1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy.h> 31 #include <linux/phylink.h> 32 #include <linux/platform_device.h> 33 #include <linux/skbuff.h> 34 #include <net/hwbm.h> 35 #include "mvneta_bm.h" 36 #include <net/ip.h> 37 #include <net/ipv6.h> 38 #include <net/tso.h> 39 40 /* Registers */ 41 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 42 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 43 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 44 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 45 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 46 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 47 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 48 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 49 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 50 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 51 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 52 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 53 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 54 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 55 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 56 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 57 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 58 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 59 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 60 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 61 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 62 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 63 #define MVNETA_PORT_RX_RESET 0x1cc0 64 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 65 #define MVNETA_PHY_ADDR 0x2000 66 #define MVNETA_PHY_ADDR_MASK 0x1f 67 #define MVNETA_MBUS_RETRY 0x2010 68 #define MVNETA_UNIT_INTR_CAUSE 0x2080 69 #define MVNETA_UNIT_CONTROL 0x20B0 70 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 71 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 72 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 73 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 74 #define MVNETA_BASE_ADDR_ENABLE 0x2290 75 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 76 #define MVNETA_PORT_CONFIG 0x2400 77 #define MVNETA_UNI_PROMISC_MODE BIT(0) 78 #define MVNETA_DEF_RXQ(q) ((q) << 1) 79 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 80 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 81 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 82 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 83 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 84 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 85 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 86 MVNETA_DEF_RXQ_ARP(q) | \ 87 MVNETA_DEF_RXQ_TCP(q) | \ 88 MVNETA_DEF_RXQ_UDP(q) | \ 89 MVNETA_DEF_RXQ_BPDU(q) | \ 90 MVNETA_TX_UNSET_ERR_SUM | \ 91 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 92 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 93 #define MVNETA_MAC_ADDR_LOW 0x2414 94 #define MVNETA_MAC_ADDR_HIGH 0x2418 95 #define MVNETA_SDMA_CONFIG 0x241c 96 #define MVNETA_SDMA_BRST_SIZE_16 4 97 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 98 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 99 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 100 #define MVNETA_DESC_SWAP BIT(6) 101 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 102 #define MVNETA_PORT_STATUS 0x2444 103 #define MVNETA_TX_IN_PRGRS BIT(1) 104 #define MVNETA_TX_FIFO_EMPTY BIT(8) 105 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 106 #define MVNETA_SERDES_CFG 0x24A0 107 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 108 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 109 #define MVNETA_TYPE_PRIO 0x24bc 110 #define MVNETA_FORCE_UNI BIT(21) 111 #define MVNETA_TXQ_CMD_1 0x24e4 112 #define MVNETA_TXQ_CMD 0x2448 113 #define MVNETA_TXQ_DISABLE_SHIFT 8 114 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 115 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 116 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 117 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 118 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 119 #define MVNETA_ACC_MODE 0x2500 120 #define MVNETA_BM_ADDRESS 0x2504 121 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 122 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 123 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 124 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 125 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 126 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 127 128 /* Exception Interrupt Port/Queue Cause register 129 * 130 * Their behavior depend of the mapping done using the PCPX2Q 131 * registers. For a given CPU if the bit associated to a queue is not 132 * set, then for the register a read from this CPU will always return 133 * 0 and a write won't do anything 134 */ 135 136 #define MVNETA_INTR_NEW_CAUSE 0x25a0 137 #define MVNETA_INTR_NEW_MASK 0x25a4 138 139 /* bits 0..7 = TXQ SENT, one bit per queue. 140 * bits 8..15 = RXQ OCCUP, one bit per queue. 141 * bits 16..23 = RXQ FREE, one bit per queue. 142 * bit 29 = OLD_REG_SUM, see old reg ? 143 * bit 30 = TX_ERR_SUM, one bit for 4 ports 144 * bit 31 = MISC_SUM, one bit for 4 ports 145 */ 146 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 147 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 148 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 149 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 150 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 151 152 #define MVNETA_INTR_OLD_CAUSE 0x25a8 153 #define MVNETA_INTR_OLD_MASK 0x25ac 154 155 /* Data Path Port/Queue Cause Register */ 156 #define MVNETA_INTR_MISC_CAUSE 0x25b0 157 #define MVNETA_INTR_MISC_MASK 0x25b4 158 159 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 160 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 161 #define MVNETA_CAUSE_PTP BIT(4) 162 163 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 164 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 165 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 166 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 167 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 168 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 169 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 170 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 171 172 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 173 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 174 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 175 176 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 177 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 178 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 179 180 #define MVNETA_INTR_ENABLE 0x25b8 181 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 182 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 183 184 #define MVNETA_RXQ_CMD 0x2680 185 #define MVNETA_RXQ_DISABLE_SHIFT 8 186 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 187 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 188 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 189 #define MVNETA_GMAC_CTRL_0 0x2c00 190 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 191 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 192 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1) 193 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 194 #define MVNETA_GMAC_CTRL_2 0x2c08 195 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 196 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 197 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 198 #define MVNETA_GMAC2_PORT_RESET BIT(6) 199 #define MVNETA_GMAC_STATUS 0x2c10 200 #define MVNETA_GMAC_LINK_UP BIT(0) 201 #define MVNETA_GMAC_SPEED_1000 BIT(1) 202 #define MVNETA_GMAC_SPEED_100 BIT(2) 203 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 204 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 205 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 206 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 207 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 208 #define MVNETA_GMAC_AN_COMPLETE BIT(11) 209 #define MVNETA_GMAC_SYNC_OK BIT(14) 210 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 211 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 212 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 213 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 214 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3) 215 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4) 216 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 217 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 218 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 219 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8) 220 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9) 221 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 222 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 223 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 224 #define MVNETA_MIB_COUNTERS_BASE 0x3000 225 #define MVNETA_MIB_LATE_COLLISION 0x7c 226 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 227 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 228 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 229 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 230 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 231 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 232 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 233 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 234 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 235 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 236 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 237 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 238 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 239 #define MVNETA_PORT_TX_RESET 0x3cf0 240 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 241 #define MVNETA_TX_MTU 0x3e0c 242 #define MVNETA_TX_TOKEN_SIZE 0x3e14 243 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 244 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 245 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 246 247 #define MVNETA_LPI_CTRL_0 0x2cc0 248 #define MVNETA_LPI_CTRL_1 0x2cc4 249 #define MVNETA_LPI_REQUEST_ENABLE BIT(0) 250 #define MVNETA_LPI_CTRL_2 0x2cc8 251 #define MVNETA_LPI_STATUS 0x2ccc 252 253 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 254 255 /* Descriptor ring Macros */ 256 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 257 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 258 259 /* Various constants */ 260 261 /* Coalescing */ 262 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 263 #define MVNETA_RX_COAL_PKTS 32 264 #define MVNETA_RX_COAL_USEC 100 265 266 /* The two bytes Marvell header. Either contains a special value used 267 * by Marvell switches when a specific hardware mode is enabled (not 268 * supported by this driver) or is filled automatically by zeroes on 269 * the RX side. Those two bytes being at the front of the Ethernet 270 * header, they allow to have the IP header aligned on a 4 bytes 271 * boundary automatically: the hardware skips those two bytes on its 272 * own. 273 */ 274 #define MVNETA_MH_SIZE 2 275 276 #define MVNETA_VLAN_TAG_LEN 4 277 278 #define MVNETA_TX_CSUM_DEF_SIZE 1600 279 #define MVNETA_TX_CSUM_MAX_SIZE 9800 280 #define MVNETA_ACC_MODE_EXT1 1 281 #define MVNETA_ACC_MODE_EXT2 2 282 283 #define MVNETA_MAX_DECODE_WIN 6 284 285 /* Timeout constants */ 286 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 287 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 288 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 289 290 #define MVNETA_TX_MTU_MAX 0x3ffff 291 292 /* The RSS lookup table actually has 256 entries but we do not use 293 * them yet 294 */ 295 #define MVNETA_RSS_LU_TABLE_SIZE 1 296 297 /* Max number of Rx descriptors */ 298 #define MVNETA_MAX_RXD 512 299 300 /* Max number of Tx descriptors */ 301 #define MVNETA_MAX_TXD 1024 302 303 /* Max number of allowed TCP segments for software TSO */ 304 #define MVNETA_MAX_TSO_SEGS 100 305 306 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 307 308 /* descriptor aligned size */ 309 #define MVNETA_DESC_ALIGNED_SIZE 32 310 311 /* Number of bytes to be taken into account by HW when putting incoming data 312 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 313 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 314 */ 315 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 316 317 #define MVNETA_RX_PKT_SIZE(mtu) \ 318 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 319 ETH_HLEN + ETH_FCS_LEN, \ 320 cache_line_size()) 321 322 #define IS_TSO_HEADER(txq, addr) \ 323 ((addr >= txq->tso_hdrs_phys) && \ 324 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 325 326 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 327 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 328 329 enum { 330 ETHTOOL_STAT_EEE_WAKEUP, 331 ETHTOOL_STAT_SKB_ALLOC_ERR, 332 ETHTOOL_STAT_REFILL_ERR, 333 ETHTOOL_MAX_STATS, 334 }; 335 336 struct mvneta_statistic { 337 unsigned short offset; 338 unsigned short type; 339 const char name[ETH_GSTRING_LEN]; 340 }; 341 342 #define T_REG_32 32 343 #define T_REG_64 64 344 #define T_SW 1 345 346 static const struct mvneta_statistic mvneta_statistics[] = { 347 { 0x3000, T_REG_64, "good_octets_received", }, 348 { 0x3010, T_REG_32, "good_frames_received", }, 349 { 0x3008, T_REG_32, "bad_octets_received", }, 350 { 0x3014, T_REG_32, "bad_frames_received", }, 351 { 0x3018, T_REG_32, "broadcast_frames_received", }, 352 { 0x301c, T_REG_32, "multicast_frames_received", }, 353 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 354 { 0x3058, T_REG_32, "good_fc_received", }, 355 { 0x305c, T_REG_32, "bad_fc_received", }, 356 { 0x3060, T_REG_32, "undersize_received", }, 357 { 0x3064, T_REG_32, "fragments_received", }, 358 { 0x3068, T_REG_32, "oversize_received", }, 359 { 0x306c, T_REG_32, "jabber_received", }, 360 { 0x3070, T_REG_32, "mac_receive_error", }, 361 { 0x3074, T_REG_32, "bad_crc_event", }, 362 { 0x3078, T_REG_32, "collision", }, 363 { 0x307c, T_REG_32, "late_collision", }, 364 { 0x2484, T_REG_32, "rx_discard", }, 365 { 0x2488, T_REG_32, "rx_overrun", }, 366 { 0x3020, T_REG_32, "frames_64_octets", }, 367 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 368 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 369 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 370 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 371 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 372 { 0x3038, T_REG_64, "good_octets_sent", }, 373 { 0x3040, T_REG_32, "good_frames_sent", }, 374 { 0x3044, T_REG_32, "excessive_collision", }, 375 { 0x3048, T_REG_32, "multicast_frames_sent", }, 376 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 377 { 0x3054, T_REG_32, "fc_sent", }, 378 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 379 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", }, 380 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", }, 381 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", }, 382 }; 383 384 struct mvneta_pcpu_stats { 385 struct u64_stats_sync syncp; 386 u64 rx_packets; 387 u64 rx_bytes; 388 u64 tx_packets; 389 u64 tx_bytes; 390 }; 391 392 struct mvneta_pcpu_port { 393 /* Pointer to the shared port */ 394 struct mvneta_port *pp; 395 396 /* Pointer to the CPU-local NAPI struct */ 397 struct napi_struct napi; 398 399 /* Cause of the previous interrupt */ 400 u32 cause_rx_tx; 401 }; 402 403 struct mvneta_port { 404 u8 id; 405 struct mvneta_pcpu_port __percpu *ports; 406 struct mvneta_pcpu_stats __percpu *stats; 407 408 int pkt_size; 409 unsigned int frag_size; 410 void __iomem *base; 411 struct mvneta_rx_queue *rxqs; 412 struct mvneta_tx_queue *txqs; 413 struct net_device *dev; 414 struct hlist_node node_online; 415 struct hlist_node node_dead; 416 int rxq_def; 417 /* Protect the access to the percpu interrupt registers, 418 * ensuring that the configuration remains coherent. 419 */ 420 spinlock_t lock; 421 bool is_stopped; 422 423 u32 cause_rx_tx; 424 struct napi_struct napi; 425 426 /* Core clock */ 427 struct clk *clk; 428 /* AXI clock */ 429 struct clk *clk_bus; 430 u8 mcast_count[256]; 431 u16 tx_ring_size; 432 u16 rx_ring_size; 433 434 phy_interface_t phy_interface; 435 struct device_node *dn; 436 unsigned int tx_csum_limit; 437 struct phylink *phylink; 438 439 struct mvneta_bm *bm_priv; 440 struct mvneta_bm_pool *pool_long; 441 struct mvneta_bm_pool *pool_short; 442 int bm_win_id; 443 444 bool eee_enabled; 445 bool eee_active; 446 bool tx_lpi_enabled; 447 448 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 449 450 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 451 452 /* Flags for special SoC configurations */ 453 bool neta_armada3700; 454 u16 rx_offset_correction; 455 const struct mbus_dram_target_info *dram_target_info; 456 }; 457 458 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 459 * layout of the transmit and reception DMA descriptors, and their 460 * layout is therefore defined by the hardware design 461 */ 462 463 #define MVNETA_TX_L3_OFF_SHIFT 0 464 #define MVNETA_TX_IP_HLEN_SHIFT 8 465 #define MVNETA_TX_L4_UDP BIT(16) 466 #define MVNETA_TX_L3_IP6 BIT(17) 467 #define MVNETA_TXD_IP_CSUM BIT(18) 468 #define MVNETA_TXD_Z_PAD BIT(19) 469 #define MVNETA_TXD_L_DESC BIT(20) 470 #define MVNETA_TXD_F_DESC BIT(21) 471 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 472 MVNETA_TXD_L_DESC | \ 473 MVNETA_TXD_F_DESC) 474 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 475 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 476 477 #define MVNETA_RXD_ERR_CRC 0x0 478 #define MVNETA_RXD_BM_POOL_SHIFT 13 479 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 480 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 481 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 482 #define MVNETA_RXD_ERR_LEN BIT(18) 483 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 484 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 485 #define MVNETA_RXD_L3_IP4 BIT(25) 486 #define MVNETA_RXD_LAST_DESC BIT(26) 487 #define MVNETA_RXD_FIRST_DESC BIT(27) 488 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \ 489 MVNETA_RXD_LAST_DESC) 490 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 491 492 #if defined(__LITTLE_ENDIAN) 493 struct mvneta_tx_desc { 494 u32 command; /* Options used by HW for packet transmitting.