xref: /linux/drivers/net/ethernet/marvell/mvneta.c (revision 93a3545d812ae7cfe4426374e00a7d8f64ac02e0)
1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40 #include <net/page_pool.h>
41 #include <linux/bpf_trace.h>
42 
43 /* Registers */
44 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
45 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
46 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
47 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
48 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
49 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
50 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
51 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
52 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
53 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
54 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
55 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
56 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
57 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
58 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
59 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
61 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
62 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
64 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
65 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
66 #define MVNETA_PORT_RX_RESET                    0x1cc0
67 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
68 #define MVNETA_PHY_ADDR                         0x2000
69 #define      MVNETA_PHY_ADDR_MASK               0x1f
70 #define MVNETA_MBUS_RETRY                       0x2010
71 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
72 #define MVNETA_UNIT_CONTROL                     0x20B0
73 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
74 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
75 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
76 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
77 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
78 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
79 #define MVNETA_PORT_CONFIG                      0x2400
80 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
81 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
82 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
83 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
84 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
85 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
86 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
87 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
88 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
89 						 MVNETA_DEF_RXQ_ARP(q)	 | \
90 						 MVNETA_DEF_RXQ_TCP(q)	 | \
91 						 MVNETA_DEF_RXQ_UDP(q)	 | \
92 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
93 						 MVNETA_TX_UNSET_ERR_SUM | \
94 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
95 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
96 #define MVNETA_MAC_ADDR_LOW                      0x2414
97 #define MVNETA_MAC_ADDR_HIGH                     0x2418
98 #define MVNETA_SDMA_CONFIG                       0x241c
99 #define      MVNETA_SDMA_BRST_SIZE_16            4
100 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
101 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
102 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
103 #define      MVNETA_DESC_SWAP                    BIT(6)
104 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
105 #define MVNETA_PORT_STATUS                       0x2444
106 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
107 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
108 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
109 /* Only exists on Armada XP and Armada 370 */
110 #define MVNETA_SERDES_CFG			 0x24A0
111 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
112 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
113 #define      MVNETA_HSGMII_SERDES_PROTO		 0x1107
114 #define MVNETA_TYPE_PRIO                         0x24bc
115 #define      MVNETA_FORCE_UNI                    BIT(21)
116 #define MVNETA_TXQ_CMD_1                         0x24e4
117 #define MVNETA_TXQ_CMD                           0x2448
118 #define      MVNETA_TXQ_DISABLE_SHIFT            8
119 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
120 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
121 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
122 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
123 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
124 #define MVNETA_ACC_MODE                          0x2500
125 #define MVNETA_BM_ADDRESS                        0x2504
126 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
127 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
128 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
129 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
130 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
131 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
132 
133 /* Exception Interrupt Port/Queue Cause register
134  *
135  * Their behavior depend of the mapping done using the PCPX2Q
136  * registers. For a given CPU if the bit associated to a queue is not
137  * set, then for the register a read from this CPU will always return
138  * 0 and a write won't do anything
139  */
140 
141 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
142 #define MVNETA_INTR_NEW_MASK                     0x25a4
143 
144 /* bits  0..7  = TXQ SENT, one bit per queue.
145  * bits  8..15 = RXQ OCCUP, one bit per queue.
146  * bits 16..23 = RXQ FREE, one bit per queue.
147  * bit  29 = OLD_REG_SUM, see old reg ?
148  * bit  30 = TX_ERR_SUM, one bit for 4 ports
149  * bit  31 = MISC_SUM,   one bit for 4 ports
150  */
151 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
152 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
153 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
154 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
155 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
156 
157 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
158 #define MVNETA_INTR_OLD_MASK                     0x25ac
159 
160 /* Data Path Port/Queue Cause Register */
161 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
162 #define MVNETA_INTR_MISC_MASK                    0x25b4
163 
164 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
165 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
166 #define      MVNETA_CAUSE_PTP                    BIT(4)
167 
168 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
169 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
170 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
171 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
172 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
173 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
174 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
175 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
176 
177 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
178 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
179 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
180 
181 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
182 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
183 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
184 
185 #define MVNETA_INTR_ENABLE                       0x25b8
186 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
187 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
188 
189 #define MVNETA_RXQ_CMD                           0x2680
190 #define      MVNETA_RXQ_DISABLE_SHIFT            8
191 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
192 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
193 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
194 #define MVNETA_GMAC_CTRL_0                       0x2c00
195 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
196 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
197 #define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
198 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
199 #define MVNETA_GMAC_CTRL_2                       0x2c08
200 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
201 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
202 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
203 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
204 #define MVNETA_GMAC_STATUS                       0x2c10
205 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
206 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
207 #define      MVNETA_GMAC_SPEED_100               BIT(2)
208 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
209 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
210 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
211 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
212 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
213 #define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
214 #define      MVNETA_GMAC_SYNC_OK                 BIT(14)
215 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
216 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
217 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
218 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
219 #define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
220 #define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
221 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
222 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
223 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
224 #define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
225 #define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
226 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
227 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
228 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
229 #define MVNETA_GMAC_CTRL_4                       0x2c90
230 #define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
231 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
232 #define      MVNETA_MIB_LATE_COLLISION           0x7c
233 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
234 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
235 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
236 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
237 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
238 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
239 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
240 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
241 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
242 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
243 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
244 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
245 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
246 #define MVNETA_PORT_TX_RESET                     0x3cf0
247 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
248 #define MVNETA_TX_MTU                            0x3e0c
249 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
250 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
251 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
252 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
253 
254 #define MVNETA_LPI_CTRL_0                        0x2cc0
255 #define MVNETA_LPI_CTRL_1                        0x2cc4
256 #define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
257 #define MVNETA_LPI_CTRL_2                        0x2cc8
258 #define MVNETA_LPI_STATUS                        0x2ccc
259 
260 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
261 
262 /* Descriptor ring Macros */
263 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
264 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
265 
266 /* Various constants */
267 
268 /* Coalescing */
269 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
270 #define MVNETA_RX_COAL_PKTS		32
271 #define MVNETA_RX_COAL_USEC		100
272 
273 /* The two bytes Marvell header. Either contains a special value used
274  * by Marvell switches when a specific hardware mode is enabled (not
275  * supported by this driver) or is filled automatically by zeroes on
276  * the RX side. Those two bytes being at the front of the Ethernet
277  * header, they allow to have the IP header aligned on a 4 bytes
278  * boundary automatically: the hardware skips those two bytes on its
279  * own.
280  */
281 #define MVNETA_MH_SIZE			2
282 
283 #define MVNETA_VLAN_TAG_LEN             4
284 
285 #define MVNETA_TX_CSUM_DEF_SIZE		1600
286 #define MVNETA_TX_CSUM_MAX_SIZE		9800
287 #define MVNETA_ACC_MODE_EXT1		1
288 #define MVNETA_ACC_MODE_EXT2		2
289 
290 #define MVNETA_MAX_DECODE_WIN		6
291 
292 /* Timeout constants */
293 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
294 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
295 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
296 
297 #define MVNETA_TX_MTU_MAX		0x3ffff
298 
299 /* The RSS lookup table actually has 256 entries but we do not use
300  * them yet
301  */
302 #define MVNETA_RSS_LU_TABLE_SIZE	1
303 
304 /* Max number of Rx descriptors */
305 #define MVNETA_MAX_RXD 512
306 
307 /* Max number of Tx descriptors */
308 #define MVNETA_MAX_TXD 1024
309 
310 /* Max number of allowed TCP segments for software TSO */
311 #define MVNETA_MAX_TSO_SEGS 100
312 
313 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
314 
315 /* descriptor aligned size */
316 #define MVNETA_DESC_ALIGNED_SIZE	32
317 
318 /* Number of bytes to be taken into account by HW when putting incoming data
319  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
320  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
321  */
322 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
323 
324 #define MVNETA_RX_PKT_SIZE(mtu) \
325 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
326 	      ETH_HLEN + ETH_FCS_LEN,			     \
327 	      cache_line_size())
328 
329 /* Driver assumes that the last 3 bits are 0 */
330 #define MVNETA_SKB_HEADROOM	ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8)
331 #define MVNETA_SKB_PAD	(SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
332 			 MVNETA_SKB_HEADROOM))
333 #define MVNETA_SKB_SIZE(len)	(SKB_DATA_ALIGN(len) + MVNETA_SKB_PAD)
334 #define MVNETA_MAX_RX_BUF_SIZE	(PAGE_SIZE - MVNETA_SKB_PAD)
335 
336 #define IS_TSO_HEADER(txq, addr) \
337 	((addr >= txq->tso_hdrs_phys) && \
338 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
339 
340 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
341 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
342 
343 enum {
344 	ETHTOOL_STAT_EEE_WAKEUP,
345 	ETHTOOL_STAT_SKB_ALLOC_ERR,
346 	ETHTOOL_STAT_REFILL_ERR,
347 	ETHTOOL_XDP_REDIRECT,
348 	ETHTOOL_XDP_PASS,
349 	ETHTOOL_XDP_DROP,
350 	ETHTOOL_XDP_TX,
351 	ETHTOOL_XDP_TX_ERR,
352 	ETHTOOL_XDP_XMIT,
353 	ETHTOOL_XDP_XMIT_ERR,
354 	ETHTOOL_MAX_STATS,
355 };
356 
357 struct mvneta_statistic {
358 	unsigned short offset;
359 	unsigned short type;
360 	const char name[ETH_GSTRING_LEN];
361 };
362 
363 #define T_REG_32	32
364 #define T_REG_64	64
365 #define T_SW		1
366 
367 #define MVNETA_XDP_PASS		0
368 #define MVNETA_XDP_DROPPED	BIT(0)
369 #define MVNETA_XDP_TX		BIT(1)
370 #define MVNETA_XDP_REDIR	BIT(2)
371 
372 static const struct mvneta_statistic mvneta_statistics[] = {
373 	{ 0x3000, T_REG_64, "good_octets_received", },
374 	{ 0x3010, T_REG_32, "good_frames_received", },
375 	{ 0x3008, T_REG_32, "bad_octets_received", },
376 	{ 0x3014, T_REG_32, "bad_frames_received", },
377 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
378 	{ 0x301c, T_REG_32, "multicast_frames_received", },
379 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
380 	{ 0x3058, T_REG_32, "good_fc_received", },
381 	{ 0x305c, T_REG_32, "bad_fc_received", },
382 	{ 0x3060, T_REG_32, "undersize_received", },
383 	{ 0x3064, T_REG_32, "fragments_received", },
384 	{ 0x3068, T_REG_32, "oversize_received", },
385 	{ 0x306c, T_REG_32, "jabber_received", },
386 	{ 0x3070, T_REG_32, "mac_receive_error", },
387 	{ 0x3074, T_REG_32, "bad_crc_event", },
388 	{ 0x3078, T_REG_32, "collision", },
389 	{ 0x307c, T_REG_32, "late_collision", },
390 	{ 0x2484, T_REG_32, "rx_discard", },
391 	{ 0x2488, T_REG_32, "rx_overrun", },
392 	{ 0x3020, T_REG_32, "frames_64_octets", },
393 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
394 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
395 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
396 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
397 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
398 	{ 0x3038, T_REG_64, "good_octets_sent", },
399 	{ 0x3040, T_REG_32, "good_frames_sent", },
400 	{ 0x3044, T_REG_32, "excessive_collision", },
401 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
402 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
403 	{ 0x3054, T_REG_32, "fc_sent", },
404 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
405 	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
406 	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
407 	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
408 	{ ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
409 	{ ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
410 	{ ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
411 	{ ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
412 	{ ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
413 	{ ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
414 	{ ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
415 };
416 
417 struct mvneta_stats {
418 	u64	rx_packets;
419 	u64	rx_bytes;
420 	u64	tx_packets;
421 	u64	tx_bytes;
422 	/* xdp */
423 	u64	xdp_redirect;
424 	u64	xdp_pass;
425 	u64	xdp_drop;
426 	u64	xdp_xmit;
427 	u64	xdp_xmit_err;
428 	u64	xdp_tx;
429 	u64	xdp_tx_err;
430 };
431 
432 struct mvneta_ethtool_stats {
433 	struct mvneta_stats ps;
434 	u64	skb_alloc_error;
435 	u64	refill_error;
436 };
437 
438 struct mvneta_pcpu_stats {
439 	struct u64_stats_sync syncp;
440 
441 	struct mvneta_ethtool_stats es;
442 	u64	rx_dropped;
443 	u64	rx_errors;
444 };
445 
446 struct mvneta_pcpu_port {
447 	/* Pointer to the shared port */
448 	struct mvneta_port	*pp;
449 
450 	/* Pointer to the CPU-local NAPI struct */
451 	struct napi_struct	napi;
452 
453 	/* Cause of the previous interrupt */
454 	u32			cause_rx_tx;
455 };
456 
457 enum {
458 	__MVNETA_DOWN,
459 };
460 
461 struct mvneta_port {
462 	u8 id;
463 	struct mvneta_pcpu_port __percpu	*ports;
464 	struct mvneta_pcpu_stats __percpu	*stats;
465 
466 	unsigned long state;
467 
468 	int pkt_size;
469 	void __iomem *base;
470 	struct mvneta_rx_queue *rxqs;
471 	struct mvneta_tx_queue *txqs;
472 	struct net_device *dev;
473 	struct hlist_node node_online;
474 	struct hlist_node node_dead;
475 	int rxq_def;
476 	/* Protect the access to the percpu interrupt registers,
477 	 * ensuring that the configuration remains coherent.
