1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy.h> 31 #include <linux/platform_device.h> 32 #include <linux/skbuff.h> 33 #include <net/ip.h> 34 #include <net/ipv6.h> 35 #include <net/tso.h> 36 37 /* Registers */ 38 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 39 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 40 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 41 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 42 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 43 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 44 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 45 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 46 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 47 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 48 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 49 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 50 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 51 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 52 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 53 #define MVNETA_PORT_RX_RESET 0x1cc0 54 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 55 #define MVNETA_PHY_ADDR 0x2000 56 #define MVNETA_PHY_ADDR_MASK 0x1f 57 #define MVNETA_MBUS_RETRY 0x2010 58 #define MVNETA_UNIT_INTR_CAUSE 0x2080 59 #define MVNETA_UNIT_CONTROL 0x20B0 60 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 61 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 62 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 63 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 64 #define MVNETA_BASE_ADDR_ENABLE 0x2290 65 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 66 #define MVNETA_PORT_CONFIG 0x2400 67 #define MVNETA_UNI_PROMISC_MODE BIT(0) 68 #define MVNETA_DEF_RXQ(q) ((q) << 1) 69 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 70 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 71 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 72 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 73 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 74 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 75 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 76 MVNETA_DEF_RXQ_ARP(q) | \ 77 MVNETA_DEF_RXQ_TCP(q) | \ 78 MVNETA_DEF_RXQ_UDP(q) | \ 79 MVNETA_DEF_RXQ_BPDU(q) | \ 80 MVNETA_TX_UNSET_ERR_SUM | \ 81 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 82 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 83 #define MVNETA_MAC_ADDR_LOW 0x2414 84 #define MVNETA_MAC_ADDR_HIGH 0x2418 85 #define MVNETA_SDMA_CONFIG 0x241c 86 #define MVNETA_SDMA_BRST_SIZE_16 4 87 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 88 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 89 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 90 #define MVNETA_DESC_SWAP BIT(6) 91 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 92 #define MVNETA_PORT_STATUS 0x2444 93 #define MVNETA_TX_IN_PRGRS BIT(1) 94 #define MVNETA_TX_FIFO_EMPTY BIT(8) 95 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 96 #define MVNETA_SERDES_CFG 0x24A0 97 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 98 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 99 #define MVNETA_TYPE_PRIO 0x24bc 100 #define MVNETA_FORCE_UNI BIT(21) 101 #define MVNETA_TXQ_CMD_1 0x24e4 102 #define MVNETA_TXQ_CMD 0x2448 103 #define MVNETA_TXQ_DISABLE_SHIFT 8 104 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 105 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 106 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 107 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 108 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 109 #define MVNETA_ACC_MODE 0x2500 110 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 111 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 112 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 113 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 114 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 115 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 116 117 /* Exception Interrupt Port/Queue Cause register 118 * 119 * Their behavior depend of the mapping done using the PCPX2Q 120 * registers. For a given CPU if the bit associated to a queue is not 121 * set, then for the register a read from this CPU will always return 122 * 0 and a write won't do anything 123 */ 124 125 #define MVNETA_INTR_NEW_CAUSE 0x25a0 126 #define MVNETA_INTR_NEW_MASK 0x25a4 127 128 /* bits 0..7 = TXQ SENT, one bit per queue. 129 * bits 8..15 = RXQ OCCUP, one bit per queue. 130 * bits 16..23 = RXQ FREE, one bit per queue. 131 * bit 29 = OLD_REG_SUM, see old reg ? 132 * bit 30 = TX_ERR_SUM, one bit for 4 ports 133 * bit 31 = MISC_SUM, one bit for 4 ports 134 */ 135 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 136 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 137 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 138 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 139 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 140 141 #define MVNETA_INTR_OLD_CAUSE 0x25a8 142 #define MVNETA_INTR_OLD_MASK 0x25ac 143 144 /* Data Path Port/Queue Cause Register */ 145 #define MVNETA_INTR_MISC_CAUSE 0x25b0 146 #define MVNETA_INTR_MISC_MASK 0x25b4 147 148 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 149 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 150 #define MVNETA_CAUSE_PTP BIT(4) 151 152 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 153 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 154 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 155 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 156 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 157 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 158 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 159 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 160 161 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 162 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 163 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 164 165 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 166 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 167 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 168 169 #define MVNETA_INTR_ENABLE 0x25b8 170 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 171 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 172 173 #define MVNETA_RXQ_CMD 0x2680 174 #define MVNETA_RXQ_DISABLE_SHIFT 8 175 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 176 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 177 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 178 #define MVNETA_GMAC_CTRL_0 0x2c00 179 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 180 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 181 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 182 #define MVNETA_GMAC_CTRL_2 0x2c08 183 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 184 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 185 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 186 #define MVNETA_GMAC2_PORT_RESET BIT(6) 187 #define MVNETA_GMAC_STATUS 0x2c10 188 #define MVNETA_GMAC_LINK_UP BIT(0) 189 #define MVNETA_GMAC_SPEED_1000 BIT(1) 190 #define MVNETA_GMAC_SPEED_100 BIT(2) 191 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 192 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 193 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 194 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 195 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 196 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 197 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 198 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 199 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 200 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 201 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 202 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 203 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 204 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 205 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 206 #define MVNETA_MIB_COUNTERS_BASE 0x3000 207 #define MVNETA_MIB_LATE_COLLISION 0x7c 208 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 209 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 210 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 211 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 212 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 213 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 214 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 215 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 216 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 217 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 218 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 219 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 220 #define MVNETA_PORT_TX_RESET 0x3cf0 221 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 222 #define MVNETA_TX_MTU 0x3e0c 223 #define MVNETA_TX_TOKEN_SIZE 0x3e14 224 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 225 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 226 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 227 228 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 229 230 /* Descriptor ring Macros */ 231 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 232 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 233 234 /* Various constants */ 235 236 /* Coalescing */ 237 #define MVNETA_TXDONE_COAL_PKTS 1 238 #define MVNETA_RX_COAL_PKTS 32 239 #define MVNETA_RX_COAL_USEC 100 240 241 /* The two bytes Marvell header. Either contains a special value used 242 * by Marvell switches when a specific hardware mode is enabled (not 243 * supported by this driver) or is filled automatically by zeroes on 244 * the RX side. Those two bytes being at the front of the Ethernet 245 * header, they allow to have the IP header aligned on a 4 bytes 246 * boundary automatically: the hardware skips those two bytes on its 247 * own. 248 */ 249 #define MVNETA_MH_SIZE 2 250 251 #define MVNETA_VLAN_TAG_LEN 4 252 253 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32 254 #define MVNETA_TX_CSUM_DEF_SIZE 1600 255 #define MVNETA_TX_CSUM_MAX_SIZE 9800 256 #define MVNETA_ACC_MODE_EXT 1 257 258 /* Timeout constants */ 259 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 260 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 261 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 262 263 #define MVNETA_TX_MTU_MAX 0x3ffff 264 265 /* The RSS lookup table actually has 256 entries but we do not use 266 * them yet 267 */ 268 #define MVNETA_RSS_LU_TABLE_SIZE 1 269 270 /* TSO header size */ 271 #define TSO_HEADER_SIZE 128 272 273 /* Max number of Rx descriptors */ 274 #define MVNETA_MAX_RXD 128 275 276 /* Max number of Tx descriptors */ 277 #define MVNETA_MAX_TXD 532 278 279 /* Max number of allowed TCP segments for software TSO */ 280 #define MVNETA_MAX_TSO_SEGS 100 281 282 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 283 284 /* descriptor aligned size */ 285 #define MVNETA_DESC_ALIGNED_SIZE 32 286 287 #define MVNETA_RX_PKT_SIZE(mtu) \ 288 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 289 ETH_HLEN + ETH_FCS_LEN, \ 290 MVNETA_CPU_D_CACHE_LINE_SIZE) 291 292 #define IS_TSO_HEADER(txq, addr) \ 293 ((addr >= txq->tso_hdrs_phys) && \ 294 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 295 296 #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD) 297 298 struct mvneta_statistic { 299 unsigned short offset; 300 unsigned short type; 301 const char name[ETH_GSTRING_LEN]; 302 }; 303 304 #define T_REG_32 32 305 #define T_REG_64 64 306 307 static const struct mvneta_statistic mvneta_statistics[] = { 308 { 0x3000, T_REG_64, "good_octets_received", }, 309 { 0x3010, T_REG_32, "good_frames_received", }, 310 { 0x3008, T_REG_32, "bad_octets_received", }, 311 { 0x3014, T_REG_32, "bad_frames_received", }, 312 { 0x3018, T_REG_32, "broadcast_frames_received", }, 313 { 0x301c, T_REG_32, "multicast_frames_received", }, 314 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 315 { 0x3058, T_REG_32, "good_fc_received", }, 316 { 0x305c, T_REG_32, "bad_fc_received", }, 317 { 0x3060, T_REG_32, "undersize_received", }, 318 { 0x3064, T_REG_32, "fragments_received", }, 319 { 0x3068, T_REG_32, "oversize_received", }, 320 { 0x306c, T_REG_32, "jabber_received", }, 321 { 0x3070, T_REG_32, "mac_receive_error", }, 322 { 0x3074, T_REG_32, "bad_crc_event", }, 323 { 0x3078, T_REG_32, "collision", }, 324 { 0x307c, T_REG_32, "late_collision", }, 325 { 0x2484, T_REG_32, "rx_discard", }, 326 { 0x2488, T_REG_32, "rx_overrun", }, 327 { 0x3020, T_REG_32, "frames_64_octets", }, 328 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 329 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 330 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 331 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 332 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 333 { 0x3038, T_REG_64, "good_octets_sent", }, 334 { 0x3040, T_REG_32, "good_frames_sent", }, 335 { 0x3044, T_REG_32, "excessive_collision", }, 336 { 0x3048, T_REG_32, "multicast_frames_sent", }, 337 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 338 { 0x3054, T_REG_32, "fc_sent", }, 339 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 340 }; 341 342 struct mvneta_pcpu_stats { 343 struct u64_stats_sync syncp; 344 u64 rx_packets; 345 u64 rx_bytes; 346 u64 tx_packets; 347 u64 tx_bytes; 348 }; 349 350 struct mvneta_pcpu_port { 351 /* Pointer to the shared port */ 352 struct mvneta_port *pp; 353 354 /* Pointer to the CPU-local NAPI struct */ 355 struct napi_struct napi; 356 357 /* Cause of the previous interrupt */ 358 u32 cause_rx_tx; 359 }; 360 361 struct mvneta_port { 362 struct mvneta_pcpu_port __percpu *ports; 363 struct mvneta_pcpu_stats __percpu *stats; 364 365 int pkt_size; 366 unsigned int frag_size; 367 void __iomem *base; 368 struct mvneta_rx_queue *rxqs; 369 struct mvneta_tx_queue *txqs; 370 struct net_device *dev; 371 struct notifier_block cpu_notifier; 372 int rxq_def; 373 /* Protect the access to the percpu interrupt registers, 374 * ensuring that the configuration remains coherent. 