*/ 495 u16 reserverd1; /* csum_l4 (for future use) */ 496 u16 data_size; /* Data size of transmitted packet in bytes */ 497 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 498 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 499 u32 reserved3[4]; /* Reserved - (for future use) */ 500 }; 501 502 struct mvneta_rx_desc { 503 u32 status; /* Info about received packet */ 504 u16 reserved1; /* pnc_info - (for future use, PnC) */ 505 u16 data_size; /* Size of received packet in bytes */ 506 507 u32 buf_phys_addr; /* Physical address of the buffer */ 508 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 509 510 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 511 u16 reserved3; /* prefetch_cmd, for future use */ 512 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 513 514 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 515 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 516 }; 517 #else 518 struct mvneta_tx_desc { 519 u16 data_size; /* Data size of transmitted packet in bytes */ 520 u16 reserverd1; /* csum_l4 (for future use) */ 521 u32 command; /* Options used by HW for packet transmitting.*/ 522 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 523 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 524 u32 reserved3[4]; /* Reserved - (for future use) */ 525 }; 526 527 struct mvneta_rx_desc { 528 u16 data_size; /* Size of received packet in bytes */ 529 u16 reserved1; /* pnc_info - (for future use, PnC) */ 530 u32 status; /* Info about received packet */ 531 532 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 533 u32 buf_phys_addr; /* Physical address of the buffer */ 534 535 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 536 u16 reserved3; /* prefetch_cmd, for future use */ 537 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 538 539 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 540 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 541 }; 542 #endif 543 544 struct mvneta_tx_queue { 545 /* Number of this TX queue, in the range 0-7 */ 546 u8 id; 547 548 /* Number of TX DMA descriptors in the descriptor ring */ 549 int size; 550 551 /* Number of currently used TX DMA descriptor in the 552 * descriptor ring 553 */ 554 int count; 555 int pending; 556 int tx_stop_threshold; 557 int tx_wake_threshold; 558 559 /* Array of transmitted skb */ 560 struct sk_buff **tx_skb; 561 562 /* Index of last TX DMA descriptor that was inserted */ 563 int txq_put_index; 564 565 /* Index of the TX DMA descriptor to be cleaned up */ 566 int txq_get_index; 567 568 u32 done_pkts_coal; 569 570 /* Virtual address of the TX DMA descriptors array */ 571 struct mvneta_tx_desc *descs; 572 573 /* DMA address of the TX DMA descriptors array */ 574 dma_addr_t descs_phys; 575 576 /* Index of the last TX DMA descriptor */ 577 int last_desc; 578 579 /* Index of the next TX DMA descriptor to process */ 580 int next_desc_to_proc; 581 582 /* DMA buffers for TSO headers */ 583 char *tso_hdrs; 584 585 /* DMA address of TSO headers */ 586 dma_addr_t tso_hdrs_phys; 587 588 /* Affinity mask for CPUs*/ 589 cpumask_t affinity_mask; 590 }; 591 592 struct mvneta_rx_queue { 593 /* rx queue number, in the range 0-7 */ 594 u8 id; 595 596 /* num of rx descriptors in the rx descriptor ring */ 597 int size; 598 599 u32 pkts_coal; 600 u32 time_coal; 601 602 /* Virtual address of the RX buffer */ 603 void **buf_virt_addr; 604 605 /* Virtual address of the RX DMA descriptors array */ 606 struct mvneta_rx_desc *descs; 607 608 /* DMA address of the RX DMA descriptors array */ 609 dma_addr_t descs_phys; 610 611 /* Index of the last RX DMA descriptor */ 612 int last_desc; 613 614 /* Index of the next RX DMA descriptor to process */ 615 int next_desc_to_proc; 616 617 /* Index of first RX DMA descriptor to refill */ 618 int first_to_refill; 619 u32 refill_num; 620 621 /* pointer to uncomplete skb buffer */ 622 struct sk_buff *skb; 623 int left_size; 624 625 /* error counters */ 626 u32 skb_alloc_err; 627 u32 refill_err; 628 }; 629 630 static enum cpuhp_state online_hpstate; 631 /* The hardware supports eight (8) rx queues, but we are only allowing 632 * the first one to be used. Therefore, let's just allocate one queue. 633 */ 634 static int rxq_number = 8; 635 static int txq_number = 8; 636 637 static int rxq_def; 638 639 static int rx_copybreak __read_mostly = 256; 640 static int rx_header_size __read_mostly = 128; 641 642 /* HW BM need that each port be identify by a unique ID */ 643 static int global_port_id; 644 645 #define MVNETA_DRIVER_NAME "mvneta" 646 #define MVNETA_DRIVER_VERSION "1.0" 647 648 /* Utility/helper methods */ 649 650 /* Write helper method */ 651 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 652 { 653 writel(data, pp->base + offset); 654 } 655 656 /* Read helper method */ 657 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 658 { 659 return readl(pp->base + offset); 660 } 661 662 /* Increment txq get counter */ 663 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 664 { 665 txq->txq_get_index++; 666 if (txq->txq_get_index == txq->size) 667 txq->txq_get_index = 0; 668 } 669 670 /* Increment txq put counter */ 671 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 672 { 673 txq->txq_put_index++; 674 if (txq->txq_put_index == txq->size) 675 txq->txq_put_index = 0; 676 } 677 678 679 /* Clear all MIB counters */ 680 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 681 { 682 int i; 683 u32 dummy; 684 685 /* Perform dummy reads from MIB counters */ 686 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 687 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 688 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 689 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 690 } 691 692 /* Get System Network Statistics */ 693 static void 694 mvneta_get_stats64(struct net_device *dev, 695 struct rtnl_link_stats64 *stats) 696 { 697 struct mvneta_port *pp = netdev_priv(dev); 698 unsigned int start; 699 int cpu; 700 701 for_each_possible_cpu(cpu) { 702 struct mvneta_pcpu_stats *cpu_stats; 703 u64 rx_packets; 704 u64 rx_bytes; 705 u64 tx_packets; 706 u64 tx_bytes; 707 708 cpu_stats = per_cpu_ptr(pp->stats, cpu); 709 do { 710 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 711 rx_packets = cpu_stats->rx_packets; 712 rx_bytes = cpu_stats->rx_bytes; 713 tx_packets = cpu_stats->tx_packets; 714 tx_bytes = cpu_stats->tx_bytes; 715 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 716 717 stats->rx_packets += rx_packets; 718 stats->rx_bytes += rx_bytes; 719 stats->tx_packets += tx_packets; 720 stats->tx_bytes += tx_bytes; 721 } 722 723 stats->rx_errors = dev->stats.rx_errors; 724 stats->rx_dropped = dev->stats.rx_dropped; 725 726 stats->tx_dropped = dev->stats.tx_dropped; 727 } 728 729 /* Rx descriptors helper methods */ 730 731 /* Checks whether the RX descriptor having this status is both the first 732 * and the last descriptor for the RX packet. Each RX packet is currently 733 * received through a single RX descriptor, so not having each RX 734 * descriptor with its first and last bits set is an error 735 */ 736 static int mvneta_rxq_desc_is_first_last(u32 status) 737 { 738 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 739 MVNETA_RXD_FIRST_LAST_DESC; 740 } 741 742 /* Add number of descriptors ready to receive new packets */ 743 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 744 struct mvneta_rx_queue *rxq, 745 int ndescs) 746 { 747 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 748 * be added at once 749 */ 750 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 751 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 752 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 753 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 754 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 755 } 756 757 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 758 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 759 } 760 761 /* Get number of RX descriptors occupied by received packets */ 762 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 763 struct mvneta_rx_queue *rxq) 764 { 765 u32 val; 766 767 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 768 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 769 } 770 771 /* Update num of rx desc called upon return from rx path or 772 * from mvneta_rxq_drop_pkts(). 773 */ 774 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 775 struct mvneta_rx_queue *rxq, 776 int rx_done, int rx_filled) 777 { 778 u32 val; 779 780 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 781 val = rx_done | 782 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 783 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 784 return; 785 } 786 787 /* Only 255 descriptors can be added at once */ 788 while ((rx_done > 0) || (rx_filled > 0)) { 789 if (rx_done <= 0xff) { 790 val = rx_done; 791 rx_done = 0; 792 } else { 793 val = 0xff; 794 rx_done -= 0xff; 795 } 796 if (rx_filled <= 0xff) { 797 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 798 rx_filled = 0; 799 } else { 800 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 801 rx_filled -= 0xff; 802 } 803 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 804 } 805 } 806 807 /* Get pointer to next RX descriptor to be processed by SW */ 808 static struct mvneta_rx_desc * 809 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 810 { 811 int rx_desc = rxq->next_desc_to_proc; 812 813 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 814 prefetch(rxq->descs + rxq->next_desc_to_proc); 815 return rxq->descs + rx_desc; 816 } 817 818 /* Change maximum receive size of the port. */ 819 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 820 { 821 u32 val; 822 823 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 824 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 825 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 826 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 827 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 828 } 829 830 831 /* Set rx queue offset */ 832 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 833 struct mvneta_rx_queue *rxq, 834 int offset) 835 { 836 u32 val; 837 838 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 839 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 840 841 /* Offset is in */ 842 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 843 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 844 } 845 846 847 /* Tx descriptors helper methods */ 848 849 /* Update HW with number of TX descriptors to be sent */ 850 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 851 struct mvneta_tx_queue *txq, 852 int pend_desc) 853 { 854 u32 val; 855 856 pend_desc += txq->pending; 857 858 /* Only 255 Tx descriptors can be added at once */ 859 do { 860 val = min(pend_desc, 255); 861 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 862 pend_desc -= val; 863 } while (pend_desc > 0); 864 txq->pending = 0; 865 } 866 867 /* Get pointer to next TX descriptor to be processed (send) by HW */ 868 static struct mvneta_tx_desc * 869 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 870 { 871 int tx_desc = txq->next_desc_to_proc; 872 873 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 874 return txq->descs + tx_desc; 875 } 876 877 /* Release the last allocated TX descriptor. Useful to handle DMA 878 * mapping failures in the TX path. 879 */ 880 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 881 { 882 if (txq->next_desc_to_proc == 0) 883 txq->next_desc_to_proc = txq->last_desc - 1; 884 else 885 txq->next_desc_to_proc--; 886 } 887 888 /* Set rxq buf size */ 889 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 890 struct mvneta_rx_queue *rxq, 891 int buf_size) 892 { 893 u32 val; 894 895 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 896 897 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 898 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 899 900 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 901 } 902 903 /* Disable buffer management (BM) */ 904 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 905 struct mvneta_rx_queue *rxq) 906 { 907 u32 val; 908 909 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 910 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 911 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 912 } 913 914 /* Enable buffer management (BM) */ 915 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 916 struct mvneta_rx_queue *rxq) 917 { 918 u32 val; 919 920 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 921 val |= MVNETA_RXQ_HW_BUF_ALLOC; 922 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 923 } 924 925 /* Notify HW about port's assignment of pool for bigger packets */ 926 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 927 struct mvneta_rx_queue *rxq) 928 { 929 u32 val; 930 931 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 932 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 933 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 934 935 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 936 } 937 938 /* Notify HW about port's assignment of pool for smaller packets */ 939 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 940 struct mvneta_rx_queue *rxq) 941 { 942 u32 val; 943 944 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 945 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 946 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 947 948 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 949 } 950 951 /* Set port's receive buffer size for assigned BM pool */ 952 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 953 int buf_size, 954 u8 pool_id) 955 { 956 u32 val; 957 958 if (!IS_ALIGNED(buf_size, 8)) { 959 dev_warn(pp->dev->dev.parent, 960 "illegal buf_size value %d, round to %d\n", 961 buf_size, ALIGN(buf_size, 8)); 962 buf_size = ALIGN(buf_size, 8); 963 } 964 965 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 966 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 967 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 968 } 969 970 /* Configure MBUS window in order to enable access BM internal SRAM */ 971 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 972 u8 target, u8 attr) 973 { 974 u32 win_enable, win_protect; 975 int i; 976 977 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 978 979 if (pp->bm_win_id < 0) { 980 /* Find first not occupied window */ 981 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 982 if (win_enable & (1 << i)) { 983 pp->bm_win_id = i; 984 break; 985 } 986 } 987 if (i == MVNETA_MAX_DECODE_WIN) 988 return -ENOMEM; 989 } else { 990 i = pp->bm_win_id; 991 } 992 993 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 994 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 995 996 if (i < 4) 997 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 998 999 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 1000 (attr << 8) | target); 1001 1002 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 1003 1004 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 1005 win_protect |= 3 << (2 * i); 1006 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 1007 1008 win_enable &= ~(1 << i); 1009 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 1010 1011 return 0; 1012 } 1013 1014 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 1015 { 1016 u32 wsize; 1017 u8 target, attr; 1018 int err; 1019 1020 /* Get BM window information */ 1021 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 1022 &target, &attr); 1023 if (err < 0) 1024 return err; 1025 1026 pp->bm_win_id = -1; 1027 1028 /* Open NETA -> BM window */ 1029 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 1030 target, attr); 1031 if (err < 0) { 1032 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 1033 return err; 1034 } 1035 return 0; 1036 } 1037 1038 /* Assign and initialize pools for port. In case of fail 1039 * buffer manager will remain disabled for current port. 1040 */ 1041 static int mvneta_bm_port_init(struct platform_device *pdev, 1042 struct mvneta_port *pp) 1043 { 1044 struct device_node *dn = pdev->dev.of_node; 1045 u32 long_pool_id, short_pool_id; 1046 1047 if (!pp->neta_armada3700) { 1048 int ret; 1049 1050 ret = mvneta_bm_port_mbus_init(pp); 1051 if (ret) 1052 return ret; 1053 } 1054 1055 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1056 netdev_info(pp->dev, "missing long pool id\n"); 1057 return -EINVAL; 1058 } 1059 1060 /* Create port's long pool depending on mtu */ 1061 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1062 MVNETA_BM_LONG, pp->id, 1063 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1064 if (!pp->pool_long) { 1065 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1066 return -ENOMEM; 1067 } 1068 1069 pp->pool_long->port_map |= 1 << pp->id; 1070 1071 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1072 pp->pool_long->id); 1073 1074 /* If short pool id is not defined, assume using single pool */ 1075 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1076 short_pool_id = long_pool_id; 1077 1078 /* Create port's short pool */ 1079 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1080 MVNETA_BM_SHORT, pp->id, 1081 MVNETA_BM_SHORT_PKT_SIZE); 1082 if (!pp->pool_short) { 1083 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1084 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1085 return -ENOMEM; 1086 } 1087 1088 if (short_pool_id != long_pool_id) { 1089 pp->pool_short->port_map |= 1 << pp->id; 1090 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1091 pp->pool_short->id); 1092 } 1093 1094 return 0; 1095 } 1096 1097 /* Update settings of a pool for bigger packets */ 1098 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1099 { 1100 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1101 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1102 int num; 1103 1104 /* Release all buffers from long pool */ 1105 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1106 if (hwbm_pool->buf_num) { 1107 WARN(1, "cannot free all buffers in pool %d\n", 1108 bm_pool->id); 1109 goto bm_mtu_err; 1110 } 1111 1112 