xref: /linux/drivers/net/ethernet/marvell/mvneta.c (revision c0c914eca7f251c70facc37dfebeaf176601918d)
1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/platform_device.h>
32 #include <linux/skbuff.h>
33 #include <net/ip.h>
34 #include <net/ipv6.h>
35 #include <net/tso.h>
36 
37 /* Registers */
38 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
39 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
40 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
41 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
42 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
43 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
44 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
45 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
46 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
47 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
48 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
49 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
50 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
51 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
52 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
53 #define MVNETA_PORT_RX_RESET                    0x1cc0
54 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
55 #define MVNETA_PHY_ADDR                         0x2000
56 #define      MVNETA_PHY_ADDR_MASK               0x1f
57 #define MVNETA_MBUS_RETRY                       0x2010
58 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
59 #define MVNETA_UNIT_CONTROL                     0x20B0
60 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
61 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
62 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
63 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
64 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
65 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
66 #define MVNETA_PORT_CONFIG                      0x2400
67 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
68 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
69 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
70 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
71 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
72 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
73 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
74 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
75 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
76 						 MVNETA_DEF_RXQ_ARP(q)	 | \
77 						 MVNETA_DEF_RXQ_TCP(q)	 | \
78 						 MVNETA_DEF_RXQ_UDP(q)	 | \
79 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
80 						 MVNETA_TX_UNSET_ERR_SUM | \
81 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
82 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
83 #define MVNETA_MAC_ADDR_LOW                      0x2414
84 #define MVNETA_MAC_ADDR_HIGH                     0x2418
85 #define MVNETA_SDMA_CONFIG                       0x241c
86 #define      MVNETA_SDMA_BRST_SIZE_16            4
87 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
88 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
89 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
90 #define      MVNETA_DESC_SWAP                    BIT(6)
91 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
92 #define MVNETA_PORT_STATUS                       0x2444
93 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
94 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
95 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
96 #define MVNETA_SERDES_CFG			 0x24A0
97 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
98 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
99 #define MVNETA_TYPE_PRIO                         0x24bc
100 #define      MVNETA_FORCE_UNI                    BIT(21)
101 #define MVNETA_TXQ_CMD_1                         0x24e4
102 #define MVNETA_TXQ_CMD                           0x2448
103 #define      MVNETA_TXQ_DISABLE_SHIFT            8
104 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
105 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
106 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
107 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
108 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
109 #define MVNETA_ACC_MODE                          0x2500
110 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
111 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
112 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
113 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
114 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
115 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
116 
117 /* Exception Interrupt Port/Queue Cause register
118  *
119  * Their behavior depend of the mapping done using the PCPX2Q
120  * registers. For a given CPU if the bit associated to a queue is not
121  * set, then for the register a read from this CPU will always return
122  * 0 and a write won't do anything
123  */
124 
125 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
126 #define MVNETA_INTR_NEW_MASK                     0x25a4
127 
128 /* bits  0..7  = TXQ SENT, one bit per queue.
129  * bits  8..15 = RXQ OCCUP, one bit per queue.
130  * bits 16..23 = RXQ FREE, one bit per queue.
131  * bit  29 = OLD_REG_SUM, see old reg ?
132  * bit  30 = TX_ERR_SUM, one bit for 4 ports
133  * bit  31 = MISC_SUM,   one bit for 4 ports
134  */
135 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
136 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
137 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
138 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
139 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
140 
141 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
142 #define MVNETA_INTR_OLD_MASK                     0x25ac
143 
144 /* Data Path Port/Queue Cause Register */
145 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
146 #define MVNETA_INTR_MISC_MASK                    0x25b4
147 
148 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
149 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
150 #define      MVNETA_CAUSE_PTP                    BIT(4)
151 
152 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
153 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
154 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
155 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
156 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
157 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
158 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
159 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
160 
161 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
162 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
163 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
164 
165 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
166 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
167 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
168 
169 #define MVNETA_INTR_ENABLE                       0x25b8
170 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
171 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
172 
173 #define MVNETA_RXQ_CMD                           0x2680
174 #define      MVNETA_RXQ_DISABLE_SHIFT            8
175 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
176 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
177 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
178 #define MVNETA_GMAC_CTRL_0                       0x2c00
179 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
180 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
181 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
182 #define MVNETA_GMAC_CTRL_2                       0x2c08
183 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
184 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
185 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
186 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
187 #define MVNETA_GMAC_STATUS                       0x2c10
188 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
189 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
190 #define      MVNETA_GMAC_SPEED_100               BIT(2)
191 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
192 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
193 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
194 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
195 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
196 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
197 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
198 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
199 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
200 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
201 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
202 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
203 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
204 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
205 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
206 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
207 #define      MVNETA_MIB_LATE_COLLISION           0x7c
208 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
209 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
210 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
211 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
212 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
213 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
214 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
215 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
216 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
217 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
218 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
219 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
220 #define MVNETA_PORT_TX_RESET                     0x3cf0
221 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
222 #define MVNETA_TX_MTU                            0x3e0c
223 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
224 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
225 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
226 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
227 
228 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
229 
230 /* Descriptor ring Macros */
231 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
232 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
233 
234 /* Various constants */
235 
236 /* Coalescing */
237 #define MVNETA_TXDONE_COAL_PKTS		1
238 #define MVNETA_RX_COAL_PKTS		32
239 #define MVNETA_RX_COAL_USEC		100
240 
241 /* The two bytes Marvell header. Either contains a special value used
242  * by Marvell switches when a specific hardware mode is enabled (not
243  * supported by this driver) or is filled automatically by zeroes on
244  * the RX side. Those two bytes being at the front of the Ethernet
245  * header, they allow to have the IP header aligned on a 4 bytes
246  * boundary automatically: the hardware skips those two bytes on its
247  * own.
248  */
249 #define MVNETA_MH_SIZE			2
250 
251 #define MVNETA_VLAN_TAG_LEN             4
252 
253 #define MVNETA_CPU_D_CACHE_LINE_SIZE    32
254 #define MVNETA_TX_CSUM_DEF_SIZE		1600
255 #define MVNETA_TX_CSUM_MAX_SIZE		9800
256 #define MVNETA_ACC_MODE_EXT		1
257 
258 /* Timeout constants */
259 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
260 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
261 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
262 
263 #define MVNETA_TX_MTU_MAX		0x3ffff
264 
265 /* The RSS lookup table actually has 256 entries but we do not use
266  * them yet
267  */
268 #define MVNETA_RSS_LU_TABLE_SIZE	1
269 
270 /* TSO header size */
271 #define TSO_HEADER_SIZE 128
272 
273 /* Max number of Rx descriptors */
274 #define MVNETA_MAX_RXD 128
275 
276 /* Max number of Tx descriptors */
277 #define MVNETA_MAX_TXD 532
278 
279 /* Max number of allowed TCP segments for software TSO */
280 #define MVNETA_MAX_TSO_SEGS 100
281 
282 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
283 
284 /* descriptor aligned size */
285 #define MVNETA_DESC_ALIGNED_SIZE	32
286 
287 #define MVNETA_RX_PKT_SIZE(mtu) \
288 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
289 	      ETH_HLEN + ETH_FCS_LEN,			     \
290 	      MVNETA_CPU_D_CACHE_LINE_SIZE)
291 
292 #define IS_TSO_HEADER(txq, addr) \
293 	((addr >= txq->tso_hdrs_phys) && \
294 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
295 
296 #define MVNETA_RX_BUF_SIZE(pkt_size)   ((pkt_size) + NET_SKB_PAD)
297 
298 struct mvneta_statistic {
299 	unsigned short offset;
300 	unsigned short type;
301 	const char name[ETH_GSTRING_LEN];
302 };
303 
304 #define T_REG_32	32
305 #define T_REG_64	64
306 
307 static const struct mvneta_statistic mvneta_statistics[] = {
308 	{ 0x3000, T_REG_64, "good_octets_received", },
309 	{ 0x3010, T_REG_32, "good_frames_received", },
310 	{ 0x3008, T_REG_32, "bad_octets_received", },
311 	{ 0x3014, T_REG_32, "bad_frames_received", },
312 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
313 	{ 0x301c, T_REG_32, "multicast_frames_received", },
314 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
315 	{ 0x3058, T_REG_32, "good_fc_received", },
316 	{ 0x305c, T_REG_32, "bad_fc_received", },
317 	{ 0x3060, T_REG_32, "undersize_received", },
318 	{ 0x3064, T_REG_32, "fragments_received", },
319 	{ 0x3068, T_REG_32, "oversize_received", },
320 	{ 0x306c, T_REG_32, "jabber_received", },
321 	{ 0x3070, T_REG_32, "mac_receive_error", },
322 	{ 0x3074, T_REG_32, "bad_crc_event", },
323 	{ 0x3078, T_REG_32, "collision", },
324 	{ 0x307c, T_REG_32, "late_collision", },
325 	{ 0x2484, T_REG_32, "rx_discard", },
326 	{ 0x2488, T_REG_32, "rx_overrun", },
327 	{ 0x3020, T_REG_32, "frames_64_octets", },
328 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
329 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
330 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
331 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
332 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
333 	{ 0x3038, T_REG_64, "good_octets_sent", },
334 	{ 0x3040, T_REG_32, "good_frames_sent", },
335 	{ 0x3044, T_REG_32, "excessive_collision", },
336 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
337 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
338 	{ 0x3054, T_REG_32, "fc_sent", },
339 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
340 };
341 
342 struct mvneta_pcpu_stats {
343 	struct	u64_stats_sync syncp;
344 	u64	rx_packets;
345 	u64	rx_bytes;
346 	u64	tx_packets;
347 	u64	tx_bytes;
348 };
349 
350 struct mvneta_pcpu_port {
351 	/* Pointer to the shared port */
352 	struct mvneta_port	*pp;
353 
354 	/* Pointer to the CPU-local NAPI struct */
355 	struct napi_struct	napi;
356 
357 	/* Cause of the previous interrupt */
358 	u32			cause_rx_tx;
359 };
360 
361 struct mvneta_port {
362 	struct mvneta_pcpu_port __percpu	*ports;
363 	struct mvneta_pcpu_stats __percpu	*stats;
364 
365 	int pkt_size;
366 	unsigned int frag_size;
367 	void __iomem *base;
368 	struct mvneta_rx_queue *rxqs;
369 	struct mvneta_tx_queue *txqs;
370 	struct net_device *dev;
371 	struct notifier_block cpu_notifier;
372 	int rxq_def;
373 	/* Protect the access to the percpu interrupt registers,
374 	 * ensuring that the configuration remains coherent.
375 	 */
376 	spinlock_t lock;
377 	bool is_stopped;
378 
379 	/* Core clock */
380 	struct clk *clk;
381 	/* AXI clock */
382 	struct clk *clk_bus;
383 	u8 mcast_count[256];
384 	u16 tx_ring_size;
385 	u16 rx_ring_size;
386 
387 	struct mii_bus *mii_bus;
388 	struct phy_device *phy_dev;
389 	phy_interface_t phy_interface;
390 	struct device_node *phy_node;
391 	unsigned int link;
392 	unsigned int duplex;
393 	unsigned int speed;
394 	unsigned int tx_csum_limit;
395 	unsigned int use_inband_status:1;
396 
397 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
398 
399 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
400 };
401 
402 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
403  * layout of the transmit and reception DMA descriptors, and their
404  * layout is therefore defined by the hardware design
405  */
406 
407 #define MVNETA_TX_L3_OFF_SHIFT	0
408 #define MVNETA_TX_IP_HLEN_SHIFT	8
409 #define MVNETA_TX_L4_UDP	BIT(16)
410 #define MVNETA_TX_L3_IP6	BIT(17)
411 #define MVNETA_TXD_IP_CSUM	BIT(18)
412 #define MVNETA_TXD_Z_PAD	BIT(19)
413 #define MVNETA_TXD_L_DESC	BIT(20)
414 #define MVNETA_TXD_F_DESC	BIT(21)
415 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
416 				 MVNETA_TXD_L_DESC | \
417 				 MVNETA_TXD_F_DESC)
418 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
419 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
420 
421 #define MVNETA_RXD_ERR_CRC		0x0
422 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
423 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
424 #define MVNETA_RXD_ERR_LEN		BIT(18)
425 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
426 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
427 #define MVNETA_RXD_L3_IP4		BIT(25)
428 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
429 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
430 
431 #if defined(__LITTLE_ENDIAN)
432 struct mvneta_tx_desc {
433 	u32  command;		/* Options used by HW for packet transmitting.*/
434 	u16  reserverd1;	/* csum_l4 (for future use)		*/
435 	u16  data_size;		/* Data size of transmitted packet in bytes */
436 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
437 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
438 	u32  reserved3[4];	/* Reserved - (for future use)		*/
439 };
440 
441 struct mvneta_rx_desc {
442 	u32  status;		/* Info about received packet		*/
443 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
444 	u16  data_size;		/* Size of received packet in bytes	*/
445 
446 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
447 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
448 
449 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
450 	u16  reserved3;		/* prefetch_cmd, for future use		*/
451 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
452 
453 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
454 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
455 };
456 #else
457 struct mvneta_tx_desc {
458 	u16  data_size;		/* Data size of transmitted packet in bytes */
459 	u16  reserverd1;	/* csum_l4 (for future use)		*/
460 	u32  command;		/* Options used by HW for packet transmitting.*/
461 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
462 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
463 	u32  reserved3[4];	/* Reserved - (for future use)		*/
464 };
465 
466 struct mvneta_rx_desc {
467 	u16  data_size;		/* Size of received packet in bytes	*/
468 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
469 	u32  status;		/* Info about received packet		*/
470 
471 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
472 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
473 
474 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
475 	u16  reserved3;		/* prefetch_cmd, for future use		*/
476 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
477 
478 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
479 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
480 };
481 #endif
482 
483 struct mvneta_tx_queue {
484 	/* Number of this TX queue, in the range 0-7 */
485 	u8 id;
486 
487 	/* Number of TX DMA descriptors in the descriptor ring */
488 	int size;
489 
490 	/* Number of currently used TX DMA descriptor in the
491 	 * descriptor ring
492 	 */
493 	int count;
494 	int tx_stop_threshold;
495 	int tx_wake_threshold;
496 
497 	/* Array of transmitted skb */
498 	struct sk_buff **tx_skb;
499 
500 	/* Index of last TX DMA descriptor that was inserted */
501 	int txq_put_index;
502 
503 	/* Index of the TX DMA descriptor to be cleaned up */
504 	int txq_get_index;
505 
506 	u32 done_pkts_coal;
507 
508 	/* Virtual address of the TX DMA descriptors array */
509 	struct mvneta_tx_desc *descs;
510 
511 	/* DMA address of the TX DMA descriptors array */
512 	dma_addr_t descs_phys;
513 
514 	/* Index of the last TX DMA descriptor */
515 	int last_desc;
516 
517 	/* Index of the next TX DMA descriptor to process */
518 	int next_desc_to_proc;
519 
520 	/* DMA buffers for TSO headers */
521 	char *tso_hdrs;
522 
523 	/* DMA address of TSO headers */
524 	dma_addr_t tso_hdrs_phys;
525 
526 	/* Affinity mask for CPUs*/
527 	cpumask_t affinity_mask;
528 };
529 
530 struct mvneta_rx_queue {
531 	/* rx queue number, in the range 0-7 */
532 	u8 id;
533 
534 	/* num of rx descriptors in the rx descriptor ring */
535 	int size;
536 
537 	/* counter of times when mvneta_refill() failed */
538 	int missed;
539 
540 	u32 pkts_coal;
541 	u32 time_coal;
542 
543 	/* Virtual address of the RX DMA descriptors array */
544 	struct mvneta_rx_desc *descs;
545 
546 	/* DMA address of the RX DMA descriptors array */
547 	dma_addr_t descs_phys;
548 
549 	/* Index of the last RX DMA descriptor */
550 	int last_desc;
551 
552 	/* Index of the next RX DMA descriptor to process */
553 	int next_desc_to_proc;
554 };
555 
556 /* The hardware supports eight (8) rx queues, but we are only allowing
557  * the first one to be used. Therefore, let's just allocate one queue.