375 */ 376 spinlock_t lock; 377 bool is_stopped; 378 379 /* Core clock */ 380 struct clk *clk; 381 /* AXI clock */ 382 struct clk *clk_bus; 383 u8 mcast_count[256]; 384 u16 tx_ring_size; 385 u16 rx_ring_size; 386 387 struct mii_bus *mii_bus; 388 struct phy_device *phy_dev; 389 phy_interface_t phy_interface; 390 struct device_node *phy_node; 391 unsigned int link; 392 unsigned int duplex; 393 unsigned int speed; 394 unsigned int tx_csum_limit; 395 unsigned int use_inband_status:1; 396 397 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 398 399 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 400 }; 401 402 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 403 * layout of the transmit and reception DMA descriptors, and their 404 * layout is therefore defined by the hardware design 405 */ 406 407 #define MVNETA_TX_L3_OFF_SHIFT 0 408 #define MVNETA_TX_IP_HLEN_SHIFT 8 409 #define MVNETA_TX_L4_UDP BIT(16) 410 #define MVNETA_TX_L3_IP6 BIT(17) 411 #define MVNETA_TXD_IP_CSUM BIT(18) 412 #define MVNETA_TXD_Z_PAD BIT(19) 413 #define MVNETA_TXD_L_DESC BIT(20) 414 #define MVNETA_TXD_F_DESC BIT(21) 415 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 416 MVNETA_TXD_L_DESC | \ 417 MVNETA_TXD_F_DESC) 418 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 419 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 420 421 #define MVNETA_RXD_ERR_CRC 0x0 422 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 423 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 424 #define MVNETA_RXD_ERR_LEN BIT(18) 425 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 426 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 427 #define MVNETA_RXD_L3_IP4 BIT(25) 428 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 429 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 430 431 #if defined(__LITTLE_ENDIAN) 432 struct mvneta_tx_desc { 433 u32 command; /* Options used by HW for packet transmitting.*/ 434 u16 reserverd1; /* csum_l4 (for future use) */ 435 u16 data_size; /* Data size of transmitted packet in bytes */ 436 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 437 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 438 u32 reserved3[4]; /* Reserved - (for future use) */ 439 }; 440 441 struct mvneta_rx_desc { 442 u32 status; /* Info about received packet */ 443 u16 reserved1; /* pnc_info - (for future use, PnC) */ 444 u16 data_size; /* Size of received packet in bytes */ 445 446 u32 buf_phys_addr; /* Physical address of the buffer */ 447 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 448 449 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 450 u16 reserved3; /* prefetch_cmd, for future use */ 451 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 452 453 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 454 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 455 }; 456 #else 457 struct mvneta_tx_desc { 458 u16 data_size; /* Data size of transmitted packet in bytes */ 459 u16 reserverd1; /* csum_l4 (for future use) */ 460 u32 command; /* Options used by HW for packet transmitting.*/ 461 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 462 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 463 u32 reserved3[4]; /* Reserved - (for future use) */ 464 }; 465 466 struct mvneta_rx_desc { 467 u16 data_size; /* Size of received packet in bytes */ 468 u16 reserved1; /* pnc_info - (for future use, PnC) */ 469 u32 status; /* Info about received packet */ 470 471 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 472 u32 buf_phys_addr; /* Physical address of the buffer */ 473 474 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 475 u16 reserved3; /* prefetch_cmd, for future use */ 476 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 477 478 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 479 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 480 }; 481 #endif 482 483 struct mvneta_tx_queue { 484 /* Number of this TX queue, in the range 0-7 */ 485 u8 id; 486 487 /* Number of TX DMA descriptors in the descriptor ring */ 488 int size; 489 490 /* Number of currently used TX DMA descriptor in the 491 * descriptor ring 492 */ 493 int count; 494 int tx_stop_threshold; 495 int tx_wake_threshold; 496 497 /* Array of transmitted skb */ 498 struct sk_buff **tx_skb; 499 500 /* Index of last TX DMA descriptor that was inserted */ 501 int txq_put_index; 502 503 /* Index of the TX DMA descriptor to be cleaned up */ 504 int txq_get_index; 505 506 u32 done_pkts_coal; 507 508 /* Virtual address of the TX DMA descriptors array */ 509 struct mvneta_tx_desc *descs; 510 511 /* DMA address of the TX DMA descriptors array */ 512 dma_addr_t descs_phys; 513 514 /* Index of the last TX DMA descriptor */ 515 int last_desc; 516 517 /* Index of the next TX DMA descriptor to process */ 518 int next_desc_to_proc; 519 520 /* DMA buffers for TSO headers */ 521 char *tso_hdrs; 522 523 /* DMA address of TSO headers */ 524 dma_addr_t tso_hdrs_phys; 525 526 /* Affinity mask for CPUs*/ 527 cpumask_t affinity_mask; 528 }; 529 530 struct mvneta_rx_queue { 531 /* rx queue number, in the range 0-7 */ 532 u8 id; 533 534 /* num of rx descriptors in the rx descriptor ring */ 535 int size; 536 537 /* counter of times when mvneta_refill() failed */ 538 int missed; 539 540 u32 pkts_coal; 541 u32 time_coal; 542 543 /* Virtual address of the RX DMA descriptors array */ 544 struct mvneta_rx_desc *descs; 545 546 /* DMA address of the RX DMA descriptors array */ 547 dma_addr_t descs_phys; 548 549 /* Index of the last RX DMA descriptor */ 550 int last_desc; 551 552 /* Index of the next RX DMA descriptor to process */ 553 int next_desc_to_proc; 554 }; 555 556 /* The hardware supports eight (8) rx queues, but we are only allowing 557 * the first one to be used. Therefore, let's just allocate one queue. 558 */ 559 static int rxq_number = 8; 560 static int txq_number = 8; 561 562 static int rxq_def; 563 564 static int rx_copybreak __read_mostly = 256; 565 566 #define MVNETA_DRIVER_NAME "mvneta" 567 #define MVNETA_DRIVER_VERSION "1.0" 568 569 /* Utility/helper methods */ 570 571 /* Write helper method */ 572 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 573 { 574 writel(data, pp->base + offset); 575 } 576 577 /* Read helper method */ 578 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 579 { 580 return readl(pp->base + offset); 581 } 582 583 /* Increment txq get counter */ 584 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 585 { 586 txq->txq_get_index++; 587 if (txq->txq_get_index == txq->size) 588 txq->txq_get_index = 0; 589 } 590 591 /* Increment txq put counter */ 592 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 593 { 594 txq->txq_put_index++; 595 if (txq->txq_put_index == txq->size) 596 txq->txq_put_index = 0; 597 } 598 599 600 /* Clear all MIB counters */ 601 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 602 { 603 int i; 604 u32 dummy; 605 606 /* Perform dummy reads from MIB counters */ 607 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 608 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 609 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 610 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 611 } 612 613 /* Get System Network Statistics */ 614 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev, 615 struct rtnl_link_stats64 *stats) 616 { 617 struct mvneta_port *pp = netdev_priv(dev); 618 unsigned int start; 619 int cpu; 620 621 for_each_possible_cpu(cpu) { 622 struct mvneta_pcpu_stats *cpu_stats; 623 u64 rx_packets; 624 u64 rx_bytes; 625 u64 tx_packets; 626 u64 tx_bytes; 627 628 cpu_stats = per_cpu_ptr(pp->stats, cpu); 629 do { 630 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 631 rx_packets = cpu_stats->rx_packets; 632 rx_bytes = cpu_stats->rx_bytes; 633 tx_packets = cpu_stats->tx_packets; 634 tx_bytes = cpu_stats->tx_bytes; 635 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 636 637 stats->rx_packets += rx_packets; 638 stats->rx_bytes += rx_bytes; 639 stats->tx_packets += tx_packets; 640 stats->tx_bytes += tx_bytes; 641 } 642 643 stats->rx_errors = dev->stats.rx_errors; 644 stats->rx_dropped = dev->stats.rx_dropped; 645 646 stats->tx_dropped = dev->stats.tx_dropped; 647 648 return stats; 649 } 650 651 /* Rx descriptors helper methods */ 652 653 /* Checks whether the RX descriptor having this status is both the first 654 * and the last descriptor for the RX packet. Each RX packet is currently 655 * received through a single RX descriptor, so not having each RX 656 * descriptor with its first and last bits set is an error 657 */ 658 static int mvneta_rxq_desc_is_first_last(u32 status) 659 { 660 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 661 MVNETA_RXD_FIRST_LAST_DESC; 662 } 663 664 /* Add number of descriptors ready to receive new packets */ 665 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 666 struct mvneta_rx_queue *rxq, 667 int ndescs) 668 { 669 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 670 * be added at once 671 */ 672 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 673 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 674 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 675 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 676 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 677 } 678 679 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 680 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 681 } 682 683 /* Get number of RX descriptors occupied by received packets */ 684 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 685 struct mvneta_rx_queue *rxq) 686 { 687 u32 val; 688 689 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 690 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 691 } 692 693 /* Update num of rx desc called upon return from rx path or 694 * from mvneta_rxq_drop_pkts(). 695 */ 696 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 697 struct mvneta_rx_queue *rxq, 698 int rx_done, int rx_filled) 699 { 700 u32 val; 701 702 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 703 val = rx_done | 704 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 705 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 706 return; 707 } 708 709 /* Only 255 descriptors can be added at once */ 710 while ((rx_done > 0) || (rx_filled > 0)) { 711 if (rx_done <= 0xff) { 712 val = rx_done; 713 rx_done = 0; 714 } else { 715 val = 0xff; 716 rx_done -= 0xff; 717 } 718 if (rx_filled <= 0xff) { 719 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 720 rx_filled = 0; 721 } else { 722 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 723 rx_filled -= 0xff; 724 } 725 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 726 } 727 } 728 729 /* Get pointer to next RX descriptor to be processed by SW */ 730 static struct mvneta_rx_desc * 731 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 732 { 733 int rx_desc = rxq->next_desc_to_proc; 734 735 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 736 prefetch(rxq->descs + rxq->next_desc_to_proc); 737 return rxq->descs + rx_desc; 738 } 739 740 /* Change maximum receive size of the port. */ 741 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 742 { 743 u32 val; 744 745 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 746 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 747 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 748 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 749 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 750 } 751 752 753 /* Set rx queue offset */ 754 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 755 struct mvneta_rx_queue *rxq, 756 int offset) 757 { 758 u32 val; 759 760 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 761 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 762 763 /* Offset is in */ 764 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 765 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 766 } 767 768 769 /* Tx descriptors helper methods */ 770 771 /* Update HW with number of TX descriptors to be sent */ 772 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 773 struct mvneta_tx_queue *txq, 774 int pend_desc) 775 { 776 u32 val; 777 778 /* Only 255 descriptors can be added at once ; Assume caller 779 * process TX desriptors in quanta less than 256 780 */ 781 val = pend_desc; 782 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 783 } 784 785 /* Get pointer to next TX descriptor to be processed (send) by HW */ 786 static struct mvneta_tx_desc * 787 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 788 { 789 int tx_desc = txq->next_desc_to_proc; 790 791 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 792 return txq->descs + tx_desc; 793 } 794 795 /* Release the last allocated TX descriptor. Useful to handle DMA 796 * mapping failures in the TX path. 797 */ 798 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 799 { 800 if (txq->next_desc_to_proc == 0) 801 txq->next_desc_to_proc = txq->last_desc - 1; 802 else 803 txq->next_desc_to_proc--; 804 } 805 806 /* Set rxq buf size */ 807 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 808 struct mvneta_rx_queue *rxq, 809 int buf_size) 810 { 811 u32 val; 812 813 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 814 815 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 816 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 817 818 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 819 } 820 821 /* Disable buffer management (BM) */ 822 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 823 struct mvneta_rx_queue *rxq) 824 { 825 u32 val; 826 827 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 828 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 829 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 830 } 831 832 /* Start the Ethernet port RX and TX activity */ 833 static void mvneta_port_up(struct mvneta_port *pp) 834 { 835 int queue; 836 u32 q_map; 837 838 /* Enable all initialized TXs. */ 839 q_map = 0; 840 for (queue = 0; queue < txq_number; queue++) { 841 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 842 if (txq->descs != NULL) 843 q_map |= (1 << queue); 844 } 845 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 846 847 /* Enable all initialized RXQs. */ 848 for (queue = 0; queue < rxq_number; queue++) { 849 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 850 851 if (rxq->descs != NULL) 852 q_map |= (1 << queue); 853 } 854 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 855 } 856 857 /* Stop the Ethernet port activity */ 858 static void mvneta_port_down(struct mvneta_port *pp) 859 { 860 u32 val; 861 int count; 862 863 /* Stop Rx port activity. Check port Rx activity. */ 864 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 865 866 /* Issue stop command for active channels only */ 867 if (val != 0) 868 mvreg_write(pp, MVNETA_RXQ_CMD, 869 val << MVNETA_RXQ_DISABLE_SHIFT); 870 871 /* Wait for all Rx activity to terminate. */ 872 count = 0; 873 do { 874 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 875 netdev_warn(pp->dev, 876 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n", 877 val); 878 break; 879 } 880 mdelay(1); 881 882 val = mvreg_read(pp, MVNETA_RXQ_CMD); 883 } while (val & 0xff); 884 885 /* Stop Tx port activity. Check port Tx activity. Issue stop 886 * command for active channels only 887 */ 888 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 889 890 if (val != 0) 891 mvreg_write(pp, MVNETA_TXQ_CMD, 892 (val << MVNETA_TXQ_DISABLE_SHIFT)); 893 894 /* Wait for all Tx activity to terminate. */ 895 count = 0; 896 do { 897 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 898 netdev_warn(pp->dev, 899 "TIMEOUT for TX stopped status=0x%08x\n", 900 val); 901 break; 902 } 903 mdelay(1); 904 905 /* Check TX Command reg that all Txqs are stopped */ 906 val = mvreg_read(pp, MVNETA_TXQ_CMD); 907 908 } while (val & 0xff); 909 910 /* Double check to verify that TX FIFO is empty */ 911 count = 0; 912 do { 913 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 914 netdev_warn(pp->dev, 915 "TX FIFO empty timeout status=0x08%x\n", 916 val); 917 break; 918 } 919 mdelay(1); 920 921 val = mvreg_read(pp, MVNETA_PORT_STATUS); 922 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 923 (val & MVNETA_TX_IN_PRGRS)); 924 925 udelay(200); 926 } 927 928 /* Enable the port by setting the port enable bit of the MAC control register */ 929 static void mvneta_port_enable(struct mvneta_port *pp) 930 { 931 u32 val; 932 933 /* Enable port */ 934 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 935 val |= MVNETA_GMAC0_PORT_ENABLE; 936 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 937 } 938 939 /* Disable the port and wait for about 200 usec before retuning */ 940 static void mvneta_port_disable(struct mvneta_port *pp) 941 { 942 u32 val; 943 944 /* Reset the Enable bit in the Serial Control Register */ 945 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 946 val &= ~MVNETA_GMAC0_PORT_ENABLE; 947 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 948 949 udelay(200); 950 } 951 952 /* Multicast tables methods */ 953 954 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 955 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 956 { 957 int offset; 958 u32 val; 959 960 if (queue == -1) { 961 val = 0; 962 } else { 963 val = 0x1 | (queue << 1); 964 val |= (val << 24) | (val << 16) | (val << 8); 965 } 966 967 for (offset = 0; offset <= 0xc; offset += 4) 968 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 969 } 970 971 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 972 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 973 { 974 int offset; 975 u32 val; 976 977 if (queue == -1) { 978 val = 0; 979 } else { 980 val = 0x1 | (queue << 1); 981 val |= (val << 24) | (val << 16) | (val << 8); 982 } 983 984 for (offset = 0; offset <= 0xfc; offset += 4) 985 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 986 987 } 988 989 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 990 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 991 { 992 int offset; 993 u32 val; 994 995 if (queue == -1) { 996 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 997 val = 0; 998 } else { 999 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1000 val = 0x1 | (queue << 1); 1001 val |= (val << 24) | (val << 16) | (val << 8); 1002 } 1003 1004 for (offset = 0; offset <= 0xfc; offset += 4) 1005 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1006 } 1007 1008 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable) 1009 { 1010 u32 val; 1011 1012 if (enable) { 1013 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1014 val &= ~(MVNETA_GMAC_FORCE_LINK_PASS | 1015 MVNETA_GMAC_FORCE_LINK_DOWN | 1016 MVNETA_GMAC_AN_FLOW_CTRL_EN); 1017 val |= MVNETA_GMAC_INBAND_AN_ENABLE | 1018 MVNETA_GMAC_AN_SPEED_EN | 1019 MVNETA_GMAC_AN_DUPLEX_EN; 1020 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1021 1022 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1023 val |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 1024 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1025 1026 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1027 val |= MVNETA_GMAC2_INBAND_AN_ENABLE; 1028 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 1029 } else { 1030 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 1031 val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE | 1032 MVNETA_GMAC_AN_SPEED_EN | 1033 MVNETA_GMAC_AN_DUPLEX_EN); 1034 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 1035 1036 val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 1037 val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 1038 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val); 1039 1040 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 1041 val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE; 1042 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 1043 } 1044 } 1045 1046 static void mvneta_percpu_unmask_interrupt(void *arg) 1047 { 1048 struct mvneta_port *pp = arg; 1049 1050 /* All the queue are unmasked, but actually only the ones 1051 * mapped to this CPU will be unmasked 1052 */ 1053 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1054 MVNETA_RX_INTR_MASK_ALL | 1055 MVNETA_TX_INTR_MASK_ALL | 1056 MVNETA_MISCINTR_INTR_MASK); 1057 } 1058 1059 static void mvneta_percpu_mask_interrupt(void *arg) 1060 { 1061 struct mvneta_port *pp = arg; 1062 1063 /* All the queue are masked, but actually only the ones 1064 * mapped to this CPU will be masked 1065 */ 1066 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1067 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1068 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1069 } 1070 1071 static void mvneta_percpu_clear_intr_cause(void *arg) 1072 { 1073 struct mvneta_port *pp = arg; 1074 1075 /* All the queue are cleared, but actually only the ones 1076 * mapped to this CPU will be cleared 1077 */ 1078 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1079 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1080 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1081 } 1082 1083 /* This method sets defaults to the NETA port: 1084 * Clears interrupt Cause and Mask registers. 1085 * Clears all MAC tables. 1086 * Sets defaults to all registers. 1087 * Resets RX and TX descriptor rings. 1088 * Resets PHY. 1089 * This method can be called after mvneta_port_down() to return the port 1090 * settings to defaults. 1091 */ 1092 static void mvneta_defaults_set(struct mvneta_port *pp) 1093 { 1094 int cpu; 1095 int queue; 1096 u32 val; 1097 int max_cpu = num_present_cpus(); 1098 1099 /* Clear all Cause registers */ 1100 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1101 1102 /* Mask all interrupts */ 1103 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1104 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1105 1106 /* Enable MBUS Retry bit16 */ 1107 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1108 1109 /* Set CPU queue access map. CPUs are assigned to the RX and 1110 * TX queues modulo their number. If there is only one TX 1111 * queue then it is assigned to the CPU associated to the 1112 * default RX queue. 1113 */ 1114 for_each_present_cpu(cpu) { 1115 int rxq_map = 0, txq_map = 0; 1116 int rxq, txq; 1117 1118 for (rxq = 0; rxq < rxq_number; rxq++) 1119 if ((rxq % max_cpu) == cpu) 1120 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1121 1122 for (txq = 0; txq < txq_number; txq++) 1123 if ((txq % max_cpu) == cpu) 1124 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1125 1126 /* With only one TX queue we configure a special case 1127 * which will allow to get all the irq on a single 1128 * CPU 1129 */ 1130 if (txq_number == 1) 1131 txq_map = (cpu == pp->rxq_def) ? 1132 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1133 1134 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1135 } 1136 1137 /* Reset RX and TX DMAs */ 1138 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1139 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1140 1141 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1142 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1143 for (queue = 0; queue < txq_number; queue++) { 1144 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1145 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1146 } 1147 1148 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1149 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1150 1151 /* Set Port Acceleration Mode */ 1152 val = MVNETA_ACC_MODE_EXT; 1153 mvreg_write(pp, MVNETA_ACC_MODE, val); 1154 1155 /* Update val of portCfg register accordingly with all RxQueue types */ 1156 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1157 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1158 1159 val = 0; 1160 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1161 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1162 1163 /* Build PORT_SDMA_CONFIG_REG */ 1164 val = 0; 1165 1166 /* Default burst size */ 1167 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1168 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1169 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1170 1171 #if defined(__BIG_ENDIAN) 1172 val |= MVNETA_DESC_SWAP; 1173 #endif 1174 1175 /* Assign port SDMA configuration */ 1176 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1177 1178 /* Disable PHY polling in hardware, since we're using the 1179 * kernel phylib to do this. 1180 */ 1181 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1182 val &= ~MVNETA_PHY_POLLING_ENABLE; 1183 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1184 1185 mvneta_set_autoneg(pp, pp->use_inband_status); 1186 mvneta_set_ucast_table(pp, -1); 1187 mvneta_set_special_mcast_table(pp, -1); 1188 mvneta_set_other_mcast_table(pp, -1); 1189 1190 /* Set port interrupt enable register - default enable all */ 1191 mvreg_write(pp, MVNETA_INTR_ENABLE, 1192 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1193 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1194 1195 mvneta_mib_counters_clear(pp); 1196 } 1197 1198 /* Set max sizes for tx queues */ 1199 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1200 1201 { 1202 u32 val, size, mtu; 1203 int queue; 1204 1205 mtu = max_tx_size * 8; 1206 if (mtu > MVNETA_TX_MTU_MAX) 1207 mtu = MVNETA_TX_MTU_MAX; 1208 1209 /* Set MTU */ 1210 val = mvreg_read(pp, MVNETA_TX_MTU); 1211 val &= ~MVNETA_TX_MTU_MAX; 1212 val |= mtu; 1213 mvreg_write(pp, MVNETA_TX_MTU, val); 1214 1215 /* TX token size and all TXQs token size must be larger that MTU */ 1216 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1217 1218 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1219 if (size < mtu) { 1220 size = mtu; 1221 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1222 val |= size; 1223 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1224 } 1225 for (queue = 0; queue < txq_number; queue++) { 1226 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1227 1228 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1229 if (size < mtu) { 1230 size = mtu; 1231 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1232 val |= size; 1233 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1234 } 1235 } 1236 } 1237 1238 /* Set unicast address */ 1239 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1240 int queue) 1241 { 1242 unsigned int unicast_reg; 1243 unsigned int tbl_offset; 1244 unsigned int reg_offset; 1245 1246 /* Locate the Unicast table entry */ 1247 last_nibble = (0xf & last_nibble); 1248 1249 /* offset from unicast tbl base */ 1250 tbl_offset = (last_nibble / 4) * 4; 1251 1252 /* offset within the above reg */ 1253 reg_offset = last_nibble % 4; 1254 1255 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1256 1257 if (queue == -1) { 1258 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1259 unicast_reg &= ~(0xff << (8 * reg_offset)); 1260 } else { 1261 unicast_reg &= ~(0xff << (8 * reg_offset)); 1262 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1263 } 1264 1265 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1266 } 1267 1268 /* Set mac address */ 1269 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1270 int queue) 1271 { 1272 unsigned int mac_h; 1273 unsigned int mac_l; 1274 1275 if (queue != -1) { 1276 mac_l = (addr[4] << 8) | (addr[5]); 1277 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1278 (addr[2] << 8) | (addr[3] << 0); 1279 1280 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1281 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1282 } 1283 1284 /* Accept frames of this address */ 1285 mvneta_set_ucast_addr(pp, addr[5], queue); 1286 } 1287 1288 /* Set the number of packets that will be received before RX interrupt 1289 * will be generated by HW. 1290 */ 1291 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1292 struct mvneta_rx_queue *rxq, u32 value) 1293 { 1294 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1295 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1296 rxq->pkts_coal = value; 1297 } 1298 1299 /* Set the time delay in usec before RX interrupt will be generated by 1300 * HW. 1301 */ 1302 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1303 struct mvneta_rx_queue *rxq, u32 value) 1304 { 1305 u32 val; 1306 unsigned long clk_rate; 1307 1308 clk_rate = clk_get_rate(pp->clk); 1309 val = (clk_rate / 1000000) * value; 1310 1311 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1312 rxq->time_coal = value; 1313 } 1314 1315 /* Set threshold for TX_DONE pkts coalescing */ 1316 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1317 struct mvneta_tx_queue *txq, u32 value) 1318 { 1319 u32 val; 1320 1321 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1322 1323 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1324 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1325 1326 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1327 1328 txq->done_pkts_coal = value; 1329 } 1330 1331 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1332 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1333 u32 phys_addr, u32 cookie) 1334 { 1335 rx_desc->buf_cookie = cookie; 1336 rx_desc->buf_phys_addr = phys_addr; 1337 } 1338 1339 /* Decrement sent descriptors counter */ 1340 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1341 struct mvneta_tx_queue *txq, 1342 int sent_desc) 1343 { 1344 u32 val; 1345 1346 /* Only 255 TX descriptors can be updated at once */ 1347 while (sent_desc > 0xff) { 1348 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1349 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1350 sent_desc = sent_desc - 0xff; 1351 } 1352 1353 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1354 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1355 } 1356 1357 /* Get number of TX descriptors already sent by HW */ 1358 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1359 struct mvneta_tx_queue *txq) 1360 { 1361 u32 val; 1362 int sent_desc; 1363 1364 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1365 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1366 MVNETA_TXQ_SENT_DESC_SHIFT; 1367 1368 return sent_desc; 1369 } 1370 1371 /* Get number of sent descriptors and decrement counter. 