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1113 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1114 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1115 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1116 1117 /* Fill entire long pool */ 1118 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC); 1119 if (num != hwbm_pool->size) { 1120 WARN(1, "pool %d: %d of %d allocated\n", 1121 bm_pool->id, num, hwbm_pool->size); 1122 goto bm_mtu_err; 1123 } 1124 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1125 1126 return; 1127 1128 bm_mtu_err: 1129 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1130 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1131 1132 pp->bm_priv = NULL; 1133 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1134 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1135 } 1136 1137 /* Start the Ethernet port RX and TX activity */ 1138 static void mvneta_port_up(struct mvneta_port *pp) 1139 { 1140 int queue; 1141 u32 q_map; 1142 1143 /* Enable all initialized TXs. */ 1144 q_map = 0; 1145 for (queue = 0; queue < txq_number; queue++) { 1146 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1147 if (txq->descs) 1148 q_map |= (1 << queue); 1149 } 1150 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1151 1152 q_map = 0; 1153 /* Enable all initialized RXQs. */ 1154 for (queue = 0; queue < rxq_number; queue++) { 1155 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1156 1157 if (rxq->descs) 1158 q_map |= (1 << queue); 1159 } 1160 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1161 } 1162 1163 /* Stop the Ethernet port activity */ 1164 static void mvneta_port_down(struct mvneta_port *pp) 1165 { 1166 u32 val; 1167 int count; 1168 1169 /* Stop Rx port activity. Check port Rx activity. */ 1170 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1171 1172 /* Issue stop command for active channels only */ 1173 if (val != 0) 1174 mvreg_write(pp, MVNETA_RXQ_CMD, 1175 val << MVNETA_RXQ_DISABLE_SHIFT); 1176 1177 /* Wait for all Rx activity to terminate. */ 1178 count = 0; 1179 do { 1180 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1181 netdev_warn(pp->dev, 1182 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1183 val); 1184 break; 1185 } 1186 mdelay(1); 1187 1188 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1189 } while (val & MVNETA_RXQ_ENABLE_MASK); 1190 1191 /* Stop Tx port activity. Check port Tx activity. Issue stop 1192 * command for active channels only 1193 */ 1194 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1195 1196 if (val != 0) 1197 mvreg_write(pp, MVNETA_TXQ_CMD, 1198 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1199 1200 /* Wait for all Tx activity to terminate. */ 1201 count = 0; 1202 do { 1203 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1204 netdev_warn(pp->dev, 1205 "TIMEOUT for TX stopped status=0x%08x\n", 1206 val); 1207 break; 1208 } 1209 mdelay(1); 1210 1211 /* Check TX Command reg that all Txqs are stopped */ 1212 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1213 1214 } while (val & MVNETA_TXQ_ENABLE_MASK); 1215 1216 /* Double check to verify that TX FIFO is empty */ 1217 count = 0; 1218 do { 1219 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1220 netdev_warn(pp->dev, 1221 "TX FIFO empty timeout status=0x%08x\n", 1222 val); 1223 break; 1224 } 1225 mdelay(1); 1226 1227 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1228 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1229 (val & MVNETA_TX_IN_PRGRS)); 1230 1231 udelay(200); 1232 } 1233 1234 /* Enable the port by setting the port enable bit of the MAC control register */ 1235 static void mvneta_port_enable(struct mvneta_port *pp) 1236 { 1237 u32 val; 1238 1239 /* Enable port */ 1240 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1241 val |= MVNETA_GMAC0_PORT_ENABLE; 1242 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1243 } 1244 1245 /* Disable the port and wait for about 200 usec before retuning */ 1246 static void mvneta_port_disable(struct mvneta_port *pp) 1247 { 1248 u32 val; 1249 1250 /* Reset the Enable bit in the Serial Control Register */ 1251 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1252 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1253 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1254 1255 udelay(200); 1256 } 1257 1258 /* Multicast tables methods */ 1259 1260 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1261 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1262 { 1263 int offset; 1264 u32 val; 1265 1266 if (queue == -1) { 1267 val = 0; 1268 } else { 1269 val = 0x1 | (queue << 1); 1270 val |= (val << 24) | (val << 16) | (val << 8); 1271 } 1272 1273 for (offset = 0; offset <= 0xc; offset += 4) 1274 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1275 } 1276 1277 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1278 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1279 { 1280 int offset; 1281 u32 val; 1282 1283 if (queue == -1) { 1284 val = 0; 1285 } else { 1286 val = 0x1 | (queue << 1); 1287 val |= (val << 24) | (val << 16) | (val << 8); 1288 } 1289 1290 for (offset = 0; offset <= 0xfc; offset += 4) 1291 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1292 1293 } 1294 1295 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1296 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1297 { 1298 int offset; 1299 u32 val; 1300 1301 if (queue == -1) { 1302 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1303 val = 0; 1304 } else { 1305 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1306 val = 0x1 | (queue << 1); 1307 val |= (val << 24) | (val << 16) | (val << 8); 1308 } 1309 1310 for (offset = 0; offset <= 0xfc; offset += 4) 1311 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1312 } 1313 1314 static void mvneta_percpu_unmask_interrupt(void *arg) 1315 { 1316 struct mvneta_port *pp = arg; 1317 1318 /* All the queue are unmasked, but actually only the ones 1319 * mapped to this CPU will be unmasked 1320 */ 1321 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1322 MVNETA_RX_INTR_MASK_ALL | 1323 MVNETA_TX_INTR_MASK_ALL | 1324 MVNETA_MISCINTR_INTR_MASK); 1325 } 1326 1327 static void mvneta_percpu_mask_interrupt(void *arg) 1328 { 1329 struct mvneta_port *pp = arg; 1330 1331 /* All the queue are masked, but actually only the ones 1332 * mapped to this CPU will be masked 1333 */ 1334 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1335 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1336 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1337 } 1338 1339 static void mvneta_percpu_clear_intr_cause(void *arg) 1340 { 1341 struct mvneta_port *pp = arg; 1342 1343 /* All the queue are cleared, but actually only the ones 1344 * mapped to this CPU will be cleared 1345 */ 1346 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1347 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1348 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1349 } 1350 1351 /* This method sets defaults to the NETA port: 1352 * Clears interrupt Cause and Mask registers. 1353 * Clears all MAC tables. 1354 * Sets defaults to all registers. 1355 * Resets RX and TX descriptor rings. 1356 * Resets PHY. 1357 * This method can be called after mvneta_port_down() to return the port 1358 * settings to defaults. 1359 */ 1360 static void mvneta_defaults_set(struct mvneta_port *pp) 1361 { 1362 int cpu; 1363 int queue; 1364 u32 val; 1365 int max_cpu = num_present_cpus(); 1366 1367 /* Clear all Cause registers */ 1368 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1369 1370 /* Mask all interrupts */ 1371 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1372 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1373 1374 /* Enable MBUS Retry bit16 */ 1375 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1376 1377 /* Set CPU queue access map. CPUs are assigned to the RX and 1378 * TX queues modulo their number. If there is only one TX 1379 * queue then it is assigned to the CPU associated to the 1380 * default RX queue. 1381 */ 1382 for_each_present_cpu(cpu) { 1383 int rxq_map = 0, txq_map = 0; 1384 int rxq, txq; 1385 if (!pp->neta_armada3700) { 1386 for (rxq = 0; rxq < rxq_number; rxq++) 1387 if ((rxq % max_cpu) == cpu) 1388 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1389 1390 for (txq = 0; txq < txq_number; txq++) 1391 if ((txq % max_cpu) == cpu) 1392 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1393 1394 /* With only one TX queue we configure a special case 1395 * which will allow to get all the irq on a single 1396 * CPU 1397 */ 1398 if (txq_number == 1) 1399 txq_map = (cpu == pp->rxq_def) ? 1400 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1401 1402 } else { 1403 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1404 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1405 } 1406 1407 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1408 } 1409 1410 /* Reset RX and TX DMAs */ 1411 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1412 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1413 1414 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1415 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1416 for (queue = 0; queue < txq_number; queue++) { 1417 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1418 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1419 } 1420 1421 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1422 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1423 1424 /* Set Port Acceleration Mode */ 1425 if (pp->bm_priv) 1426 /* HW buffer management + legacy parser */ 1427 val = MVNETA_ACC_MODE_EXT2; 1428 else 1429 /* SW buffer management + legacy parser */ 1430 val = MVNETA_ACC_MODE_EXT1; 1431 mvreg_write(pp, MVNETA_ACC_MODE, val); 1432 1433 if (pp->bm_priv) 1434 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1435 1436 /* Update val of portCfg register accordingly with all RxQueue types */ 1437 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1438 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1439 1440 val = 0; 1441 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1442 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1443 1444 /* Build PORT_SDMA_CONFIG_REG */ 1445 val = 0; 1446 1447 /* Default burst size */ 1448 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1449 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1450 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1451 1452 #if defined(__BIG_ENDIAN) 1453 val |= MVNETA_DESC_SWAP; 1454 #endif 1455 1456 /* Assign port SDMA configuration */ 1457 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1458 1459 /* Disable PHY polling in hardware, since we're using the 1460 * kernel phylib to do this. 1461 */ 1462 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1463 val &= ~MVNETA_PHY_POLLING_ENABLE; 1464 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1465 1466 mvneta_set_ucast_table(pp, -1); 1467 mvneta_set_special_mcast_table(pp, -1); 1468 mvneta_set_other_mcast_table(pp, -1); 1469 1470 /* Set port interrupt enable register - default enable all */ 1471 mvreg_write(pp, MVNETA_INTR_ENABLE, 1472 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1473 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1474 1475 mvneta_mib_counters_clear(pp); 1476 } 1477 1478 /* Set max sizes for tx queues */ 1479 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1480 1481 { 1482 u32 val, size, mtu; 1483 int queue; 1484 1485 mtu = max_tx_size * 8; 1486 if (mtu > MVNETA_TX_MTU_MAX) 1487 mtu = MVNETA_TX_MTU_MAX; 1488 1489 /* Set MTU */ 1490 val = mvreg_read(pp, MVNETA_TX_MTU); 1491 val &= ~MVNETA_TX_MTU_MAX; 1492 val |= mtu; 1493 mvreg_write(pp, MVNETA_TX_MTU, val); 1494 1495 /* TX token size and all TXQs token size must be larger that MTU */ 1496 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1497 1498 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1499 if (size < mtu) { 1500 size = mtu; 1501 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1502 val |= size; 1503 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1504 } 1505 for (queue = 0; queue < txq_number; queue++) { 1506 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1507 1508 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1509 if (size < mtu) { 1510 size = mtu; 1511 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1512 val |= size; 1513 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1514 } 1515 } 1516 } 1517 1518 /* Set unicast address */ 1519 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1520 int queue) 1521 { 1522 unsigned int unicast_reg; 1523 unsigned int tbl_offset; 1524 unsigned int reg_offset; 1525 1526 /* Locate the Unicast table entry */ 1527 last_nibble = (0xf & last_nibble); 1528 1529 /* offset from unicast tbl base */ 1530 tbl_offset = (last_nibble / 4) * 4; 1531 1532 /* offset within the above reg */ 1533 reg_offset = last_nibble % 4; 1534 1535 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1536 1537 if (queue == -1) { 1538 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1539 unicast_reg &= ~(0xff << (8 * reg_offset)); 1540 } else { 1541 unicast_reg &= ~(0xff << (8 * reg_offset)); 1542 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1543 } 1544 1545 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1546 } 1547 1548 /* Set mac address */ 1549 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1550 int queue) 1551 { 1552 unsigned int mac_h; 1553 unsigned int mac_l; 1554 1555 if (queue != -1) { 1556 mac_l = (addr[4] << 8) | (addr[5]); 1557 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1558 (addr[2] << 8) | (addr[3] << 0); 1559 1560 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1561 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1562 } 1563 1564 /* Accept frames of this address */ 1565 mvneta_set_ucast_addr(pp, addr[5], queue); 1566 } 1567 1568 /* Set the number of packets that will be received before RX interrupt 1569 * will be generated by HW. 1570 */ 1571 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1572 struct mvneta_rx_queue *rxq, u32 value) 1573 { 1574 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1575 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1576 } 1577 1578 /* Set the time delay in usec before RX interrupt will be generated by 1579 * HW. 1580 */ 1581 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1582 struct mvneta_rx_queue *rxq, u32 value) 1583 { 1584 u32 val; 1585 unsigned long clk_rate; 1586 1587 clk_rate = clk_get_rate(pp->clk); 1588 val = (clk_rate / 1000000) * value; 1589 1590 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1591 } 1592 1593 /* Set threshold for TX_DONE pkts coalescing */ 1594 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1595 struct mvneta_tx_queue *txq, u32 value) 1596 { 1597 u32 val; 1598 1599 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1600 1601 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1602 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1603 1604 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1605 } 1606 1607 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1608 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1609 u32 phys_addr, void *virt_addr, 1610 struct mvneta_rx_queue *rxq) 1611 { 1612 int i; 1613 1614 rx_desc->buf_phys_addr = phys_addr; 1615 i = rx_desc - rxq->descs; 1616 rxq->buf_virt_addr[i] = virt_addr; 1617 } 1618 1619 /* Decrement sent descriptors counter */ 1620 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1621 struct mvneta_tx_queue *txq, 1622 int sent_desc) 1623 { 1624 u32 val; 1625 1626 /* Only 255 TX descriptors can be updated at once */ 1627 while (sent_desc > 0xff) { 1628 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1629 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1630 sent_desc = sent_desc - 0xff; 1631 } 1632 1633 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1634 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1635 } 1636 1637 /* Get number of TX descriptors already sent by HW */ 1638 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1639 struct mvneta_tx_queue *txq) 1640 { 1641 u32 val; 1642 int sent_desc; 1643 1644 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1645 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1646 MVNETA_TXQ_SENT_DESC_SHIFT; 1647 1648 return sent_desc; 1649 } 1650 1651 /* Get number of sent descriptors and decrement counter. 1652 * The number of sent descriptors is returned. 1653 */ 1654 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1655 struct mvneta_tx_queue *txq) 1656 { 1657 int sent_desc; 1658 1659 /* Get number of sent descriptors */ 1660 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1661 1662 /* Decrement sent descriptors counter */ 1663 if (sent_desc) 1664 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1665 1666 return sent_desc; 1667 } 1668 1669 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1670 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1671 int ip_hdr_len, int l4_proto) 1672 { 1673 u32 command; 1674 1675 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1676 * G_L4_chk, L4_type; required only for checksum 1677 * calculation 1678 */ 1679 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1680 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1681 1682 if (l3_proto == htons(ETH_P_IP)) 1683 command |= MVNETA_TXD_IP_CSUM; 1684 else 1685 command |= MVNETA_TX_L3_IP6; 1686 1687 if (l4_proto == IPPROTO_TCP) 1688 command |= MVNETA_TX_L4_CSUM_FULL; 1689 else if (l4_proto == IPPROTO_UDP) 1690 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1691 else 1692 command |= MVNETA_TX_L4_CSUM_NOT; 1693 1694 return command; 1695 } 1696 1697 1698 /* Display more error info */ 1699 static void mvneta_rx_error(struct mvneta_port *pp, 1700 struct mvneta_rx_desc *rx_desc) 1701 { 1702 u32 status = rx_desc->status; 1703 1704 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1705 case MVNETA_RXD_ERR_CRC: 1706 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1707 status, rx_desc->data_size); 1708 break; 1709 case MVNETA_RXD_ERR_OVERRUN: 1710 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1711 status, rx_desc->data_size); 1712 break; 1713 case MVNETA_RXD_ERR_LEN: 1714 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1715 status, rx_desc->data_size); 1716 break; 1717 case MVNETA_RXD_ERR_RESOURCE: 1718 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1719 status, rx_desc->data_size); 1720 break; 1721 } 1722 } 1723 1724 /* Handle RX checksum offload based on the descriptor's status */ 1725 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1726 struct sk_buff *skb) 1727 { 1728 if ((pp->dev->features & NETIF_F_RXCSUM) && 1729 (status & MVNETA_RXD_L3_IP4) && 1730 (status & MVNETA_RXD_L4_CSUM_OK)) { 1731 skb->csum = 0; 1732 skb->ip_summed = CHECKSUM_UNNECESSARY; 1733 return; 1734 } 1735 1736 skb->ip_summed = CHECKSUM_NONE; 1737 } 1738 1739 /* Return tx queue pointer (find last set bit) according to <cause> returned 1740 * form tx_done reg. <cause> must not be null. The return value is always a 1741 * valid queue for matching the first one found in <cause>. 