6:
1632 	case MVPP22_FLOW_UDP6:
1633 		if (info->data & RXH_L4_B_0_1)
1634 			hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP;
1635 		if (info->data & RXH_L4_B_2_3)
1636 			hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP;
1637 		fallthrough;
1638 	case MVPP22_FLOW_IP4:
1639 	case MVPP22_FLOW_IP6:
1640 		if (info->data & RXH_L2DA)
1641 			hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA;
1642 		if (info->data & RXH_VLAN)
1643 			hash_opts |= MVPP22_CLS_HEK_OPT_VLAN;
1644 		if (info->data & RXH_L3_PROTO)
1645 			hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO;
1646 		if (info->data & RXH_IP_SRC)
1647 			hash_opts |= (MVPP22_CLS_HEK_OPT_IP4SA |
1648 				     MVPP22_CLS_HEK_OPT_IP6SA);
1649 		if (info->data & RXH_IP_DST)
1650 			hash_opts |= (MVPP22_CLS_HEK_OPT_IP4DA |
1651 				     MVPP22_CLS_HEK_OPT_IP6DA);
1652 		break;
1653 	default: return -EOPNOTSUPP;
1654 	}
1655 
1656 	return mvpp2_port_rss_hash_opts_set(port, flow_type, hash_opts);
1657 }
1658 
1659 int mvpp2_ethtool_rxfh_get(struct mvpp2_port *port, struct ethtool_rxnfc *info)
1660 {
1661 	unsigned long hash_opts;
1662 	u32 flow_type;
1663 	int i;
1664 
1665 	flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type);
1666 
1667 	hash_opts = mvpp2_port_rss_hash_opts_get(port, flow_type);
1668 	info->data = 0;
1669 
1670 	for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) {
1671 		switch (BIT(i)) {
1672 		case MVPP22_CLS_HEK_OPT_MAC_DA:
1673 			info->data |= RXH_L2DA;
1674 			break;
1675 		case MVPP22_CLS_HEK_OPT_VLAN:
1676 			info->data |= RXH_VLAN;
1677 			break;
1678 		case MVPP22_CLS_HEK_OPT_L3_PROTO:
1679 			info->data |= RXH_L3_PROTO;
1680 			break;
1681 		case MVPP22_CLS_HEK_OPT_IP4SA:
1682 		case MVPP22_CLS_HEK_OPT_IP6SA:
1683 			info->data |= RXH_IP_SRC;
1684 			break;
1685 		case MVPP22_CLS_HEK_OPT_IP4DA:
1686 		case MVPP22_CLS_HEK_OPT_IP6DA:
1687 			info->data |= RXH_IP_DST;
1688 			break;
1689 		case MVPP22_CLS_HEK_OPT_L4SIP:
1690 			info->data |= RXH_L4_B_0_1;
1691 			break;
1692 		case MVPP22_CLS_HEK_OPT_L4DIP:
1693 			info->data |= RXH_L4_B_2_3;
1694 			break;
1695 		default:
1696 			return -EINVAL;
1697 		}
1698 	}
1699 	return 0;
1700 }
1701 
1702 int mvpp22_port_rss_init(struct mvpp2_port *port)
1703 {
1704 	struct mvpp2_rss_table *table;
1705 	u32 context = 0;
1706 	int i, ret;
1707 
1708 	for (i = 0; i < MVPP22_N_RSS_TABLES; i++)
1709 		port->rss_ctx[i] = -1;
1710 
1711 	ret = mvpp22_rss_context_create(port, &context);
1712 	if (ret)
1713 		return ret;
1714 
1715 	table = mvpp22_rss_table_get(port->priv, context);
1716 	if (!table)
1717 		return -EINVAL;
1718 
1719 	port->rss_ctx[0] = context;
1720 
1721 	/* Configure the first table to evenly distribute the packets across
1722 	 * real Rx Queues. The table entries map a hash to a port Rx Queue.
1723 	 */
1724 	for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++)
1725 		table->indir[i] = ethtool_rxfh_indir_default(i, port->nrxqs);
1726 
1727 	mvpp22_rss_fill_table(port, table, mvpp22_rss_ctx(port, 0));
1728 
1729 	/* Configure default flows */
1730 	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP4, MVPP22_CLS_HEK_IP4_2T);
1731 	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP6, MVPP22_CLS_HEK_IP6_2T);
1732 	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP4, MVPP22_CLS_HEK_IP4_5T);
1733 	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP6, MVPP22_CLS_HEK_IP6_5T);
1734 	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP4, MVPP22_CLS_HEK_IP4_5T);
1735 	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP6, MVPP22_CLS_HEK_IP6_5T);
1736 
1737 	return 0;
1738 }
1739