478 	 */
479 	spinlock_t lock;
480 	bool is_stopped;
481 
482 	u32 cause_rx_tx;
483 	struct napi_struct napi;
484 
485 	struct bpf_prog *xdp_prog;
486 
487 	/* Core clock */
488 	struct clk *clk;
489 	/* AXI clock */
490 	struct clk *clk_bus;
491 	u8 mcast_count[256];
492 	u16 tx_ring_size;
493 	u16 rx_ring_size;
494 
495 	phy_interface_t phy_interface;
496 	struct device_node *dn;
497 	unsigned int tx_csum_limit;
498 	struct phylink *phylink;
499 	struct phylink_config phylink_config;
500 	struct phy *comphy;
501 
502 	struct mvneta_bm *bm_priv;
503 	struct mvneta_bm_pool *pool_long;
504 	struct mvneta_bm_pool *pool_short;
505 	int bm_win_id;
506 
507 	bool eee_enabled;
508 	bool eee_active;
509 	bool tx_lpi_enabled;
510 
511 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
512 
513 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
514 
515 	/* Flags for special SoC configurations */
516 	bool neta_armada3700;
517 	u16 rx_offset_correction;
518 	const struct mbus_dram_target_info *dram_target_info;
519 };
520 
521 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
522  * layout of the transmit and reception DMA descriptors, and their
523  * layout is therefore defined by the hardware design
524  */
525 
526 #define MVNETA_TX_L3_OFF_SHIFT	0
527 #define MVNETA_TX_IP_HLEN_SHIFT	8
528 #define MVNETA_TX_L4_UDP	BIT(16)
529 #define MVNETA_TX_L3_IP6	BIT(17)
530 #define MVNETA_TXD_IP_CSUM	BIT(18)
531 #define MVNETA_TXD_Z_PAD	BIT(19)
532 #define MVNETA_TXD_L_DESC	BIT(20)
533 #define MVNETA_TXD_F_DESC	BIT(21)
534 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
535 				 MVNETA_TXD_L_DESC | \
536 				 MVNETA_TXD_F_DESC)
537 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
538 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
539 
540 #define MVNETA_RXD_ERR_CRC		0x0
541 #define MVNETA_RXD_BM_POOL_SHIFT	13
542 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
543 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
544 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
545 #define MVNETA_RXD_ERR_LEN		BIT(18)
546 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
547 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
548 #define MVNETA_RXD_L3_IP4		BIT(25)
549 #define MVNETA_RXD_LAST_DESC		BIT(26)
550 #define MVNETA_RXD_FIRST_DESC		BIT(27)
551 #define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
552 					 MVNETA_RXD_LAST_DESC)
553 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
554 
555 #if defined(__LITTLE_ENDIAN)
556 struct mvneta_tx_desc {
557 	u32  command;		/* Options used by HW for packet transmitting.*/
558 	u16  reserved1;		/* csum_l4 (for future use)		*/
559 	u16  data_size;		/* Data size of transmitted packet in bytes */
560 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
561 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
562 	u32  reserved3[4];	/* Reserved - (for future use)		*/
563 };
564 
565 struct mvneta_rx_desc {
566 	u32  status;		/* Info about received packet		*/
567 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
568 	u16  data_size;		/* Size of received packet in bytes	*/
569 
570 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
571 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
572 
573 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
574 	u16  reserved3;		/* prefetch_cmd, for future use		*/
575 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
576 
577 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
578 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
579 };
580 #else
581 struct mvneta_tx_desc {
582 	u16  data_size;		/* Data size of transmitted packet in bytes */
583 	u16  reserved1;		/* csum_l4 (for future use)		*/
584 	u32  command;		/* Options used by HW for packet transmitting.*/
585 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
586 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
587 	u32  reserved3[4];	/* Reserved - (for future use)		*/
588 };
589 
590 struct mvneta_rx_desc {
591 	u16  data_size;		/* Size of received packet in bytes	*/
592 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
593 	u32  status;		/* Info about received packet		*/
594 
595 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
596 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
597 
598 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
599 	u16  reserved3;		/* prefetch_cmd, for future use		*/
600 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
601 
602 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
603 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
604 };
605 #endif
606 
607 enum mvneta_tx_buf_type {
608 	MVNETA_TYPE_SKB,
609 	MVNETA_TYPE_XDP_TX,
610 	MVNETA_TYPE_XDP_NDO,
611 };
612 
613 struct mvneta_tx_buf {
614 	enum mvneta_tx_buf_type type;
615 	union {
616 		struct xdp_frame *xdpf;
617 		struct sk_buff *skb;
618 	};
619 };
620 
621 struct mvneta_tx_queue {
622 	/* Number of this TX queue, in the range 0-7 */
623 	u8 id;
624 
625 	/* Number of TX DMA descriptors in the descriptor ring */
626 	int size;
627 
628 	/* Number of currently used TX DMA descriptor in the
629 	 * descriptor ring
630 	 */
631 	int count;
632 	int pending;
633 	int tx_stop_threshold;
634 	int tx_wake_threshold;
635 
636 	/* Array of transmitted buffers */
637 	struct mvneta_tx_buf *buf;
638 
639 	/* Index of last TX DMA descriptor that was inserted */
640 	int txq_put_index;
641 
642 	/* Index of the TX DMA descriptor to be cleaned up */
643 	int txq_get_index;
644 
645 	u32 done_pkts_coal;
646 
647 	/* Virtual address of the TX DMA descriptors array */
648 	struct mvneta_tx_desc *descs;
649 
650 	/* DMA address of the TX DMA descriptors array */
651 	dma_addr_t descs_phys;
652 
653 	/* Index of the last TX DMA descriptor */
654 	int last_desc;
655 
656 	/* Index of the next TX DMA descriptor to process */
657 	int next_desc_to_proc;
658 
659 	/* DMA buffers for TSO headers */
660 	char *tso_hdrs;
661 
662 	/* DMA address of TSO headers */
663 	dma_addr_t tso_hdrs_phys;
664 
665 	/* Affinity mask for CPUs*/
666 	cpumask_t affinity_mask;
667 };
668 
669 struct mvneta_rx_queue {
670 	/* rx queue number, in the range 0-7 */
671 	u8 id;
672 
673 	/* num of rx descriptors in the rx descriptor ring */
674 	int size;
675 
676 	u32 pkts_coal;
677 	u32 time_coal;
678 
679 	/* page_pool */
680 	struct page_pool *page_pool;
681 	struct xdp_rxq_info xdp_rxq;
682 
683 	/* Virtual address of the RX buffer */
684 	void  **buf_virt_addr;
685 
686 	/* Virtual address of the RX DMA descriptors array */
687 	struct mvneta_rx_desc *descs;
688 
689 	/* DMA address of the RX DMA descriptors array */
690 	dma_addr_t descs_phys;
691 
692 	/* Index of the last RX DMA descriptor */
693 	int last_desc;
694 
695 	/* Index of the next RX DMA descriptor to process */
696 	int next_desc_to_proc;
697 
698 	/* Index of first RX DMA descriptor to refill */
699 	int first_to_refill;
700 	u32 refill_num;
701 
702 	/* pointer to uncomplete skb buffer */
703 	struct sk_buff *skb;
704 	int left_size;
705 };
706 
707 static enum cpuhp_state online_hpstate;
708 /* The hardware supports eight (8) rx queues, but we are only allowing
709  * the first one to be used. Therefore, let's just allocate one queue.
710  */
711 static int rxq_number = 8;
712 static int txq_number = 8;
713 
714 static int rxq_def;
715 
716 static int rx_copybreak __read_mostly = 256;
717 
718 /* HW BM need that each port be identify by a unique ID */
719 static int global_port_id;
720 
721 #define MVNETA_DRIVER_NAME "mvneta"
722 #define MVNETA_DRIVER_VERSION "1.0"
723 
724 /* Utility/helper methods */
725 
726 /* Write helper method */
727 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
728 {
729 	writel(data, pp->base + offset);
730 }
731 
732 /* Read helper method */
733 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
734 {
735 	return readl(pp->base + offset);
736 }
737 
738 /* Increment txq get counter */
739 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
740 {
741 	txq->txq_get_index++;
742 	if (txq->txq_get_index == txq->size)
743 		txq->txq_get_index = 0;
744 }
745 
746 /* Increment txq put counter */
747 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
748 {
749 	txq->txq_put_index++;
750 	if (txq->txq_put_index == txq->size)
751 		txq->txq_put_index = 0;
752 }
753 
754 
755 /* Clear all MIB counters */
756 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
757 {
758 	int i;
759 	u32 dummy;
760 
761 	/* Perform dummy reads from MIB counters */
762 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
763 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
764 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
765 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
766 }
767 
768 /* Get System Network Statistics */
769 static void
770 mvneta_get_stats64(struct net_device *dev,
771 		   struct rtnl_link_stats64 *stats)
772 {
773 	struct mvneta_port *pp = netdev_priv(dev);
774 	unsigned int start;
775 	int cpu;
776 
777 	for_each_possible_cpu(cpu) {
778 		struct mvneta_pcpu_stats *cpu_stats;
779 		u64 rx_packets;
780 		u64 rx_bytes;
781 		u64 rx_dropped;
782 		u64 rx_errors;
783 		u64 tx_packets;
784 		u64 tx_bytes;
785 
786 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
787 		do {
788 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
789 			rx_packets = cpu_stats->es.ps.rx_packets;
790 			rx_bytes   = cpu_stats->es.ps.rx_bytes;
791 			rx_dropped = cpu_stats->rx_dropped;
792 			rx_errors  = cpu_stats->rx_errors;
793 			tx_packets = cpu_stats->es.ps.tx_packets;
794 			tx_bytes   = cpu_stats->es.ps.tx_bytes;
795 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
796 
797 		stats->rx_packets += rx_packets;
798 		stats->rx_bytes   += rx_bytes;
799 		stats->rx_dropped += rx_dropped;
800 		stats->rx_errors  += rx_errors;
801 		stats->tx_packets += tx_packets;
802 		stats->tx_bytes   += tx_bytes;
803 	}
804 
805 	stats->tx_dropped	= dev->stats.tx_dropped;
806 }
807 
808 /* Rx descriptors helper methods */
809 
810 /* Checks whether the RX descriptor having this status is both the first
811  * and the last descriptor for the RX packet. Each RX packet is currently
812  * received through a single RX descriptor, so not having each RX
813  * descriptor with its first and last bits set is an error
814  */
815 static int mvneta_rxq_desc_is_first_last(u32 status)
816 {
817 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
818 		MVNETA_RXD_FIRST_LAST_DESC;
819 }
820 
821 /* Add number of descriptors ready to receive new packets */
822 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
823 					  struct mvneta_rx_queue *rxq,
824 					  int ndescs)
825 {
826 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
827 	 * be added at once
828 	 */
829 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
830 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
831 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
832 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
833 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
834 	}
835 
836 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
837 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
838 }
839 
840 /* Get number of RX descriptors occupied by received packets */
841 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
842 					struct mvneta_rx_queue *rxq)
843 {
844 	u32 val;
845 
846 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
847 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
848 }
849 
850 /* Update num of rx desc called upon return from rx path or
851  * from mvneta_rxq_drop_pkts().