1742 */ 1743 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1744 u32 cause) 1745 { 1746 int queue = fls(cause) - 1; 1747 1748 return &pp->txqs[queue]; 1749 } 1750 1751 /* Free tx queue skbuffs */ 1752 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1753 struct mvneta_tx_queue *txq, int num, 1754 struct netdev_queue *nq) 1755 { 1756 unsigned int bytes_compl = 0, pkts_compl = 0; 1757 int i; 1758 1759 for (i = 0; i < num; i++) { 1760 struct mvneta_tx_desc *tx_desc = txq->descs + 1761 txq->txq_get_index; 1762 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1763 1764 if (skb) { 1765 bytes_compl += skb->len; 1766 pkts_compl++; 1767 } 1768 1769 mvneta_txq_inc_get(txq); 1770 1771 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1772 dma_unmap_single(pp->dev->dev.parent, 1773 tx_desc->buf_phys_addr, 1774 tx_desc->data_size, DMA_TO_DEVICE); 1775 if (!skb) 1776 continue; 1777 dev_kfree_skb_any(skb); 1778 } 1779 1780 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1781 } 1782 1783 /* Handle end of transmission */ 1784 static void mvneta_txq_done(struct mvneta_port *pp, 1785 struct mvneta_tx_queue *txq) 1786 { 1787 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1788 int tx_done; 1789 1790 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1791 if (!tx_done) 1792 return; 1793 1794 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 1795 1796 txq->count -= tx_done; 1797 1798 if (netif_tx_queue_stopped(nq)) { 1799 if (txq->count <= txq->tx_wake_threshold) 1800 netif_tx_wake_queue(nq); 1801 } 1802 } 1803 1804 /* Refill processing for SW buffer management */ 1805 /* Allocate page per descriptor */ 1806 static int mvneta_rx_refill(struct mvneta_port *pp, 1807 struct mvneta_rx_desc *rx_desc, 1808 struct mvneta_rx_queue *rxq, 1809 gfp_t gfp_mask) 1810 { 1811 dma_addr_t phys_addr; 1812 struct page *page; 1813 1814 page = __dev_alloc_page(gfp_mask); 1815 if (!page) 1816 return -ENOMEM; 1817 1818 /* map page for use */ 1819 phys_addr = dma_map_page(pp->dev->dev.parent, page, 0, PAGE_SIZE, 1820 DMA_FROM_DEVICE); 1821 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1822 __free_page(page); 1823 return -ENOMEM; 1824 } 1825 1826 phys_addr += pp->rx_offset_correction; 1827 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq); 1828 return 0; 1829 } 1830 1831 /* Handle tx checksum */ 1832 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1833 { 1834 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1835 int ip_hdr_len = 0; 1836 __be16 l3_proto = vlan_get_protocol(skb); 1837 u8 l4_proto; 1838 1839 if (l3_proto == htons(ETH_P_IP)) { 1840 struct iphdr *ip4h = ip_hdr(skb); 1841 1842 /* Calculate IPv4 checksum and L4 checksum */ 1843 ip_hdr_len = ip4h->ihl; 1844 l4_proto = ip4h->protocol; 1845 } else if (l3_proto == htons(ETH_P_IPV6)) { 1846 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1847 1848 /* Read l4_protocol from one of IPv6 extra headers */ 1849 if (skb_network_header_len(skb) > 0) 1850 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1851 l4_proto = ip6h->nexthdr; 1852 } else 1853 return MVNETA_TX_L4_CSUM_NOT; 1854 1855 return mvneta_txq_desc_csum(skb_network_offset(skb), 1856 l3_proto, ip_hdr_len, l4_proto); 1857 } 1858 1859 return MVNETA_TX_L4_CSUM_NOT; 1860 } 1861 1862 /* Drop packets received by the RXQ and free buffers */ 1863 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1864 struct mvneta_rx_queue *rxq) 1865 { 1866 int rx_done, i; 1867 1868 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1869 if (rx_done) 1870 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1871 1872 if (pp->bm_priv) { 1873 for (i = 0; i < rx_done; i++) { 1874 struct mvneta_rx_desc *rx_desc = 1875 mvneta_rxq_next_desc_get(rxq); 1876 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1877 struct mvneta_bm_pool *bm_pool; 1878 1879 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1880 /* Return dropped buffer to the pool */ 1881 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1882 rx_desc->buf_phys_addr); 1883 } 1884 return; 1885 } 1886 1887 for (i = 0; i < rxq->size; i++) { 1888 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1889 void *data = rxq->buf_virt_addr[i]; 1890 if (!data || !(rx_desc->buf_phys_addr)) 1891 continue; 1892 1893 dma_unmap_page(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1894 PAGE_SIZE, DMA_FROM_DEVICE); 1895 __free_page(data); 1896 } 1897 } 1898 1899 static inline 1900 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) 1901 { 1902 struct mvneta_rx_desc *rx_desc; 1903 int curr_desc = rxq->first_to_refill; 1904 int i; 1905 1906 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) { 1907 rx_desc = rxq->descs + curr_desc; 1908 if (!(rx_desc->buf_phys_addr)) { 1909 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) { 1910 pr_err("Can't refill queue %d. Done %d from %d\n", 1911 rxq->id, i, rxq->refill_num); 1912 rxq->refill_err++; 1913 break; 1914 } 1915 } 1916 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc); 1917 } 1918 rxq->refill_num -= i; 1919 rxq->first_to_refill = curr_desc; 1920 1921 return i; 1922 } 1923 1924 /* Main rx processing when using software buffer management */ 1925 static int mvneta_rx_swbm(struct napi_struct *napi, 1926 struct mvneta_port *pp, int budget, 1927 struct mvneta_rx_queue *rxq) 1928 { 1929 struct net_device *dev = pp->dev; 1930 int rx_todo, rx_proc; 1931 int refill = 0; 1932 u32 rcvd_pkts = 0; 1933 u32 rcvd_bytes = 0; 1934 1935 /* Get number of received packets */ 1936 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq); 1937 rx_proc = 0; 1938 1939 /* Fairness NAPI loop */ 1940 while ((rcvd_pkts < budget) && (rx_proc < rx_todo)) { 1941 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1942 unsigned char *data; 1943 struct page *page; 1944 dma_addr_t phys_addr; 1945 u32 rx_status, index; 1946 int rx_bytes, skb_size, copy_size; 1947 int frag_num, frag_size, frag_offset; 1948 1949 index = rx_desc - rxq->descs; 1950 page = (struct page *)rxq->buf_virt_addr[index]; 1951 data = page_address(page); 1952 /* Prefetch header */ 1953 prefetch(data); 1954 1955 phys_addr = rx_desc->buf_phys_addr; 1956 rx_status = rx_desc->status; 1957 rx_proc++; 1958 rxq->refill_num++; 1959 1960 if (rx_status & MVNETA_RXD_FIRST_DESC) { 1961 /* Check errors only for FIRST descriptor */ 1962 if (rx_status & MVNETA_RXD_ERR_SUMMARY) { 1963 mvneta_rx_error(pp, rx_desc); 1964 dev->stats.rx_errors++; 1965 /* leave the descriptor untouched */ 1966 continue; 1967 } 1968 rx_bytes = rx_desc->data_size - 1969 (ETH_FCS_LEN + MVNETA_MH_SIZE); 1970 1971 /* Allocate small skb for each new packet */ 1972 skb_size = max(rx_copybreak, rx_header_size); 1973 rxq->skb = netdev_alloc_skb_ip_align(dev, skb_size); 1974 if (unlikely(!rxq->skb)) { 1975 netdev_err(dev, 1976 "Can't allocate skb on queue %d\n", 1977 rxq->id); 1978 dev->stats.rx_dropped++; 1979 rxq->skb_alloc_err++; 1980 continue; 1981 } 1982 copy_size = min(skb_size, rx_bytes); 1983 1984 /* Copy data from buffer to SKB, skip Marvell header */ 1985 memcpy(rxq->skb->data, data + MVNETA_MH_SIZE, 1986 copy_size); 1987 skb_put(rxq->skb, copy_size); 1988 rxq->left_size = rx_bytes - copy_size; 1989 1990 mvneta_rx_csum(pp, rx_status, rxq->skb); 1991 if (rxq->left_size == 0) { 1992 int size = copy_size + MVNETA_MH_SIZE; 1993 1994 dma_sync_single_range_for_cpu(dev->dev.parent, 1995 phys_addr, 0, 1996 size, 1997 DMA_FROM_DEVICE); 1998 1999 /* leave the descriptor and buffer untouched */ 2000 } else { 2001 /* refill descriptor with new buffer later */ 2002 rx_desc->buf_phys_addr = 0; 2003 2004 frag_num = 0; 2005 frag_offset = copy_size + MVNETA_MH_SIZE; 2006 frag_size = min(rxq->left_size, 2007 (int)(PAGE_SIZE - frag_offset)); 2008 skb_add_rx_frag(rxq->skb, frag_num, page, 2009 frag_offset, frag_size, 2010 PAGE_SIZE); 2011 dma_unmap_page(dev->dev.parent, phys_addr, 2012 PAGE_SIZE, DMA_FROM_DEVICE); 2013 rxq->left_size -= frag_size; 2014 } 2015 } else { 2016 /* Middle or Last descriptor */ 2017 if (unlikely(!rxq->skb)) { 2018 pr_debug("no skb for rx_status 0x%x\n", 2019 rx_status); 2020 continue; 2021 } 2022 if (!rxq->left_size) { 2023 /* last descriptor has only FCS */ 2024 /* and can be discarded */ 2025 dma_sync_single_range_for_cpu(dev->dev.parent, 2026 phys_addr, 0, 2027 ETH_FCS_LEN, 2028 DMA_FROM_DEVICE); 2029 /* leave the descriptor and buffer untouched */ 2030 } else { 2031 /* refill descriptor with new buffer later */ 2032 rx_desc->buf_phys_addr = 0; 2033 2034 frag_num = skb_shinfo(rxq->skb)->nr_frags; 2035 frag_offset = 0; 2036 frag_size = min(rxq->left_size, 2037 (int)(PAGE_SIZE - frag_offset)); 2038 skb_add_rx_frag(rxq->skb, frag_num, page, 2039 frag_offset, frag_size, 2040 PAGE_SIZE); 2041 2042 dma_unmap_page(dev->dev.parent, phys_addr, 2043 PAGE_SIZE, DMA_FROM_DEVICE); 2044 2045 rxq->left_size -= frag_size; 2046 } 2047 } /* Middle or Last descriptor */ 2048 2049 if (!(rx_status & MVNETA_RXD_LAST_DESC)) 2050 /* no last descriptor this time */ 2051 continue; 2052 2053 if (rxq->left_size) { 2054 pr_err("get last desc, but left_size (%d) != 0\n", 2055 rxq->left_size); 2056 dev_kfree_skb_any(rxq->skb); 2057 rxq->left_size = 0; 2058 rxq->skb = NULL; 2059 continue; 2060 } 2061 rcvd_pkts++; 2062 rcvd_bytes += rxq->skb->len; 2063 2064 /* Linux processing */ 2065 rxq->skb->protocol = eth_type_trans(rxq->skb, dev); 2066 2067 if (dev->features & NETIF_F_GRO) 2068 napi_gro_receive(napi, rxq->skb); 2069 else 2070 netif_receive_skb(rxq->skb); 2071 2072 /* clean uncomplete skb pointer in queue */ 2073 rxq->skb = NULL; 2074 rxq->left_size = 0; 2075 } 2076 2077 if (rcvd_pkts) { 2078 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2079 2080 u64_stats_update_begin(&stats->syncp); 2081 stats->rx_packets += rcvd_pkts; 2082 stats->rx_bytes += rcvd_bytes; 2083 u64_stats_update_end(&stats->syncp); 2084 } 2085 2086 /* return some buffers to hardware queue, one at a time is too slow */ 2087 refill = mvneta_rx_refill_queue(pp, rxq); 2088 2089 /* Update rxq management counters */ 2090 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill); 2091 2092 return rcvd_pkts; 2093 } 2094 2095 /* Main rx processing when using hardware buffer management */ 2096 static int mvneta_rx_hwbm(struct napi_struct *napi, 2097 struct mvneta_port *pp, int rx_todo, 2098 struct mvneta_rx_queue *rxq) 2099 { 2100 struct net_device *dev = pp->dev; 2101 int rx_done; 2102 u32 rcvd_pkts = 0; 2103 u32 rcvd_bytes = 0; 2104 2105 /* Get number of received packets */ 2106 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2107 2108 if (rx_todo > rx_done) 2109 rx_todo = rx_done; 2110 2111 rx_done = 0; 2112 2113 /* Fairness NAPI loop */ 2114 while (rx_done < rx_todo) { 2115 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2116 struct mvneta_bm_pool *bm_pool = NULL; 2117 struct sk_buff *skb; 2118 unsigned char *data; 2119 dma_addr_t phys_addr; 2120 u32 rx_status, frag_size; 2121 int rx_bytes, err; 2122 u8 pool_id; 2123 2124 rx_done++; 2125 rx_status = rx_desc->status; 2126 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2127 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2128 phys_addr = rx_desc->buf_phys_addr; 2129 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2130 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2131 2132 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2133 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2134 err_drop_frame_ret_pool: 2135 /* Return the buffer to the pool */ 2136 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2137 rx_desc->buf_phys_addr); 2138 err_drop_frame: 2139 dev->stats.rx_errors++; 2140 mvneta_rx_error(pp, rx_desc); 2141 /* leave the descriptor untouched */ 2142 continue; 2143 } 2144 2145 if (rx_bytes <= rx_copybreak) { 2146 /* better copy a small frame and not unmap the DMA region */ 2147 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2148 if (unlikely(!skb)) 2149 goto err_drop_frame_ret_pool; 2150 2151 dma_sync_single_range_for_cpu(dev->dev.parent, 2152 rx_desc->buf_phys_addr, 2153 MVNETA_MH_SIZE + NET_SKB_PAD, 2154 rx_bytes, 2155 DMA_FROM_DEVICE); 2156 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 2157 rx_bytes); 2158 2159 skb->protocol = eth_type_trans(skb, dev); 2160 mvneta_rx_csum(pp, rx_status, skb); 2161 napi_gro_receive(napi, skb); 2162 2163 rcvd_pkts++; 2164 rcvd_bytes += rx_bytes; 2165 2166 /* Return the buffer to the pool */ 2167 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2168 rx_desc->buf_phys_addr); 2169 2170 /* leave the descriptor and buffer untouched */ 2171 continue; 2172 } 2173 2174 /* Refill processing */ 2175 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2176 if (err) { 2177 netdev_err(dev, "Linux processing - Can't refill\n"); 2178 rxq->refill_err++; 2179 goto err_drop_frame_ret_pool; 2180 } 2181 2182 frag_size = bm_pool->hwbm_pool.frag_size; 2183 2184 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2185 2186 /* After refill old buffer has to be unmapped regardless 2187 * the skb is successfully built or not. 2188 */ 2189 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2190 bm_pool->buf_size, DMA_FROM_DEVICE); 2191 if (!skb) 2192 goto err_drop_frame; 2193 2194 rcvd_pkts++; 2195 rcvd_bytes += rx_bytes; 2196 2197 /* Linux processing */ 2198 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2199 skb_put(skb, rx_bytes); 2200 2201 skb->protocol = eth_type_trans(skb, dev); 2202 2203 mvneta_rx_csum(pp, rx_status, skb); 2204 2205 napi_gro_receive(napi, skb); 2206 } 2207 2208 if (rcvd_pkts) { 2209 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2210 2211 u64_stats_update_begin(&stats->syncp); 2212 stats->rx_packets += rcvd_pkts; 2213 stats->rx_bytes += rcvd_bytes; 2214 u64_stats_update_end(&stats->syncp); 2215 } 2216 2217 /* Update rxq management counters */ 2218 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2219 2220 return rx_done; 2221 } 2222 2223 static inline void 2224 mvneta_tso_put_hdr(struct sk_buff *skb, 2225 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 2226 { 2227 struct mvneta_tx_desc *tx_desc; 2228 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2229 2230 txq->tx_skb[txq->txq_put_index] = NULL; 2231 tx_desc = mvneta_txq_next_desc_get(txq); 2232 tx_desc->data_size = hdr_len; 2233 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 2234 tx_desc->command |= MVNETA_TXD_F_DESC; 2235 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2236 txq->txq_put_index * TSO_HEADER_SIZE; 2237 mvneta_txq_inc_put(txq); 2238 } 2239 2240 static inline int 2241 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2242 struct sk_buff *skb, char *data, int size, 2243 bool last_tcp, bool is_last) 2244 { 2245 struct mvneta_tx_desc *tx_desc; 2246 2247 tx_desc = mvneta_txq_next_desc_get(txq); 2248 tx_desc->data_size = size; 2249 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2250 size, DMA_TO_DEVICE); 2251 if (unlikely(dma_mapping_error(dev->dev.parent, 2252 tx_desc->buf_phys_addr))) { 2253 mvneta_txq_desc_put(txq); 2254 return -ENOMEM; 2255 } 2256 2257 tx_desc->command = 0; 2258 txq->tx_skb[txq->txq_put_index] = NULL; 2259 2260 if (last_tcp) { 2261 /* last descriptor in the TCP packet */ 2262 tx_desc->command = MVNETA_TXD_L_DESC; 2263 2264 /* last descriptor in SKB */ 2265 if (is_last) 2266 txq->tx_skb[txq->txq_put_index] = skb; 2267 } 2268 mvneta_txq_inc_put(txq); 2269 return 0; 2270 } 2271 2272 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2273 struct mvneta_tx_queue *txq) 2274 { 2275 int total_len, data_left; 2276 int desc_count = 0; 2277 struct mvneta_port *pp = netdev_priv(dev); 2278 struct tso_t tso; 2279 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2280 int i; 2281 2282 /* Count needed descriptors */ 2283 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2284 return 0; 2285 2286 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2287 pr_info("*** Is this even possible???!?!?\n"); 2288 return 0; 2289 } 2290 2291 /* Initialize the TSO handler, and prepare the first payload */ 2292 tso_start(skb, &tso); 2293 2294 total_len = skb->len - hdr_len; 2295 while (total_len > 0) { 2296 char *hdr; 2297 2298 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2299 total_len -= data_left; 2300 desc_count++; 2301 2302 /* prepare packet headers: MAC + IP + TCP */ 2303 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2304 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2305 2306 mvneta_tso_put_hdr(skb, pp, txq); 2307 2308 while (data_left > 0) { 2309 int size; 2310 desc_count++; 2311 2312 size = min_t(int, tso.size, data_left); 2313 2314 if (mvneta_tso_put_data(dev, txq, skb, 2315 tso.data, size, 2316 size == data_left, 2317 total_len == 0)) 2318 goto err_release; 2319 data_left -= size; 2320 2321 tso_build_data(skb, &tso, size); 2322 } 2323 } 2324 2325 return desc_count; 2326 2327 err_release: 2328 /* Release all used data descriptors; header descriptors must not 2329 * be DMA-unmapped. 