xref: /linux/drivers/net/ethernet/marvell/mvpp2/mvpp2_cls.c (revision 31d166642c7c601c65eccf0ff2e0afe9a0538be2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RSS and Classifier helpers for Marvell PPv2 Network Controller
4  *
5  * Copyright (C) 2014 Marvell
6  *
7  * Marcin Wojtas <mw@semihalf.com>
8  */
9 
10 #include "mvpp2.h"
11 #include "mvpp2_cls.h"
12 #include "mvpp2_prs.h"
13 
14 #define MVPP2_DEF_FLOW(_type, _id, _opts, _ri, _ri_mask)	\
15 {								\
16 	.flow_type = _type,					\
17 	.flow_id = _id,						\
18 	.supported_hash_opts = _opts,				\
19 	.prs_ri = {						\
20 		.ri = _ri,					\
21 		.ri_mask = _ri_mask				\
22 	}							\
23 }
24 
25 static const struct mvpp2_cls_flow cls_flows[MVPP2_N_PRS_FLOWS] = {
26 	/* TCP over IPv4 flows, Not fragmented, no vlan tag */
27 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
28 		       MVPP22_CLS_HEK_IP4_5T,
29 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
30 		       MVPP2_PRS_RI_L4_TCP,
31 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
32 
33 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
34 		       MVPP22_CLS_HEK_IP4_5T,
35 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
36 		       MVPP2_PRS_RI_L4_TCP,
37 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
38 
39 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_UNTAG,
40 		       MVPP22_CLS_HEK_IP4_5T,
41 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
42 		       MVPP2_PRS_RI_L4_TCP,
43 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
44 
45 	/* TCP over IPv4 flows, Not fragmented, with vlan tag */
46 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
47 		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
48 		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP,
49 		       MVPP2_PRS_IP_MASK),
50 
51 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
52 		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
53 		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP,
54 		       MVPP2_PRS_IP_MASK),
55 
56 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_NF_TAG,
57 		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
58 		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP,
59 		       MVPP2_PRS_IP_MASK),
60 
61 	/* TCP over IPv4 flows, fragmented, no vlan tag */
62 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
63 		       MVPP22_CLS_HEK_IP4_2T,
64 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
65 		       MVPP2_PRS_RI_L4_TCP,
66 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
67 
68 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
69 		       MVPP22_CLS_HEK_IP4_2T,
70 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
71 		       MVPP2_PRS_RI_L4_TCP,
72 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
73 
74 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_UNTAG,
75 		       MVPP22_CLS_HEK_IP4_2T,
76 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
77 		       MVPP2_PRS_RI_L4_TCP,
78 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
79 
80 	/* TCP over IPv4 flows, fragmented, with vlan tag */
81 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
82 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
83 		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_TCP,
84 		       MVPP2_PRS_IP_MASK),
85 
86 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
87 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
88 		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_TCP,
89 		       MVPP2_PRS_IP_MASK),
90 
91 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP4, MVPP2_FL_IP4_TCP_FRAG_TAG,
92 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
93 		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_TCP,
94 		       MVPP2_PRS_IP_MASK),
95 
96 	/* UDP over IPv4 flows, Not fragmented, no vlan tag */
97 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
98 		       MVPP22_CLS_HEK_IP4_5T,
99 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
100 		       MVPP2_PRS_RI_L4_UDP,
101 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
102 
103 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
104 		       MVPP22_CLS_HEK_IP4_5T,
105 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
106 		       MVPP2_PRS_RI_L4_UDP,
107 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
108 
109 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_UNTAG,
110 		       MVPP22_CLS_HEK_IP4_5T,
111 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
112 		       MVPP2_PRS_RI_L4_UDP,
113 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
114 
115 	/* UDP over IPv4 flows, Not fragmented, with vlan tag */
116 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
117 		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
118 		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP,
119 		       MVPP2_PRS_IP_MASK),
120 
121 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
122 		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
123 		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP,
124 		       MVPP2_PRS_IP_MASK),
125 
126 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_NF_TAG,
127 		       MVPP22_CLS_HEK_IP4_5T | MVPP22_CLS_HEK_TAGGED,
128 		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP,
129 		       MVPP2_PRS_IP_MASK),
130 
131 	/* UDP over IPv4 flows, fragmented, no vlan tag */
132 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
133 		       MVPP22_CLS_HEK_IP4_2T,
134 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4 |
135 		       MVPP2_PRS_RI_L4_UDP,
136 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
137 
138 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
139 		       MVPP22_CLS_HEK_IP4_2T,
140 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT |
141 		       MVPP2_PRS_RI_L4_UDP,
142 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
143 
144 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_UNTAG,
145 		       MVPP22_CLS_HEK_IP4_2T,
146 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER |
147 		       MVPP2_PRS_RI_L4_UDP,
148 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
149 
150 	/* UDP over IPv4 flows, fragmented, with vlan tag */
151 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
152 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
153 		       MVPP2_PRS_RI_L3_IP4 | MVPP2_PRS_RI_L4_UDP,
154 		       MVPP2_PRS_IP_MASK),
155 
156 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
157 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
158 		       MVPP2_PRS_RI_L3_IP4_OPT | MVPP2_PRS_RI_L4_UDP,
159 		       MVPP2_PRS_IP_MASK),
160 
161 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP4, MVPP2_FL_IP4_UDP_FRAG_TAG,
162 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
163 		       MVPP2_PRS_RI_L3_IP4_OTHER | MVPP2_PRS_RI_L4_UDP,
164 		       MVPP2_PRS_IP_MASK),
165 
166 	/* TCP over IPv6 flows, not fragmented, no vlan tag */
167 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG,
168 		       MVPP22_CLS_HEK_IP6_5T,
169 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
170 		       MVPP2_PRS_RI_L4_TCP,
171 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
172 
173 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_UNTAG,
174 		       MVPP22_CLS_HEK_IP6_5T,
175 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
176 		       MVPP2_PRS_RI_L4_TCP,
177 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
178 
179 	/* TCP over IPv6 flows, not fragmented, with vlan tag */
180 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG,
181 		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
182 		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_TCP,
183 		       MVPP2_PRS_IP_MASK),
184 
185 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_NF_TAG,
186 		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
187 		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_TCP,
188 		       MVPP2_PRS_IP_MASK),
189 
190 	/* TCP over IPv6 flows, fragmented, no vlan tag */
191 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG,
192 		       MVPP22_CLS_HEK_IP6_2T,
193 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
194 		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
195 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
196 
197 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_UNTAG,
198 		       MVPP22_CLS_HEK_IP6_2T,
199 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
200 		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_TCP,
201 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
202 
203 	/* TCP over IPv6 flows, fragmented, with vlan tag */
204 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG,
205 		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
206 		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE |
207 		       MVPP2_PRS_RI_L4_TCP,
208 		       MVPP2_PRS_IP_MASK),
209 
210 	MVPP2_DEF_FLOW(MVPP22_FLOW_TCP6, MVPP2_FL_IP6_TCP_FRAG_TAG,
211 		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
212 		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE |
213 		       MVPP2_PRS_RI_L4_TCP,
214 		       MVPP2_PRS_IP_MASK),
215 
216 	/* UDP over IPv6 flows, not fragmented, no vlan tag */
217 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG,
218 		       MVPP22_CLS_HEK_IP6_5T,
219 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
220 		       MVPP2_PRS_RI_L4_UDP,
221 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
222 
223 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_UNTAG,
224 		       MVPP22_CLS_HEK_IP6_5T,
225 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
226 		       MVPP2_PRS_RI_L4_UDP,
227 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
228 
229 	/* UDP over IPv6 flows, not fragmented, with vlan tag */
230 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG,