852  */
853 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
854 				       struct mvneta_rx_queue *rxq,
855 				       int rx_done, int rx_filled)
856 {
857 	u32 val;
858 
859 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
860 		val = rx_done |
861 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
862 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
863 		return;
864 	}
865 
866 	/* Only 255 descriptors can be added at once */
867 	while ((rx_done > 0) || (rx_filled > 0)) {
868 		if (rx_done <= 0xff) {
869 			val = rx_done;
870 			rx_done = 0;
871 		} else {
872 			val = 0xff;
873 			rx_done -= 0xff;
874 		}
875 		if (rx_filled <= 0xff) {
876 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
877 			rx_filled = 0;
878 		} else {
879 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
880 			rx_filled -= 0xff;
881 		}
882 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
883 	}
884 }
885 
886 /* Get pointer to next RX descriptor to be processed by SW */
887 static struct mvneta_rx_desc *
888 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
889 {
890 	int rx_desc = rxq->next_desc_to_proc;
891 
892 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
893 	prefetch(rxq->descs + rxq->next_desc_to_proc);
894 	return rxq->descs + rx_desc;
895 }
896 
897 /* Change maximum receive size of the port. */
898 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
899 {
900 	u32 val;
901 
902 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
903 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
904 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
905 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
906 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
907 }
908 
909 
910 /* Set rx queue offset */
911 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
912 				  struct mvneta_rx_queue *rxq,
913 				  int offset)
914 {
915 	u32 val;
916 
917 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
918 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
919 
920 	/* Offset is in */
921 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
922 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
923 }
924 
925 
926 /* Tx descriptors helper methods */
927 
928 /* Update HW with number of TX descriptors to be sent */
929 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
930 				     struct mvneta_tx_queue *txq,
931 				     int pend_desc)
932 {
933 	u32 val;
934 
935 	pend_desc += txq->pending;
936 
937 	/* Only 255 Tx descriptors can be added at once */
938 	do {
939 		val = min(pend_desc, 255);
940 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
941 		pend_desc -= val;
942 	} while (pend_desc > 0);
943 	txq->pending = 0;
944 }
945 
946 /* Get pointer to next TX descriptor to be processed (send) by HW */
947 static struct mvneta_tx_desc *
948 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
949 {
950 	int tx_desc = txq->next_desc_to_proc;
951 
952 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
953 	return txq->descs + tx_desc;
954 }
955 
956 /* Release the last allocated TX descriptor. Useful to handle DMA
957  * mapping failures in the TX path.
958  */
959 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
960 {
961 	if (txq->next_desc_to_proc == 0)
962 		txq->next_desc_to_proc = txq->last_desc - 1;
963 	else
964 		txq->next_desc_to_proc--;
965 }
966 
967 /* Set rxq buf size */
968 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
969 				    struct mvneta_rx_queue *rxq,
970 				    int buf_size)
971 {
972 	u32 val;
973 
974 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
975 
976 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
977 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
978 
979 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
980 }
981 
982 /* Disable buffer management (BM) */
983 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
984 				  struct mvneta_rx_queue *rxq)
985 {
986 	u32 val;
987 
988 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
989 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
990 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
991 }
992 
993 /* Enable buffer management (BM) */
994 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
995 				 struct mvneta_rx_queue *rxq)
996 {
997 	u32 val;
998 
999 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1000 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
1001 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1002 }
1003 
1004 /* Notify HW about port's assignment of pool for bigger packets */
1005 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
1006 				     struct mvneta_rx_queue *rxq)
1007 {
1008 	u32 val;
1009 
1010 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1011 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
1012 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
1013 
1014 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1015 }
1016 
1017 /* Notify HW about port's assignment of pool for smaller packets */
1018 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1019 				      struct mvneta_rx_queue *rxq)
1020 {
1021 	u32 val;
1022 
1023 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1024 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1025 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1026 
1027 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1028 }
1029 
1030 /* Set port's receive buffer size for assigned BM pool */
1031 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1032 					      int buf_size,
1033 					      u8 pool_id)
1034 {
1035 	u32 val;
1036 
1037 	if (!IS_ALIGNED(buf_size, 8)) {
1038 		dev_warn(pp->dev->dev.parent,
1039 			 "illegal buf_size value %d, round to %d\n",
1040 			 buf_size, ALIGN(buf_size, 8));
1041 		buf_size = ALIGN(buf_size, 8);
1042 	}
1043 
1044 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1045 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1046 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1047 }
1048 
1049 /* Configure MBUS window in order to enable access BM internal SRAM */
1050 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1051 				  u8 target, u8 attr)
1052 {
1053 	u32 win_enable, win_protect;
1054 	int i;
1055 
1056 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1057 
1058 	if (pp->bm_win_id < 0) {
1059 		/* Find first not occupied window */
1060 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1061 			if (win_enable & (1 << i)) {
1062 				pp->bm_win_id = i;
1063 				break;
1064 			}
1065 		}
1066 		if (i == MVNETA_MAX_DECODE_WIN)
1067 			return -ENOMEM;
1068 	} else {
1069 		i = pp->bm_win_id;
1070 	}
1071 
1072 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1073 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1074 
1075 	if (i < 4)
1076 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1077 
1078 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1079 		    (attr << 8) | target);
1080 
1081 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1082 
1083 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1084 	win_protect |= 3 << (2 * i);
1085 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1086 
1087 	win_enable &= ~(1 << i);
1088 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1089 
1090 	return 0;
1091 }
1092 
1093 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1094 {
1095 	u32 wsize;
1096 	u8 target, attr;
1097 	int err;
1098 
1099 	/* Get BM window information */
1100 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1101 					 &target, &attr);
1102 	if (err < 0)
1103 		return err;
1104 
1105 	pp->bm_win_id = -1;
1106 
1107 	/* Open NETA -> BM window */
1108 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1109 				     target, attr);
1110 	if (err < 0) {
1111 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1112 		return err;
1113 	}
1114 	return 0;
1115 }
1116 
1117 /* Assign and initialize pools for port. In case of fail
1118  * buffer manager will remain disabled for current port.
1119  */
1120 static int mvneta_bm_port_init(struct platform_device *pdev,
1121 			       struct mvneta_port *pp)
1122 {
1123 	struct device_node *dn = pdev->dev.of_node;
1124 	u32 long_pool_id, short_pool_id;
1125 
1126 	if (!pp->neta_armada3700) {
1127 		int ret;
1128 
1129 		ret = mvneta_bm_port_mbus_init(pp);
1130 		if (ret)
1131 			return ret;
1132 	}
1133 
1134 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1135 		netdev_info(pp->dev, "missing long pool id\n");
1136 		return -EINVAL;
1137 	}
1138 
1139 	/* Create port's long pool depending on mtu */
1140 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1141 					   MVNETA_BM_LONG, pp->id,
1142 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1143 	if (!pp->pool_long) {
1144 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1145 		return -ENOMEM;
1146 	}
1147 
1148 	pp->pool_long->port_map |= 1 << pp->id;
1149 
1150 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1151 				   pp->pool_long->id);
1152 
1153 	/* If short pool id is not defined, assume using single pool */
1154 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1155 		short_pool_id = long_pool_id;
1156 
1157 	/* Create port's short pool */
1158 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1159 					    MVNETA_BM_SHORT, pp->id,
1160 					    MVNETA_BM_SHORT_PKT_SIZE);
1161 	if (!pp->pool_short) {
1162 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1163 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1164 		return -ENOMEM;
1165 	}
1166 
1167 	if (short_pool_id != long_pool_id) {
1168 		pp->pool_short->port_map |= 1 << pp->id;
1169 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1170 					   pp->pool_short->id);
1171 	}
1172 
1173 	return 0;
1174 }
1175 
1176 /* Update settings of a pool for bigger packets */
1177 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1178 {
1179 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1180 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1181 	int num;
1182 
1183 	/* Release all buffers from long pool */
1184 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1185 	if (hwbm_pool->buf_num) {
1186 		WARN(1, "cannot free all buffers in pool %d\n",
1187 		     bm_pool->id);
1188 		goto bm_mtu_err;
1189 	}
1190 
1191 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1192 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1193 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1194 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1195 
1196 	/* Fill entire long pool */
1197 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1198 	if (num != hwbm_pool->size) {
1199 		WARN(1, "pool %d: %d of %d allocated\n",
1200 		     bm_pool->id, num, hwbm_pool->size);
1201 		goto bm_mtu_err;
1202 	}
1203 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1204 
1205 	return;
1206 
1207 bm_mtu_err:
1208 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1209 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1210 
1211 	pp->bm_priv = NULL;
1212 	pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1213 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1214 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1215 }
1216 
1217 /* Start the Ethernet port RX and TX activity */
1218 static void mvneta_port_up(struct mvneta_port *pp)
1219 {
1220 	int queue;
1221 	u32 q_map;
1222 
1223 	/* Enable all initialized TXs. */
1224 	q_map = 0;
1225 	for (queue = 0; queue < txq_number; queue++) {
1226 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1227 		if (txq->descs)
1228 			q_map |= (1 << queue);
1229 	}
1230 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1231 
1232 	q_map = 0;
1233 	/* Enable all initialized RXQs. */
1234 	for (queue = 0; queue < rxq_number; queue++) {
1235 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1236 
1237 		if (rxq->descs)
1238 			q_map |= (1 << queue);
1239 	}
1240 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1241 }
1242 
1243 /* Stop the Ethernet port activity */
1244 static void mvneta_port_down(struct mvneta_port *pp)
1245 {
1246 	u32 val;
1247 	int count;
1248 
1249 	/* Stop Rx port activity. Check port Rx activity. */
1250 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1251 
1252 	/* Issue stop command for active channels only */
1253 	if (val != 0)
1254 		mvreg_write(pp, MVNETA_RXQ_CMD,
1255 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1256 
1257 	/* Wait for all Rx activity to terminate. */
1258 	count = 0;
1259 	do {
1260 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1261 			netdev_warn(pp->dev,
1262 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1263 				    val);
1264 			break;
1265 		}
1266 		mdelay(1);
1267 
1268 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1269 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1270 
1271 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1272 	 * command for active channels only
1273 	 */
1274 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1275 
1276 	if (val != 0)
1277 		mvreg_write(pp, MVNETA_TXQ_CMD,
1278 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1279 
1280 	/* Wait for all Tx activity to terminate. */
1281 	count = 0;
1282 	do {
1283 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1284 			netdev_warn(pp->dev,
1285 				    "TIMEOUT for TX stopped status=0x%08x\n",
1286 				    val);
1287 			break;
1288 		}
1289 		mdelay(1);
1290 
1291 		/* Check TX Command reg that all Txqs are stopped */
1292 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1293 
1294 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1295 
1296 	/* Double check to verify that TX FIFO is empty */
1297 	count = 0;
1298 	do {
1299 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1300 			netdev_warn(pp->dev,
1301 				    "TX FIFO empty timeout status=0x%08x\n",
1302 				    val);
1303 			break;
1304 		}
1305 		mdelay(1);
1306 
1307 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1308 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1309 		 (val & MVNETA_TX_IN_PRGRS));
1310 
1311 	udelay(200);
1312 }
1313 
1314 /* Enable the port by setting the port enable bit of the MAC control register */
1315 static void mvneta_port_enable(struct mvneta_port *pp)
1316 {
1317 	u32 val;
1318 
1319 	/* Enable port */
1320 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1321 	val |= MVNETA_GMAC0_PORT_ENABLE;
1322 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1323 }
1324 
1325 /* Disable the port and wait for about 200 usec before retuning */
1326 static void mvneta_port_disable(struct mvneta_port *pp)
1327 {
1328 	u32 val;
1329 
1330 	/* Reset the Enable bit in the Serial Control Register */
1331 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1332 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1333 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1334 
1335 	udelay(200);
1336 }
1337 
1338 /* Multicast tables methods */
1339 
1340 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1341 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1342 {
1343 	int offset;
1344 	u32 val;
1345 
1346 	if (queue == -1) {
1347 		val = 0;
1348 	} else {
1349 		val = 0x1 | (queue << 1);
1350 		val |= (val << 24) | (val << 16) | (val << 8);
1351 	}
1352 
1353 	for (offset = 0; offset <= 0xc; offset += 4)
1354 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1355 }
1356 
1357 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1358 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1359 {
1360 	int offset;
1361 	u32 val;
1362 
1363 	if (queue == -1) {
1364 		val = 0;
1365 	} else {
1366 		val = 0x1 | (queue << 1);
1367 		val |= (val << 24) | (val << 16) | (val << 8);
1368 	}
1369 
1370 	for (offset = 0; offset <= 0xfc; offset += 4)
1371 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1372 
1373 }
1374 
1375 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1376 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1377 {
1378 	int offset;
1379 	u32 val;
1380 
1381 	if (queue == -1) {
1382 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1383 		val = 0;
1384 	} else {
1385 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1386 		val = 0x1 | (queue << 1);
1387 		val |= (val << 24) | (val << 16) | (val << 8);
1388 	}
1389 
1390 	for (offset = 0; offset <= 0xfc; offset += 4)
1391 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1392 }
1393 
1394 static void mvneta_percpu_unmask_interrupt(void *arg)
1395 {
1396 	struct mvneta_port *pp = arg;
1397 
1398 	/* All the queue are unmasked, but actually only the ones
1399 	 * mapped to this CPU will be unmasked
1400 	 */
1401 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1402 		    MVNETA_RX_INTR_MASK_ALL |
1403 		    MVNETA_TX_INTR_MASK_ALL |
1404 		    MVNETA_MISCINTR_INTR_MASK);
1405 }
1406 
1407 static void mvneta_percpu_mask_interrupt(void *arg)
1408 {
1409 	struct mvneta_port *pp = arg;
1410 
1411 	/* All the queue are masked, but actually only the ones
1412 	 * mapped to this CPU will be masked
1413 	 */
1414 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1415 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1416 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1417 }
1418 
1419 static void mvneta_percpu_clear_intr_cause(void *arg)
1420 {
1421 	struct mvneta_port *pp = arg;
1422 
1423 	/* All the queue are cleared, but actually only the ones
1424 	 * mapped to this CPU will be cleared
1425 	 */
1426 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1427 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1428 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1429 }
1430 
1431 /* This method sets defaults to the NETA port:
1432  *	Clears interrupt Cause and Mask registers.