2330 */ 2331 for (i = desc_count - 1; i >= 0; i--) { 2332 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2333 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2334 dma_unmap_single(pp->dev->dev.parent, 2335 tx_desc->buf_phys_addr, 2336 tx_desc->data_size, 2337 DMA_TO_DEVICE); 2338 mvneta_txq_desc_put(txq); 2339 } 2340 return 0; 2341 } 2342 2343 /* Handle tx fragmentation processing */ 2344 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2345 struct mvneta_tx_queue *txq) 2346 { 2347 struct mvneta_tx_desc *tx_desc; 2348 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2349 2350 for (i = 0; i < nr_frags; i++) { 2351 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2352 void *addr = page_address(frag->page.p) + frag->page_offset; 2353 2354 tx_desc = mvneta_txq_next_desc_get(txq); 2355 tx_desc->data_size = frag->size; 2356 2357 tx_desc->buf_phys_addr = 2358 dma_map_single(pp->dev->dev.parent, addr, 2359 tx_desc->data_size, DMA_TO_DEVICE); 2360 2361 if (dma_mapping_error(pp->dev->dev.parent, 2362 tx_desc->buf_phys_addr)) { 2363 mvneta_txq_desc_put(txq); 2364 goto error; 2365 } 2366 2367 if (i == nr_frags - 1) { 2368 /* Last descriptor */ 2369 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2370 txq->tx_skb[txq->txq_put_index] = skb; 2371 } else { 2372 /* Descriptor in the middle: Not First, Not Last */ 2373 tx_desc->command = 0; 2374 txq->tx_skb[txq->txq_put_index] = NULL; 2375 } 2376 mvneta_txq_inc_put(txq); 2377 } 2378 2379 return 0; 2380 2381 error: 2382 /* Release all descriptors that were used to map fragments of 2383 * this packet, as well as the corresponding DMA mappings 2384 */ 2385 for (i = i - 1; i >= 0; i--) { 2386 tx_desc = txq->descs + i; 2387 dma_unmap_single(pp->dev->dev.parent, 2388 tx_desc->buf_phys_addr, 2389 tx_desc->data_size, 2390 DMA_TO_DEVICE); 2391 mvneta_txq_desc_put(txq); 2392 } 2393 2394 return -ENOMEM; 2395 } 2396 2397 /* Main tx processing */ 2398 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2399 { 2400 struct mvneta_port *pp = netdev_priv(dev); 2401 u16 txq_id = skb_get_queue_mapping(skb); 2402 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2403 struct mvneta_tx_desc *tx_desc; 2404 int len = skb->len; 2405 int frags = 0; 2406 u32 tx_cmd; 2407 2408 if (!netif_running(dev)) 2409 goto out; 2410 2411 if (skb_is_gso(skb)) { 2412 frags = mvneta_tx_tso(skb, dev, txq); 2413 goto out; 2414 } 2415 2416 frags = skb_shinfo(skb)->nr_frags + 1; 2417 2418 /* Get a descriptor for the first part of the packet */ 2419 tx_desc = mvneta_txq_next_desc_get(txq); 2420 2421 tx_cmd = mvneta_skb_tx_csum(pp, skb); 2422 2423 tx_desc->data_size = skb_headlen(skb); 2424 2425 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2426 tx_desc->data_size, 2427 DMA_TO_DEVICE); 2428 if (unlikely(dma_mapping_error(dev->dev.parent, 2429 tx_desc->buf_phys_addr))) { 2430 mvneta_txq_desc_put(txq); 2431 frags = 0; 2432 goto out; 2433 } 2434 2435 if (frags == 1) { 2436 /* First and Last descriptor */ 2437 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2438 tx_desc->command = tx_cmd; 2439 txq->tx_skb[txq->txq_put_index] = skb; 2440 mvneta_txq_inc_put(txq); 2441 } else { 2442 /* First but not Last */ 2443 tx_cmd |= MVNETA_TXD_F_DESC; 2444 txq->tx_skb[txq->txq_put_index] = NULL; 2445 mvneta_txq_inc_put(txq); 2446 tx_desc->command = tx_cmd; 2447 /* Continue with other skb fragments */ 2448 if (mvneta_tx_frag_process(pp, skb, txq)) { 2449 dma_unmap_single(dev->dev.parent, 2450 tx_desc->buf_phys_addr, 2451 tx_desc->data_size, 2452 DMA_TO_DEVICE); 2453 mvneta_txq_desc_put(txq); 2454 frags = 0; 2455 goto out; 2456 } 2457 } 2458 2459 out: 2460 if (frags > 0) { 2461 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2462 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2463 2464 netdev_tx_sent_queue(nq, len); 2465 2466 txq->count += frags; 2467 if (txq->count >= txq->tx_stop_threshold) 2468 netif_tx_stop_queue(nq); 2469 2470 if (!skb->xmit_more || netif_xmit_stopped(nq) || 2471 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2472 mvneta_txq_pend_desc_add(pp, txq, frags); 2473 else 2474 txq->pending += frags; 2475 2476 u64_stats_update_begin(&stats->syncp); 2477 stats->tx_packets++; 2478 stats->tx_bytes += len; 2479 u64_stats_update_end(&stats->syncp); 2480 } else { 2481 dev->stats.tx_dropped++; 2482 dev_kfree_skb_any(skb); 2483 } 2484 2485 return NETDEV_TX_OK; 2486 } 2487 2488 2489 /* Free tx resources, when resetting a port */ 2490 static void mvneta_txq_done_force(struct mvneta_port *pp, 2491 struct mvneta_tx_queue *txq) 2492 2493 { 2494 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2495 int tx_done = txq->count; 2496 2497 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 2498 2499 /* reset txq */ 2500 txq->count = 0; 2501 txq->txq_put_index = 0; 2502 txq->txq_get_index = 0; 2503 } 2504 2505 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2506 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2507 */ 2508 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2509 { 2510 struct mvneta_tx_queue *txq; 2511 struct netdev_queue *nq; 2512 2513 while (cause_tx_done) { 2514 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2515 2516 nq = netdev_get_tx_queue(pp->dev, txq->id); 2517 __netif_tx_lock(nq, smp_processor_id()); 2518 2519 if (txq->count) 2520 mvneta_txq_done(pp, txq); 2521 2522 __netif_tx_unlock(nq); 2523 cause_tx_done &= ~((1 << txq->id)); 2524 } 2525 } 2526 2527 /* Compute crc8 of the specified address, using a unique algorithm , 2528 * according to hw spec, different than generic crc8 algorithm 2529 */ 2530 static int mvneta_addr_crc(unsigned char *addr) 2531 { 2532 int crc = 0; 2533 int i; 2534 2535 for (i = 0; i < ETH_ALEN; i++) { 2536 int j; 2537 2538 crc = (crc ^ addr[i]) << 8; 2539 for (j = 7; j >= 0; j--) { 2540 if (crc & (0x100 << j)) 2541 crc ^= 0x107 << j; 2542 } 2543 } 2544 2545 return crc; 2546 } 2547 2548 /* This method controls the net device special MAC multicast support. 2549 * The Special Multicast Table for MAC addresses supports MAC of the form 2550 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2551 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2552 * Table entries in the DA-Filter table. This method set the Special 2553 * Multicast Table appropriate entry. 2554 */ 2555 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2556 unsigned char last_byte, 2557 int queue) 2558 { 2559 unsigned int smc_table_reg; 2560 unsigned int tbl_offset; 2561 unsigned int reg_offset; 2562 2563 /* Register offset from SMC table base */ 2564 tbl_offset = (last_byte / 4); 2565 /* Entry offset within the above reg */ 2566 reg_offset = last_byte % 4; 2567 2568 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2569 + tbl_offset * 4)); 2570 2571 if (queue == -1) 2572 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2573 else { 2574 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2575 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2576 } 2577 2578 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2579 smc_table_reg); 2580 } 2581 2582 /* This method controls the network device Other MAC multicast support. 2583 * The Other Multicast Table is used for multicast of another type. 2584 * A CRC-8 is used as an index to the Other Multicast Table entries 2585 * in the DA-Filter table. 2586 * The method gets the CRC-8 value from the calling routine and 2587 * sets the Other Multicast Table appropriate entry according to the 2588 * specified CRC-8 . 2589 */ 2590 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2591 unsigned char crc8, 2592 int queue) 2593 { 2594 unsigned int omc_table_reg; 2595 unsigned int tbl_offset; 2596 unsigned int reg_offset; 2597 2598 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2599 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2600 2601 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2602 2603 if (queue == -1) { 2604 /* Clear accepts frame bit at specified Other DA table entry */ 2605 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2606 } else { 2607 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2608 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2609 } 2610 2611 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2612 } 2613 2614 /* The network device supports multicast using two tables: 2615 * 1) Special Multicast Table for MAC addresses of the form 2616 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2617 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2618 * Table entries in the DA-Filter table. 2619 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2620 * is used as an index to the Other Multicast Table entries in the 2621 * DA-Filter table. 2622 */ 2623 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2624 int queue) 2625 { 2626 unsigned char crc_result = 0; 2627 2628 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2629 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2630 return 0; 2631 } 2632 2633 crc_result = mvneta_addr_crc(p_addr); 2634 if (queue == -1) { 2635 if (pp->mcast_count[crc_result] == 0) { 2636 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2637 crc_result); 2638 return -EINVAL; 2639 } 2640 2641 pp->mcast_count[crc_result]--; 2642 if (pp->mcast_count[crc_result] != 0) { 2643 netdev_info(pp->dev, 2644 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2645 pp->mcast_count[crc_result], crc_result); 2646 return -EINVAL; 2647 } 2648 } else 2649 pp->mcast_count[crc_result]++; 2650 2651 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2652 2653 return 0; 2654 } 2655 2656 /* Configure Fitering mode of Ethernet port */ 2657 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2658 int is_promisc) 2659 { 2660 u32 port_cfg_reg, val; 2661 2662 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2663 2664 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2665 2666 /* Set / Clear UPM bit in port configuration register */ 2667 if (is_promisc) { 2668 /* Accept all Unicast addresses */ 2669 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2670 val |= MVNETA_FORCE_UNI; 2671 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2672 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2673 } else { 2674 /* Reject all Unicast addresses */ 2675 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2676 val &= ~MVNETA_FORCE_UNI; 2677 } 2678 2679 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2680 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2681 } 2682 2683 /* register unicast and multicast addresses */ 2684 static void mvneta_set_rx_mode(struct net_device *dev) 2685 { 2686 struct mvneta_port *pp = netdev_priv(dev); 2687 struct netdev_hw_addr *ha; 2688 2689 if (dev->flags & IFF_PROMISC) { 2690 /* Accept all: Multicast + Unicast */ 2691 mvneta_rx_unicast_promisc_set(pp, 1); 2692 mvneta_set_ucast_table(pp, pp->rxq_def); 2693 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2694 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2695 } else { 2696 /* Accept single Unicast */ 2697 mvneta_rx_unicast_promisc_set(pp, 0); 2698 mvneta_set_ucast_table(pp, -1); 2699 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 2700 2701 if (dev->flags & IFF_ALLMULTI) { 2702 /* Accept all multicast */ 2703 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2704 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2705 } else { 2706 /* Accept only initialized multicast */ 2707 mvneta_set_special_mcast_table(pp, -1); 2708 mvneta_set_other_mcast_table(pp, -1); 2709 2710 if (!netdev_mc_empty(dev)) { 2711 netdev_for_each_mc_addr(ha, dev) { 2712 mvneta_mcast_addr_set(pp, ha->addr, 2713 pp->rxq_def); 2714 } 2715 } 2716 } 2717 } 2718 } 2719 2720 /* Interrupt handling - the callback for request_irq() */ 2721 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2722 { 2723 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 2724 2725 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2726 napi_schedule(&pp->napi); 2727 2728 return IRQ_HANDLED; 2729 } 2730 2731 /* Interrupt handling - the callback for request_percpu_irq() */ 2732 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 2733 { 2734 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 2735 2736 disable_percpu_irq(port->pp->dev->irq); 2737 napi_schedule(&port->napi); 2738 2739 return IRQ_HANDLED; 2740 } 2741 2742 static void mvneta_link_change(struct mvneta_port *pp) 2743 { 2744 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2745 2746 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP)); 2747 } 2748 2749 /* NAPI handler 2750 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2751 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2752 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2753 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2754 * Each CPU has its own causeRxTx register 2755 */ 2756 static int mvneta_poll(struct napi_struct *napi, int budget) 2757 { 2758 int rx_done = 0; 2759 u32 cause_rx_tx; 2760 int rx_queue; 2761 struct mvneta_port *pp = netdev_priv(napi->dev); 2762 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2763 2764 if (!netif_running(pp->dev)) { 2765 napi_complete(napi); 2766 return rx_done; 2767 } 2768 2769 /* Read cause register */ 2770 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 2771 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 2772 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 2773 2774 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2775 2776 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE | 2777 MVNETA_CAUSE_LINK_CHANGE)) 2778 mvneta_link_change(pp); 2779 } 2780 2781 /* Release Tx descriptors */ 2782 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2783 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2784 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2785 } 2786 2787 /* For the case where the last mvneta_poll did not process all 2788 * RX packets 2789 */ 2790 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 2791 2792 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 2793 port->cause_rx_tx; 2794 2795 if (rx_queue) { 2796 rx_queue = rx_queue - 1; 2797 if (pp->bm_priv) 2798 rx_done = mvneta_rx_hwbm(napi, pp, budget, 2799 &pp->rxqs[rx_queue]); 2800 else 2801 rx_done = mvneta_rx_swbm(napi, pp, budget, 2802 &pp->rxqs[rx_queue]); 2803 } 2804 2805 if (rx_done < budget) { 2806 cause_rx_tx = 0; 2807 napi_complete_done(napi, rx_done); 2808 2809 if (pp->neta_armada3700) { 2810 unsigned long flags; 2811 2812 local_irq_save(flags); 2813 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2814 MVNETA_RX_INTR_MASK(rxq_number) | 2815 MVNETA_TX_INTR_MASK(txq_number) | 2816 MVNETA_MISCINTR_INTR_MASK); 2817 local_irq_restore(flags); 2818 } else { 2819 enable_percpu_irq(pp->dev->irq, 0); 2820 } 2821 } 2822 2823 if (pp->neta_armada3700) 2824 pp->cause_rx_tx = cause_rx_tx; 2825 else 2826 port->cause_rx_tx = cause_rx_tx; 2827 2828 return rx_done; 2829 } 2830 2831 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2832 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2833 int num) 2834 { 2835 int i; 2836 2837 for (i = 0; i < num; i++) { 2838 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2839 if (mvneta_rx_refill(pp, rxq->descs + i, rxq, 2840 GFP_KERNEL) != 0) { 2841 netdev_err(pp->dev, 2842 "%s:rxq %d, %d of %d buffs filled\n", 2843 __func__, rxq->id, i, num); 2844 break; 2845 } 2846 } 2847 2848 /* Add this number of RX descriptors as non occupied (ready to 2849 * get packets) 2850 */ 2851 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2852 2853 return i; 2854 } 2855 2856 /* Free all packets pending transmit from all TXQs and reset TX port */ 2857 static void mvneta_tx_reset(struct mvneta_port *pp) 2858 { 2859 int queue; 2860 2861 /* free the skb's in the tx ring */ 2862 for (queue = 0; queue < txq_number; queue++) 2863 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2864 2865 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2866 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2867 } 2868 2869 static void mvneta_rx_reset(struct mvneta_port *pp) 2870 { 2871 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2872 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2873 } 2874 2875 /* Rx/Tx queue initialization/cleanup methods */ 2876 2877 static int mvneta_rxq_sw_init(struct mvneta_port *pp, 2878 struct mvneta_rx_queue *rxq) 2879 { 2880 rxq->size = pp->rx_ring_size; 2881 2882 /* Allocate memory for RX descriptors */ 2883 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2884 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2885 &rxq->descs_phys, GFP_KERNEL); 2886 if (!rxq->descs) 2887 return -ENOMEM; 2888 2889 rxq->last_desc = rxq->size - 1; 2890 2891 return 0; 2892 } 2893 2894 static void mvneta_rxq_hw_init(struct mvneta_port *pp, 2895 struct mvneta_rx_queue *rxq) 2896 { 2897 /* Set Rx descriptors queue starting address */ 2898 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2899 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2900 2901 /* Set coalescing pkts and time */ 2902 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2903 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2904 2905 if (!pp->bm_priv) { 2906 /* Set Offset */ 2907 mvneta_rxq_offset_set(pp, rxq, 0); 2908 mvneta_rxq_buf_size_set(pp, rxq, pp->frag_size); 2909 mvneta_rxq_bm_disable(pp, rxq); 2910 mvneta_rxq_fill(pp, rxq, rxq->size); 2911 } else { 2912 /* Set Offset */ 2913 mvneta_rxq_offset_set(pp, rxq, 2914 NET_SKB_PAD - pp->rx_offset_correction); 2915 2916 mvneta_rxq_bm_enable(pp, rxq); 2917 /* Fill RXQ with buffers from RX pool */ 2918 mvneta_rxq_long_pool_set(pp, rxq); 2919 mvneta_rxq_short_pool_set(pp, rxq); 2920 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 2921 } 2922 } 2923 2924 /* Create a specified RX queue */ 2925 static int mvneta_rxq_init(struct mvneta_port *pp, 2926 struct mvneta_rx_queue *rxq) 2927 2928 { 2929 int ret; 2930 2931 ret = mvneta_rxq_sw_init(pp, rxq); 2932 if (ret < 0) 2933 return ret; 2934 2935 mvneta_rxq_hw_init(pp, rxq); 2936 2937 return 0; 2938 } 2939 2940 /* Cleanup Rx queue */ 2941 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2942 struct mvneta_rx_queue *rxq) 2943 { 2944 mvneta_rxq_drop_pkts(pp, rxq); 2945 2946 if (rxq->skb) 2947 dev_kfree_skb_any(rxq->skb); 2948 2949 if (rxq->descs) 2950 dma_free_coherent(pp->dev->dev.parent, 2951 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2952 rxq->descs, 2953 rxq->descs_phys); 2954 2955 rxq->descs = NULL; 2956 rxq->last_desc = 0; 2957 rxq->next_desc_to_proc = 0; 2958 rxq->descs_phys = 0; 2959 rxq->first_to_refill = 0; 2960 rxq->refill_num = 0; 2961 rxq->skb = NULL; 2962 rxq->left_size = 0; 2963 } 2964 2965 static int mvneta_txq_sw_init(struct mvneta_port *pp, 2966 struct mvneta_tx_queue *txq) 2967 { 2968 int cpu; 2969 2970 txq->size = pp->tx_ring_size; 2971 2972 /* A queue must always have room for at least one skb. 2973 * Therefore, stop the queue when the free entries reaches 2974 * the maximum number of descriptors per skb. 2975 */ 2976 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2977 