1372 * The number of sent descriptors is returned. 1373 */ 1374 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1375 struct mvneta_tx_queue *txq) 1376 { 1377 int sent_desc; 1378 1379 /* Get number of sent descriptors */ 1380 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1381 1382 /* Decrement sent descriptors counter */ 1383 if (sent_desc) 1384 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1385 1386 return sent_desc; 1387 } 1388 1389 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1390 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1391 int ip_hdr_len, int l4_proto) 1392 { 1393 u32 command; 1394 1395 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1396 * G_L4_chk, L4_type; required only for checksum 1397 * calculation 1398 */ 1399 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1400 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1401 1402 if (l3_proto == htons(ETH_P_IP)) 1403 command |= MVNETA_TXD_IP_CSUM; 1404 else 1405 command |= MVNETA_TX_L3_IP6; 1406 1407 if (l4_proto == IPPROTO_TCP) 1408 command |= MVNETA_TX_L4_CSUM_FULL; 1409 else if (l4_proto == IPPROTO_UDP) 1410 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1411 else 1412 command |= MVNETA_TX_L4_CSUM_NOT; 1413 1414 return command; 1415 } 1416 1417 1418 /* Display more error info */ 1419 static void mvneta_rx_error(struct mvneta_port *pp, 1420 struct mvneta_rx_desc *rx_desc) 1421 { 1422 u32 status = rx_desc->status; 1423 1424 if (!mvneta_rxq_desc_is_first_last(status)) { 1425 netdev_err(pp->dev, 1426 "bad rx status %08x (buffer oversize), size=%d\n", 1427 status, rx_desc->data_size); 1428 return; 1429 } 1430 1431 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1432 case MVNETA_RXD_ERR_CRC: 1433 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1434 status, rx_desc->data_size); 1435 break; 1436 case MVNETA_RXD_ERR_OVERRUN: 1437 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1438 status, rx_desc->data_size); 1439 break; 1440 case MVNETA_RXD_ERR_LEN: 1441 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1442 status, rx_desc->data_size); 1443 break; 1444 case MVNETA_RXD_ERR_RESOURCE: 1445 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1446 status, rx_desc->data_size); 1447 break; 1448 } 1449 } 1450 1451 /* Handle RX checksum offload based on the descriptor's status */ 1452 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1453 struct sk_buff *skb) 1454 { 1455 if ((status & MVNETA_RXD_L3_IP4) && 1456 (status & MVNETA_RXD_L4_CSUM_OK)) { 1457 skb->csum = 0; 1458 skb->ip_summed = CHECKSUM_UNNECESSARY; 1459 return; 1460 } 1461 1462 skb->ip_summed = CHECKSUM_NONE; 1463 } 1464 1465 /* Return tx queue pointer (find last set bit) according to <cause> returned 1466 * form tx_done reg. <cause> must not be null. The return value is always a 1467 * valid queue for matching the first one found in <cause>. 1468 */ 1469 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1470 u32 cause) 1471 { 1472 int queue = fls(cause) - 1; 1473 1474 return &pp->txqs[queue]; 1475 } 1476 1477 /* Free tx queue skbuffs */ 1478 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1479 struct mvneta_tx_queue *txq, int num) 1480 { 1481 int i; 1482 1483 for (i = 0; i < num; i++) { 1484 struct mvneta_tx_desc *tx_desc = txq->descs + 1485 txq->txq_get_index; 1486 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1487 1488 mvneta_txq_inc_get(txq); 1489 1490 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1491 dma_unmap_single(pp->dev->dev.parent, 1492 tx_desc->buf_phys_addr, 1493 tx_desc->data_size, DMA_TO_DEVICE); 1494 if (!skb) 1495 continue; 1496 dev_kfree_skb_any(skb); 1497 } 1498 } 1499 1500 /* Handle end of transmission */ 1501 static void mvneta_txq_done(struct mvneta_port *pp, 1502 struct mvneta_tx_queue *txq) 1503 { 1504 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1505 int tx_done; 1506 1507 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1508 if (!tx_done) 1509 return; 1510 1511 mvneta_txq_bufs_free(pp, txq, tx_done); 1512 1513 txq->count -= tx_done; 1514 1515 if (netif_tx_queue_stopped(nq)) { 1516 if (txq->count <= txq->tx_wake_threshold) 1517 netif_tx_wake_queue(nq); 1518 } 1519 } 1520 1521 static void *mvneta_frag_alloc(const struct mvneta_port *pp) 1522 { 1523 if (likely(pp->frag_size <= PAGE_SIZE)) 1524 return netdev_alloc_frag(pp->frag_size); 1525 else 1526 return kmalloc(pp->frag_size, GFP_ATOMIC); 1527 } 1528 1529 static void mvneta_frag_free(const struct mvneta_port *pp, void *data) 1530 { 1531 if (likely(pp->frag_size <= PAGE_SIZE)) 1532 skb_free_frag(data); 1533 else 1534 kfree(data); 1535 } 1536 1537 /* Refill processing */ 1538 static int mvneta_rx_refill(struct mvneta_port *pp, 1539 struct mvneta_rx_desc *rx_desc) 1540 1541 { 1542 dma_addr_t phys_addr; 1543 void *data; 1544 1545 data = mvneta_frag_alloc(pp); 1546 if (!data) 1547 return -ENOMEM; 1548 1549 phys_addr = dma_map_single(pp->dev->dev.parent, data, 1550 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1551 DMA_FROM_DEVICE); 1552 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1553 mvneta_frag_free(pp, data); 1554 return -ENOMEM; 1555 } 1556 1557 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data); 1558 return 0; 1559 } 1560 1561 /* Handle tx checksum */ 1562 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1563 { 1564 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1565 int ip_hdr_len = 0; 1566 __be16 l3_proto = vlan_get_protocol(skb); 1567 u8 l4_proto; 1568 1569 if (l3_proto == htons(ETH_P_IP)) { 1570 struct iphdr *ip4h = ip_hdr(skb); 1571 1572 /* Calculate IPv4 checksum and L4 checksum */ 1573 ip_hdr_len = ip4h->ihl; 1574 l4_proto = ip4h->protocol; 1575 } else if (l3_proto == htons(ETH_P_IPV6)) { 1576 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1577 1578 /* Read l4_protocol from one of IPv6 extra headers */ 1579 if (skb_network_header_len(skb) > 0) 1580 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1581 l4_proto = ip6h->nexthdr; 1582 } else 1583 return MVNETA_TX_L4_CSUM_NOT; 1584 1585 return mvneta_txq_desc_csum(skb_network_offset(skb), 1586 l3_proto, ip_hdr_len, l4_proto); 1587 } 1588 1589 return MVNETA_TX_L4_CSUM_NOT; 1590 } 1591 1592 /* Drop packets received by the RXQ and free buffers */ 1593 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1594 struct mvneta_rx_queue *rxq) 1595 { 1596 int rx_done, i; 1597 1598 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1599 for (i = 0; i < rxq->size; i++) { 1600 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1601 void *data = (void *)rx_desc->buf_cookie; 1602 1603 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1604 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1605 mvneta_frag_free(pp, data); 1606 } 1607 1608 if (rx_done) 1609 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1610 } 1611 1612 /* Main rx processing */ 1613 static int mvneta_rx(struct mvneta_port *pp, int rx_todo, 1614 struct mvneta_rx_queue *rxq) 1615 { 1616 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 1617 struct net_device *dev = pp->dev; 1618 int rx_done; 1619 u32 rcvd_pkts = 0; 1620 u32 rcvd_bytes = 0; 1621 1622 /* Get number of received packets */ 1623 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1624 1625 if (rx_todo > rx_done) 1626 rx_todo = rx_done; 1627 1628 rx_done = 0; 1629 1630 /* Fairness NAPI loop */ 1631 while (rx_done < rx_todo) { 1632 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1633 struct sk_buff *skb; 1634 unsigned char *data; 1635 dma_addr_t phys_addr; 1636 u32 rx_status; 1637 int rx_bytes, err; 1638 1639 rx_done++; 1640 rx_status = rx_desc->status; 1641 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 1642 data = (unsigned char *)rx_desc->buf_cookie; 1643 phys_addr = rx_desc->buf_phys_addr; 1644 1645 if (!mvneta_rxq_desc_is_first_last(rx_status) || 1646 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1647 err_drop_frame: 1648 dev->stats.rx_errors++; 1649 mvneta_rx_error(pp, rx_desc); 1650 /* leave the descriptor untouched */ 1651 continue; 1652 } 1653 1654 if (rx_bytes <= rx_copybreak) { 1655 /* better copy a small frame and not unmap the DMA region */ 1656 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 1657 if (unlikely(!skb)) 1658 goto err_drop_frame; 1659 1660 dma_sync_single_range_for_cpu(dev->dev.parent, 1661 rx_desc->buf_phys_addr, 1662 MVNETA_MH_SIZE + NET_SKB_PAD, 1663 rx_bytes, 1664 DMA_FROM_DEVICE); 1665 memcpy(skb_put(skb, rx_bytes), 1666 data + MVNETA_MH_SIZE + NET_SKB_PAD, 1667 rx_bytes); 1668 1669 skb->protocol = eth_type_trans(skb, dev); 1670 mvneta_rx_csum(pp, rx_status, skb); 1671 napi_gro_receive(&port->napi, skb); 1672 1673 rcvd_pkts++; 1674 rcvd_bytes += rx_bytes; 1675 1676 /* leave the descriptor and buffer untouched */ 1677 continue; 1678 } 1679 1680 /* Refill processing */ 1681 err = mvneta_rx_refill(pp, rx_desc); 1682 if (err) { 1683 netdev_err(dev, "Linux processing - Can't refill\n"); 1684 rxq->missed++; 1685 goto err_drop_frame; 1686 } 1687 1688 skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size); 1689 1690 /* After refill old buffer has to be unmapped regardless 1691 * the skb is successfully built or not. 1692 */ 1693 dma_unmap_single(dev->dev.parent, phys_addr, 1694 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE); 1695 1696 if (!skb) 1697 goto err_drop_frame; 1698 1699 rcvd_pkts++; 1700 rcvd_bytes += rx_bytes; 1701 1702 /* Linux processing */ 1703 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 1704 skb_put(skb, rx_bytes); 1705 1706 skb->protocol = eth_type_trans(skb, dev); 1707 1708 mvneta_rx_csum(pp, rx_status, skb); 1709 1710 napi_gro_receive(&port->napi, skb); 1711 } 1712 1713 if (rcvd_pkts) { 1714 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1715 1716 u64_stats_update_begin(&stats->syncp); 1717 stats->rx_packets += rcvd_pkts; 1718 stats->rx_bytes += rcvd_bytes; 1719 u64_stats_update_end(&stats->syncp); 1720 } 1721 1722 /* Update rxq management counters */ 1723 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1724 1725 return rx_done; 1726 } 1727 1728 static inline void 1729 mvneta_tso_put_hdr(struct sk_buff *skb, 1730 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 1731 { 1732 struct mvneta_tx_desc *tx_desc; 1733 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1734 1735 txq->tx_skb[txq->txq_put_index] = NULL; 1736 tx_desc = mvneta_txq_next_desc_get(txq); 1737 tx_desc->data_size = hdr_len; 1738 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 1739 tx_desc->command |= MVNETA_TXD_F_DESC; 1740 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 1741 txq->txq_put_index * TSO_HEADER_SIZE; 1742 mvneta_txq_inc_put(txq); 1743 } 1744 1745 static inline int 1746 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 1747 struct sk_buff *skb, char *data, int size, 1748 bool last_tcp, bool is_last) 1749 { 1750 struct mvneta_tx_desc *tx_desc; 1751 1752 tx_desc = mvneta_txq_next_desc_get(txq); 1753 tx_desc->data_size = size; 1754 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 1755 size, DMA_TO_DEVICE); 1756 if (unlikely(dma_mapping_error(dev->dev.parent, 1757 tx_desc->buf_phys_addr))) { 1758 mvneta_txq_desc_put(txq); 1759 return -ENOMEM; 1760 } 1761 1762 tx_desc->command = 0; 1763 txq->tx_skb[txq->txq_put_index] = NULL; 1764 1765 if (last_tcp) { 1766 /* last descriptor in the TCP packet */ 1767 tx_desc->command = MVNETA_TXD_L_DESC; 1768 1769 /* last descriptor in SKB */ 1770 if (is_last) 1771 txq->tx_skb[txq->txq_put_index] = skb; 1772 } 1773 mvneta_txq_inc_put(txq); 1774 return 0; 1775 } 1776 1777 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 1778 struct mvneta_tx_queue *txq) 1779 { 1780 int total_len, data_left; 1781 int desc_count = 0; 1782 struct mvneta_port *pp = netdev_priv(dev); 1783 struct tso_t tso; 1784 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1785 int i; 1786 1787 /* Count needed descriptors */ 1788 if ((txq->count + tso_count_descs(skb)) >= txq->size) 1789 return 0; 1790 1791 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 1792 pr_info("*** Is this even possible???!?!?\n"); 1793 return 0; 1794 } 1795 1796 /* Initialize the TSO handler, and prepare the first payload */ 1797 tso_start(skb, &tso); 1798 1799 total_len = skb->len - hdr_len; 1800 while (total_len > 0) { 1801 char *hdr; 1802 1803 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 1804 total_len -= data_left; 1805 desc_count++; 1806 1807 /* prepare packet headers: MAC + IP + TCP */ 1808 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 1809 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 1810 1811 mvneta_tso_put_hdr(skb, pp, txq); 1812 1813 while (data_left > 0) { 1814 int size; 1815 desc_count++; 1816 1817 size = min_t(int, tso.size, data_left); 1818 1819 if (mvneta_tso_put_data(dev, txq, skb, 1820 tso.data, size, 1821 size == data_left, 1822 total_len == 0)) 1823 goto err_release; 1824 data_left -= size; 1825 1826 tso_build_data(skb, &tso, size); 1827 } 1828 } 1829 1830 return desc_count; 1831 1832 err_release: 1833 /* Release all used data descriptors; header descriptors must not 1834 * be DMA-unmapped. 