1433  *	Clears all MAC tables.
1434  *	Sets defaults to all registers.
1435  *	Resets RX and TX descriptor rings.
1436  *	Resets PHY.
1437  * This method can be called after mvneta_port_down() to return the port
1438  *	settings to defaults.
1439  */
1440 static void mvneta_defaults_set(struct mvneta_port *pp)
1441 {
1442 	int cpu;
1443 	int queue;
1444 	u32 val;
1445 	int max_cpu = num_present_cpus();
1446 
1447 	/* Clear all Cause registers */
1448 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1449 
1450 	/* Mask all interrupts */
1451 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1452 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1453 
1454 	/* Enable MBUS Retry bit16 */
1455 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1456 
1457 	/* Set CPU queue access map. CPUs are assigned to the RX and
1458 	 * TX queues modulo their number. If there is only one TX
1459 	 * queue then it is assigned to the CPU associated to the
1460 	 * default RX queue.
1461 	 */
1462 	for_each_present_cpu(cpu) {
1463 		int rxq_map = 0, txq_map = 0;
1464 		int rxq, txq;
1465 		if (!pp->neta_armada3700) {
1466 			for (rxq = 0; rxq < rxq_number; rxq++)
1467 				if ((rxq % max_cpu) == cpu)
1468 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1469 
1470 			for (txq = 0; txq < txq_number; txq++)
1471 				if ((txq % max_cpu) == cpu)
1472 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1473 
1474 			/* With only one TX queue we configure a special case
1475 			 * which will allow to get all the irq on a single
1476 			 * CPU
1477 			 */
1478 			if (txq_number == 1)
1479 				txq_map = (cpu == pp->rxq_def) ?
1480 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1481 
1482 		} else {
1483 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1484 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1485 		}
1486 
1487 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1488 	}
1489 
1490 	/* Reset RX and TX DMAs */
1491 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1492 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1493 
1494 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1495 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1496 	for (queue = 0; queue < txq_number; queue++) {
1497 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1498 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1499 	}
1500 
1501 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1502 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1503 
1504 	/* Set Port Acceleration Mode */
1505 	if (pp->bm_priv)
1506 		/* HW buffer management + legacy parser */
1507 		val = MVNETA_ACC_MODE_EXT2;
1508 	else
1509 		/* SW buffer management + legacy parser */
1510 		val = MVNETA_ACC_MODE_EXT1;
1511 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1512 
1513 	if (pp->bm_priv)
1514 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1515 
1516 	/* Update val of portCfg register accordingly with all RxQueue types */
1517 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1518 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1519 
1520 	val = 0;
1521 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1522 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1523 
1524 	/* Build PORT_SDMA_CONFIG_REG */
1525 	val = 0;
1526 
1527 	/* Default burst size */
1528 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1529 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1530 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1531 
1532 #if defined(__BIG_ENDIAN)
1533 	val |= MVNETA_DESC_SWAP;
1534 #endif
1535 
1536 	/* Assign port SDMA configuration */
1537 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1538 
1539 	/* Disable PHY polling in hardware, since we're using the
1540 	 * kernel phylib to do this.
1541 	 */
1542 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1543 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1544 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1545 
1546 	mvneta_set_ucast_table(pp, -1);
1547 	mvneta_set_special_mcast_table(pp, -1);
1548 	mvneta_set_other_mcast_table(pp, -1);
1549 
1550 	/* Set port interrupt enable register - default enable all */
1551 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1552 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1553 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1554 
1555 	mvneta_mib_counters_clear(pp);
1556 }
1557 
1558 /* Set max sizes for tx queues */
1559 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1560 
1561 {
1562 	u32 val, size, mtu;
1563 	int queue;
1564 
1565 	mtu = max_tx_size * 8;
1566 	if (mtu > MVNETA_TX_MTU_MAX)
1567 		mtu = MVNETA_TX_MTU_MAX;
1568 
1569 	/* Set MTU */
1570 	val = mvreg_read(pp, MVNETA_TX_MTU);
1571 	val &= ~MVNETA_TX_MTU_MAX;
1572 	val |= mtu;
1573 	mvreg_write(pp, MVNETA_TX_MTU, val);
1574 
1575 	/* TX token size and all TXQs token size must be larger that MTU */
1576 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1577 
1578 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1579 	if (size < mtu) {
1580 		size = mtu;
1581 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1582 		val |= size;
1583 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1584 	}
1585 	for (queue = 0; queue < txq_number; queue++) {
1586 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1587 
1588 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1589 		if (size < mtu) {
1590 			size = mtu;
1591 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1592 			val |= size;
1593 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1594 		}
1595 	}
1596 }
1597 
1598 /* Set unicast address */
1599 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1600 				  int queue)
1601 {
1602 	unsigned int unicast_reg;
1603 	unsigned int tbl_offset;
1604 	unsigned int reg_offset;
1605 
1606 	/* Locate the Unicast table entry */
1607 	last_nibble = (0xf & last_nibble);
1608 
1609 	/* offset from unicast tbl base */
1610 	tbl_offset = (last_nibble / 4) * 4;
1611 
1612 	/* offset within the above reg  */
1613 	reg_offset = last_nibble % 4;
1614 
1615 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1616 
1617 	if (queue == -1) {
1618 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1619 		unicast_reg &= ~(0xff << (8 * reg_offset));
1620 	} else {
1621 		unicast_reg &= ~(0xff << (8 * reg_offset));
1622 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1623 	}
1624 
1625 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1626 }
1627 
1628 /* Set mac address */
1629 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1630 				int queue)
1631 {
1632 	unsigned int mac_h;
1633 	unsigned int mac_l;
1634 
1635 	if (queue != -1) {
1636 		mac_l = (addr[4] << 8) | (addr[5]);
1637 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1638 			(addr[2] << 8) | (addr[3] << 0);
1639 
1640 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1641 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1642 	}
1643 
1644 	/* Accept frames of this address */
1645 	mvneta_set_ucast_addr(pp, addr[5], queue);
1646 }
1647 
1648 /* Set the number of packets that will be received before RX interrupt
1649  * will be generated by HW.
1650  */
1651 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1652 				    struct mvneta_rx_queue *rxq, u32 value)
1653 {
1654 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1655 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1656 }
1657 
1658 /* Set the time delay in usec before RX interrupt will be generated by
1659  * HW.
1660  */
1661 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1662 				    struct mvneta_rx_queue *rxq, u32 value)
1663 {
1664 	u32 val;
1665 	unsigned long clk_rate;
1666 
1667 	clk_rate = clk_get_rate(pp->clk);
1668 	val = (clk_rate / 1000000) * value;
1669 
1670 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1671 }
1672 
1673 /* Set threshold for TX_DONE pkts coalescing */
1674 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1675 					 struct mvneta_tx_queue *txq, u32 value)
1676 {
1677 	u32 val;
1678 
1679 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1680 
1681 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1682 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1683 
1684 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1685 }
1686 
1687 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1688 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1689 				u32 phys_addr, void *virt_addr,
1690 				struct mvneta_rx_queue *rxq)
1691 {
1692 	int i;
1693 
1694 	rx_desc->buf_phys_addr = phys_addr;
1695 	i = rx_desc - rxq->descs;
1696 	rxq->buf_virt_addr[i] = virt_addr;
1697 }
1698 
1699 /* Decrement sent descriptors counter */
1700 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1701 				     struct mvneta_tx_queue *txq,
1702 				     int sent_desc)
1703 {
1704 	u32 val;
1705 
1706 	/* Only 255 TX descriptors can be updated at once */
1707 	while (sent_desc > 0xff) {
1708 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1709 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1710 		sent_desc = sent_desc - 0xff;
1711 	}
1712 
1713 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1714 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1715 }
1716 
1717 /* Get number of TX descriptors already sent by HW */
1718 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1719 					struct mvneta_tx_queue *txq)
1720 {
1721 	u32 val;
1722 	int sent_desc;
1723 
1724 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1725 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1726 		MVNETA_TXQ_SENT_DESC_SHIFT;
1727 
1728 	return sent_desc;
1729 }
1730 
1731 /* Get number of sent descriptors and decrement counter.
1732  *  The number of sent descriptors is returned.
1733  */
1734 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1735 				     struct mvneta_tx_queue *txq)
1736 {
1737 	int sent_desc;
1738 
1739 	/* Get number of sent descriptors */
1740 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1741 
1742 	/* Decrement sent descriptors counter */
1743 	if (sent_desc)
1744 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1745 
1746 	return sent_desc;
1747 }
1748 
1749 /* Set TXQ descriptors fields relevant for CSUM calculation */
1750 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1751 				int ip_hdr_len, int l4_proto)
1752 {
1753 	u32 command;
1754 
1755 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1756 	 * G_L4_chk, L4_type; required only for checksum
1757 	 * calculation
1758 	 */
1759 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1760 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1761 
1762 	if (l3_proto == htons(ETH_P_IP))
1763 		command |= MVNETA_TXD_IP_CSUM;
1764 	else
1765 		command |= MVNETA_TX_L3_IP6;
1766 
1767 	if (l4_proto == IPPROTO_TCP)
1768 		command |=  MVNETA_TX_L4_CSUM_FULL;
1769 	else if (l4_proto == IPPROTO_UDP)
1770 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1771 	else
1772 		command |= MVNETA_TX_L4_CSUM_NOT;
1773 
1774 	return command;
1775 }
1776 
1777 
1778 /* Display more error info */
1779 static void mvneta_rx_error(struct mvneta_port *pp,
1780 			    struct mvneta_rx_desc *rx_desc)
1781 {
1782 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1783 	u32 status = rx_desc->status;
1784 
1785 	/* update per-cpu counter */
1786 	u64_stats_update_begin(&stats->syncp);
1787 	stats->rx_errors++;
1788 	u64_stats_update_end(&stats->syncp);
1789 
1790 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1791 	case MVNETA_RXD_ERR_CRC:
1792 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1793 			   status, rx_desc->data_size);
1794 		break;
1795 	case MVNETA_RXD_ERR_OVERRUN:
1796 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1797 			   status, rx_desc->data_size);
1798 		break;
1799 	case MVNETA_RXD_ERR_LEN:
1800 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1801 			   status, rx_desc->data_size);
1802 		break;
1803 	case MVNETA_RXD_ERR_RESOURCE:
1804 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1805 			   status, rx_desc->data_size);
1806 		break;
1807 	}
1808 }
1809 
1810 /* Handle RX checksum offload based on the descriptor's status */
1811 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1812 			   struct sk_buff *skb)
1813 {
1814 	if ((pp->dev->features & NETIF_F_RXCSUM) &&
1815 	    (status & MVNETA_RXD_L3_IP4) &&
1816 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1817 		skb->csum = 0;
1818 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1819 		return;
1820 	}
1821 
1822 	skb->ip_summed = CHECKSUM_NONE;
1823 }
1824 
1825 /* Return tx queue pointer (find last set bit) according to <cause> returned
1826  * form tx_done reg. <cause> must not be null. The return value is always a
1827  * valid queue for matching the first one found in <cause>.