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2978 2979 /* Allocate memory for TX descriptors */ 2980 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2981 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2982 &txq->descs_phys, GFP_KERNEL); 2983 if (!txq->descs) 2984 return -ENOMEM; 2985 2986 txq->last_desc = txq->size - 1; 2987 2988 txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb), 2989 GFP_KERNEL); 2990 if (!txq->tx_skb) { 2991 dma_free_coherent(pp->dev->dev.parent, 2992 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2993 txq->descs, txq->descs_phys); 2994 return -ENOMEM; 2995 } 2996 2997 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 2998 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 2999 txq->size * TSO_HEADER_SIZE, 3000 &txq->tso_hdrs_phys, GFP_KERNEL); 3001 if (!txq->tso_hdrs) { 3002 kfree(txq->tx_skb); 3003 dma_free_coherent(pp->dev->dev.parent, 3004 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3005 txq->descs, txq->descs_phys); 3006 return -ENOMEM; 3007 } 3008 3009 /* Setup XPS mapping */ 3010 if (txq_number > 1) 3011 cpu = txq->id % num_present_cpus(); 3012 else 3013 cpu = pp->rxq_def % num_present_cpus(); 3014 cpumask_set_cpu(cpu, &txq->affinity_mask); 3015 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 3016 3017 return 0; 3018 } 3019 3020 static void mvneta_txq_hw_init(struct mvneta_port *pp, 3021 struct mvneta_tx_queue *txq) 3022 { 3023 /* Set maximum bandwidth for enabled TXQs */ 3024 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 3025 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 3026 3027 /* Set Tx descriptors queue starting address */ 3028 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 3029 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 3030 3031 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3032 } 3033 3034 /* Create and initialize a tx queue */ 3035 static int mvneta_txq_init(struct mvneta_port *pp, 3036 struct mvneta_tx_queue *txq) 3037 { 3038 int ret; 3039 3040 ret = mvneta_txq_sw_init(pp, txq); 3041 if (ret < 0) 3042 return ret; 3043 3044 mvneta_txq_hw_init(pp, txq); 3045 3046 return 0; 3047 } 3048 3049 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 3050 static void mvneta_txq_sw_deinit(struct mvneta_port *pp, 3051 struct mvneta_tx_queue *txq) 3052 { 3053 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 3054 3055 kfree(txq->tx_skb); 3056 3057 if (txq->tso_hdrs) 3058 dma_free_coherent(pp->dev->dev.parent, 3059 txq->size * TSO_HEADER_SIZE, 3060 txq->tso_hdrs, txq->tso_hdrs_phys); 3061 if (txq->descs) 3062 dma_free_coherent(pp->dev->dev.parent, 3063 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3064 txq->descs, txq->descs_phys); 3065 3066 netdev_tx_reset_queue(nq); 3067 3068 txq->descs = NULL; 3069 txq->last_desc = 0; 3070 txq->next_desc_to_proc = 0; 3071 txq->descs_phys = 0; 3072 } 3073 3074 static void mvneta_txq_hw_deinit(struct mvneta_port *pp, 3075 struct mvneta_tx_queue *txq) 3076 { 3077 /* Set minimum bandwidth for disabled TXQs */ 3078 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 3079 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 3080 3081 /* Set Tx descriptors queue starting address and size */ 3082 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 3083 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 3084 } 3085 3086 static void mvneta_txq_deinit(struct mvneta_port *pp, 3087 struct mvneta_tx_queue *txq) 3088 { 3089 mvneta_txq_sw_deinit(pp, txq); 3090 mvneta_txq_hw_deinit(pp, txq); 3091 } 3092 3093 /* Cleanup all Tx queues */ 3094 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 3095 { 3096 int queue; 3097 3098 for (queue = 0; queue < txq_number; queue++) 3099 mvneta_txq_deinit(pp, &pp->txqs[queue]); 3100 } 3101 3102 /* Cleanup all Rx queues */ 3103 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 3104 { 3105 int queue; 3106 3107 for (queue = 0; queue < rxq_number; queue++) 3108 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 3109 } 3110 3111 3112 /* Init all Rx queues */ 3113 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3114 { 3115 int queue; 3116 3117 for (queue = 0; queue < rxq_number; queue++) { 3118 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3119 3120 if (err) { 3121 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3122 __func__, queue); 3123 mvneta_cleanup_rxqs(pp); 3124 return err; 3125 } 3126 } 3127 3128 return 0; 3129 } 3130 3131 /* Init all tx queues */ 3132 static int mvneta_setup_txqs(struct mvneta_port *pp) 3133 { 3134 int queue; 3135 3136 for (queue = 0; queue < txq_number; queue++) { 3137 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3138 if (err) { 3139 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3140 __func__, queue); 3141 mvneta_cleanup_txqs(pp); 3142 return err; 3143 } 3144 } 3145 3146 return 0; 3147 } 3148 3149 static void mvneta_start_dev(struct mvneta_port *pp) 3150 { 3151 int cpu; 3152 3153 mvneta_max_rx_size_set(pp, pp->pkt_size); 3154 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3155 3156 /* start the Rx/Tx activity */ 3157 mvneta_port_enable(pp); 3158 3159 if (!pp->neta_armada3700) { 3160 /* Enable polling on the port */ 3161 for_each_online_cpu(cpu) { 3162 struct mvneta_pcpu_port *port = 3163 per_cpu_ptr(pp->ports, cpu); 3164 3165 napi_enable(&port->napi); 3166 } 3167 } else { 3168 napi_enable(&pp->napi); 3169 } 3170 3171 /* Unmask interrupts. It has to be done from each CPU */ 3172 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3173 3174 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3175 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3176 MVNETA_CAUSE_LINK_CHANGE); 3177 3178 phylink_start(pp->phylink); 3179 netif_tx_start_all_queues(pp->dev); 3180 } 3181 3182 static void mvneta_stop_dev(struct mvneta_port *pp) 3183 { 3184 unsigned int cpu; 3185 3186 phylink_stop(pp->phylink); 3187 3188 if (!pp->neta_armada3700) { 3189 for_each_online_cpu(cpu) { 3190 struct mvneta_pcpu_port *port = 3191 per_cpu_ptr(pp->ports, cpu); 3192 3193 napi_disable(&port->napi); 3194 } 3195 } else { 3196 napi_disable(&pp->napi); 3197 } 3198 3199 netif_carrier_off(pp->dev); 3200 3201 mvneta_port_down(pp); 3202 netif_tx_stop_all_queues(pp->dev); 3203 3204 /* Stop the port activity */ 3205 mvneta_port_disable(pp); 3206 3207 /* Clear all ethernet port interrupts */ 3208 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3209 3210 /* Mask all ethernet port interrupts */ 3211 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3212 3213 mvneta_tx_reset(pp); 3214 mvneta_rx_reset(pp); 3215 } 3216 3217 static void mvneta_percpu_enable(void *arg) 3218 { 3219 struct mvneta_port *pp = arg; 3220 3221 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3222 } 3223 3224 static void mvneta_percpu_disable(void *arg) 3225 { 3226 struct mvneta_port *pp = arg; 3227 3228 disable_percpu_irq(pp->dev->irq); 3229 } 3230 3231 /* Change the device mtu */ 3232 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3233 { 3234 struct mvneta_port *pp = netdev_priv(dev); 3235 int ret; 3236 3237 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3238 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3239 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3240 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3241 } 3242 3243 dev->mtu = mtu; 3244 3245 if (!netif_running(dev)) { 3246 if (pp->bm_priv) 3247 mvneta_bm_update_mtu(pp, mtu); 3248 3249 netdev_update_features(dev); 3250 return 0; 3251 } 3252 3253 /* The interface is running, so we have to force a 3254 * reallocation of the queues 3255 */ 3256 mvneta_stop_dev(pp); 3257 on_each_cpu(mvneta_percpu_disable, pp, true); 3258 3259 mvneta_cleanup_txqs(pp); 3260 mvneta_cleanup_rxqs(pp); 3261 3262 if (pp->bm_priv) 3263 mvneta_bm_update_mtu(pp, mtu); 3264 3265 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3266 3267 ret = mvneta_setup_rxqs(pp); 3268 if (ret) { 3269 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3270 return ret; 3271 } 3272 3273 ret = mvneta_setup_txqs(pp); 3274 if (ret) { 3275 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3276 return ret; 3277 } 3278 3279 on_each_cpu(mvneta_percpu_enable, pp, true); 3280 mvneta_start_dev(pp); 3281 3282 netdev_update_features(dev); 3283 3284 return 0; 3285 } 3286 3287 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3288 netdev_features_t features) 3289 { 3290 struct mvneta_port *pp = netdev_priv(dev); 3291 3292 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3293 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3294 netdev_info(dev, 3295 "Disable IP checksum for MTU greater than %dB\n", 3296 pp->tx_csum_limit); 3297 } 3298 3299 return features; 3300 } 3301 3302 /* Get mac address */ 3303 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3304 { 3305 u32 mac_addr_l, mac_addr_h; 3306 3307 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3308 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3309 addr[0] = (mac_addr_h >> 24) & 0xFF; 3310 addr[1] = (mac_addr_h >> 16) & 0xFF; 3311 addr[2] = (mac_addr_h >> 8) & 0xFF; 3312 addr[3] = mac_addr_h & 0xFF; 3313 addr[4] = (mac_addr_l >> 8) & 0xFF; 3314 addr[5] = mac_addr_l & 0xFF; 3315 } 3316 3317 /* Handle setting mac address */ 3318 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3319 { 3320 struct mvneta_port *pp = netdev_priv(dev); 3321 struct sockaddr *sockaddr = addr; 3322 int ret; 3323 3324 ret = eth_prepare_mac_addr_change(dev, addr); 3325 if (ret < 0) 3326 return ret; 3327 /* Remove previous address table entry */ 3328 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3329 3330 /* Set new addr in hw */ 3331 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3332 3333 eth_commit_mac_addr_change(dev, addr); 3334 return 0; 3335 } 3336 3337 static void mvneta_validate(struct net_device *ndev, unsigned long *supported, 3338 struct phylink_link_state *state) 3339 { 3340 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 3341 3342 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */ 3343 if (state->interface != PHY_INTERFACE_MODE_NA && 3344 state->interface != PHY_INTERFACE_MODE_QSGMII && 3345 state->interface != PHY_INTERFACE_MODE_SGMII && 3346 !phy_interface_mode_is_8023z(state->interface) && 3347 !phy_interface_mode_is_rgmii(state->interface)) { 3348 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); 3349 return; 3350 } 3351 3352 /* Allow all the expected bits */ 3353 phylink_set(mask, Autoneg); 3354 phylink_set_port_modes(mask); 3355 3356 /* Asymmetric pause is unsupported */ 3357 phylink_set(mask, Pause); 3358 /* Half-duplex at speeds higher than 100Mbit is unsupported */ 3359 phylink_set(mask, 1000baseT_Full); 3360 phylink_set(mask, 1000baseX_Full); 3361 3362 if (!phy_interface_mode_is_8023z(state->interface)) { 3363 /* 10M and 100M are only supported in non-802.3z mode */ 3364 phylink_set(mask, 10baseT_Half); 3365 phylink_set(mask, 10baseT_Full); 3366 phylink_set(mask, 100baseT_Half); 3367 phylink_set(mask, 100baseT_Full); 3368 } 3369 3370 bitmap_and(supported, supported, mask, 3371 __ETHTOOL_LINK_MODE_MASK_NBITS); 3372 bitmap_and(state->advertising, state->advertising, mask, 3373 __ETHTOOL_LINK_MODE_MASK_NBITS); 3374 } 3375 3376 static int mvneta_mac_link_state(struct net_device *ndev, 3377 struct phylink_link_state *state) 3378 { 3379 struct mvneta_port *pp = netdev_priv(ndev); 3380 u32 gmac_stat; 3381 3382 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3383 3384 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 3385 state->speed = SPEED_1000; 3386 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 3387 state->speed = SPEED_100; 3388 else 3389 state->speed = SPEED_10; 3390 3391 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE); 3392 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 3393 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 3394 3395 state->pause = 0; 3396 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE) 3397 state->pause |= MLO_PAUSE_RX; 3398 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE) 3399 state->pause |= MLO_PAUSE_TX; 3400 3401 return 1; 3402 } 3403 3404 static void mvneta_mac_an_restart(struct net_device *ndev) 3405 { 3406 struct mvneta_port *pp = netdev_priv(ndev); 3407 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3408 3409 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3410 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN); 3411 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3412 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN); 3413 } 3414 3415 static void mvneta_mac_config(struct net_device *ndev, unsigned int mode, 3416 const struct phylink_link_state *state) 3417 { 3418 struct mvneta_port *pp = netdev_priv(ndev); 3419 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 3420 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3421 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 3422 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3423 3424 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X; 3425 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE | 3426 MVNETA_GMAC2_PORT_RESET); 3427 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 3428 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE | 3429 MVNETA_GMAC_INBAND_RESTART_AN | 3430 MVNETA_GMAC_CONFIG_MII_SPEED | 3431 MVNETA_GMAC_CONFIG_GMII_SPEED | 3432 MVNETA_GMAC_AN_SPEED_EN | 3433 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL | 3434 MVNETA_GMAC_CONFIG_FLOW_CTRL | 3435 MVNETA_GMAC_AN_FLOW_CTRL_EN | 3436 MVNETA_GMAC_CONFIG_FULL_DUPLEX | 3437 MVNETA_GMAC_AN_DUPLEX_EN); 3438 3439 /* Even though it might look weird, when we're configured in 3440 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3441 */ 3442 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII; 3443 3444 if (state->interface == PHY_INTERFACE_MODE_QSGMII || 3445 state->interface == PHY_INTERFACE_MODE_SGMII || 3446 phy_interface_mode_is_8023z(state->interface)) 3447 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE; 3448 3449 if (phylink_test(state->advertising, Pause)) 3450 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; 3451 if (state->pause & MLO_PAUSE_TXRX_MASK) 3452 new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 3453 3454 if (!phylink_autoneg_inband(mode)) { 3455 /* Phy or fixed speed */ 3456 if (state->duplex) 3457 new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3458 3459 if (state->speed == SPEED_1000) 3460 new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3461 else if (state->speed == SPEED_100) 3462 new_an |= MVNETA_GMAC_CONFIG_MII_SPEED; 3463 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { 3464 /* SGMII mode receives the state from the PHY */ 3465 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE; 3466 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3467 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3468 MVNETA_GMAC_FORCE_LINK_PASS)) | 3469 MVNETA_GMAC_INBAND_AN_ENABLE | 3470 MVNETA_GMAC_AN_SPEED_EN | 3471 MVNETA_GMAC_AN_DUPLEX_EN; 3472 } else { 3473 /* 802.3z negotiation - only 1000base-X */ 3474 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X; 3475 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3476 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3477 MVNETA_GMAC_FORCE_LINK_PASS)) | 3478 MVNETA_GMAC_INBAND_AN_ENABLE | 3479 MVNETA_GMAC_CONFIG_GMII_SPEED | 3480 /* The MAC only supports FD mode */ 3481 MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3482 3483 if (state->pause & MLO_PAUSE_AN && state->an_enabled) 3484 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN; 3485 } 3486 3487 /* Armada 370 documentation says we can only change the port mode 3488 * and in-band enable when the link is down, so force it down 3489 * while making these changes. We also do this for GMAC_CTRL2 */ 3490 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X || 3491 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE || 3492 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) { 3493 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3494 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) | 3495 MVNETA_GMAC_FORCE_LINK_DOWN); 3496 } 3497 3498 if (new_ctrl0 != gmac_ctrl0) 3499 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0); 3500 if (new_ctrl2 != gmac_ctrl2) 3501 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2); 3502 if (new_clk != gmac_clk) 3503 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk); 3504 if (new_an != gmac_an) 3505 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an); 3506 3507 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) { 3508 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 3509 MVNETA_GMAC2_PORT_RESET) != 0) 3510 continue; 3511 } 3512 } 3513 3514 static void mvneta_set_eee(struct mvneta_port *pp, bool enable) 3515 { 3516 u32 lpi_ctl1; 3517 3518 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1); 3519 if (enable) 3520 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE; 3521 else 3522 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE; 3523 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1); 3524 } 3525 3526 static void mvneta_mac_link_down(struct net_device *ndev, unsigned int mode, 3527 phy_interface_t interface) 3528 { 3529 struct mvneta_port *pp = netdev_priv(ndev); 3530 u32 val; 3531 3532 mvneta_port_down(pp); 3533 3534 if (!phylink_autoneg_inband(mode)) { 3535 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3536 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 3537 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 3538 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3539 } 3540 3541 pp->eee_active = false; 3542 mvneta_set_eee(pp, false); 3543 } 3544 3545 static void mvneta_mac_link_up(struct net_device *ndev, unsigned int mode, 3546 phy_interface_t interface, 3547 struct phy_device *phy) 3548 { 3549 struct mvneta_port *pp = netdev_priv(ndev); 3550 u32 val; 3551 3552 if (!phylink_autoneg_inband(mode)) { 3553 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3554 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 3555 val |= MVNETA_GMAC_FORCE_LINK_PASS; 3556 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3557 } 3558 3559 mvneta_port_up(pp); 3560 3561 if (phy && pp->eee_enabled) { 3562 pp->eee_active = phy_init_eee(phy, 0) >= 0; 3563 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled); 3564 } 3565 } 3566 3567 static const struct phylink_mac_ops mvneta_phylink_ops = { 3568 .validate = mvneta_validate, 3569 .mac_link_state = mvneta_mac_link_state, 3570 .mac_an_restart = mvneta_mac_an_restart, 3571 .mac_config = mvneta_mac_config, 3572 .mac_link_down = mvneta_mac_link_down, 3573 .mac_link_up = mvneta_mac_link_up, 3574 }; 3575 3576 static int mvneta_mdio_probe(struct mvneta_port *pp) 3577 { 3578 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 3579 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0); 3580 3581 if (err) 3582 netdev_err(pp->dev, "could not attach PHY: %d\n", err); 3583 3584 phylink_ethtool_get_wol(pp->phylink, &wol); 3585 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); 3586 3587 return err; 3588 } 3589 3590 static void mvneta_mdio_remove(struct mvneta_port *pp) 3591 { 3592 phylink_disconnect_phy(pp->phylink); 3593 } 3594 3595 /* Electing a CPU must be done in an atomic way: it should be done 3596 * after or before the removal/insertion of a CPU and this function is 3597 * not reentrant. 