558  */
559 static int rxq_number = 8;
560 static int txq_number = 8;
561 
562 static int rxq_def;
563 
564 static int rx_copybreak __read_mostly = 256;
565 
566 #define MVNETA_DRIVER_NAME "mvneta"
567 #define MVNETA_DRIVER_VERSION "1.0"
568 
569 /* Utility/helper methods */
570 
571 /* Write helper method */
572 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
573 {
574 	writel(data, pp->base + offset);
575 }
576 
577 /* Read helper method */
578 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
579 {
580 	return readl(pp->base + offset);
581 }
582 
583 /* Increment txq get counter */
584 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
585 {
586 	txq->txq_get_index++;
587 	if (txq->txq_get_index == txq->size)
588 		txq->txq_get_index = 0;
589 }
590 
591 /* Increment txq put counter */
592 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
593 {
594 	txq->txq_put_index++;
595 	if (txq->txq_put_index == txq->size)
596 		txq->txq_put_index = 0;
597 }
598 
599 
600 /* Clear all MIB counters */
601 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
602 {
603 	int i;
604 	u32 dummy;
605 
606 	/* Perform dummy reads from MIB counters */
607 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
608 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
609 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
610 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
611 }
612 
613 /* Get System Network Statistics */
614 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
615 					     struct rtnl_link_stats64 *stats)
616 {
617 	struct mvneta_port *pp = netdev_priv(dev);
618 	unsigned int start;
619 	int cpu;
620 
621 	for_each_possible_cpu(cpu) {
622 		struct mvneta_pcpu_stats *cpu_stats;
623 		u64 rx_packets;
624 		u64 rx_bytes;
625 		u64 tx_packets;
626 		u64 tx_bytes;
627 
628 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
629 		do {
630 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
631 			rx_packets = cpu_stats->rx_packets;
632 			rx_bytes   = cpu_stats->rx_bytes;
633 			tx_packets = cpu_stats->tx_packets;
634 			tx_bytes   = cpu_stats->tx_bytes;
635 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
636 
637 		stats->rx_packets += rx_packets;
638 		stats->rx_bytes   += rx_bytes;
639 		stats->tx_packets += tx_packets;
640 		stats->tx_bytes   += tx_bytes;
641 	}
642 
643 	stats->rx_errors	= dev->stats.rx_errors;
644 	stats->rx_dropped	= dev->stats.rx_dropped;
645 
646 	stats->tx_dropped	= dev->stats.tx_dropped;
647 
648 	return stats;
649 }
650 
651 /* Rx descriptors helper methods */
652 
653 /* Checks whether the RX descriptor having this status is both the first
654  * and the last descriptor for the RX packet. Each RX packet is currently
655  * received through a single RX descriptor, so not having each RX
656  * descriptor with its first and last bits set is an error
657  */
658 static int mvneta_rxq_desc_is_first_last(u32 status)
659 {
660 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
661 		MVNETA_RXD_FIRST_LAST_DESC;
662 }
663 
664 /* Add number of descriptors ready to receive new packets */
665 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
666 					  struct mvneta_rx_queue *rxq,
667 					  int ndescs)
668 {
669 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
670 	 * be added at once
671 	 */
672 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
673 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
674 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
675 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
676 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
677 	}
678 
679 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
680 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
681 }
682 
683 /* Get number of RX descriptors occupied by received packets */
684 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
685 					struct mvneta_rx_queue *rxq)
686 {
687 	u32 val;
688 
689 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
690 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
691 }
692 
693 /* Update num of rx desc called upon return from rx path or
694  * from mvneta_rxq_drop_pkts().
695  */
696 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
697 				       struct mvneta_rx_queue *rxq,
698 				       int rx_done, int rx_filled)
699 {
700 	u32 val;
701 
702 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
703 		val = rx_done |
704 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
705 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
706 		return;
707 	}
708 
709 	/* Only 255 descriptors can be added at once */
710 	while ((rx_done > 0) || (rx_filled > 0)) {
711 		if (rx_done <= 0xff) {
712 			val = rx_done;
713 			rx_done = 0;
714 		} else {
715 			val = 0xff;
716 			rx_done -= 0xff;
717 		}
718 		if (rx_filled <= 0xff) {
719 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
720 			rx_filled = 0;
721 		} else {
722 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
723 			rx_filled -= 0xff;
724 		}
725 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
726 	}
727 }
728 
729 /* Get pointer to next RX descriptor to be processed by SW */
730 static struct mvneta_rx_desc *
731 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
732 {
733 	int rx_desc = rxq->next_desc_to_proc;
734 
735 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
736 	prefetch(rxq->descs + rxq->next_desc_to_proc);
737 	return rxq->descs + rx_desc;
738 }
739 
740 /* Change maximum receive size of the port. */
741 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
742 {
743 	u32 val;
744 
745 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
746 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
747 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
748 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
749 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
750 }
751 
752 
753 /* Set rx queue offset */
754 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
755 				  struct mvneta_rx_queue *rxq,
756 				  int offset)
757 {
758 	u32 val;
759 
760 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
761 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
762 
763 	/* Offset is in */
764 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
765 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
766 }
767 
768 
769 /* Tx descriptors helper methods */
770 
771 /* Update HW with number of TX descriptors to be sent */
772 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
773 				     struct mvneta_tx_queue *txq,
774 				     int pend_desc)
775 {
776 	u32 val;
777 
778 	/* Only 255 descriptors can be added at once ; Assume caller
779 	 * process TX desriptors in quanta less than 256
780 	 */
781 	val = pend_desc;
782 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
783 }
784 
785 /* Get pointer to next TX descriptor to be processed (send) by HW */
786 static struct mvneta_tx_desc *
787 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
788 {
789 	int tx_desc = txq->next_desc_to_proc;
790 
791 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
792 	return txq->descs + tx_desc;
793 }
794 
795 /* Release the last allocated TX descriptor. Useful to handle DMA
796  * mapping failures in the TX path.
797  */
798 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
799 {
800 	if (txq->next_desc_to_proc == 0)
801 		txq->next_desc_to_proc = txq->last_desc - 1;
802 	else
803 		txq->next_desc_to_proc--;
804 }
805 
806 /* Set rxq buf size */
807 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
808 				    struct mvneta_rx_queue *rxq,
809 				    int buf_size)
810 {
811 	u32 val;
812 
813 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
814 
815 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
816 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
817 
818 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
819 }
820 
821 /* Disable buffer management (BM) */
822 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
823 				  struct mvneta_rx_queue *rxq)
824 {
825 	u32 val;
826 
827 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
828 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
829 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
830 }
831 
832 /* Start the Ethernet port RX and TX activity */
833 static void mvneta_port_up(struct mvneta_port *pp)
834 {
835 	int queue;
836 	u32 q_map;
837 
838 	/* Enable all initialized TXs. */
839 	q_map = 0;
840 	for (queue = 0; queue < txq_number; queue++) {
841 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
842 		if (txq->descs != NULL)
843 			q_map |= (1 << queue);
844 	}
845 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
846 
847 	/* Enable all initialized RXQs. */
848 	for (queue = 0; queue < rxq_number; queue++) {
849 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
850 
851 		if (rxq->descs != NULL)
852 			q_map |= (1 << queue);
853 	}
854 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
855 }
856 
857 /* Stop the Ethernet port activity */
858 static void mvneta_port_down(struct mvneta_port *pp)
859 {
860 	u32 val;
861 	int count;
862 
863 	/* Stop Rx port activity. Check port Rx activity. */
864 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
865 
866 	/* Issue stop command for active channels only */
867 	if (val != 0)
868 		mvreg_write(pp, MVNETA_RXQ_CMD,
869 			    val << MVNETA_RXQ_DISABLE_SHIFT);
870 
871 	/* Wait for all Rx activity to terminate. */
872 	count = 0;
873 	do {
874 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
875 			netdev_warn(pp->dev,
876 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
877 				    val);
878 			break;
879 		}
880 		mdelay(1);
881 
882 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
883 	} while (val & 0xff);
884 
885 	/* Stop Tx port activity. Check port Tx activity. Issue stop
886 	 * command for active channels only
887 	 */
888 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
889 
890 	if (val != 0)
891 		mvreg_write(pp, MVNETA_TXQ_CMD,
892 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
893 
894 	/* Wait for all Tx activity to terminate. */
895 	count = 0;
896 	do {
897 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
898 			netdev_warn(pp->dev,
899 				    "TIMEOUT for TX stopped status=0x%08x\n",
900 				    val);
901 			break;
902 		}
903 		mdelay(1);
904 
905 		/* Check TX Command reg that all Txqs are stopped */
906 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
907 
908 	} while (val & 0xff);
909 
910 	/* Double check to verify that TX FIFO is empty */
911 	count = 0;
912 	do {
913 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
914 			netdev_warn(pp->dev,
915 				    "TX FIFO empty timeout status=0x08%x\n",
916 				    val);
917 			break;
918 		}
919 		mdelay(1);
920 
921 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
922 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
923 		 (val & MVNETA_TX_IN_PRGRS));
924 
925 	udelay(200);
926 }
927 
928 /* Enable the port by setting the port enable bit of the MAC control register */
929 static void mvneta_port_enable(struct mvneta_port *pp)
930 {
931 	u32 val;
932 
933 	/* Enable port */
934 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
935 	val |= MVNETA_GMAC0_PORT_ENABLE;
936 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
937 }
938 
939 /* Disable the port and wait for about 200 usec before retuning */
940 static void mvneta_port_disable(struct mvneta_port *pp)
941 {
942 	u32 val;
943 
944 	/* Reset the Enable bit in the Serial Control Register */
945 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
946 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
947 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
948 
949 	udelay(200);
950 }
951 
952 /* Multicast tables methods */
953 
954 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
955 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
956 {
957 	int offset;
958 	u32 val;
959 
960 	if (queue == -1) {
961 		val = 0;
962 	} else {
963 		val = 0x1 | (queue << 1);
964 		val |= (val << 24) | (val << 16) | (val << 8);
965 	}
966 
967 	for (offset = 0; offset <= 0xc; offset += 4)
968 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
969 }
970 
971 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
972 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
973 {
974 	int offset;
975 	u32 val;
976 
977 	if (queue == -1) {
978 		val = 0;
979 	} else {
980 		val = 0x1 | (queue << 1);
981 		val |= (val << 24) | (val << 16) | (val << 8);
982 	}
983 
984 	for (offset = 0; offset <= 0xfc; offset += 4)
985 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
986 
987 }
988 
989 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
990 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
991 {
992 	int offset;
993 	u32 val;
994 
995 	if (queue == -1) {
996 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
997 		val = 0;
998 	} else {
999 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1000 		val = 0x1 | (queue << 1);
1001 		val |= (val << 24) | (val << 16) | (val << 8);
1002 	}
1003 
1004 	for (offset = 0; offset <= 0xfc; offset += 4)
1005 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1006 }
1007 
1008 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
1009 {
1010 	u32 val;
1011 
1012 	if (enable) {
1013 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1014 		val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1015 			 MVNETA_GMAC_FORCE_LINK_DOWN |
1016 			 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1017 		val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1018 		       MVNETA_GMAC_AN_SPEED_EN |
1019 		       MVNETA_GMAC_AN_DUPLEX_EN;
1020 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1021 
1022 		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1023 		val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1024 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1025 
1026 		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1027 		val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
1028 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1029 	} else {
1030 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1031 		val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1032 		       MVNETA_GMAC_AN_SPEED_EN |
1033 		       MVNETA_GMAC_AN_DUPLEX_EN);
1034 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1035 
1036 		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1037 		val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
1038 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1039 
1040 		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1041 		val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
1042 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1043 	}
1044 }
1045 
1046 static void mvneta_percpu_unmask_interrupt(void *arg)
1047 {
1048 	struct mvneta_port *pp = arg;
1049 
1050 	/* All the queue are unmasked, but actually only the ones
1051 	 * mapped to this CPU will be unmasked
1052 	 */
1053 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1054 		    MVNETA_RX_INTR_MASK_ALL |
1055 		    MVNETA_TX_INTR_MASK_ALL |
1056 		    MVNETA_MISCINTR_INTR_MASK);
1057 }
1058 
1059 static void mvneta_percpu_mask_interrupt(void *arg)
1060 {
1061 	struct mvneta_port *pp = arg;
1062 
1063 	/* All the queue are masked, but actually only the ones
1064 	 * mapped to this CPU will be masked
1065 	 */
1066 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1067 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1068 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1069 }
1070 
1071 static void mvneta_percpu_clear_intr_cause(void *arg)
1072 {
1073 	struct mvneta_port *pp = arg;
1074 
1075 	/* All the queue are cleared, but actually only the ones
1076 	 * mapped to this CPU will be cleared
1077 	 */
1078 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1079 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1080 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1081 }
1082 
1083 /* This method sets defaults to the NETA port:
1084  *	Clears interrupt Cause and Mask registers.