1828  */
1829 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1830 						     u32 cause)
1831 {
1832 	int queue = fls(cause) - 1;
1833 
1834 	return &pp->txqs[queue];
1835 }
1836 
1837 /* Free tx queue skbuffs */
1838 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1839 				 struct mvneta_tx_queue *txq, int num,
1840 				 struct netdev_queue *nq)
1841 {
1842 	unsigned int bytes_compl = 0, pkts_compl = 0;
1843 	int i;
1844 
1845 	for (i = 0; i < num; i++) {
1846 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1847 		struct mvneta_tx_desc *tx_desc = txq->descs +
1848 			txq->txq_get_index;
1849 
1850 		mvneta_txq_inc_get(txq);
1851 
1852 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) &&
1853 		    buf->type != MVNETA_TYPE_XDP_TX)
1854 			dma_unmap_single(pp->dev->dev.parent,
1855 					 tx_desc->buf_phys_addr,
1856 					 tx_desc->data_size, DMA_TO_DEVICE);
1857 		if (buf->type == MVNETA_TYPE_SKB && buf->skb) {
1858 			bytes_compl += buf->skb->len;
1859 			pkts_compl++;
1860 			dev_kfree_skb_any(buf->skb);
1861 		} else if (buf->type == MVNETA_TYPE_XDP_TX ||
1862 			   buf->type == MVNETA_TYPE_XDP_NDO) {
1863 			xdp_return_frame(buf->xdpf);
1864 		}
1865 	}
1866 
1867 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1868 }
1869 
1870 /* Handle end of transmission */
1871 static void mvneta_txq_done(struct mvneta_port *pp,
1872 			   struct mvneta_tx_queue *txq)
1873 {
1874 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1875 	int tx_done;
1876 
1877 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1878 	if (!tx_done)
1879 		return;
1880 
1881 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1882 
1883 	txq->count -= tx_done;
1884 
1885 	if (netif_tx_queue_stopped(nq)) {
1886 		if (txq->count <= txq->tx_wake_threshold)
1887 			netif_tx_wake_queue(nq);
1888 	}
1889 }
1890 
1891 /* Refill processing for SW buffer management */
1892 /* Allocate page per descriptor */
1893 static int mvneta_rx_refill(struct mvneta_port *pp,
1894 			    struct mvneta_rx_desc *rx_desc,
1895 			    struct mvneta_rx_queue *rxq,
1896 			    gfp_t gfp_mask)
1897 {
1898 	dma_addr_t phys_addr;
1899 	struct page *page;
1900 
1901 	page = page_pool_alloc_pages(rxq->page_pool,
1902 				     gfp_mask | __GFP_NOWARN);
1903 	if (!page)
1904 		return -ENOMEM;
1905 
1906 	phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1907 	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1908 
1909 	return 0;
1910 }
1911 
1912 /* Handle tx checksum */
1913 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1914 {
1915 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1916 		int ip_hdr_len = 0;
1917 		__be16 l3_proto = vlan_get_protocol(skb);
1918 		u8 l4_proto;
1919 
1920 		if (l3_proto == htons(ETH_P_IP)) {
1921 			struct iphdr *ip4h = ip_hdr(skb);
1922 
1923 			/* Calculate IPv4 checksum and L4 checksum */
1924 			ip_hdr_len = ip4h->ihl;
1925 			l4_proto = ip4h->protocol;
1926 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1927 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1928 
1929 			/* Read l4_protocol from one of IPv6 extra headers */
1930 			if (skb_network_header_len(skb) > 0)
1931 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1932 			l4_proto = ip6h->nexthdr;
1933 		} else
1934 			return MVNETA_TX_L4_CSUM_NOT;
1935 
1936 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1937 					    l3_proto, ip_hdr_len, l4_proto);
1938 	}
1939 
1940 	return MVNETA_TX_L4_CSUM_NOT;
1941 }
1942 
1943 /* Drop packets received by the RXQ and free buffers */
1944 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1945 				 struct mvneta_rx_queue *rxq)
1946 {
1947 	int rx_done, i;
1948 
1949 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1950 	if (rx_done)
1951 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1952 
1953 	if (pp->bm_priv) {
1954 		for (i = 0; i < rx_done; i++) {
1955 			struct mvneta_rx_desc *rx_desc =
1956 						  mvneta_rxq_next_desc_get(rxq);
1957 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1958 			struct mvneta_bm_pool *bm_pool;
1959 
1960 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1961 			/* Return dropped buffer to the pool */
1962 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1963 					      rx_desc->buf_phys_addr);
1964 		}
1965 		return;
1966 	}
1967 
1968 	for (i = 0; i < rxq->size; i++) {
1969 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1970 		void *data = rxq->buf_virt_addr[i];
1971 		if (!data || !(rx_desc->buf_phys_addr))
1972 			continue;
1973 
1974 		page_pool_put_full_page(rxq->page_pool, data, false);
1975 	}
1976 	if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
1977 		xdp_rxq_info_unreg(&rxq->xdp_rxq);
1978 	page_pool_destroy(rxq->page_pool);
1979 	rxq->page_pool = NULL;
1980 }
1981 
1982 static void
1983 mvneta_update_stats(struct mvneta_port *pp,
1984 		    struct mvneta_stats *ps)
1985 {
1986 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1987 
1988 	u64_stats_update_begin(&stats->syncp);
1989 	stats->es.ps.rx_packets += ps->rx_packets;
1990 	stats->es.ps.rx_bytes += ps->rx_bytes;
1991 	/* xdp */
1992 	stats->es.ps.xdp_redirect += ps->xdp_redirect;
1993 	stats->es.ps.xdp_pass += ps->xdp_pass;
1994 	stats->es.ps.xdp_drop += ps->xdp_drop;
1995 	u64_stats_update_end(&stats->syncp);
1996 }
1997 
1998 static inline
1999 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
2000 {
2001 	struct mvneta_rx_desc *rx_desc;
2002 	int curr_desc = rxq->first_to_refill;
2003 	int i;
2004 
2005 	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
2006 		rx_desc = rxq->descs + curr_desc;
2007 		if (!(rx_desc->buf_phys_addr)) {
2008 			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
2009 				struct mvneta_pcpu_stats *stats;
2010 
2011 				pr_err("Can't refill queue %d. Done %d from %d\n",
2012 				       rxq->id, i, rxq->refill_num);
2013 
2014 				stats = this_cpu_ptr(pp->stats);
2015 				u64_stats_update_begin(&stats->syncp);
2016 				stats->es.refill_error++;
2017 				u64_stats_update_end(&stats->syncp);
2018 				break;
2019 			}
2020 		}
2021 		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2022 	}
2023 	rxq->refill_num -= i;
2024 	rxq->first_to_refill = curr_desc;
2025 
2026 	return i;
2027 }
2028 
2029 static int
2030 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2031 			struct xdp_frame *xdpf, bool dma_map)
2032 {
2033 	struct mvneta_tx_desc *tx_desc;
2034 	struct mvneta_tx_buf *buf;
2035 	dma_addr_t dma_addr;
2036 
2037 	if (txq->count >= txq->tx_stop_threshold)
2038 		return MVNETA_XDP_DROPPED;
2039 
2040 	tx_desc = mvneta_txq_next_desc_get(txq);
2041 
2042 	buf = &txq->buf[txq->txq_put_index];
2043 	if (dma_map) {
2044 		/* ndo_xdp_xmit */
2045 		dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data,
2046 					  xdpf->len, DMA_TO_DEVICE);
2047 		if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) {
2048 			mvneta_txq_desc_put(txq);
2049 			return MVNETA_XDP_DROPPED;
2050 		}
2051 		buf->type = MVNETA_TYPE_XDP_NDO;
2052 	} else {
2053 		struct page *page = virt_to_page(xdpf->data);
2054 
2055 		dma_addr = page_pool_get_dma_addr(page) +
2056 			   sizeof(*xdpf) + xdpf->headroom;
2057 		dma_sync_single_for_device(pp->dev->dev.parent, dma_addr,
2058 					   xdpf->len, DMA_BIDIRECTIONAL);
2059 		buf->type = MVNETA_TYPE_XDP_TX;
2060 	}
2061 	buf->xdpf = xdpf;
2062 
2063 	tx_desc->command = MVNETA_TXD_FLZ_DESC;
2064 	tx_desc->buf_phys_addr = dma_addr;
2065 	tx_desc->data_size = xdpf->len;
2066 
2067 	mvneta_txq_inc_put(txq);
2068 	txq->pending++;
2069 	txq->count++;
2070 
2071 	return MVNETA_XDP_TX;
2072 }
2073 
2074 static int
2075 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2076 {
2077 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2078 	struct mvneta_tx_queue *txq;
2079 	struct netdev_queue *nq;
2080 	struct xdp_frame *xdpf;
2081 	int cpu;
2082 	u32 ret;
2083 
2084 	xdpf = xdp_convert_buff_to_frame(xdp);
2085 	if (unlikely(!xdpf))
2086 		return MVNETA_XDP_DROPPED;
2087 
2088 	cpu = smp_processor_id();
2089 	txq = &pp->txqs[cpu % txq_number];
2090 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2091 
2092 	__netif_tx_lock(nq, cpu);
2093 	ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false);
2094 	if (ret == MVNETA_XDP_TX) {
2095 		u64_stats_update_begin(&stats->syncp);
2096 		stats->es.ps.tx_bytes += xdpf->len;
2097 		stats->es.ps.tx_packets++;
2098 		stats->es.ps.xdp_tx++;
2099 		u64_stats_update_end(&stats->syncp);
2100 
2101 		mvneta_txq_pend_desc_add(pp, txq, 0);
2102 	} else {
2103 		u64_stats_update_begin(&stats->syncp);
2104 		stats->es.ps.xdp_tx_err++;
2105 		u64_stats_update_end(&stats->syncp);
2106 	}
2107 	__netif_tx_unlock(nq);
2108 
2109 	return ret;
2110 }
2111 
2112 static int
2113 mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2114 		struct xdp_frame **frames, u32 flags)
2115 {
2116 	struct mvneta_port *pp = netdev_priv(dev);
2117 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2118 	int i, nxmit_byte = 0, nxmit = num_frame;
2119 	int cpu = smp_processor_id();
2120 	struct mvneta_tx_queue *txq;
2121 	struct netdev_queue *nq;
2122 	u32 ret;
2123 
2124 	if (unlikely(test_bit(__MVNETA_DOWN, &pp->state)))
2125 		return -ENETDOWN;
2126 
2127 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2128 		return -EINVAL;
2129 
2130 	txq = &pp->txqs[cpu % txq_number];
2131 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2132 
2133 	__netif_tx_lock(nq, cpu);
2134 	for (i = 0; i < num_frame; i++) {
2135 		ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true);
2136 		if (ret == MVNETA_XDP_TX) {
2137 			nxmit_byte += frames[i]->len;
2138 		} else {
2139 			xdp_return_frame_rx_napi(frames[i]);
2140 			nxmit--;
2141 		}
2142 	}
2143 
2144 	if (unlikely(flags & XDP_XMIT_FLUSH))
2145 		mvneta_txq_pend_desc_add(pp, txq, 0);
2146 	__netif_tx_unlock(nq);
2147 
2148 	u64_stats_update_begin(&stats->syncp);
2149 	stats->es.ps.tx_bytes += nxmit_byte;
2150 	stats->es.ps.tx_packets += nxmit;
2151 	stats->es.ps.xdp_xmit += nxmit;
2152 	stats->es.ps.xdp_xmit_err += num_frame - nxmit;
2153 	u64_stats_update_end(&stats->syncp);
2154 
2155 	return nxmit;
2156 }
2157 
2158 static int
2159 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2160 	       struct bpf_prog *prog, struct xdp_buff *xdp,
2161 	       struct mvneta_stats *stats)
2162 {
2163 	unsigned int len, sync;
2164 	struct page *page;
2165 	u32 ret, act;
2166 
2167 	len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2168 	act = bpf_prog_run_xdp(prog, xdp);
2169 
2170 	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
2171 	sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2172 	sync = max(sync, len);
2173 
2174 	switch (act) {
2175 	case XDP_PASS:
2176 		stats->xdp_pass++;
2177 		return MVNETA_XDP_PASS;
2178 	case XDP_REDIRECT: {
2179 		int err;
2180 
2181 		err = xdp_do_redirect(pp->dev, xdp, prog);
2182 		if (unlikely(err)) {
2183 			ret = MVNETA_XDP_DROPPED;
2184 			page = virt_to_head_page(xdp->data);
2185 			page_pool_put_page(rxq->page_pool, page, sync, true);
2186 		} else {
2187 			ret = MVNETA_XDP_REDIR;
2188 			stats->xdp_redirect++;
2189 		}
2190 		break;
2191 	}
2192 	case XDP_TX:
2193 		ret = mvneta_xdp_xmit_back(pp, xdp);
2194 		if (ret != MVNETA_XDP_TX) {
2195 			page = virt_to_head_page(xdp->data);
2196 			page_pool_put_page(rxq->page_pool, page, sync, true);
2197 		}
2198 		break;
2199 	default:
2200 		bpf_warn_invalid_xdp_action(act);
2201 		/* fall through */
2202 	case XDP_ABORTED:
2203 		trace_xdp_exception(pp->dev, prog, act);
2204 		/* fall through */
2205 	case XDP_DROP:
2206 		page = virt_to_head_page(xdp->data);
2207 		page_pool_put_page(rxq->page_pool, page, sync, true);
2208 		ret = MVNETA_XDP_DROPPED;
2209 		stats->xdp_drop++;
2210 		break;
2211 	}
2212 
2213 	stats->rx_bytes += xdp->data_end - xdp->data;
2214 	stats->rx_packets++;
2215 
2216 	return ret;
2217 }
2218 
2219 static int
2220 mvneta_swbm_rx_frame(struct mvneta_port *pp,
2221 		     struct mvneta_rx_desc *rx_desc,
2222 		     struct mvneta_rx_queue *rxq,
2223 		     struct xdp_buff *xdp,
2224 		     struct bpf_prog *xdp_prog,
2225 		     struct page *page,
2226 		     struct mvneta_stats *stats)
2227 {
2228 	unsigned char *data = page_address(page);
2229 	int data_len = -MVNETA_MH_SIZE, len;
2230 	struct net_device *dev = pp->dev;
2231 	enum dma_data_direction dma_dir;
2232 	int ret = 0;
2233 
2234 	if (MVNETA_SKB_SIZE(rx_desc->data_size) > PAGE_SIZE) {
2235 		len = MVNETA_MAX_RX_BUF_SIZE;
2236 		data_len += len;
2237 	} else {
2238 		len = rx_desc->data_size;
2239 		data_len += len - ETH_FCS_LEN;
2240 	}
2241 
2242 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2243 	dma_sync_single_for_cpu(dev->dev.parent,