231 		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
232 		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_L4_UDP,
233 		       MVPP2_PRS_IP_MASK),
234 
235 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_NF_TAG,
236 		       MVPP22_CLS_HEK_IP6_5T | MVPP22_CLS_HEK_TAGGED,
237 		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_L4_UDP,
238 		       MVPP2_PRS_IP_MASK),
239 
240 	/* UDP over IPv6 flows, fragmented, no vlan tag */
241 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG,
242 		       MVPP22_CLS_HEK_IP6_2T,
243 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6 |
244 		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
245 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
246 
247 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_UNTAG,
248 		       MVPP22_CLS_HEK_IP6_2T,
249 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6_EXT |
250 		       MVPP2_PRS_RI_IP_FRAG_TRUE | MVPP2_PRS_RI_L4_UDP,
251 		       MVPP2_PRS_IP_MASK | MVPP2_PRS_RI_VLAN_MASK),
252 
253 	/* UDP over IPv6 flows, fragmented, with vlan tag */
254 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG,
255 		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
256 		       MVPP2_PRS_RI_L3_IP6 | MVPP2_PRS_RI_IP_FRAG_TRUE |
257 		       MVPP2_PRS_RI_L4_UDP,
258 		       MVPP2_PRS_IP_MASK),
259 
260 	MVPP2_DEF_FLOW(MVPP22_FLOW_UDP6, MVPP2_FL_IP6_UDP_FRAG_TAG,
261 		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
262 		       MVPP2_PRS_RI_L3_IP6_EXT | MVPP2_PRS_RI_IP_FRAG_TRUE |
263 		       MVPP2_PRS_RI_L4_UDP,
264 		       MVPP2_PRS_IP_MASK),
265 
266 	/* IPv4 flows, no vlan tag */
267 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
268 		       MVPP22_CLS_HEK_IP4_2T,
269 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4,
270 		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
271 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
272 		       MVPP22_CLS_HEK_IP4_2T,
273 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OPT,
274 		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
275 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_UNTAG,
276 		       MVPP22_CLS_HEK_IP4_2T,
277 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP4_OTHER,
278 		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
279 
280 	/* IPv4 flows, with vlan tag */
281 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
282 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
283 		       MVPP2_PRS_RI_L3_IP4,
284 		       MVPP2_PRS_RI_L3_PROTO_MASK),
285 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
286 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
287 		       MVPP2_PRS_RI_L3_IP4_OPT,
288 		       MVPP2_PRS_RI_L3_PROTO_MASK),
289 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP4, MVPP2_FL_IP4_TAG,
290 		       MVPP22_CLS_HEK_IP4_2T | MVPP22_CLS_HEK_TAGGED,
291 		       MVPP2_PRS_RI_L3_IP4_OTHER,
292 		       MVPP2_PRS_RI_L3_PROTO_MASK),
293 
294 	/* IPv6 flows, no vlan tag */
295 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG,
296 		       MVPP22_CLS_HEK_IP6_2T,
297 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6,
298 		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
299 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_UNTAG,
300 		       MVPP22_CLS_HEK_IP6_2T,
301 		       MVPP2_PRS_RI_VLAN_NONE | MVPP2_PRS_RI_L3_IP6,
302 		       MVPP2_PRS_RI_VLAN_MASK | MVPP2_PRS_RI_L3_PROTO_MASK),
303 
304 	/* IPv6 flows, with vlan tag */
305 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG,
306 		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
307 		       MVPP2_PRS_RI_L3_IP6,
308 		       MVPP2_PRS_RI_L3_PROTO_MASK),
309 	MVPP2_DEF_FLOW(MVPP22_FLOW_IP6, MVPP2_FL_IP6_TAG,
310 		       MVPP22_CLS_HEK_IP6_2T | MVPP22_CLS_HEK_TAGGED,
311 		       MVPP2_PRS_RI_L3_IP6,
312 		       MVPP2_PRS_RI_L3_PROTO_MASK),
313 
314 	/* Non IP flow, no vlan tag */
315 	MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_UNTAG,
316 		       0,
317 		       MVPP2_PRS_RI_VLAN_NONE,
318 		       MVPP2_PRS_RI_VLAN_MASK),
319 	/* Non IP flow, with vlan tag */
320 	MVPP2_DEF_FLOW(MVPP22_FLOW_ETHERNET, MVPP2_FL_NON_IP_TAG,
321 		       MVPP22_CLS_HEK_OPT_VLAN,
322 		       0, 0),
323 };
324 
325 u32 mvpp2_cls_flow_hits(struct mvpp2 *priv, int index)
326 {
327 	mvpp2_write(priv, MVPP2_CTRS_IDX, index);
328 
329 	return mvpp2_read(priv, MVPP2_CLS_FLOW_TBL_HIT_CTR);
330 }
331 
332 void mvpp2_cls_flow_read(struct mvpp2 *priv, int index,
333 			 struct mvpp2_cls_flow_entry *fe)
334 {
335 	fe->index = index;
336 	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, index);
337 	fe->data[0] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL0_REG);
338 	fe->data[1] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL1_REG);
339 	fe->data[2] = mvpp2_read(priv, MVPP2_CLS_FLOW_TBL2_REG);
340 }
341 
342 /* Update classification flow table registers */
343 static void mvpp2_cls_flow_write(struct mvpp2 *priv,
344 				 struct mvpp2_cls_flow_entry *fe)
345 {
346 	mvpp2_write(priv, MVPP2_CLS_FLOW_INDEX_REG, fe->index);
347 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL0_REG, fe->data[0]);
348 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL1_REG, fe->data[1]);
349 	mvpp2_write(priv, MVPP2_CLS_FLOW_TBL2_REG, fe->data[2]);
350 }
351 
352 u32 mvpp2_cls_lookup_hits(struct mvpp2 *priv, int index)
353 {
354 	mvpp2_write(priv, MVPP2_CTRS_IDX, index);
355 
356 	return mvpp2_read(priv, MVPP2_CLS_DEC_TBL_HIT_CTR);
357 }
358 
359 void mvpp2_cls_lookup_read(struct mvpp2 *priv, int lkpid, int way,
360 			   struct mvpp2_cls_lookup_entry *le)
361 {
362 	u32 val;
363 
364 	val = (way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | lkpid;
365 	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
366 	le->way = way;
367 	le->lkpid = lkpid;
368 	le->data = mvpp2_read(priv, MVPP2_CLS_LKP_TBL_REG);
369 }
370 
371 /* Update classification lookup table register */
372 static void mvpp2_cls_lookup_write(struct mvpp2 *priv,
373 				   struct mvpp2_cls_lookup_entry *le)
374 {
375 	u32 val;
376 
377 	val = (le->way << MVPP2_CLS_LKP_INDEX_WAY_OFFS) | le->lkpid;
378 	mvpp2_write(priv, MVPP2_CLS_LKP_INDEX_REG, val);
379 	mvpp2_write(priv, MVPP2_CLS_LKP_TBL_REG, le->data);
380 }
381 
382 /* Operations on flow entry */
383 static int mvpp2_cls_flow_hek_num_get(struct mvpp2_cls_flow_entry *fe)
384 {
385 	return fe->data[1] & MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK;
386 }
387 
388 static void mvpp2_cls_flow_hek_num_set(struct mvpp2_cls_flow_entry *fe,
389 				       int num_of_fields)
390 {
391 	fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_N_FIELDS_MASK;
392 	fe->data[1] |= MVPP2_CLS_FLOW_TBL1_N_FIELDS(num_of_fields);
393 }
394 
395 static int mvpp2_cls_flow_hek_get(struct mvpp2_cls_flow_entry *fe,
396 				  int field_index)
397 {
398 	return (fe->data[2] >> MVPP2_CLS_FLOW_TBL2_FLD_OFFS(field_index)) &
399 		MVPP2_CLS_FLOW_TBL2_FLD_MASK;
400 }
401 
402 static void mvpp2_cls_flow_hek_set(struct mvpp2_cls_flow_entry *fe,
403 				   int field_index, int field_id)
404 {
405 	fe->data[2] &= ~MVPP2_CLS_FLOW_TBL2_FLD(field_index,
406 						MVPP2_CLS_FLOW_TBL2_FLD_MASK);
407 	fe->data[2] |= MVPP2_CLS_FLOW_TBL2_FLD(field_index, field_id);
408 }
409 
410 static void mvpp2_cls_flow_eng_set(struct mvpp2_cls_flow_entry *fe,
411 				   int engine)
412 {
413 	fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_ENG(MVPP2_CLS_FLOW_TBL0_ENG_MASK);
414 	fe->data[0] |= MVPP2_CLS_FLOW_TBL0_ENG(engine);
415 }
416 
417 int mvpp2_cls_flow_eng_get(struct mvpp2_cls_flow_entry *fe)
418 {
419 	return (fe->data[0] >> MVPP2_CLS_FLOW_TBL0_OFFS) &
420 		MVPP2_CLS_FLOW_TBL0_ENG_MASK;
421 }
422 
423 static void mvpp2_cls_flow_port_id_sel(struct mvpp2_cls_flow_entry *fe,
424 				       bool from_packet)
425 {
426 	if (from_packet)
427 		fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL;
428 	else
429 		fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID_SEL;
430 }
431 
432 static void mvpp2_cls_flow_last_set(struct mvpp2_cls_flow_entry *fe,
433 				    bool is_last)
434 {
435 	fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_LAST;
436 	fe->data[0] |= !!is_last;
437 }
438 
439 static void mvpp2_cls_flow_pri_set(struct mvpp2_cls_flow_entry *fe, int prio)
440 {
441 	fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_PRIO(MVPP2_CLS_FLOW_TBL1_PRIO_MASK);
442 	fe->data[1] |= MVPP2_CLS_FLOW_TBL1_PRIO(prio);
443 }
444 
445 static void mvpp2_cls_flow_port_add(struct mvpp2_cls_flow_entry *fe,
446 				    u32 port)
447 {
448 	fe->data[0] |= MVPP2_CLS_FLOW_TBL0_PORT_ID(port);
449 }
450 
451 static void mvpp2_cls_flow_port_remove(struct mvpp2_cls_flow_entry *fe,
452 				       u32 port)
453 {
454 	fe->data[0] &= ~MVPP2_CLS_FLOW_TBL0_PORT_ID(port);
455 }
456 
457 static void mvpp2_cls_flow_lu_type_set(struct mvpp2_cls_flow_entry *fe,
458 				       u8 lu_type)
459 {
460 	fe->data[1] &= ~MVPP2_CLS_FLOW_TBL1_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK);
461 	fe->data[1] |= MVPP2_CLS_FLOW_TBL1_LU_TYPE(lu_type);
462 }
463 
464 /* Initialize the parser entry for the given flow */
465 static void mvpp2_cls_flow_prs_init(struct mvpp2 *priv,
466 				    const struct mvpp2_cls_flow *flow)
467 {
468 	mvpp2_prs_add_flow(priv, flow->flow_id, flow->prs_ri.ri,
469 			   flow->prs_ri.ri_mask);
470 }
471 
472 /* Initialize the Lookup Id table entry for the given flow */
473 static void mvpp2_cls_flow_lkp_init(struct mvpp2 *priv,
474 				    const struct mvpp2_cls_flow *flow)
475 {
476 	struct mvpp2_cls_lookup_entry le;
477 
478 	le.way = 0;
479 	le.lkpid = flow->flow_id;
480 
481 	/* The default RxQ for this port is set in the C2 lookup */
482 	le.data = 0;
483 
484 	/* We point on the first lookup in the sequence for the flow, that is
485 	 * the C2 lookup.