3598 */ 3599 static void mvneta_percpu_elect(struct mvneta_port *pp) 3600 { 3601 int elected_cpu = 0, max_cpu, cpu, i = 0; 3602 3603 /* Use the cpu associated to the rxq when it is online, in all 3604 * the other cases, use the cpu 0 which can't be offline. 3605 */ 3606 if (cpu_online(pp->rxq_def)) 3607 elected_cpu = pp->rxq_def; 3608 3609 max_cpu = num_present_cpus(); 3610 3611 for_each_online_cpu(cpu) { 3612 int rxq_map = 0, txq_map = 0; 3613 int rxq; 3614 3615 for (rxq = 0; rxq < rxq_number; rxq++) 3616 if ((rxq % max_cpu) == cpu) 3617 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 3618 3619 if (cpu == elected_cpu) 3620 /* Map the default receive queue queue to the 3621 * elected CPU 3622 */ 3623 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 3624 3625 /* We update the TX queue map only if we have one 3626 * queue. In this case we associate the TX queue to 3627 * the CPU bound to the default RX queue 3628 */ 3629 if (txq_number == 1) 3630 txq_map = (cpu == elected_cpu) ? 3631 MVNETA_CPU_TXQ_ACCESS(1) : 0; 3632 else 3633 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 3634 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 3635 3636 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 3637 3638 /* Update the interrupt mask on each CPU according the 3639 * new mapping 3640 */ 3641 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 3642 pp, true); 3643 i++; 3644 3645 } 3646 }; 3647 3648 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 3649 { 3650 int other_cpu; 3651 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3652 node_online); 3653 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3654 3655 3656 spin_lock(&pp->lock); 3657 /* 3658 * Configuring the driver for a new CPU while the driver is 3659 * stopping is racy, so just avoid it. 3660 */ 3661 if (pp->is_stopped) { 3662 spin_unlock(&pp->lock); 3663 return 0; 3664 } 3665 netif_tx_stop_all_queues(pp->dev); 3666 3667 /* 3668 * We have to synchronise on tha napi of each CPU except the one 3669 * just being woken up 3670 */ 3671 for_each_online_cpu(other_cpu) { 3672 if (other_cpu != cpu) { 3673 struct mvneta_pcpu_port *other_port = 3674 per_cpu_ptr(pp->ports, other_cpu); 3675 3676 napi_synchronize(&other_port->napi); 3677 } 3678 } 3679 3680 /* Mask all ethernet port interrupts */ 3681 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3682 napi_enable(&port->napi); 3683 3684 /* 3685 * Enable per-CPU interrupts on the CPU that is 3686 * brought up. 3687 */ 3688 mvneta_percpu_enable(pp); 3689 3690 /* 3691 * Enable per-CPU interrupt on the one CPU we care 3692 * about. 3693 */ 3694 mvneta_percpu_elect(pp); 3695 3696 /* Unmask all ethernet port interrupts */ 3697 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3698 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3699 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3700 MVNETA_CAUSE_LINK_CHANGE); 3701 netif_tx_start_all_queues(pp->dev); 3702 spin_unlock(&pp->lock); 3703 return 0; 3704 } 3705 3706 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 3707 { 3708 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3709 node_online); 3710 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3711 3712 /* 3713 * Thanks to this lock we are sure that any pending cpu election is 3714 * done. 3715 */ 3716 spin_lock(&pp->lock); 3717 /* Mask all ethernet port interrupts */ 3718 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3719 spin_unlock(&pp->lock); 3720 3721 napi_synchronize(&port->napi); 3722 napi_disable(&port->napi); 3723 /* Disable per-CPU interrupts on the CPU that is brought down. */ 3724 mvneta_percpu_disable(pp); 3725 return 0; 3726 } 3727 3728 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 3729 { 3730 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 3731 node_dead); 3732 3733 /* Check if a new CPU must be elected now this on is down */ 3734 spin_lock(&pp->lock); 3735 mvneta_percpu_elect(pp); 3736 spin_unlock(&pp->lock); 3737 /* Unmask all ethernet port interrupts */ 3738 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3739 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3740 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3741 MVNETA_CAUSE_LINK_CHANGE); 3742 netif_tx_start_all_queues(pp->dev); 3743 return 0; 3744 } 3745 3746 static int mvneta_open(struct net_device *dev) 3747 { 3748 struct mvneta_port *pp = netdev_priv(dev); 3749 int ret; 3750 3751 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 3752 pp->frag_size = PAGE_SIZE; 3753 3754 ret = mvneta_setup_rxqs(pp); 3755 if (ret) 3756 return ret; 3757 3758 ret = mvneta_setup_txqs(pp); 3759 if (ret) 3760 goto err_cleanup_rxqs; 3761 3762 /* Connect to port interrupt line */ 3763 if (pp->neta_armada3700) 3764 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 3765 dev->name, pp); 3766 else 3767 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 3768 dev->name, pp->ports); 3769 if (ret) { 3770 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 3771 goto err_cleanup_txqs; 3772 } 3773 3774 if (!pp->neta_armada3700) { 3775 /* Enable per-CPU interrupt on all the CPU to handle our RX 3776 * queue interrupts 3777 */ 3778 on_each_cpu(mvneta_percpu_enable, pp, true); 3779 3780 pp->is_stopped = false; 3781 /* Register a CPU notifier to handle the case where our CPU 3782 * might be taken offline. 3783 */ 3784 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 3785 &pp->node_online); 3786 if (ret) 3787 goto err_free_irq; 3788 3789 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3790 &pp->node_dead); 3791 if (ret) 3792 goto err_free_online_hp; 3793 } 3794 3795 /* In default link is down */ 3796 netif_carrier_off(pp->dev); 3797 3798 ret = mvneta_mdio_probe(pp); 3799 if (ret < 0) { 3800 netdev_err(dev, "cannot probe MDIO bus\n"); 3801 goto err_free_dead_hp; 3802 } 3803 3804 mvneta_start_dev(pp); 3805 3806 return 0; 3807 3808 err_free_dead_hp: 3809 if (!pp->neta_armada3700) 3810 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3811 &pp->node_dead); 3812 err_free_online_hp: 3813 if (!pp->neta_armada3700) 3814 cpuhp_state_remove_instance_nocalls(online_hpstate, 3815 &pp->node_online); 3816 err_free_irq: 3817 if (pp->neta_armada3700) { 3818 free_irq(pp->dev->irq, pp); 3819 } else { 3820 on_each_cpu(mvneta_percpu_disable, pp, true); 3821 free_percpu_irq(pp->dev->irq, pp->ports); 3822 } 3823 err_cleanup_txqs: 3824 mvneta_cleanup_txqs(pp); 3825 err_cleanup_rxqs: 3826 mvneta_cleanup_rxqs(pp); 3827 return ret; 3828 } 3829 3830 /* Stop the port, free port interrupt line */ 3831 static int mvneta_stop(struct net_device *dev) 3832 { 3833 struct mvneta_port *pp = netdev_priv(dev); 3834 3835 if (!pp->neta_armada3700) { 3836 /* Inform that we are stopping so we don't want to setup the 3837 * driver for new CPUs in the notifiers. The code of the 3838 * notifier for CPU online is protected by the same spinlock, 3839 * so when we get the lock, the notifer work is done. 3840 */ 3841 spin_lock(&pp->lock); 3842 pp->is_stopped = true; 3843 spin_unlock(&pp->lock); 3844 3845 mvneta_stop_dev(pp); 3846 mvneta_mdio_remove(pp); 3847 3848 cpuhp_state_remove_instance_nocalls(online_hpstate, 3849 &pp->node_online); 3850 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 3851 &pp->node_dead); 3852 on_each_cpu(mvneta_percpu_disable, pp, true); 3853 free_percpu_irq(dev->irq, pp->ports); 3854 } else { 3855 mvneta_stop_dev(pp); 3856 mvneta_mdio_remove(pp); 3857 free_irq(dev->irq, pp); 3858 } 3859 3860 mvneta_cleanup_rxqs(pp); 3861 mvneta_cleanup_txqs(pp); 3862 3863 return 0; 3864 } 3865 3866 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 3867 { 3868 struct mvneta_port *pp = netdev_priv(dev); 3869 3870 return phylink_mii_ioctl(pp->phylink, ifr, cmd); 3871 } 3872 3873 /* Ethtool methods */ 3874 3875 /* Set link ksettings (phy address, speed) for ethtools */ 3876 static int 3877 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 3878 const struct ethtool_link_ksettings *cmd) 3879 { 3880 struct mvneta_port *pp = netdev_priv(ndev); 3881 3882 return phylink_ethtool_ksettings_set(pp->phylink, cmd); 3883 } 3884 3885 /* Get link ksettings for ethtools */ 3886 static int 3887 mvneta_ethtool_get_link_ksettings(struct net_device *ndev, 3888 struct ethtool_link_ksettings *cmd) 3889 { 3890 struct mvneta_port *pp = netdev_priv(ndev); 3891 3892 return phylink_ethtool_ksettings_get(pp->phylink, cmd); 3893 } 3894 3895 static int mvneta_ethtool_nway_reset(struct net_device *dev) 3896 { 3897 struct mvneta_port *pp = netdev_priv(dev); 3898 3899 return phylink_ethtool_nway_reset(pp->phylink); 3900 } 3901 3902 /* Set interrupt coalescing for ethtools */ 3903 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 3904 struct ethtool_coalesce *c) 3905 { 3906 struct mvneta_port *pp = netdev_priv(dev); 3907 int queue; 3908 3909 for (queue = 0; queue < rxq_number; queue++) { 3910 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3911 rxq->time_coal = c->rx_coalesce_usecs; 3912 rxq->pkts_coal = c->rx_max_coalesced_frames; 3913 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3914 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3915 } 3916 3917 for (queue = 0; queue < txq_number; queue++) { 3918 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3919 txq->done_pkts_coal = c->tx_max_coalesced_frames; 3920 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3921 } 3922 3923 return 0; 3924 } 3925 3926 /* get coalescing for ethtools */ 3927 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 3928 struct ethtool_coalesce *c) 3929 { 3930 struct mvneta_port *pp = netdev_priv(dev); 3931 3932 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 3933 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 3934 3935 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 3936 return 0; 3937 } 3938 3939 3940 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 3941 struct ethtool_drvinfo *drvinfo) 3942 { 3943 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 3944 sizeof(drvinfo->driver)); 3945 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 3946 sizeof(drvinfo->version)); 3947 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 3948 sizeof(drvinfo->bus_info)); 3949 } 3950 3951 3952 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 3953 struct ethtool_ringparam *ring) 3954 { 3955 struct mvneta_port *pp = netdev_priv(netdev); 3956 3957 ring->rx_max_pending = MVNETA_MAX_RXD; 3958 ring->tx_max_pending = MVNETA_MAX_TXD; 3959 ring->rx_pending = pp->rx_ring_size; 3960 ring->tx_pending = pp->tx_ring_size; 3961 } 3962 3963 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 3964 struct ethtool_ringparam *ring) 3965 { 3966 struct mvneta_port *pp = netdev_priv(dev); 3967 3968 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 3969 return -EINVAL; 3970 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 3971 ring->rx_pending : MVNETA_MAX_RXD; 3972 3973 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 3974 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 3975 if (pp->tx_ring_size != ring->tx_pending) 3976 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 3977 pp->tx_ring_size, ring->tx_pending); 3978 3979 if (netif_running(dev)) { 3980 mvneta_stop(dev); 3981 if (mvneta_open(dev)) { 3982 netdev_err(dev, 3983 "error on opening device after ring param change\n"); 3984 return -ENOMEM; 3985 } 3986 } 3987 3988 return 0; 3989 } 3990 3991 static void mvneta_ethtool_get_pauseparam(struct net_device *dev, 3992 struct ethtool_pauseparam *pause) 3993 { 3994 struct mvneta_port *pp = netdev_priv(dev); 3995 3996 phylink_ethtool_get_pauseparam(pp->phylink, pause); 3997 } 3998 3999 static int mvneta_ethtool_set_pauseparam(struct net_device *dev, 4000 struct ethtool_pauseparam *pause) 4001 { 4002 struct mvneta_port *pp = netdev_priv(dev); 4003 4004 return phylink_ethtool_set_pauseparam(pp->phylink, pause); 4005 } 4006 4007 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 4008 u8 *data) 4009 { 4010 if (sset == ETH_SS_STATS) { 4011 int i; 4012 4013 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4014 memcpy(data + i * ETH_GSTRING_LEN, 4015 mvneta_statistics[i].name, ETH_GSTRING_LEN); 4016 } 4017 } 4018 4019 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 4020 { 4021 const struct mvneta_statistic *s; 4022 void __iomem *base = pp->base; 4023 u32 high, low; 4024 u64 val; 4025 int i; 4026 4027 for (i = 0, s = mvneta_statistics; 4028 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 4029 s++, i++) { 4030 val = 0; 4031 4032 switch (s->type) { 4033 case T_REG_32: 4034 val = readl_relaxed(base + s->offset); 4035 break; 4036 case T_REG_64: 4037 /* Docs say to read low 32-bit then high */ 4038 low = readl_relaxed(base + s->offset); 4039 high = readl_relaxed(base + s->offset + 4); 4040 val = (u64)high << 32 | low; 4041 break; 4042 case T_SW: 4043 switch (s->offset) { 4044 case ETHTOOL_STAT_EEE_WAKEUP: 4045 val = phylink_get_eee_err(pp->phylink); 4046 break; 4047 case ETHTOOL_STAT_SKB_ALLOC_ERR: 4048 val = pp->rxqs[0].skb_alloc_err; 4049 break; 4050 case ETHTOOL_STAT_REFILL_ERR: 4051 val = pp->rxqs[0].refill_err; 4052 break; 4053 } 4054 break; 4055 } 4056 4057 pp->ethtool_stats[i] += val; 4058 } 4059 } 4060 4061 static void mvneta_ethtool_get_stats(struct net_device *dev, 4062 struct ethtool_stats *stats, u64 *data) 4063 { 4064 struct mvneta_port *pp = netdev_priv(dev); 4065 int i; 4066 4067 mvneta_ethtool_update_stats(pp); 4068 4069 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4070 *data++ = pp->ethtool_stats[i]; 4071 } 4072 4073 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 4074 { 4075 if (sset == ETH_SS_STATS) 4076 return ARRAY_SIZE(mvneta_statistics); 4077 return -EOPNOTSUPP; 4078 } 4079 4080 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 4081 { 4082 return MVNETA_RSS_LU_TABLE_SIZE; 4083 } 4084 4085 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 4086 struct ethtool_rxnfc *info, 4087 u32 *rules __always_unused) 4088 { 4089 switch (info->cmd) { 4090 case ETHTOOL_GRXRINGS: 4091 info->data = rxq_number; 4092 return 0; 4093 case ETHTOOL_GRXFH: 4094 return -EOPNOTSUPP; 4095 default: 4096 return -EOPNOTSUPP; 4097 } 4098 } 4099 4100 static int mvneta_config_rss(struct mvneta_port *pp) 4101 { 4102 int cpu; 4103 u32 val; 4104 4105 netif_tx_stop_all_queues(pp->dev); 4106 4107 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4108 4109 if (!pp->neta_armada3700) { 4110 /* We have to synchronise on the napi of each CPU */ 4111 for_each_online_cpu(cpu) { 4112 struct mvneta_pcpu_port *pcpu_port = 4113 per_cpu_ptr(pp->ports, cpu); 4114 4115 napi_synchronize(&pcpu_port->napi); 4116 napi_disable(&pcpu_port->napi); 4117 } 4118 } else { 4119 napi_synchronize(&pp->napi); 4120 napi_disable(&pp->napi); 4121 } 4122 4123 pp->rxq_def = pp->indir[0]; 4124 4125 /* Update unicast mapping */ 4126 mvneta_set_rx_mode(pp->dev); 4127 4128 /* Update val of portCfg register accordingly with all RxQueue types */ 4129 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 4130 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 4131 4132 /* Update the elected CPU matching the new rxq_def */ 4133 spin_lock(&pp->lock); 4134 mvneta_percpu_elect(pp); 4135 spin_unlock(&pp->lock); 4136 4137 if (!pp->neta_armada3700) { 4138 /* We have to synchronise on the napi of each CPU */ 4139 for_each_online_cpu(cpu) { 4140 struct mvneta_pcpu_port *pcpu_port = 4141 per_cpu_ptr(pp->ports, cpu); 4142 4143 napi_enable(&pcpu_port->napi); 4144 } 4145 } else { 4146 napi_enable(&pp->napi); 4147 } 4148 4149 netif_tx_start_all_queues(pp->dev); 4150 4151 return 0; 4152 } 4153 4154 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 4155 const u8 *key, const u8 hfunc) 4156 { 4157 struct mvneta_port *pp = netdev_priv(dev); 4158 4159 /* Current code for Armada 3700 doesn't support RSS features yet */ 4160 if (pp->neta_armada3700) 4161 return -EOPNOTSUPP; 4162 4163 /* We require at least one supported parameter to be changed 4164 * and no change in any of the unsupported parameters 4165 */ 4166 if (key || 4167 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 4168 return -EOPNOTSUPP; 4169 4170 if (!indir) 4171 return 0; 4172 4173 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 4174 4175 return mvneta_config_rss(pp); 4176 } 4177 4178 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 4179 u8 *hfunc) 4180 { 4181 struct mvneta_port *pp = netdev_priv(dev); 4182 4183 /* Current code for Armada 3700 doesn't support RSS features yet */ 4184 if (pp->neta_armada3700) 4185 return -EOPNOTSUPP; 4186 4187 if (hfunc) 4188 *hfunc = ETH_RSS_HASH_TOP; 4189 4190 if (!indir) 4191 return 0; 4192 4193 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 4194 4195 return 0; 4196 } 4197 4198 static void mvneta_ethtool_get_wol(struct net_device *dev, 4199 struct ethtool_wolinfo *wol) 4200 { 4201 struct mvneta_port *pp = netdev_priv(dev); 4202 4203 phylink_ethtool_get_wol(pp->phylink, wol); 4204 } 4205 4206 static int mvneta_ethtool_set_wol(struct net_device *dev, 4207 struct ethtool_wolinfo *wol) 4208 { 4209 struct mvneta_port *pp = netdev_priv(dev); 4210 int ret; 4211 4212 ret = phylink_ethtool_set_wol(pp->phylink, wol); 4213 if (!ret) 4214 device_set_wakeup_enable(&dev->dev, !!wol->wolopts); 4215 4216 return ret; 4217 } 4218 4219 static int mvneta_ethtool_get_eee(struct