1835 */ 1836 for (i = desc_count - 1; i >= 0; i--) { 1837 struct mvneta_tx_desc *tx_desc = txq->descs + i; 1838 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 1839 dma_unmap_single(pp->dev->dev.parent, 1840 tx_desc->buf_phys_addr, 1841 tx_desc->data_size, 1842 DMA_TO_DEVICE); 1843 mvneta_txq_desc_put(txq); 1844 } 1845 return 0; 1846 } 1847 1848 /* Handle tx fragmentation processing */ 1849 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 1850 struct mvneta_tx_queue *txq) 1851 { 1852 struct mvneta_tx_desc *tx_desc; 1853 int i, nr_frags = skb_shinfo(skb)->nr_frags; 1854 1855 for (i = 0; i < nr_frags; i++) { 1856 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1857 void *addr = page_address(frag->page.p) + frag->page_offset; 1858 1859 tx_desc = mvneta_txq_next_desc_get(txq); 1860 tx_desc->data_size = frag->size; 1861 1862 tx_desc->buf_phys_addr = 1863 dma_map_single(pp->dev->dev.parent, addr, 1864 tx_desc->data_size, DMA_TO_DEVICE); 1865 1866 if (dma_mapping_error(pp->dev->dev.parent, 1867 tx_desc->buf_phys_addr)) { 1868 mvneta_txq_desc_put(txq); 1869 goto error; 1870 } 1871 1872 if (i == nr_frags - 1) { 1873 /* Last descriptor */ 1874 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 1875 txq->tx_skb[txq->txq_put_index] = skb; 1876 } else { 1877 /* Descriptor in the middle: Not First, Not Last */ 1878 tx_desc->command = 0; 1879 txq->tx_skb[txq->txq_put_index] = NULL; 1880 } 1881 mvneta_txq_inc_put(txq); 1882 } 1883 1884 return 0; 1885 1886 error: 1887 /* Release all descriptors that were used to map fragments of 1888 * this packet, as well as the corresponding DMA mappings 1889 */ 1890 for (i = i - 1; i >= 0; i--) { 1891 tx_desc = txq->descs + i; 1892 dma_unmap_single(pp->dev->dev.parent, 1893 tx_desc->buf_phys_addr, 1894 tx_desc->data_size, 1895 DMA_TO_DEVICE); 1896 mvneta_txq_desc_put(txq); 1897 } 1898 1899 return -ENOMEM; 1900 } 1901 1902 /* Main tx processing */ 1903 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 1904 { 1905 struct mvneta_port *pp = netdev_priv(dev); 1906 u16 txq_id = skb_get_queue_mapping(skb); 1907 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 1908 struct mvneta_tx_desc *tx_desc; 1909 int len = skb->len; 1910 int frags = 0; 1911 u32 tx_cmd; 1912 1913 if (!netif_running(dev)) 1914 goto out; 1915 1916 if (skb_is_gso(skb)) { 1917 frags = mvneta_tx_tso(skb, dev, txq); 1918 goto out; 1919 } 1920 1921 frags = skb_shinfo(skb)->nr_frags + 1; 1922 1923 /* Get a descriptor for the first part of the packet */ 1924 tx_desc = mvneta_txq_next_desc_get(txq); 1925 1926 tx_cmd = mvneta_skb_tx_csum(pp, skb); 1927 1928 tx_desc->data_size = skb_headlen(skb); 1929 1930 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 1931 tx_desc->data_size, 1932 DMA_TO_DEVICE); 1933 if (unlikely(dma_mapping_error(dev->dev.parent, 1934 tx_desc->buf_phys_addr))) { 1935 mvneta_txq_desc_put(txq); 1936 frags = 0; 1937 goto out; 1938 } 1939 1940 if (frags == 1) { 1941 /* First and Last descriptor */ 1942 tx_cmd |= MVNETA_TXD_FLZ_DESC; 1943 tx_desc->command = tx_cmd; 1944 txq->tx_skb[txq->txq_put_index] = skb; 1945 mvneta_txq_inc_put(txq); 1946 } else { 1947 /* First but not Last */ 1948 tx_cmd |= MVNETA_TXD_F_DESC; 1949 txq->tx_skb[txq->txq_put_index] = NULL; 1950 mvneta_txq_inc_put(txq); 1951 tx_desc->command = tx_cmd; 1952 /* Continue with other skb fragments */ 1953 if (mvneta_tx_frag_process(pp, skb, txq)) { 1954 dma_unmap_single(dev->dev.parent, 1955 tx_desc->buf_phys_addr, 1956 tx_desc->data_size, 1957 DMA_TO_DEVICE); 1958 mvneta_txq_desc_put(txq); 1959 frags = 0; 1960 goto out; 1961 } 1962 } 1963 1964 out: 1965 if (frags > 0) { 1966 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1967 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 1968 1969 txq->count += frags; 1970 mvneta_txq_pend_desc_add(pp, txq, frags); 1971 1972 if (txq->count >= txq->tx_stop_threshold) 1973 netif_tx_stop_queue(nq); 1974 1975 u64_stats_update_begin(&stats->syncp); 1976 stats->tx_packets++; 1977 stats->tx_bytes += len; 1978 u64_stats_update_end(&stats->syncp); 1979 } else { 1980 dev->stats.tx_dropped++; 1981 dev_kfree_skb_any(skb); 1982 } 1983 1984 return NETDEV_TX_OK; 1985 } 1986 1987 1988 /* Free tx resources, when resetting a port */ 1989 static void mvneta_txq_done_force(struct mvneta_port *pp, 1990 struct mvneta_tx_queue *txq) 1991 1992 { 1993 int tx_done = txq->count; 1994 1995 mvneta_txq_bufs_free(pp, txq, tx_done); 1996 1997 /* reset txq */ 1998 txq->count = 0; 1999 txq->txq_put_index = 0; 2000 txq->txq_get_index = 0; 2001 } 2002 2003 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2004 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2005 */ 2006 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2007 { 2008 struct mvneta_tx_queue *txq; 2009 struct netdev_queue *nq; 2010 2011 while (cause_tx_done) { 2012 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2013 2014 nq = netdev_get_tx_queue(pp->dev, txq->id); 2015 __netif_tx_lock(nq, smp_processor_id()); 2016 2017 if (txq->count) 2018 mvneta_txq_done(pp, txq); 2019 2020 __netif_tx_unlock(nq); 2021 cause_tx_done &= ~((1 << txq->id)); 2022 } 2023 } 2024 2025 /* Compute crc8 of the specified address, using a unique algorithm , 2026 * according to hw spec, different than generic crc8 algorithm 2027 */ 2028 static int mvneta_addr_crc(unsigned char *addr) 2029 { 2030 int crc = 0; 2031 int i; 2032 2033 for (i = 0; i < ETH_ALEN; i++) { 2034 int j; 2035 2036 crc = (crc ^ addr[i]) << 8; 2037 for (j = 7; j >= 0; j--) { 2038 if (crc & (0x100 << j)) 2039 crc ^= 0x107 << j; 2040 } 2041 } 2042 2043 return crc; 2044 } 2045 2046 /* This method controls the net device special MAC multicast support. 2047 * The Special Multicast Table for MAC addresses supports MAC of the form 2048 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2049 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2050 * Table entries in the DA-Filter table. This method set the Special 2051 * Multicast Table appropriate entry. 2052 */ 2053 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2054 unsigned char last_byte, 2055 int queue) 2056 { 2057 unsigned int smc_table_reg; 2058 unsigned int tbl_offset; 2059 unsigned int reg_offset; 2060 2061 /* Register offset from SMC table base */ 2062 tbl_offset = (last_byte / 4); 2063 /* Entry offset within the above reg */ 2064 reg_offset = last_byte % 4; 2065 2066 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2067 + tbl_offset * 4)); 2068 2069 if (queue == -1) 2070 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2071 else { 2072 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2073 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2074 } 2075 2076 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2077 smc_table_reg); 2078 } 2079 2080 /* This method controls the network device Other MAC multicast support. 2081 * The Other Multicast Table is used for multicast of another type. 2082 * A CRC-8 is used as an index to the Other Multicast Table entries 2083 * in the DA-Filter table. 2084 * The method gets the CRC-8 value from the calling routine and 2085 * sets the Other Multicast Table appropriate entry according to the 2086 * specified CRC-8 . 2087 */ 2088 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2089 unsigned char crc8, 2090 int queue) 2091 { 2092 unsigned int omc_table_reg; 2093 unsigned int tbl_offset; 2094 unsigned int reg_offset; 2095 2096 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2097 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2098 2099 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2100 2101 if (queue == -1) { 2102 /* Clear accepts frame bit at specified Other DA table entry */ 2103 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2104 } else { 2105 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2106 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2107 } 2108 2109 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2110 } 2111 2112 /* The network device supports multicast using two tables: 2113 * 1) Special Multicast Table for MAC addresses of the form 2114 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2115 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2116 * Table entries in the DA-Filter table. 2117 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2118 * is used as an index to the Other Multicast Table entries in the 2119 * DA-Filter table. 2120 */ 2121 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2122 int queue) 2123 { 2124 unsigned char crc_result = 0; 2125 2126 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2127 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2128 return 0; 2129 } 2130 2131 crc_result = mvneta_addr_crc(p_addr); 2132 if (queue == -1) { 2133 if (pp->mcast_count[crc_result] == 0) { 2134 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2135 crc_result); 2136 return -EINVAL; 2137 } 2138 2139 pp->mcast_count[crc_result]--; 2140 if (pp->mcast_count[crc_result] != 0) { 2141 netdev_info(pp->dev, 2142 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2143 pp->mcast_count[crc_result], crc_result); 2144 return -EINVAL; 2145 } 2146 } else 2147 pp->mcast_count[crc_result]++; 2148 2149 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2150 2151 return 0; 2152 } 2153 2154 /* Configure Fitering mode of Ethernet port */ 2155 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2156 int is_promisc) 2157 { 2158 u32 port_cfg_reg, val; 2159 2160 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2161 2162 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2163 2164 /* Set / Clear UPM bit in port configuration register */ 2165 if (is_promisc) { 2166 /* Accept all Unicast addresses */ 2167 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2168 val |= MVNETA_FORCE_UNI; 2169 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2170 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2171 } else { 2172 /* Reject all Unicast addresses */ 2173 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2174 val &= ~MVNETA_FORCE_UNI; 2175 } 2176 2177 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 2178 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 2179 } 2180 2181 /* register unicast and multicast addresses */ 2182 static void mvneta_set_rx_mode(struct net_device *dev) 2183 { 2184 struct mvneta_port *pp = netdev_priv(dev); 2185 struct netdev_hw_addr *ha; 2186 2187 if (dev->flags & IFF_PROMISC) { 2188 /* Accept all: Multicast + Unicast */ 2189 mvneta_rx_unicast_promisc_set(pp, 1); 2190 mvneta_set_ucast_table(pp, pp->rxq_def); 2191 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2192 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2193 } else { 2194 /* Accept single Unicast */ 2195 mvneta_rx_unicast_promisc_set(pp, 0); 2196 mvneta_set_ucast_table(pp, -1); 2197 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 2198 2199 if (dev->flags & IFF_ALLMULTI) { 2200 /* Accept all multicast */ 2201 mvneta_set_special_mcast_table(pp, pp->rxq_def); 2202 mvneta_set_other_mcast_table(pp, pp->rxq_def); 2203 } else { 2204 /* Accept only initialized multicast */ 2205 mvneta_set_special_mcast_table(pp, -1); 2206 mvneta_set_other_mcast_table(pp, -1); 2207 2208 if (!netdev_mc_empty(dev)) { 2209 netdev_for_each_mc_addr(ha, dev) { 2210 mvneta_mcast_addr_set(pp, ha->addr, 2211 pp->rxq_def); 2212 } 2213 } 2214 } 2215 } 2216 } 2217 2218 /* Interrupt handling - the callback for request_irq() */ 2219 static irqreturn_t mvneta_isr(int irq, void *dev_id) 2220 { 2221 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 2222 2223 disable_percpu_irq(port->pp->dev->irq); 2224 napi_schedule(&port->napi); 2225 2226 return IRQ_HANDLED; 2227 } 2228 2229 static int mvneta_fixed_link_update(struct mvneta_port *pp, 2230 struct phy_device *phy) 2231 { 2232 struct fixed_phy_status status; 2233 struct fixed_phy_status changed = {}; 2234 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 2235 2236 status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 2237 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 2238 status.speed = SPEED_1000; 2239 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 2240 status.speed = SPEED_100; 2241 else 2242 status.speed = SPEED_10; 2243 status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 2244 changed.link = 1; 2245 changed.speed = 1; 2246 changed.duplex = 1; 2247 fixed_phy_update_state(phy, &status, &changed); 2248 return 0; 2249 } 2250 2251 /* NAPI handler 2252 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 2253 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 2254 * Bits 8 -15 of the cause Rx Tx register indicate that are received 2255 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 2256 * Each CPU has its own causeRxTx register 2257 */ 2258 static int mvneta_poll(struct napi_struct *napi, int budget) 2259 { 2260 int rx_done = 0; 2261 u32 cause_rx_tx; 2262 int rx_queue; 2263 struct mvneta_port *pp = netdev_priv(napi->dev); 2264 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 2265 2266 if (!netif_running(pp->dev)) { 2267 napi_complete(&port->napi); 2268 return rx_done; 2269 } 2270 2271 /* Read cause register */ 2272 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 2273 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 2274 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 2275 2276 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2277 if (pp->use_inband_status && (cause_misc & 2278 (MVNETA_CAUSE_PHY_STATUS_CHANGE | 2279 MVNETA_CAUSE_LINK_CHANGE | 2280 MVNETA_CAUSE_PSC_SYNC_CHANGE))) { 2281 mvneta_fixed_link_update(pp, pp->phy_dev); 2282 } 2283 } 2284 2285 /* Release Tx descriptors */ 2286 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 2287 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 2288 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 2289 } 2290 2291 /* For the case where the last mvneta_poll did not process all 2292 * RX packets 2293 */ 2294 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 2295 2296 cause_rx_tx |= port->cause_rx_tx; 2297 2298 if (rx_queue) { 2299 rx_queue = rx_queue - 1; 2300 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rx_queue]); 2301 } 2302 2303 budget -= rx_done; 2304 2305 if (budget > 0) { 2306 cause_rx_tx = 0; 2307 napi_complete(&port->napi); 2308 enable_percpu_irq(pp->dev->irq, 0); 2309 } 2310 2311 port->cause_rx_tx = cause_rx_tx; 2312 return rx_done; 2313 } 2314 2315 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 2316 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2317 int num) 2318 { 2319 int i; 2320 2321 for (i = 0; i < num; i++) { 2322 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 2323 if (mvneta_rx_refill(pp, rxq->descs + i) != 0) { 2324 netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", 2325 __func__, rxq->id, i, num); 2326 break; 2327 } 2328 } 2329 2330 /* Add this number of RX descriptors as non occupied (ready to 2331 * get packets) 2332 */ 2333 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 2334 2335 return i; 2336 } 2337 2338 /* Free all packets pending transmit from all TXQs and reset TX port */ 2339 static void mvneta_tx_reset(struct mvneta_port *pp) 2340 { 2341 int queue; 2342 2343 /* free the skb's in the tx ring */ 2344 for (queue = 0; queue < txq_number; queue++) 2345 mvneta_txq_done_force(pp, &pp->txqs[queue]); 2346 2347 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 2348 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 2349 } 2350 2351 static void mvneta_rx_reset(struct mvneta_port *pp) 2352 { 2353 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 2354 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 2355 } 2356 2357 /* Rx/Tx queue initialization/cleanup methods */ 2358 2359 /* Create a specified RX queue */ 2360 static int mvneta_rxq_init(struct mvneta_port *pp, 2361 struct mvneta_rx_queue *rxq) 2362 2363 { 2364 rxq->size = pp->rx_ring_size; 2365 2366 /* Allocate memory for RX descriptors */ 2367 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2368 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2369 &rxq->descs_phys, GFP_KERNEL); 2370 if (rxq->descs == NULL) 2371 return -ENOMEM; 2372 2373 BUG_ON(rxq->descs != 2374 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2375 2376 rxq->last_desc = rxq->size - 1; 2377 2378 /* Set Rx descriptors queue starting address */ 2379 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 2380 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 2381 2382 /* Set Offset */ 2383 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD); 2384 2385 /* Set coalescing pkts and time */ 2386 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2387 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2388 2389 /* Fill RXQ with buffers from RX pool */ 2390 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size)); 2391 mvneta_rxq_bm_disable(pp, rxq); 2392 mvneta_rxq_fill(pp, rxq, rxq->size); 2393 2394 return 0; 2395 } 2396 2397 /* Cleanup Rx queue */ 2398 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2399 struct mvneta_rx_queue *rxq) 2400 { 2401 mvneta_rxq_drop_pkts(pp, rxq); 2402 2403 if (rxq->descs) 2404 dma_free_coherent(pp->dev->dev.parent, 2405 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2406 rxq->descs, 2407 rxq->descs_phys); 2408 2409 rxq->descs = NULL; 2410 rxq->last_desc = 0; 2411 rxq->next_desc_to_proc = 0; 2412 rxq->descs_phys = 0; 2413 } 2414 2415 /* Create and initialize a tx queue */ 2416 static int mvneta_txq_init(struct mvneta_port *pp, 2417 struct mvneta_tx_queue *txq) 2418 { 2419 int cpu; 2420 2421 txq->size = pp->tx_ring_size; 2422 2423 /* A queue must always have room for at least one skb. 2424 * Therefore, stop the queue when the free entries reaches 2425 * the maximum number of descriptors per skb. 2426 */ 2427 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 2428 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 2429 2430 2431 /* Allocate memory for TX descriptors */ 2432 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2433 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2434 &txq->descs_phys, GFP_KERNEL); 2435 if (txq->descs == NULL) 2436 return -ENOMEM; 2437 2438 /* Make sure descriptor address is cache line size aligned */ 2439 BUG_ON(txq->descs != 2440 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2441 2442 txq->last_desc = txq->size - 1; 2443 2444 /* Set maximum bandwidth for enabled TXQs */ 2445 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2446 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2447 2448 /* Set Tx descriptors queue starting address */ 2449 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2450 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2451 2452 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL); 2453 if (txq->tx_skb == NULL) { 2454 dma_free_coherent(pp->dev->dev.parent, 2455 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2456 txq->descs, txq->descs_phys); 2457 return -ENOMEM; 2458 } 2459 2460 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 2461 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 2462 txq->size * TSO_HEADER_SIZE, 2463 &txq->tso_hdrs_phys, GFP_KERNEL); 2464 if (txq->tso_hdrs == NULL) { 2465 kfree(txq->tx_skb); 2466 dma_free_coherent(pp->dev->dev.parent, 2467 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2468 txq->descs, txq->descs_phys); 2469 return -ENOMEM; 2470 } 2471 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2472 2473 /* Setup XPS mapping */ 2474 if (txq_number > 1) 2475 cpu = txq->id % num_present_cpus(); 2476 else 2477 cpu = pp->rxq_def % num_present_cpus(); 2478 cpumask_set_cpu(cpu, &txq->affinity_mask); 2479 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 2480 2481 return 0; 2482 } 2483 2484 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2485 static void mvneta_txq_deinit(struct mvneta_port *pp, 2486 struct mvneta_tx_queue *txq) 2487 { 2488 kfree(txq->tx_skb); 2489 2490 if (txq->tso_hdrs) 2491 dma_free_coherent(pp->dev->dev.parent, 2492 txq->size * TSO_HEADER_SIZE, 2493 txq->tso_hdrs, txq->tso_hdrs_phys); 2494 if (txq->descs) 2495 dma_free_coherent(pp->dev->dev.parent, 2496 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2497 txq->descs, txq->descs_phys); 2498 2499 txq->descs = NULL; 2500 txq->last_desc = 0; 2501 txq->next_desc_to_proc = 0; 2502 txq->descs_phys = 0; 2503 2504 /* Set minimum bandwidth for disabled TXQs */ 2505 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2506 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2507 2508 /* Set Tx descriptors queue starting address and size */ 2509 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2510 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 2511 } 2512 2513 /* Cleanup all Tx queues */ 2514 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 2515 { 2516 int queue; 2517 2518 for (queue = 0; queue < txq_number; queue++) 2519 mvneta_txq_deinit(pp, &pp->txqs[queue]); 2520 } 2521 2522 /* Cleanup all Rx queues */ 2523 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 2524 { 2525 int queue; 2526 2527 for (queue = 0; queue < txq_number; queue++) 2528 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 2529 } 2530 2531 2532 /* Init all Rx queues */ 2533 static int mvneta_setup_rxqs(struct mvneta_port *pp) 2534 { 2535 int queue; 2536 2537 for (queue = 0; queue < rxq_number; queue++) { 2538 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 2539 2540 if (err) { 2541 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 2542 __func__, queue); 2543 mvneta_cleanup_rxqs(pp); 2544 return err; 2545 } 2546 } 2547 2548 return 0; 2549 } 2550 2551 /* Init all tx queues */ 2552 static int mvneta_setup_txqs(struct mvneta_port *pp) 2553 { 2554 int queue; 2555 2556 for (queue = 0; queue < txq_number; queue++) { 2557 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 2558 if (err) { 2559 netdev_err(pp->dev, "%s: can't create txq=%d\n", 2560 __func__, queue); 2561 mvneta_cleanup_txqs(pp); 2562 return err; 2563 } 2564 } 2565 2566 return 0; 2567 } 2568 2569 static void mvneta_start_dev(struct mvneta_port *pp) 2570 { 2571 int cpu; 2572 2573 mvneta_max_rx_size_set(pp, pp->pkt_size); 2574 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 2575 2576 /* start the Rx/Tx activity */ 2577 mvneta_port_enable(pp); 2578 2579 /* Enable polling on the port */ 2580 for_each_online_cpu(cpu) { 2581 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 2582 2583 napi_enable(&port->napi); 2584 } 2585 2586 /* Unmask interrupts. It has to be done from each CPU */ 2587 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 2588 2589 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 2590 MVNETA_CAUSE_PHY_STATUS_CHANGE | 2591 MVNETA_CAUSE_LINK_CHANGE | 2592 MVNETA_CAUSE_PSC_SYNC_CHANGE); 2593 2594 phy_start(pp->phy_dev); 2595 netif_tx_start_all_queues(pp->dev); 2596 } 2597 2598 static void mvneta_stop_dev(struct mvneta_port *pp) 2599 { 2600 unsigned int cpu; 2601 2602 phy_stop(pp->phy_dev); 2603 2604 for_each_online_cpu(cpu) { 2605 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 2606 2607 napi_disable(&port->napi); 2608 } 2609 2610 netif_carrier_off(pp->dev); 2611 2612 mvneta_port_down(pp); 2613 netif_tx_stop_all_queues(pp->dev); 2614 2615 /* Stop the port activity */ 2616 mvneta_port_disable(pp); 2617 2618 /* Clear all ethernet port interrupts */ 2619 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 2620 2621 /* Mask all ethernet port interrupts */ 2622 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 2623 2624 mvneta_tx_reset(pp); 2625 mvneta_rx_reset(pp); 2626 } 2627 2628 /* Return positive if MTU is valid */ 2629 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu) 2630 { 2631 if (mtu < 68) { 2632 netdev_err(dev, "cannot change mtu to less than 68\n"); 2633 return -EINVAL; 2634 } 2635 2636 /* 9676 == 9700 - 20 and rounding to 8 */ 2637 if (mtu > 9676) { 2638 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu); 2639 mtu = 9676; 2640 } 2641 2642 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 2643 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 2644 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 2645 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 2646 } 2647 2648 return mtu; 2649 } 2650 2651 /* Change the device mtu */ 2652 static int mvneta_change_mtu(struct net_device *dev, int mtu) 2653 { 2654 struct mvneta_port *pp = netdev_priv(dev); 2655 int ret; 2656 2657 mtu = mvneta_check_mtu_valid(dev, mtu); 2658 if (mtu < 0) 2659 return -EINVAL; 2660 2661 dev->mtu = mtu; 2662 2663 if (!netif_running(dev)) { 2664 netdev_update_features(dev); 2665 return 0; 2666 } 2667 2668 /* The interface is running, so we have to force a 2669 * reallocation of the queues 2670 */ 2671 mvneta_stop_dev(pp); 2672 2673 mvneta_cleanup_txqs(pp); 2674 mvneta_cleanup_rxqs(pp); 2675 2676 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 2677 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 2678 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 2679 2680 ret = mvneta_setup_rxqs(pp); 2681 if (ret) { 2682 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 2683 return ret; 2684 } 2685 2686 ret = mvneta_setup_txqs(pp); 2687 if (ret) { 2688 netdev_err(dev, "unable to setup txqs after MTU change\n"); 2689 return ret; 2690 } 2691 2692 mvneta_start_dev(pp); 2693 mvneta_port_up(pp); 2694 2695 netdev_update_features(dev); 2696 2697 return 0; 2698 } 2699 2700 static netdev_features_t mvneta_fix_features(struct net_device *dev, 2701 netdev_features_t features) 2702 { 2703 struct mvneta_port *pp = netdev_priv(dev); 2704 2705 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 2706 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 2707 netdev_info(dev, 2708 "Disable IP checksum for MTU greater than %dB\n", 2709 pp->tx_csum_limit); 2710 } 2711 2712 return features; 2713 } 2714 2715 /* Get mac address */ 2716 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 2717 { 2718 u32 mac_addr_l, mac_addr_h; 2719 2720 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 2721 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 2722 addr[0] = (mac_addr_h >> 24) & 0xFF; 2723 addr[1] = (mac_addr_h >> 16) & 0xFF; 2724 addr[2] = (mac_addr_h >> 8) & 0xFF; 2725 addr[3] = mac_addr_h & 0xFF; 2726 addr[4] = (mac_addr_l >> 8) & 0xFF; 2727 addr[5] = mac_addr_l & 0xFF; 2728 } 2729 2730 /* Handle setting mac address */ 2731 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 2732 { 2733 struct mvneta_port *pp = netdev_priv(dev); 2734 struct sockaddr *sockaddr = addr; 2735 int ret; 2736 2737 ret = eth_prepare_mac_addr_change(dev, addr); 2738 if (ret < 0) 2739 return ret; 2740 /* Remove previous address table entry */ 2741 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 2742 2743 /* Set new addr in hw */ 2744 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 2745 2746 eth_commit_mac_addr_change(dev, addr); 2747 return 0; 2748 } 2749 2750 static void mvneta_adjust_link(struct net_device *ndev) 2751 { 2752 struct mvneta_port *pp = netdev_priv(ndev); 2753 struct phy_device *phydev = pp->phy_dev; 2754 int status_change = 0; 2755 2756 if (phydev->link) { 2757 if ((pp->speed != phydev->speed) || 2758 (pp->duplex != phydev->duplex)) { 2759 u32 val; 2760 2761 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 2762 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 2763 MVNETA_GMAC_CONFIG_GMII_SPEED | 2764 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 2765 2766 if (phydev->duplex) 2767 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 2768 2769 if (phydev->speed == SPEED_1000) 2770 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 2771 else if (phydev->speed == SPEED_100) 2772 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 2773 2774 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 2775 2776 pp->duplex = phydev->duplex; 2777 pp->speed = phydev->speed; 2778 } 2779 } 2780 2781 if (phydev->link != pp->link) { 2782 if (!phydev->link) { 2783 pp->duplex = -1; 2784 pp->speed = 0; 2785 } 2786 2787 pp->link = phydev->link; 2788 status_change = 1; 2789 } 2790 2791 if (status_change) { 2792 if (phydev->link) { 2793 if (!pp->use_inband_status) { 2794 u32 val = mvreg_read(pp, 2795 MVNETA_GMAC_AUTONEG_CONFIG); 2796 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 2797 val |= MVNETA_GMAC_FORCE_LINK_PASS; 2798 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 2799 val); 2800 } 2801 mvneta_port_up(pp); 2802 } else { 2803 if (!pp->use_inband_status) { 2804 u32 val = mvreg_read(pp, 2805 MVNETA_GMAC_AUTONEG_CONFIG); 2806 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 2807 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 2808 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 2809 val); 2810 } 2811 mvneta_port_down(pp); 2812 } 2813 phy_print_status(phydev); 2814 } 2815 } 2816 2817 static int mvneta_mdio_probe(struct mvneta_port *pp) 2818 { 2819 struct phy_device *phy_dev; 2820 2821 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, 2822 pp->phy_interface); 2823 if (!phy_dev) { 2824 netdev_err(pp->dev, "could not find the PHY\n"); 2825 return -ENODEV; 2826 } 2827 2828 phy_dev->supported &= PHY_GBIT_FEATURES; 2829 phy_dev->advertising = phy_dev->supported; 2830 2831 pp->phy_dev = phy_dev; 2832 pp->link = 0; 2833 pp->duplex = 0; 2834 pp->speed = 0; 2835 2836 return 0; 2837 } 2838 2839 static void mvneta_mdio_remove(struct mvneta_port *pp) 2840 { 2841 phy_disconnect(pp->phy_dev); 2842 pp->phy_dev = NULL; 2843 } 2844 2845 static void mvneta_percpu_enable(void *arg) 2846 { 2847 struct mvneta_port *pp = arg; 2848 2849 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 2850 } 2851 2852 static void mvneta_percpu_disable(void *arg) 2853 { 2854 struct mvneta_port *pp = arg; 2855 2856 disable_percpu_irq(pp->dev->irq); 2857 } 2858 2859 /* Electing a CPU must be done in an atomic way: it should be done 2860 * after or before the removal/insertion of a CPU and this function is 2861 * not reentrant. 