1085  *	Clears all MAC tables.
1086  *	Sets defaults to all registers.
1087  *	Resets RX and TX descriptor rings.
1088  *	Resets PHY.
1089  * This method can be called after mvneta_port_down() to return the port
1090  *	settings to defaults.
1091  */
1092 static void mvneta_defaults_set(struct mvneta_port *pp)
1093 {
1094 	int cpu;
1095 	int queue;
1096 	u32 val;
1097 	int max_cpu = num_present_cpus();
1098 
1099 	/* Clear all Cause registers */
1100 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1101 
1102 	/* Mask all interrupts */
1103 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1104 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1105 
1106 	/* Enable MBUS Retry bit16 */
1107 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1108 
1109 	/* Set CPU queue access map. CPUs are assigned to the RX and
1110 	 * TX queues modulo their number. If there is only one TX
1111 	 * queue then it is assigned to the CPU associated to the
1112 	 * default RX queue.
1113 	 */
1114 	for_each_present_cpu(cpu) {
1115 		int rxq_map = 0, txq_map = 0;
1116 		int rxq, txq;
1117 
1118 		for (rxq = 0; rxq < rxq_number; rxq++)
1119 			if ((rxq % max_cpu) == cpu)
1120 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1121 
1122 		for (txq = 0; txq < txq_number; txq++)
1123 			if ((txq % max_cpu) == cpu)
1124 				txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1125 
1126 		/* With only one TX queue we configure a special case
1127 		 * which will allow to get all the irq on a single
1128 		 * CPU
1129 		 */
1130 		if (txq_number == 1)
1131 			txq_map = (cpu == pp->rxq_def) ?
1132 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
1133 
1134 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1135 	}
1136 
1137 	/* Reset RX and TX DMAs */
1138 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1139 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1140 
1141 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1142 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1143 	for (queue = 0; queue < txq_number; queue++) {
1144 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1145 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1146 	}
1147 
1148 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1149 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1150 
1151 	/* Set Port Acceleration Mode */
1152 	val = MVNETA_ACC_MODE_EXT;
1153 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1154 
1155 	/* Update val of portCfg register accordingly with all RxQueue types */
1156 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1157 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1158 
1159 	val = 0;
1160 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1161 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1162 
1163 	/* Build PORT_SDMA_CONFIG_REG */
1164 	val = 0;
1165 
1166 	/* Default burst size */
1167 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1168 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1169 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1170 
1171 #if defined(__BIG_ENDIAN)
1172 	val |= MVNETA_DESC_SWAP;
1173 #endif
1174 
1175 	/* Assign port SDMA configuration */
1176 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1177 
1178 	/* Disable PHY polling in hardware, since we're using the
1179 	 * kernel phylib to do this.
1180 	 */
1181 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1182 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1183 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1184 
1185 	mvneta_set_autoneg(pp, pp->use_inband_status);
1186 	mvneta_set_ucast_table(pp, -1);
1187 	mvneta_set_special_mcast_table(pp, -1);
1188 	mvneta_set_other_mcast_table(pp, -1);
1189 
1190 	/* Set port interrupt enable register - default enable all */
1191 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1192 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1193 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1194 
1195 	mvneta_mib_counters_clear(pp);
1196 }
1197 
1198 /* Set max sizes for tx queues */
1199 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1200 
1201 {
1202 	u32 val, size, mtu;
1203 	int queue;
1204 
1205 	mtu = max_tx_size * 8;
1206 	if (mtu > MVNETA_TX_MTU_MAX)
1207 		mtu = MVNETA_TX_MTU_MAX;
1208 
1209 	/* Set MTU */
1210 	val = mvreg_read(pp, MVNETA_TX_MTU);
1211 	val &= ~MVNETA_TX_MTU_MAX;
1212 	val |= mtu;
1213 	mvreg_write(pp, MVNETA_TX_MTU, val);
1214 
1215 	/* TX token size and all TXQs token size must be larger that MTU */
1216 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1217 
1218 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1219 	if (size < mtu) {
1220 		size = mtu;
1221 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1222 		val |= size;
1223 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1224 	}
1225 	for (queue = 0; queue < txq_number; queue++) {
1226 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1227 
1228 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1229 		if (size < mtu) {
1230 			size = mtu;
1231 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1232 			val |= size;
1233 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1234 		}
1235 	}
1236 }
1237 
1238 /* Set unicast address */
1239 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1240 				  int queue)
1241 {
1242 	unsigned int unicast_reg;
1243 	unsigned int tbl_offset;
1244 	unsigned int reg_offset;
1245 
1246 	/* Locate the Unicast table entry */
1247 	last_nibble = (0xf & last_nibble);
1248 
1249 	/* offset from unicast tbl base */
1250 	tbl_offset = (last_nibble / 4) * 4;
1251 
1252 	/* offset within the above reg  */
1253 	reg_offset = last_nibble % 4;
1254 
1255 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1256 
1257 	if (queue == -1) {
1258 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1259 		unicast_reg &= ~(0xff << (8 * reg_offset));
1260 	} else {
1261 		unicast_reg &= ~(0xff << (8 * reg_offset));
1262 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1263 	}
1264 
1265 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1266 }
1267 
1268 /* Set mac address */
1269 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1270 				int queue)
1271 {
1272 	unsigned int mac_h;
1273 	unsigned int mac_l;
1274 
1275 	if (queue != -1) {
1276 		mac_l = (addr[4] << 8) | (addr[5]);
1277 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1278 			(addr[2] << 8) | (addr[3] << 0);
1279 
1280 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1281 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1282 	}
1283 
1284 	/* Accept frames of this address */
1285 	mvneta_set_ucast_addr(pp, addr[5], queue);
1286 }
1287 
1288 /* Set the number of packets that will be received before RX interrupt
1289  * will be generated by HW.
1290  */
1291 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1292 				    struct mvneta_rx_queue *rxq, u32 value)
1293 {
1294 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1295 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1296 	rxq->pkts_coal = value;
1297 }
1298 
1299 /* Set the time delay in usec before RX interrupt will be generated by
1300  * HW.
1301  */
1302 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1303 				    struct mvneta_rx_queue *rxq, u32 value)
1304 {
1305 	u32 val;
1306 	unsigned long clk_rate;
1307 
1308 	clk_rate = clk_get_rate(pp->clk);
1309 	val = (clk_rate / 1000000) * value;
1310 
1311 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1312 	rxq->time_coal = value;
1313 }
1314 
1315 /* Set threshold for TX_DONE pkts coalescing */
1316 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1317 					 struct mvneta_tx_queue *txq, u32 value)
1318 {
1319 	u32 val;
1320 
1321 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1322 
1323 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1324 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1325 
1326 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1327 
1328 	txq->done_pkts_coal = value;
1329 }
1330 
1331 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1332 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1333 				u32 phys_addr, u32 cookie)
1334 {
1335 	rx_desc->buf_cookie = cookie;
1336 	rx_desc->buf_phys_addr = phys_addr;
1337 }
1338 
1339 /* Decrement sent descriptors counter */
1340 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1341 				     struct mvneta_tx_queue *txq,
1342 				     int sent_desc)
1343 {
1344 	u32 val;
1345 
1346 	/* Only 255 TX descriptors can be updated at once */
1347 	while (sent_desc > 0xff) {
1348 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1349 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1350 		sent_desc = sent_desc - 0xff;
1351 	}
1352 
1353 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1354 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1355 }
1356 
1357 /* Get number of TX descriptors already sent by HW */
1358 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1359 					struct mvneta_tx_queue *txq)
1360 {
1361 	u32 val;
1362 	int sent_desc;
1363 
1364 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1365 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1366 		MVNETA_TXQ_SENT_DESC_SHIFT;
1367 
1368 	return sent_desc;
1369 }
1370 
1371 /* Get number of sent descriptors and decrement counter.
1372  *  The number of sent descriptors is returned.
1373  */
1374 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1375 				     struct mvneta_tx_queue *txq)
1376 {
1377 	int sent_desc;
1378 
1379 	/* Get number of sent descriptors */
1380 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1381 
1382 	/* Decrement sent descriptors counter */
1383 	if (sent_desc)
1384 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1385 
1386 	return sent_desc;
1387 }
1388 
1389 /* Set TXQ descriptors fields relevant for CSUM calculation */
1390 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1391 				int ip_hdr_len, int l4_proto)
1392 {
1393 	u32 command;
1394 
1395 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1396 	 * G_L4_chk, L4_type; required only for checksum
1397 	 * calculation
1398 	 */
1399 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1400 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1401 
1402 	if (l3_proto == htons(ETH_P_IP))
1403 		command |= MVNETA_TXD_IP_CSUM;
1404 	else
1405 		command |= MVNETA_TX_L3_IP6;
1406 
1407 	if (l4_proto == IPPROTO_TCP)
1408 		command |=  MVNETA_TX_L4_CSUM_FULL;
1409 	else if (l4_proto == IPPROTO_UDP)
1410 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1411 	else
1412 		command |= MVNETA_TX_L4_CSUM_NOT;
1413 
1414 	return command;
1415 }
1416 
1417 
1418 /* Display more error info */
1419 static void mvneta_rx_error(struct mvneta_port *pp,
1420 			    struct mvneta_rx_desc *rx_desc)
1421 {
1422 	u32 status = rx_desc->status;
1423 
1424 	if (!mvneta_rxq_desc_is_first_last(status)) {
1425 		netdev_err(pp->dev,
1426 			   "bad rx status %08x (buffer oversize), size=%d\n",
1427 			   status, rx_desc->data_size);
1428 		return;
1429 	}
1430 
1431 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1432 	case MVNETA_RXD_ERR_CRC:
1433 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1434 			   status, rx_desc->data_size);
1435 		break;
1436 	case MVNETA_RXD_ERR_OVERRUN:
1437 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1438 			   status, rx_desc->data_size);
1439 		break;
1440 	case MVNETA_RXD_ERR_LEN:
1441 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1442 			   status, rx_desc->data_size);
1443 		break;
1444 	case MVNETA_RXD_ERR_RESOURCE:
1445 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1446 			   status, rx_desc->data_size);
1447 		break;
1448 	}
1449 }
1450 
1451 /* Handle RX checksum offload based on the descriptor's status */
1452 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1453 			   struct sk_buff *skb)
1454 {
1455 	if ((status & MVNETA_RXD_L3_IP4) &&
1456 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1457 		skb->csum = 0;
1458 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1459 		return;
1460 	}
1461 
1462 	skb->ip_summed = CHECKSUM_NONE;
1463 }
1464 
1465 /* Return tx queue pointer (find last set bit) according to <cause> returned
1466  * form tx_done reg. <cause> must not be null. The return value is always a
1467  * valid queue for matching the first one found in <cause>.