486 	 */
487 	le.data |= MVPP2_CLS_LKP_FLOW_PTR(MVPP2_CLS_FLT_FIRST(flow->flow_id));
488 
489 	/* CLS is always enabled, RSS is enabled/disabled in C2 lookup */
490 	le.data |= MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
491 
492 	mvpp2_cls_lookup_write(priv, &le);
493 }
494 
495 static void mvpp2_cls_c2_write(struct mvpp2 *priv,
496 			       struct mvpp2_cls_c2_entry *c2)
497 {
498 	u32 val;
499 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2->index);
500 
501 	val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV);
502 	if (c2->valid)
503 		val &= ~MVPP22_CLS_C2_TCAM_INV_BIT;
504 	else
505 		val |= MVPP22_CLS_C2_TCAM_INV_BIT;
506 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_INV, val);
507 
508 	mvpp2_write(priv, MVPP22_CLS_C2_ACT, c2->act);
509 
510 	mvpp2_write(priv, MVPP22_CLS_C2_ATTR0, c2->attr[0]);
511 	mvpp2_write(priv, MVPP22_CLS_C2_ATTR1, c2->attr[1]);
512 	mvpp2_write(priv, MVPP22_CLS_C2_ATTR2, c2->attr[2]);
513 	mvpp2_write(priv, MVPP22_CLS_C2_ATTR3, c2->attr[3]);
514 
515 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA0, c2->tcam[0]);
516 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA1, c2->tcam[1]);
517 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA2, c2->tcam[2]);
518 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA3, c2->tcam[3]);
519 	/* Writing TCAM_DATA4 flushes writes to TCAM_DATA0-4 and INV to HW */
520 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_DATA4, c2->tcam[4]);
521 }
522 
523 void mvpp2_cls_c2_read(struct mvpp2 *priv, int index,
524 		       struct mvpp2_cls_c2_entry *c2)
525 {
526 	u32 val;
527 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, index);
528 
529 	c2->index = index;
530 
531 	c2->tcam[0] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA0);
532 	c2->tcam[1] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA1);
533 	c2->tcam[2] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA2);
534 	c2->tcam[3] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA3);
535 	c2->tcam[4] = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_DATA4);
536 
537 	c2->act = mvpp2_read(priv, MVPP22_CLS_C2_ACT);
538 
539 	c2->attr[0] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR0);
540 	c2->attr[1] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR1);
541 	c2->attr[2] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR2);
542 	c2->attr[3] = mvpp2_read(priv, MVPP22_CLS_C2_ATTR3);
543 
544 	val = mvpp2_read(priv, MVPP22_CLS_C2_TCAM_INV);
545 	c2->valid = !(val & MVPP22_CLS_C2_TCAM_INV_BIT);
546 }
547 
548 static int mvpp2_cls_ethtool_flow_to_type(int flow_type)
549 {
550 	switch (flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS)) {
551 	case TCP_V4_FLOW:
552 		return MVPP22_FLOW_TCP4;
553 	case TCP_V6_FLOW:
554 		return MVPP22_FLOW_TCP6;
555 	case UDP_V4_FLOW:
556 		return MVPP22_FLOW_UDP4;
557 	case UDP_V6_FLOW:
558 		return MVPP22_FLOW_UDP6;
559 	case IPV4_FLOW:
560 		return MVPP22_FLOW_IP4;
561 	case IPV6_FLOW:
562 		return MVPP22_FLOW_IP6;
563 	default:
564 		return -EOPNOTSUPP;
565 	}
566 }
567 
568 static int mvpp2_cls_c2_port_flow_index(struct mvpp2_port *port, int loc)
569 {
570 	return MVPP22_CLS_C2_RFS_LOC(port->id, loc);
571 }
572 
573 /* Initialize the flow table entries for the given flow */
574 static void mvpp2_cls_flow_init(struct mvpp2 *priv,
575 				const struct mvpp2_cls_flow *flow)
576 {
577 	struct mvpp2_cls_flow_entry fe;
578 	int i, pri = 0;
579 
580 	/* Assign default values to all entries in the flow */
581 	for (i = MVPP2_CLS_FLT_FIRST(flow->flow_id);
582 	     i <= MVPP2_CLS_FLT_LAST(flow->flow_id); i++) {
583 		memset(&fe, 0, sizeof(fe));
584 		fe.index = i;
585 		mvpp2_cls_flow_pri_set(&fe, pri++);
586 
587 		if (i == MVPP2_CLS_FLT_LAST(flow->flow_id))
588 			mvpp2_cls_flow_last_set(&fe, 1);
589 
590 		mvpp2_cls_flow_write(priv, &fe);
591 	}
592 
593 	/* RSS config C2 lookup */
594 	mvpp2_cls_flow_read(priv, MVPP2_CLS_FLT_C2_RSS_ENTRY(flow->flow_id),
595 			    &fe);
596 
597 	mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C2);
598 	mvpp2_cls_flow_port_id_sel(&fe, true);
599 	mvpp2_cls_flow_lu_type_set(&fe, MVPP22_CLS_LU_TYPE_ALL);
600 
601 	/* Add all ports */
602 	for (i = 0; i < MVPP2_MAX_PORTS; i++)
603 		mvpp2_cls_flow_port_add(&fe, BIT(i));
604 
605 	mvpp2_cls_flow_write(priv, &fe);
606 
607 	/* C3Hx lookups */
608 	for (i = 0; i < MVPP2_MAX_PORTS; i++) {
609 		mvpp2_cls_flow_read(priv,
610 				    MVPP2_CLS_FLT_HASH_ENTRY(i, flow->flow_id),
611 				    &fe);
612 
613 		/* Set a default engine. Will be overwritten when setting the
614 		 * real HEK parameters
615 		 */
616 		mvpp2_cls_flow_eng_set(&fe, MVPP22_CLS_ENGINE_C3HA);
617 		mvpp2_cls_flow_port_id_sel(&fe, true);
618 		mvpp2_cls_flow_port_add(&fe, BIT(i));
619 
620 		mvpp2_cls_flow_write(priv, &fe);
621 	}
622 }
623 
624 /* Adds a field to the Header Extracted Key generation parameters*/
625 static int mvpp2_flow_add_hek_field(struct mvpp2_cls_flow_entry *fe,
626 				    u32 field_id)
627 {
628 	int nb_fields = mvpp2_cls_flow_hek_num_get(fe);
629 
630 	if (nb_fields == MVPP2_FLOW_N_FIELDS)
631 		return -EINVAL;
632 
633 	mvpp2_cls_flow_hek_set(fe, nb_fields, field_id);
634 
635 	mvpp2_cls_flow_hek_num_set(fe, nb_fields + 1);
636 
637 	return 0;
638 }
639 
640 static int mvpp2_flow_set_hek_fields(struct mvpp2_cls_flow_entry *fe,
641 				     unsigned long hash_opts)
642 {
643 	u32 field_id;
644 	int i;
645 
646 	/* Clear old fields */
647 	mvpp2_cls_flow_hek_num_set(fe, 0);
648 	fe->data[2] = 0;
649 
650 	for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) {
651 		switch (BIT(i)) {
652 		case MVPP22_CLS_HEK_OPT_MAC_DA:
653 			field_id = MVPP22_CLS_FIELD_MAC_DA;
654 			break;
655 		case MVPP22_CLS_HEK_OPT_VLAN:
656 			field_id = MVPP22_CLS_FIELD_VLAN;
657 			break;
658 		case MVPP22_CLS_HEK_OPT_VLAN_PRI:
659 			field_id = MVPP22_CLS_FIELD_VLAN_PRI;
660 			break;
661 		case MVPP22_CLS_HEK_OPT_IP4SA:
662 			field_id = MVPP22_CLS_FIELD_IP4SA;
663 			break;
664 		case MVPP22_CLS_HEK_OPT_IP4DA:
665 			field_id = MVPP22_CLS_FIELD_IP4DA;
666 			break;
667 		case MVPP22_CLS_HEK_OPT_IP6SA:
668 			field_id = MVPP22_CLS_FIELD_IP6SA;
669 			break;
670 		case MVPP22_CLS_HEK_OPT_IP6DA:
671 			field_id = MVPP22_CLS_FIELD_IP6DA;
672 			break;
673 		case MVPP22_CLS_HEK_OPT_L4SIP:
674 			field_id = MVPP22_CLS_FIELD_L4SIP;
675 			break;
676 		case MVPP22_CLS_HEK_OPT_L4DIP:
677 			field_id = MVPP22_CLS_FIELD_L4DIP;
678 			break;
679 		default:
680 			return -EINVAL;
681 		}
682 		if (mvpp2_flow_add_hek_field(fe, field_id))
683 			return -EINVAL;
684 	}
685 
686 	return 0;
687 }
688 
689 /* Returns the size, in bits, of the corresponding HEK field */
690 static int mvpp2_cls_hek_field_size(u32 field)
691 {
692 	switch (field) {
693 	case MVPP22_CLS_HEK_OPT_MAC_DA:
694 		return 48;
695 	case MVPP22_CLS_HEK_OPT_VLAN:
696 		return 12;
697 	case MVPP22_CLS_HEK_OPT_VLAN_PRI:
698 		return 3;
699 	case MVPP22_CLS_HEK_OPT_IP4SA:
700 	case MVPP22_CLS_HEK_OPT_IP4DA:
701 		return 32;
702 	case MVPP22_CLS_HEK_OPT_IP6SA:
703 	case MVPP22_CLS_HEK_OPT_IP6DA:
704 		return 128;
705 	case MVPP22_CLS_HEK_OPT_L4SIP:
706 	case MVPP22_CLS_HEK_OPT_L4DIP:
707 		return 16;
708 	default:
709 		return -1;
710 	}
711 }
712 
713 const struct mvpp2_cls_flow *mvpp2_cls_flow_get(int flow)
714 {
715 	if (flow >= MVPP2_N_PRS_FLOWS)
716 		return NULL;
717 
718 	return &cls_flows[flow];
719 }
720 
721 /* Set the hash generation options for the given traffic flow.
