1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy/phy.h> 31 #include <linux/phy.h> 32 #include <linux/phylink.h> 33 #include <linux/platform_device.h> 34 #include <linux/skbuff.h> 35 #include <net/hwbm.h> 36 #include "mvneta_bm.h" 37 #include <net/ip.h> 38 #include <net/ipv6.h> 39 #include <net/tso.h> 40 #include <net/page_pool.h> 41 #include <net/pkt_cls.h> 42 #include <linux/bpf_trace.h> 43 44 /* Registers */ 45 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 46 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 47 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 48 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 49 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 50 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 51 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 52 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 53 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 54 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 55 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 56 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 57 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 58 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 59 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 60 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 61 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 62 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 63 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 64 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 65 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 66 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 67 #define MVNETA_PORT_RX_RESET 0x1cc0 68 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 69 #define MVNETA_PHY_ADDR 0x2000 70 #define MVNETA_PHY_ADDR_MASK 0x1f 71 #define MVNETA_MBUS_RETRY 0x2010 72 #define MVNETA_UNIT_INTR_CAUSE 0x2080 73 #define MVNETA_UNIT_CONTROL 0x20B0 74 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 75 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 76 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 77 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 78 #define MVNETA_BASE_ADDR_ENABLE 0x2290 79 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 80 #define MVNETA_PORT_CONFIG 0x2400 81 #define MVNETA_UNI_PROMISC_MODE BIT(0) 82 #define MVNETA_DEF_RXQ(q) ((q) << 1) 83 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 84 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 85 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 86 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 87 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 88 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 89 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 90 MVNETA_DEF_RXQ_ARP(q) | \ 91 MVNETA_DEF_RXQ_TCP(q) | \ 92 MVNETA_DEF_RXQ_UDP(q) | \ 93 MVNETA_DEF_RXQ_BPDU(q) | \ 94 MVNETA_TX_UNSET_ERR_SUM | \ 95 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 96 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 97 #define MVNETA_MAC_ADDR_LOW 0x2414 98 #define MVNETA_MAC_ADDR_HIGH 0x2418 99 #define MVNETA_SDMA_CONFIG 0x241c 100 #define MVNETA_SDMA_BRST_SIZE_16 4 101 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 102 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 103 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 104 #define MVNETA_DESC_SWAP BIT(6) 105 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 106 #define MVNETA_VLAN_PRIO_TO_RXQ 0x2440 107 #define MVNETA_VLAN_PRIO_RXQ_MAP(prio, rxq) ((rxq) << ((prio) * 3)) 108 #define MVNETA_PORT_STATUS 0x2444 109 #define MVNETA_TX_IN_PRGRS BIT(0) 110 #define MVNETA_TX_FIFO_EMPTY BIT(8) 111 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 112 /* Only exists on Armada XP and Armada 370 */ 113 #define MVNETA_SERDES_CFG 0x24A0 114 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 115 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 116 #define MVNETA_HSGMII_SERDES_PROTO 0x1107 117 #define MVNETA_TYPE_PRIO 0x24bc 118 #define MVNETA_FORCE_UNI BIT(21) 119 #define MVNETA_TXQ_CMD_1 0x24e4 120 #define MVNETA_TXQ_CMD 0x2448 121 #define MVNETA_TXQ_DISABLE_SHIFT 8 122 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 123 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 124 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 125 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 126 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 127 #define MVNETA_ACC_MODE 0x2500 128 #define MVNETA_BM_ADDRESS 0x2504 129 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 130 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 131 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 132 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 133 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 134 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 135 136 /* Exception Interrupt Port/Queue Cause register 137 * 138 * Their behavior depend of the mapping done using the PCPX2Q 139 * registers. For a given CPU if the bit associated to a queue is not 140 * set, then for the register a read from this CPU will always return 141 * 0 and a write won't do anything 142 */ 143 144 #define MVNETA_INTR_NEW_CAUSE 0x25a0 145 #define MVNETA_INTR_NEW_MASK 0x25a4 146 147 /* bits 0..7 = TXQ SENT, one bit per queue. 148 * bits 8..15 = RXQ OCCUP, one bit per queue. 149 * bits 16..23 = RXQ FREE, one bit per queue. 150 * bit 29 = OLD_REG_SUM, see old reg ? 151 * bit 30 = TX_ERR_SUM, one bit for 4 ports 152 * bit 31 = MISC_SUM, one bit for 4 ports 153 */ 154 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 155 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 156 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 157 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 158 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 159 160 #define MVNETA_INTR_OLD_CAUSE 0x25a8 161 #define MVNETA_INTR_OLD_MASK 0x25ac 162 163 /* Data Path Port/Queue Cause Register */ 164 #define MVNETA_INTR_MISC_CAUSE 0x25b0 165 #define MVNETA_INTR_MISC_MASK 0x25b4 166 167 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 168 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 169 #define MVNETA_CAUSE_PTP BIT(4) 170 171 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 172 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 173 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 174 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 175 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 176 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 177 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 178 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 179 180 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 181 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 182 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 183 184 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 185 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 186 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 187 188 #define MVNETA_INTR_ENABLE 0x25b8 189 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 190 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 191 192 #define MVNETA_RXQ_CMD 0x2680 193 #define MVNETA_RXQ_DISABLE_SHIFT 8 194 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 195 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 196 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 197 #define MVNETA_GMAC_CTRL_0 0x2c00 198 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 199 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 200 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1) 201 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 202 #define MVNETA_GMAC_CTRL_2 0x2c08 203 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 204 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 205 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 206 #define MVNETA_GMAC2_PORT_RESET BIT(6) 207 #define MVNETA_GMAC_STATUS 0x2c10 208 #define MVNETA_GMAC_LINK_UP BIT(0) 209 #define MVNETA_GMAC_SPEED_1000 BIT(1) 210 #define MVNETA_GMAC_SPEED_100 BIT(2) 211 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 212 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 213 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 214 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 215 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 216 #define MVNETA_GMAC_AN_COMPLETE BIT(11) 217 #define MVNETA_GMAC_SYNC_OK BIT(14) 218 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 219 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 220 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 221 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 222 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3) 223 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4) 224 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 225 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 226 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 227 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8) 228 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9) 229 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 230 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 231 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 232 #define MVNETA_GMAC_CTRL_4 0x2c90 233 #define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1) 234 #define MVNETA_MIB_COUNTERS_BASE 0x3000 235 #define MVNETA_MIB_LATE_COLLISION 0x7c 236 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 237 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 238 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 239 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 240 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 241 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 242 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 243 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 244 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 245 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 246 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 247 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 248 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 249 #define MVNETA_PORT_TX_RESET 0x3cf0 250 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 251 #define MVNETA_TXQ_CMD1_REG 0x3e00 252 #define MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 BIT(3) 253 #define MVNETA_TXQ_CMD1_BW_LIM_EN BIT(0) 254 #define MVNETA_REFILL_NUM_CLK_REG 0x3e08 255 #define MVNETA_REFILL_MAX_NUM_CLK 0x0000ffff 256 #define MVNETA_TX_MTU 0x3e0c 257 #define MVNETA_TX_TOKEN_SIZE 0x3e14 258 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 259 #define MVNETA_TXQ_BUCKET_REFILL_REG(q) (0x3e20 + ((q) << 2)) 260 #define MVNETA_TXQ_BUCKET_REFILL_PERIOD_MASK 0x3ff00000 261 #define MVNETA_TXQ_BUCKET_REFILL_PERIOD_SHIFT 20 262 #define MVNETA_TXQ_BUCKET_REFILL_VALUE_MAX 0x0007ffff 263 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 264 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 265 266 /* The values of the bucket refill base period and refill period are taken from 267 * the reference manual, and adds up to a base resolution of 10Kbps. This allows 268 * to cover all rate-limit values from 10Kbps up to 5Gbps 269 */ 270 271 /* Base period for the rate limit algorithm */ 272 #define MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS 100 273 274 /* Number of Base Period to wait between each bucket refill */ 275 #define MVNETA_TXQ_BUCKET_REFILL_PERIOD 1000 276 277 /* The base resolution for rate limiting, in bps. Any max_rate value should be 278 * a multiple of that value. 279 */ 280 #define MVNETA_TXQ_RATE_LIMIT_RESOLUTION (NSEC_PER_SEC / \ 281 (MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS * \ 282 MVNETA_TXQ_BUCKET_REFILL_PERIOD)) 283 284 #define MVNETA_LPI_CTRL_0 0x2cc0 285 #define MVNETA_LPI_CTRL_1 0x2cc4 286 #define MVNETA_LPI_REQUEST_ENABLE BIT(0) 287 #define MVNETA_LPI_CTRL_2 0x2cc8 288 #define MVNETA_LPI_STATUS 0x2ccc 289 290 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 291 292 /* Descriptor ring Macros */ 293 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 294 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 295 296 /* Various constants */ 297 298 /* Coalescing */ 299 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 300 #define MVNETA_RX_COAL_PKTS 32 301 #define MVNETA_RX_COAL_USEC 100 302 303 /* The two bytes Marvell header. Either contains a special value used 304 * by Marvell switches when a specific hardware mode is enabled (not 305 * supported by this driver) or is filled automatically by zeroes on 306 * the RX side. Those two bytes being at the front of the Ethernet 307 * header, they allow to have the IP header aligned on a 4 bytes 308 * boundary automatically: the hardware skips those two bytes on its 309 * own. 310 */ 311 #define MVNETA_MH_SIZE 2 312 313 #define MVNETA_VLAN_TAG_LEN 4 314 315 #define MVNETA_TX_CSUM_DEF_SIZE 1600 316 #define MVNETA_TX_CSUM_MAX_SIZE 9800 317 #define MVNETA_ACC_MODE_EXT1 1 318 #define MVNETA_ACC_MODE_EXT2 2 319 320 #define MVNETA_MAX_DECODE_WIN 6 321 322 /* Timeout constants */ 323 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 324 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 325 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 326 327 #define MVNETA_TX_MTU_MAX 0x3ffff 328 329 /* The RSS lookup table actually has 256 entries but we do not use 330 * them yet 331 */ 332 #define MVNETA_RSS_LU_TABLE_SIZE 1 333 334 /* Max number of Rx descriptors */ 335 #define MVNETA_MAX_RXD 512 336 337 /* Max number of Tx descriptors */ 338 #define MVNETA_MAX_TXD 1024 339 340 /* Max number of allowed TCP segments for software TSO */ 341 #define MVNETA_MAX_TSO_SEGS 100 342 343 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 344 345 /* descriptor aligned size */ 346 #define MVNETA_DESC_ALIGNED_SIZE 32 347 348 /* Number of bytes to be taken into account by HW when putting incoming data 349 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 350 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 351 */ 352 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 353 354 #define MVNETA_RX_PKT_SIZE(mtu) \ 355 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 356 ETH_HLEN + ETH_FCS_LEN, \ 357 cache_line_size()) 358 359 /* Driver assumes that the last 3 bits are 0 */ 360 #define MVNETA_SKB_HEADROOM ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) 361 #define MVNETA_SKB_PAD (SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \ 362 MVNETA_SKB_HEADROOM)) 363 #define MVNETA_MAX_RX_BUF_SIZE (PAGE_SIZE - MVNETA_SKB_PAD) 364 365 #define IS_TSO_HEADER(txq, addr) \ 366 ((addr >= txq->tso_hdrs_phys) && \ 367 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 368 369 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 370 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 371 372 enum { 373 ETHTOOL_STAT_EEE_WAKEUP, 374 ETHTOOL_STAT_SKB_ALLOC_ERR, 375 ETHTOOL_STAT_REFILL_ERR, 376 ETHTOOL_XDP_REDIRECT, 377 ETHTOOL_XDP_PASS, 378 ETHTOOL_XDP_DROP, 379 ETHTOOL_XDP_TX, 380 ETHTOOL_XDP_TX_ERR, 381 ETHTOOL_XDP_XMIT, 382 ETHTOOL_XDP_XMIT_ERR, 383 ETHTOOL_MAX_STATS, 384 }; 385 386 struct mvneta_statistic { 387 unsigned short offset; 388 unsigned short type; 389 const char name[ETH_GSTRING_LEN]; 390 }; 391 392 #define T_REG_32 32 393 #define T_REG_64 64 394 #define T_SW 1 395 396 #define MVNETA_XDP_PASS 0 397 #define MVNETA_XDP_DROPPED BIT(0) 398 #define MVNETA_XDP_TX BIT(1) 399 #define MVNETA_XDP_REDIR BIT(2) 400 401 static const struct mvneta_statistic mvneta_statistics[] = { 402 { 0x3000, T_REG_64, "good_octets_received", }, 403 { 0x3010, T_REG_32, "good_frames_received", }, 404 { 0x3008, T_REG_32, "bad_octets_received", }, 405 { 0x3014, T_REG_32, "bad_frames_received", }, 406 { 0x3018, T_REG_32, "broadcast_frames_received", }, 407 { 0x301c, T_REG_32, "multicast_frames_received", }, 408 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 409 { 0x3058, T_REG_32, "good_fc_received", }, 410 { 0x305c, T_REG_32, "bad_fc_received", }, 411 { 0x3060, T_REG_32, "undersize_received", }, 412 { 0x3064, T_REG_32, "fragments_received", }, 413 { 0x3068, T_REG_32, "oversize_received", }, 414 { 0x306c, T_REG_32, "jabber_received", }, 415 { 0x3070, T_REG_32, "mac_receive_error", }, 416 { 0x3074, T_REG_32, "bad_crc_event", }, 417 { 0x3078, T_REG_32, "collision", }, 418 { 0x307c, T_REG_32, "late_collision", }, 419 { 0x2484, T_REG_32, "rx_discard", }, 420 { 0x2488, T_REG_32, "rx_overrun", }, 421 { 0x3020, T_REG_32, "frames_64_octets", }, 422 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 423 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 424 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 425 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 426 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 427 { 0x3038, T_REG_64, "good_octets_sent", }, 428 { 0x3040, T_REG_32, "good_frames_sent", }, 429 { 0x3044, T_REG_32, "excessive_collision", }, 430 { 0x3048, T_REG_32, "multicast_frames_sent", }, 431 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 432 { 0x3054, T_REG_32, "fc_sent", }, 433 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 434 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", }, 435 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", }, 436 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", }, 437 { ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", }, 438 { ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", }, 439 { ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", }, 440 { ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", }, 441 { ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", }, 442 { ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", }, 443 { ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", }, 444 }; 445 446 struct mvneta_stats { 447 u64 rx_packets; 448 u64 rx_bytes; 449 u64 tx_packets; 450 u64 tx_bytes; 451 /* xdp */ 452 u64 xdp_redirect; 453 u64 xdp_pass; 454 u64 xdp_drop; 455 u64 xdp_xmit; 456 u64 xdp_xmit_err; 457 u64 xdp_tx; 458 u64 xdp_tx_err; 459 }; 460 461 struct mvneta_ethtool_stats { 462 struct mvneta_stats ps; 463 u64 skb_alloc_error; 464 u64 refill_error; 465 }; 466 467 struct mvneta_pcpu_stats { 468 struct u64_stats_sync syncp; 469 470 struct mvneta_ethtool_stats es; 471 u64 rx_dropped; 472 u64 rx_errors; 473 }; 474 475 struct mvneta_pcpu_port { 476 /* Pointer to the shared port */ 477 struct mvneta_port *pp; 478 479 /* Pointer to the CPU-local NAPI struct */ 480 struct napi_struct napi; 481 482 /* Cause of the previous interrupt */ 483 u32 cause_rx_tx; 484 }; 485 486 enum { 487 __MVNETA_DOWN, 488 }; 489 490 struct mvneta_port { 491 u8 id; 492 struct mvneta_pcpu_port __percpu *ports; 493 struct mvneta_pcpu_stats __percpu *stats; 494 495 unsigned long state; 496 497 int pkt_size; 498 void __iomem *base; 499 struct mvneta_rx_queue *rxqs; 500 struct mvneta_tx_queue *txqs; 501 struct net_device *dev; 502 struct hlist_node node_online; 503 struct hlist_node node_dead; 504 int rxq_def; 505 /* Protect the access to the percpu interrupt registers, 506 * ensuring that the configuration remains coherent. 507 */ 508 spinlock_t lock; 509 bool is_stopped; 510 511 u32 cause_rx_tx; 512 struct napi_struct napi; 513 514 struct bpf_prog *xdp_prog; 515 516 /* Core clock */ 517 struct clk *clk; 518 /* AXI clock */ 519 struct clk *clk_bus; 520 u8 mcast_count[256]; 521 u16 tx_ring_size; 522 u16 rx_ring_size; 523 524 phy_interface_t phy_interface; 525 struct device_node *dn; 526 unsigned int tx_csum_limit; 527 struct phylink *phylink; 528 struct phylink_config phylink_config; 529 struct phy *comphy; 530 531 struct mvneta_bm *bm_priv; 532 struct mvneta_bm_pool *pool_long; 533 struct mvneta_bm_pool *pool_short; 534 int bm_win_id; 535 536 bool eee_enabled; 537 bool eee_active; 538 bool tx_lpi_enabled; 539 540 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 541 542 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 543 544 /* Flags for special SoC configurations */ 545 bool neta_armada3700; 546 u16 rx_offset_correction; 547 const struct mbus_dram_target_info *dram_target_info; 548 }; 549 550 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 551 * layout of the transmit and reception DMA descriptors, and their 552 * layout is therefore defined by the hardware design 553 */ 554 555 #define MVNETA_TX_L3_OFF_SHIFT 0 556 #define MVNETA_TX_IP_HLEN_SHIFT 8 557 #define MVNETA_TX_L4_UDP BIT(16) 558 #define MVNETA_TX_L3_IP6 BIT(17) 559 #define MVNETA_TXD_IP_CSUM BIT(18) 560 #define MVNETA_TXD_Z_PAD BIT(19) 561 #define MVNETA_TXD_L_DESC BIT(20) 562 #define MVNETA_TXD_F_DESC BIT(21) 563 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 564 MVNETA_TXD_L_DESC | \ 565 MVNETA_TXD_F_DESC) 566 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 567 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 568 569 #define MVNETA_RXD_ERR_CRC 0x0 570 #define MVNETA_RXD_BM_POOL_SHIFT 13 571 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 572 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 573 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 574 #define MVNETA_RXD_ERR_LEN BIT(18) 575 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 576 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 577 #define MVNETA_RXD_L3_IP4 BIT(25) 578 #define MVNETA_RXD_LAST_DESC BIT(26) 579 #define MVNETA_RXD_FIRST_DESC BIT(27) 580 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \ 581 MVNETA_RXD_LAST_DESC) 582 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 583 584 #if defined(__LITTLE_ENDIAN) 585 struct mvneta_tx_desc { 586 u32 command; /* Options used by HW for packet transmitting.