net_device *dev, 4220 struct ethtool_eee *eee) 4221 { 4222 struct mvneta_port *pp = netdev_priv(dev); 4223 u32 lpi_ctl0; 4224 4225 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4226 4227 eee->eee_enabled = pp->eee_enabled; 4228 eee->eee_active = pp->eee_active; 4229 eee->tx_lpi_enabled = pp->tx_lpi_enabled; 4230 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale; 4231 4232 return phylink_ethtool_get_eee(pp->phylink, eee); 4233 } 4234 4235 static int mvneta_ethtool_set_eee(struct net_device *dev, 4236 struct ethtool_eee *eee) 4237 { 4238 struct mvneta_port *pp = netdev_priv(dev); 4239 u32 lpi_ctl0; 4240 4241 /* The Armada 37x documents do not give limits for this other than 4242 * it being an 8-bit register. */ 4243 if (eee->tx_lpi_enabled && 4244 (eee->tx_lpi_timer < 0 || eee->tx_lpi_timer > 255)) 4245 return -EINVAL; 4246 4247 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4248 lpi_ctl0 &= ~(0xff << 8); 4249 lpi_ctl0 |= eee->tx_lpi_timer << 8; 4250 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0); 4251 4252 pp->eee_enabled = eee->eee_enabled; 4253 pp->tx_lpi_enabled = eee->tx_lpi_enabled; 4254 4255 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled); 4256 4257 return phylink_ethtool_set_eee(pp->phylink, eee); 4258 } 4259 4260 static const struct net_device_ops mvneta_netdev_ops = { 4261 .ndo_open = mvneta_open, 4262 .ndo_stop = mvneta_stop, 4263 .ndo_start_xmit = mvneta_tx, 4264 .ndo_set_rx_mode = mvneta_set_rx_mode, 4265 .ndo_set_mac_address = mvneta_set_mac_addr, 4266 .ndo_change_mtu = mvneta_change_mtu, 4267 .ndo_fix_features = mvneta_fix_features, 4268 .ndo_get_stats64 = mvneta_get_stats64, 4269 .ndo_do_ioctl = mvneta_ioctl, 4270 }; 4271 4272 static const struct ethtool_ops mvneta_eth_tool_ops = { 4273 .nway_reset = mvneta_ethtool_nway_reset, 4274 .get_link = ethtool_op_get_link, 4275 .set_coalesce = mvneta_ethtool_set_coalesce, 4276 .get_coalesce = mvneta_ethtool_get_coalesce, 4277 .get_drvinfo = mvneta_ethtool_get_drvinfo, 4278 .get_ringparam = mvneta_ethtool_get_ringparam, 4279 .set_ringparam = mvneta_ethtool_set_ringparam, 4280 .get_pauseparam = mvneta_ethtool_get_pauseparam, 4281 .set_pauseparam = mvneta_ethtool_set_pauseparam, 4282 .get_strings = mvneta_ethtool_get_strings, 4283 .get_ethtool_stats = mvneta_ethtool_get_stats, 4284 .get_sset_count = mvneta_ethtool_get_sset_count, 4285 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 4286 .get_rxnfc = mvneta_ethtool_get_rxnfc, 4287 .get_rxfh = mvneta_ethtool_get_rxfh, 4288 .set_rxfh = mvneta_ethtool_set_rxfh, 4289 .get_link_ksettings = mvneta_ethtool_get_link_ksettings, 4290 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 4291 .get_wol = mvneta_ethtool_get_wol, 4292 .set_wol = mvneta_ethtool_set_wol, 4293 .get_eee = mvneta_ethtool_get_eee, 4294 .set_eee = mvneta_ethtool_set_eee, 4295 }; 4296 4297 /* Initialize hw */ 4298 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 4299 { 4300 int queue; 4301 4302 /* Disable port */ 4303 mvneta_port_disable(pp); 4304 4305 /* Set port default values */ 4306 mvneta_defaults_set(pp); 4307 4308 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); 4309 if (!pp->txqs) 4310 return -ENOMEM; 4311 4312 /* Initialize TX descriptor rings */ 4313 for (queue = 0; queue < txq_number; queue++) { 4314 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4315 txq->id = queue; 4316 txq->size = pp->tx_ring_size; 4317 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 4318 } 4319 4320 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); 4321 if (!pp->rxqs) 4322 return -ENOMEM; 4323 4324 /* Create Rx descriptor rings */ 4325 for (queue = 0; queue < rxq_number; queue++) { 4326 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4327 rxq->id = queue; 4328 rxq->size = pp->rx_ring_size; 4329 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 4330 rxq->time_coal = MVNETA_RX_COAL_USEC; 4331 rxq->buf_virt_addr 4332 = devm_kmalloc_array(pp->dev->dev.parent, 4333 rxq->size, 4334 sizeof(*rxq->buf_virt_addr), 4335 GFP_KERNEL); 4336 if (!rxq->buf_virt_addr) 4337 return -ENOMEM; 4338 } 4339 4340 return 0; 4341 } 4342 4343 /* platform glue : initialize decoding windows */ 4344 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 4345 const struct mbus_dram_target_info *dram) 4346 { 4347 u32 win_enable; 4348 u32 win_protect; 4349 int i; 4350 4351 for (i = 0; i < 6; i++) { 4352 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 4353 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 4354 4355 if (i < 4) 4356 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 4357 } 4358 4359 win_enable = 0x3f; 4360 win_protect = 0; 4361 4362 if (dram) { 4363 for (i = 0; i < dram->num_cs; i++) { 4364 const struct mbus_dram_window *cs = dram->cs + i; 4365 4366 mvreg_write(pp, MVNETA_WIN_BASE(i), 4367 (cs->base & 0xffff0000) | 4368 (cs->mbus_attr << 8) | 4369 dram->mbus_dram_target_id); 4370 4371 mvreg_write(pp, MVNETA_WIN_SIZE(i), 4372 (cs->size - 1) & 0xffff0000); 4373 4374 win_enable &= ~(1 << i); 4375 win_protect |= 3 << (2 * i); 4376 } 4377 } else { 4378 /* For Armada3700 open default 4GB Mbus window, leaving 4379 * arbitration of target/attribute to a different layer 4380 * of configuration. 4381 */ 4382 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 4383 win_enable &= ~BIT(0); 4384 win_protect = 3; 4385 } 4386 4387 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 4388 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 4389 } 4390 4391 /* Power up the port */ 4392 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 4393 { 4394 /* MAC Cause register should be cleared */ 4395 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 4396 4397 if (phy_mode == PHY_INTERFACE_MODE_QSGMII) 4398 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 4399 else if (phy_mode == PHY_INTERFACE_MODE_SGMII || 4400 phy_mode == PHY_INTERFACE_MODE_1000BASEX) 4401 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 4402 else if (!phy_interface_mode_is_rgmii(phy_mode)) 4403 return -EINVAL; 4404 4405 return 0; 4406 } 4407 4408 /* Device initialization routine */ 4409 static int mvneta_probe(struct platform_device *pdev) 4410 { 4411 struct resource *res; 4412 struct device_node *dn = pdev->dev.of_node; 4413 struct device_node *bm_node; 4414 struct mvneta_port *pp; 4415 struct net_device *dev; 4416 struct phylink *phylink; 4417 const char *dt_mac_addr; 4418 char hw_mac_addr[ETH_ALEN]; 4419 const char *mac_from; 4420 int tx_csum_limit; 4421 int phy_mode; 4422 int err; 4423 int cpu; 4424 4425 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 4426 if (!dev) 4427 return -ENOMEM; 4428 4429 dev->irq = irq_of_parse_and_map(dn, 0); 4430 if (dev->irq == 0) { 4431 err = -EINVAL; 4432 goto err_free_netdev; 4433 } 4434 4435 phy_mode = of_get_phy_mode(dn); 4436 if (phy_mode < 0) { 4437 dev_err(&pdev->dev, "incorrect phy-mode\n"); 4438 err = -EINVAL; 4439 goto err_free_irq; 4440 } 4441 4442 phylink = phylink_create(dev, pdev->dev.fwnode, phy_mode, 4443 &mvneta_phylink_ops); 4444 if (IS_ERR(phylink)) { 4445 err = PTR_ERR(phylink); 4446 goto err_free_irq; 4447 } 4448 4449 dev->tx_queue_len = MVNETA_MAX_TXD; 4450 dev->watchdog_timeo = 5 * HZ; 4451 dev->netdev_ops = &mvneta_netdev_ops; 4452 4453 dev->ethtool_ops = &mvneta_eth_tool_ops; 4454 4455 pp = netdev_priv(dev); 4456 spin_lock_init(&pp->lock); 4457 pp->phylink = phylink; 4458 pp->phy_interface = phy_mode; 4459 pp->dn = dn; 4460 4461 pp->rxq_def = rxq_def; 4462 pp->indir[0] = rxq_def; 4463 4464 /* Get special SoC configurations */ 4465 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 4466 pp->neta_armada3700 = true; 4467 4468 pp->clk = devm_clk_get(&pdev->dev, "core"); 4469 if (IS_ERR(pp->clk)) 4470 pp->clk = devm_clk_get(&pdev->dev, NULL); 4471 if (IS_ERR(pp->clk)) { 4472 err = PTR_ERR(pp->clk); 4473 goto err_free_phylink; 4474 } 4475 4476 clk_prepare_enable(pp->clk); 4477 4478 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 4479 if (!IS_ERR(pp->clk_bus)) 4480 clk_prepare_enable(pp->clk_bus); 4481 4482 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4483 pp->base = devm_ioremap_resource(&pdev->dev, res); 4484 if (IS_ERR(pp->base)) { 4485 err = PTR_ERR(pp->base); 4486 goto err_clk; 4487 } 4488 4489 /* Alloc per-cpu port structure */ 4490 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 4491 if (!pp->ports) { 4492 err = -ENOMEM; 4493 goto err_clk; 4494 } 4495 4496 /* Alloc per-cpu stats */ 4497 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 4498 if (!pp->stats) { 4499 err = -ENOMEM; 4500 goto err_free_ports; 4501 } 4502 4503 dt_mac_addr = of_get_mac_address(dn); 4504 if (dt_mac_addr) { 4505 mac_from = "device tree"; 4506 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 4507 } else { 4508 mvneta_get_mac_addr(pp, hw_mac_addr); 4509 if (is_valid_ether_addr(hw_mac_addr)) { 4510 mac_from = "hardware"; 4511 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 4512 } else { 4513 mac_from = "random"; 4514 eth_hw_addr_random(dev); 4515 } 4516 } 4517 4518 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 4519 if (tx_csum_limit < 0 || 4520 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 4521 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4522 dev_info(&pdev->dev, 4523 "Wrong TX csum limit in DT, set to %dB\n", 4524 MVNETA_TX_CSUM_DEF_SIZE); 4525 } 4526 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 4527 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 4528 } else { 4529 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 4530 } 4531 4532 pp->tx_csum_limit = tx_csum_limit; 4533 4534 pp->dram_target_info = mv_mbus_dram_info(); 4535 /* Armada3700 requires setting default configuration of Mbus 4536 * windows, however without using filled mbus_dram_target_info 4537 * structure. 4538 */ 4539 if (pp->dram_target_info || pp->neta_armada3700) 4540 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 4541 4542 pp->tx_ring_size = MVNETA_MAX_TXD; 4543 pp->rx_ring_size = MVNETA_MAX_RXD; 4544 4545 pp->dev = dev; 4546 SET_NETDEV_DEV(dev, &pdev->dev); 4547 4548 pp->id = global_port_id++; 4549 pp->rx_offset_correction = 0; /* not relevant for SW BM */ 4550 4551 /* Obtain access to BM resources if enabled and already initialized */ 4552 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 4553 if (bm_node) { 4554 pp->bm_priv = mvneta_bm_get(bm_node); 4555 if (pp->bm_priv) { 4556 err = mvneta_bm_port_init(pdev, pp); 4557 if (err < 0) { 4558 dev_info(&pdev->dev, 4559 "use SW buffer management\n"); 4560 mvneta_bm_put(pp->bm_priv); 4561 pp->bm_priv = NULL; 4562 } 4563 } 4564 /* Set RX packet offset correction for platforms, whose 4565 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 4566 * platforms and 0B for 32-bit ones. 4567 */ 4568 pp->rx_offset_correction = max(0, 4569 NET_SKB_PAD - 4570 MVNETA_RX_PKT_OFFSET_CORRECTION); 4571 } 4572 of_node_put(bm_node); 4573 4574 err = mvneta_init(&pdev->dev, pp); 4575 if (err < 0) 4576 goto err_netdev; 4577 4578 err = mvneta_port_power_up(pp, phy_mode); 4579 if (err < 0) { 4580 dev_err(&pdev->dev, "can't power up port\n"); 4581 goto err_netdev; 4582 } 4583 4584 /* Armada3700 network controller does not support per-cpu 4585 * operation, so only single NAPI should be initialized. 4586 */ 4587 if (pp->neta_armada3700) { 4588 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 4589 } else { 4590 for_each_present_cpu(cpu) { 4591 struct mvneta_pcpu_port *port = 4592 per_cpu_ptr(pp->ports, cpu); 4593 4594 netif_napi_add(dev, &port->napi, mvneta_poll, 4595 NAPI_POLL_WEIGHT); 4596 port->pp = pp; 4597 } 4598 } 4599 4600 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO; 4601 dev->hw_features |= dev->features; 4602 dev->vlan_features |= dev->features; 4603 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 4604 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 4605 4606 /* MTU range: 68 - 9676 */ 4607 dev->min_mtu = ETH_MIN_MTU; 4608 /* 9676 == 9700 - 20 and rounding to 8 */ 4609 dev->max_mtu = 9676; 4610 4611 err = register_netdev(dev); 4612 if (err < 0) { 4613 dev_err(&pdev->dev, "failed to register\n"); 4614 goto err_free_stats; 4615 } 4616 4617 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 4618 dev->dev_addr); 4619 4620 platform_set_drvdata(pdev, pp->dev); 4621 4622 return 0; 4623 4624 err_netdev: 4625 unregister_netdev(dev); 4626 if (pp->bm_priv) { 4627 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4628 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4629 1 << pp->id); 4630 mvneta_bm_put(pp->bm_priv); 4631 } 4632 err_free_stats: 4633 free_percpu(pp->stats); 4634 err_free_ports: 4635 free_percpu(pp->ports); 4636 err_clk: 4637 clk_disable_unprepare(pp->clk_bus); 4638 clk_disable_unprepare(pp->clk); 4639 err_free_phylink: 4640 if (pp->phylink) 4641 phylink_destroy(pp->phylink); 4642 err_free_irq: 4643 irq_dispose_mapping(dev->irq); 4644 err_free_netdev: 4645 free_netdev(dev); 4646 return err; 4647 } 4648 4649 /* Device removal routine */ 4650 static int mvneta_remove(struct platform_device *pdev) 4651 { 4652 struct net_device *dev = platform_get_drvdata(pdev); 4653 struct mvneta_port *pp = netdev_priv(dev); 4654 4655 unregister_netdev(dev); 4656 clk_disable_unprepare(pp->clk_bus); 4657 clk_disable_unprepare(pp->clk); 4658 free_percpu(pp->ports); 4659 free_percpu(pp->stats); 4660 irq_dispose_mapping(dev->irq); 4661 phylink_destroy(pp->phylink); 4662 free_netdev(dev); 4663 4664 if (pp->bm_priv) { 4665 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 4666 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 4667 1 << pp->id); 4668 mvneta_bm_put(pp->bm_priv); 4669 } 4670 4671 return 0; 4672 } 4673 4674 #ifdef CONFIG_PM_SLEEP 4675 static int mvneta_suspend(struct device *device) 4676 { 4677 int queue; 4678 struct net_device *dev = dev_get_drvdata(device); 4679 struct mvneta_port *pp = netdev_priv(dev); 4680 4681 if (!netif_running(dev)) 4682 goto clean_exit; 4683 4684 if (!pp->neta_armada3700) { 4685 spin_lock(&pp->lock); 4686 pp->is_stopped = true; 4687 spin_unlock(&pp->lock); 4688 4689 cpuhp_state_remove_instance_nocalls(online_hpstate, 4690 &pp->node_online); 4691 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4692 &pp->node_dead); 4693 } 4694 4695 rtnl_lock(); 4696 mvneta_stop_dev(pp); 4697 rtnl_unlock(); 4698 4699 for (queue = 0; queue < rxq_number; queue++) { 4700 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4701 4702 mvneta_rxq_drop_pkts(pp, rxq); 4703 } 4704 4705 for (queue = 0; queue < txq_number; queue++) { 4706 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4707 4708 mvneta_txq_hw_deinit(pp, txq); 4709 } 4710 4711 clean_exit: 4712 netif_device_detach(dev); 4713 clk_disable_unprepare(pp->clk_bus); 4714 clk_disable_unprepare(pp->clk); 4715 4716 return 0; 4717 } 4718 4719 static int mvneta_resume(struct device *device) 4720 { 4721 struct platform_device *pdev = to_platform_device(device); 4722 struct net_device *dev = dev_get_drvdata(device); 4723 struct mvneta_port *pp = netdev_priv(dev); 4724 int err, queue; 4725 4726 clk_prepare_enable(pp->clk); 4727 if (!IS_ERR(pp->clk_bus)) 4728 clk_prepare_enable(pp->clk_bus); 4729 if (pp->dram_target_info || pp->neta_armada3700) 4730 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 4731 if (pp->bm_priv) { 4732 err = mvneta_bm_port_init(pdev, pp); 4733 if (err < 0) { 4734 dev_info(&pdev->dev, "use SW buffer management\n"); 4735 pp->bm_priv = NULL; 4736 } 4737 } 4738 mvneta_defaults_set(pp); 4739 err = mvneta_port_power_up(pp, pp->phy_interface); 4740 if (err < 0) { 4741 dev_err(device, "can't power up port\n"); 4742 return err; 4743 } 4744 4745 netif_device_attach(dev); 4746 4747 if (!netif_running(dev)) 4748 return 0; 4749 4750 for (queue = 0; queue < rxq_number; queue++) { 4751 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4752 4753 rxq->next_desc_to_proc = 0; 4754 mvneta_rxq_hw_init(pp, rxq); 4755 } 4756 4757 for (queue = 0; queue < txq_number; queue++) { 4758 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4759 4760 txq->next_desc_to_proc = 0; 4761 mvneta_txq_hw_init(pp, txq); 4762 } 4763 4764 if (!pp->neta_armada3700) { 4765 spin_lock(&pp->lock); 4766 pp->is_stopped = false; 4767 spin_unlock(&pp->lock); 4768 cpuhp_state_add_instance_nocalls(online_hpstate, 4769 &pp->node_online); 4770 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4771 &pp->node_dead); 4772 } 4773 4774 rtnl_lock(); 4775 mvneta_start_dev(pp); 4776 rtnl_unlock(); 4777 mvneta_set_rx_mode(dev); 4778 4779 return 0; 4780 } 4781 #endif 4782 4783 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); 4784 4785 static const struct of_device_id mvneta_match[] = { 4786 { .compatible = "marvell,armada-370-neta" }, 4787 { .compatible = "marvell,armada-xp-neta" }, 4788 { .compatible = "marvell,armada-3700-neta" }, 4789 { } 4790 }; 4791 MODULE_DEVICE_TABLE(of, mvneta_match); 4792 4793 static struct platform_driver mvneta_driver = { 4794 .probe = mvneta_probe, 4795 .remove = mvneta_remove, 4796 .driver = { 4797 .name = MVNETA_DRIVER_NAME, 4798 .of_match_table = mvneta_match, 4799 .pm = &mvneta_pm_ops, 4800 }, 4801 }; 4802 4803 static int __init mvneta_driver_init(void) 4804 { 4805 int ret; 4806 4807 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online", 4808 mvneta_cpu_online, 4809 mvneta_cpu_down_prepare); 4810 if (ret < 0) 4811 goto out; 4812 online_hpstate = ret; 4813 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 4814 NULL, mvneta_cpu_dead); 4815 if (ret) 4816 goto err_dead; 4817 4818 ret = platform_driver_register(&mvneta_driver); 4819 if (ret) 4820 goto err; 4821 return 0; 4822 4823 err: 4824 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4825 err_dead: 4826 cpuhp_remove_multi_state(online_hpstate); 4827 out: 4828 return ret; 4829 } 4830 module_init(mvneta_driver_init); 4831 4832 static void __exit mvneta_driver_exit(void) 4833 { 4834 platform_driver_unregister(&mvneta_driver); 4835 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 4836 cpuhp_remove_multi_state(online_hpstate); 4837 } 4838 module_exit(mvneta_driver_exit); 4839 4840 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 4841 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 4842 MODULE_LICENSE("GPL"); 4843 4844 module_param(rxq_number, int, 0444); 4845 module_param(txq_number, int, 0444); 4846 4847 module_param(rxq_def, int, 0444); 4848 module_param(rx_copybreak, int, 0644); 4849