722  * One traffic flow (in the ethtool sense) has multiple classification flows,
723  * to handle specific cases such as fragmentation, or the presence of a
724  * VLAN / DSA Tag.
725  *
726  * Each of these individual flows has different constraints, for example we
727  * can't hash fragmented packets on L4 data (else we would risk having packet
728  * re-ordering), so each classification flows masks the options with their
729  * supported ones.
730  *
731  */
732 static int mvpp2_port_rss_hash_opts_set(struct mvpp2_port *port, int flow_type,
733 					u16 requested_opts)
734 {
735 	const struct mvpp2_cls_flow *flow;
736 	struct mvpp2_cls_flow_entry fe;
737 	int i, engine, flow_index;
738 	u16 hash_opts;
739 
740 	for_each_cls_flow_id_with_type(i, flow_type) {
741 		flow = mvpp2_cls_flow_get(i);
742 		if (!flow)
743 			return -EINVAL;
744 
745 		flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id);
746 
747 		mvpp2_cls_flow_read(port->priv, flow_index, &fe);
748 
749 		hash_opts = flow->supported_hash_opts & requested_opts;
750 
751 		/* Use C3HB engine to access L4 infos. This adds L4 infos to the
752 		 * hash parameters
753 		 */
754 		if (hash_opts & MVPP22_CLS_HEK_L4_OPTS)
755 			engine = MVPP22_CLS_ENGINE_C3HB;
756 		else
757 			engine = MVPP22_CLS_ENGINE_C3HA;
758 
759 		if (mvpp2_flow_set_hek_fields(&fe, hash_opts))
760 			return -EINVAL;
761 
762 		mvpp2_cls_flow_eng_set(&fe, engine);
763 
764 		mvpp2_cls_flow_write(port->priv, &fe);
765 	}
766 
767 	return 0;
768 }
769 
770 u16 mvpp2_flow_get_hek_fields(struct mvpp2_cls_flow_entry *fe)
771 {
772 	u16 hash_opts = 0;
773 	int n_fields, i, field;
774 
775 	n_fields = mvpp2_cls_flow_hek_num_get(fe);
776 
777 	for (i = 0; i < n_fields; i++) {
778 		field = mvpp2_cls_flow_hek_get(fe, i);
779 
780 		switch (field) {
781 		case MVPP22_CLS_FIELD_MAC_DA:
782 			hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA;
783 			break;
784 		case MVPP22_CLS_FIELD_VLAN:
785 			hash_opts |= MVPP22_CLS_HEK_OPT_VLAN;
786 			break;
787 		case MVPP22_CLS_FIELD_VLAN_PRI:
788 			hash_opts |= MVPP22_CLS_HEK_OPT_VLAN_PRI;
789 			break;
790 		case MVPP22_CLS_FIELD_L3_PROTO:
791 			hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO;
792 			break;
793 		case MVPP22_CLS_FIELD_IP4SA:
794 			hash_opts |= MVPP22_CLS_HEK_OPT_IP4SA;
795 			break;
796 		case MVPP22_CLS_FIELD_IP4DA:
797 			hash_opts |= MVPP22_CLS_HEK_OPT_IP4DA;
798 			break;
799 		case MVPP22_CLS_FIELD_IP6SA:
800 			hash_opts |= MVPP22_CLS_HEK_OPT_IP6SA;
801 			break;
802 		case MVPP22_CLS_FIELD_IP6DA:
803 			hash_opts |= MVPP22_CLS_HEK_OPT_IP6DA;
804 			break;
805 		case MVPP22_CLS_FIELD_L4SIP:
806 			hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP;
807 			break;
808 		case MVPP22_CLS_FIELD_L4DIP:
809 			hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP;
810 			break;
811 		default:
812 			break;
813 		}
814 	}
815 	return hash_opts;
816 }
817 
818 /* Returns the hash opts for this flow. There are several classifier flows
819  * for one traffic flow, this returns an aggregation of all configurations.
820  */
821 static u16 mvpp2_port_rss_hash_opts_get(struct mvpp2_port *port, int flow_type)
822 {
823 	const struct mvpp2_cls_flow *flow;
824 	struct mvpp2_cls_flow_entry fe;
825 	int i, flow_index;
826 	u16 hash_opts = 0;
827 
828 	for_each_cls_flow_id_with_type(i, flow_type) {
829 		flow = mvpp2_cls_flow_get(i);
830 		if (!flow)
831 			return 0;
832 
833 		flow_index = MVPP2_CLS_FLT_HASH_ENTRY(port->id, flow->flow_id);
834 
835 		mvpp2_cls_flow_read(port->priv, flow_index, &fe);
836 
837 		hash_opts |= mvpp2_flow_get_hek_fields(&fe);
838 	}
839 
840 	return hash_opts;
841 }
842 
843 static void mvpp2_cls_port_init_flows(struct mvpp2 *priv)
844 {
845 	const struct mvpp2_cls_flow *flow;
846 	int i;
847 
848 	for (i = 0; i < MVPP2_N_PRS_FLOWS; i++) {
849 		flow = mvpp2_cls_flow_get(i);
850 		if (!flow)
851 			break;
852 
853 		mvpp2_cls_flow_prs_init(priv, flow);
854 		mvpp2_cls_flow_lkp_init(priv, flow);
855 		mvpp2_cls_flow_init(priv, flow);
856 	}
857 }
858 
859 static void mvpp2_port_c2_cls_init(struct mvpp2_port *port)
860 {
861 	struct mvpp2_cls_c2_entry c2;
862 	u8 qh, ql, pmap;
863 
864 	memset(&c2, 0, sizeof(c2));
865 
866 	c2.index = MVPP22_CLS_C2_RSS_ENTRY(port->id);
867 
868 	pmap = BIT(port->id);
869 	c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap);
870 	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap));
871 
872 	/* Match on Lookup Type */
873 	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK));
874 	c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(MVPP22_CLS_LU_TYPE_ALL);
875 
876 	/* Update RSS status after matching this entry */
877 	c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK);
878 
879 	/* Mark packet as "forwarded to software", needed for RSS */
880 	c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK);
881 
882 	/* Configure the default rx queue : Update Queue Low and Queue High, but
883 	 * don't lock, since the rx queue selection might be overridden by RSS
884 	 */
885 	c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD) |
886 		   MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD);
887 
888 	qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
889 	ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
890 
891 	c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
892 		      MVPP22_CLS_C2_ATTR0_QLOW(ql);
893 
894 	c2.valid = true;
895 
896 	mvpp2_cls_c2_write(port->priv, &c2);
897 }
898 
899 /* Classifier default initialization */
900 void mvpp2_cls_init(struct mvpp2 *priv)
901 {
902 	struct mvpp2_cls_lookup_entry le;
903 	struct mvpp2_cls_flow_entry fe;
904 	struct mvpp2_cls_c2_entry c2;
905 	int index;
906 
907 	/* Enable classifier */
908 	mvpp2_write(priv, MVPP2_CLS_MODE_REG, MVPP2_CLS_MODE_ACTIVE_MASK);
909 
910 	/* Clear classifier flow table */
911 	memset(&fe.data, 0, sizeof(fe.data));
912 	for (index = 0; index < MVPP2_CLS_FLOWS_TBL_SIZE; index++) {
913 		fe.index = index;
914 		mvpp2_cls_flow_write(priv, &fe);
915 	}
916 
917 	/* Clear classifier lookup table */
918 	le.data = 0;
919 	for (index = 0; index < MVPP2_CLS_LKP_TBL_SIZE; index++) {
920 		le.lkpid = index;
921 		le.way = 0;
922 		mvpp2_cls_lookup_write(priv, &le);
923 
924 		le.way = 1;
925 		mvpp2_cls_lookup_write(priv, &le);
926 	}
927 
928 	/* Clear C2 TCAM engine table */
929 	memset(&c2, 0, sizeof(c2));
930 	c2.valid = false;
931 	for (index = 0; index < MVPP22_CLS_C2_N_ENTRIES; index++) {
932 		c2.index = index;
933 		mvpp2_cls_c2_write(priv, &c2);
934 	}
935 
936 	/* Disable the FIFO stages in C2 engine, which are only used in BIST
937 	 * mode
938 	 */
939 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_CTRL,
940 		    MVPP22_CLS_C2_TCAM_BYPASS_FIFO);
941 
942 	mvpp2_cls_port_init_flows(priv);
943 }
944 
945 void mvpp2_cls_port_config(struct mvpp2_port *port)
946 {
947 	struct mvpp2_cls_lookup_entry le;
948 	u32 val;
949 
950 	/* Set way for the port */
951 	val = mvpp2_read(port->priv, MVPP2_CLS_PORT_WAY_REG);
952 	val &= ~MVPP2_CLS_PORT_WAY_MASK(port->id);
953 	mvpp2_write(port->priv, MVPP2_CLS_PORT_WAY_REG, val);
954 
955 	/* Pick the entry to be accessed in lookup ID decoding table
956 	 * according to the way and lkpid.