*/ 587 u16 reserved1; /* csum_l4 (for future use) */ 588 u16 data_size; /* Data size of transmitted packet in bytes */ 589 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 590 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 591 u32 reserved3[4]; /* Reserved - (for future use) */ 592 }; 593 594 struct mvneta_rx_desc { 595 u32 status; /* Info about received packet */ 596 u16 reserved1; /* pnc_info - (for future use, PnC) */ 597 u16 data_size; /* Size of received packet in bytes */ 598 599 u32 buf_phys_addr; /* Physical address of the buffer */ 600 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 601 602 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 603 u16 reserved3; /* prefetch_cmd, for future use */ 604 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 605 606 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 607 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 608 }; 609 #else 610 struct mvneta_tx_desc { 611 u16 data_size; /* Data size of transmitted packet in bytes */ 612 u16 reserved1; /* csum_l4 (for future use) */ 613 u32 command; /* Options used by HW for packet transmitting.*/ 614 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 615 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 616 u32 reserved3[4]; /* Reserved - (for future use) */ 617 }; 618 619 struct mvneta_rx_desc { 620 u16 data_size; /* Size of received packet in bytes */ 621 u16 reserved1; /* pnc_info - (for future use, PnC) */ 622 u32 status; /* Info about received packet */ 623 624 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 625 u32 buf_phys_addr; /* Physical address of the buffer */ 626 627 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 628 u16 reserved3; /* prefetch_cmd, for future use */ 629 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 630 631 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 632 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 633 }; 634 #endif 635 636 enum mvneta_tx_buf_type { 637 MVNETA_TYPE_SKB, 638 MVNETA_TYPE_XDP_TX, 639 MVNETA_TYPE_XDP_NDO, 640 }; 641 642 struct mvneta_tx_buf { 643 enum mvneta_tx_buf_type type; 644 union { 645 struct xdp_frame *xdpf; 646 struct sk_buff *skb; 647 }; 648 }; 649 650 struct mvneta_tx_queue { 651 /* Number of this TX queue, in the range 0-7 */ 652 u8 id; 653 654 /* Number of TX DMA descriptors in the descriptor ring */ 655 int size; 656 657 /* Number of currently used TX DMA descriptor in the 658 * descriptor ring 659 */ 660 int count; 661 int pending; 662 int tx_stop_threshold; 663 int tx_wake_threshold; 664 665 /* Array of transmitted buffers */ 666 struct mvneta_tx_buf *buf; 667 668 /* Index of last TX DMA descriptor that was inserted */ 669 int txq_put_index; 670 671 /* Index of the TX DMA descriptor to be cleaned up */ 672 int txq_get_index; 673 674 u32 done_pkts_coal; 675 676 /* Virtual address of the TX DMA descriptors array */ 677 struct mvneta_tx_desc *descs; 678 679 /* DMA address of the TX DMA descriptors array */ 680 dma_addr_t descs_phys; 681 682 /* Index of the last TX DMA descriptor */ 683 int last_desc; 684 685 /* Index of the next TX DMA descriptor to process */ 686 int next_desc_to_proc; 687 688 /* DMA buffers for TSO headers */ 689 char *tso_hdrs; 690 691 /* DMA address of TSO headers */ 692 dma_addr_t tso_hdrs_phys; 693 694 /* Affinity mask for CPUs*/ 695 cpumask_t affinity_mask; 696 }; 697 698 struct mvneta_rx_queue { 699 /* rx queue number, in the range 0-7 */ 700 u8 id; 701 702 /* num of rx descriptors in the rx descriptor ring */ 703 int size; 704 705 u32 pkts_coal; 706 u32 time_coal; 707 708 /* page_pool */ 709 struct page_pool *page_pool; 710 struct xdp_rxq_info xdp_rxq; 711 712 /* Virtual address of the RX buffer */ 713 void **buf_virt_addr; 714 715 /* Virtual address of the RX DMA descriptors array */ 716 struct mvneta_rx_desc *descs; 717 718 /* DMA address of the RX DMA descriptors array */ 719 dma_addr_t descs_phys; 720 721 /* Index of the last RX DMA descriptor */ 722 int last_desc; 723 724 /* Index of the next RX DMA descriptor to process */ 725 int next_desc_to_proc; 726 727 /* Index of first RX DMA descriptor to refill */ 728 int first_to_refill; 729 u32 refill_num; 730 }; 731 732 static enum cpuhp_state online_hpstate; 733 /* The hardware supports eight (8) rx queues, but we are only allowing 734 * the first one to be used. Therefore, let's just allocate one queue. 735 */ 736 static int rxq_number = 8; 737 static int txq_number = 8; 738 739 static int rxq_def; 740 741 static int rx_copybreak __read_mostly = 256; 742 743 /* HW BM need that each port be identify by a unique ID */ 744 static int global_port_id; 745 746 #define MVNETA_DRIVER_NAME "mvneta" 747 #define MVNETA_DRIVER_VERSION "1.0" 748 749 /* Utility/helper methods */ 750 751 /* Write helper method */ 752 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 753 { 754 writel(data, pp->base + offset); 755 } 756 757 /* Read helper method */ 758 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 759 { 760 return readl(pp->base + offset); 761 } 762 763 /* Increment txq get counter */ 764 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 765 { 766 txq->txq_get_index++; 767 if (txq->txq_get_index == txq->size) 768 txq->txq_get_index = 0; 769 } 770 771 /* Increment txq put counter */ 772 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 773 { 774 txq->txq_put_index++; 775 if (txq->txq_put_index == txq->size) 776 txq->txq_put_index = 0; 777 } 778 779 780 /* Clear all MIB counters */ 781 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 782 { 783 int i; 784 785 /* Perform dummy reads from MIB counters */ 786 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 787 mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 788 mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 789 mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 790 } 791 792 /* Get System Network Statistics */ 793 static void 794 mvneta_get_stats64(struct net_device *dev, 795 struct rtnl_link_stats64 *stats) 796 { 797 struct mvneta_port *pp = netdev_priv(dev); 798 unsigned int start; 799 int cpu; 800 801 for_each_possible_cpu(cpu) { 802 struct mvneta_pcpu_stats *cpu_stats; 803 u64 rx_packets; 804 u64 rx_bytes; 805 u64 rx_dropped; 806 u64 rx_errors; 807 u64 tx_packets; 808 u64 tx_bytes; 809 810 cpu_stats = per_cpu_ptr(pp->stats, cpu); 811 do { 812 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 813 rx_packets = cpu_stats->es.ps.rx_packets; 814 rx_bytes = cpu_stats->es.ps.rx_bytes; 815 rx_dropped = cpu_stats->rx_dropped; 816 rx_errors = cpu_stats->rx_errors; 817 tx_packets = cpu_stats->es.ps.tx_packets; 818 tx_bytes = cpu_stats->es.ps.tx_bytes; 819 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 820 821 stats->rx_packets += rx_packets; 822 stats->rx_bytes += rx_bytes; 823 stats->rx_dropped += rx_dropped; 824 stats->rx_errors += rx_errors; 825 stats->tx_packets += tx_packets; 826 stats->tx_bytes += tx_bytes; 827 } 828 829 stats->tx_dropped = dev->stats.tx_dropped; 830 } 831 832 /* Rx descriptors helper methods */ 833 834 /* Checks whether the RX descriptor having this status is both the first 835 * and the last descriptor for the RX packet. Each RX packet is currently 836 * received through a single RX descriptor, so not having each RX 837 * descriptor with its first and last bits set is an error 838 */ 839 static int mvneta_rxq_desc_is_first_last(u32 status) 840 { 841 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 842 MVNETA_RXD_FIRST_LAST_DESC; 843 } 844 845 /* Add number of descriptors ready to receive new packets */ 846 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 847 struct mvneta_rx_queue *rxq, 848 int ndescs) 849 { 850 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 851 * be added at once 852 */ 853 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 854 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 855 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 856 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 857 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 858 } 859 860 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 861 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 862 } 863 864 /* Get number of RX descriptors occupied by received packets */ 865 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 866 struct mvneta_rx_queue *rxq) 867 { 868 u32 val; 869 870 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 871 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 872 } 873 874 /* Update num of rx desc called upon return from rx path or 875 * from mvneta_rxq_drop_pkts(). 876 */ 877 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 878 struct mvneta_rx_queue *rxq, 879 int rx_done, int rx_filled) 880 { 881 u32 val; 882 883 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 884 val = rx_done | 885 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 886 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 887 return; 888 } 889 890 /* Only 255 descriptors can be added at once */ 891 while ((rx_done > 0) || (rx_filled > 0)) { 892 if (rx_done <= 0xff) { 893 val = rx_done; 894 rx_done = 0; 895 } else { 896 val = 0xff; 897 rx_done -= 0xff; 898 } 899 if (rx_filled <= 0xff) { 900 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 901 rx_filled = 0; 902 } else { 903 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 904 rx_filled -= 0xff; 905 } 906 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 907 } 908 } 909 910 /* Get pointer to next RX descriptor to be processed by SW */ 911 static struct mvneta_rx_desc * 912 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 913 { 914 int rx_desc = rxq->next_desc_to_proc; 915 916 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 917 prefetch(rxq->descs + rxq->next_desc_to_proc); 918 return rxq->descs + rx_desc; 919 } 920 921 /* Change maximum receive size of the port. */ 922 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 923 { 924 u32 val; 925 926 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 927 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 928 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 929 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 930 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 931 } 932 933 934 /* Set rx queue offset */ 935 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 936 struct mvneta_rx_queue *rxq, 937 int offset) 938 { 939 u32 val; 940 941 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 942 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 943 944 /* Offset is in */ 945 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 946 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 947 } 948 949 950 /* Tx descriptors helper methods */ 951 952 /* Update HW with number of TX descriptors to be sent */ 953 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 954 struct mvneta_tx_queue *txq, 955 int pend_desc) 956 { 957 u32 val; 958 959 pend_desc += txq->pending; 960 961 /* Only 255 Tx descriptors can be added at once */ 962 do { 963 val = min(pend_desc, 255); 964 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 965 pend_desc -= val; 966 } while (pend_desc > 0); 967 txq->pending = 0; 968 } 969 970 /* Get pointer to next TX descriptor to be processed (send) by HW */ 971 static struct mvneta_tx_desc * 972 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 973 { 974 int tx_desc = txq->next_desc_to_proc; 975 976 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 977 return txq->descs + tx_desc; 978 } 979 980 /* Release the last allocated TX descriptor. Useful to handle DMA 981 * mapping failures in the TX path. 982 */ 983 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 984 { 985 if (txq->next_desc_to_proc == 0) 986 txq->next_desc_to_proc = txq->last_desc - 1; 987 else 988 txq->next_desc_to_proc--; 989 } 990 991 /* Set rxq buf size */ 992 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 993 struct mvneta_rx_queue *rxq, 994 int buf_size) 995 { 996 u32 val; 997 998 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 999 1000 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 1001 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 1002 1003 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 1004 } 1005 1006 /* Disable buffer management (BM) */ 1007 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 1008 struct mvneta_rx_queue *rxq) 1009 { 1010 u32 val; 1011 1012 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1013 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 1014 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1015 } 1016 1017 /* Enable buffer management (BM) */ 1018 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 1019 struct mvneta_rx_queue *rxq) 1020 { 1021 u32 val; 1022 1023 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1024 val |= MVNETA_RXQ_HW_BUF_ALLOC; 1025 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1026 } 1027 1028 /* Notify HW about port's assignment of pool for bigger packets */ 1029 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 1030 struct mvneta_rx_queue *rxq) 1031 { 1032 u32 val; 1033 1034 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1035 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 1036 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 1037 1038 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1039 } 1040 1041 /* Notify HW about port's assignment of pool for smaller packets */ 1042 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 1043 struct mvneta_rx_queue *rxq) 1044 { 1045 u32 val; 1046 1047 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1048 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 1049 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 1050 1051 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1052 } 1053 1054 /* Set port's receive buffer size for assigned BM pool */ 1055 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 1056 int buf_size, 1057 u8 pool_id) 1058 { 1059 u32 val; 1060 1061 if (!IS_ALIGNED(buf_size, 8)) { 1062 dev_warn(pp->dev->dev.parent, 1063 "illegal buf_size value %d, round to %d\n", 1064 buf_size, ALIGN(buf_size, 8)); 1065 buf_size = ALIGN(buf_size, 8); 1066 } 1067 1068 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 1069 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 1070 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 1071 } 1072 1073 /* Configure MBUS window in order to enable access BM internal SRAM */ 1074 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 1075 u8 target, u8 attr) 1076 { 1077 u32 win_enable, win_protect; 1078 int i; 1079 1080 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 1081 1082 if (pp->bm_win_id < 0) { 1083 /* Find first not occupied window */ 1084 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 1085 if (win_enable & (1 << i)) { 1086 pp->bm_win_id = i; 1087 break; 1088 } 1089 } 1090 if (i == MVNETA_MAX_DECODE_WIN) 1091 return -ENOMEM; 1092 } else { 1093 i = pp->bm_win_id; 1094 } 1095 1096 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 1097 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 1098 1099 if (i < 4) 1100 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 1101 1102 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 1103 (attr << 8) | target); 1104 1105 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 1106 1107 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 1108 win_protect |= 3 << (2 * i); 1109 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 1110 1111 win_enable &= ~(1 << i); 1112 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 1113 1114 return 0; 1115 } 1116 1117 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 1118 { 1119 u32 wsize; 1120 u8 target, attr; 1121 int err; 1122 1123 /* Get BM window information */ 1124 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 1125 &target, &attr); 1126 if (err < 0) 1127 return err; 1128 1129 pp->bm_win_id = -1; 1130 1131 /* Open NETA -> BM window */ 1132 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 1133 target, attr); 1134 if (err < 0) { 1135 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 1136 return err; 1137 } 1138 return 0; 1139 } 1140 1141 /* Assign and initialize pools for port. In case of fail 1142 * buffer manager will remain disabled for current port. 1143 */ 1144 static int mvneta_bm_port_init(struct platform_device *pdev, 1145 struct mvneta_port *pp) 1146 { 1147 struct device_node *dn = pdev->dev.of_node; 1148 u32 long_pool_id, short_pool_id; 1149 1150 if (!pp->neta_armada3700) { 1151 int ret; 1152 1153 ret = mvneta_bm_port_mbus_init(pp); 1154 if (ret) 1155 return ret; 1156 } 1157 1158 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1159 netdev_info(pp->dev, "missing long pool id\n"); 1160 return -EINVAL; 1161 } 1162 1163 /* Create port's long pool depending on mtu */ 1164 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1165 MVNETA_BM_LONG, pp->id, 1166 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1167 if (!pp->pool_long) { 1168 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1169 return -ENOMEM; 1170 } 1171 1172 pp->pool_long->port_map |= 1 << pp->id; 1173 1174 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1175 pp->pool_long->id); 1176 1177 /* If short pool id is not defined, assume using single pool */ 1178 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1179 short_pool_id = long_pool_id; 1180 1181 /* Create port's short pool */ 1182 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1183 MVNETA_BM_SHORT, pp->id, 1184 MVNETA_BM_SHORT_PKT_SIZE); 1185 if (!pp->pool_short) { 1186 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1187 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1188 return -ENOMEM; 1189 } 1190 1191 if (short_pool_id != long_pool_id) { 1192 pp->pool_short->port_map |= 1 << pp->id; 1193 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1194 pp->pool_short->id); 1195 } 1196 1197 return 0; 1198 } 1199 1200 /* Update settings of a pool for bigger packets */ 1201 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1202 { 1203 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1204 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1205 int num; 1206 1207 /* Release all buffers from long pool */ 1208 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1209 if (hwbm_pool->buf_num) { 1210 WARN(1, "cannot free all buffers in pool %d\n", 1211 bm_pool->id); 1212 goto bm_mtu_err; 1213 } 1214 1215 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1216 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1217 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1218 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1219 1220 /* Fill entire long pool */ 1221 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size); 1222 if (num != hwbm_pool->size) { 1223 WARN(1, "pool %d: %d of %d allocated\n", 1224 bm_pool->id, num, hwbm_pool->size); 1225 goto bm_mtu_err; 1226 } 1227 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1228 1229 return; 1230 1231 bm_mtu_err: 1232 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1233 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1234 1235 pp->bm_priv = NULL; 1236 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 1237 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1238 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1239 } 1240 1241 /* Start the Ethernet port RX and TX activity */ 1242 static void mvneta_port_up(struct mvneta_port *pp) 1243 { 1244 int queue; 1245 u32 q_map; 1246 1247 /* Enable all initialized TXs. */ 1248 q_map = 0; 1249 for (queue = 0; queue < txq_number; queue++) { 1250 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1251 if (txq->descs) 1252 q_map |= (1 << queue); 1253 } 1254 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1255 1256 q_map = 0; 1257 /* Enable all initialized RXQs. */ 1258 for (queue = 0; queue < rxq_number; queue++) { 1259 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1260 1261 if (rxq->descs) 1262 q_map |= (1 << queue); 1263 } 1264 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1265 } 1266 1267 /* Stop the Ethernet port activity */ 1268 static void mvneta_port_down(struct mvneta_port *pp) 1269 { 1270 u32 val; 1271 int count; 1272 1273 /* Stop Rx port activity. Check port Rx activity. */ 1274 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1275 1276 /* Issue stop command for active channels only */ 1277 if (val != 0) 1278 mvreg_write(pp, MVNETA_RXQ_CMD, 1279 val << MVNETA_RXQ_DISABLE_SHIFT); 1280 1281 /* Wait for all Rx activity to terminate. */ 1282 count = 0; 1283 do { 1284 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1285 netdev_warn(pp->dev, 1286 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1287 val); 1288 break; 1289 } 1290 mdelay(1); 1291 1292 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1293 } while (val & MVNETA_RXQ_ENABLE_MASK); 1294 1295 /* Stop Tx port activity. Check port Tx activity. Issue stop 1296 * command for active channels only 1297 */ 1298 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1299 1300 if (val != 0) 1301 mvreg_write(pp, MVNETA_TXQ_CMD, 1302 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1303 1304 /* Wait for all Tx activity to terminate. */ 1305 count = 0; 1306 do { 1307 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1308 netdev_warn(pp->dev, 1309 "TIMEOUT for TX stopped status=0x%08x\n", 1310 val); 1311 break; 1312 } 1313 mdelay(1); 1314 1315 /* Check TX Command reg that all Txqs are stopped */ 1316 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1317 1318 } while (val & MVNETA_TXQ_ENABLE_MASK); 1319 1320 /* Double check to verify that TX FIFO is empty */ 1321 count = 0; 1322 do { 1323 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1324 netdev_warn(pp->dev, 1325 "TX FIFO empty timeout status=0x%08x\n", 1326 val); 1327 break; 1328 } 1329 mdelay(1); 1330 1331 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1332 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1333 (val & MVNETA_TX_IN_PRGRS)); 1334 1335 udelay(200); 1336 } 1337 1338 /* Enable the port by setting the port enable bit of the MAC control register */ 1339 static void mvneta_port_enable(struct mvneta_port *pp) 1340 { 1341 u32 val; 1342 1343 /* Enable port */ 1344 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1345 val |= MVNETA_GMAC0_PORT_ENABLE; 1346 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1347 } 1348 1349 /* Disable the port and wait for about 200 usec before retuning */ 1350 static void mvneta_port_disable(struct mvneta_port *pp) 1351 { 1352 u32 val; 1353 1354 /* Reset the Enable bit in the Serial Control Register */ 1355 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1356 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1357 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1358 1359 udelay(200); 1360 } 1361 1362 /* Multicast tables methods */ 1363 1364 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1365 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1366 { 1367 int offset; 1368 u32 val; 1369 1370 if (queue == -1) { 1371 val = 0; 1372 } else { 1373 val = 0x1 | (queue << 1); 1374 val |= (val << 24) | (val << 16) | (val << 8); 1375 } 1376 1377 for (offset = 0; offset <= 0xc; offset += 4) 1378 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1379 } 1380 1381 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1382 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1383 { 1384 int offset; 1385 u32 val; 1386 1387 if (queue == -1) { 1388 val = 0; 1389 } else { 1390 val = 0x1 | (queue << 1); 1391 val |= (val << 24) | (val << 16) | (val << 8); 1392 } 1393 1394 for (offset = 0; offset <= 0xfc; offset += 4) 1395 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1396 1397 } 1398 1399 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1400 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1401 { 1402 int offset; 1403 u32 val; 1404 1405 if (queue == -1) { 1406 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1407 val = 0; 1408 } else { 1409 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1410 val = 0x1 | (queue << 1); 1411 val |= (val << 24) | (val << 16) | (val << 8); 1412 } 1413 1414 for (offset = 0; offset <= 0xfc; offset += 4) 1415 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1416 } 1417 1418 static void mvneta_percpu_unmask_interrupt(void *arg) 1419 { 1420 struct mvneta_port *pp = arg; 1421 1422 /* All the queue are unmasked, but actually only the ones 1423 * mapped to this CPU will be unmasked 1424 */ 1425 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1426 MVNETA_RX_INTR_MASK_ALL | 1427 MVNETA_TX_INTR_MASK_ALL | 1428 MVNETA_MISCINTR_INTR_MASK); 1429 } 1430 1431 static void mvneta_percpu_mask_interrupt(void *arg) 1432 { 1433 struct mvneta_port *pp = arg; 1434 1435 /* All the queue are masked, but actually only the ones 1436 * mapped to this CPU will be masked 1437 */ 1438 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1439 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1440 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1441 } 1442 1443 static void mvneta_percpu_clear_intr_cause(void *arg) 1444 { 1445 struct mvneta_port *pp = arg; 1446 1447 /* All the queue are cleared, but actually only the ones 1448 * mapped to this CPU will be cleared 1449 */ 1450 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1451 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1452 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1453 } 1454 1455 /* This method sets defaults to the NETA port: 1456 * Clears interrupt Cause and Mask registers. 1457 * Clears all MAC tables. 1458 * Sets defaults to all registers. 1459 * Resets RX and TX descriptor rings. 1460 * Resets PHY. 1461 * This method can be called after mvneta_port_down() to return the port 1462 * settings to defaults. 1463 */ 1464 static void mvneta_defaults_set(struct mvneta_port *pp) 1465 { 1466 int cpu; 1467 int queue; 1468 u32 val; 1469 int max_cpu = num_present_cpus(); 1470 1471 /* Clear all Cause registers */ 1472 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1473 1474 /* Mask all interrupts */ 1475 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1476 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1477 1478 /* Enable MBUS Retry bit16 */ 1479 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1480 1481 /* Set CPU queue access map. CPUs are assigned to the RX and 1482 * TX queues modulo their number. If there is only one TX 1483 * queue then it is assigned to the CPU associated to the 1484 * default RX queue. 1485 */ 1486 for_each_present_cpu(cpu) { 1487 int rxq_map = 0, txq_map = 0; 1488 int rxq, txq; 1489 if (!pp->neta_armada3700) { 1490 for (rxq = 0; rxq < rxq_number; rxq++) 1491 if ((rxq % max_cpu) == cpu) 1492 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1493 1494 for (txq = 0; txq < txq_number; txq++) 1495 if ((txq % max_cpu) == cpu) 1496 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1497 1498 /* With only one TX queue we configure a special case 1499 * which will allow to get all the irq on a single 1500 * CPU 1501 */ 1502 if (txq_number == 1) 1503 txq_map = (cpu == pp->rxq_def) ? 1504 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1505 1506 } else { 1507 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1508 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1509 } 1510 1511 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1512 } 1513 1514 /* Reset RX and TX DMAs */ 1515 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1516 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1517 1518 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1519 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1520 for (queue = 0; queue < txq_number; queue++) { 1521 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1522 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1523 } 1524 1525 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1526 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1527 1528 /* Set Port Acceleration Mode */ 1529 if (pp->bm_priv) 1530 /* HW buffer management + legacy parser */ 1531 val = MVNETA_ACC_MODE_EXT2; 1532 else 1533 /* SW buffer management + legacy parser */ 1534 val = MVNETA_ACC_MODE_EXT1; 1535 mvreg_write(pp, MVNETA_ACC_MODE, val); 1536 1537 if (pp->bm_priv) 1538 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1539 1540 /* Update val of portCfg register accordingly with all RxQueue types */ 1541 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1542 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1543 1544 val = 0; 1545 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1546 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1547 1548 /* Build PORT_SDMA_CONFIG_REG */ 1549 val = 0; 1550 1551 /* Default burst size */ 1552 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1553 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1554 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1555 1556 #if defined(__BIG_ENDIAN) 1557 val |= MVNETA_DESC_SWAP; 1558 #endif 1559 1560 /* Assign port SDMA configuration */ 1561 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1562 1563 /* Disable PHY polling in hardware, since we're using the 1564 * kernel phylib to do this. 1565 */ 1566 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1567 val &= ~MVNETA_PHY_POLLING_ENABLE; 1568 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1569 1570 mvneta_set_ucast_table(pp, -1); 1571 mvneta_set_special_mcast_table(pp, -1); 1572 mvneta_set_other_mcast_table(pp, -1); 1573 1574 /* Set port interrupt enable register - default enable all */ 1575 mvreg_write(pp, MVNETA_INTR_ENABLE, 1576 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1577 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1578 1579 mvneta_mib_counters_clear(pp); 1580 } 1581 1582 /* Set max sizes for tx queues */ 1583 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1584 1585 { 1586 u32 val, size, mtu; 1587 int queue; 1588 1589 mtu = max_tx_size * 8; 1590 if (mtu > MVNETA_TX_MTU_MAX) 1591 mtu = MVNETA_TX_MTU_MAX; 1592 1593 /* Set MTU */ 1594 val = mvreg_read(pp, MVNETA_TX_MTU); 1595 val &= ~MVNETA_TX_MTU_MAX; 1596 val |= mtu; 1597 mvreg_write(pp, MVNETA_TX_MTU, val); 1598 1599 /* TX token size and all TXQs token size must be larger that MTU */ 1600 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1601 1602 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1603 if (size < mtu) { 1604 size = mtu; 1605 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1606 val |= size; 1607 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1608 } 1609 for (queue = 0; queue < txq_number; queue++) { 1610 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1611 1612 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1613 if (size < mtu) { 1614 size = mtu; 1615 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1616 val |= size; 1617 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1618 } 1619 } 1620 } 1621 1622 /* Set unicast address */ 1623 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1624 int queue) 1625 { 1626 unsigned int unicast_reg; 1627 unsigned int tbl_offset; 1628 unsigned int reg_offset; 1629 1630 /* Locate the Unicast table entry */ 1631 last_nibble = (0xf & last_nibble); 1632 1633 /* offset from unicast tbl base */ 1634 tbl_offset = (last_nibble / 4) * 4; 1635 1636 /* offset within the above reg */ 1637 reg_offset = last_nibble % 4; 1638 1639 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1640 1641 if (queue == -1) { 1642 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1643 unicast_reg &= ~(0xff << (8 * reg_offset)); 1644 } else { 1645 unicast_reg &= ~(0xff << (8 * reg_offset)); 1646 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1647 } 1648 1649 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1650 } 1651 1652 /* Set mac address */ 1653 static void mvneta_mac_addr_set(struct mvneta_port *pp, 1654 const unsigned char *addr, int queue) 1655 { 1656 unsigned int mac_h; 1657 unsigned int mac_l; 1658 1659 if (queue != -1) { 1660 mac_l = (addr[4] << 8) | (addr[5]); 1661 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1662 (addr[2] << 8) | (addr[3] << 0); 1663 1664 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1665 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1666 } 1667 1668 /* Accept frames of this address */ 1669 mvneta_set_ucast_addr(pp, addr[5], queue); 1670 } 1671 1672 /* Set the number of packets that will be received before RX interrupt 1673 * will be generated by HW. 1674 */ 1675 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1676 struct mvneta_rx_queue *rxq, u32 value) 1677 { 1678 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1679 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1680 } 1681 1682 /* Set the time delay in usec before RX interrupt will be generated by 1683 * HW. 1684 */ 1685 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1686 struct mvneta_rx_queue *rxq, u32 value) 1687 { 1688 u32 val; 1689 unsigned long clk_rate; 1690 1691 clk_rate = clk_get_rate(pp->clk); 1692 val = (clk_rate / 1000000) * value; 1693 1694 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1695 } 1696 1697 /* Set threshold for TX_DONE pkts coalescing */ 1698 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1699 struct mvneta_tx_queue *txq, u32 value) 1700 { 1701 u32 val; 1702 1703 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1704 1705 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1706 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1707 1708 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1709 } 1710 1711 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1712 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1713 u32 phys_addr, void *virt_addr, 1714 struct mvneta_rx_queue *rxq) 1715 { 1716 int i; 1717 1718 rx_desc->buf_phys_addr = phys_addr; 1719 i = rx_desc - rxq->descs; 1720 rxq->buf_virt_addr[i] = virt_addr; 1721 } 1722 1723 /* Decrement sent descriptors counter */ 1724 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1725 struct mvneta_tx_queue *txq, 1726 int sent_desc) 1727 { 1728 u32 val; 1729 1730 /* Only 255 TX descriptors can be updated at once */ 1731 while (sent_desc > 0xff) { 1732 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1733 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1734 sent_desc = sent_desc - 0xff; 1735 } 1736 1737 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1738 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1739 } 1740 1741 /* Get number of TX descriptors already sent by HW */ 1742 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1743 struct mvneta_tx_queue *txq) 1744 { 1745 u32 val; 1746 int sent_desc; 1747 1748 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1749 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1750 MVNETA_TXQ_SENT_DESC_SHIFT; 1751 1752 return sent_desc; 1753 } 1754 1755 /* Get number of sent descriptors and decrement counter. 1756 * The number of sent descriptors is returned. 1757 */ 1758 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1759 struct mvneta_tx_queue *txq) 1760 { 1761 int sent_desc; 1762 1763 /* Get number of sent descriptors */ 1764 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1765 1766 /* Decrement sent descriptors counter */ 1767 if (sent_desc) 1768 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1769 1770 return sent_desc; 1771 } 1772 1773 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1774 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1775 int ip_hdr_len, int l4_proto) 1776 { 1777 u32 command; 1778 1779 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1780 * G_L4_chk, L4_type; required only for checksum 1781 * calculation 1782 */ 1783 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1784 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1785 1786 if (l3_proto == htons(ETH_P_IP)) 1787 command |= MVNETA_TXD_IP_CSUM; 1788 else 1789 command |= MVNETA_TX_L3_IP6; 1790 1791 if (l4_proto == IPPROTO_TCP) 1792 command |= MVNETA_TX_L4_CSUM_FULL; 1793 else if (l4_proto == IPPROTO_UDP) 1794 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1795 else 1796 command |= MVNETA_TX_L4_CSUM_NOT; 1797 1798 return command; 1799 } 1800 1801 1802 /* Display more error info */ 1803 static void mvneta_rx_error(struct mvneta_port *pp, 1804 struct mvneta_rx_desc *rx_desc) 1805 { 1806 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1807 u32 status = rx_desc->status; 1808 1809 /* update per-cpu counter */ 1810 u64_stats_update_begin(&stats->syncp); 1811 stats->rx_errors++; 1812 u64_stats_update_end(&stats->syncp); 1813 1814 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1815 case MVNETA_RXD_ERR_CRC: 1816 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1817 status, rx_desc->data_size); 1818 break; 1819 case MVNETA_RXD_ERR_OVERRUN: 1820 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1821 status, rx_desc->data_size); 1822 break; 1823 case MVNETA_RXD_ERR_LEN: 1824 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1825 status, rx_desc->data_size); 1826 break; 1827 case MVNETA_RXD_ERR_RESOURCE: 1828 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1829 status, rx_desc->data_size); 1830 break; 1831 } 1832 } 1833 1834 /* Handle RX checksum offload based on the descriptor's status */ 1835 static int mvneta_rx_csum(struct mvneta_port *pp, u32 status) 1836 { 1837 if ((pp->dev->features & NETIF_F_RXCSUM) && 1838 (status & MVNETA_RXD_L3_IP4) && 1839 (status & MVNETA_RXD_L4_CSUM_OK)) 1840 return CHECKSUM_UNNECESSARY; 1841 1842 return CHECKSUM_NONE; 1843 } 1844 1845 /* Return tx queue pointer (find last set bit) according to <cause> returned 1846 * form tx_done reg. <cause> must not be null. The return value is always a 1847 * valid queue for matching the first one found in <cause>. 1848 */ 1849 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1850 u32 cause) 1851 { 1852 int queue = fls(cause) - 1; 1853 1854 return &pp->txqs[queue]; 1855 } 1856 1857 /* Free tx queue skbuffs */ 1858 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1859 struct mvneta_tx_queue *txq, int num, 1860 struct netdev_queue *nq, bool napi) 1861 { 1862 unsigned int bytes_compl = 0, pkts_compl = 0; 1863 struct xdp_frame_bulk bq; 1864 int i; 1865 1866 xdp_frame_bulk_init(&bq); 1867 1868 rcu_read_lock(); /* need for xdp_return_frame_bulk */ 1869 1870 for (i = 0; i < num; i++) { 1871 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index]; 1872 struct mvneta_tx_desc *tx_desc = txq->descs + 1873 txq->txq_get_index; 1874 1875 mvneta_txq_inc_get(txq); 1876 1877 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) && 1878 buf->type != MVNETA_TYPE_XDP_TX) 1879 dma_unmap_single(pp->dev->dev.parent, 1880 tx_desc->buf_phys_addr, 1881 tx_desc->data_size, DMA_TO_DEVICE); 1882 if (buf->type == MVNETA_TYPE_SKB && buf->skb) { 1883 bytes_compl += buf->skb->len; 1884 pkts_compl++; 1885 dev_kfree_skb_any(buf->skb); 1886 } else if (buf->type == MVNETA_TYPE_XDP_TX || 1887 buf->type == MVNETA_TYPE_XDP_NDO) { 1888 if (napi && buf->type == MVNETA_TYPE_XDP_TX) 1889 xdp_return_frame_rx_napi(buf->xdpf); 1890 else 1891 xdp_return_frame_bulk(buf->xdpf, &bq); 1892 } 1893 } 1894 xdp_flush_frame_bulk(&bq); 1895 1896 rcu_read_unlock(); 1897 1898 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1899 } 1900 1901 /* Handle end of transmission */ 1902 static void mvneta_txq_done(struct mvneta_port *pp, 1903 struct mvneta_tx_queue *txq) 1904 { 1905 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1906 int tx_done; 1907 1908 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1909 if (!tx_done) 1910 return; 1911 1912 mvneta_txq_bufs_free(pp, txq, tx_done, nq, true); 1913 1914 txq->count -= tx_done; 1915 1916 if (netif_tx_queue_stopped(nq)) { 1917 if (txq->count <= txq->tx_wake_threshold) 1918 netif_tx_wake_queue(nq); 1919 } 1920 } 1921 1922 /* Refill processing for SW buffer management */ 1923 /* Allocate page per descriptor */ 1924 static int mvneta_rx_refill(struct mvneta_port *pp, 1925 struct mvneta_rx_desc *rx_desc, 1926 struct mvneta_rx_queue *rxq, 1927 gfp_t gfp_mask) 1928 { 1929 dma_addr_t phys_addr; 1930 struct page *page; 1931 1932 page = page_pool_alloc_pages(rxq->page_pool, 1933 gfp_mask | __GFP_NOWARN); 1934 if (!page) 1935 return -ENOMEM; 1936 1937 phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction; 1938 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq); 1939 1940 return 0; 1941 } 1942 1943 /* Handle tx checksum */ 1944 static u32 mvneta_skb_tx_csum(struct sk_buff *skb) 1945 { 1946 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1947 int ip_hdr_len = 0; 1948 __be16 l3_proto = vlan_get_protocol(skb); 1949 u8 l4_proto; 1950 1951 if (l3_proto == htons(ETH_P_IP)) { 1952 struct iphdr *ip4h = ip_hdr(skb); 1953 1954 /* Calculate IPv4 checksum and L4 checksum */ 1955 ip_hdr_len = ip4h->ihl; 1956 l4_proto = ip4h->protocol; 1957 } else if (l3_proto == htons(ETH_P_IPV6)) { 1958 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1959 1960 /* Read l4_protocol from one of IPv6 extra headers */ 1961 if (skb_network_header_len(skb) > 0) 1962 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1963 l4_proto = ip6h->nexthdr; 1964 } else 1965 return MVNETA_TX_L4_CSUM_NOT; 1966 1967 return mvneta_txq_desc_csum(skb_network_offset(skb), 1968 l3_proto, ip_hdr_len, l4_proto); 1969 } 1970 1971 return MVNETA_TX_L4_CSUM_NOT; 1972 } 1973 1974 /* Drop packets received by the RXQ and free buffers */ 1975 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1976 struct mvneta_rx_queue *rxq) 1977 { 1978 int rx_done, i; 1979 1980 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1981 if (rx_done) 1982 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1983 1984 if (pp->bm_priv) { 1985 for (i = 0; i < rx_done; i++) { 1986 struct mvneta_rx_desc *rx_desc = 1987 mvneta_rxq_next_desc_get(rxq); 1988 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1989 struct mvneta_bm_pool *bm_pool; 1990 1991 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1992 /* Return dropped buffer to the pool */ 1993 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1994 rx_desc->buf_phys_addr); 1995 } 1996 return; 1997 } 1998 1999 for (i = 0; i < rxq->size; i++) { 2000 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 2001 void *data = rxq->buf_virt_addr[i]; 2002 if (!data || !(rx_desc->buf_phys_addr)) 2003 continue; 2004 2005 page_pool_put_full_page(rxq->page_pool, data, false); 2006 } 2007 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 2008 xdp_rxq_info_unreg(&rxq->xdp_rxq); 2009 page_pool_destroy(rxq->page_pool); 2010 rxq->page_pool = NULL; 2011 } 2012 2013 static void 2014 mvneta_update_stats(struct mvneta_port *pp, 2015 struct mvneta_stats *ps) 2016 { 2017 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2018 2019 u64_stats_update_begin(&stats->syncp); 2020 stats->es.ps.rx_packets += ps->rx_packets; 2021 stats->es.ps.rx_bytes += ps->rx_bytes; 2022 /* xdp */ 2023 stats->es.ps.xdp_redirect += ps->xdp_redirect; 2024 stats->es.ps.xdp_pass += ps->xdp_pass; 2025 stats->es.ps.xdp_drop += ps->xdp_drop; 2026 u64_stats_update_end(&stats->syncp); 2027 } 2028 2029 static inline 2030 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) 2031 { 2032 struct mvneta_rx_desc *rx_desc; 2033 int curr_desc = rxq->first_to_refill; 2034 int i; 2035 2036 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) { 2037 rx_desc = rxq->descs + curr_desc; 2038 if (!