1468  */
1469 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1470 						     u32 cause)
1471 {
1472 	int queue = fls(cause) - 1;
1473 
1474 	return &pp->txqs[queue];
1475 }
1476 
1477 /* Free tx queue skbuffs */
1478 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1479 				 struct mvneta_tx_queue *txq, int num)
1480 {
1481 	int i;
1482 
1483 	for (i = 0; i < num; i++) {
1484 		struct mvneta_tx_desc *tx_desc = txq->descs +
1485 			txq->txq_get_index;
1486 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1487 
1488 		mvneta_txq_inc_get(txq);
1489 
1490 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1491 			dma_unmap_single(pp->dev->dev.parent,
1492 					 tx_desc->buf_phys_addr,
1493 					 tx_desc->data_size, DMA_TO_DEVICE);
1494 		if (!skb)
1495 			continue;
1496 		dev_kfree_skb_any(skb);
1497 	}
1498 }
1499 
1500 /* Handle end of transmission */
1501 static void mvneta_txq_done(struct mvneta_port *pp,
1502 			   struct mvneta_tx_queue *txq)
1503 {
1504 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1505 	int tx_done;
1506 
1507 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1508 	if (!tx_done)
1509 		return;
1510 
1511 	mvneta_txq_bufs_free(pp, txq, tx_done);
1512 
1513 	txq->count -= tx_done;
1514 
1515 	if (netif_tx_queue_stopped(nq)) {
1516 		if (txq->count <= txq->tx_wake_threshold)
1517 			netif_tx_wake_queue(nq);
1518 	}
1519 }
1520 
1521 static void *mvneta_frag_alloc(const struct mvneta_port *pp)
1522 {
1523 	if (likely(pp->frag_size <= PAGE_SIZE))
1524 		return netdev_alloc_frag(pp->frag_size);
1525 	else
1526 		return kmalloc(pp->frag_size, GFP_ATOMIC);
1527 }
1528 
1529 static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
1530 {
1531 	if (likely(pp->frag_size <= PAGE_SIZE))
1532 		skb_free_frag(data);
1533 	else
1534 		kfree(data);
1535 }
1536 
1537 /* Refill processing */
1538 static int mvneta_rx_refill(struct mvneta_port *pp,
1539 			    struct mvneta_rx_desc *rx_desc)
1540 
1541 {
1542 	dma_addr_t phys_addr;
1543 	void *data;
1544 
1545 	data = mvneta_frag_alloc(pp);
1546 	if (!data)
1547 		return -ENOMEM;
1548 
1549 	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1550 				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1551 				   DMA_FROM_DEVICE);
1552 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1553 		mvneta_frag_free(pp, data);
1554 		return -ENOMEM;
1555 	}
1556 
1557 	mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1558 	return 0;
1559 }
1560 
1561 /* Handle tx checksum */
1562 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1563 {
1564 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1565 		int ip_hdr_len = 0;
1566 		__be16 l3_proto = vlan_get_protocol(skb);
1567 		u8 l4_proto;
1568 
1569 		if (l3_proto == htons(ETH_P_IP)) {
1570 			struct iphdr *ip4h = ip_hdr(skb);
1571 
1572 			/* Calculate IPv4 checksum and L4 checksum */
1573 			ip_hdr_len = ip4h->ihl;
1574 			l4_proto = ip4h->protocol;
1575 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1576 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1577 
1578 			/* Read l4_protocol from one of IPv6 extra headers */
1579 			if (skb_network_header_len(skb) > 0)
1580 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1581 			l4_proto = ip6h->nexthdr;
1582 		} else
1583 			return MVNETA_TX_L4_CSUM_NOT;
1584 
1585 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1586 					    l3_proto, ip_hdr_len, l4_proto);
1587 	}
1588 
1589 	return MVNETA_TX_L4_CSUM_NOT;
1590 }
1591 
1592 /* Drop packets received by the RXQ and free buffers */
1593 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1594 				 struct mvneta_rx_queue *rxq)
1595 {
1596 	int rx_done, i;
1597 
1598 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1599 	for (i = 0; i < rxq->size; i++) {
1600 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1601 		void *data = (void *)rx_desc->buf_cookie;
1602 
1603 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1604 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1605 		mvneta_frag_free(pp, data);
1606 	}
1607 
1608 	if (rx_done)
1609 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1610 }
1611 
1612 /* Main rx processing */
1613 static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1614 		     struct mvneta_rx_queue *rxq)
1615 {
1616 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1617 	struct net_device *dev = pp->dev;
1618 	int rx_done;
1619 	u32 rcvd_pkts = 0;
1620 	u32 rcvd_bytes = 0;
1621 
1622 	/* Get number of received packets */
1623 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1624 
1625 	if (rx_todo > rx_done)
1626 		rx_todo = rx_done;
1627 
1628 	rx_done = 0;
1629 
1630 	/* Fairness NAPI loop */
1631 	while (rx_done < rx_todo) {
1632 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1633 		struct sk_buff *skb;
1634 		unsigned char *data;
1635 		dma_addr_t phys_addr;
1636 		u32 rx_status;
1637 		int rx_bytes, err;
1638 
1639 		rx_done++;
1640 		rx_status = rx_desc->status;
1641 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1642 		data = (unsigned char *)rx_desc->buf_cookie;
1643 		phys_addr = rx_desc->buf_phys_addr;
1644 
1645 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1646 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1647 		err_drop_frame:
1648 			dev->stats.rx_errors++;
1649 			mvneta_rx_error(pp, rx_desc);
1650 			/* leave the descriptor untouched */
1651 			continue;
1652 		}
1653 
1654 		if (rx_bytes <= rx_copybreak) {
1655 			/* better copy a small frame and not unmap the DMA region */
1656 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1657 			if (unlikely(!skb))
1658 				goto err_drop_frame;
1659 
1660 			dma_sync_single_range_for_cpu(dev->dev.parent,
1661 			                              rx_desc->buf_phys_addr,
1662 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
1663 			                              rx_bytes,
1664 			                              DMA_FROM_DEVICE);
1665 			memcpy(skb_put(skb, rx_bytes),
1666 			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
1667 			       rx_bytes);
1668 
1669 			skb->protocol = eth_type_trans(skb, dev);
1670 			mvneta_rx_csum(pp, rx_status, skb);
1671 			napi_gro_receive(&port->napi, skb);
1672 
1673 			rcvd_pkts++;
1674 			rcvd_bytes += rx_bytes;
1675 
1676 			/* leave the descriptor and buffer untouched */
1677 			continue;
1678 		}
1679 
1680 		/* Refill processing */
1681 		err = mvneta_rx_refill(pp, rx_desc);
1682 		if (err) {
1683 			netdev_err(dev, "Linux processing - Can't refill\n");
1684 			rxq->missed++;
1685 			goto err_drop_frame;
1686 		}
1687 
1688 		skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
1689 
1690 		/* After refill old buffer has to be unmapped regardless
1691 		 * the skb is successfully built or not.
1692 		 */
1693 		dma_unmap_single(dev->dev.parent, phys_addr,
1694 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1695 
1696 		if (!skb)
1697 			goto err_drop_frame;
1698 
1699 		rcvd_pkts++;
1700 		rcvd_bytes += rx_bytes;
1701 
1702 		/* Linux processing */
1703 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1704 		skb_put(skb, rx_bytes);
1705 
1706 		skb->protocol = eth_type_trans(skb, dev);
1707 
1708 		mvneta_rx_csum(pp, rx_status, skb);
1709 
1710 		napi_gro_receive(&port->napi, skb);
1711 	}
1712 
1713 	if (rcvd_pkts) {
1714 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1715 
1716 		u64_stats_update_begin(&stats->syncp);
1717 		stats->rx_packets += rcvd_pkts;
1718 		stats->rx_bytes   += rcvd_bytes;
1719 		u64_stats_update_end(&stats->syncp);
1720 	}
1721 
1722 	/* Update rxq management counters */
1723 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1724 
1725 	return rx_done;
1726 }
1727 
1728 static inline void
1729 mvneta_tso_put_hdr(struct sk_buff *skb,
1730 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
1731 {
1732 	struct mvneta_tx_desc *tx_desc;
1733 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1734 
1735 	txq->tx_skb[txq->txq_put_index] = NULL;
1736 	tx_desc = mvneta_txq_next_desc_get(txq);
1737 	tx_desc->data_size = hdr_len;
1738 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
1739 	tx_desc->command |= MVNETA_TXD_F_DESC;
1740 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
1741 				 txq->txq_put_index * TSO_HEADER_SIZE;
1742 	mvneta_txq_inc_put(txq);
1743 }
1744 
1745 static inline int
1746 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
1747 		    struct sk_buff *skb, char *data, int size,
1748 		    bool last_tcp, bool is_last)
1749 {
1750 	struct mvneta_tx_desc *tx_desc;
1751 
1752 	tx_desc = mvneta_txq_next_desc_get(txq);
1753 	tx_desc->data_size = size;
1754 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
1755 						size, DMA_TO_DEVICE);
1756 	if (unlikely(dma_mapping_error(dev->dev.parent,
1757 		     tx_desc->buf_phys_addr))) {
1758 		mvneta_txq_desc_put(txq);
1759 		return -ENOMEM;
1760 	}
1761 
1762 	tx_desc->command = 0;
1763 	txq->tx_skb[txq->txq_put_index] = NULL;
1764 
1765 	if (last_tcp) {
1766 		/* last descriptor in the TCP packet */
1767 		tx_desc->command = MVNETA_TXD_L_DESC;
1768 
1769 		/* last descriptor in SKB */
1770 		if (is_last)
1771 			txq->tx_skb[txq->txq_put_index] = skb;
1772 	}
1773 	mvneta_txq_inc_put(txq);
1774 	return 0;
1775 }
1776 
1777 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
1778 			 struct mvneta_tx_queue *txq)
1779 {
1780 	int total_len, data_left;
1781 	int desc_count = 0;
1782 	struct mvneta_port *pp = netdev_priv(dev);
1783 	struct tso_t tso;
1784 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1785 	int i;
1786 
1787 	/* Count needed descriptors */
1788 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
1789 		return 0;
1790 
1791 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
1792 		pr_info("*** Is this even  possible???!?!?\n");
1793 		return 0;
1794 	}
1795 
1796 	/* Initialize the TSO handler, and prepare the first payload */
1797 	tso_start(skb, &tso);
1798 
1799 	total_len = skb->len - hdr_len;
1800 	while (total_len > 0) {
1801 		char *hdr;
1802 
1803 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
1804 		total_len -= data_left;
1805 		desc_count++;
1806 
1807 		/* prepare packet headers: MAC + IP + TCP */
1808 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
1809 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
1810 
1811 		mvneta_tso_put_hdr(skb, pp, txq);
1812 
1813 		while (data_left > 0) {
1814 			int size;
1815 			desc_count++;
1816 
1817 			size = min_t(int, tso.size, data_left);
1818 
1819 			if (mvneta_tso_put_data(dev, txq, skb,
1820 						 tso.data, size,
1821 						 size == data_left,
1822 						 total_len == 0))
1823 				goto err_release;
1824 			data_left -= size;
1825 
1826 			tso_build_data(skb, &tso, size);
1827 		}
1828 	}
1829 
1830 	return desc_count;
1831 
1832 err_release:
1833 	/* Release all used data descriptors; header descriptors must not
1834 	 * be DMA-unmapped.
1835 	 */
1836 	for (i = desc_count - 1; i >= 0; i--) {
1837 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
1838 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1839 			dma_unmap_single(pp->dev->dev.parent,
1840 					 tx_desc->buf_phys_addr,
1841 					 tx_desc->data_size,
1842 					 DMA_TO_DEVICE);
1843 		mvneta_txq_desc_put(txq);
1844 	}
1845 	return 0;
1846 }
1847 
1848 /* Handle tx fragmentation processing */
1849 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1850 				  struct mvneta_tx_queue *txq)
1851 {
1852 	struct mvneta_tx_desc *tx_desc;
1853 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
1854 
1855 	for (i = 0; i < nr_frags; i++) {
1856 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1857 		void *addr = page_address(frag->page.p) + frag->page_offset;
1858 
1859 		tx_desc = mvneta_txq_next_desc_get(txq);
1860 		tx_desc->data_size = frag->size;
1861 
1862 		tx_desc->buf_phys_addr =
1863 			dma_map_single(pp->dev->dev.parent, addr,
1864 				       tx_desc->data_size, DMA_TO_DEVICE);
1865 
1866 		if (dma_mapping_error(pp->dev->dev.parent,
1867 				      tx_desc->buf_phys_addr)) {
1868 			mvneta_txq_desc_put(txq);
1869 			goto error;
1870 		}
1871 
1872 		if (i == nr_frags - 1) {
1873 			/* Last descriptor */
1874 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1875 			txq->tx_skb[txq->txq_put_index] = skb;
1876 		} else {
1877 			/* Descriptor in the middle: Not First, Not Last */
1878 			tx_desc->command = 0;
1879 			txq->tx_skb[txq->txq_put_index] = NULL;
1880 		}
1881 		mvneta_txq_inc_put(txq);
1882 	}
1883 
1884 	return 0;
1885 
1886 error:
1887 	/* Release all descriptors that were used to map fragments of
1888 	 * this packet, as well as the corresponding DMA mappings
1889 	 */
1890 	for (i = i - 1; i >= 0; i--) {
1891 		tx_desc = txq->descs + i;
1892 		dma_unmap_single(pp->dev->dev.parent,
1893 				 tx_desc->buf_phys_addr,
1894 				 tx_desc->data_size,
1895 				 DMA_TO_DEVICE);
1896 		mvneta_txq_desc_put(txq);
1897 	}
1898 
1899 	return -ENOMEM;
1900 }
1901 
1902 /* Main tx processing */
1903 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1904 {
1905 	struct mvneta_port *pp = netdev_priv(dev);
1906 	u16 txq_id = skb_get_queue_mapping(skb);
1907 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
1908 	struct mvneta_tx_desc *tx_desc;
1909 	int len = skb->len;
1910 	int frags = 0;
1911 	u32 tx_cmd;
1912 
1913 	if (!netif_running(dev))
1914 		goto out;
1915 
1916 	if (skb_is_gso(skb)) {
1917 		frags = mvneta_tx_tso(skb, dev, txq);
1918 		goto out;
1919 	}
1920 
1921 	frags = skb_shinfo(skb)->nr_frags + 1;
1922 
1923 	/* Get a descriptor for the first part of the packet */
1924 	tx_desc = mvneta_txq_next_desc_get(txq);
1925 
1926 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
1927 
1928 	tx_desc->data_size = skb_headlen(skb);
1929 
1930 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1931 						tx_desc->data_size,
1932 						DMA_TO_DEVICE);
1933 	if (unlikely(dma_mapping_error(dev->dev.parent,
1934 				       tx_desc->buf_phys_addr))) {
1935 		mvneta_txq_desc_put(txq);
1936 		frags = 0;
1937 		goto out;
1938 	}
1939 
1940 	if (frags == 1) {
1941 		/* First and Last descriptor */
1942 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
1943 		tx_desc->command = tx_cmd;
1944 		txq->tx_skb[txq->txq_put_index] = skb;
1945 		mvneta_txq_inc_put(txq);
1946 	} else {
1947 		/* First but not Last */
1948 		tx_cmd |= MVNETA_TXD_F_DESC;
1949 		txq->tx_skb[txq->txq_put_index] = NULL;
1950 		mvneta_txq_inc_put(txq);
1951 		tx_desc->command = tx_cmd;
1952 		/* Continue with other skb fragments */
1953 		if (mvneta_tx_frag_process(pp, skb, txq)) {
1954 			dma_unmap_single(dev->dev.parent,
1955 					 tx_desc->buf_phys_addr,
1956 					 tx_desc->data_size,
1957 					 DMA_TO_DEVICE);
1958 			mvneta_txq_desc_put(txq);
1959 			frags = 0;
1960 			goto out;
1961 		}
1962 	}
1963 
1964 out:
1965 	if (frags > 0) {
1966 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1967 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
1968 
1969 		txq->count += frags;
1970 		mvneta_txq_pend_desc_add(pp, txq, frags);
1971 
1972 		if (txq->count >= txq->tx_stop_threshold)
1973 			netif_tx_stop_queue(nq);
1974 
1975 		u64_stats_update_begin(&stats->syncp);
1976 		stats->tx_packets++;
1977 		stats->tx_bytes  += len;
1978 		u64_stats_update_end(&stats->syncp);
1979 	} else {
1980 		dev->stats.tx_dropped++;
1981 		dev_kfree_skb_any(skb);
1982 	}
1983 
1984 	return NETDEV_TX_OK;
1985 }
1986 
1987 
1988 /* Free tx resources, when resetting a port */
1989 static void mvneta_txq_done_force(struct mvneta_port *pp,
1990 				  struct mvneta_tx_queue *txq)
1991 
1992 {
1993 	int tx_done = txq->count;
1994 
1995 	mvneta_txq_bufs_free(pp, txq, tx_done);
1996 
1997 	/* reset txq */
1998 	txq->count = 0;
1999 	txq->txq_put_index = 0;
2000 	txq->txq_get_index = 0;
2001 }
2002 
2003 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2004  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2005  */
2006 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2007 {
2008 	struct mvneta_tx_queue *txq;
2009 	struct netdev_queue *nq;
2010 
2011 	while (cause_tx_done) {
2012 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2013 
2014 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2015 		__netif_tx_lock(nq, smp_processor_id());
2016 
2017 		if (txq->count)
2018 			mvneta_txq_done(pp, txq);
2019 
2020 		__netif_tx_unlock(nq);
2021 		cause_tx_done &= ~((1 << txq->id));
2022 	}
2023 }
2024 
2025 /* Compute crc8 of the specified address, using a unique algorithm ,
2026  * according to hw spec, different than generic crc8 algorithm
2027  */
2028 static int mvneta_addr_crc(unsigned char *addr)
2029 {
2030 	int crc = 0;
2031 	int i;
2032 
2033 	for (i = 0; i < ETH_ALEN; i++) {
2034 		int j;
2035 
2036 		crc = (crc ^ addr[i]) << 8;
2037 		for (j = 7; j >= 0; j--) {
2038 			if (crc & (0x100 << j))
2039 				crc ^= 0x107 << j;
2040 		}
2041 	}
2042 
2043 	return crc;
2044 }
2045 
2046 /* This method controls the net device special MAC multicast support.