957 	 */
958 	le.lkpid = port->id;
959 	le.way = 0;
960 	le.data = 0;
961 
962 	/* Set initial CPU queue for receiving packets */
963 	le.data &= ~MVPP2_CLS_LKP_TBL_RXQ_MASK;
964 	le.data |= port->first_rxq;
965 
966 	/* Disable classification engines */
967 	le.data &= ~MVPP2_CLS_LKP_TBL_LOOKUP_EN_MASK;
968 
969 	/* Update lookup ID table entry */
970 	mvpp2_cls_lookup_write(port->priv, &le);
971 
972 	mvpp2_port_c2_cls_init(port);
973 }
974 
975 u32 mvpp2_cls_c2_hit_count(struct mvpp2 *priv, int c2_index)
976 {
977 	mvpp2_write(priv, MVPP22_CLS_C2_TCAM_IDX, c2_index);
978 
979 	return mvpp2_read(priv, MVPP22_CLS_C2_HIT_CTR);
980 }
981 
982 static void mvpp2_rss_port_c2_enable(struct mvpp2_port *port, u32 ctx)
983 {
984 	struct mvpp2_cls_c2_entry c2;
985 	u8 qh, ql;
986 
987 	mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2);
988 
989 	/* The RxQ number is used to select the RSS table. It that case, we set
990 	 * it to be the ctx number.
991 	 */
992 	qh = (ctx >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
993 	ql = ctx & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
994 
995 	c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
996 		     MVPP22_CLS_C2_ATTR0_QLOW(ql);
997 
998 	c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN;
999 
1000 	mvpp2_cls_c2_write(port->priv, &c2);
1001 }
1002 
1003 static void mvpp2_rss_port_c2_disable(struct mvpp2_port *port)
1004 {
1005 	struct mvpp2_cls_c2_entry c2;
1006 	u8 qh, ql;
1007 
1008 	mvpp2_cls_c2_read(port->priv, MVPP22_CLS_C2_RSS_ENTRY(port->id), &c2);
1009 
1010 	/* Reset the default destination RxQ to the port's first rx queue. */
1011 	qh = (port->first_rxq >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
1012 	ql = port->first_rxq & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
1013 
1014 	c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
1015 		      MVPP22_CLS_C2_ATTR0_QLOW(ql);
1016 
1017 	c2.attr[2] &= ~MVPP22_CLS_C2_ATTR2_RSS_EN;
1018 
1019 	mvpp2_cls_c2_write(port->priv, &c2);
1020 }
1021 
1022 static inline int mvpp22_rss_ctx(struct mvpp2_port *port, int port_rss_ctx)
1023 {
1024 	return port->rss_ctx[port_rss_ctx];
1025 }
1026 
1027 int mvpp22_port_rss_enable(struct mvpp2_port *port)
1028 {
1029 	if (mvpp22_rss_ctx(port, 0) < 0)
1030 		return -EINVAL;
1031 
1032 	mvpp2_rss_port_c2_enable(port, mvpp22_rss_ctx(port, 0));
1033 
1034 	return 0;
1035 }
1036 
1037 int mvpp22_port_rss_disable(struct mvpp2_port *port)
1038 {
1039 	if (mvpp22_rss_ctx(port, 0) < 0)
1040 		return -EINVAL;
1041 
1042 	mvpp2_rss_port_c2_disable(port);
1043 
1044 	return 0;
1045 }
1046 
1047 static void mvpp22_port_c2_lookup_disable(struct mvpp2_port *port, int entry)
1048 {
1049 	struct mvpp2_cls_c2_entry c2;
1050 
1051 	mvpp2_cls_c2_read(port->priv, entry, &c2);
1052 
1053 	/* Clear the port map so that the entry doesn't match anymore */
1054 	c2.tcam[4] &= ~(MVPP22_CLS_C2_PORT_ID(BIT(port->id)));
1055 
1056 	mvpp2_cls_c2_write(port->priv, &c2);
1057 }
1058 
1059 /* Set CPU queue number for oversize packets */
1060 void mvpp2_cls_oversize_rxq_set(struct mvpp2_port *port)
1061 {
1062 	u32 val;
1063 
1064 	mvpp2_write(port->priv, MVPP2_CLS_OVERSIZE_RXQ_LOW_REG(port->id),
1065 		    port->first_rxq & MVPP2_CLS_OVERSIZE_RXQ_LOW_MASK);
1066 
1067 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_P2HQ_REG(port->id),
1068 		    (port->first_rxq >> MVPP2_CLS_OVERSIZE_RXQ_LOW_BITS));
1069 
1070 	val = mvpp2_read(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG);
1071 	val |= MVPP2_CLS_SWFWD_PCTRL_MASK(port->id);
1072 	mvpp2_write(port->priv, MVPP2_CLS_SWFWD_PCTRL_REG, val);
1073 }
1074 
1075 static int mvpp2_port_c2_tcam_rule_add(struct mvpp2_port *port,
1076 				       struct mvpp2_rfs_rule *rule)
1077 {
1078 	struct flow_action_entry *act;
1079 	struct mvpp2_cls_c2_entry c2;
1080 	u8 qh, ql, pmap;
1081 	int index, ctx;
1082 
1083 	memset(&c2, 0, sizeof(c2));
1084 
1085 	index = mvpp2_cls_c2_port_flow_index(port, rule->loc);
1086 	if (index < 0)
1087 		return -EINVAL;
1088 	c2.index = index;
1089 
1090 	act = &rule->flow->action.entries[0];
1091 
1092 	rule->c2_index = c2.index;
1093 
1094 	c2.tcam[3] = (rule->c2_tcam & 0xffff) |
1095 		     ((rule->c2_tcam_mask & 0xffff) << 16);
1096 	c2.tcam[2] = ((rule->c2_tcam >> 16) & 0xffff) |
1097 		     (((rule->c2_tcam_mask >> 16) & 0xffff) << 16);
1098 	c2.tcam[1] = ((rule->c2_tcam >> 32) & 0xffff) |
1099 		     (((rule->c2_tcam_mask >> 32) & 0xffff) << 16);
1100 	c2.tcam[0] = ((rule->c2_tcam >> 48) & 0xffff) |
1101 		     (((rule->c2_tcam_mask >> 48) & 0xffff) << 16);
1102 
1103 	pmap = BIT(port->id);
1104 	c2.tcam[4] = MVPP22_CLS_C2_PORT_ID(pmap);
1105 	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_PORT_ID(pmap));
1106 
1107 	/* Match on Lookup Type */
1108 	c2.tcam[4] |= MVPP22_CLS_C2_TCAM_EN(MVPP22_CLS_C2_LU_TYPE(MVPP2_CLS_LU_TYPE_MASK));
1109 	c2.tcam[4] |= MVPP22_CLS_C2_LU_TYPE(rule->loc);
1110 
1111 	if (act->id == FLOW_ACTION_DROP) {
1112 		c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_RED_LOCK);
1113 	} else {
1114 		/* We want to keep the default color derived from the Header
1115 		 * Parser drop entries, for VLAN and MAC filtering. This will
1116 		 * assign a default color of Green or Red, and we want matches
1117 		 * with a non-drop action to keep that color.