(rx_desc->buf_phys_addr)) { 2039 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) { 2040 struct mvneta_pcpu_stats *stats; 2041 2042 pr_err("Can't refill queue %d. Done %d from %d\n", 2043 rxq->id, i, rxq->refill_num); 2044 2045 stats = this_cpu_ptr(pp->stats); 2046 u64_stats_update_begin(&stats->syncp); 2047 stats->es.refill_error++; 2048 u64_stats_update_end(&stats->syncp); 2049 break; 2050 } 2051 } 2052 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc); 2053 } 2054 rxq->refill_num -= i; 2055 rxq->first_to_refill = curr_desc; 2056 2057 return i; 2058 } 2059 2060 static void 2061 mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2062 struct xdp_buff *xdp, struct skb_shared_info *sinfo, 2063 int sync_len) 2064 { 2065 int i; 2066 2067 for (i = 0; i < sinfo->nr_frags; i++) 2068 page_pool_put_full_page(rxq->page_pool, 2069 skb_frag_page(&sinfo->frags[i]), true); 2070 page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data), 2071 sync_len, true); 2072 } 2073 2074 static int 2075 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq, 2076 struct xdp_frame *xdpf, bool dma_map) 2077 { 2078 struct mvneta_tx_desc *tx_desc; 2079 struct mvneta_tx_buf *buf; 2080 dma_addr_t dma_addr; 2081 2082 if (txq->count >= txq->tx_stop_threshold) 2083 return MVNETA_XDP_DROPPED; 2084 2085 tx_desc = mvneta_txq_next_desc_get(txq); 2086 2087 buf = &txq->buf[txq->txq_put_index]; 2088 if (dma_map) { 2089 /* ndo_xdp_xmit */ 2090 dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data, 2091 xdpf->len, DMA_TO_DEVICE); 2092 if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) { 2093 mvneta_txq_desc_put(txq); 2094 return MVNETA_XDP_DROPPED; 2095 } 2096 buf->type = MVNETA_TYPE_XDP_NDO; 2097 } else { 2098 struct page *page = virt_to_page(xdpf->data); 2099 2100 dma_addr = page_pool_get_dma_addr(page) + 2101 sizeof(*xdpf) + xdpf->headroom; 2102 dma_sync_single_for_device(pp->dev->dev.parent, dma_addr, 2103 xdpf->len, DMA_BIDIRECTIONAL); 2104 buf->type = MVNETA_TYPE_XDP_TX; 2105 } 2106 buf->xdpf = xdpf; 2107 2108 tx_desc->command = MVNETA_TXD_FLZ_DESC; 2109 tx_desc->buf_phys_addr = dma_addr; 2110 tx_desc->data_size = xdpf->len; 2111 2112 mvneta_txq_inc_put(txq); 2113 txq->pending++; 2114 txq->count++; 2115 2116 return MVNETA_XDP_TX; 2117 } 2118 2119 static int 2120 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp) 2121 { 2122 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2123 struct mvneta_tx_queue *txq; 2124 struct netdev_queue *nq; 2125 struct xdp_frame *xdpf; 2126 int cpu; 2127 u32 ret; 2128 2129 xdpf = xdp_convert_buff_to_frame(xdp); 2130 if (unlikely(!xdpf)) 2131 return MVNETA_XDP_DROPPED; 2132 2133 cpu = smp_processor_id(); 2134 txq = &pp->txqs[cpu % txq_number]; 2135 nq = netdev_get_tx_queue(pp->dev, txq->id); 2136 2137 __netif_tx_lock(nq, cpu); 2138 ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false); 2139 if (ret == MVNETA_XDP_TX) { 2140 u64_stats_update_begin(&stats->syncp); 2141 stats->es.ps.tx_bytes += xdpf->len; 2142 stats->es.ps.tx_packets++; 2143 stats->es.ps.xdp_tx++; 2144 u64_stats_update_end(&stats->syncp); 2145 2146 mvneta_txq_pend_desc_add(pp, txq, 0); 2147 } else { 2148 u64_stats_update_begin(&stats->syncp); 2149 stats->es.ps.xdp_tx_err++; 2150 u64_stats_update_end(&stats->syncp); 2151 } 2152 __netif_tx_unlock(nq); 2153 2154 return ret; 2155 } 2156 2157 static int 2158 mvneta_xdp_xmit(struct net_device *dev, int num_frame, 2159 struct xdp_frame **frames, u32 flags) 2160 { 2161 struct mvneta_port *pp = netdev_priv(dev); 2162 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2163 int i, nxmit_byte = 0, nxmit = 0; 2164 int cpu = smp_processor_id(); 2165 struct mvneta_tx_queue *txq; 2166 struct netdev_queue *nq; 2167 u32 ret; 2168 2169 if (unlikely(test_bit(__MVNETA_DOWN, &pp->state))) 2170 return -ENETDOWN; 2171 2172 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2173 return -EINVAL; 2174 2175 txq = &pp->txqs[cpu % txq_number]; 2176 nq = netdev_get_tx_queue(pp->dev, txq->id); 2177 2178 __netif_tx_lock(nq, cpu); 2179 for (i = 0; i < num_frame; i++) { 2180 ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true); 2181 if (ret != MVNETA_XDP_TX) 2182 break; 2183 2184 nxmit_byte += frames[i]->len; 2185 nxmit++; 2186 } 2187 2188 if (unlikely(flags & XDP_XMIT_FLUSH)) 2189 mvneta_txq_pend_desc_add(pp, txq, 0); 2190 __netif_tx_unlock(nq); 2191 2192 u64_stats_update_begin(&stats->syncp); 2193 stats->es.ps.tx_bytes += nxmit_byte; 2194 stats->es.ps.tx_packets += nxmit; 2195 stats->es.ps.xdp_xmit += nxmit; 2196 stats->es.ps.xdp_xmit_err += num_frame - nxmit; 2197 u64_stats_update_end(&stats->syncp); 2198 2199 return nxmit; 2200 } 2201 2202 static int 2203 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2204 struct bpf_prog *prog, struct xdp_buff *xdp, 2205 u32 frame_sz, struct mvneta_stats *stats) 2206 { 2207 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 2208 unsigned int len, data_len, sync; 2209 u32 ret, act; 2210 2211 len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2212 data_len = xdp->data_end - xdp->data; 2213 act = bpf_prog_run_xdp(prog, xdp); 2214 2215 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */ 2216 sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2217 sync = max(sync, len); 2218 2219 switch (act) { 2220 case XDP_PASS: 2221 stats->xdp_pass++; 2222 return MVNETA_XDP_PASS; 2223 case XDP_REDIRECT: { 2224 int err; 2225 2226 err = xdp_do_redirect(pp->dev, xdp, prog); 2227 if (unlikely(err)) { 2228 mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync); 2229 ret = MVNETA_XDP_DROPPED; 2230 } else { 2231 ret = MVNETA_XDP_REDIR; 2232 stats->xdp_redirect++; 2233 } 2234 break; 2235 } 2236 case XDP_TX: 2237 ret = mvneta_xdp_xmit_back(pp, xdp); 2238 if (ret != MVNETA_XDP_TX) 2239 mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync); 2240 break; 2241 default: 2242 bpf_warn_invalid_xdp_action(pp->dev, prog, act); 2243 fallthrough; 2244 case XDP_ABORTED: 2245 trace_xdp_exception(pp->dev, prog, act); 2246 fallthrough; 2247 case XDP_DROP: 2248 mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync); 2249 ret = MVNETA_XDP_DROPPED; 2250 stats->xdp_drop++; 2251 break; 2252 } 2253 2254 stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len; 2255 stats->rx_packets++; 2256 2257 return ret; 2258 } 2259 2260 static void 2261 mvneta_swbm_rx_frame(struct mvneta_port *pp, 2262 struct mvneta_rx_desc *rx_desc, 2263 struct mvneta_rx_queue *rxq, 2264 struct xdp_buff *xdp, int *size, 2265 struct page *page) 2266 { 2267 unsigned char *data = page_address(page); 2268 int data_len = -MVNETA_MH_SIZE, len; 2269 struct net_device *dev = pp->dev; 2270 enum dma_data_direction dma_dir; 2271 struct skb_shared_info *sinfo; 2272 2273 if (*size > MVNETA_MAX_RX_BUF_SIZE) { 2274 len = MVNETA_MAX_RX_BUF_SIZE; 2275 data_len += len; 2276 } else { 2277 len = *size; 2278 data_len += len - ETH_FCS_LEN; 2279 } 2280 *size = *size - len; 2281 2282 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2283 dma_sync_single_for_cpu(dev->dev.parent, 2284 rx_desc->buf_phys_addr, 2285 len, dma_dir); 2286 2287 rx_desc->buf_phys_addr = 0; 2288 2289 /* Prefetch header */ 2290 prefetch(data); 2291 xdp_prepare_buff(xdp, data, pp->rx_offset_correction + MVNETA_MH_SIZE, 2292 data_len, false); 2293 2294 sinfo = xdp_get_shared_info_from_buff(xdp); 2295 sinfo->nr_frags = 0; 2296 } 2297 2298 static void 2299 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp, 2300 struct mvneta_rx_desc *rx_desc, 2301 struct mvneta_rx_queue *rxq, 2302 struct xdp_buff *xdp, int *size, 2303 struct skb_shared_info *xdp_sinfo, 2304 struct page *page) 2305 { 2306 struct net_device *dev = pp->dev; 2307 enum dma_data_direction dma_dir; 2308 int data_len, len; 2309 2310 if (*size > MVNETA_MAX_RX_BUF_SIZE) { 2311 len = MVNETA_MAX_RX_BUF_SIZE; 2312 data_len = len; 2313 } else { 2314 len = *size; 2315 data_len = len - ETH_FCS_LEN; 2316 } 2317 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2318 dma_sync_single_for_cpu(dev->dev.parent, 2319 rx_desc->buf_phys_addr, 2320 len, dma_dir); 2321 rx_desc->buf_phys_addr = 0; 2322 2323 if (data_len > 0 && xdp_sinfo->nr_frags < MAX_SKB_FRAGS) { 2324 skb_frag_t *frag = &xdp_sinfo->frags[xdp_sinfo->nr_frags++]; 2325 2326 skb_frag_off_set(frag, pp->rx_offset_correction); 2327 skb_frag_size_set(frag, data_len); 2328 __skb_frag_set_page(frag, page); 2329 } else { 2330 page_pool_put_full_page(rxq->page_pool, page, true); 2331 } 2332 2333 /* last fragment */ 2334 if (len == *size) { 2335 struct skb_shared_info *sinfo; 2336 2337 sinfo = xdp_get_shared_info_from_buff(xdp); 2338 sinfo->nr_frags = xdp_sinfo->nr_frags; 2339 memcpy(sinfo->frags, xdp_sinfo->frags, 2340 sinfo->nr_frags * sizeof(skb_frag_t)); 2341 } 2342 *size -= len; 2343 } 2344 2345 static struct sk_buff * 2346 mvneta_swbm_build_skb(struct mvneta_port *pp, struct page_pool *pool, 2347 struct xdp_buff *xdp, u32 desc_status) 2348 { 2349 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 2350 int i, num_frags = sinfo->nr_frags; 2351 struct sk_buff *skb; 2352 2353 skb = build_skb(xdp->data_hard_start, PAGE_SIZE); 2354 if (!skb) 2355 return ERR_PTR(-ENOMEM); 2356 2357 skb_mark_for_recycle(skb); 2358 2359 skb_reserve(skb, xdp->data - xdp->data_hard_start); 2360 skb_put(skb, xdp->data_end - xdp->data); 2361 skb->ip_summed = mvneta_rx_csum(pp, desc_status); 2362 2363 for (i = 0; i < num_frags; i++) { 2364 skb_frag_t *frag = &sinfo->frags[i]; 2365 2366 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 2367 skb_frag_page(frag), skb_frag_off(frag), 2368 skb_frag_size(frag), PAGE_SIZE); 2369 } 2370 2371 return skb; 2372 } 2373 2374 /* Main rx processing when using software buffer management */ 2375 static int mvneta_rx_swbm(struct napi_struct *napi, 2376 struct mvneta_port *pp, int budget, 2377 struct mvneta_rx_queue *rxq) 2378 { 2379 int rx_proc = 0, rx_todo, refill, size = 0; 2380 struct net_device *dev = pp->dev; 2381 struct skb_shared_info sinfo; 2382 struct mvneta_stats ps = {}; 2383 struct bpf_prog *xdp_prog; 2384 u32 desc_status, frame_sz; 2385 struct xdp_buff xdp_buf; 2386 2387 xdp_init_buff(&xdp_buf, PAGE_SIZE, &rxq->xdp_rxq); 2388 xdp_buf.data_hard_start = NULL; 2389 2390 sinfo.nr_frags = 0; 2391 2392 /* Get number of received packets */ 2393 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq); 2394 2395 xdp_prog = READ_ONCE(pp->xdp_prog); 2396 2397 /* Fairness NAPI loop */ 2398 while (rx_proc < budget && rx_proc < rx_todo) { 2399 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2400 u32 rx_status, index; 2401 struct sk_buff *skb; 2402 struct page *page; 2403 2404 index = rx_desc - rxq->descs; 2405 page = (struct page *)rxq->buf_virt_addr[index]; 2406 2407 rx_status = rx_desc->status; 2408 rx_proc++; 2409 rxq->refill_num++; 2410 2411 if (rx_status & MVNETA_RXD_FIRST_DESC) { 2412 /* Check errors only for FIRST descriptor */ 2413 if (rx_status & MVNETA_RXD_ERR_SUMMARY) { 2414 mvneta_rx_error(pp, rx_desc); 2415 goto next; 2416 } 2417 2418 size = rx_desc->data_size; 2419 frame_sz = size - ETH_FCS_LEN; 2420 desc_status = rx_status; 2421 2422 mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf, 2423 &size, page); 2424 } else { 2425 if (unlikely(!xdp_buf.data_hard_start)) { 2426 rx_desc->buf_phys_addr = 0; 2427 page_pool_put_full_page(rxq->page_pool, page, 2428 true); 2429 goto next; 2430 } 2431 2432 mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf, 2433 &size, &sinfo, page); 2434 } /* Middle or Last descriptor */ 2435 2436 if (!(rx_status & MVNETA_RXD_LAST_DESC)) 2437 /* no last descriptor this time */ 2438 continue; 2439 2440 if (size) { 2441 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1); 2442 goto next; 2443 } 2444 2445 if (xdp_prog && 2446 mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps)) 2447 goto next; 2448 2449 skb = mvneta_swbm_build_skb(pp, rxq->page_pool, &xdp_buf, desc_status); 2450 if (IS_ERR(skb)) { 2451 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2452 2453 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1); 2454 2455 u64_stats_update_begin(&stats->syncp); 2456 stats->es.skb_alloc_error++; 2457 stats->rx_dropped++; 2458 u64_stats_update_end(&stats->syncp); 2459 2460 goto next; 2461 } 2462 2463 ps.rx_bytes += skb->len; 2464 ps.rx_packets++; 2465 2466 skb->protocol = eth_type_trans(skb, dev); 2467 napi_gro_receive(napi, skb); 2468 next: 2469 xdp_buf.data_hard_start = NULL; 2470 sinfo.nr_frags = 0; 2471 } 2472 2473 if (xdp_buf.data_hard_start) 2474 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1); 2475 2476 if (ps.xdp_redirect) 2477 xdp_do_flush_map(); 2478 2479 if (ps.rx_packets) 2480 mvneta_update_stats(pp, &ps); 2481 2482 /* return some buffers to hardware queue, one at a time is too slow */ 2483 refill = mvneta_rx_refill_queue(pp, rxq); 2484 2485 /* Update rxq management counters */ 2486 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill); 2487 2488 return ps.rx_packets; 2489 } 2490 2491 /* Main rx processing when using hardware buffer management */ 2492 static int mvneta_rx_hwbm(struct napi_struct *napi, 2493 struct mvneta_port *pp, int rx_todo, 2494 struct mvneta_rx_queue *rxq) 2495 { 2496 struct net_device *dev = pp->dev; 2497 int rx_done; 2498 u32 rcvd_pkts = 0; 2499 u32 rcvd_bytes = 0; 2500 2501 /* Get number of received packets */ 2502 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2503 2504 if (rx_todo > rx_done) 2505 rx_todo = rx_done; 2506 2507 rx_done = 0; 2508 2509 /* Fairness NAPI loop */ 2510 while (rx_done < rx_todo) { 2511 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2512 struct mvneta_bm_pool *bm_pool = NULL; 2513 struct sk_buff *skb; 2514 unsigned char *data; 2515 dma_addr_t phys_addr; 2516 u32 rx_status, frag_size; 2517 int rx_bytes, err; 2518 u8 pool_id; 2519 2520 rx_done++; 2521 rx_status = rx_desc->status; 2522 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2523 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2524 phys_addr = rx_desc->buf_phys_addr; 2525 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2526 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2527 2528 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2529 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2530 err_drop_frame_ret_pool: 2531 /* Return the buffer to the pool */ 2532 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2533 rx_desc->buf_phys_addr); 2534 err_drop_frame: 2535 mvneta_rx_error(pp, rx_desc); 2536 /* leave the descriptor untouched */ 2537 continue; 2538 } 2539 2540 if (rx_bytes <= rx_copybreak) { 2541 /* better copy a small frame and not unmap the DMA region */ 2542 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2543 if (unlikely(!skb)) 2544 goto err_drop_frame_ret_pool; 2545 2546 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev, 2547 rx_desc->buf_phys_addr, 2548 MVNETA_MH_SIZE + NET_SKB_PAD, 2549 rx_bytes, 2550 DMA_FROM_DEVICE); 2551 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 2552 rx_bytes); 2553 2554 skb->protocol = eth_type_trans(skb, dev); 2555 skb->ip_summed = mvneta_rx_csum(pp, rx_status); 2556 napi_gro_receive(napi, skb); 2557 2558 rcvd_pkts++; 2559 rcvd_bytes += rx_bytes; 2560 2561 /* Return the buffer to the pool */ 2562 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2563 rx_desc->buf_phys_addr); 2564 2565 /* leave the descriptor and buffer untouched */ 2566 continue; 2567 } 2568 2569 /* Refill processing */ 2570 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2571 if (err) { 2572 struct mvneta_pcpu_stats *stats; 2573 2574 netdev_err(dev, "Linux processing - Can't refill\n"); 2575 2576 stats = this_cpu_ptr(pp->stats); 2577 u64_stats_update_begin(&stats->syncp); 2578 stats->es.refill_error++; 2579 u64_stats_update_end(&stats->syncp); 2580 2581 goto err_drop_frame_ret_pool; 2582 } 2583 2584 frag_size = bm_pool->hwbm_pool.frag_size; 2585 2586 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2587 2588 /* After refill old buffer has to be unmapped regardless 2589 * the skb is successfully built or not. 2590 */ 2591 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2592 bm_pool->buf_size, DMA_FROM_DEVICE); 2593 if (!skb) 2594 goto err_drop_frame; 2595 2596 rcvd_pkts++; 2597 rcvd_bytes += rx_bytes; 2598 2599 /* Linux processing */ 2600 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2601 skb_put(skb, rx_bytes); 2602 2603 skb->protocol = eth_type_trans(skb, dev); 2604 skb->ip_summed = mvneta_rx_csum(pp, rx_status); 2605 2606 napi_gro_receive(napi, skb); 2607 } 2608 2609 if (rcvd_pkts) { 2610 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2611 2612 u64_stats_update_begin(&stats->syncp); 2613 stats->es.ps.rx_packets += rcvd_pkts; 2614 stats->es.ps.rx_bytes += rcvd_bytes; 2615 u64_stats_update_end(&stats->syncp); 2616 } 2617 2618 /* Update rxq management counters */ 2619 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2620 2621 return rx_done; 2622 } 2623 2624 static inline void 2625 mvneta_tso_put_hdr(struct sk_buff *skb, struct mvneta_tx_queue *txq) 2626 { 2627 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2628 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2629 struct mvneta_tx_desc *tx_desc; 2630 2631 tx_desc = mvneta_txq_next_desc_get(txq); 2632 tx_desc->data_size = hdr_len; 2633 tx_desc->command = mvneta_skb_tx_csum(skb); 2634 tx_desc->command |= MVNETA_TXD_F_DESC; 2635 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2636 txq->txq_put_index * TSO_HEADER_SIZE; 2637 buf->type = MVNETA_TYPE_SKB; 2638 buf->skb = NULL; 2639 2640 mvneta_txq_inc_put(txq); 2641 } 2642 2643 static inline int 2644 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2645 struct sk_buff *skb, char *data, int size, 2646 bool last_tcp, bool is_last) 2647 { 2648 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2649 struct mvneta_tx_desc *tx_desc; 2650 2651 tx_desc = mvneta_txq_next_desc_get(txq); 2652 tx_desc->data_size = size; 2653 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2654 size, DMA_TO_DEVICE); 2655 if (unlikely(dma_mapping_error(dev->dev.parent, 2656 tx_desc->buf_phys_addr))) { 2657 mvneta_txq_desc_put(txq); 2658 return -ENOMEM; 2659 } 2660 2661 tx_desc->command = 0; 2662 buf->type = MVNETA_TYPE_SKB; 2663 buf->skb = NULL; 2664 2665 if (last_tcp) { 2666 /* last descriptor in the TCP packet */ 2667 tx_desc->command = MVNETA_TXD_L_DESC; 2668 2669 /* last descriptor in SKB */ 2670 if (is_last) 2671 buf->skb = skb; 2672 } 2673 mvneta_txq_inc_put(txq); 2674 return 0; 2675 } 2676 2677 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2678 struct mvneta_tx_queue *txq) 2679 { 2680 int hdr_len, total_len, data_left; 2681 int desc_count = 0; 2682 struct mvneta_port *pp = netdev_priv(dev); 2683 struct tso_t tso; 2684 int i; 2685 2686 /* Count needed descriptors */ 2687 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2688 return 0; 2689 2690 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2691 pr_info("*** Is this even possible?\n"); 2692 return 0; 2693 } 2694 2695 /* Initialize the TSO handler, and prepare the first payload */ 2696 hdr_len = tso_start(skb, &tso); 2697 2698 total_len = skb->len - hdr_len; 2699 while (total_len > 0) { 2700 char *hdr; 2701 2702 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2703 total_len -= data_left; 2704 desc_count++; 2705 2706 /* prepare packet headers: MAC + IP + TCP */ 2707 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2708 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2709 2710 mvneta_tso_put_hdr(skb, txq); 2711 2712 while (data_left > 0) { 2713 int size; 2714 desc_count++; 2715 2716 size = min_t(int, tso.size, data_left); 2717 2718 if (mvneta_tso_put_data(dev, txq, skb, 2719 tso.data, size, 2720 size == data_left, 2721 total_len == 0)) 2722 goto err_release; 2723 data_left -= size; 2724 2725 tso_build_data(skb, &tso, size); 2726 } 2727 } 2728 2729 return desc_count; 2730 2731 err_release: 2732 /* Release all used data descriptors; header descriptors must not 2733 * be DMA-unmapped. 