2047  * The Special Multicast Table for MAC addresses supports MAC of the form
2048  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2049  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2050  * Table entries in the DA-Filter table. This method set the Special
2051  * Multicast Table appropriate entry.
2052  */
2053 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2054 					  unsigned char last_byte,
2055 					  int queue)
2056 {
2057 	unsigned int smc_table_reg;
2058 	unsigned int tbl_offset;
2059 	unsigned int reg_offset;
2060 
2061 	/* Register offset from SMC table base    */
2062 	tbl_offset = (last_byte / 4);
2063 	/* Entry offset within the above reg */
2064 	reg_offset = last_byte % 4;
2065 
2066 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2067 					+ tbl_offset * 4));
2068 
2069 	if (queue == -1)
2070 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2071 	else {
2072 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2073 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2074 	}
2075 
2076 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2077 		    smc_table_reg);
2078 }
2079 
2080 /* This method controls the network device Other MAC multicast support.
2081  * The Other Multicast Table is used for multicast of another type.
2082  * A CRC-8 is used as an index to the Other Multicast Table entries
2083  * in the DA-Filter table.
2084  * The method gets the CRC-8 value from the calling routine and
2085  * sets the Other Multicast Table appropriate entry according to the
2086  * specified CRC-8 .
2087  */
2088 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2089 					unsigned char crc8,
2090 					int queue)
2091 {
2092 	unsigned int omc_table_reg;
2093 	unsigned int tbl_offset;
2094 	unsigned int reg_offset;
2095 
2096 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2097 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2098 
2099 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2100 
2101 	if (queue == -1) {
2102 		/* Clear accepts frame bit at specified Other DA table entry */
2103 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2104 	} else {
2105 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2106 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2107 	}
2108 
2109 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2110 }
2111 
2112 /* The network device supports multicast using two tables:
2113  *    1) Special Multicast Table for MAC addresses of the form
2114  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2115  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2116  *       Table entries in the DA-Filter table.
2117  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2118  *       is used as an index to the Other Multicast Table entries in the
2119  *       DA-Filter table.
2120  */
2121 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2122 				 int queue)
2123 {
2124 	unsigned char crc_result = 0;
2125 
2126 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2127 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2128 		return 0;
2129 	}
2130 
2131 	crc_result = mvneta_addr_crc(p_addr);
2132 	if (queue == -1) {
2133 		if (pp->mcast_count[crc_result] == 0) {
2134 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2135 				    crc_result);
2136 			return -EINVAL;
2137 		}
2138 
2139 		pp->mcast_count[crc_result]--;
2140 		if (pp->mcast_count[crc_result] != 0) {
2141 			netdev_info(pp->dev,
2142 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2143 				    pp->mcast_count[crc_result], crc_result);
2144 			return -EINVAL;
2145 		}
2146 	} else
2147 		pp->mcast_count[crc_result]++;
2148 
2149 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2150 
2151 	return 0;
2152 }
2153 
2154 /* Configure Fitering mode of Ethernet port */
2155 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2156 					  int is_promisc)
2157 {
2158 	u32 port_cfg_reg, val;
2159 
2160 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2161 
2162 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2163 
2164 	/* Set / Clear UPM bit in port configuration register */
2165 	if (is_promisc) {
2166 		/* Accept all Unicast addresses */
2167 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2168 		val |= MVNETA_FORCE_UNI;
2169 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2170 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2171 	} else {
2172 		/* Reject all Unicast addresses */
2173 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2174 		val &= ~MVNETA_FORCE_UNI;
2175 	}
2176 
2177 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2178 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2179 }
2180 
2181 /* register unicast and multicast addresses */
2182 static void mvneta_set_rx_mode(struct net_device *dev)
2183 {
2184 	struct mvneta_port *pp = netdev_priv(dev);
2185 	struct netdev_hw_addr *ha;
2186 
2187 	if (dev->flags & IFF_PROMISC) {
2188 		/* Accept all: Multicast + Unicast */
2189 		mvneta_rx_unicast_promisc_set(pp, 1);
2190 		mvneta_set_ucast_table(pp, pp->rxq_def);
2191 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
2192 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
2193 	} else {
2194 		/* Accept single Unicast */
2195 		mvneta_rx_unicast_promisc_set(pp, 0);
2196 		mvneta_set_ucast_table(pp, -1);
2197 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2198 
2199 		if (dev->flags & IFF_ALLMULTI) {
2200 			/* Accept all multicast */
2201 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
2202 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
2203 		} else {
2204 			/* Accept only initialized multicast */
2205 			mvneta_set_special_mcast_table(pp, -1);
2206 			mvneta_set_other_mcast_table(pp, -1);
2207 
2208 			if (!netdev_mc_empty(dev)) {
2209 				netdev_for_each_mc_addr(ha, dev) {
2210 					mvneta_mcast_addr_set(pp, ha->addr,
2211 							      pp->rxq_def);
2212 				}
2213 			}
2214 		}
2215 	}
2216 }
2217 
2218 /* Interrupt handling - the callback for request_irq() */
2219 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2220 {
2221 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2222 
2223 	disable_percpu_irq(port->pp->dev->irq);
2224 	napi_schedule(&port->napi);
2225 
2226 	return IRQ_HANDLED;
2227 }
2228 
2229 static int mvneta_fixed_link_update(struct mvneta_port *pp,
2230 				    struct phy_device *phy)
2231 {
2232 	struct fixed_phy_status status;
2233 	struct fixed_phy_status changed = {};
2234 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2235 
2236 	status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2237 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2238 		status.speed = SPEED_1000;
2239 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2240 		status.speed = SPEED_100;
2241 	else
2242 		status.speed = SPEED_10;
2243 	status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2244 	changed.link = 1;
2245 	changed.speed = 1;
2246 	changed.duplex = 1;
2247 	fixed_phy_update_state(phy, &status, &changed);
2248 	return 0;
2249 }
2250 
2251 /* NAPI handler
2252  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2253  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2254  * Bits 8 -15 of the cause Rx Tx register indicate that are received
2255  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2256  * Each CPU has its own causeRxTx register
2257  */
2258 static int mvneta_poll(struct napi_struct *napi, int budget)
2259 {
2260 	int rx_done = 0;
2261 	u32 cause_rx_tx;
2262 	int rx_queue;
2263 	struct mvneta_port *pp = netdev_priv(napi->dev);
2264 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2265 
2266 	if (!netif_running(pp->dev)) {
2267 		napi_complete(&port->napi);
2268 		return rx_done;
2269 	}
2270 
2271 	/* Read cause register */
2272 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2273 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2274 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2275 
2276 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2277 		if (pp->use_inband_status && (cause_misc &
2278 				(MVNETA_CAUSE_PHY_STATUS_CHANGE |
2279 				 MVNETA_CAUSE_LINK_CHANGE |
2280 				 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2281 			mvneta_fixed_link_update(pp, pp->phy_dev);
2282 		}
2283 	}
2284 
2285 	/* Release Tx descriptors */
2286 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2287 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2288 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2289 	}
2290 
2291 	/* For the case where the last mvneta_poll did not process all
2292 	 * RX packets
2293 	 */
2294 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2295 
2296 	cause_rx_tx |= port->cause_rx_tx;
2297 
2298 	if (rx_queue) {
2299 		rx_queue = rx_queue - 1;
2300 		rx_done = mvneta_rx(pp, budget, &pp->rxqs[rx_queue]);
2301 	}
2302 
2303 	budget -= rx_done;
2304 
2305 	if (budget > 0) {
2306 		cause_rx_tx = 0;
2307 		napi_complete(&port->napi);
2308 		enable_percpu_irq(pp->dev->irq, 0);
2309 	}
2310 
2311 	port->cause_rx_tx = cause_rx_tx;
2312 	return rx_done;
2313 }
2314 
2315 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2316 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2317 			   int num)
2318 {
2319 	int i;
2320 
2321 	for (i = 0; i < num; i++) {
2322 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2323 		if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2324 			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2325 				__func__, rxq->id, i, num);
2326 			break;
2327 		}
2328 	}
2329 
2330 	/* Add this number of RX descriptors as non occupied (ready to
2331 	 * get packets)
2332 	 */
2333 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2334 
2335 	return i;
2336 }
2337 
2338 /* Free all packets pending transmit from all TXQs and reset TX port */
2339 static void mvneta_tx_reset(struct mvneta_port *pp)
2340 {
2341 	int queue;
2342 
2343 	/* free the skb's in the tx ring */
2344 	for (queue = 0; queue < txq_number; queue++)
2345 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2346 
2347 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2348 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2349 }
2350 
2351 static void mvneta_rx_reset(struct mvneta_port *pp)
2352 {
2353 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2354 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2355 }
2356 
2357 /* Rx/Tx queue initialization/cleanup methods */
2358 
2359 /* Create a specified RX queue */
2360 static int mvneta_rxq_init(struct mvneta_port *pp,
2361 			   struct mvneta_rx_queue *rxq)
2362 
2363 {
2364 	rxq->size = pp->rx_ring_size;
2365 
2366 	/* Allocate memory for RX descriptors */
2367 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2368 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2369 					&rxq->descs_phys, GFP_KERNEL);
2370 	if (rxq->descs == NULL)
2371 		return -ENOMEM;
2372 
2373 	BUG_ON(rxq->descs !=
2374 	       PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2375 
2376 	rxq->last_desc = rxq->size - 1;
2377 
2378 	/* Set Rx descriptors queue starting address */
2379 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2380 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2381 
2382 	/* Set Offset */
2383 	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2384 
2385 	/* Set coalescing pkts and time */
2386 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2387 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2388 
2389 	/* Fill RXQ with buffers from RX pool */
2390 	mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
2391 	mvneta_rxq_bm_disable(pp, rxq);
2392 	mvneta_rxq_fill(pp, rxq, rxq->size);
2393 
2394 	return 0;
2395 }
2396 
2397 /* Cleanup Rx queue */
2398 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2399 			      struct mvneta_rx_queue *rxq)
2400 {
2401 	mvneta_rxq_drop_pkts(pp, rxq);
2402 
2403 	if (rxq->descs)
2404 		dma_free_coherent(pp->dev->dev.parent,
2405 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2406 				  rxq->descs,
2407 				  rxq->descs_phys);
2408 
2409 	rxq->descs             = NULL;
2410 	rxq->last_desc         = 0;
2411 	rxq->next_desc_to_proc = 0;
2412 	rxq->descs_phys        = 0;
2413 }
2414 
2415 /* Create and initialize a tx queue */
2416 static int mvneta_txq_init(struct mvneta_port *pp,
2417 			   struct mvneta_tx_queue *txq)
2418 {
2419 	int cpu;
2420 
2421 	txq->size = pp->tx_ring_size;
2422 
2423 	/* A queue must always have room for at least one skb.
2424 	 * Therefore, stop the queue when the free entries reaches
2425 	 * the maximum number of descriptors per skb.