2862 */ 2863 static void mvneta_percpu_elect(struct mvneta_port *pp) 2864 { 2865 int elected_cpu = 0, max_cpu, cpu, i = 0; 2866 2867 /* Use the cpu associated to the rxq when it is online, in all 2868 * the other cases, use the cpu 0 which can't be offline. 2869 */ 2870 if (cpu_online(pp->rxq_def)) 2871 elected_cpu = pp->rxq_def; 2872 2873 max_cpu = num_present_cpus(); 2874 2875 for_each_online_cpu(cpu) { 2876 int rxq_map = 0, txq_map = 0; 2877 int rxq; 2878 2879 for (rxq = 0; rxq < rxq_number; rxq++) 2880 if ((rxq % max_cpu) == cpu) 2881 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 2882 2883 if (cpu == elected_cpu) 2884 /* Map the default receive queue queue to the 2885 * elected CPU 2886 */ 2887 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 2888 2889 /* We update the TX queue map only if we have one 2890 * queue. In this case we associate the TX queue to 2891 * the CPU bound to the default RX queue 2892 */ 2893 if (txq_number == 1) 2894 txq_map = (cpu == elected_cpu) ? 2895 MVNETA_CPU_TXQ_ACCESS(1) : 0; 2896 else 2897 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 2898 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 2899 2900 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 2901 2902 /* Update the interrupt mask on each CPU according the 2903 * new mapping 2904 */ 2905 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 2906 pp, true); 2907 i++; 2908 2909 } 2910 }; 2911 2912 static int mvneta_percpu_notifier(struct notifier_block *nfb, 2913 unsigned long action, void *hcpu) 2914 { 2915 struct mvneta_port *pp = container_of(nfb, struct mvneta_port, 2916 cpu_notifier); 2917 int cpu = (unsigned long)hcpu, other_cpu; 2918 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 2919 2920 switch (action) { 2921 case CPU_ONLINE: 2922 case CPU_ONLINE_FROZEN: 2923 spin_lock(&pp->lock); 2924 /* Configuring the driver for a new CPU while the 2925 * driver is stopping is racy, so just avoid it. 2926 */ 2927 if (pp->is_stopped) { 2928 spin_unlock(&pp->lock); 2929 break; 2930 } 2931 netif_tx_stop_all_queues(pp->dev); 2932 2933 /* We have to synchronise on tha napi of each CPU 2934 * except the one just being waked up 2935 */ 2936 for_each_online_cpu(other_cpu) { 2937 if (other_cpu != cpu) { 2938 struct mvneta_pcpu_port *other_port = 2939 per_cpu_ptr(pp->ports, other_cpu); 2940 2941 napi_synchronize(&other_port->napi); 2942 } 2943 } 2944 2945 /* Mask all ethernet port interrupts */ 2946 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 2947 napi_enable(&port->napi); 2948 2949 2950 /* Enable per-CPU interrupts on the CPU that is 2951 * brought up. 2952 */ 2953 smp_call_function_single(cpu, mvneta_percpu_enable, 2954 pp, true); 2955 2956 /* Enable per-CPU interrupt on the one CPU we care 2957 * about. 2958 */ 2959 mvneta_percpu_elect(pp); 2960 2961 /* Unmask all ethernet port interrupts */ 2962 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 2963 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 2964 MVNETA_CAUSE_PHY_STATUS_CHANGE | 2965 MVNETA_CAUSE_LINK_CHANGE | 2966 MVNETA_CAUSE_PSC_SYNC_CHANGE); 2967 netif_tx_start_all_queues(pp->dev); 2968 spin_unlock(&pp->lock); 2969 break; 2970 case CPU_DOWN_PREPARE: 2971 case CPU_DOWN_PREPARE_FROZEN: 2972 netif_tx_stop_all_queues(pp->dev); 2973 /* Thanks to this lock we are sure that any pending 2974 * cpu election is done 2975 */ 2976 spin_lock(&pp->lock); 2977 /* Mask all ethernet port interrupts */ 2978 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 2979 spin_unlock(&pp->lock); 2980 2981 napi_synchronize(&port->napi); 2982 napi_disable(&port->napi); 2983 /* Disable per-CPU interrupts on the CPU that is 2984 * brought down. 2985 */ 2986 smp_call_function_single(cpu, mvneta_percpu_disable, 2987 pp, true); 2988 2989 break; 2990 case CPU_DEAD: 2991 case CPU_DEAD_FROZEN: 2992 /* Check if a new CPU must be elected now this on is down */ 2993 spin_lock(&pp->lock); 2994 mvneta_percpu_elect(pp); 2995 spin_unlock(&pp->lock); 2996 /* Unmask all ethernet port interrupts */ 2997 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 2998 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 2999 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3000 MVNETA_CAUSE_LINK_CHANGE | 3001 MVNETA_CAUSE_PSC_SYNC_CHANGE); 3002 netif_tx_start_all_queues(pp->dev); 3003 break; 3004 } 3005 3006 return NOTIFY_OK; 3007 } 3008 3009 static int mvneta_open(struct net_device *dev) 3010 { 3011 struct mvneta_port *pp = netdev_priv(dev); 3012 int ret; 3013 3014 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 3015 pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) + 3016 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 3017 3018 ret = mvneta_setup_rxqs(pp); 3019 if (ret) 3020 return ret; 3021 3022 ret = mvneta_setup_txqs(pp); 3023 if (ret) 3024 goto err_cleanup_rxqs; 3025 3026 /* Connect to port interrupt line */ 3027 ret = request_percpu_irq(pp->dev->irq, mvneta_isr, 3028 MVNETA_DRIVER_NAME, pp->ports); 3029 if (ret) { 3030 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 3031 goto err_cleanup_txqs; 3032 } 3033 3034 /* Enable per-CPU interrupt on all the CPU to handle our RX 3035 * queue interrupts 3036 */ 3037 on_each_cpu(mvneta_percpu_enable, pp, true); 3038 3039 pp->is_stopped = false; 3040 /* Register a CPU notifier to handle the case where our CPU 3041 * might be taken offline. 3042 */ 3043 register_cpu_notifier(&pp->cpu_notifier); 3044 3045 /* In default link is down */ 3046 netif_carrier_off(pp->dev); 3047 3048 ret = mvneta_mdio_probe(pp); 3049 if (ret < 0) { 3050 netdev_err(dev, "cannot probe MDIO bus\n"); 3051 goto err_free_irq; 3052 } 3053 3054 mvneta_start_dev(pp); 3055 3056 return 0; 3057 3058 err_free_irq: 3059 free_percpu_irq(pp->dev->irq, pp->ports); 3060 err_cleanup_txqs: 3061 mvneta_cleanup_txqs(pp); 3062 err_cleanup_rxqs: 3063 mvneta_cleanup_rxqs(pp); 3064 return ret; 3065 } 3066 3067 /* Stop the port, free port interrupt line */ 3068 static int mvneta_stop(struct net_device *dev) 3069 { 3070 struct mvneta_port *pp = netdev_priv(dev); 3071 3072 /* Inform that we are stopping so we don't want to setup the 3073 * driver for new CPUs in the notifiers 3074 */ 3075 spin_lock(&pp->lock); 3076 pp->is_stopped = true; 3077 mvneta_stop_dev(pp); 3078 mvneta_mdio_remove(pp); 3079 unregister_cpu_notifier(&pp->cpu_notifier); 3080 /* Now that the notifier are unregistered, we can release le 3081 * lock 3082 */ 3083 spin_unlock(&pp->lock); 3084 on_each_cpu(mvneta_percpu_disable, pp, true); 3085 free_percpu_irq(dev->irq, pp->ports); 3086 mvneta_cleanup_rxqs(pp); 3087 mvneta_cleanup_txqs(pp); 3088 3089 return 0; 3090 } 3091 3092 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 3093 { 3094 struct mvneta_port *pp = netdev_priv(dev); 3095 3096 if (!pp->phy_dev) 3097 return -ENOTSUPP; 3098 3099 return phy_mii_ioctl(pp->phy_dev, ifr, cmd); 3100 } 3101 3102 /* Ethtool methods */ 3103 3104 /* Get settings (phy address, speed) for ethtools */ 3105 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 3106 { 3107 struct mvneta_port *pp = netdev_priv(dev); 3108 3109 if (!pp->phy_dev) 3110 return -ENODEV; 3111 3112 return phy_ethtool_gset(pp->phy_dev, cmd); 3113 } 3114 3115 /* Set settings (phy address, speed) for ethtools */ 3116 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 3117 { 3118 struct mvneta_port *pp = netdev_priv(dev); 3119 struct phy_device *phydev = pp->phy_dev; 3120 3121 if (!phydev) 3122 return -ENODEV; 3123 3124 if ((cmd->autoneg == AUTONEG_ENABLE) != pp->use_inband_status) { 3125 u32 val; 3126 3127 mvneta_set_autoneg(pp, cmd->autoneg == AUTONEG_ENABLE); 3128 3129 if (cmd->autoneg == AUTONEG_DISABLE) { 3130 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3131 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 3132 MVNETA_GMAC_CONFIG_GMII_SPEED | 3133 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3134 3135 if (phydev->duplex) 3136 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3137 3138 if (phydev->speed == SPEED_1000) 3139 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3140 else if (phydev->speed == SPEED_100) 3141 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 3142 3143 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3144 } 3145 3146 pp->use_inband_status = (cmd->autoneg == AUTONEG_ENABLE); 3147 netdev_info(pp->dev, "autoneg status set to %i\n", 3148 pp->use_inband_status); 3149 3150 if (netif_running(dev)) { 3151 mvneta_port_down(pp); 3152 mvneta_port_up(pp); 3153 } 3154 } 3155 3156 return phy_ethtool_sset(pp->phy_dev, cmd); 3157 } 3158 3159 /* Set interrupt coalescing for ethtools */ 3160 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 3161 struct ethtool_coalesce *c) 3162 { 3163 struct mvneta_port *pp = netdev_priv(dev); 3164 int queue; 3165 3166 for (queue = 0; queue < rxq_number; queue++) { 3167 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3168 rxq->time_coal = c->rx_coalesce_usecs; 3169 rxq->pkts_coal = c->rx_max_coalesced_frames; 3170 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3171 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3172 } 3173 3174 for (queue = 0; queue < txq_number; queue++) { 3175 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3176 txq->done_pkts_coal = c->tx_max_coalesced_frames; 3177 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3178 } 3179 3180 return 0; 3181 } 3182 3183 /* get coalescing for ethtools */ 3184 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 3185 struct ethtool_coalesce *c) 3186 { 3187 struct mvneta_port *pp = netdev_priv(dev); 3188 3189 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 3190 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 3191 3192 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 3193 return 0; 3194 } 3195 3196 3197 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 3198 struct ethtool_drvinfo *drvinfo) 3199 { 3200 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 3201 sizeof(drvinfo->driver)); 3202 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 3203 sizeof(drvinfo->version)); 3204 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 3205 sizeof(drvinfo->bus_info)); 3206 } 3207 3208 3209 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 3210 struct ethtool_ringparam *ring) 3211 { 3212 struct mvneta_port *pp = netdev_priv(netdev); 3213 3214 ring->rx_max_pending = MVNETA_MAX_RXD; 3215 ring->tx_max_pending = MVNETA_MAX_TXD; 3216 ring->rx_pending = pp->rx_ring_size; 3217 ring->tx_pending = pp->tx_ring_size; 3218 } 3219 3220 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 3221 struct ethtool_ringparam *ring) 3222 { 3223 struct mvneta_port *pp = netdev_priv(dev); 3224 3225 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 3226 return -EINVAL; 3227 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 3228 ring->rx_pending : MVNETA_MAX_RXD; 3229 3230 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 3231 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 3232 if (pp->tx_ring_size != ring->tx_pending) 3233 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 3234 pp->tx_ring_size, ring->tx_pending); 3235 3236 if (netif_running(dev)) { 3237 mvneta_stop(dev); 3238 if (mvneta_open(dev)) { 3239 netdev_err(dev, 3240 "error on opening device after ring param change\n"); 3241 return -ENOMEM; 3242 } 3243 } 3244 3245 return 0; 3246 } 3247 3248 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 3249 u8 *data) 3250 { 3251 if (sset == ETH_SS_STATS) { 3252 int i; 3253 3254 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3255 memcpy(data + i * ETH_GSTRING_LEN, 3256 mvneta_statistics[i].name, ETH_GSTRING_LEN); 3257 } 3258 } 3259 3260 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 3261 { 3262 const struct mvneta_statistic *s; 3263 void __iomem *base = pp->base; 3264 u32 high, low, val; 3265 u64 val64; 3266 int i; 3267 3268 for (i = 0, s = mvneta_statistics; 3269 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 3270 s++, i++) { 3271 switch (s->type) { 3272 case T_REG_32: 3273 val = readl_relaxed(base + s->offset); 3274 pp->ethtool_stats[i] += val; 3275 break; 3276 case T_REG_64: 3277 /* Docs say to read low 32-bit then high */ 3278 low = readl_relaxed(base + s->offset); 3279 high = readl_relaxed(base + s->offset + 4); 3280 val64 = (u64)high << 32 | low; 3281 pp->ethtool_stats[i] += val64; 3282 break; 3283 } 3284 } 3285 } 3286 3287 static void mvneta_ethtool_get_stats(struct net_device *dev, 3288 struct ethtool_stats *stats, u64 *data) 3289 { 3290 struct mvneta_port *pp = netdev_priv(dev); 3291 int i; 3292 3293 mvneta_ethtool_update_stats(pp); 3294 3295 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 3296 *data++ = pp->ethtool_stats[i]; 3297 } 3298 3299 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 3300 { 3301 if (sset == ETH_SS_STATS) 3302 return