2734 */ 2735 for (i = desc_count - 1; i >= 0; i--) { 2736 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2737 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2738 dma_unmap_single(pp->dev->dev.parent, 2739 tx_desc->buf_phys_addr, 2740 tx_desc->data_size, 2741 DMA_TO_DEVICE); 2742 mvneta_txq_desc_put(txq); 2743 } 2744 return 0; 2745 } 2746 2747 /* Handle tx fragmentation processing */ 2748 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2749 struct mvneta_tx_queue *txq) 2750 { 2751 struct mvneta_tx_desc *tx_desc; 2752 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2753 2754 for (i = 0; i < nr_frags; i++) { 2755 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2756 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2757 void *addr = skb_frag_address(frag); 2758 2759 tx_desc = mvneta_txq_next_desc_get(txq); 2760 tx_desc->data_size = skb_frag_size(frag); 2761 2762 tx_desc->buf_phys_addr = 2763 dma_map_single(pp->dev->dev.parent, addr, 2764 tx_desc->data_size, DMA_TO_DEVICE); 2765 2766 if (dma_mapping_error(pp->dev->dev.parent, 2767 tx_desc->buf_phys_addr)) { 2768 mvneta_txq_desc_put(txq); 2769 goto error; 2770 } 2771 2772 if (i == nr_frags - 1) { 2773 /* Last descriptor */ 2774 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2775 buf->skb = skb; 2776 } else { 2777 /* Descriptor in the middle: Not First, Not Last */ 2778 tx_desc->command = 0; 2779 buf->skb = NULL; 2780 } 2781 buf->type = MVNETA_TYPE_SKB; 2782 mvneta_txq_inc_put(txq); 2783 } 2784 2785 return 0; 2786 2787 error: 2788 /* Release all descriptors that were used to map fragments of 2789 * this packet, as well as the corresponding DMA mappings 2790 */ 2791 for (i = i - 1; i >= 0; i--) { 2792 tx_desc = txq->descs + i; 2793 dma_unmap_single(pp->dev->dev.parent, 2794 tx_desc->buf_phys_addr, 2795 tx_desc->data_size, 2796 DMA_TO_DEVICE); 2797 mvneta_txq_desc_put(txq); 2798 } 2799 2800 return -ENOMEM; 2801 } 2802 2803 /* Main tx processing */ 2804 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2805 { 2806 struct mvneta_port *pp = netdev_priv(dev); 2807 u16 txq_id = skb_get_queue_mapping(skb); 2808 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2809 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2810 struct mvneta_tx_desc *tx_desc; 2811 int len = skb->len; 2812 int frags = 0; 2813 u32 tx_cmd; 2814 2815 if (!netif_running(dev)) 2816 goto out; 2817 2818 if (skb_is_gso(skb)) { 2819 frags = mvneta_tx_tso(skb, dev, txq); 2820 goto out; 2821 } 2822 2823 frags = skb_shinfo(skb)->nr_frags + 1; 2824 2825 /* Get a descriptor for the first part of the packet */ 2826 tx_desc = mvneta_txq_next_desc_get(txq); 2827 2828 tx_cmd = mvneta_skb_tx_csum(skb); 2829 2830 tx_desc->data_size = skb_headlen(skb); 2831 2832 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2833 tx_desc->data_size, 2834 DMA_TO_DEVICE); 2835 if (unlikely(dma_mapping_error(dev->dev.parent, 2836 tx_desc->buf_phys_addr))) { 2837 mvneta_txq_desc_put(txq); 2838 frags = 0; 2839 goto out; 2840 } 2841 2842 buf->type = MVNETA_TYPE_SKB; 2843 if (frags == 1) { 2844 /* First and Last descriptor */ 2845 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2846 tx_desc->command = tx_cmd; 2847 buf->skb = skb; 2848 mvneta_txq_inc_put(txq); 2849 } else { 2850 /* First but not Last */ 2851 tx_cmd |= MVNETA_TXD_F_DESC; 2852 buf->skb = NULL; 2853 mvneta_txq_inc_put(txq); 2854 tx_desc->command = tx_cmd; 2855 /* Continue with other skb fragments */ 2856 if (mvneta_tx_frag_process(pp, skb, txq)) { 2857 dma_unmap_single(dev->dev.parent, 2858 tx_desc->buf_phys_addr, 2859 tx_desc->data_size, 2860 DMA_TO_DEVICE); 2861 mvneta_txq_desc_put(txq); 2862 frags = 0; 2863 goto out; 2864 } 2865 } 2866 2867 out: 2868 if (frags > 0) { 2869 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2870 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2871 2872 netdev_tx_sent_queue(nq, len); 2873 2874 txq->count += frags; 2875 if (txq->count >= txq->tx_stop_threshold) 2876 netif_tx_stop_queue(nq); 2877 2878 if (!netdev_xmit_more() || netif_xmit_stopped(nq) || 2879 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2880 mvneta_txq_pend_desc_add(pp, txq, frags); 2881 else 2882 txq->pending += frags; 2883 2884 u64_stats_update_begin(&stats->syncp); 2885 stats->es.ps.tx_bytes += len; 2886 stats->es.ps.tx_packets++; 2887 u64_stats_update_end(&stats->syncp); 2888 } else { 2889 dev->stats.tx_dropped++; 2890 dev_kfree_skb_any(skb); 2891 } 2892 2893 return NETDEV_TX_OK; 2894 } 2895 2896 2897 /* Free tx resources, when resetting a port */ 2898 static void mvneta_txq_done_force(struct mvneta_port *pp, 2899 struct mvneta_tx_queue *txq) 2900 2901 { 2902 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2903 int tx_done = txq->count; 2904 2905 mvneta_txq_bufs_free(pp, txq, tx_done, nq, false); 2906 2907 /* reset txq */ 2908 txq->count = 0; 2909 txq->txq_put_index = 0; 2910 txq->txq_get_index = 0; 2911 } 2912 2913 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2914 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2915 */ 2916 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2917 { 2918 struct mvneta_tx_queue *txq; 2919 struct netdev_queue *nq; 2920 int cpu = smp_processor_id(); 2921 2922 while (cause_tx_done) { 2923 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2924 2925 nq = netdev_get_tx_queue(pp->dev, txq->id); 2926 __netif_tx_lock(nq, cpu); 2927 2928 if (txq->count) 2929 mvneta_txq_done(pp, txq); 2930 2931 __netif_tx_unlock(nq); 2932 cause_tx_done &= ~((1 << txq->id)); 2933 } 2934 } 2935 2936 /* Compute crc8 of the specified address, using a unique algorithm , 2937 * according to hw spec, different than generic crc8 algorithm 2938 */ 2939 static int mvneta_addr_crc(unsigned char *addr) 2940 { 2941 int crc = 0; 2942 int i; 2943 2944 for (i = 0; i < ETH_ALEN; i++) { 2945 int j; 2946 2947 crc = (crc ^ addr[i]) << 8; 2948 for (j = 7; j >= 0; j--) { 2949 if (crc & (0x100 << j)) 2950 crc ^= 0x107 << j; 2951 } 2952 } 2953 2954 return crc; 2955 } 2956 2957 /* This method controls the net device special MAC multicast support. 2958 * The Special Multicast Table for MAC addresses supports MAC of the form 2959 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2960 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2961 * Table entries in the DA-Filter table. This method set the Special 2962 * Multicast Table appropriate entry. 2963 */ 2964 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2965 unsigned char last_byte, 2966 int queue) 2967 { 2968 unsigned int smc_table_reg; 2969 unsigned int tbl_offset; 2970 unsigned int reg_offset; 2971 2972 /* Register offset from SMC table base */ 2973 tbl_offset = (last_byte / 4); 2974 /* Entry offset within the above reg */ 2975 reg_offset = last_byte % 4; 2976 2977 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2978 + tbl_offset * 4)); 2979 2980 if (queue == -1) 2981 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2982 else { 2983 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2984 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2985 } 2986 2987 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2988 smc_table_reg); 2989 } 2990 2991 /* This method controls the network device Other MAC multicast support. 2992 * The Other Multicast Table is used for multicast of another type. 2993 * A CRC-8 is used as an index to the Other Multicast Table entries 2994 * in the DA-Filter table. 2995 * The method gets the CRC-8 value from the calling routine and 2996 * sets the Other Multicast Table appropriate entry according to the 2997 * specified CRC-8 . 2998 */ 2999 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 3000 unsigned char crc8, 3001 int queue) 3002 { 3003 unsigned int omc_table_reg; 3004 unsigned int tbl_offset; 3005 unsigned int reg_offset; 3006 3007 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 3008 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 3009 3010 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 3011 3012 if (queue == -1) { 3013 /* Clear accepts frame bit at specified Other DA table entry */ 3014 omc_table_reg &= ~(0xff << (8 * reg_offset)); 3015 } else { 3016 omc_table_reg &= ~(0xff << (8 * reg_offset)); 3017 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 3018 } 3019 3020 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 3021 } 3022 3023 /* The network device supports multicast using two tables: 3024 * 1) Special Multicast Table for MAC addresses of the form 3025 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 3026 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 3027 * Table entries in the DA-Filter table. 3028 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 3029 * is used as an index to the Other Multicast Table entries in the 3030 * DA-Filter table. 3031 */ 3032 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 3033 int queue) 3034 { 3035 unsigned char crc_result = 0; 3036 3037 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 3038 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 3039 return 0; 3040 } 3041 3042 crc_result = mvneta_addr_crc(p_addr); 3043 if (queue == -1) { 3044 if (pp->mcast_count[crc_result] == 0) { 3045 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 3046 crc_result); 3047 return -EINVAL; 3048 } 3049 3050 pp->mcast_count[crc_result]--; 3051 if (pp->mcast_count[crc_result] != 0) { 3052 netdev_info(pp->dev, 3053 "After delete there are %d valid Mcast for crc8=0x%02x\n", 3054 pp->mcast_count[crc_result], crc_result); 3055 return -EINVAL; 3056 } 3057 } else 3058 pp->mcast_count[crc_result]++; 3059 3060 mvneta_set_other_mcast_addr(pp, crc_result, queue); 3061 3062 return 0; 3063 } 3064 3065 /* Configure Fitering mode of Ethernet port */ 3066 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 3067 int is_promisc) 3068 { 3069 u32 port_cfg_reg, val; 3070 3071 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 3072 3073 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 3074 3075 /* Set / Clear UPM bit in port configuration register */ 3076 if (is_promisc) { 3077 /* Accept all Unicast addresses */ 3078 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 3079 val |= MVNETA_FORCE_UNI; 3080 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 3081 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 3082 } else { 3083 /* Reject all Unicast addresses */ 3084 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 3085 val &= ~MVNETA_FORCE_UNI; 3086 } 3087 3088 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 3089 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 3090 } 3091 3092 /* register unicast and multicast addresses */ 3093 static void mvneta_set_rx_mode(struct net_device *dev) 3094 { 3095 struct mvneta_port *pp = netdev_priv(dev); 3096 struct netdev_hw_addr *ha; 3097 3098 if (dev->flags & IFF_PROMISC) { 3099 /* Accept all: Multicast + Unicast */ 3100 mvneta_rx_unicast_promisc_set(pp, 1); 3101 mvneta_set_ucast_table(pp, pp->rxq_def); 3102 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3103 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3104 } else { 3105 /* Accept single Unicast */ 3106 mvneta_rx_unicast_promisc_set(pp, 0); 3107 mvneta_set_ucast_table(pp, -1); 3108 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 3109 3110 if (dev->flags & IFF_ALLMULTI) { 3111 /* Accept all multicast */ 3112 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3113 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3114 } else { 3115 /* Accept only initialized multicast */ 3116 mvneta_set_special_mcast_table(pp, -1); 3117 mvneta_set_other_mcast_table(pp, -1); 3118 3119 if (!netdev_mc_empty(dev)) { 3120 netdev_for_each_mc_addr(ha, dev) { 3121 mvneta_mcast_addr_set(pp, ha->addr, 3122 pp->rxq_def); 3123 } 3124 } 3125 } 3126 } 3127 } 3128 3129 /* Interrupt handling - the callback for request_irq() */ 3130 static irqreturn_t mvneta_isr(int irq, void *dev_id) 3131 { 3132 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 3133 3134 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 3135 napi_schedule(&pp->napi); 3136 3137 return IRQ_HANDLED; 3138 } 3139 3140 /* Interrupt handling - the callback for request_percpu_irq() */ 3141 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 3142 { 3143 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 3144 3145 disable_percpu_irq(port->pp->dev->irq); 3146 napi_schedule(&port->napi); 3147 3148 return IRQ_HANDLED; 3149 } 3150 3151 static void mvneta_link_change(struct mvneta_port *pp) 3152 { 3153 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3154 3155 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP)); 3156 } 3157 3158 /* NAPI handler 3159 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 3160 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 3161 * Bits 8 -15 of the cause Rx Tx register indicate that are received 3162 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 3163 * Each CPU has its own causeRxTx register 3164 */ 3165 static int mvneta_poll(struct napi_struct *napi, int budget) 3166 { 3167 int rx_done = 0; 3168 u32 cause_rx_tx; 3169 int rx_queue; 3170 struct mvneta_port *pp = netdev_priv(napi->dev); 3171 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 3172 3173 if (!netif_running(pp->dev)) { 3174 napi_complete(napi); 3175 return rx_done; 3176 } 3177 3178 /* Read cause register */ 3179 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 3180 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 3181 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 3182 3183 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 3184 3185 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE | 3186 MVNETA_CAUSE_LINK_CHANGE)) 3187 mvneta_link_change(pp); 3188 } 3189 3190 /* Release Tx descriptors */ 3191 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 3192 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 3193 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 3194 } 3195 3196 /* For the case where the last mvneta_poll did not process all 3197 * RX packets 3198 */ 3199 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 3200 port->cause_rx_tx; 3201 3202 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 3203 if (rx_queue) { 3204 rx_queue = rx_queue - 1; 3205 if (pp->bm_priv) 3206 rx_done = mvneta_rx_hwbm(napi, pp, budget, 3207 &pp->rxqs[rx_queue]); 3208 else 3209 rx_done = mvneta_rx_swbm(napi, pp, budget, 3210 &pp->rxqs[rx_queue]); 3211 } 3212 3213 if (rx_done < budget) { 3214 cause_rx_tx = 0; 3215 napi_complete_done(napi, rx_done); 3216 3217 if (pp->neta_armada3700) { 3218 unsigned long flags; 3219 3220 local_irq_save(flags); 3221 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 3222 MVNETA_RX_INTR_MASK(rxq_number) | 3223 MVNETA_TX_INTR_MASK(txq_number) | 3224 MVNETA_MISCINTR_INTR_MASK); 3225 local_irq_restore(flags); 3226 } else { 3227 enable_percpu_irq(pp->dev->irq, 0); 3228 } 3229 } 3230 3231 if (pp->neta_armada3700) 3232 pp->cause_rx_tx = cause_rx_tx; 3233 else 3234 port->cause_rx_tx = cause_rx_tx; 3235 3236 return rx_done; 3237 } 3238 3239 static int mvneta_create_page_pool(struct mvneta_port *pp, 3240 struct mvneta_rx_queue *rxq, int size) 3241 { 3242 struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog); 3243 struct page_pool_params pp_params = { 3244 .order = 0, 3245 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 3246 .pool_size = size, 3247 .nid = NUMA_NO_NODE, 3248 .dev = pp->dev->dev.parent, 3249 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 3250 .offset = pp->rx_offset_correction, 3251 .max_len = MVNETA_MAX_RX_BUF_SIZE, 3252 }; 3253 int err; 3254 3255 rxq->page_pool = page_pool_create(&pp_params); 3256 if (IS_ERR(rxq->page_pool)) { 3257 err = PTR_ERR(rxq->page_pool); 3258 rxq->page_pool = NULL; 3259 return err; 3260 } 3261 3262 err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id, 0); 3263 if (err < 0) 3264 goto err_free_pp; 3265 3266 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 3267 rxq->page_pool); 3268 if (err) 3269 goto err_unregister_rxq; 3270 3271 return 0; 3272 3273 err_unregister_rxq: 3274 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3275 err_free_pp: 3276 page_pool_destroy(rxq->page_pool); 3277 rxq->page_pool = NULL; 3278 return err; 3279 } 3280 3281 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 3282 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 3283 int num) 3284 { 3285 int i, err; 3286 3287 err = mvneta_create_page_pool(pp, rxq, num); 3288 if (err < 0) 3289 return err; 3290 3291 for (i = 0; i < num; i++) { 3292 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 3293 if (mvneta_rx_refill(pp, rxq->descs + i, rxq, 3294 GFP_KERNEL) != 0) { 3295 netdev_err(pp->dev, 3296 "%s:rxq %d, %d of %d buffs filled\n", 3297 __func__, rxq->id, i, num); 3298 break; 3299 } 3300 } 3301 3302 /* Add this number of RX descriptors as non occupied (ready to 3303 * get packets) 3304 */ 3305 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 3306 3307 return i; 3308 } 3309 3310 /* Free all packets pending transmit from all TXQs and reset TX port */ 3311 static void mvneta_tx_reset(struct mvneta_port *pp) 3312 { 3313 int queue; 3314 3315 /* free the skb's in the tx ring */ 3316 for (queue = 0; queue < txq_number; queue++) 3317 mvneta_txq_done_force(pp, &pp->txqs[queue]); 3318 3319 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 3320 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 3321 } 3322 3323 static void mvneta_rx_reset(struct mvneta_port *pp) 3324 { 3325 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 3326 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 3327 } 3328 3329 /* Rx/Tx queue initialization/cleanup methods */ 3330 3331 static int mvneta_rxq_sw_init(struct mvneta_port *pp, 3332 struct mvneta_rx_queue *rxq) 3333 { 3334 rxq->size = pp->rx_ring_size; 3335 3336 /* Allocate memory for RX descriptors */ 3337 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3338 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3339 &rxq->descs_phys, GFP_KERNEL); 3340 if (!rxq->descs) 3341 return -ENOMEM; 3342 3343 rxq->last_desc = rxq->size - 1; 3344 3345 return 0; 3346 } 3347 3348 static void mvneta_rxq_hw_init(struct mvneta_port *pp, 3349 struct mvneta_rx_queue *rxq) 3350 { 3351 /* Set Rx descriptors queue starting address */ 3352 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 3353 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 3354 3355 /* Set coalescing pkts and time */ 3356 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3357 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3358 3359 if (!pp->bm_priv) { 3360 /* Set Offset */ 3361 mvneta_rxq_offset_set(pp, rxq, 0); 3362 mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ? 3363 MVNETA_MAX_RX_BUF_SIZE : 3364 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 3365 mvneta_rxq_bm_disable(pp, rxq); 3366 mvneta_rxq_fill(pp, rxq, rxq->size); 3367 } else { 3368 /* Set Offset */ 3369 mvneta_rxq_offset_set(pp, rxq, 3370 NET_SKB_PAD - pp->rx_offset_correction); 3371 3372 mvneta_rxq_bm_enable(pp, rxq); 3373 /* Fill RXQ with buffers from RX pool */ 3374 mvneta_rxq_long_pool_set(pp, rxq); 3375 mvneta_rxq_short_pool_set(pp, rxq); 3376 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 3377 } 3378 } 3379 3380 /* Create a specified RX queue */ 3381 static int mvneta_rxq_init(struct mvneta_port *pp, 3382 struct mvneta_rx_queue *rxq) 3383 3384 { 3385 int ret; 3386 3387 ret = mvneta_rxq_sw_init(pp, rxq); 3388 if (ret < 0) 3389 return ret; 3390 3391 mvneta_rxq_hw_init(pp, rxq); 3392 3393 return 0; 3394 } 3395 3396 /* Cleanup Rx queue */ 3397 static void mvneta_rxq_deinit(struct mvneta_port *pp, 3398 struct mvneta_rx_queue *rxq) 3399 { 3400 mvneta_rxq_drop_pkts(pp, rxq); 3401 3402 if (rxq->descs) 3403 dma_free_coherent(pp->dev->dev.parent, 3404 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3405 rxq->descs, 3406 rxq->descs_phys); 3407 3408 rxq->descs = NULL; 3409 rxq->last_desc = 0; 3410 rxq->next_desc_to_proc = 0; 3411 rxq->descs_phys = 0; 3412 rxq->first_to_refill = 0; 3413 rxq->refill_num = 0; 3414 } 3415 3416 static int mvneta_txq_sw_init(struct mvneta_port *pp, 3417 struct mvneta_tx_queue *txq) 3418 { 3419 int cpu; 3420 3421 txq->size = pp->tx_ring_size; 3422 3423 /* A queue must always have room for at least one skb. 3424 * Therefore, stop the queue when the free entries reaches 3425 * the maximum number of descriptors per skb. 3426 */ 3427 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 3428 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 3429 3430 /* Allocate memory for TX descriptors */ 3431 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3432 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3433 &txq->descs_phys, GFP_KERNEL); 3434 if (!txq->descs) 3435 return -ENOMEM; 3436 3437 txq->last_desc = txq->size - 1; 3438 3439 txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL); 3440 if (!txq->buf) 3441 return -ENOMEM; 3442 3443 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 3444 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 3445 txq->size * TSO_HEADER_SIZE, 3446 &txq->tso_hdrs_phys, GFP_KERNEL); 3447 if (!txq->tso_hdrs) 3448 return -ENOMEM; 3449 3450 /* Setup XPS mapping */ 3451 if (pp->neta_armada3700) 3452 cpu = 0; 3453 else if (txq_number > 1) 3454 cpu = txq->id % num_present_cpus(); 3455 else 3456 cpu = pp->rxq_def % num_present_cpus(); 3457 cpumask_set_cpu(cpu, &txq->affinity_mask); 3458 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 3459 3460 return 0; 3461 } 3462 3463 static void mvneta_txq_hw_init(struct mvneta_port *pp, 3464 struct mvneta_tx_queue *txq) 3465 { 3466 /* Set maximum bandwidth for enabled TXQs */ 3467 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 3468 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 3469 3470 /* Set Tx descriptors queue starting address */ 3471 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 3472 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 3473 3474 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3475 } 3476 3477 /* Create and initialize a tx queue */ 3478 static int mvneta_txq_init(struct mvneta_port *pp, 3479 struct mvneta_tx_queue *txq) 3480 { 3481 int ret; 3482 3483 ret = mvneta_txq_sw_init(pp, txq); 3484 if (ret < 0) 3485 return ret; 3486 3487 mvneta_txq_hw_init(pp, txq); 3488 3489 return 0; 3490 } 3491 3492 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 3493 static void mvneta_txq_sw_deinit(struct mvneta_port *pp, 3494 struct mvneta_tx_queue *txq) 3495 { 3496 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 3497 3498 kfree(txq->buf); 3499 3500 if (txq->tso_hdrs) 3501 dma_free_coherent(pp->dev->dev.parent, 3502 txq->size * TSO_HEADER_SIZE, 3503 txq->tso_hdrs, txq->tso_hdrs_phys); 3504 if (txq->descs) 3505 dma_free_coherent(pp->dev->dev.parent, 3506 