2426 	 */
2427 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2428 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2429 
2430 
2431 	/* Allocate memory for TX descriptors */
2432 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2433 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2434 					&txq->descs_phys, GFP_KERNEL);
2435 	if (txq->descs == NULL)
2436 		return -ENOMEM;
2437 
2438 	/* Make sure descriptor address is cache line size aligned  */
2439 	BUG_ON(txq->descs !=
2440 	       PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2441 
2442 	txq->last_desc = txq->size - 1;
2443 
2444 	/* Set maximum bandwidth for enabled TXQs */
2445 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2446 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2447 
2448 	/* Set Tx descriptors queue starting address */
2449 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2450 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2451 
2452 	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2453 	if (txq->tx_skb == NULL) {
2454 		dma_free_coherent(pp->dev->dev.parent,
2455 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2456 				  txq->descs, txq->descs_phys);
2457 		return -ENOMEM;
2458 	}
2459 
2460 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2461 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2462 					   txq->size * TSO_HEADER_SIZE,
2463 					   &txq->tso_hdrs_phys, GFP_KERNEL);
2464 	if (txq->tso_hdrs == NULL) {
2465 		kfree(txq->tx_skb);
2466 		dma_free_coherent(pp->dev->dev.parent,
2467 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2468 				  txq->descs, txq->descs_phys);
2469 		return -ENOMEM;
2470 	}
2471 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2472 
2473 	/* Setup XPS mapping */
2474 	if (txq_number > 1)
2475 		cpu = txq->id % num_present_cpus();
2476 	else
2477 		cpu = pp->rxq_def % num_present_cpus();
2478 	cpumask_set_cpu(cpu, &txq->affinity_mask);
2479 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2480 
2481 	return 0;
2482 }
2483 
2484 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2485 static void mvneta_txq_deinit(struct mvneta_port *pp,
2486 			      struct mvneta_tx_queue *txq)
2487 {
2488 	kfree(txq->tx_skb);
2489 
2490 	if (txq->tso_hdrs)
2491 		dma_free_coherent(pp->dev->dev.parent,
2492 				  txq->size * TSO_HEADER_SIZE,
2493 				  txq->tso_hdrs, txq->tso_hdrs_phys);
2494 	if (txq->descs)
2495 		dma_free_coherent(pp->dev->dev.parent,
2496 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2497 				  txq->descs, txq->descs_phys);
2498 
2499 	txq->descs             = NULL;
2500 	txq->last_desc         = 0;
2501 	txq->next_desc_to_proc = 0;
2502 	txq->descs_phys        = 0;
2503 
2504 	/* Set minimum bandwidth for disabled TXQs */
2505 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2506 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2507 
2508 	/* Set Tx descriptors queue starting address and size */
2509 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2510 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2511 }
2512 
2513 /* Cleanup all Tx queues */
2514 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2515 {
2516 	int queue;
2517 
2518 	for (queue = 0; queue < txq_number; queue++)
2519 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
2520 }
2521 
2522 /* Cleanup all Rx queues */
2523 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2524 {
2525 	int queue;
2526 
2527 	for (queue = 0; queue < txq_number; queue++)
2528 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2529 }
2530 
2531 
2532 /* Init all Rx queues */
2533 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2534 {
2535 	int queue;
2536 
2537 	for (queue = 0; queue < rxq_number; queue++) {
2538 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2539 
2540 		if (err) {
2541 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2542 				   __func__, queue);
2543 			mvneta_cleanup_rxqs(pp);
2544 			return err;
2545 		}
2546 	}
2547 
2548 	return 0;
2549 }
2550 
2551 /* Init all tx queues */
2552 static int mvneta_setup_txqs(struct mvneta_port *pp)
2553 {
2554 	int queue;
2555 
2556 	for (queue = 0; queue < txq_number; queue++) {
2557 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2558 		if (err) {
2559 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
2560 				   __func__, queue);
2561 			mvneta_cleanup_txqs(pp);
2562 			return err;
2563 		}
2564 	}
2565 
2566 	return 0;
2567 }
2568 
2569 static void mvneta_start_dev(struct mvneta_port *pp)
2570 {
2571 	int cpu;
2572 
2573 	mvneta_max_rx_size_set(pp, pp->pkt_size);
2574 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2575 
2576 	/* start the Rx/Tx activity */
2577 	mvneta_port_enable(pp);
2578 
2579 	/* Enable polling on the port */
2580 	for_each_online_cpu(cpu) {
2581 		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2582 
2583 		napi_enable(&port->napi);
2584 	}
2585 
2586 	/* Unmask interrupts. It has to be done from each CPU */
2587 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
2588 
2589 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2590 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
2591 		    MVNETA_CAUSE_LINK_CHANGE |
2592 		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
2593 
2594 	phy_start(pp->phy_dev);
2595 	netif_tx_start_all_queues(pp->dev);
2596 }
2597 
2598 static void mvneta_stop_dev(struct mvneta_port *pp)
2599 {
2600 	unsigned int cpu;
2601 
2602 	phy_stop(pp->phy_dev);
2603 
2604 	for_each_online_cpu(cpu) {
2605 		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2606 
2607 		napi_disable(&port->napi);
2608 	}
2609 
2610 	netif_carrier_off(pp->dev);
2611 
2612 	mvneta_port_down(pp);
2613 	netif_tx_stop_all_queues(pp->dev);
2614 
2615 	/* Stop the port activity */
2616 	mvneta_port_disable(pp);
2617 
2618 	/* Clear all ethernet port interrupts */
2619 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
2620 
2621 	/* Mask all ethernet port interrupts */
2622 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
2623 
2624 	mvneta_tx_reset(pp);
2625 	mvneta_rx_reset(pp);
2626 }
2627 
2628 /* Return positive if MTU is valid */
2629 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2630 {
2631 	if (mtu < 68) {
2632 		netdev_err(dev, "cannot change mtu to less than 68\n");
2633 		return -EINVAL;
2634 	}
2635 
2636 	/* 9676 == 9700 - 20 and rounding to 8 */
2637 	if (mtu > 9676) {
2638 		netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2639 		mtu = 9676;
2640 	}
2641 
2642 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2643 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2644 			mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2645 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2646 	}
2647 
2648 	return mtu;
2649 }
2650 
2651 /* Change the device mtu */
2652 static int mvneta_change_mtu(struct net_device *dev, int mtu)
2653 {
2654 	struct mvneta_port *pp = netdev_priv(dev);
2655 	int ret;
2656 
2657 	mtu = mvneta_check_mtu_valid(dev, mtu);
2658 	if (mtu < 0)
2659 		return -EINVAL;
2660 
2661 	dev->mtu = mtu;
2662 
2663 	if (!netif_running(dev)) {
2664 		netdev_update_features(dev);
2665 		return 0;
2666 	}
2667 
2668 	/* The interface is running, so we have to force a
2669 	 * reallocation of the queues
2670 	 */
2671 	mvneta_stop_dev(pp);
2672 
2673 	mvneta_cleanup_txqs(pp);
2674 	mvneta_cleanup_rxqs(pp);
2675 
2676 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
2677 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
2678 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2679 
2680 	ret = mvneta_setup_rxqs(pp);
2681 	if (ret) {
2682 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
2683 		return ret;
2684 	}
2685 
2686 	ret = mvneta_setup_txqs(pp);
2687 	if (ret) {
2688 		netdev_err(dev, "unable to setup txqs after MTU change\n");
2689 		return ret;
2690 	}
2691 
2692 	mvneta_start_dev(pp);
2693 	mvneta_port_up(pp);
2694 
2695 	netdev_update_features(dev);
2696 
2697 	return 0;
2698 }
2699 
2700 static netdev_features_t mvneta_fix_features(struct net_device *dev,
2701 					     netdev_features_t features)
2702 {
2703 	struct mvneta_port *pp = netdev_priv(dev);
2704 
2705 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
2706 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
2707 		netdev_info(dev,
2708 			    "Disable IP checksum for MTU greater than %dB\n",
2709 			    pp->tx_csum_limit);
2710 	}
2711 
2712 	return features;
2713 }
2714 
2715 /* Get mac address */
2716 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
2717 {
2718 	u32 mac_addr_l, mac_addr_h;
2719 
2720 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
2721 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
2722 	addr[0] = (mac_addr_h >> 24) & 0xFF;
2723 	addr[1] = (mac_addr_h >> 16) & 0xFF;
2724 	addr[2] = (mac_addr_h >> 8) & 0xFF;
2725 	addr[3] = mac_addr_h & 0xFF;
2726 	addr[4] = (mac_addr_l >> 8) & 0xFF;
2727 	addr[5] = mac_addr_l & 0xFF;
2728 }
2729 
2730 /* Handle setting mac address */
2731 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2732 {
2733 	struct mvneta_port *pp = netdev_priv(dev);
2734 	struct sockaddr *sockaddr = addr;
2735 	int ret;
2736 
2737 	ret = eth_prepare_mac_addr_change(dev, addr);
2738 	if (ret < 0)
2739 		return ret;
2740 	/* Remove previous address table entry */
2741 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2742 
2743 	/* Set new addr in hw */
2744 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
2745 
2746 	eth_commit_mac_addr_change(dev, addr);
2747 	return 0;
2748 }
2749 
2750 static void mvneta_adjust_link(struct net_device *ndev)
2751 {
2752 	struct mvneta_port *pp = netdev_priv(ndev);
2753 	struct phy_device *phydev = pp->phy_dev;
2754 	int status_change = 0;
2755 
2756 	if (phydev->link) {
2757 		if ((pp->speed != phydev->speed) ||
2758 		    (pp->duplex != phydev->duplex)) {
2759 			u32 val;
2760 
2761 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2762 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2763 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
2764 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
2765 
2766 			if (phydev->duplex)
2767 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2768 
2769 			if (phydev->speed == SPEED_1000)
2770 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2771 			else if (phydev->speed == SPEED_100)
2772 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2773 
2774 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2775 
2776 			pp->duplex = phydev->duplex;
2777 			pp->speed  = phydev->speed;
2778 		}
2779 	}
2780 
2781 	if (phydev->link != pp->link) {
2782 		if (!phydev->link) {
2783 			pp->duplex = -1;
2784 			pp->speed = 0;
2785 		}
2786 
2787 		pp->link = phydev->link;
2788 		status_change = 1;
2789 	}
2790 
2791 	if (status_change) {
2792 		if (phydev->link) {
2793 			if (!pp->use_inband_status) {
2794 				u32 val = mvreg_read(pp,
2795 						  MVNETA_GMAC_AUTONEG_CONFIG);
2796 				val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
2797 				val |= MVNETA_GMAC_FORCE_LINK_PASS;
2798 				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
2799 					    val);
2800 			}
2801 			mvneta_port_up(pp);
2802 		} else {
2803 			if (!pp->use_inband_status) {
2804 				u32 val = mvreg_read(pp,
2805 						  MVNETA_GMAC_AUTONEG_CONFIG);
2806 				val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
2807 				val |= MVNETA_GMAC_FORCE_LINK_DOWN;
2808 				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
2809 					    val);
2810 			}
2811 			mvneta_port_down(pp);
2812 		}
2813 		phy_print_status(phydev);
2814 	}
2815 }
2816 
2817 static int mvneta_mdio_probe(struct mvneta_port *pp)
2818 {
2819 	struct phy_device *phy_dev;
2820 
2821 	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2822 				 pp->phy_interface);
2823 	if (!phy_dev) {
2824 		netdev_err(pp->dev, "could not find the PHY\n");
2825 		return -ENODEV;
2826 	}
2827 
2828 	phy_dev->supported &= PHY_GBIT_FEATURES;
2829 	phy_dev->advertising = phy_dev->supported;
2830 
2831 	pp->phy_dev = phy_dev;
2832 	pp->link    = 0;
2833 	pp->duplex  = 0;
2834 	pp->speed   = 0;
2835 
2836 	return 0;
2837 }
2838 
2839 static void mvneta_mdio_remove(struct mvneta_port *pp)
2840 {
2841 	phy_disconnect(pp->phy_dev);
2842 	pp->phy_dev = NULL;
2843 }
2844 
2845 static void mvneta_percpu_enable(void *arg)
2846 {
2847 	struct mvneta_port *pp = arg;
2848 
2849 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
2850 }
2851 
2852 static void mvneta_percpu_disable(void *arg)
2853 {
2854 	struct mvneta_port *pp = arg;
2855 
2856 	disable_percpu_irq(pp->dev->irq);
2857 }
2858 
2859 /* Electing a CPU must be done in an atomic way: it should be done
2860  * after or before the removal/insertion of a CPU and this function is
2861  * not reentrant.
2862  */
2863 static void mvneta_percpu_elect(struct mvneta_port *pp)
2864 {
2865 	int elected_cpu = 0, max_cpu, cpu, i = 0;
2866 
2867 	/* Use the cpu associated to the rxq when it is online, in all
2868 	 * the other cases, use the cpu 0 which can't be offline.
2869 	 */
2870 	if (cpu_online(pp->rxq_def))
2871 		elected_cpu = pp->rxq_def;
2872 
2873 	max_cpu = num_present_cpus();
2874 
2875 	for_each_online_cpu(cpu) {
2876 		int rxq_map = 0, txq_map = 0;
2877 		int rxq;
2878 
2879 		for (rxq = 0; rxq < rxq_number; rxq++)
2880 			if ((rxq % max_cpu) == cpu)
2881 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
2882 
2883 		if (cpu == elected_cpu)
2884 			/* Map the default receive queue queue to the
2885 			 * elected CPU
2886 			 */
2887 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
2888 
2889 		/* We update the TX queue map only if we have one
2890 		 * queue. In this case we associate the TX queue to
2891 		 * the CPU bound to the default RX queue
2892 		 */
2893 		if (txq_number == 1)
2894 			txq_map = (cpu == elected_cpu) ?
2895 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
2896 		else
2897 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
2898 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
2899 
2900 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
2901 
2902 		/* Update the interrupt mask on each CPU according the
2903 		 * new mapping
2904 		 */
2905 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
2906 					 pp, true);
2907 		i++;
2908 
2909 	}
2910 };
2911 
2912 static int mvneta_percpu_notifier(struct notifier_block *nfb,
2913 				  unsigned long action, void *hcpu)
2914 {
2915 	struct mvneta_port *pp = container_of(nfb, struct mvneta_port,
2916 					      cpu_notifier);
2917 	int cpu = (unsigned long)hcpu, other_cpu;
2918 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2919 
2920 	switch (action) {
2921 	case CPU_ONLINE:
2922 	case CPU_ONLINE_FROZEN:
2923 		spin_lock(&pp->lock);
2924 		/* Configuring the driver for a new CPU while the
2925 		 * driver is stopping is racy, so just avoid it.
2926 		 */
2927 		if (pp->is_stopped) {
2928 			spin_unlock(&pp->lock);
2929 			break;
2930 		}
2931 		netif_tx_stop_all_queues(pp->dev);
2932 
2933 		/* We have to synchronise on tha napi of each CPU
2934 		 * except the one just being waked up
2935 		 */
2936 		for_each_online_cpu(other_cpu) {
2937 			if (other_cpu != cpu) {
2938 				struct mvneta_pcpu_port *other_port =
2939 					per_cpu_ptr(pp->ports, other_cpu);
2940 
2941 				napi_synchronize(&other_port->napi);
2942 			}
2943 		}
2944 
2945 		/* Mask all ethernet port interrupts */
2946 		on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
2947 		napi_enable(&port->napi);
2948 
2949 
2950 		/* Enable per-CPU interrupts on the CPU that is
2951 		 * brought up.