ARRAY_SIZE(mvneta_statistics); 3303 return -EOPNOTSUPP; 3304 } 3305 3306 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 3307 { 3308 return MVNETA_RSS_LU_TABLE_SIZE; 3309 } 3310 3311 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 3312 struct ethtool_rxnfc *info, 3313 u32 *rules __always_unused) 3314 { 3315 switch (info->cmd) { 3316 case ETHTOOL_GRXRINGS: 3317 info->data = rxq_number; 3318 return 0; 3319 case ETHTOOL_GRXFH: 3320 return -EOPNOTSUPP; 3321 default: 3322 return -EOPNOTSUPP; 3323 } 3324 } 3325 3326 static int mvneta_config_rss(struct mvneta_port *pp) 3327 { 3328 int cpu; 3329 u32 val; 3330 3331 netif_tx_stop_all_queues(pp->dev); 3332 3333 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3334 3335 /* We have to synchronise on the napi of each CPU */ 3336 for_each_online_cpu(cpu) { 3337 struct mvneta_pcpu_port *pcpu_port = 3338 per_cpu_ptr(pp->ports, cpu); 3339 3340 napi_synchronize(&pcpu_port->napi); 3341 napi_disable(&pcpu_port->napi); 3342 } 3343 3344 pp->rxq_def = pp->indir[0]; 3345 3346 /* Update unicast mapping */ 3347 mvneta_set_rx_mode(pp->dev); 3348 3349 /* Update val of portCfg register accordingly with all RxQueue types */ 3350 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 3351 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 3352 3353 /* Update the elected CPU matching the new rxq_def */ 3354 spin_lock(&pp->lock); 3355 mvneta_percpu_elect(pp); 3356 spin_unlock(&pp->lock); 3357 3358 /* We have to synchronise on the napi of each CPU */ 3359 for_each_online_cpu(cpu) { 3360 struct mvneta_pcpu_port *pcpu_port = 3361 per_cpu_ptr(pp->ports, cpu); 3362 3363 napi_enable(&pcpu_port->napi); 3364 } 3365 3366 netif_tx_start_all_queues(pp->dev); 3367 3368 return 0; 3369 } 3370 3371 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 3372 const u8 *key, const u8 hfunc) 3373 { 3374 struct mvneta_port *pp = netdev_priv(dev); 3375 /* We require at least one supported parameter to be changed 3376 * and no change in any of the unsupported parameters 3377 */ 3378 if (key || 3379 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 3380 return -EOPNOTSUPP; 3381 3382 if (!indir) 3383 return 0; 3384 3385 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 3386 3387 return mvneta_config_rss(pp); 3388 } 3389 3390 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 3391 u8 *hfunc) 3392 { 3393 struct mvneta_port *pp = netdev_priv(dev); 3394 3395 if (hfunc) 3396 *hfunc = ETH_RSS_HASH_TOP; 3397 3398 if (!indir) 3399 return 0; 3400 3401 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 3402 3403 return 0; 3404 } 3405 3406 static const struct net_device_ops mvneta_netdev_ops = { 3407 .ndo_open = mvneta_open, 3408 .ndo_stop = mvneta_stop, 3409 .ndo_start_xmit = mvneta_tx, 3410 .ndo_set_rx_mode = mvneta_set_rx_mode, 3411 .ndo_set_mac_address = mvneta_set_mac_addr, 3412 .ndo_change_mtu = mvneta_change_mtu, 3413 .ndo_fix_features = mvneta_fix_features, 3414 .ndo_get_stats64 = mvneta_get_stats64, 3415 .ndo_do_ioctl = mvneta_ioctl, 3416 }; 3417 3418 const struct ethtool_ops mvneta_eth_tool_ops = { 3419 .get_link = ethtool_op_get_link, 3420 .get_settings = mvneta_ethtool_get_settings, 3421 .set_settings = mvneta_ethtool_set_settings, 3422 .set_coalesce = mvneta_ethtool_set_coalesce, 3423 .get_coalesce = mvneta_ethtool_get_coalesce, 3424 .get_drvinfo = mvneta_ethtool_get_drvinfo, 3425 .get_ringparam = mvneta_ethtool_get_ringparam, 3426 .set_ringparam = mvneta_ethtool_set_ringparam, 3427 .get_strings = mvneta_ethtool_get_strings, 3428 .get_ethtool_stats = mvneta_ethtool_get_stats, 3429 .get_sset_count = mvneta_ethtool_get_sset_count, 3430 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 3431 .get_rxnfc = mvneta_ethtool_get_rxnfc, 3432 .get_rxfh = mvneta_ethtool_get_rxfh, 3433 .set_rxfh = mvneta_ethtool_set_rxfh, 3434 }; 3435 3436 /* Initialize hw */ 3437 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 3438 { 3439 int queue; 3440 3441 /* Disable port */ 3442 mvneta_port_disable(pp); 3443 3444 /* Set port default values */ 3445 mvneta_defaults_set(pp); 3446 3447 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue), 3448 GFP_KERNEL); 3449 if (!pp->txqs) 3450 return -ENOMEM; 3451 3452 /* Initialize TX descriptor rings */ 3453 for (queue = 0; queue < txq_number; queue++) { 3454 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 3455 txq->id = queue; 3456 txq->size = pp->tx_ring_size; 3457 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 3458 } 3459 3460 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue), 3461 GFP_KERNEL); 3462 if (!pp->rxqs) 3463 return -ENOMEM; 3464 3465 /* Create Rx descriptor rings */ 3466 for (queue = 0; queue < rxq_number; queue++) { 3467 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 3468 rxq->id = queue; 3469 rxq->size = pp->rx_ring_size; 3470 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 3471 rxq->time_coal = MVNETA_RX_COAL_USEC; 3472 } 3473 3474 return 0; 3475 } 3476 3477 /* platform glue : initialize decoding windows */ 3478 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 3479 const struct mbus_dram_target_info *dram) 3480 { 3481 u32 win_enable; 3482 u32 win_protect; 3483 int i; 3484 3485 for (i = 0; i < 6; i++) { 3486 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 3487 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 3488 3489 if (i < 4) 3490 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 3491 } 3492 3493 win_enable = 0x3f; 3494 win_protect = 0; 3495 3496 for (i = 0; i < dram->num_cs; i++) { 3497 const struct mbus_dram_window *cs = dram->cs + i; 3498 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) | 3499 (cs->mbus_attr << 8) | dram->mbus_dram_target_id); 3500 3501 mvreg_write(pp, MVNETA_WIN_SIZE(i), 3502 (cs->size - 1) & 0xffff0000); 3503 3504 win_enable &= ~(1 << i); 3505 win_protect |= 3 << (2 * i); 3506 } 3507 3508 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 3509 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 3510 } 3511 3512 /* Power up the port */ 3513 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 3514 { 3515 u32 ctrl; 3516 3517 /* MAC Cause register should be cleared */ 3518 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 3519 3520 ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3521 3522 /* Even though it might look weird, when we're configured in 3523 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3524 */ 3525 switch(phy_mode) { 3526 case PHY_INTERFACE_MODE_QSGMII: 3527 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 3528 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 3529 break; 3530 case PHY_INTERFACE_MODE_SGMII: 3531 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 3532 ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII; 3533 break; 3534 case PHY_INTERFACE_MODE_RGMII: 3535 case PHY_INTERFACE_MODE_RGMII_ID: 3536 ctrl |= MVNETA_GMAC2_PORT_RGMII; 3537 break; 3538 default: 3539 return -EINVAL; 3540 } 3541 3542 /* Cancel Port Reset */ 3543 ctrl &= ~MVNETA_GMAC2_PORT_RESET; 3544 mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl); 3545 3546 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 3547 MVNETA_GMAC2_PORT_RESET) != 0) 3548 continue; 3549 3550 return 0; 3551 } 3552 3553 /* Device initialization routine */ 3554 static int mvneta_probe(struct platform_device *pdev) 3555 { 3556 const struct mbus_dram_target_info *dram_target_info; 3557 struct resource *res; 3558 struct device_node *dn = pdev->dev.of_node; 3559 struct device_node *phy_node; 3560 struct mvneta_port *pp; 3561 struct net_device *dev; 3562 const char *dt_mac_addr; 3563 char hw_mac_addr[ETH_ALEN]; 3564 const char *mac_from; 3565 const char *managed; 3566 int tx_csum_limit; 3567 int phy_mode; 3568 int err; 3569 int cpu; 3570 3571 dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number); 3572 if (!dev) 3573 return -ENOMEM; 3574 3575 dev->irq = irq_of_parse_and_map(dn, 0); 3576 if (dev->irq == 0) { 3577 err = -EINVAL; 3578 goto err_free_netdev; 3579 } 3580 3581 phy_node = of_parse_phandle(dn, "phy", 0); 3582 if (!phy_node) { 3583 if (!of_phy_is_fixed_link(dn)) { 3584 dev_err(&pdev->dev, "no PHY specified\n"); 3585 err = -ENODEV; 3586 goto err_free_irq; 3587 } 3588 3589 err = of_phy_register_fixed_link(dn); 3590 if (err < 0) { 3591 dev_err(&pdev->dev, "cannot register fixed PHY\n"); 3592 goto err_free_irq; 3593 } 3594 3595 /* In the case of a fixed PHY, the DT node associated 3596 * to the PHY is the Ethernet MAC DT node. 3597 */ 3598 phy_node = of_node_get(dn); 3599 } 3600 3601 phy_mode = of_get_phy_mode(dn); 3602 if (phy_mode < 0) { 3603 dev_err(&pdev->dev, "incorrect phy-mode\n"); 3604 err = -EINVAL; 3605 goto err_put_phy_node; 3606 } 3607 3608 dev->tx_queue_len = MVNETA_MAX_TXD; 3609 dev->watchdog_timeo = 5 * HZ; 3610 dev->netdev_ops = &mvneta_netdev_ops; 3611 3612 dev->ethtool_ops = &mvneta_eth_tool_ops; 3613 3614 pp = netdev_priv(dev); 3615 pp->phy_node = phy_node; 3616 pp->phy_interface = phy_mode; 3617 3618 err = of_property_read_string(dn, "managed", &managed); 3619 pp->use_inband_status = (err == 0 && 3620 strcmp(managed, "in-band-status") == 0); 3621 pp->cpu_notifier.notifier_call = mvneta_percpu_notifier; 3622 3623 pp->rxq_def = rxq_def; 3624 3625 pp->indir[0] = rxq_def; 3626 3627 pp->clk = devm_clk_get(&pdev->dev, "core"); 3628 if (IS_ERR(pp->clk)) 3629 pp->clk = devm_clk_get(&pdev->dev, NULL); 3630 if (IS_ERR(pp->clk)) { 3631 err = PTR_ERR(pp->clk); 3632 goto err_put_phy_node; 3633 } 3634 3635 clk_prepare_enable(pp->clk); 3636 3637 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 3638 if (!IS_ERR(pp->clk_bus)) 3639 clk_prepare_enable(pp->clk_bus); 3640 3641 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 3642 pp->base = devm_ioremap_resource(&pdev->dev, res); 3643 if (IS_ERR(pp->base)) { 3644 err = PTR_ERR(pp->base); 3645 goto err_clk; 3646 } 3647 3648 /* Alloc per-cpu port structure */ 3649 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 3650 if (!pp->ports) { 3651 err = -ENOMEM; 3652 goto err_clk; 3653 } 3654 3655 /* Alloc per-cpu stats */ 3656 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 3657 if (!pp->stats) { 3658 err = -ENOMEM; 3659 goto err_free_ports; 3660 } 3661 3662 dt_mac_addr = of_get_mac_address(dn); 3663 if (dt_mac_addr) { 3664 mac_from = "device tree"; 3665 memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN); 3666 } else { 3667 mvneta_get_mac_addr(pp, hw_mac_addr); 3668 if (is_valid_ether_addr(hw_mac_addr)) { 3669 mac_from = "hardware"; 3670 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 3671 } else { 3672 mac_from = "random"; 3673 eth_hw_addr_random(dev); 3674 } 3675 } 3676 3677 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 3678 if (tx_csum_limit < 0 || 3679 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 3680 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 3681 dev_info(&pdev->dev, 3682 "Wrong TX csum limit in DT, set to %dB\n", 3683 MVNETA_TX_CSUM_DEF_SIZE); 3684 } 3685 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 3686 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 3687 } else { 3688 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 3689 } 3690 3691 pp->tx_csum_limit = tx_csum_limit; 3692 3693 pp->tx_ring_size = MVNETA_MAX_TXD; 3694 pp->rx_ring_size = MVNETA_MAX_RXD; 3695 3696 pp->dev = dev; 3697 SET_NETDEV_DEV(dev, &pdev->dev); 3698 3699 err = mvneta_init(&pdev->dev, pp); 3700 if (err < 0) 3701 goto err_free_stats; 3702 3703 err = mvneta_port_power_up(pp, phy_mode); 3704 if (err < 0) { 3705 dev_err(&pdev->dev, "can't power up port\n"); 3706 goto err_free_stats; 3707 } 3708 3709 dram_target_info = mv_mbus_dram_info(); 3710 if (dram_target_info) 3711 mvneta_conf_mbus_windows(pp, dram_target_info); 3712 3713 for_each_present_cpu(cpu) { 3714 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 3715 3716 netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT); 3717 port->pp = pp; 3718 } 3719 3720 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO; 3721 dev->hw_features |= dev->features; 3722 dev->vlan_features |= dev->features; 3723 dev->priv_flags |= IFF_UNICAST_FLT; 3724 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 3725 3726 err = register_netdev(dev); 3727 if (err < 0) { 3728 dev_err(&pdev->dev, "failed to register\n"); 3729 goto err_free_stats; 3730 } 3731 3732 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 3733 dev->dev_addr); 3734 3735 platform_set_drvdata(pdev, pp->dev); 3736 3737 if (pp->use_inband_status) { 3738 struct phy_device *phy = of_phy_find_device(dn); 3739 3740 mvneta_fixed_link_update(pp, phy); 3741 3742 put_device(&phy->mdio.dev); 3743 } 3744 3745 return 0; 3746 3747 err_free_stats: 3748 free_percpu(pp->stats); 3749 err_free_ports: 3750 free_percpu(pp->ports); 3751 err_clk: 3752 clk_disable_unprepare(pp->clk_bus); 3753 clk_disable_unprepare(pp->clk); 3754 err_put_phy_node: 3755 of_node_put(phy_node); 3756 err_free_irq: 3757 irq_dispose_mapping(dev->irq); 3758 err_free_netdev: 3759 free_netdev(dev); 3760 return err; 3761 } 3762 3763 /* Device removal routine */ 3764 static int mvneta_remove(struct platform_device *pdev) 3765 { 3766 struct net_device *dev = platform_get_drvdata(pdev); 3767 struct mvneta_port *pp = netdev_priv(dev); 3768 3769 unregister_netdev(dev); 3770 clk_disable_unprepare(pp->clk_bus); 3771 clk_disable_unprepare(pp->clk); 3772 free_percpu(pp->ports); 3773 free_percpu(pp->stats); 3774 irq_dispose_mapping(dev->irq); 3775 of_node_put(pp->phy_node); 3776 free_netdev(dev); 3777 3778 return 0; 3779 } 3780 3781 static const struct of_device_id mvneta_match[] = { 3782 { .compatible = "marvell,armada-370-neta" }, 3783 { .compatible = "marvell,armada-xp-neta" }, 3784 { } 3785 }; 3786 MODULE_DEVICE_TABLE(of, mvneta_match); 3787 3788 static struct platform_driver mvneta_driver = { 3789 .probe = mvneta_probe, 3790 .remove = mvneta_remove, 3791 .driver = { 3792 .name = MVNETA_DRIVER_NAME, 3793 .of_match_table = mvneta_match, 3794 }, 3795 }; 3796 3797 module_platform_driver(mvneta_driver); 3798 3799 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 3800 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 3801 MODULE_LICENSE("GPL"); 3802 3803 module_param(rxq_number, int, S_IRUGO); 3804 module_param(txq_number, int, S_IRUGO); 3805 3806 module_param(rxq_def, int, S_IRUGO); 3807 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR); 3808