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3507 txq->descs, txq->descs_phys); 3508 3509 netdev_tx_reset_queue(nq); 3510 3511 txq->descs = NULL; 3512 txq->last_desc = 0; 3513 txq->next_desc_to_proc = 0; 3514 txq->descs_phys = 0; 3515 } 3516 3517 static void mvneta_txq_hw_deinit(struct mvneta_port *pp, 3518 struct mvneta_tx_queue *txq) 3519 { 3520 /* Set minimum bandwidth for disabled TXQs */ 3521 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 3522 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 3523 3524 /* Set Tx descriptors queue starting address and size */ 3525 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 3526 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 3527 } 3528 3529 static void mvneta_txq_deinit(struct mvneta_port *pp, 3530 struct mvneta_tx_queue *txq) 3531 { 3532 mvneta_txq_sw_deinit(pp, txq); 3533 mvneta_txq_hw_deinit(pp, txq); 3534 } 3535 3536 /* Cleanup all Tx queues */ 3537 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 3538 { 3539 int queue; 3540 3541 for (queue = 0; queue < txq_number; queue++) 3542 mvneta_txq_deinit(pp, &pp->txqs[queue]); 3543 } 3544 3545 /* Cleanup all Rx queues */ 3546 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 3547 { 3548 int queue; 3549 3550 for (queue = 0; queue < rxq_number; queue++) 3551 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 3552 } 3553 3554 3555 /* Init all Rx queues */ 3556 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3557 { 3558 int queue; 3559 3560 for (queue = 0; queue < rxq_number; queue++) { 3561 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3562 3563 if (err) { 3564 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3565 __func__, queue); 3566 mvneta_cleanup_rxqs(pp); 3567 return err; 3568 } 3569 } 3570 3571 return 0; 3572 } 3573 3574 /* Init all tx queues */ 3575 static int mvneta_setup_txqs(struct mvneta_port *pp) 3576 { 3577 int queue; 3578 3579 for (queue = 0; queue < txq_number; queue++) { 3580 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3581 if (err) { 3582 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3583 __func__, queue); 3584 mvneta_cleanup_txqs(pp); 3585 return err; 3586 } 3587 } 3588 3589 return 0; 3590 } 3591 3592 static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface) 3593 { 3594 int ret; 3595 3596 ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface); 3597 if (ret) 3598 return ret; 3599 3600 return phy_power_on(pp->comphy); 3601 } 3602 3603 static int mvneta_config_interface(struct mvneta_port *pp, 3604 phy_interface_t interface) 3605 { 3606 int ret = 0; 3607 3608 if (pp->comphy) { 3609 if (interface == PHY_INTERFACE_MODE_SGMII || 3610 interface == PHY_INTERFACE_MODE_1000BASEX || 3611 interface == PHY_INTERFACE_MODE_2500BASEX) { 3612 ret = mvneta_comphy_init(pp, interface); 3613 } 3614 } else { 3615 switch (interface) { 3616 case PHY_INTERFACE_MODE_QSGMII: 3617 mvreg_write(pp, MVNETA_SERDES_CFG, 3618 MVNETA_QSGMII_SERDES_PROTO); 3619 break; 3620 3621 case PHY_INTERFACE_MODE_SGMII: 3622 case PHY_INTERFACE_MODE_1000BASEX: 3623 mvreg_write(pp, MVNETA_SERDES_CFG, 3624 MVNETA_SGMII_SERDES_PROTO); 3625 break; 3626 3627 case PHY_INTERFACE_MODE_2500BASEX: 3628 mvreg_write(pp, MVNETA_SERDES_CFG, 3629 MVNETA_HSGMII_SERDES_PROTO); 3630 break; 3631 default: 3632 break; 3633 } 3634 } 3635 3636 pp->phy_interface = interface; 3637 3638 return ret; 3639 } 3640 3641 static void mvneta_start_dev(struct mvneta_port *pp) 3642 { 3643 int cpu; 3644 3645 WARN_ON(mvneta_config_interface(pp, pp->phy_interface)); 3646 3647 mvneta_max_rx_size_set(pp, pp->pkt_size); 3648 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3649 3650 /* start the Rx/Tx activity */ 3651 mvneta_port_enable(pp); 3652 3653 if (!pp->neta_armada3700) { 3654 /* Enable polling on the port */ 3655 for_each_online_cpu(cpu) { 3656 struct mvneta_pcpu_port *port = 3657 per_cpu_ptr(pp->ports, cpu); 3658 3659 napi_enable(&port->napi); 3660 } 3661 } else { 3662 napi_enable(&pp->napi); 3663 } 3664 3665 /* Unmask interrupts. It has to be done from each CPU */ 3666 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3667 3668 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3669 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3670 MVNETA_CAUSE_LINK_CHANGE); 3671 3672 phylink_start(pp->phylink); 3673 3674 /* We may have called phylink_speed_down before */ 3675 phylink_speed_up(pp->phylink); 3676 3677 netif_tx_start_all_queues(pp->dev); 3678 3679 clear_bit(__MVNETA_DOWN, &pp->state); 3680 } 3681 3682 static void mvneta_stop_dev(struct mvneta_port *pp) 3683 { 3684 unsigned int cpu; 3685 3686 set_bit(__MVNETA_DOWN, &pp->state); 3687 3688 if (device_may_wakeup(&pp->dev->dev)) 3689 phylink_speed_down(pp->phylink, false); 3690 3691 phylink_stop(pp->phylink); 3692 3693 if (!pp->neta_armada3700) { 3694 for_each_online_cpu(cpu) { 3695 struct mvneta_pcpu_port *port = 3696 per_cpu_ptr(pp->ports, cpu); 3697 3698 napi_disable(&port->napi); 3699 } 3700 } else { 3701 napi_disable(&pp->napi); 3702 } 3703 3704 netif_carrier_off(pp->dev); 3705 3706 mvneta_port_down(pp); 3707 netif_tx_stop_all_queues(pp->dev); 3708 3709 /* Stop the port activity */ 3710 mvneta_port_disable(pp); 3711 3712 /* Clear all ethernet port interrupts */ 3713 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3714 3715 /* Mask all ethernet port interrupts */ 3716 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3717 3718 mvneta_tx_reset(pp); 3719 mvneta_rx_reset(pp); 3720 3721 WARN_ON(phy_power_off(pp->comphy)); 3722 } 3723 3724 static void mvneta_percpu_enable(void *arg) 3725 { 3726 struct mvneta_port *pp = arg; 3727 3728 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3729 } 3730 3731 static void mvneta_percpu_disable(void *arg) 3732 { 3733 struct mvneta_port *pp = arg; 3734 3735 disable_percpu_irq(pp->dev->irq); 3736 } 3737 3738 /* Change the device mtu */ 3739 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3740 { 3741 struct mvneta_port *pp = netdev_priv(dev); 3742 int ret; 3743 3744 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3745 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3746 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3747 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3748 } 3749 3750 if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) { 3751 netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu); 3752 return -EINVAL; 3753 } 3754 3755 dev->mtu = mtu; 3756 3757 if (!netif_running(dev)) { 3758 if (pp->bm_priv) 3759 mvneta_bm_update_mtu(pp, mtu); 3760 3761 netdev_update_features(dev); 3762 return 0; 3763 } 3764 3765 /* The interface is running, so we have to force a 3766 * reallocation of the queues 3767 */ 3768 mvneta_stop_dev(pp); 3769 on_each_cpu(mvneta_percpu_disable, pp, true); 3770 3771 mvneta_cleanup_txqs(pp); 3772 mvneta_cleanup_rxqs(pp); 3773 3774 if (pp->bm_priv) 3775 mvneta_bm_update_mtu(pp, mtu); 3776 3777 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3778 3779 ret = mvneta_setup_rxqs(pp); 3780 if (ret) { 3781 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3782 return ret; 3783 } 3784 3785 ret = mvneta_setup_txqs(pp); 3786 if (ret) { 3787 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3788 return ret; 3789 } 3790 3791 on_each_cpu(mvneta_percpu_enable, pp, true); 3792 mvneta_start_dev(pp); 3793 3794 netdev_update_features(dev); 3795 3796 return 0; 3797 } 3798 3799 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3800 netdev_features_t features) 3801 { 3802 struct mvneta_port *pp = netdev_priv(dev); 3803 3804 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3805 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3806 netdev_info(dev, 3807 "Disable IP checksum for MTU greater than %dB\n", 3808 pp->tx_csum_limit); 3809 } 3810 3811 return features; 3812 } 3813 3814 /* Get mac address */ 3815 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3816 { 3817 u32 mac_addr_l, mac_addr_h; 3818 3819 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3820 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3821 addr[0] = (mac_addr_h >> 24) & 0xFF; 3822 addr[1] = (mac_addr_h >> 16) & 0xFF; 3823 addr[2] = (mac_addr_h >> 8) & 0xFF; 3824 addr[3] = mac_addr_h & 0xFF; 3825 addr[4] = (mac_addr_l >> 8) & 0xFF; 3826 addr[5] = mac_addr_l & 0xFF; 3827 } 3828 3829 /* Handle setting mac address */ 3830 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3831 { 3832 struct mvneta_port *pp = netdev_priv(dev); 3833 struct sockaddr *sockaddr = addr; 3834 int ret; 3835 3836 ret = eth_prepare_mac_addr_change(dev, addr); 3837 if (ret < 0) 3838 return ret; 3839 /* Remove previous address table entry */ 3840 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3841 3842 /* Set new addr in hw */ 3843 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3844 3845 eth_commit_mac_addr_change(dev, addr); 3846 return 0; 3847 } 3848 3849 static void mvneta_validate(struct phylink_config *config, 3850 unsigned long *supported, 3851 struct phylink_link_state *state) 3852 { 3853 /* We only support QSGMII, SGMII, 802.3z and RGMII modes. 3854 * When in 802.3z mode, we must have AN enabled: 3855 * "Bit 2 Field InBandAnEn In-band Auto-Negotiation enable. ... 3856 * When <PortType> = 1 (1000BASE-X) this field must be set to 1." 3857 */ 3858 if (phy_interface_mode_is_8023z(state->interface) && 3859 !phylink_test(state->advertising, Autoneg)) { 3860 linkmode_zero(supported); 3861 return; 3862 } 3863 3864 phylink_generic_validate(config, supported, state); 3865 } 3866 3867 static void mvneta_mac_pcs_get_state(struct phylink_config *config, 3868 struct phylink_link_state *state) 3869 { 3870 struct net_device *ndev = to_net_dev(config->dev); 3871 struct mvneta_port *pp = netdev_priv(ndev); 3872 u32 gmac_stat; 3873 3874 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3875 3876 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 3877 state->speed = 3878 state->interface == PHY_INTERFACE_MODE_2500BASEX ? 3879 SPEED_2500 : SPEED_1000; 3880 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 3881 state->speed = SPEED_100; 3882 else 3883 state->speed = SPEED_10; 3884 3885 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE); 3886 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 3887 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 3888 3889 state->pause = 0; 3890 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE) 3891 state->pause |= MLO_PAUSE_RX; 3892 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE) 3893 state->pause |= MLO_PAUSE_TX; 3894 } 3895 3896 static void mvneta_mac_an_restart(struct phylink_config *config) 3897 { 3898 struct net_device *ndev = to_net_dev(config->dev); 3899 struct mvneta_port *pp = netdev_priv(ndev); 3900 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3901 3902 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3903 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN); 3904 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3905 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN); 3906 } 3907 3908 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode, 3909 const struct phylink_link_state *state) 3910 { 3911 struct net_device *ndev = to_net_dev(config->dev); 3912 struct mvneta_port *pp = netdev_priv(ndev); 3913 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 3914 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3915 u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4); 3916 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 3917 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3918 3919 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X; 3920 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE | 3921 MVNETA_GMAC2_PORT_RESET); 3922 new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE); 3923 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 3924 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE | 3925 MVNETA_GMAC_INBAND_RESTART_AN | 3926 MVNETA_GMAC_AN_SPEED_EN | 3927 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL | 3928 MVNETA_GMAC_AN_FLOW_CTRL_EN | 3929 MVNETA_GMAC_AN_DUPLEX_EN); 3930 3931 /* Even though it might look weird, when we're configured in 3932 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3933 */ 3934 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII; 3935 3936 if (state->interface == PHY_INTERFACE_MODE_QSGMII || 3937 state->interface == PHY_INTERFACE_MODE_SGMII || 3938 phy_interface_mode_is_8023z(state->interface)) 3939 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE; 3940 3941 if (phylink_test(state->advertising, Pause)) 3942 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; 3943 3944 if (!phylink_autoneg_inband(mode)) { 3945 /* Phy or fixed speed - nothing to do, leave the 3946 * configured speed, duplex and flow control as-is. 3947 */ 3948 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { 3949 /* SGMII mode receives the state from the PHY */ 3950 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE; 3951 new_clk = MVNETA_GMAC_1MS_CLOCK_ENABLE; 3952 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3953 MVNETA_GMAC_FORCE_LINK_PASS | 3954 MVNETA_GMAC_CONFIG_MII_SPEED | 3955 MVNETA_GMAC_CONFIG_GMII_SPEED | 3956 MVNETA_GMAC_CONFIG_FULL_DUPLEX)) | 3957 MVNETA_GMAC_INBAND_AN_ENABLE | 3958 MVNETA_GMAC_AN_SPEED_EN | 3959 MVNETA_GMAC_AN_DUPLEX_EN; 3960 } else { 3961 /* 802.3z negotiation - only 1000base-X */ 3962 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X; 3963 new_clk = MVNETA_GMAC_1MS_CLOCK_ENABLE; 3964 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3965 MVNETA_GMAC_FORCE_LINK_PASS | 3966 MVNETA_GMAC_CONFIG_MII_SPEED)) | 3967 MVNETA_GMAC_INBAND_AN_ENABLE | 3968 MVNETA_GMAC_CONFIG_GMII_SPEED | 3969 /* The MAC only supports FD mode */ 3970 MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3971 3972 if (state->pause & MLO_PAUSE_AN && state->an_enabled) 3973 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN; 3974 } 3975 3976 /* Set the 1ms clock divisor */ 3977 if (new_clk == MVNETA_GMAC_1MS_CLOCK_ENABLE) 3978 new_clk |= clk_get_rate(pp->clk) / 1000; 3979 3980 /* Armada 370 documentation says we can only change the port mode 3981 * and in-band enable when the link is down, so force it down 3982 * while making these changes. We also do this for GMAC_CTRL2 3983 */ 3984 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X || 3985 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE || 3986 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) { 3987 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3988 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) | 3989 MVNETA_GMAC_FORCE_LINK_DOWN); 3990 } 3991 3992 3993 /* When at 2.5G, the link partner can send frames with shortened 3994 * preambles. 3995 */ 3996 if (state->interface == PHY_INTERFACE_MODE_2500BASEX) 3997 new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE; 3998 3999 if (pp->phy_interface != state->interface) { 4000 if (pp->comphy) 4001 WARN_ON(phy_power_off(pp->comphy)); 4002 WARN_ON(mvneta_config_interface(pp, state->interface)); 4003 } 4004 4005 if (new_ctrl0 != gmac_ctrl0) 4006 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0); 4007 if (new_ctrl2 != gmac_ctrl2) 4008 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2); 4009 if (new_ctrl4 != gmac_ctrl4) 4010 mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4); 4011 if (new_clk != gmac_clk) 4012 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk); 4013 if (new_an != gmac_an) 4014 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an); 4015 4016 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) { 4017 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 4018 MVNETA_GMAC2_PORT_RESET) != 0) 4019 continue; 4020 } 4021 } 4022 4023 static void mvneta_set_eee(struct mvneta_port *pp, bool enable) 4024 { 4025 u32 lpi_ctl1; 4026 4027 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1); 4028 if (enable) 4029 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE; 4030 else 4031 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE; 4032 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1); 4033 } 4034 4035 static void mvneta_mac_link_down(struct phylink_config *config, 4036 unsigned int mode, phy_interface_t interface) 4037 { 4038 struct net_device *ndev = to_net_dev(config->dev); 4039 struct mvneta_port *pp = netdev_priv(ndev); 4040 u32 val; 4041 4042 mvneta_port_down(pp); 4043 4044 if (!phylink_autoneg_inband(mode)) { 4045 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4046 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 4047 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 4048 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4049 } 4050 4051 pp->eee_active = false; 4052 mvneta_set_eee(pp, false); 4053 } 4054 4055 static void mvneta_mac_link_up(struct phylink_config *config, 4056 struct phy_device *phy, 4057 unsigned int mode, phy_interface_t interface, 4058 int speed, int duplex, 4059 bool tx_pause, bool rx_pause) 4060 { 4061 struct net_device *ndev = to_net_dev(config->dev); 4062 struct mvneta_port *pp = netdev_priv(ndev); 4063 u32 val; 4064 4065 if (!phylink_autoneg_inband(mode)) { 4066 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4067 val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN | 4068 MVNETA_GMAC_CONFIG_MII_SPEED | 4069 MVNETA_GMAC_CONFIG_GMII_SPEED | 4070 MVNETA_GMAC_CONFIG_FLOW_CTRL | 4071 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 4072 val |= MVNETA_GMAC_FORCE_LINK_PASS; 4073 4074 if (speed == SPEED_1000 || speed == SPEED_2500) 4075 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 4076 else if (speed == SPEED_100) 4077 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 4078 4079 if (duplex == DUPLEX_FULL) 4080 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 4081 4082 if (tx_pause || rx_pause) 4083 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4084 4085 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4086 } else { 4087 /* When inband doesn't cover flow control or flow control is 4088 * disabled, we need to manually configure it. This bit will 4089 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset. 4090 */ 4091 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4092 val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL; 4093 4094 if (tx_pause || rx_pause) 4095 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4096 4097 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4098 } 4099 4100 mvneta_port_up(pp); 4101 4102 if (phy && pp->eee_enabled) { 4103 pp->eee_active = phy_init_eee(phy, 0) >= 0; 4104 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled); 4105 } 4106 } 4107 4108 static const struct phylink_mac_ops mvneta_phylink_ops = { 4109 .validate = mvneta_validate, 4110 .mac_pcs_get_state = mvneta_mac_pcs_get_state, 4111 .mac_an_restart = mvneta_mac_an_restart, 4112 .mac_config = mvneta_mac_config, 4113 .mac_link_down = mvneta_mac_link_down, 4114 .mac_link_up = mvneta_mac_link_up, 4115 }; 4116 4117 static int mvneta_mdio_probe(struct mvneta_port *pp) 4118 { 4119 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 4120 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0); 4121 4122 if (err) 4123 netdev_err(pp->dev, "could not attach PHY: %d\n", err); 4124 4125 phylink_ethtool_get_wol(pp->phylink, &wol); 4126 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); 4127 4128 /* PHY WoL may be enabled but device wakeup disabled */ 4129 if (wol.supported) 4130 device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts); 4131 4132 return err; 4133 } 4134 4135 static void mvneta_mdio_remove(struct mvneta_port *pp) 4136 { 4137 phylink_disconnect_phy(pp->phylink); 4138 } 4139 4140 /* Electing a CPU must be done in an atomic way: it should be done 4141 * after or before the removal/insertion of a CPU and this function is 4142 * not reentrant. 4143 */ 4144 static void mvneta_percpu_elect(struct mvneta_port *pp) 4145 { 4146 int elected_cpu = 0, max_cpu, cpu, i = 0; 4147 4148 /* Use the cpu associated to the rxq when it is online, in all 4149 * the other cases, use the cpu 0 which can't be offline. 4150 */ 4151 if (cpu_online(pp->rxq_def)) 4152 elected_cpu = pp->rxq_def; 4153 4154 max_cpu = num_present_cpus(); 4155 4156 for_each_online_cpu(cpu) { 4157 int rxq_map = 0, txq_map = 0; 4158 int rxq; 4159 4160 for (rxq = 0; rxq < rxq_number; rxq++) 4161 if ((rxq % max_cpu) == cpu) 4162 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 4163 4164 if (cpu == elected_cpu) 4165 /* Map the default receive queue to the elected CPU */ 4166 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 4167 4168 /* We update the TX queue map only if we have one 4169 * queue. In this case we associate the TX queue to 4170 * the CPU bound to the default RX queue 4171 */ 4172 if (txq_number == 1) 4173 txq_map = (cpu == elected_cpu) ? 