2952 		 */
2953 		smp_call_function_single(cpu, mvneta_percpu_enable,
2954 					 pp, true);
2955 
2956 		/* Enable per-CPU interrupt on the one CPU we care
2957 		 * about.
2958 		 */
2959 		mvneta_percpu_elect(pp);
2960 
2961 		/* Unmask all ethernet port interrupts */
2962 		on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
2963 		mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2964 			MVNETA_CAUSE_PHY_STATUS_CHANGE |
2965 			MVNETA_CAUSE_LINK_CHANGE |
2966 			MVNETA_CAUSE_PSC_SYNC_CHANGE);
2967 		netif_tx_start_all_queues(pp->dev);
2968 		spin_unlock(&pp->lock);
2969 		break;
2970 	case CPU_DOWN_PREPARE:
2971 	case CPU_DOWN_PREPARE_FROZEN:
2972 		netif_tx_stop_all_queues(pp->dev);
2973 		/* Thanks to this lock we are sure that any pending
2974 		 * cpu election is done
2975 		 */
2976 		spin_lock(&pp->lock);
2977 		/* Mask all ethernet port interrupts */
2978 		on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
2979 		spin_unlock(&pp->lock);
2980 
2981 		napi_synchronize(&port->napi);
2982 		napi_disable(&port->napi);
2983 		/* Disable per-CPU interrupts on the CPU that is
2984 		 * brought down.
2985 		 */
2986 		smp_call_function_single(cpu, mvneta_percpu_disable,
2987 					 pp, true);
2988 
2989 		break;
2990 	case CPU_DEAD:
2991 	case CPU_DEAD_FROZEN:
2992 		/* Check if a new CPU must be elected now this on is down */
2993 		spin_lock(&pp->lock);
2994 		mvneta_percpu_elect(pp);
2995 		spin_unlock(&pp->lock);
2996 		/* Unmask all ethernet port interrupts */
2997 		on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
2998 		mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2999 			MVNETA_CAUSE_PHY_STATUS_CHANGE |
3000 			MVNETA_CAUSE_LINK_CHANGE |
3001 			MVNETA_CAUSE_PSC_SYNC_CHANGE);
3002 		netif_tx_start_all_queues(pp->dev);
3003 		break;
3004 	}
3005 
3006 	return NOTIFY_OK;
3007 }
3008 
3009 static int mvneta_open(struct net_device *dev)
3010 {
3011 	struct mvneta_port *pp = netdev_priv(dev);
3012 	int ret;
3013 
3014 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3015 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3016 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3017 
3018 	ret = mvneta_setup_rxqs(pp);
3019 	if (ret)
3020 		return ret;
3021 
3022 	ret = mvneta_setup_txqs(pp);
3023 	if (ret)
3024 		goto err_cleanup_rxqs;
3025 
3026 	/* Connect to port interrupt line */
3027 	ret = request_percpu_irq(pp->dev->irq, mvneta_isr,
3028 				 MVNETA_DRIVER_NAME, pp->ports);
3029 	if (ret) {
3030 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3031 		goto err_cleanup_txqs;
3032 	}
3033 
3034 	/* Enable per-CPU interrupt on all the CPU to handle our RX
3035 	 * queue interrupts
3036 	 */
3037 	on_each_cpu(mvneta_percpu_enable, pp, true);
3038 
3039 	pp->is_stopped = false;
3040 	/* Register a CPU notifier to handle the case where our CPU
3041 	 * might be taken offline.
3042 	 */
3043 	register_cpu_notifier(&pp->cpu_notifier);
3044 
3045 	/* In default link is down */
3046 	netif_carrier_off(pp->dev);
3047 
3048 	ret = mvneta_mdio_probe(pp);
3049 	if (ret < 0) {
3050 		netdev_err(dev, "cannot probe MDIO bus\n");
3051 		goto err_free_irq;
3052 	}
3053 
3054 	mvneta_start_dev(pp);
3055 
3056 	return 0;
3057 
3058 err_free_irq:
3059 	free_percpu_irq(pp->dev->irq, pp->ports);
3060 err_cleanup_txqs:
3061 	mvneta_cleanup_txqs(pp);
3062 err_cleanup_rxqs:
3063 	mvneta_cleanup_rxqs(pp);
3064 	return ret;
3065 }
3066 
3067 /* Stop the port, free port interrupt line */
3068 static int mvneta_stop(struct net_device *dev)
3069 {
3070 	struct mvneta_port *pp = netdev_priv(dev);
3071 
3072 	/* Inform that we are stopping so we don't want to setup the
3073 	 * driver for new CPUs in the notifiers
3074 	 */
3075 	spin_lock(&pp->lock);
3076 	pp->is_stopped = true;
3077 	mvneta_stop_dev(pp);
3078 	mvneta_mdio_remove(pp);
3079 	unregister_cpu_notifier(&pp->cpu_notifier);
3080 	/* Now that the notifier are unregistered, we can release le
3081 	 * lock
3082 	 */
3083 	spin_unlock(&pp->lock);
3084 	on_each_cpu(mvneta_percpu_disable, pp, true);
3085 	free_percpu_irq(dev->irq, pp->ports);
3086 	mvneta_cleanup_rxqs(pp);
3087 	mvneta_cleanup_txqs(pp);
3088 
3089 	return 0;
3090 }
3091 
3092 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3093 {
3094 	struct mvneta_port *pp = netdev_priv(dev);
3095 
3096 	if (!pp->phy_dev)
3097 		return -ENOTSUPP;
3098 
3099 	return phy_mii_ioctl(pp->phy_dev, ifr, cmd);
3100 }
3101 
3102 /* Ethtool methods */
3103 
3104 /* Get settings (phy address, speed) for ethtools */
3105 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3106 {
3107 	struct mvneta_port *pp = netdev_priv(dev);
3108 
3109 	if (!pp->phy_dev)
3110 		return -ENODEV;
3111 
3112 	return phy_ethtool_gset(pp->phy_dev, cmd);
3113 }
3114 
3115 /* Set settings (phy address, speed) for ethtools */
3116 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3117 {
3118 	struct mvneta_port *pp = netdev_priv(dev);
3119 	struct phy_device *phydev = pp->phy_dev;
3120 
3121 	if (!phydev)
3122 		return -ENODEV;
3123 
3124 	if ((cmd->autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3125 		u32 val;
3126 
3127 		mvneta_set_autoneg(pp, cmd->autoneg == AUTONEG_ENABLE);
3128 
3129 		if (cmd->autoneg == AUTONEG_DISABLE) {
3130 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3131 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3132 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
3133 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3134 
3135 			if (phydev->duplex)
3136 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3137 
3138 			if (phydev->speed == SPEED_1000)
3139 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3140 			else if (phydev->speed == SPEED_100)
3141 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3142 
3143 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3144 		}
3145 
3146 		pp->use_inband_status = (cmd->autoneg == AUTONEG_ENABLE);
3147 		netdev_info(pp->dev, "autoneg status set to %i\n",
3148 			    pp->use_inband_status);
3149 
3150 		if (netif_running(dev)) {
3151 			mvneta_port_down(pp);
3152 			mvneta_port_up(pp);
3153 		}
3154 	}
3155 
3156 	return phy_ethtool_sset(pp->phy_dev, cmd);
3157 }
3158 
3159 /* Set interrupt coalescing for ethtools */
3160 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3161 				       struct ethtool_coalesce *c)
3162 {
3163 	struct mvneta_port *pp = netdev_priv(dev);
3164 	int queue;
3165 
3166 	for (queue = 0; queue < rxq_number; queue++) {
3167 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3168 		rxq->time_coal = c->rx_coalesce_usecs;
3169 		rxq->pkts_coal = c->rx_max_coalesced_frames;
3170 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3171 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3172 	}
3173 
3174 	for (queue = 0; queue < txq_number; queue++) {
3175 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3176 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
3177 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3178 	}
3179 
3180 	return 0;
3181 }
3182 
3183 /* get coalescing for ethtools */
3184 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3185 				       struct ethtool_coalesce *c)
3186 {
3187 	struct mvneta_port *pp = netdev_priv(dev);
3188 
3189 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
3190 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
3191 
3192 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
3193 	return 0;
3194 }
3195 
3196 
3197 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3198 				    struct ethtool_drvinfo *drvinfo)
3199 {
3200 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3201 		sizeof(drvinfo->driver));
3202 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3203 		sizeof(drvinfo->version));
3204 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3205 		sizeof(drvinfo->bus_info));
3206 }
3207 
3208 
3209 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3210 					 struct ethtool_ringparam *ring)
3211 {
3212 	struct mvneta_port *pp = netdev_priv(netdev);
3213 
3214 	ring->rx_max_pending = MVNETA_MAX_RXD;
3215 	ring->tx_max_pending = MVNETA_MAX_TXD;
3216 	ring->rx_pending = pp->rx_ring_size;
3217 	ring->tx_pending = pp->tx_ring_size;
3218 }
3219 
3220 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3221 					struct ethtool_ringparam *ring)
3222 {
3223 	struct mvneta_port *pp = netdev_priv(dev);
3224 
3225 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3226 		return -EINVAL;
3227 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3228 		ring->rx_pending : MVNETA_MAX_RXD;
3229 
3230 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3231 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3232 	if (pp->tx_ring_size != ring->tx_pending)
3233 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3234 			    pp->tx_ring_size, ring->tx_pending);
3235 
3236 	if (netif_running(dev)) {
3237 		mvneta_stop(dev);
3238 		if (mvneta_open(dev)) {
3239 			netdev_err(dev,
3240 				   "error on opening device after ring param change\n");
3241 			return -ENOMEM;
3242 		}
3243 	}
3244 
3245 	return 0;
3246 }
3247 
3248 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3249 				       u8 *data)
3250 {
3251 	if (sset == ETH_SS_STATS) {
3252 		int i;
3253 
3254 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3255 			memcpy(data + i * ETH_GSTRING_LEN,
3256 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
3257 	}
3258 }
3259 
3260 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3261 {
3262 	const struct mvneta_statistic *s;
3263 	void __iomem *base = pp->base;
3264 	u32 high, low, val;
3265 	u64 val64;
3266 	int i;
3267 
3268 	for (i = 0, s = mvneta_statistics;
3269 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3270 	     s++, i++) {
3271 		switch (s->type) {
3272 		case T_REG_32:
3273 			val = readl_relaxed(base + s->offset);
3274 			pp->ethtool_stats[i] += val;
3275 			break;
3276 		case T_REG_64:
3277 			/* Docs say to read low 32-bit then high */
3278 			low = readl_relaxed(base + s->offset);
3279 			high = readl_relaxed(base + s->offset + 4);
3280 			val64 = (u64)high << 32 | low;
3281 			pp->ethtool_stats[i] += val64;
3282 			break;
3283 		}
3284 	}
3285 }
3286 
3287 static void mvneta_ethtool_get_stats(struct net_device *dev,
3288 				     struct ethtool_stats *stats, u64 *data)
3289 {
3290 	struct mvneta_port *pp = netdev_priv(dev);
3291 	int i;
3292 
3293 	mvneta_ethtool_update_stats(pp);
3294 
3295 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3296 		*data++ = pp->ethtool_stats[i];
3297 }
3298 
3299 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3300 {
3301 	if (sset == ETH_SS_STATS)
3302 		return ARRAY_SIZE(mvneta_statistics);
3303 	return -EOPNOTSUPP;
3304 }
3305 
3306 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3307 {
3308 	return MVNETA_RSS_LU_TABLE_SIZE;
3309 }
3310 
3311 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3312 				    struct ethtool_rxnfc *info,
3313 				    u32 *rules __always_unused)
3314 {
3315 	switch (info->cmd) {
3316 	case ETHTOOL_GRXRINGS:
3317 		info->data =  rxq_number;
3318 		return 0;
3319 	case ETHTOOL_GRXFH:
3320 		return -EOPNOTSUPP;
3321 	default:
3322 		return -EOPNOTSUPP;
3323 	}
3324 }
3325 
3326 static int  mvneta_config_rss(struct mvneta_port *pp)
3327 {
3328 	int cpu;
3329 	u32 val;
3330 
3331 	netif_tx_stop_all_queues(pp->dev);
3332 
3333 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3334 
3335 	/* We have to synchronise on the napi of each CPU */
3336 	for_each_online_cpu(cpu) {
3337 		struct mvneta_pcpu_port *pcpu_port =
3338 			per_cpu_ptr(pp->ports, cpu);
3339 
3340 		napi_synchronize(&pcpu_port->napi);
3341 		napi_disable(&pcpu_port->napi);
3342 	}
3343 
3344 	pp->rxq_def = pp->indir[0];
3345 
3346 	/* Update unicast mapping */
3347 	mvneta_set_rx_mode(pp->dev);
3348 
3349 	/* Update val of portCfg register accordingly with all RxQueue types */
3350 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3351 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3352 
3353 	/* Update the elected CPU matching the new rxq_def */
3354 	spin_lock(&pp->lock);
3355 	mvneta_percpu_elect(pp);
3356 	spin_unlock(&pp->lock);
3357 
3358 	/* We have to synchronise on the napi of each CPU */
3359 	for_each_online_cpu(cpu) {
3360 		struct mvneta_pcpu_port *pcpu_port =
3361 			per_cpu_ptr(pp->ports, cpu);
3362 
3363 		napi_enable(&pcpu_port->napi);
3364 	}
3365 
3366 	netif_tx_start_all_queues(pp->dev);
3367 
3368 	return 0;
3369 }
3370 
3371 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
3372 				   const u8 *key, const u8 hfunc)
3373 {
3374 	struct mvneta_port *pp = netdev_priv(dev);
3375 	/* We require at least one supported parameter to be changed
3376 	 * and no change in any of the unsupported parameters
3377 	 */
3378 	if (key ||