2244 				rx_desc->buf_phys_addr,
2245 				len, dma_dir);
2246 
2247 	/* Prefetch header */
2248 	prefetch(data);
2249 
2250 	xdp->data_hard_start = data;
2251 	xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE;
2252 	xdp->data_end = xdp->data + data_len;
2253 	xdp_set_data_meta_invalid(xdp);
2254 
2255 	if (xdp_prog) {
2256 		ret = mvneta_run_xdp(pp, rxq, xdp_prog, xdp, stats);
2257 		if (ret)
2258 			goto out;
2259 	}
2260 
2261 	rxq->skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2262 	if (unlikely(!rxq->skb)) {
2263 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2264 
2265 		netdev_err(dev, "Can't allocate skb on queue %d\n", rxq->id);
2266 
2267 		u64_stats_update_begin(&stats->syncp);
2268 		stats->es.skb_alloc_error++;
2269 		stats->rx_dropped++;
2270 		u64_stats_update_end(&stats->syncp);
2271 
2272 		return -ENOMEM;
2273 	}
2274 	page_pool_release_page(rxq->page_pool, page);
2275 
2276 	skb_reserve(rxq->skb,
2277 		    xdp->data - xdp->data_hard_start);
2278 	skb_put(rxq->skb, xdp->data_end - xdp->data);
2279 	mvneta_rx_csum(pp, rx_desc->status, rxq->skb);
2280 
2281 	rxq->left_size = rx_desc->data_size - len;
2282 
2283 out:
2284 	rx_desc->buf_phys_addr = 0;
2285 
2286 	return ret;
2287 }
2288 
2289 static void
2290 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2291 			    struct mvneta_rx_desc *rx_desc,
2292 			    struct mvneta_rx_queue *rxq,
2293 			    struct page *page)
2294 {
2295 	struct net_device *dev = pp->dev;
2296 	enum dma_data_direction dma_dir;
2297 	int data_len, len;
2298 
2299 	if (rxq->left_size > MVNETA_MAX_RX_BUF_SIZE) {
2300 		len = MVNETA_MAX_RX_BUF_SIZE;
2301 		data_len = len;
2302 	} else {
2303 		len = rxq->left_size;
2304 		data_len = len - ETH_FCS_LEN;
2305 	}
2306 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2307 	dma_sync_single_for_cpu(dev->dev.parent,
2308 				rx_desc->buf_phys_addr,
2309 				len, dma_dir);
2310 	if (data_len > 0) {
2311 		/* refill descriptor with new buffer later */
2312 		skb_add_rx_frag(rxq->skb,
2313 				skb_shinfo(rxq->skb)->nr_frags,
2314 				page, pp->rx_offset_correction, data_len,
2315 				PAGE_SIZE);
2316 	}
2317 	page_pool_release_page(rxq->page_pool, page);
2318 	rx_desc->buf_phys_addr = 0;
2319 	rxq->left_size -= len;
2320 }
2321 
2322 /* Main rx processing when using software buffer management */
2323 static int mvneta_rx_swbm(struct napi_struct *napi,
2324 			  struct mvneta_port *pp, int budget,
2325 			  struct mvneta_rx_queue *rxq)
2326 {
2327 	int rx_proc = 0, rx_todo, refill;
2328 	struct net_device *dev = pp->dev;
2329 	struct mvneta_stats ps = {};
2330 	struct bpf_prog *xdp_prog;
2331 	struct xdp_buff xdp_buf;
2332 
2333 	/* Get number of received packets */
2334 	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2335 
2336 	rcu_read_lock();
2337 	xdp_prog = READ_ONCE(pp->xdp_prog);
2338 	xdp_buf.rxq = &rxq->xdp_rxq;
2339 	xdp_buf.frame_sz = PAGE_SIZE;
2340 
2341 	/* Fairness NAPI loop */
2342 	while (rx_proc < budget && rx_proc < rx_todo) {
2343 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2344 		u32 rx_status, index;
2345 		struct page *page;
2346 
2347 		index = rx_desc - rxq->descs;
2348 		page = (struct page *)rxq->buf_virt_addr[index];
2349 
2350 		rx_status = rx_desc->status;
2351 		rx_proc++;
2352 		rxq->refill_num++;
2353 
2354 		if (rx_status & MVNETA_RXD_FIRST_DESC) {
2355 			int err;
2356 
2357 			/* Check errors only for FIRST descriptor */
2358 			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2359 				mvneta_rx_error(pp, rx_desc);
2360 				/* leave the descriptor untouched */
2361 				continue;
2362 			}
2363 
2364 			err = mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2365 						   xdp_prog, page, &ps);
2366 			if (err)
2367 				continue;
2368 		} else {
2369 			if (unlikely(!rxq->skb)) {
2370 				pr_debug("no skb for rx_status 0x%x\n",
2371 					 rx_status);
2372 				continue;
2373 			}
2374 			mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, page);
2375 		} /* Middle or Last descriptor */
2376 
2377 		if (!(rx_status & MVNETA_RXD_LAST_DESC))
2378 			/* no last descriptor this time */
2379 			continue;
2380 
2381 		if (rxq->left_size) {
2382 			pr_err("get last desc, but left_size (%d) != 0\n",
2383 			       rxq->left_size);
2384 			dev_kfree_skb_any(rxq->skb);
2385 			rxq->left_size = 0;
2386 			rxq->skb = NULL;
2387 			continue;
2388 		}
2389 
2390 		ps.rx_bytes += rxq->skb->len;
2391 		ps.rx_packets++;
2392 
2393 		/* Linux processing */
2394 		rxq->skb->protocol = eth_type_trans(rxq->skb, dev);
2395 
2396 		napi_gro_receive(napi, rxq->skb);
2397 
2398 		/* clean uncomplete skb pointer in queue */
2399 		rxq->skb = NULL;
2400 	}
2401 	rcu_read_unlock();
2402 
2403 	if (ps.xdp_redirect)
2404 		xdp_do_flush_map();
2405 
2406 	if (ps.rx_packets)
2407 		mvneta_update_stats(pp, &ps);
2408 
2409 	/* return some buffers to hardware queue, one at a time is too slow */
2410 	refill = mvneta_rx_refill_queue(pp, rxq);
2411 
2412 	/* Update rxq management counters */
2413 	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2414 
2415 	return ps.rx_packets;
2416 }
2417 
2418 /* Main rx processing when using hardware buffer management */
2419 static int mvneta_rx_hwbm(struct napi_struct *napi,
2420 			  struct mvneta_port *pp, int rx_todo,
2421 			  struct mvneta_rx_queue *rxq)
2422 {
2423 	struct net_device *dev = pp->dev;
2424 	int rx_done;
2425 	u32 rcvd_pkts = 0;
2426 	u32 rcvd_bytes = 0;
2427 
2428 	/* Get number of received packets */
2429 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2430 
2431 	if (rx_todo > rx_done)
2432 		rx_todo = rx_done;
2433 
2434 	rx_done = 0;
2435 
2436 	/* Fairness NAPI loop */
2437 	while (rx_done < rx_todo) {
2438 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2439 		struct mvneta_bm_pool *bm_pool = NULL;
2440 		struct sk_buff *skb;
2441 		unsigned char *data;
2442 		dma_addr_t phys_addr;
2443 		u32 rx_status, frag_size;
2444 		int rx_bytes, err;
2445 		u8 pool_id;
2446 
2447 		rx_done++;
2448 		rx_status = rx_desc->status;
2449 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2450 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2451 		phys_addr = rx_desc->buf_phys_addr;
2452 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2453 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2454 
2455 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2456 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2457 err_drop_frame_ret_pool:
2458 			/* Return the buffer to the pool */
2459 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2460 					      rx_desc->buf_phys_addr);
2461 err_drop_frame:
2462 			mvneta_rx_error(pp, rx_desc);
2463 			/* leave the descriptor untouched */
2464 			continue;
2465 		}
2466 
2467 		if (rx_bytes <= rx_copybreak) {
2468 			/* better copy a small frame and not unmap the DMA region */
2469 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2470 			if (unlikely(!skb))
2471 				goto err_drop_frame_ret_pool;
2472 
2473 			dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2474 			                              rx_desc->buf_phys_addr,
2475 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2476 			                              rx_bytes,
2477 			                              DMA_FROM_DEVICE);
2478 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2479 				     rx_bytes);
2480 
2481 			skb->protocol = eth_type_trans(skb, dev);
2482 			mvneta_rx_csum(pp, rx_status, skb);
2483 			napi_gro_receive(napi, skb);
2484 
2485 			rcvd_pkts++;
2486 			rcvd_bytes += rx_bytes;
2487 
2488 			/* Return the buffer to the pool */
2489 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2490 					      rx_desc->buf_phys_addr);
2491 
2492 			/* leave the descriptor and buffer untouched */
2493 			continue;
2494 		}
2495 
2496 		/* Refill processing */
2497 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2498 		if (err) {
2499 			struct mvneta_pcpu_stats *stats;
2500 
2501 			netdev_err(dev, "Linux processing - Can't refill\n");
2502 
2503 			stats = this_cpu_ptr(pp->stats);
2504 			u64_stats_update_begin(&stats->syncp);
2505 			stats->es.refill_error++;
2506 			u64_stats_update_end(&stats->syncp);
2507 
2508 			goto err_drop_frame_ret_pool;
2509 		}
2510 
2511 		frag_size = bm_pool->hwbm_pool.frag_size;
2512 
2513 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2514 
2515 		/* After refill old buffer has to be unmapped regardless
2516 		 * the skb is successfully built or not.
2517 		 */
2518 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2519 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2520 		if (!skb)
2521 			goto err_drop_frame;
2522 
2523 		rcvd_pkts++;
2524 		rcvd_bytes += rx_bytes;
2525 
2526 		/* Linux processing */
2527 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2528 		skb_put(skb, rx_bytes);
2529 
2530 		skb->protocol = eth_type_trans(skb, dev);
2531 
2532 		mvneta_rx_csum(pp, rx_status, skb);
2533 
2534 		napi_gro_receive(napi, skb);
2535 	}
2536 
2537 	if (rcvd_pkts) {
2538 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2539 
2540 		u64_stats_update_begin(&stats->syncp);
2541 		stats->es.ps.rx_packets += rcvd_pkts;
2542 		stats->es.ps.rx_bytes += rcvd_bytes;
2543 		u64_stats_update_end(&stats->syncp);
2544 	}
2545 
2546 	/* Update rxq management counters */
2547 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2548 
2549 	return rx_done;
2550 }
2551 
2552 static inline void
2553 mvneta_tso_put_hdr(struct sk_buff *skb,
2554 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2555 {
2556 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2557 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2558 	struct mvneta_tx_desc *tx_desc;
2559 
2560 	tx_desc = mvneta_txq_next_desc_get(txq);
2561 	tx_desc->data_size = hdr_len;
2562 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2563 	tx_desc->command |= MVNETA_TXD_F_DESC;
2564 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2565 				 txq->txq_put_index * TSO_HEADER_SIZE;
2566 	buf->type = MVNETA_TYPE_SKB;
2567 	buf->skb = NULL;
2568 
2569 	mvneta_txq_inc_put(txq);
2570 }
2571 
2572 static inline int
2573 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2574 		    struct sk_buff *skb, char *data, int size,
2575 		    bool last_tcp, bool is_last)
2576 {
2577 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2578 	struct mvneta_tx_desc *tx_desc;
2579 
2580 	tx_desc = mvneta_txq_next_desc_get(txq);
2581 	tx_desc->data_size = size;
2582 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2583 						size, DMA_TO_DEVICE);
2584 	if (unlikely(dma_mapping_error(dev->dev.parent,
2585 		     tx_desc->buf_phys_addr))) {
2586 		mvneta_txq_desc_put(txq);
2587 		return -ENOMEM;
2588 	}
2589 
2590 	tx_desc->command = 0;
2591 	buf->type = MVNETA_TYPE_SKB;
2592 	buf->skb = NULL;
2593 
2594 	if (last_tcp) {
2595 		/* last descriptor in the TCP packet */
2596 		tx_desc->command = MVNETA_TXD_L_DESC;
2597 
2598 		/* last descriptor in SKB */
2599 		if (is_last)
2600 			buf->skb = skb;
2601 	}
2602 	mvneta_txq_inc_put(txq);
2603 	return 0;
2604 }
2605 
2606 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2607 			 struct mvneta_tx_queue *txq)
2608 {
2609 	int hdr_len, total_len, data_left;
2610 	int desc_count = 0;
2611 	struct mvneta_port *pp = netdev_priv(dev);
2612 	struct tso_t tso;
2613 	int i;
2614 
2615 	/* Count needed descriptors */
2616 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2617 		return 0;
2618 
2619 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2620 		pr_info("*** Is this even  possible???!?!?\n");
2621 		return 0;
2622 	}
2623 
2624 	/* Initialize the TSO handler, and prepare the first payload */
2625 	hdr_len = tso_start(skb, &tso);
2626 
2627 	total_len = skb->len - hdr_len;
2628 	while (total_len > 0) {
2629 		char *hdr;
2630 
2631 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2632 		total_len -= data_left;
2633 		desc_count++;
2634 
2635 		/* prepare packet headers: MAC + IP + TCP */
2636 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2637 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2638 
2639 		mvneta_tso_put_hdr(skb, pp, txq);
2640 
2641 		while (data_left > 0) {
2642 			int size;
2643 			desc_count++;
2644 
2645 			size = min_t(int, tso.size, data_left);
2646 
2647 			if (mvneta_tso_put_data(dev, txq, skb,
2648 						 tso.data, size,
2649 						 size == data_left,
2650 						 total_len == 0))
2651 				goto err_release;
2652 			data_left -= size;
2653 
2654 			tso_build_data(skb, &tso, size);
2655 		}
2656 	}
2657 
2658 	return desc_count;
2659 
2660 err_release:
2661 	/* Release all used data descriptors; header descriptors must not
2662 	 * be DMA-unmapped.