4174 MVNETA_CPU_TXQ_ACCESS(1) : 0; 4175 else 4176 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 4177 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 4178 4179 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 4180 4181 /* Update the interrupt mask on each CPU according the 4182 * new mapping 4183 */ 4184 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 4185 pp, true); 4186 i++; 4187 4188 } 4189 }; 4190 4191 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 4192 { 4193 int other_cpu; 4194 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4195 node_online); 4196 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4197 4198 /* Armada 3700's per-cpu interrupt for mvneta is broken, all interrupts 4199 * are routed to CPU 0, so we don't need all the cpu-hotplug support 4200 */ 4201 if (pp->neta_armada3700) 4202 return 0; 4203 4204 spin_lock(&pp->lock); 4205 /* 4206 * Configuring the driver for a new CPU while the driver is 4207 * stopping is racy, so just avoid it. 4208 */ 4209 if (pp->is_stopped) { 4210 spin_unlock(&pp->lock); 4211 return 0; 4212 } 4213 netif_tx_stop_all_queues(pp->dev); 4214 4215 /* 4216 * We have to synchronise on tha napi of each CPU except the one 4217 * just being woken up 4218 */ 4219 for_each_online_cpu(other_cpu) { 4220 if (other_cpu != cpu) { 4221 struct mvneta_pcpu_port *other_port = 4222 per_cpu_ptr(pp->ports, other_cpu); 4223 4224 napi_synchronize(&other_port->napi); 4225 } 4226 } 4227 4228 /* Mask all ethernet port interrupts */ 4229 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4230 napi_enable(&port->napi); 4231 4232 /* 4233 * Enable per-CPU interrupts on the CPU that is 4234 * brought up. 4235 */ 4236 mvneta_percpu_enable(pp); 4237 4238 /* 4239 * Enable per-CPU interrupt on the one CPU we care 4240 * about. 4241 */ 4242 mvneta_percpu_elect(pp); 4243 4244 /* Unmask all ethernet port interrupts */ 4245 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4246 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4247 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4248 MVNETA_CAUSE_LINK_CHANGE); 4249 netif_tx_start_all_queues(pp->dev); 4250 spin_unlock(&pp->lock); 4251 return 0; 4252 } 4253 4254 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 4255 { 4256 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4257 node_online); 4258 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4259 4260 /* 4261 * Thanks to this lock we are sure that any pending cpu election is 4262 * done. 4263 */ 4264 spin_lock(&pp->lock); 4265 /* Mask all ethernet port interrupts */ 4266 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4267 spin_unlock(&pp->lock); 4268 4269 napi_synchronize(&port->napi); 4270 napi_disable(&port->napi); 4271 /* Disable per-CPU interrupts on the CPU that is brought down. */ 4272 mvneta_percpu_disable(pp); 4273 return 0; 4274 } 4275 4276 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 4277 { 4278 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4279 node_dead); 4280 4281 /* Check if a new CPU must be elected now this on is down */ 4282 spin_lock(&pp->lock); 4283 mvneta_percpu_elect(pp); 4284 spin_unlock(&pp->lock); 4285 /* Unmask all ethernet port interrupts */ 4286 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4287 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4288 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4289 MVNETA_CAUSE_LINK_CHANGE); 4290 netif_tx_start_all_queues(pp->dev); 4291 return 0; 4292 } 4293 4294 static int mvneta_open(struct net_device *dev) 4295 { 4296 struct mvneta_port *pp = netdev_priv(dev); 4297 int ret; 4298 4299 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 4300 4301 ret = mvneta_setup_rxqs(pp); 4302 if (ret) 4303 return ret; 4304 4305 ret = mvneta_setup_txqs(pp); 4306 if (ret) 4307 goto err_cleanup_rxqs; 4308 4309 /* Connect to port interrupt line */ 4310 if (pp->neta_armada3700) 4311 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 4312 dev->name, pp); 4313 else 4314 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 4315 dev->name, pp->ports); 4316 if (ret) { 4317 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 4318 goto err_cleanup_txqs; 4319 } 4320 4321 if (!pp->neta_armada3700) { 4322 /* Enable per-CPU interrupt on all the CPU to handle our RX 4323 * queue interrupts 4324 */ 4325 on_each_cpu(mvneta_percpu_enable, pp, true); 4326 4327 pp->is_stopped = false; 4328 /* Register a CPU notifier to handle the case where our CPU 4329 * might be taken offline. 4330 */ 4331 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 4332 &pp->node_online); 4333 if (ret) 4334 goto err_free_irq; 4335 4336 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4337 &pp->node_dead); 4338 if (ret) 4339 goto err_free_online_hp; 4340 } 4341 4342 ret = mvneta_mdio_probe(pp); 4343 if (ret < 0) { 4344 netdev_err(dev, "cannot probe MDIO bus\n"); 4345 goto err_free_dead_hp; 4346 } 4347 4348 mvneta_start_dev(pp); 4349 4350 return 0; 4351 4352 err_free_dead_hp: 4353 if (!pp->neta_armada3700) 4354 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4355 &pp->node_dead); 4356 err_free_online_hp: 4357 if (!pp->neta_armada3700) 4358 cpuhp_state_remove_instance_nocalls(online_hpstate, 4359 &pp->node_online); 4360 err_free_irq: 4361 if (pp->neta_armada3700) { 4362 free_irq(pp->dev->irq, pp); 4363 } else { 4364 on_each_cpu(mvneta_percpu_disable, pp, true); 4365 free_percpu_irq(pp->dev->irq, pp->ports); 4366 } 4367 err_cleanup_txqs: 4368 mvneta_cleanup_txqs(pp); 4369 err_cleanup_rxqs: 4370 mvneta_cleanup_rxqs(pp); 4371 return ret; 4372 } 4373 4374 /* Stop the port, free port interrupt line */ 4375 static int mvneta_stop(struct net_device *dev) 4376 { 4377 struct mvneta_port *pp = netdev_priv(dev); 4378 4379 if (!pp->neta_armada3700) { 4380 /* Inform that we are stopping so we don't want to setup the 4381 * driver for new CPUs in the notifiers. The code of the 4382 * notifier for CPU online is protected by the same spinlock, 4383 * so when we get the lock, the notifer work is done. 4384 */ 4385 spin_lock(&pp->lock); 4386 pp->is_stopped = true; 4387 spin_unlock(&pp->lock); 4388 4389 mvneta_stop_dev(pp); 4390 mvneta_mdio_remove(pp); 4391 4392 cpuhp_state_remove_instance_nocalls(online_hpstate, 4393 &pp->node_online); 4394 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4395 &pp->node_dead); 4396 on_each_cpu(mvneta_percpu_disable, pp, true); 4397 free_percpu_irq(dev->irq, pp->ports); 4398 } else { 4399 mvneta_stop_dev(pp); 4400 mvneta_mdio_remove(pp); 4401 free_irq(dev->irq, pp); 4402 } 4403 4404 mvneta_cleanup_rxqs(pp); 4405 mvneta_cleanup_txqs(pp); 4406 4407 return 0; 4408 } 4409 4410 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4411 { 4412 struct mvneta_port *pp = netdev_priv(dev); 4413 4414 return phylink_mii_ioctl(pp->phylink, ifr, cmd); 4415 } 4416 4417 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog, 4418 struct netlink_ext_ack *extack) 4419 { 4420 bool need_update, running = netif_running(dev); 4421 struct mvneta_port *pp = netdev_priv(dev); 4422 struct bpf_prog *old_prog; 4423 4424 if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) { 4425 NL_SET_ERR_MSG_MOD(extack, "MTU too large for XDP"); 4426 return -EOPNOTSUPP; 4427 } 4428 4429 if (pp->bm_priv) { 4430 NL_SET_ERR_MSG_MOD(extack, 4431 "Hardware Buffer Management not supported on XDP"); 4432 return -EOPNOTSUPP; 4433 } 4434 4435 need_update = !!pp->xdp_prog != !!prog; 4436 if (running && need_update) 4437 mvneta_stop(dev); 4438 4439 old_prog = xchg(&pp->xdp_prog, prog); 4440 if (old_prog) 4441 bpf_prog_put(old_prog); 4442 4443 if (running && need_update) 4444 return mvneta_open(dev); 4445 4446 return 0; 4447 } 4448 4449 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4450 { 4451 switch (xdp->command) { 4452 case XDP_SETUP_PROG: 4453 return mvneta_xdp_setup(dev, xdp->prog, xdp->extack); 4454 default: 4455 return -EINVAL; 4456 } 4457 } 4458 4459 /* Ethtool methods */ 4460 4461 /* Set link ksettings (phy address, speed) for ethtools */ 4462 static int 4463 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 4464 const struct ethtool_link_ksettings *cmd) 4465 { 4466 struct mvneta_port *pp = netdev_priv(ndev); 4467 4468 return phylink_ethtool_ksettings_set(pp->phylink, cmd); 4469 } 4470 4471 /* Get link ksettings for ethtools */ 4472 static int 4473 mvneta_ethtool_get_link_ksettings(struct net_device *ndev, 4474 struct ethtool_link_ksettings *cmd) 4475 { 4476 struct mvneta_port *pp = netdev_priv(ndev); 4477 4478 return phylink_ethtool_ksettings_get(pp->phylink, cmd); 4479 } 4480 4481 static int mvneta_ethtool_nway_reset(struct net_device *dev) 4482 { 4483 struct mvneta_port *pp = netdev_priv(dev); 4484 4485 return phylink_ethtool_nway_reset(pp->phylink); 4486 } 4487 4488 /* Set interrupt coalescing for ethtools */ 4489 static int 4490 mvneta_ethtool_set_coalesce(struct net_device *dev, 4491 struct ethtool_coalesce *c, 4492 struct kernel_ethtool_coalesce *kernel_coal, 4493 struct netlink_ext_ack *extack) 4494 { 4495 struct mvneta_port *pp = netdev_priv(dev); 4496 int queue; 4497 4498 for (queue = 0; queue < rxq_number; queue++) { 4499 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4500 rxq->time_coal = c->rx_coalesce_usecs; 4501 rxq->pkts_coal = c->rx_max_coalesced_frames; 4502 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 4503 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 4504 } 4505 4506 for (queue = 0; queue < txq_number; queue++) { 4507 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4508 txq->done_pkts_coal = c->tx_max_coalesced_frames; 4509 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 4510 } 4511 4512 return 0; 4513 } 4514 4515 /* get coalescing for ethtools */ 4516 static int 4517 mvneta_ethtool_get_coalesce(struct net_device *dev, 4518 struct ethtool_coalesce *c, 4519 struct kernel_ethtool_coalesce *kernel_coal, 4520 struct netlink_ext_ack *extack) 4521 { 4522 struct mvneta_port *pp = netdev_priv(dev); 4523 4524 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 4525 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 4526 4527 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 4528 return 0; 4529 } 4530 4531 4532 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 4533 struct ethtool_drvinfo *drvinfo) 4534 { 4535 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 4536 sizeof(drvinfo->driver)); 4537 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 4538 sizeof(drvinfo->version)); 4539 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 4540 sizeof(drvinfo->bus_info)); 4541 } 4542 4543 4544 static void 4545 mvneta_ethtool_get_ringparam(struct net_device *netdev, 4546 struct ethtool_ringparam *ring, 4547 struct kernel_ethtool_ringparam *kernel_ring, 4548 struct netlink_ext_ack *extack) 4549 { 4550 struct mvneta_port *pp = netdev_priv(netdev); 4551 4552 ring->rx_max_pending = MVNETA_MAX_RXD; 4553 ring->tx_max_pending = MVNETA_MAX_TXD; 4554 ring->rx_pending = pp->rx_ring_size; 4555 ring->tx_pending = pp->tx_ring_size; 4556 } 4557 4558 static int 4559 mvneta_ethtool_set_ringparam(struct net_device *dev, 4560 struct ethtool_ringparam *ring, 4561 struct kernel_ethtool_ringparam *kernel_ring, 4562 struct netlink_ext_ack *extack) 4563 { 4564 struct mvneta_port *pp = netdev_priv(dev); 4565 4566 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 4567 return -EINVAL; 4568 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 4569 ring->rx_pending : MVNETA_MAX_RXD; 4570 4571 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 4572 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 4573 if (pp->tx_ring_size != ring->tx_pending) 4574 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 4575 pp->tx_ring_size, ring->tx_pending); 4576 4577 if (netif_running(dev)) { 4578 mvneta_stop(dev); 4579 if (mvneta_open(dev)) { 4580 netdev_err(dev, 4581 "error on opening device after ring param change\n"); 4582 return -ENOMEM; 4583 } 4584 } 4585 4586 return 0; 4587 } 4588 4589 static void mvneta_ethtool_get_pauseparam(struct net_device *dev, 4590 struct ethtool_pauseparam *pause) 4591 { 4592 struct mvneta_port *pp = netdev_priv(dev); 4593 4594 phylink_ethtool_get_pauseparam(pp->phylink, pause); 4595 } 4596 4597 static int mvneta_ethtool_set_pauseparam(struct net_device *dev, 4598 struct ethtool_pauseparam *pause) 4599 { 4600 struct mvneta_port *pp = netdev_priv(dev); 4601 4602 return phylink_ethtool_set_pauseparam(pp->phylink, pause); 4603 } 4604 4605 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 4606 u8 *data) 4607 { 4608 if (sset == ETH_SS_STATS) { 4609 int i; 4610 4611 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4612 memcpy(data + i * ETH_GSTRING_LEN, 4613 mvneta_statistics[i].name, ETH_GSTRING_LEN); 4614 } 4615 } 4616 4617 static void 4618 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp, 4619 struct mvneta_ethtool_stats *es) 4620 { 4621 unsigned int start; 4622 int cpu; 4623 4624 for_each_possible_cpu(cpu) { 4625 struct mvneta_pcpu_stats *stats; 4626 u64 skb_alloc_error; 4627 u64 refill_error; 4628 u64 xdp_redirect; 4629 u64 xdp_xmit_err; 4630 u64 xdp_tx_err; 4631 u64 xdp_pass; 4632 u64 xdp_drop; 4633 u64 xdp_xmit; 4634 u64 xdp_tx; 4635 4636 stats = per_cpu_ptr(pp->stats, cpu); 4637 do { 4638 start = u64_stats_fetch_begin_irq(&stats->syncp); 4639 skb_alloc_error = stats->es.skb_alloc_error; 4640 refill_error = stats->es.refill_error; 4641 xdp_redirect = stats->es.ps.xdp_redirect; 4642 xdp_pass = stats->es.ps.xdp_pass; 4643 xdp_drop = stats->es.ps.xdp_drop; 4644 xdp_xmit = stats->es.ps.xdp_xmit; 4645 xdp_xmit_err = stats->es.ps.xdp_xmit_err; 4646 xdp_tx = stats->es.ps.xdp_tx; 4647 xdp_tx_err = stats->es.ps.xdp_tx_err; 4648 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 4649 4650 es->skb_alloc_error += skb_alloc_error; 4651 es->refill_error += refill_error; 4652 es->ps.xdp_redirect += xdp_redirect; 4653 es->ps.xdp_pass += xdp_pass; 4654 es->ps.xdp_drop += xdp_drop; 4655 es->ps.xdp_xmit += xdp_xmit; 4656 es->ps.xdp_xmit_err += xdp_xmit_err; 4657 es->ps.xdp_tx += xdp_tx; 4658 es->ps.xdp_tx_err += xdp_tx_err; 4659 } 4660 } 4661 4662 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 4663 { 4664 struct mvneta_ethtool_stats stats = {}; 4665 const struct mvneta_statistic *s; 4666 void __iomem *base = pp->base; 4667 u32 high, low; 4668 u64 val; 4669 int i; 4670 4671 mvneta_ethtool_update_pcpu_stats(pp, &stats); 4672 for (i = 0, s = mvneta_statistics; 4673 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 4674 s++, i++) { 4675 switch (s->type) { 4676 case T_REG_32: 4677 val = readl_relaxed(base + s->offset); 4678 pp->ethtool_stats[i] += val; 4679 break; 4680 case T_REG_64: 4681 /* Docs say to read low 32-bit then high */ 4682 low = readl_relaxed(base + s->offset); 4683 high = readl_relaxed(base + s->offset + 4); 4684 val = (u64)high << 32 | low; 4685 pp->ethtool_stats[i] += val; 4686 break; 4687 case T_SW: 4688 switch (s->offset) { 4689 case ETHTOOL_STAT_EEE_WAKEUP: 4690 val = phylink_get_eee_err(pp->phylink); 4691 pp->ethtool_stats[i] += val; 4692 break; 4693 case ETHTOOL_STAT_SKB_ALLOC_ERR: 4694 pp->ethtool_stats[i] = stats.skb_alloc_error; 4695 break; 4696 case ETHTOOL_STAT_REFILL_ERR: 4697 pp->ethtool_stats[i] = stats.refill_error; 4698 break; 4699 case ETHTOOL_XDP_REDIRECT: 4700 pp->ethtool_stats[i] = stats.ps.xdp_redirect; 4701 break; 4702 case ETHTOOL_XDP_PASS: 4703 pp->ethtool_stats[i] = stats.ps.xdp_pass; 4704 break; 4705 case ETHTOOL_XDP_DROP: 4706 pp->ethtool_stats[i] = stats.ps.xdp_drop; 4707 break; 4708 case ETHTOOL_XDP_TX: 4709 pp->ethtool_stats[i] = stats.ps.xdp_tx; 4710 break; 4711 case ETHTOOL_XDP_TX_ERR: 4712 pp->ethtool_stats[i] = stats.ps.xdp_tx_err; 4713 break; 4714 case ETHTOOL_XDP_XMIT: 4715 pp->ethtool_stats[i] = stats.ps.xdp_xmit; 4716 break; 4717 case ETHTOOL_XDP_XMIT_ERR: 4718 pp->ethtool_stats[i] = stats.ps.xdp_xmit_err; 4719 break; 4720 } 4721 break; 4722 } 4723 } 4724 } 4725 4726 static void mvneta_ethtool_get_stats(struct net_device *dev, 4727 struct ethtool_stats *stats, u64 *data) 4728 { 4729 struct mvneta_port *pp = netdev_priv(dev); 4730 int i; 4731 4732 mvneta_ethtool_update_stats(pp); 4733 4734 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4735 *data++ = pp->ethtool_stats[i]; 4736 } 4737 4738 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 4739 { 4740 if (sset == ETH_SS_STATS) 4741 return ARRAY_SIZE(mvneta_statistics); 4742 return -EOPNOTSUPP; 4743 } 4744 4745 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 4746 { 4747 return MVNETA_RSS_LU_TABLE_SIZE; 4748 } 4749 4750 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 4751 struct ethtool_rxnfc *info, 4752 u32 *rules __always_unused) 4753 { 4754 switch (info->cmd) { 4755 case ETHTOOL_GRXRINGS: 4756 info->data = rxq_number; 4757 return 0; 4758 case ETHTOOL_GRXFH: 4759 return -EOPNOTSUPP; 4760 default: 4761 return -EOPNOTSUPP; 4762 } 4763 } 4764 4765 static int mvneta_config_rss(struct mvneta_port *pp) 4766 { 4767 int cpu; 4768 u32 val; 4769 4770 netif_tx_stop_all_queues(pp->dev); 4771 4772 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4773 4774 if (!pp->neta_armada3700) { 4775 /* We have to synchronise on the napi of each CPU */ 4776 for_each_online_cpu(cpu) { 4777 struct mvneta_pcpu_port *pcpu_port = 4778 per_cpu_ptr(pp->ports, cpu); 4779 4780 napi_synchronize(&pcpu_port->napi); 4781 napi_disable(&pcpu_port->napi); 4782 } 4783 } else { 4784 napi_synchronize(&pp->napi); 4785 napi_disable(&pp->napi); 4786 } 4787 4788 pp->rxq_def = pp->indir[0]; 4789 4790 /* Update unicast mapping */ 4791 mvneta_set_rx_mode(pp->dev); 4792 4793 /* Update val of portCfg register accordingly with all RxQueue types */ 4794 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 4795 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 4796 4797 /* Update the elected CPU matching the new rxq_def */ 4798 spin_lock(&pp->lock); 4799 mvneta_percpu_elect(pp); 4800 spin_unlock(&pp->lock); 4801 4802 if (!pp->neta_armada3700) { 4803 /* We have to synchronise on the napi of each CPU */ 4804 for_each_online_cpu(cpu) { 4805 struct mvneta_pcpu_port *pcpu_port = 4806 per_cpu_ptr(pp->ports, cpu); 4807 4808 napi_enable(&pcpu_port->napi); 4809 } 4810 } else { 4811 napi_enable(&pp->napi); 4812 } 4813 4814 netif_tx_start_all_queues(pp->dev); 4815 4816 return 0; 4817 } 4818 4819 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 4820 const u8 *key, const u8 hfunc) 4821 { 4822 struct mvneta_port *pp = netdev_priv(dev); 4823 4824 /* Current code for Armada 3700 doesn't support RSS features yet */ 4825 if (pp->neta_armada3700) 4826 return -EOPNOTSUPP; 4827 4828 /* We require at least one supported parameter to be changed 4829 * and no change in any of the unsupported parameters 4830 */ 4831 if (key || 4832 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 4833 return -EOPNOTSUPP; 4834 4835 if (!indir) 4836 return 0; 4837 4838 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 4839 4840 return mvneta_config_rss(pp); 4841 } 4842 4843 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 4844 u8 *hfunc) 4845 { 4846 struct mvneta_port *pp = netdev_priv(dev); 4847 4848 /* Current code for Armada 3700 doesn't support RSS features yet */ 4849 if (pp->neta_armada3700) 4850 return -EOPNOTSUPP; 4851 4852 if (hfunc) 4853 *hfunc = ETH_RSS_HASH_TOP; 4854 4855 if (!indir) 4856 return 0; 4857 4858 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 4859 4860 return 0; 4861 } 4862 4863 static void mvneta_ethtool_get_wol(struct net_device *dev, 4864 struct ethtool_wolinfo *wol) 4865 { 4866 struct mvneta_port *pp = netdev_priv(dev); 4867 4868 phylink_ethtool_get_wol(pp->phylink, wol); 4869 } 4870 4871 static int mvneta_ethtool_set_wol(struct net_device *dev, 4872 struct ethtool_wolinfo *wol) 4873 { 4874 struct mvneta_port *pp = netdev_priv(dev); 4875 int ret; 4876 4877 ret = phylink_ethtool_set_wol(pp->phylink, wol); 4878 if (!ret) 4879 device_set_wakeup_enable(&dev->dev, !!wol->wolopts); 4880 4881 return ret; 4882 } 4883 4884 static int mvneta_ethtool_get_eee(struct net_device *dev, 4885 struct ethtool_eee *eee) 4886 { 4887 struct mvneta_port *pp = netdev_priv(dev); 4888 u32 lpi_ctl0; 4889 4890 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4891 4892 eee->eee_enabled = pp->eee_enabled; 4893 eee->eee_active = pp->eee_active; 4894 eee->tx_lpi_enabled = pp->tx_lpi_enabled; 4895 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale; 4896 4897 return phylink_ethtool_get_eee(pp->phylink, eee); 4898 } 4899 4900 static int mvneta_ethtool_set_eee(struct net_device *dev, 4901 struct ethtool_eee *eee) 4902 { 4903 struct mvneta_port *pp = netdev_priv(dev); 4904 u32 lpi_ctl0; 4905 4906 /* The Armada 37x documents do not give limits for this other than 4907 * it being an 8-bit register. 