1118 		 */
1119 		c2.act = MVPP22_CLS_C2_ACT_COLOR(MVPP22_C2_COL_NO_UPD_LOCK);
1120 
1121 		/* Update RSS status after matching this entry */
1122 		if (act->queue.ctx)
1123 			c2.attr[2] |= MVPP22_CLS_C2_ATTR2_RSS_EN;
1124 
1125 		/* Always lock the RSS_EN decision. We might have high prio
1126 		 * rules steering to an RXQ, and a lower one steering to RSS,
1127 		 * we don't want the low prio RSS rule overwriting this flag.
1128 		 */
1129 		c2.act = MVPP22_CLS_C2_ACT_RSS_EN(MVPP22_C2_UPD_LOCK);
1130 
1131 		/* Mark packet as "forwarded to software", needed for RSS */
1132 		c2.act |= MVPP22_CLS_C2_ACT_FWD(MVPP22_C2_FWD_SW_LOCK);
1133 
1134 		c2.act |= MVPP22_CLS_C2_ACT_QHIGH(MVPP22_C2_UPD_LOCK) |
1135 			   MVPP22_CLS_C2_ACT_QLOW(MVPP22_C2_UPD_LOCK);
1136 
1137 		if (act->queue.ctx) {
1138 			/* Get the global ctx number */
1139 			ctx = mvpp22_rss_ctx(port, act->queue.ctx);
1140 			if (ctx < 0)
1141 				return -EINVAL;
1142 
1143 			qh = (ctx >> 3) & MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
1144 			ql = ctx & MVPP22_CLS_C2_ATTR0_QLOW_MASK;
1145 		} else {
1146 			qh = ((act->queue.index + port->first_rxq) >> 3) &
1147 			      MVPP22_CLS_C2_ATTR0_QHIGH_MASK;
1148 			ql = (act->queue.index + port->first_rxq) &
1149 			      MVPP22_CLS_C2_ATTR0_QLOW_MASK;
1150 		}
1151 
1152 		c2.attr[0] = MVPP22_CLS_C2_ATTR0_QHIGH(qh) |
1153 			      MVPP22_CLS_C2_ATTR0_QLOW(ql);
1154 	}
1155 
1156 	c2.valid = true;
1157 
1158 	mvpp2_cls_c2_write(port->priv, &c2);
1159 
1160 	return 0;
1161 }
1162 
1163 static int mvpp2_port_c2_rfs_rule_insert(struct mvpp2_port *port,
1164 					 struct mvpp2_rfs_rule *rule)
1165 {
1166 	return mvpp2_port_c2_tcam_rule_add(port, rule);
1167 }
1168 
1169 static int mvpp2_port_cls_rfs_rule_remove(struct mvpp2_port *port,
1170 					  struct mvpp2_rfs_rule *rule)
1171 {
1172 	const struct mvpp2_cls_flow *flow;
1173 	struct mvpp2_cls_flow_entry fe;
1174 	int index, i;
1175 
1176 	for_each_cls_flow_id_containing_type(i, rule->flow_type) {
1177 		flow = mvpp2_cls_flow_get(i);
1178 		if (!flow)
1179 			return 0;
1180 
1181 		index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc);
1182 
1183 		mvpp2_cls_flow_read(port->priv, index, &fe);
1184 		mvpp2_cls_flow_port_remove(&fe, BIT(port->id));
1185 		mvpp2_cls_flow_write(port->priv, &fe);
1186 	}
1187 
1188 	if (rule->c2_index >= 0)
1189 		mvpp22_port_c2_lookup_disable(port, rule->c2_index);
1190 
1191 	return 0;
1192 }
1193 
1194 static int mvpp2_port_flt_rfs_rule_insert(struct mvpp2_port *port,
1195 					  struct mvpp2_rfs_rule *rule)
1196 {
1197 	const struct mvpp2_cls_flow *flow;
1198 	struct mvpp2 *priv = port->priv;
1199 	struct mvpp2_cls_flow_entry fe;
1200 	int index, ret, i;
1201 
1202 	if (rule->engine != MVPP22_CLS_ENGINE_C2)
1203 		return -EOPNOTSUPP;
1204 
1205 	ret = mvpp2_port_c2_rfs_rule_insert(port, rule);
1206 	if (ret)
1207 		return ret;
1208 
1209 	for_each_cls_flow_id_containing_type(i, rule->flow_type) {
1210 		flow = mvpp2_cls_flow_get(i);
1211 		if (!flow)
1212 			return 0;
1213 
1214 		if ((rule->hek_fields & flow->supported_hash_opts) != rule->hek_fields)
1215 			continue;
1216 
1217 		index = MVPP2_CLS_FLT_C2_RFS(port->id, flow->flow_id, rule->loc);
1218 
1219 		mvpp2_cls_flow_read(priv, index, &fe);
1220 		mvpp2_cls_flow_eng_set(&fe, rule->engine);
1221 		mvpp2_cls_flow_port_id_sel(&fe, true);
1222 		mvpp2_flow_set_hek_fields(&fe, rule->hek_fields);
1223 		mvpp2_cls_flow_lu_type_set(&fe, rule->loc);
1224 		mvpp2_cls_flow_port_add(&fe, 0xf);
1225 
1226 		mvpp2_cls_flow_write(priv, &fe);
1227 	}
1228 
1229 	return 0;
1230 }
1231 
1232 static int mvpp2_cls_c2_build_match(struct mvpp2_rfs_rule *rule)
1233 {
1234 	struct flow_rule *flow = rule->flow;
1235 	int offs = 0;
1236 
1237 	/* The order of insertion in C2 tcam must match the order in which
1238 	 * the fields are found in the header
1239 	 */
1240 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_VLAN)) {
1241 		struct flow_match_vlan match;
1242 
1243 		flow_rule_match_vlan(flow, &match);
1244 		if (match.mask->vlan_id) {
1245 			rule->hek_fields |= MVPP22_CLS_HEK_OPT_VLAN;
1246 
1247 			rule->c2_tcam |= ((u64)match.key->vlan_id) << offs;
1248 			rule->c2_tcam_mask |= ((u64)match.mask->vlan_id) << offs;
1249 
1250 			/* Don't update the offset yet */
1251 		}
1252 
1253 		if (match.mask->vlan_priority) {
1254 			rule->hek_fields |= MVPP22_CLS_HEK_OPT_VLAN_PRI;
1255 
1256 			/* VLAN pri is always at offset 13 relative to the
1257 			 * current offset
1258 			 */
1259 			rule->c2_tcam |= ((u64)match.key->vlan_priority) <<
1260 				(offs + 13);
1261 			rule->c2_tcam_mask |= ((u64)match.mask->vlan_priority) <<
1262 				(offs + 13);
1263 		}
1264 
1265 		if (match.mask->vlan_dei)
1266 			return -EOPNOTSUPP;
1267 
1268 		/* vlan id and prio always seem to take a full 16-bit slot in
1269 		 * the Header Extracted Key.
1270 		 */
1271 		offs += 16;
1272 	}
1273 
1274 	if (flow_rule_match_key(flow, FLOW_DISSECTOR_KEY_PORTS)) {
1275 		struct flow_match_ports match;
1276 
1277 		flow_rule_match_ports(flow, &match);
1278 		if (match.mask->src) {
1279 			rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4SIP;
1280 
1281 			rule->c2_tcam |= ((u64)ntohs(match.key->src)) << offs;
1282 			rule->c2_tcam_mask |= ((u64)ntohs(match.mask->src)) << offs;
1283 			offs += mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4SIP);
1284 		}
1285 
1286 		if (match.mask->dst) {
1287 			rule->hek_fields |= MVPP22_CLS_HEK_OPT_L4DIP;
1288 
1289 			rule->c2_tcam |= ((u64)ntohs(match.key->dst)) << offs;
1290 			rule->c2_tcam_mask |= ((u64)ntohs(match.mask->dst)) << offs;
1291 			offs += mvpp2_cls_hek_field_size(MVPP22_CLS_HEK_OPT_L4DIP);
1292 		}
1293 	}
1294 
1295 	if (hweight16(rule->hek_fields) > MVPP2_FLOW_N_FIELDS)
1296 		return -EOPNOTSUPP;
1297 
1298 	return 0;
1299 }
1300 
1301 static int mvpp2_cls_rfs_parse_rule(struct mvpp2_rfs_rule *rule)
1302 {
1303 	struct flow_rule *flow = rule->flow;
1304 	struct flow_action_entry *act;
1305 
1306 	act = &flow->action.entries[0];
1307 	if (act->id != FLOW_ACTION_QUEUE && act->id != FLOW_ACTION_DROP)
1308 		return -EOPNOTSUPP;
1309 
1310 	/* When both an RSS context and an queue index are set, the index
1311 	 * is considered as an offset to be added to the indirection table
1312 	 * entries. We don't support this, so reject this rule.