2663 	 */
2664 	for (i = desc_count - 1; i >= 0; i--) {
2665 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2666 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2667 			dma_unmap_single(pp->dev->dev.parent,
2668 					 tx_desc->buf_phys_addr,
2669 					 tx_desc->data_size,
2670 					 DMA_TO_DEVICE);
2671 		mvneta_txq_desc_put(txq);
2672 	}
2673 	return 0;
2674 }
2675 
2676 /* Handle tx fragmentation processing */
2677 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2678 				  struct mvneta_tx_queue *txq)
2679 {
2680 	struct mvneta_tx_desc *tx_desc;
2681 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2682 
2683 	for (i = 0; i < nr_frags; i++) {
2684 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2685 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2686 		void *addr = skb_frag_address(frag);
2687 
2688 		tx_desc = mvneta_txq_next_desc_get(txq);
2689 		tx_desc->data_size = skb_frag_size(frag);
2690 
2691 		tx_desc->buf_phys_addr =
2692 			dma_map_single(pp->dev->dev.parent, addr,
2693 				       tx_desc->data_size, DMA_TO_DEVICE);
2694 
2695 		if (dma_mapping_error(pp->dev->dev.parent,
2696 				      tx_desc->buf_phys_addr)) {
2697 			mvneta_txq_desc_put(txq);
2698 			goto error;
2699 		}
2700 
2701 		if (i == nr_frags - 1) {
2702 			/* Last descriptor */
2703 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2704 			buf->skb = skb;
2705 		} else {
2706 			/* Descriptor in the middle: Not First, Not Last */
2707 			tx_desc->command = 0;
2708 			buf->skb = NULL;
2709 		}
2710 		buf->type = MVNETA_TYPE_SKB;
2711 		mvneta_txq_inc_put(txq);
2712 	}
2713 
2714 	return 0;
2715 
2716 error:
2717 	/* Release all descriptors that were used to map fragments of
2718 	 * this packet, as well as the corresponding DMA mappings
2719 	 */
2720 	for (i = i - 1; i >= 0; i--) {
2721 		tx_desc = txq->descs + i;
2722 		dma_unmap_single(pp->dev->dev.parent,
2723 				 tx_desc->buf_phys_addr,
2724 				 tx_desc->data_size,
2725 				 DMA_TO_DEVICE);
2726 		mvneta_txq_desc_put(txq);
2727 	}
2728 
2729 	return -ENOMEM;
2730 }
2731 
2732 /* Main tx processing */
2733 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2734 {
2735 	struct mvneta_port *pp = netdev_priv(dev);
2736 	u16 txq_id = skb_get_queue_mapping(skb);
2737 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2738 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2739 	struct mvneta_tx_desc *tx_desc;
2740 	int len = skb->len;
2741 	int frags = 0;
2742 	u32 tx_cmd;
2743 
2744 	if (!netif_running(dev))
2745 		goto out;
2746 
2747 	if (skb_is_gso(skb)) {
2748 		frags = mvneta_tx_tso(skb, dev, txq);
2749 		goto out;
2750 	}
2751 
2752 	frags = skb_shinfo(skb)->nr_frags + 1;
2753 
2754 	/* Get a descriptor for the first part of the packet */
2755 	tx_desc = mvneta_txq_next_desc_get(txq);
2756 
2757 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2758 
2759 	tx_desc->data_size = skb_headlen(skb);
2760 
2761 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2762 						tx_desc->data_size,
2763 						DMA_TO_DEVICE);
2764 	if (unlikely(dma_mapping_error(dev->dev.parent,
2765 				       tx_desc->buf_phys_addr))) {
2766 		mvneta_txq_desc_put(txq);
2767 		frags = 0;
2768 		goto out;
2769 	}
2770 
2771 	buf->type = MVNETA_TYPE_SKB;
2772 	if (frags == 1) {
2773 		/* First and Last descriptor */
2774 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2775 		tx_desc->command = tx_cmd;
2776 		buf->skb = skb;
2777 		mvneta_txq_inc_put(txq);
2778 	} else {
2779 		/* First but not Last */
2780 		tx_cmd |= MVNETA_TXD_F_DESC;
2781 		buf->skb = NULL;
2782 		mvneta_txq_inc_put(txq);
2783 		tx_desc->command = tx_cmd;
2784 		/* Continue with other skb fragments */
2785 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2786 			dma_unmap_single(dev->dev.parent,
2787 					 tx_desc->buf_phys_addr,
2788 					 tx_desc->data_size,
2789 					 DMA_TO_DEVICE);
2790 			mvneta_txq_desc_put(txq);
2791 			frags = 0;
2792 			goto out;
2793 		}
2794 	}
2795 
2796 out:
2797 	if (frags > 0) {
2798 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2799 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2800 
2801 		netdev_tx_sent_queue(nq, len);
2802 
2803 		txq->count += frags;
2804 		if (txq->count >= txq->tx_stop_threshold)
2805 			netif_tx_stop_queue(nq);
2806 
2807 		if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2808 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2809 			mvneta_txq_pend_desc_add(pp, txq, frags);
2810 		else
2811 			txq->pending += frags;
2812 
2813 		u64_stats_update_begin(&stats->syncp);
2814 		stats->es.ps.tx_bytes += len;
2815 		stats->es.ps.tx_packets++;
2816 		u64_stats_update_end(&stats->syncp);
2817 	} else {
2818 		dev->stats.tx_dropped++;
2819 		dev_kfree_skb_any(skb);
2820 	}
2821 
2822 	return NETDEV_TX_OK;
2823 }
2824 
2825 
2826 /* Free tx resources, when resetting a port */
2827 static void mvneta_txq_done_force(struct mvneta_port *pp,
2828 				  struct mvneta_tx_queue *txq)
2829 
2830 {
2831 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2832 	int tx_done = txq->count;
2833 
2834 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2835 
2836 	/* reset txq */
2837 	txq->count = 0;
2838 	txq->txq_put_index = 0;
2839 	txq->txq_get_index = 0;
2840 }
2841 
2842 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2843  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2844  */
2845 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2846 {
2847 	struct mvneta_tx_queue *txq;
2848 	struct netdev_queue *nq;
2849 	int cpu = smp_processor_id();
2850 
2851 	while (cause_tx_done) {
2852 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2853 
2854 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2855 		__netif_tx_lock(nq, cpu);
2856 
2857 		if (txq->count)
2858 			mvneta_txq_done(pp, txq);
2859 
2860 		__netif_tx_unlock(nq);
2861 		cause_tx_done &= ~((1 << txq->id));
2862 	}
2863 }
2864 
2865 /* Compute crc8 of the specified address, using a unique algorithm ,
2866  * according to hw spec, different than generic crc8 algorithm
2867  */
2868 static int mvneta_addr_crc(unsigned char *addr)
2869 {
2870 	int crc = 0;
2871 	int i;
2872 
2873 	for (i = 0; i < ETH_ALEN; i++) {
2874 		int j;
2875 
2876 		crc = (crc ^ addr[i]) << 8;
2877 		for (j = 7; j >= 0; j--) {
2878 			if (crc & (0x100 << j))
2879 				crc ^= 0x107 << j;
2880 		}
2881 	}
2882 
2883 	return crc;
2884 }
2885 
2886 /* This method controls the net device special MAC multicast support.
2887  * The Special Multicast Table for MAC addresses supports MAC of the form
2888  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2889  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2890  * Table entries in the DA-Filter table. This method set the Special
2891  * Multicast Table appropriate entry.
2892  */
2893 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2894 					  unsigned char last_byte,
2895 					  int queue)
2896 {
2897 	unsigned int smc_table_reg;
2898 	unsigned int tbl_offset;
2899 	unsigned int reg_offset;
2900 
2901 	/* Register offset from SMC table base    */
2902 	tbl_offset = (last_byte / 4);
2903 	/* Entry offset within the above reg */
2904 	reg_offset = last_byte % 4;
2905 
2906 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2907 					+ tbl_offset * 4));
2908 
2909 	if (queue == -1)
2910 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2911 	else {
2912 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2913 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2914 	}
2915 
2916 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2917 		    smc_table_reg);
2918 }
2919 
2920 /* This method controls the network device Other MAC multicast support.
2921  * The Other Multicast Table is used for multicast of another type.
2922  * A CRC-8 is used as an index to the Other Multicast Table entries
2923  * in the DA-Filter table.
2924  * The method gets the CRC-8 value from the calling routine and
2925  * sets the Other Multicast Table appropriate entry according to the
2926  * specified CRC-8 .
2927  */
2928 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2929 					unsigned char crc8,
2930 					int queue)
2931 {
2932 	unsigned int omc_table_reg;
2933 	unsigned int tbl_offset;
2934 	unsigned int reg_offset;
2935 
2936 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2937 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2938 
2939 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2940 
2941 	if (queue == -1) {
2942 		/* Clear accepts frame bit at specified Other DA table entry */
2943 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2944 	} else {
2945 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2946 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2947 	}
2948 
2949 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2950 }
2951 
2952 /* The network device supports multicast using two tables:
2953  *    1) Special Multicast Table for MAC addresses of the form
2954  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2955  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2956  *       Table entries in the DA-Filter table.
2957  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2958  *       is used as an index to the Other Multicast Table entries in the
2959  *       DA-Filter table.