4908 */ 4909 if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255) 4910 return -EINVAL; 4911 4912 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4913 lpi_ctl0 &= ~(0xff << 8); 4914 lpi_ctl0 |= eee->tx_lpi_timer << 8; 4915 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0); 4916 4917 pp->eee_enabled = eee->eee_enabled; 4918 pp->tx_lpi_enabled = eee->tx_lpi_enabled; 4919 4920 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled); 4921 4922 return phylink_ethtool_set_eee(pp->phylink, eee); 4923 } 4924 4925 static void mvneta_clear_rx_prio_map(struct mvneta_port *pp) 4926 { 4927 mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, 0); 4928 } 4929 4930 static void mvneta_map_vlan_prio_to_rxq(struct mvneta_port *pp, u8 pri, u8 rxq) 4931 { 4932 u32 val = mvreg_read(pp, MVNETA_VLAN_PRIO_TO_RXQ); 4933 4934 val &= ~MVNETA_VLAN_PRIO_RXQ_MAP(pri, 0x7); 4935 val |= MVNETA_VLAN_PRIO_RXQ_MAP(pri, rxq); 4936 4937 mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, val); 4938 } 4939 4940 static int mvneta_enable_per_queue_rate_limit(struct mvneta_port *pp) 4941 { 4942 unsigned long core_clk_rate; 4943 u32 refill_cycles; 4944 u32 val; 4945 4946 core_clk_rate = clk_get_rate(pp->clk); 4947 if (!core_clk_rate) 4948 return -EINVAL; 4949 4950 refill_cycles = MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS / 4951 (NSEC_PER_SEC / core_clk_rate); 4952 4953 if (refill_cycles > MVNETA_REFILL_MAX_NUM_CLK) 4954 return -EINVAL; 4955 4956 /* Enable bw limit algorithm version 3 */ 4957 val = mvreg_read(pp, MVNETA_TXQ_CMD1_REG); 4958 val &= ~(MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 | MVNETA_TXQ_CMD1_BW_LIM_EN); 4959 mvreg_write(pp, MVNETA_TXQ_CMD1_REG, val); 4960 4961 /* Set the base refill rate */ 4962 mvreg_write(pp, MVNETA_REFILL_NUM_CLK_REG, refill_cycles); 4963 4964 return 0; 4965 } 4966 4967 static void mvneta_disable_per_queue_rate_limit(struct mvneta_port *pp) 4968 { 4969 u32 val = mvreg_read(pp, MVNETA_TXQ_CMD1_REG); 4970 4971 val |= (MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 | MVNETA_TXQ_CMD1_BW_LIM_EN); 4972 mvreg_write(pp, MVNETA_TXQ_CMD1_REG, val); 4973 } 4974 4975 static int mvneta_setup_queue_rates(struct mvneta_port *pp, int queue, 4976 u64 min_rate, u64 max_rate) 4977 { 4978 u32 refill_val, rem; 4979 u32 val = 0; 4980 4981 /* Convert to from Bps to bps */ 4982 max_rate *= 8; 4983 4984 if (min_rate) 4985 return -EINVAL; 4986 4987 refill_val = div_u64_rem(max_rate, MVNETA_TXQ_RATE_LIMIT_RESOLUTION, 4988 &rem); 4989 4990 if (rem || !refill_val || 4991 refill_val > MVNETA_TXQ_BUCKET_REFILL_VALUE_MAX) 4992 return -EINVAL; 4993 4994 val = refill_val; 4995 val |= (MVNETA_TXQ_BUCKET_REFILL_PERIOD << 4996 MVNETA_TXQ_BUCKET_REFILL_PERIOD_SHIFT); 4997 4998 mvreg_write(pp, MVNETA_TXQ_BUCKET_REFILL_REG(queue), val); 4999 5000 return 0; 5001 } 5002 5003 static int mvneta_setup_mqprio(struct net_device *dev, 5004 struct tc_mqprio_qopt_offload *mqprio) 5005 { 5006 struct mvneta_port *pp = netdev_priv(dev); 5007 int rxq, txq, tc, ret; 5008 u8 num_tc; 5009 5010 if (mqprio->qopt.hw != TC_MQPRIO_HW_OFFLOAD_TCS) 5011 return 0; 5012 5013 num_tc = mqprio->qopt.num_tc; 5014 5015 if (num_tc > rxq_number) 5016 return -EINVAL; 5017 5018 mvneta_clear_rx_prio_map(pp); 5019 5020 if (!num_tc) { 5021 mvneta_disable_per_queue_rate_limit(pp); 5022 netdev_reset_tc(dev); 5023 return 0; 5024 } 5025 5026 netdev_set_num_tc(dev, mqprio->qopt.num_tc); 5027 5028 for (tc = 0; tc < mqprio->qopt.num_tc; tc++) { 5029 netdev_set_tc_queue(dev, tc, mqprio->qopt.count[tc], 5030 mqprio->qopt.offset[tc]); 5031 5032 for (rxq = mqprio->qopt.offset[tc]; 5033 rxq < mqprio->qopt.count[tc] + mqprio->qopt.offset[tc]; 5034 rxq++) { 5035 if (rxq >= rxq_number) 5036 return -EINVAL; 5037 5038 mvneta_map_vlan_prio_to_rxq(pp, tc, rxq); 5039 } 5040 } 5041 5042 if (mqprio->shaper != TC_MQPRIO_SHAPER_BW_RATE) { 5043 mvneta_disable_per_queue_rate_limit(pp); 5044 return 0; 5045 } 5046 5047 if (mqprio->qopt.num_tc > txq_number) 5048 return -EINVAL; 5049 5050 ret = mvneta_enable_per_queue_rate_limit(pp); 5051 if (ret) 5052 return ret; 5053 5054 for (tc = 0; tc < mqprio->qopt.num_tc; tc++) { 5055 for (txq = mqprio->qopt.offset[tc]; 5056 txq < mqprio->qopt.count[tc] + mqprio->qopt.offset[tc]; 5057 txq++) { 5058 if (txq >= txq_number) 5059 return -EINVAL; 5060 5061 ret = mvneta_setup_queue_rates(pp, txq, 5062 mqprio->min_rate[tc], 5063 mqprio->max_rate[tc]); 5064 if (ret) 5065 return ret; 5066 } 5067 } 5068 5069 return 0; 5070 } 5071 5072 static int mvneta_setup_tc(struct net_device *dev, enum tc_setup_type type, 5073 void *type_data) 5074 { 5075 switch (type) { 5076 case TC_SETUP_QDISC_MQPRIO: 5077 return mvneta_setup_mqprio(dev, type_data); 5078 default: 5079 return -EOPNOTSUPP; 5080 } 5081 } 5082 5083 static const struct net_device_ops mvneta_netdev_ops = { 5084 .ndo_open = mvneta_open, 5085 .ndo_stop = mvneta_stop, 5086 .ndo_start_xmit = mvneta_tx, 5087 .ndo_set_rx_mode = mvneta_set_rx_mode, 5088 .ndo_set_mac_address = mvneta_set_mac_addr, 5089 .ndo_change_mtu = mvneta_change_mtu, 5090 .ndo_fix_features = mvneta_fix_features, 5091 .ndo_get_stats64 = mvneta_get_stats64, 5092 .ndo_eth_ioctl = mvneta_ioctl, 5093 .ndo_bpf = mvneta_xdp, 5094 .ndo_xdp_xmit = mvneta_xdp_xmit, 5095 .ndo_setup_tc = mvneta_setup_tc, 5096 }; 5097 5098 static const struct ethtool_ops mvneta_eth_tool_ops = { 5099 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS | 5100 ETHTOOL_COALESCE_MAX_FRAMES, 5101 .nway_reset = mvneta_ethtool_nway_reset, 5102 .get_link = ethtool_op_get_link, 5103 .set_coalesce = mvneta_ethtool_set_coalesce, 5104 .get_coalesce = mvneta_ethtool_get_coalesce, 5105 .get_drvinfo = mvneta_ethtool_get_drvinfo, 5106 .get_ringparam = mvneta_ethtool_get_ringparam, 5107 .set_ringparam = mvneta_ethtool_set_ringparam, 5108 .get_pauseparam = mvneta_ethtool_get_pauseparam, 5109 .set_pauseparam = mvneta_ethtool_set_pauseparam, 5110 .get_strings = mvneta_ethtool_get_strings, 5111 .get_ethtool_stats = mvneta_ethtool_get_stats, 5112 .get_sset_count = mvneta_ethtool_get_sset_count, 5113 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 5114 .get_rxnfc = mvneta_ethtool_get_rxnfc, 5115 .get_rxfh = mvneta_ethtool_get_rxfh, 5116 .set_rxfh = mvneta_ethtool_set_rxfh, 5117 .get_link_ksettings = mvneta_ethtool_get_link_ksettings, 5118 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 5119 .get_wol = mvneta_ethtool_get_wol, 5120 .set_wol = mvneta_ethtool_set_wol, 5121 .get_eee = mvneta_ethtool_get_eee, 5122 .set_eee = mvneta_ethtool_set_eee, 5123 }; 5124 5125 /* Initialize hw */ 5126 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 5127 { 5128 int queue; 5129 5130 /* Disable port */ 5131 mvneta_port_disable(pp); 5132 5133 /* Set port default values */ 5134 mvneta_defaults_set(pp); 5135 5136 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); 5137 if (!pp->txqs) 5138 return -ENOMEM; 5139 5140 /* Initialize TX descriptor rings */ 5141 for (queue = 0; queue < txq_number; queue++) { 5142 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5143 txq->id = queue; 5144 txq->size = pp->tx_ring_size; 5145 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 5146 } 5147 5148 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); 5149 if (!pp->rxqs) 5150 return -ENOMEM; 5151 5152 /* Create Rx descriptor rings */ 5153 for (queue = 0; queue < rxq_number; queue++) { 5154 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5155 rxq->id = queue; 5156 rxq->size = pp->rx_ring_size; 5157 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 5158 rxq->time_coal = MVNETA_RX_COAL_USEC; 5159 rxq->buf_virt_addr 5160 = devm_kmalloc_array(pp->dev->dev.parent, 5161 rxq->size, 5162 sizeof(*rxq->buf_virt_addr), 5163 GFP_KERNEL); 5164 if (!rxq->buf_virt_addr) 5165 return -ENOMEM; 5166 } 5167 5168 return 0; 5169 } 5170 5171 /* platform glue : initialize decoding windows */ 5172 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 5173 const struct mbus_dram_target_info *dram) 5174 { 5175 u32 win_enable; 5176 u32 win_protect; 5177 int i; 5178 5179 for (i = 0; i < 6; i++) { 5180 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 5181 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 5182 5183 if (i < 4) 5184 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 5185 } 5186 5187 win_enable = 0x3f; 5188 win_protect = 0; 5189 5190 if (dram) { 5191 for (i = 0; i < dram->num_cs; i++) { 5192 const struct mbus_dram_window *cs = dram->cs + i; 5193 5194 mvreg_write(pp, MVNETA_WIN_BASE(i), 5195 (cs->base & 0xffff0000) | 5196 (cs->mbus_attr << 8) | 5197 dram->mbus_dram_target_id); 5198 5199 mvreg_write(pp, MVNETA_WIN_SIZE(i), 5200 (cs->size - 1) & 0xffff0000); 5201 5202 win_enable &= ~(1 << i); 5203 win_protect |= 3 << (2 * i); 5204 } 5205 } else { 5206 /* For Armada3700 open default 4GB Mbus window, leaving 5207 * arbitration of target/attribute to a different layer 5208 * of configuration. 5209 */ 5210 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 5211 win_enable &= ~BIT(0); 5212 win_protect = 3; 5213 } 5214 5215 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 5216 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 5217 } 5218 5219 /* Power up the port */ 5220 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 5221 { 5222 /* MAC Cause register should be cleared */ 5223 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 5224 5225 if (phy_mode != PHY_INTERFACE_MODE_QSGMII && 5226 phy_mode != PHY_INTERFACE_MODE_SGMII && 5227 !phy_interface_mode_is_8023z(phy_mode) && 5228 !phy_interface_mode_is_rgmii(phy_mode)) 5229 return -EINVAL; 5230 5231 return 0; 5232 } 5233 5234 /* Device initialization routine */ 5235 static int mvneta_probe(struct platform_device *pdev) 5236 { 5237 struct device_node *dn = pdev->dev.of_node; 5238 struct device_node *bm_node; 5239 struct mvneta_port *pp; 5240 struct net_device *dev; 5241 struct phylink *phylink; 5242 struct phy *comphy; 5243 char hw_mac_addr[ETH_ALEN]; 5244 phy_interface_t phy_mode; 5245 const char *mac_from; 5246 int tx_csum_limit; 5247 int err; 5248 int cpu; 5249 5250 dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port), 5251 txq_number, rxq_number); 5252 if (!dev) 5253 return -ENOMEM; 5254 5255 dev->irq = irq_of_parse_and_map(dn, 0); 5256 if (dev->irq == 0) 5257 return -EINVAL; 5258 5259 err = of_get_phy_mode(dn, &phy_mode); 5260 if (err) { 5261 dev_err(&pdev->dev, "incorrect phy-mode\n"); 5262 goto err_free_irq; 5263 } 5264 5265 comphy = devm_of_phy_get(&pdev->dev, dn, NULL); 5266 if (comphy == ERR_PTR(-EPROBE_DEFER)) { 5267 err = -EPROBE_DEFER; 5268 goto err_free_irq; 5269 } else if (IS_ERR(comphy)) { 5270 comphy = NULL; 5271 } 5272 5273 pp = netdev_priv(dev); 5274 spin_lock_init(&pp->lock); 5275 5276 pp->phylink_config.dev = &dev->dev; 5277 pp->phylink_config.type = PHYLINK_NETDEV; 5278 pp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_10 | 5279 MAC_100 | MAC_1000FD | MAC_2500FD; 5280 5281 phy_interface_set_rgmii(pp->phylink_config.supported_interfaces); 5282 __set_bit(PHY_INTERFACE_MODE_QSGMII, 5283 pp->phylink_config.supported_interfaces); 5284 if (comphy) { 5285 /* If a COMPHY is present, we can support any of the serdes 5286 * modes and switch between them. 5287 */ 5288 __set_bit(PHY_INTERFACE_MODE_SGMII, 5289 pp->phylink_config.supported_interfaces); 5290 __set_bit(PHY_INTERFACE_MODE_1000BASEX, 5291 pp->phylink_config.supported_interfaces); 5292 __set_bit(PHY_INTERFACE_MODE_2500BASEX, 5293 pp->phylink_config.supported_interfaces); 5294 } else if (phy_mode == PHY_INTERFACE_MODE_2500BASEX) { 5295 /* No COMPHY, with only 2500BASE-X mode supported */ 5296 __set_bit(PHY_INTERFACE_MODE_2500BASEX, 5297 pp->phylink_config.supported_interfaces); 5298 } else if (phy_mode == PHY_INTERFACE_MODE_1000BASEX || 5299 phy_mode == PHY_INTERFACE_MODE_SGMII) { 5300 /* No COMPHY, we can switch between 1000BASE-X and SGMII */ 5301 __set_bit(PHY_INTERFACE_MODE_1000BASEX, 5302 pp->phylink_config.supported_interfaces); 5303 __set_bit(PHY_INTERFACE_MODE_SGMII, 5304 pp->phylink_config.supported_interfaces); 5305 } 5306 5307 phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode, 5308 phy_mode, &mvneta_phylink_ops); 5309 if (IS_ERR(phylink)) { 5310 err = PTR_ERR(phylink); 5311 goto err_free_irq; 5312 } 5313 5314 dev->tx_queue_len = MVNETA_MAX_TXD; 5315 dev->watchdog_timeo = 5 * HZ; 5316 dev->netdev_ops = &mvneta_netdev_ops; 5317 5318 dev->ethtool_ops = &mvneta_eth_tool_ops; 5319 5320 pp->phylink = phylink; 5321 pp->comphy = comphy; 5322 pp->phy_interface = phy_mode; 5323 pp->dn = dn; 5324 5325 pp->rxq_def = rxq_def; 5326 pp->indir[0] = rxq_def; 5327 5328 /* Get special SoC configurations */ 5329 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 5330 pp->neta_armada3700 = true; 5331 5332 pp->clk = devm_clk_get(&pdev->dev, "core"); 5333 if (IS_ERR(pp->clk)) 5334 pp->clk = devm_clk_get(&pdev->dev, NULL); 5335 if (IS_ERR(pp->clk)) { 5336 err = PTR_ERR(pp->clk); 5337 goto err_free_phylink; 5338 } 5339 5340 clk_prepare_enable(pp->clk); 5341 5342 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 5343 if (!IS_ERR(pp->clk_bus)) 5344 clk_prepare_enable(pp->clk_bus); 5345 5346 pp->base = devm_platform_ioremap_resource(pdev, 0); 5347 if (IS_ERR(pp->base)) { 5348 err = PTR_ERR(pp->base); 5349 goto err_clk; 5350 } 5351 5352 /* Alloc per-cpu port structure */ 5353 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 5354 if (!pp->ports) { 5355 err = -ENOMEM; 5356 goto err_clk; 5357 } 5358 5359 /* Alloc per-cpu stats */ 5360 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 5361 if (!pp->stats) { 5362 err = -ENOMEM; 5363 goto err_free_ports; 5364 } 5365 5366 err = of_get_ethdev_address(dn, dev); 5367 if (!err) { 5368 mac_from = "device tree"; 5369 } else { 5370 mvneta_get_mac_addr(pp, hw_mac_addr); 5371 if (is_valid_ether_addr(hw_mac_addr)) { 5372 mac_from = "hardware"; 5373 eth_hw_addr_set(dev, hw_mac_addr); 5374 } else { 5375 mac_from = "random"; 5376 eth_hw_addr_random(dev); 5377 } 5378 } 5379 5380 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 5381 if (tx_csum_limit < 0 || 5382 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 5383 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5384 dev_info(&pdev->dev, 5385 "Wrong TX csum limit in DT, set to %dB\n", 5386 MVNETA_TX_CSUM_DEF_SIZE); 5387 } 5388 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 5389 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5390 } else { 5391 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 5392 } 5393 5394 pp->tx_csum_limit = tx_csum_limit; 5395 5396 pp->dram_target_info = mv_mbus_dram_info(); 5397 /* Armada3700 requires setting default configuration of Mbus 5398 * windows, however without using filled mbus_dram_target_info 5399 * structure. 5400 */ 5401 if (pp->dram_target_info || pp->neta_armada3700) 5402 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5403 5404 pp->tx_ring_size = MVNETA_MAX_TXD; 5405 pp->rx_ring_size = MVNETA_MAX_RXD; 5406 5407 pp->dev = dev; 5408 SET_NETDEV_DEV(dev, &pdev->dev); 5409 5410 pp->id = global_port_id++; 5411 5412 /* Obtain access to BM resources if enabled and already initialized */ 5413 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 5414 if (bm_node) { 5415 pp->bm_priv = mvneta_bm_get(bm_node); 5416 if (pp->bm_priv) { 5417 err = mvneta_bm_port_init(pdev, pp); 5418 if (err < 0) { 5419 dev_info(&pdev->dev, 5420 "use SW buffer management\n"); 5421 mvneta_bm_put(pp->bm_priv); 5422 pp->bm_priv = NULL; 5423 } 5424 } 5425 /* Set RX packet offset correction for platforms, whose 5426 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 5427 * platforms and 0B for 32-bit ones. 5428 */ 5429 pp->rx_offset_correction = max(0, 5430 NET_SKB_PAD - 5431 MVNETA_RX_PKT_OFFSET_CORRECTION); 5432 } 5433 of_node_put(bm_node); 5434 5435 /* sw buffer management */ 5436 if (!pp->bm_priv) 5437 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5438 5439 err = mvneta_init(&pdev->dev, pp); 5440 if (err < 0) 5441 goto err_netdev; 5442 5443 err = mvneta_port_power_up(pp, pp->phy_interface); 5444 if (err < 0) { 5445 dev_err(&pdev->dev, "can't power up port\n"); 5446 goto err_netdev; 5447 } 5448 5449 /* Armada3700 network controller does not support per-cpu 5450 * operation, so only single NAPI should be initialized. 5451 */ 5452 if (pp->neta_armada3700) { 5453 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 5454 } else { 5455 for_each_present_cpu(cpu) { 5456 struct mvneta_pcpu_port *port = 5457 per_cpu_ptr(pp->ports, cpu); 5458 5459 netif_napi_add(dev, &port->napi, mvneta_poll, 5460 NAPI_POLL_WEIGHT); 5461 port->pp = pp; 5462 } 5463 } 5464 5465 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5466 NETIF_F_TSO | NETIF_F_RXCSUM; 5467 dev->hw_features |= dev->features; 5468 dev->vlan_features |= dev->features; 5469 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 5470 netif_set_gso_max_segs(dev, MVNETA_MAX_TSO_SEGS); 5471 5472 /* MTU range: 68 - 9676 */ 5473 dev->min_mtu = ETH_MIN_MTU; 5474 /* 9676 == 9700 - 20 and rounding to 8 */ 5475 dev->max_mtu = 9676; 5476 5477 err = register_netdev(dev); 5478 if (err < 0) { 5479 dev_err(&pdev->dev, "failed to register\n"); 5480 goto err_netdev; 5481 } 5482 5483 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 5484 dev->dev_addr); 5485 5486 platform_set_drvdata(pdev, pp->dev); 5487 5488 return 0; 5489 5490 err_netdev: 5491 if (pp->bm_priv) { 5492 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5493 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5494 1 << pp->id); 5495 mvneta_bm_put(pp->bm_priv); 5496 } 5497 free_percpu(pp->stats); 5498 err_free_ports: 5499 free_percpu(pp->ports); 5500 err_clk: 5501 clk_disable_unprepare(pp->clk_bus); 5502 clk_disable_unprepare(pp->clk); 5503 err_free_phylink: 5504 if (pp->phylink) 5505 phylink_destroy(pp->phylink); 5506 err_free_irq: 5507 irq_dispose_mapping(dev->irq); 5508 return err; 5509 } 5510 5511 /* Device removal routine */ 5512 static int mvneta_remove(struct platform_device *pdev) 5513 { 5514 struct net_device *dev = platform_get_drvdata(pdev); 5515 struct mvneta_port *pp = netdev_priv(dev); 5516 5517 unregister_netdev(dev); 5518 clk_disable_unprepare(pp->clk_bus); 5519 clk_disable_unprepare(pp->clk); 5520 free_percpu(pp->ports); 5521 free_percpu(pp->stats); 5522 irq_dispose_mapping(dev->irq); 5523 phylink_destroy(pp->phylink); 5524 5525 if (pp->bm_priv) { 5526 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5527 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5528 1 << pp->id); 5529 mvneta_bm_put(pp->bm_priv); 5530 } 5531 5532 return 0; 5533 } 5534 5535 #ifdef CONFIG_PM_SLEEP 5536 static int mvneta_suspend(struct device *device) 5537 { 5538 int queue; 5539 struct net_device *dev = dev_get_drvdata(device); 5540 struct mvneta_port *pp = netdev_priv(dev); 5541 5542 if (!netif_running(dev)) 5543 goto clean_exit; 5544 5545 if (!pp->neta_armada3700) { 5546 spin_lock(&pp->lock); 5547 pp->is_stopped = true; 5548 spin_unlock(&pp->lock); 5549 5550 cpuhp_state_remove_instance_nocalls(online_hpstate, 5551 &pp->node_online); 5552 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5553 &pp->node_dead); 5554 } 5555 5556 rtnl_lock(); 5557 mvneta_stop_dev(pp); 5558 rtnl_unlock(); 5559 5560 for (queue = 0; queue < rxq_number; queue++) { 5561 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5562 5563 mvneta_rxq_drop_pkts(pp, rxq); 5564 } 5565 5566 for (queue = 0; queue < txq_number; queue++) { 5567 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5568 5569 mvneta_txq_hw_deinit(pp, txq); 5570 } 5571 5572 clean_exit: 5573 netif_device_detach(dev); 5574 clk_disable_unprepare(pp->clk_bus); 5575 clk_disable_unprepare(pp->clk); 5576 5577 return 0; 5578 } 5579 5580 static int mvneta_resume(struct device *device) 5581 { 5582 struct platform_device *pdev = to_platform_device(device); 5583 struct net_device *dev = dev_get_drvdata(device); 5584 struct mvneta_port *pp = netdev_priv(dev); 5585 int err, queue; 5586 5587 clk_prepare_enable(pp->clk); 5588 if (!IS_ERR(pp->clk_bus)) 5589 clk_prepare_enable(pp->clk_bus); 5590 if (pp->dram_target_info || pp->neta_armada3700) 5591 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5592 if (pp->bm_priv) { 5593 err = mvneta_bm_port_init(pdev, pp); 5594 if (err < 0) { 5595 dev_info(&pdev->dev, "use SW buffer management\n"); 5596 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5597 pp->bm_priv = NULL; 5598 } 5599 } 5600 mvneta_defaults_set(pp); 5601 err = mvneta_port_power_up(pp, pp->phy_interface); 5602 if (err < 0) { 5603 dev_err(device, "can't power up port\n"); 5604 return err; 5605 } 5606 5607 netif_device_attach(dev); 5608 5609 if (!netif_running(dev)) 5610 return 0; 5611 5612 for (queue = 0; queue < rxq_number; queue++) { 5613 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5614 5615 rxq->next_desc_to_proc = 0; 5616 mvneta_rxq_hw_init(pp, rxq); 5617 } 5618 5619 for (queue = 0; queue < txq_number; queue++) { 5620 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5621 5622 txq->next_desc_to_proc = 0; 5623 mvneta_txq_hw_init(pp, txq); 5624 } 5625 5626 if (!pp->neta_armada3700) { 5627 spin_lock(&pp->lock); 5628 pp->is_stopped = false; 5629 spin_unlock(&pp->lock); 5630 cpuhp_state_add_instance_nocalls(online_hpstate, 5631 &pp->node_online); 5632 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5633 &pp->node_dead); 5634 } 5635 5636 rtnl_lock(); 5637 mvneta_start_dev(pp); 5638 rtnl_unlock(); 5639 mvneta_set_rx_mode(dev); 5640 5641 return 0; 5642 } 5643 #endif 5644 5645 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); 5646 5647 static const struct of_device_id mvneta_match[] = { 5648 { .compatible = "marvell,armada-370-neta" }, 5649 { .compatible = "marvell,armada-xp-neta" }, 5650 { .compatible = "marvell,armada-3700-neta" }, 5651 { } 5652 }; 5653 MODULE_DEVICE_TABLE(of, mvneta_match); 5654 5655 static struct platform_driver mvneta_driver = { 5656 .probe = mvneta_probe, 5657 .remove = mvneta_remove, 5658 .driver = { 5659 .name = MVNETA_DRIVER_NAME, 5660 .of_match_table = mvneta_match, 5661 .pm = &mvneta_pm_ops, 5662 }, 5663 }; 5664 5665 static int __init mvneta_driver_init(void) 5666 { 5667 int ret; 5668 5669 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online", 5670 mvneta_cpu_online, 5671 mvneta_cpu_down_prepare); 5672 if (ret < 0) 5673 goto out; 5674 online_hpstate = ret; 5675 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 5676 NULL, mvneta_cpu_dead); 5677 if (ret) 5678 goto err_dead; 5679 5680 ret = platform_driver_register(&mvneta_driver); 5681 if (ret) 5682 goto err; 5683 return 0; 5684 5685 err: 5686 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5687 err_dead: 5688 cpuhp_remove_multi_state(online_hpstate); 5689 out: 5690 return ret; 5691 } 5692 module_init(mvneta_driver_init); 5693 5694 static void __exit mvneta_driver_exit(void) 5695 { 5696 platform_driver_unregister(&mvneta_driver); 5697 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5698 cpuhp_remove_multi_state(online_hpstate); 5699 } 5700 module_exit(mvneta_driver_exit); 5701 5702 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 5703 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 5704 MODULE_LICENSE("GPL"); 5705 5706 module_param(rxq_number, int, 0444); 5707 module_param(txq_number, int, 0444); 5708 5709 module_param(rxq_def, int, 0444); 5710 module_param(rx_copybreak, int, 0644); 5711