1313 	 */
1314 	if (act->queue.ctx && act->queue.index)
1315 		return -EOPNOTSUPP;
1316 
1317 	/* For now, only use the C2 engine which has a HEK size limited to 64
1318 	 * bits for TCAM matching.
1319 	 */
1320 	rule->engine = MVPP22_CLS_ENGINE_C2;
1321 
1322 	if (mvpp2_cls_c2_build_match(rule))
1323 		return -EINVAL;
1324 
1325 	return 0;
1326 }
1327 
1328 int mvpp2_ethtool_cls_rule_get(struct mvpp2_port *port,
1329 			       struct ethtool_rxnfc *rxnfc)
1330 {
1331 	struct mvpp2_ethtool_fs *efs;
1332 
1333 	if (rxnfc->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
1334 		return -EINVAL;
1335 
1336 	efs = port->rfs_rules[rxnfc->fs.location];
1337 	if (!efs)
1338 		return -ENOENT;
1339 
1340 	memcpy(rxnfc, &efs->rxnfc, sizeof(efs->rxnfc));
1341 
1342 	return 0;
1343 }
1344 
1345 int mvpp2_ethtool_cls_rule_ins(struct mvpp2_port *port,
1346 			       struct ethtool_rxnfc *info)
1347 {
1348 	struct ethtool_rx_flow_spec_input input = {};
1349 	struct ethtool_rx_flow_rule *ethtool_rule;
1350 	struct mvpp2_ethtool_fs *efs, *old_efs;
1351 	int ret = 0;
1352 
1353 	if (info->fs.location >= MVPP2_N_RFS_ENTRIES_PER_FLOW)
1354 		return -EINVAL;
1355 
1356 	efs = kzalloc(sizeof(*efs), GFP_KERNEL);
1357 	if (!efs)
1358 		return -ENOMEM;
1359 
1360 	input.fs = &info->fs;
1361 
1362 	/* We need to manually set the rss_ctx, since this info isn't present
1363 	 * in info->fs
1364 	 */
1365 	if (info->fs.flow_type & FLOW_RSS)
1366 		input.rss_ctx = info->rss_context;
1367 
1368 	ethtool_rule = ethtool_rx_flow_rule_create(&input);
1369 	if (IS_ERR(ethtool_rule)) {
1370 		ret = PTR_ERR(ethtool_rule);
1371 		goto clean_rule;
1372 	}
1373 
1374 	efs->rule.flow = ethtool_rule->rule;
1375 	efs->rule.flow_type = mvpp2_cls_ethtool_flow_to_type(info->fs.flow_type);
1376 
1377 	ret = mvpp2_cls_rfs_parse_rule(&efs->rule);
1378 	if (ret)
1379 		goto clean_eth_rule;
1380 
1381 	efs->rule.loc = info->fs.location;
1382 
1383 	/* Replace an already existing rule */
1384 	if (port->rfs_rules[efs->rule.loc]) {
1385 		old_efs = port->rfs_rules[efs->rule.loc];
1386 		ret = mvpp2_port_cls_rfs_rule_remove(port, &old_efs->rule);
1387 		if (ret)
1388 			goto clean_eth_rule;
1389 		kfree(old_efs);
1390 		port->n_rfs_rules--;
1391 	}
1392 
1393 	ret = mvpp2_port_flt_rfs_rule_insert(port, &efs->rule);
1394 	if (ret)
1395 		goto clean_eth_rule;
1396 
1397 	ethtool_rx_flow_rule_destroy(ethtool_rule);
1398 	efs->rule.flow = NULL;
1399 
1400 	memcpy(&efs->rxnfc, info, sizeof(*info));
1401 	port->rfs_rules[efs->rule.loc] = efs;
1402 	port->n_rfs_rules++;
1403 
1404 	return ret;
1405 
1406 clean_eth_rule:
1407 	ethtool_rx_flow_rule_destroy(ethtool_rule);
1408 clean_rule:
1409 	kfree(efs);
1410 	return ret;
1411 }
1412 
1413 int mvpp2_ethtool_cls_rule_del(struct mvpp2_port *port,
1414 			       struct ethtool_rxnfc *info)
1415 {
1416 	struct mvpp2_ethtool_fs *efs;
1417 	int ret;
1418 
1419 	efs = port->rfs_rules[info->fs.location];
1420 	if (!efs)
1421 		return -EINVAL;
1422 
1423 	/* Remove the rule from the engines. */
1424 	ret = mvpp2_port_cls_rfs_rule_remove(port, &efs->rule);
1425 	if (ret)
1426 		return ret;
1427 
1428 	port->n_rfs_rules--;
1429 	port->rfs_rules[info->fs.location] = NULL;
1430 	kfree(efs);
1431 
1432 	return 0;
1433 }
1434 
1435 static inline u32 mvpp22_rxfh_indir(struct mvpp2_port *port, u32 rxq)
1436 {
1437 	int nrxqs, cpu, cpus = num_possible_cpus();
1438 
1439 	/* Number of RXQs per CPU */
1440 	nrxqs = port->nrxqs / cpus;
1441 
1442 	/* CPU that will handle this rx queue */
1443 	cpu = rxq / nrxqs;
1444 
1445 	if (!cpu_online(cpu))
1446 		return port->first_rxq;
1447 
1448 	/* Indirection to better distribute the paquets on the CPUs when
1449 	 * configuring the RSS queues.
1450 	 */
1451 	return port->first_rxq + ((rxq * nrxqs + rxq / cpus) % port->nrxqs);
1452 }
1453 
1454 static void mvpp22_rss_fill_table(struct mvpp2_port *port,
1455 				  struct mvpp2_rss_table *table,
1456 				  u32 rss_ctx)
1457 {
1458 	struct mvpp2 *priv = port->priv;
1459 	int i;
1460 
1461 	for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++) {
1462 		u32 sel = MVPP22_RSS_INDEX_TABLE(rss_ctx) |
1463 			  MVPP22_RSS_INDEX_TABLE_ENTRY(i);
1464 		mvpp2_write(priv, MVPP22_RSS_INDEX, sel);
1465 
1466 		mvpp2_write(priv, MVPP22_RSS_TABLE_ENTRY,
1467 			    mvpp22_rxfh_indir(port, table->indir[i]));
1468 	}
1469 }
1470 
1471 static int mvpp22_rss_context_create(struct mvpp2_port *port, u32 *rss_ctx)
1472 {
1473 	struct mvpp2 *priv = port->priv;
1474 	u32 ctx;
1475 
1476 	/* Find the first free RSS table */
1477 	for (ctx = 0; ctx < MVPP22_N_RSS_TABLES; ctx++) {
1478 		if (!priv->rss_tables[ctx])
1479 			break;
1480 	}
1481 
1482 	if (ctx == MVPP22_N_RSS_TABLES)
1483 		return -EINVAL;
1484 
1485 	priv->rss_tables[ctx] = kzalloc(sizeof(*priv->rss_tables[ctx]),
1486 					GFP_KERNEL);
1487 	if (!priv->rss_tables[ctx])
1488 		return -ENOMEM;
1489 
1490 	*rss_ctx = ctx;
1491 
1492 	/* Set the table width: replace the whole classifier Rx queue number
1493 	 * with the ones configured in RSS table entries.
1494 	 */
1495 	mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_TABLE(ctx));
1496 	mvpp2_write(priv, MVPP22_RSS_WIDTH, 8);
1497 
1498 	mvpp2_write(priv, MVPP22_RSS_INDEX, MVPP22_RSS_INDEX_QUEUE(ctx));
1499 	mvpp2_write(priv, MVPP22_RXQ2RSS_TABLE, MVPP22_RSS_TABLE_POINTER(ctx));
1500 
1501 	return 0;
1502 }
1503 
1504 int mvpp22_port_rss_ctx_create(struct mvpp2_port *port, u32 *port_ctx)
1505 {
1506 	u32 rss_ctx;
1507 	int ret, i;
1508 
1509 	ret = mvpp22_rss_context_create(port, &rss_ctx);
1510 	if (ret)
1511 		return ret;
1512 
1513 	/* Find the first available context number in the port, starting from 1.
1514 	 * Context 0 on each port is reserved for the default context.