3379 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3380 		return -EOPNOTSUPP;
3381 
3382 	if (!indir)
3383 		return 0;
3384 
3385 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
3386 
3387 	return mvneta_config_rss(pp);
3388 }
3389 
3390 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
3391 				   u8 *hfunc)
3392 {
3393 	struct mvneta_port *pp = netdev_priv(dev);
3394 
3395 	if (hfunc)
3396 		*hfunc = ETH_RSS_HASH_TOP;
3397 
3398 	if (!indir)
3399 		return 0;
3400 
3401 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
3402 
3403 	return 0;
3404 }
3405 
3406 static const struct net_device_ops mvneta_netdev_ops = {
3407 	.ndo_open            = mvneta_open,
3408 	.ndo_stop            = mvneta_stop,
3409 	.ndo_start_xmit      = mvneta_tx,
3410 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
3411 	.ndo_set_mac_address = mvneta_set_mac_addr,
3412 	.ndo_change_mtu      = mvneta_change_mtu,
3413 	.ndo_fix_features    = mvneta_fix_features,
3414 	.ndo_get_stats64     = mvneta_get_stats64,
3415 	.ndo_do_ioctl        = mvneta_ioctl,
3416 };
3417 
3418 const struct ethtool_ops mvneta_eth_tool_ops = {
3419 	.get_link       = ethtool_op_get_link,
3420 	.get_settings   = mvneta_ethtool_get_settings,
3421 	.set_settings   = mvneta_ethtool_set_settings,
3422 	.set_coalesce   = mvneta_ethtool_set_coalesce,
3423 	.get_coalesce   = mvneta_ethtool_get_coalesce,
3424 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
3425 	.get_ringparam  = mvneta_ethtool_get_ringparam,
3426 	.set_ringparam	= mvneta_ethtool_set_ringparam,
3427 	.get_strings	= mvneta_ethtool_get_strings,
3428 	.get_ethtool_stats = mvneta_ethtool_get_stats,
3429 	.get_sset_count	= mvneta_ethtool_get_sset_count,
3430 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
3431 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
3432 	.get_rxfh	= mvneta_ethtool_get_rxfh,
3433 	.set_rxfh	= mvneta_ethtool_set_rxfh,
3434 };
3435 
3436 /* Initialize hw */
3437 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3438 {
3439 	int queue;
3440 
3441 	/* Disable port */
3442 	mvneta_port_disable(pp);
3443 
3444 	/* Set port default values */
3445 	mvneta_defaults_set(pp);
3446 
3447 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
3448 				GFP_KERNEL);
3449 	if (!pp->txqs)
3450 		return -ENOMEM;
3451 
3452 	/* Initialize TX descriptor rings */
3453 	for (queue = 0; queue < txq_number; queue++) {
3454 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3455 		txq->id = queue;
3456 		txq->size = pp->tx_ring_size;
3457 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
3458 	}
3459 
3460 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
3461 				GFP_KERNEL);
3462 	if (!pp->rxqs)
3463 		return -ENOMEM;
3464 
3465 	/* Create Rx descriptor rings */
3466 	for (queue = 0; queue < rxq_number; queue++) {
3467 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3468 		rxq->id = queue;
3469 		rxq->size = pp->rx_ring_size;
3470 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
3471 		rxq->time_coal = MVNETA_RX_COAL_USEC;
3472 	}
3473 
3474 	return 0;
3475 }
3476 
3477 /* platform glue : initialize decoding windows */
3478 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
3479 				     const struct mbus_dram_target_info *dram)
3480 {
3481 	u32 win_enable;
3482 	u32 win_protect;
3483 	int i;
3484 
3485 	for (i = 0; i < 6; i++) {
3486 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
3487 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
3488 
3489 		if (i < 4)
3490 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
3491 	}
3492 
3493 	win_enable = 0x3f;
3494 	win_protect = 0;
3495 
3496 	for (i = 0; i < dram->num_cs; i++) {
3497 		const struct mbus_dram_window *cs = dram->cs + i;
3498 		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
3499 			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
3500 
3501 		mvreg_write(pp, MVNETA_WIN_SIZE(i),
3502 			    (cs->size - 1) & 0xffff0000);
3503 
3504 		win_enable &= ~(1 << i);
3505 		win_protect |= 3 << (2 * i);
3506 	}
3507 
3508 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
3509 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
3510 }
3511 
3512 /* Power up the port */
3513 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
3514 {
3515 	u32 ctrl;
3516 
3517 	/* MAC Cause register should be cleared */
3518 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
3519 
3520 	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3521 
3522 	/* Even though it might look weird, when we're configured in
3523 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3524 	 */
3525 	switch(phy_mode) {
3526 	case PHY_INTERFACE_MODE_QSGMII:
3527 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
3528 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3529 		break;
3530 	case PHY_INTERFACE_MODE_SGMII:
3531 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
3532 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3533 		break;
3534 	case PHY_INTERFACE_MODE_RGMII:
3535 	case PHY_INTERFACE_MODE_RGMII_ID:
3536 		ctrl |= MVNETA_GMAC2_PORT_RGMII;
3537 		break;
3538 	default:
3539 		return -EINVAL;
3540 	}
3541 
3542 	/* Cancel Port Reset */
3543 	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
3544 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
3545 
3546 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3547 		MVNETA_GMAC2_PORT_RESET) != 0)
3548 		continue;
3549 
3550 	return 0;
3551 }
3552 
3553 /* Device initialization routine */
3554 static int mvneta_probe(struct platform_device *pdev)
3555 {
3556 	const struct mbus_dram_target_info *dram_target_info;
3557 	struct resource *res;
3558 	struct device_node *dn = pdev->dev.of_node;
3559 	struct device_node *phy_node;
3560 	struct mvneta_port *pp;
3561 	struct net_device *dev;
3562 	const char *dt_mac_addr;
3563 	char hw_mac_addr[ETH_ALEN];
3564 	const char *mac_from;
3565 	const char *managed;
3566 	int tx_csum_limit;
3567 	int phy_mode;
3568 	int err;
3569 	int cpu;
3570 
3571 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
3572 	if (!dev)
3573 		return -ENOMEM;
3574 
3575 	dev->irq = irq_of_parse_and_map(dn, 0);
3576 	if (dev->irq == 0) {
3577 		err = -EINVAL;
3578 		goto err_free_netdev;
3579 	}
3580 
3581 	phy_node = of_parse_phandle(dn, "phy", 0);
3582 	if (!phy_node) {
3583 		if (!of_phy_is_fixed_link(dn)) {
3584 			dev_err(&pdev->dev, "no PHY specified\n");
3585 			err = -ENODEV;
3586 			goto err_free_irq;
3587 		}
3588 
3589 		err = of_phy_register_fixed_link(dn);
3590 		if (err < 0) {
3591 			dev_err(&pdev->dev, "cannot register fixed PHY\n");
3592 			goto err_free_irq;
3593 		}
3594 
3595 		/* In the case of a fixed PHY, the DT node associated
3596 		 * to the PHY is the Ethernet MAC DT node.
3597 		 */
3598 		phy_node = of_node_get(dn);
3599 	}
3600 
3601 	phy_mode = of_get_phy_mode(dn);
3602 	if (phy_mode < 0) {
3603 		dev_err(&pdev->dev, "incorrect phy-mode\n");
3604 		err = -EINVAL;
3605 		goto err_put_phy_node;
3606 	}
3607 
3608 	dev->tx_queue_len = MVNETA_MAX_TXD;
3609 	dev->watchdog_timeo = 5 * HZ;
3610 	dev->netdev_ops = &mvneta_netdev_ops;
3611 
3612 	dev->ethtool_ops = &mvneta_eth_tool_ops;
3613 
3614 	pp = netdev_priv(dev);
3615 	pp->phy_node = phy_node;
3616 	pp->phy_interface = phy_mode;
3617 
3618 	err = of_property_read_string(dn, "managed", &managed);
3619 	pp->use_inband_status = (err == 0 &&
3620 				 strcmp(managed, "in-band-status") == 0);
3621 	pp->cpu_notifier.notifier_call = mvneta_percpu_notifier;
3622 
3623 	pp->rxq_def = rxq_def;
3624 
3625 	pp->indir[0] = rxq_def;
3626 
3627 	pp->clk = devm_clk_get(&pdev->dev, "core");
3628 	if (IS_ERR(pp->clk))
3629 		pp->clk = devm_clk_get(&pdev->dev, NULL);
3630 	if (IS_ERR(pp->clk)) {
3631 		err = PTR_ERR(pp->clk);
3632 		goto err_put_phy_node;
3633 	}
3634 
3635 	clk_prepare_enable(pp->clk);
3636 
3637 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
3638 	if (!IS_ERR(pp->clk_bus))
3639 		clk_prepare_enable(pp->clk_bus);
3640 
3641 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3642 	pp->base = devm_ioremap_resource(&pdev->dev, res);
3643 	if (IS_ERR(pp->base)) {
3644 		err = PTR_ERR(pp->base);
3645 		goto err_clk;
3646 	}
3647 
3648 	/* Alloc per-cpu port structure */
3649 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
3650 	if (!pp->ports) {
3651 		err = -ENOMEM;
3652 		goto err_clk;
3653 	}
3654 
3655 	/* Alloc per-cpu stats */
3656 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
3657 	if (!pp->stats) {
3658 		err = -ENOMEM;
3659 		goto err_free_ports;
3660 	}
3661 
3662 	dt_mac_addr = of_get_mac_address(dn);
3663 	if (dt_mac_addr) {
3664 		mac_from = "device tree";
3665 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
3666 	} else {
3667 		mvneta_get_mac_addr(pp, hw_mac_addr);
3668 		if (is_valid_ether_addr(hw_mac_addr)) {
3669 			mac_from = "hardware";
3670 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
3671 		} else {
3672 			mac_from = "random";
3673 			eth_hw_addr_random(dev);
3674 		}
3675 	}
3676 
3677 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
3678 		if (tx_csum_limit < 0 ||
3679 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
3680 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
3681 			dev_info(&pdev->dev,
3682 				 "Wrong TX csum limit in DT, set to %dB\n",
3683 				 MVNETA_TX_CSUM_DEF_SIZE);
3684 		}
3685 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
3686 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
3687 	} else {
3688 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
3689 	}
3690 
3691 	pp->tx_csum_limit = tx_csum_limit;
3692 
3693 	pp->tx_ring_size = MVNETA_MAX_TXD;
3694 	pp->rx_ring_size = MVNETA_MAX_RXD;
3695 
3696 	pp->dev = dev;
3697 	SET_NETDEV_DEV(dev, &pdev->dev);
3698 
3699 	err = mvneta_init(&pdev->dev, pp);
3700 	if (err < 0)
3701 		goto err_free_stats;
3702 
3703 	err = mvneta_port_power_up(pp, phy_mode);
3704 	if (err < 0) {
3705 		dev_err(&pdev->dev, "can't power up port\n");
3706 		goto err_free_stats;
3707 	}
3708 
3709 	dram_target_info = mv_mbus_dram_info();
3710 	if (dram_target_info)
3711 		mvneta_conf_mbus_windows(pp, dram_target_info);
3712 
3713 	for_each_present_cpu(cpu) {
3714 		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3715 
3716 		netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT);
3717 		port->pp = pp;
3718 	}
3719 
3720 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3721 	dev->hw_features |= dev->features;
3722 	dev->vlan_features |= dev->features;
3723 	dev->priv_flags |= IFF_UNICAST_FLT;
3724 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
3725 
3726 	err = register_netdev(dev);
3727 	if (err < 0) {
3728 		dev_err(&pdev->dev, "failed to register\n");
3729 		goto err_free_stats;
3730 	}
3731 
3732 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
3733 		    dev->dev_addr);
3734 
3735 	platform_set_drvdata(pdev, pp->dev);
3736 
3737 	if (pp->use_inband_status) {
3738 		struct phy_device *phy = of_phy_find_device(dn);
3739 
3740 		mvneta_fixed_link_update(pp, phy);
3741 
3742 		put_device(&phy->mdio.dev);
3743 	}
3744 
3745 	return 0;
3746 
3747 err_free_stats:
3748 	free_percpu(pp->stats);
3749 err_free_ports:
3750 	free_percpu(pp->ports);
3751 err_clk:
3752 	clk_disable_unprepare(pp->clk_bus);
3753 	clk_disable_unprepare(pp->clk);
3754 err_put_phy_node:
3755 	of_node_put(phy_node);
3756 err_free_irq:
3757 	irq_dispose_mapping(dev->irq);
3758 err_free_netdev:
3759 	free_netdev(dev);
3760 	return err;
3761 }
3762 
3763 /* Device removal routine */
3764 static int mvneta_remove(struct platform_device *pdev)
3765 {
3766 	struct net_device  *dev = platform_get_drvdata(pdev);
3767 	struct mvneta_port *pp = netdev_priv(dev);
3768 
3769 	unregister_netdev(dev);
3770 	clk_disable_unprepare(pp->clk_bus);
3771 	clk_disable_unprepare(pp->clk);
3772 	free_percpu(pp->ports);
3773 	free_percpu(pp->stats);
3774 	irq_dispose_mapping(dev->irq);
3775 	of_node_put(pp->phy_node);
3776 	free_netdev(dev);
3777 
3778 	return 0;
3779 }
3780 
3781 static const struct of_device_id mvneta_match[] = {
3782 	{ .compatible = "marvell,armada-370-neta" },
3783 	{ .compatible = "marvell,armada-xp-neta" },
3784 	{ }
3785 };
3786 MODULE_DEVICE_TABLE(of, mvneta_match);
3787 
3788 static struct platform_driver mvneta_driver = {
3789 	.probe = mvneta_probe,
3790 	.remove = mvneta_remove,
3791 	.driver = {
3792 		.name = MVNETA_DRIVER_NAME,
3793 		.of_match_table = mvneta_match,
3794 	},
3795 };
3796 
3797 module_platform_driver(mvneta_driver);
3798 
3799 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
3800 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
3801 MODULE_LICENSE("GPL");
3802 
3803 module_param(rxq_number, int, S_IRUGO);
3804 module_param(txq_number, int, S_IRUGO);
3805 
3806 module_param(rxq_def, int, S_IRUGO);
3807 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
3808