1515 	 */
1516 	for (i = 1; i < MVPP22_N_RSS_TABLES; i++) {
1517 		if (port->rss_ctx[i] < 0)
1518 			break;
1519 	}
1520 
1521 	if (i == MVPP22_N_RSS_TABLES)
1522 		return -EINVAL;
1523 
1524 	port->rss_ctx[i] = rss_ctx;
1525 	*port_ctx = i;
1526 
1527 	return 0;
1528 }
1529 
1530 static struct mvpp2_rss_table *mvpp22_rss_table_get(struct mvpp2 *priv,
1531 						    int rss_ctx)
1532 {
1533 	if (rss_ctx < 0 || rss_ctx >= MVPP22_N_RSS_TABLES)
1534 		return NULL;
1535 
1536 	return priv->rss_tables[rss_ctx];
1537 }
1538 
1539 int mvpp22_port_rss_ctx_delete(struct mvpp2_port *port, u32 port_ctx)
1540 {
1541 	struct mvpp2 *priv = port->priv;
1542 	struct ethtool_rxnfc *rxnfc;
1543 	int i, rss_ctx, ret;
1544 
1545 	rss_ctx = mvpp22_rss_ctx(port, port_ctx);
1546 
1547 	if (rss_ctx < 0 || rss_ctx >= MVPP22_N_RSS_TABLES)
1548 		return -EINVAL;
1549 
1550 	/* Invalidate any active classification rule that use this context */
1551 	for (i = 0; i < MVPP2_N_RFS_ENTRIES_PER_FLOW; i++) {
1552 		if (!port->rfs_rules[i])
1553 			continue;
1554 
1555 		rxnfc = &port->rfs_rules[i]->rxnfc;
1556 		if (!(rxnfc->fs.flow_type & FLOW_RSS) ||
1557 		    rxnfc->rss_context != port_ctx)
1558 			continue;
1559 
1560 		ret = mvpp2_ethtool_cls_rule_del(port, rxnfc);
1561 		if (ret) {
1562 			netdev_warn(port->dev,
1563 				    "couldn't remove classification rule %d associated to this context",
1564 				    rxnfc->fs.location);
1565 		}
1566 	}
1567 
1568 	kfree(priv->rss_tables[rss_ctx]);
1569 
1570 	priv->rss_tables[rss_ctx] = NULL;
1571 	port->rss_ctx[port_ctx] = -1;
1572 
1573 	return 0;
1574 }
1575 
1576 int mvpp22_port_rss_ctx_indir_set(struct mvpp2_port *port, u32 port_ctx,
1577 				  const u32 *indir)
1578 {
1579 	int rss_ctx = mvpp22_rss_ctx(port, port_ctx);
1580 	struct mvpp2_rss_table *rss_table = mvpp22_rss_table_get(port->priv,
1581 								 rss_ctx);
1582 
1583 	if (!rss_table)
1584 		return -EINVAL;
1585 
1586 	memcpy(rss_table->indir, indir,
1587 	       MVPP22_RSS_TABLE_ENTRIES * sizeof(rss_table->indir[0]));
1588 
1589 	mvpp22_rss_fill_table(port, rss_table, rss_ctx);
1590 
1591 	return 0;
1592 }
1593 
1594 int mvpp22_port_rss_ctx_indir_get(struct mvpp2_port *port, u32 port_ctx,
1595 				  u32 *indir)
1596 {
1597 	int rss_ctx =  mvpp22_rss_ctx(port, port_ctx);
1598 	struct mvpp2_rss_table *rss_table = mvpp22_rss_table_get(port->priv,
1599 								 rss_ctx);
1600 
1601 	if (!rss_table)
1602 		return -EINVAL;
1603 
1604 	memcpy(indir, rss_table->indir,
1605 	       MVPP22_RSS_TABLE_ENTRIES * sizeof(rss_table->indir[0]));
1606 
1607 	return 0;
1608 }
1609 
1610 int mvpp2_ethtool_rxfh_set(struct mvpp2_port *port, struct ethtool_rxnfc *info)
1611 {
1612 	u16 hash_opts = 0;
1613 	u32 flow_type;
1614 
1615 	flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type);
1616 
1617 	switch (flow_type) {
1618 	case MVPP22_FLOW_TCP4:
1619 	case MVPP22_FLOW_UDP4:
1620 	case MVPP22_FLOW_TCP6:
1621 	case MVPP22_FLOW_UDP6:
1622 		if (info->data & RXH_L4_B_0_1)
1623 			hash_opts |= MVPP22_CLS_HEK_OPT_L4SIP;
1624 		if (info->data & RXH_L4_B_2_3)
1625 			hash_opts |= MVPP22_CLS_HEK_OPT_L4DIP;
1626 		/* Fallthrough */
1627 	case MVPP22_FLOW_IP4:
1628 	case MVPP22_FLOW_IP6:
1629 		if (info->data & RXH_L2DA)
1630 			hash_opts |= MVPP22_CLS_HEK_OPT_MAC_DA;
1631 		if (info->data & RXH_VLAN)
1632 			hash_opts |= MVPP22_CLS_HEK_OPT_VLAN;
1633 		if (info->data & RXH_L3_PROTO)
1634 			hash_opts |= MVPP22_CLS_HEK_OPT_L3_PROTO;
1635 		if (info->data & RXH_IP_SRC)
1636 			hash_opts |= (MVPP22_CLS_HEK_OPT_IP4SA |
1637 				     MVPP22_CLS_HEK_OPT_IP6SA);
1638 		if (info->data & RXH_IP_DST)
1639 			hash_opts |= (MVPP22_CLS_HEK_OPT_IP4DA |
1640 				     MVPP22_CLS_HEK_OPT_IP6DA);
1641 		break;
1642 	default: return -EOPNOTSUPP;
1643 	}
1644 
1645 	return mvpp2_port_rss_hash_opts_set(port, flow_type, hash_opts);
1646 }
1647 
1648 int mvpp2_ethtool_rxfh_get(struct mvpp2_port *port, struct ethtool_rxnfc *info)
1649 {
1650 	unsigned long hash_opts;
1651 	u32 flow_type;
1652 	int i;
1653 
1654 	flow_type = mvpp2_cls_ethtool_flow_to_type(info->flow_type);
1655 
1656 	hash_opts = mvpp2_port_rss_hash_opts_get(port, flow_type);
1657 	info->data = 0;
1658 
1659 	for_each_set_bit(i, &hash_opts, MVPP22_CLS_HEK_N_FIELDS) {
1660 		switch (BIT(i)) {
1661 		case MVPP22_CLS_HEK_OPT_MAC_DA:
1662 			info->data |= RXH_L2DA;
1663 			break;
1664 		case MVPP22_CLS_HEK_OPT_VLAN:
1665 			info->data |= RXH_VLAN;
1666 			break;
1667 		case MVPP22_CLS_HEK_OPT_L3_PROTO:
1668 			info->data |= RXH_L3_PROTO;
1669 			break;
1670 		case MVPP22_CLS_HEK_OPT_IP4SA:
1671 		case MVPP22_CLS_HEK_OPT_IP6SA:
1672 			info->data |= RXH_IP_SRC;
1673 			break;
1674 		case MVPP22_CLS_HEK_OPT_IP4DA:
1675 		case MVPP22_CLS_HEK_OPT_IP6DA:
1676 			info->data |= RXH_IP_DST;
1677 			break;
1678 		case MVPP22_CLS_HEK_OPT_L4SIP:
1679 			info->data |= RXH_L4_B_0_1;
1680 			break;
1681 		case MVPP22_CLS_HEK_OPT_L4DIP:
1682 			info->data |= RXH_L4_B_2_3;
1683 			break;
1684 		default:
1685 			return -EINVAL;
1686 		}
1687 	}
1688 	return 0;
1689 }
1690 
1691 int mvpp22_port_rss_init(struct mvpp2_port *port)
1692 {
1693 	struct mvpp2_rss_table *table;
1694 	u32 context = 0;
1695 	int i, ret;
1696 
1697 	for (i = 0; i < MVPP22_N_RSS_TABLES; i++)
1698 		port->rss_ctx[i] = -1;
1699 
1700 	ret = mvpp22_rss_context_create(port, &context);
1701 	if (ret)
1702 		return ret;
1703 
1704 	table = mvpp22_rss_table_get(port->priv, context);
1705 	if (!table)
1706 		return -EINVAL;
1707 
1708 	port->rss_ctx[0] = context;
1709 
1710 	/* Configure the first table to evenly distribute the packets across
1711 	 * real Rx Queues. The table entries map a hash to a port Rx Queue.
1712 	 */
1713 	for (i = 0; i < MVPP22_RSS_TABLE_ENTRIES; i++)
1714 		table->indir[i] = ethtool_rxfh_indir_default(i, port->nrxqs);
1715 
1716 	mvpp22_rss_fill_table(port, table, mvpp22_rss_ctx(port, 0));
1717 
1718 	/* Configure default flows */
1719 	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP4, MVPP22_CLS_HEK_IP4_2T);
1720 	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_IP6, MVPP22_CLS_HEK_IP6_2T);
1721 	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP4, MVPP22_CLS_HEK_IP4_5T);
1722 	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_TCP6, MVPP22_CLS_HEK_IP6_5T);
1723 	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP4, MVPP22_CLS_HEK_IP4_5T);
1724 	mvpp2_port_rss_hash_opts_set(port, MVPP22_FLOW_UDP6, MVPP22_CLS_HEK_IP6_5T);
1725 
1726 	return 0;
1727 }
1728