2960  */
2961 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2962 				 int queue)
2963 {
2964 	unsigned char crc_result = 0;
2965 
2966 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2967 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2968 		return 0;
2969 	}
2970 
2971 	crc_result = mvneta_addr_crc(p_addr);
2972 	if (queue == -1) {
2973 		if (pp->mcast_count[crc_result] == 0) {
2974 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2975 				    crc_result);
2976 			return -EINVAL;
2977 		}
2978 
2979 		pp->mcast_count[crc_result]--;
2980 		if (pp->mcast_count[crc_result] != 0) {
2981 			netdev_info(pp->dev,
2982 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2983 				    pp->mcast_count[crc_result], crc_result);
2984 			return -EINVAL;
2985 		}
2986 	} else
2987 		pp->mcast_count[crc_result]++;
2988 
2989 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2990 
2991 	return 0;
2992 }
2993 
2994 /* Configure Fitering mode of Ethernet port */
2995 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2996 					  int is_promisc)
2997 {
2998 	u32 port_cfg_reg, val;
2999 
3000 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
3001 
3002 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
3003 
3004 	/* Set / Clear UPM bit in port configuration register */
3005 	if (is_promisc) {
3006 		/* Accept all Unicast addresses */
3007 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
3008 		val |= MVNETA_FORCE_UNI;
3009 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
3010 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
3011 	} else {
3012 		/* Reject all Unicast addresses */
3013 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
3014 		val &= ~MVNETA_FORCE_UNI;
3015 	}
3016 
3017 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
3018 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
3019 }
3020 
3021 /* register unicast and multicast addresses */
3022 static void mvneta_set_rx_mode(struct net_device *dev)
3023 {
3024 	struct mvneta_port *pp = netdev_priv(dev);
3025 	struct netdev_hw_addr *ha;
3026 
3027 	if (dev->flags & IFF_PROMISC) {
3028 		/* Accept all: Multicast + Unicast */
3029 		mvneta_rx_unicast_promisc_set(pp, 1);
3030 		mvneta_set_ucast_table(pp, pp->rxq_def);
3031 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
3032 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
3033 	} else {
3034 		/* Accept single Unicast */
3035 		mvneta_rx_unicast_promisc_set(pp, 0);
3036 		mvneta_set_ucast_table(pp, -1);
3037 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3038 
3039 		if (dev->flags & IFF_ALLMULTI) {
3040 			/* Accept all multicast */
3041 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
3042 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
3043 		} else {
3044 			/* Accept only initialized multicast */
3045 			mvneta_set_special_mcast_table(pp, -1);
3046 			mvneta_set_other_mcast_table(pp, -1);
3047 
3048 			if (!netdev_mc_empty(dev)) {
3049 				netdev_for_each_mc_addr(ha, dev) {
3050 					mvneta_mcast_addr_set(pp, ha->addr,
3051 							      pp->rxq_def);
3052 				}
3053 			}
3054 		}
3055 	}
3056 }
3057 
3058 /* Interrupt handling - the callback for request_irq() */
3059 static irqreturn_t mvneta_isr(int irq, void *dev_id)
3060 {
3061 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3062 
3063 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3064 	napi_schedule(&pp->napi);
3065 
3066 	return IRQ_HANDLED;
3067 }
3068 
3069 /* Interrupt handling - the callback for request_percpu_irq() */
3070 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3071 {
3072 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3073 
3074 	disable_percpu_irq(port->pp->dev->irq);
3075 	napi_schedule(&port->napi);
3076 
3077 	return IRQ_HANDLED;
3078 }
3079 
3080 static void mvneta_link_change(struct mvneta_port *pp)
3081 {
3082 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3083 
3084 	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3085 }
3086 
3087 /* NAPI handler
3088  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3089  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3090  * Bits 8 -15 of the cause Rx Tx register indicate that are received
3091  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3092  * Each CPU has its own causeRxTx register
3093  */
3094 static int mvneta_poll(struct napi_struct *napi, int budget)
3095 {
3096 	int rx_done = 0;
3097 	u32 cause_rx_tx;
3098 	int rx_queue;
3099 	struct mvneta_port *pp = netdev_priv(napi->dev);
3100 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3101 
3102 	if (!netif_running(pp->dev)) {
3103 		napi_complete(napi);
3104 		return rx_done;
3105 	}
3106 
3107 	/* Read cause register */
3108 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3109 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3110 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3111 
3112 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3113 
3114 		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3115 				  MVNETA_CAUSE_LINK_CHANGE))
3116 			mvneta_link_change(pp);
3117 	}
3118 
3119 	/* Release Tx descriptors */
3120 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3121 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3122 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3123 	}
3124 
3125 	/* For the case where the last mvneta_poll did not process all
3126 	 * RX packets
3127 	 */
3128 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3129 		port->cause_rx_tx;
3130 
3131 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3132 	if (rx_queue) {
3133 		rx_queue = rx_queue - 1;
3134 		if (pp->bm_priv)
3135 			rx_done = mvneta_rx_hwbm(napi, pp, budget,
3136 						 &pp->rxqs[rx_queue]);
3137 		else
3138 			rx_done = mvneta_rx_swbm(napi, pp, budget,
3139 						 &pp->rxqs[rx_queue]);
3140 	}
3141 
3142 	if (rx_done < budget) {
3143 		cause_rx_tx = 0;
3144 		napi_complete_done(napi, rx_done);
3145 
3146 		if (pp->neta_armada3700) {
3147 			unsigned long flags;
3148 
3149 			local_irq_save(flags);
3150 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3151 				    MVNETA_RX_INTR_MASK(rxq_number) |
3152 				    MVNETA_TX_INTR_MASK(txq_number) |
3153 				    MVNETA_MISCINTR_INTR_MASK);
3154 			local_irq_restore(flags);
3155 		} else {
3156 			enable_percpu_irq(pp->dev->irq, 0);
3157 		}
3158 	}
3159 
3160 	if (pp->neta_armada3700)
3161 		pp->cause_rx_tx = cause_rx_tx;
3162 	else
3163 		port->cause_rx_tx = cause_rx_tx;
3164 
3165 	return rx_done;
3166 }
3167 
3168 static int mvneta_create_page_pool(struct mvneta_port *pp,
3169 				   struct mvneta_rx_queue *rxq, int size)
3170 {
3171 	struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3172 	struct page_pool_params pp_params = {
3173 		.order = 0,
3174 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3175 		.pool_size = size,
3176 		.nid = NUMA_NO_NODE,
3177 		.dev = pp->dev->dev.parent,
3178 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3179 		.offset = pp->rx_offset_correction,
3180 		.max_len = MVNETA_MAX_RX_BUF_SIZE,
3181 	};
3182 	int err;
3183 
3184 	rxq->page_pool = page_pool_create(&pp_params);
3185 	if (IS_ERR(rxq->page_pool)) {
3186 		err = PTR_ERR(rxq->page_pool);
3187 		rxq->page_pool = NULL;
3188 		return err;
3189 	}
3190 
3191 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id);
3192 	if (err < 0)
3193 		goto err_free_pp;
3194 
3195 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3196 					 rxq->page_pool);
3197 	if (err)
3198 		goto err_unregister_rxq;
3199 
3200 	return 0;
3201 
3202 err_unregister_rxq:
3203 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
3204 err_free_pp:
3205 	page_pool_destroy(rxq->page_pool);
3206 	rxq->page_pool = NULL;
3207 	return err;
3208 }
3209 
3210 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
3211 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3212 			   int num)
3213 {
3214 	int i, err;
3215 
3216 	err = mvneta_create_page_pool(pp, rxq, num);
3217 	if (err < 0)
3218 		return err;
3219 
3220 	for (i = 0; i < num; i++) {
3221 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3222 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3223 				     GFP_KERNEL) != 0) {
3224 			netdev_err(pp->dev,
3225 				   "%s:rxq %d, %d of %d buffs  filled\n",
3226 				   __func__, rxq->id, i, num);
3227 			break;
3228 		}
3229 	}
3230 
3231 	/* Add this number of RX descriptors as non occupied (ready to
3232 	 * get packets)
3233 	 */
3234 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3235 
3236 	return i;
3237 }
3238 
3239 /* Free all packets pending transmit from all TXQs and reset TX port */
3240 static void mvneta_tx_reset(struct mvneta_port *pp)
3241 {
3242 	int queue;
3243 
3244 	/* free the skb's in the tx ring */
3245 	for (queue = 0; queue < txq_number; queue++)
3246 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
3247 
3248 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3249 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3250 }
3251 
3252 static void mvneta_rx_reset(struct mvneta_port *pp)
3253 {
3254 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3255 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3256 }
3257 
3258 /* Rx/Tx queue initialization/cleanup methods */
3259 
3260 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3261 			      struct mvneta_rx_queue *rxq)
3262 {
3263 	rxq->size = pp->rx_ring_size;
3264 
3265 	/* Allocate memory for RX descriptors */
3266 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3267 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3268 					&rxq->descs_phys, GFP_KERNEL);
3269 	if (!rxq->descs)
3270 		return -ENOMEM;
3271 
3272 	rxq->last_desc = rxq->size - 1;
3273 
3274 	return 0;
3275 }
3276 
3277 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3278 			       struct mvneta_rx_queue *rxq)
3279 {
3280 	/* Set Rx descriptors queue starting address */
3281 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3282 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3283 
3284 	/* Set coalescing pkts and time */
3285 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3286 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3287 
3288 	if (!pp->bm_priv) {
3289 		/* Set Offset */
3290 		mvneta_rxq_offset_set(pp, rxq, 0);
3291 		mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3292 					MVNETA_MAX_RX_BUF_SIZE :
3293 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
3294 		mvneta_rxq_bm_disable(pp, rxq);
3295 		mvneta_rxq_fill(pp, rxq, rxq->size);
3296 	} else {
3297 		/* Set Offset */
3298 		mvneta_rxq_offset_set(pp, rxq,
3299 				      NET_SKB_PAD - pp->rx_offset_correction);
3300 
3301 		mvneta_rxq_bm_enable(pp, rxq);
3302 		/* Fill RXQ with buffers from RX pool */
3303 		mvneta_rxq_long_pool_set(pp, rxq);
3304 		mvneta_rxq_short_pool_set(pp, rxq);
3305 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3306 	}
3307 }
3308 
3309 /* Create a specified RX queue */
3310 static int mvneta_rxq_init(struct mvneta_port *pp,
3311 			   struct mvneta_rx_queue *rxq)
3312 
3313 {
3314 	int ret;
3315 
3316 	ret = mvneta_rxq_sw_init(pp, rxq);
3317 	if (ret < 0)
3318 		return ret;
3319 
3320 	mvneta_rxq_hw_init(pp, rxq);
3321 
3322 	return 0;
3323 }
3324 
3325 /* Cleanup Rx queue */
3326 static void mvneta_rxq_deinit(struct mvneta_port *pp,
3327 			      struct mvneta_rx_queue *rxq)
3328 {
3329 	mvneta_rxq_drop_pkts(pp, rxq);
3330 
3331 	if (rxq->skb)
3332 		dev_kfree_skb_any(rxq->skb);
3333 
3334 	if (rxq->descs)
3335 		dma_free_coherent(pp->dev->dev.parent,
3336 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3337 				  rxq->descs,
3338 				  rxq->descs_phys);
3339 
3340 	rxq->descs             = NULL;
3341 	rxq->last_desc         = 0;
3342 	rxq->next_desc_to_proc = 0;
3343 	rxq->descs_phys        = 0;
3344 	rxq->first_to_refill   = 0;
3345 	rxq->refill_num        = 0;
3346 	rxq->skb               = NULL;
3347 	rxq->left_size         = 0;
3348 }
3349 
3350 static int mvneta_txq_sw_init(struct mvneta_port *pp,
3351 			      struct mvneta_tx_queue *txq)
3352 {
3353 	int cpu;
3354 
3355 	txq->size = pp->tx_ring_size;
3356 
3357 	/* A queue must always have room for at least one skb.
3358 	 * Therefore, stop the queue when the free entries reaches
3359 	 * the maximum number of descriptors per skb.
3360 	 */
3361 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3362 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3363 
3364 	/* Allocate memory for TX descriptors */
3365 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3366 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
3367 					&txq->descs_phys, GFP_KERNEL);
3368 	if (!txq->descs)
3369 		return -ENOMEM;
3370 
3371 	txq->last_desc = txq->size - 1;
3372 
3373 	txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3374 	if (!txq->buf) {
3375 		dma_free_coherent(pp->dev->dev.parent,
3376 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3377 				  txq->descs, txq->descs_phys);
3378 		return -ENOMEM;
3379 	}
3380 
3381 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3382 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3383 					   txq->size * TSO_HEADER_SIZE,
3384 					   &txq->tso_hdrs_phys, GFP_KERNEL);
3385 	if (!txq->tso_hdrs) {
3386 		kfree(txq->buf);
3387 		dma_free_coherent(pp->dev->dev.parent,
3388 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3389 				  txq->descs, txq->descs_phys);
3390 		return -ENOMEM;
3391 	}
3392 
3393 	/* Setup XPS mapping */
3394 	if (txq_number > 1)
3395 		cpu = txq->id % num_present_cpus();
3396 	else
3397 		cpu = pp->rxq_def % num_present_cpus();
3398 	cpumask_set_cpu(cpu, &txq->affinity_mask);
3399 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3400 
3401 	return 0;
3402 }
3403 
3404 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3405 			       struct mvneta_tx_queue *txq)
3406 {
3407 	/* Set maximum bandwidth for enabled TXQs */
3408 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3409 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3410 
3411 	/* Set Tx descriptors queue starting address */
3412 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3413 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3414 
3415 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3416 }
3417 
3418 /* Create and initialize a tx queue */
3419 static int mvneta_txq_init(struct mvneta_port *pp,
3420 			   struct mvneta_tx_queue *txq)
3421 {
3422 	int ret;
3423 
3424 	ret = mvneta_txq_sw_init(pp, txq);
3425 	if (ret < 0)
3426 		return ret;
3427 
3428 	mvneta_txq_hw_init(pp, txq);
3429 
3430 	return 0;
3431 }
3432 
3433 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3434 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3435 				 struct mvneta_tx_queue *txq)
3436 {
3437 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3438 
3439 	kfree(txq->buf);
3440 
3441 	if (txq->tso_hdrs)
3442 		dma_free_coherent(pp->dev->dev.parent,
3443 				  txq->size * TSO_HEADER_SIZE,
3444 				  txq->tso_hdrs, txq->tso_hdrs_phys);
3445 	if (txq->descs)
3446 		dma_free_coherent(pp->dev->dev.parent,
3447 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3448 				  txq->descs, txq->descs_phys);
3449 
3450 	netdev_tx_reset_queue(nq);
3451 
3452 	txq->descs             = NULL;
3453 	txq->last_desc         = 0;
3454 	txq->next_desc_to_proc = 0;
3455 	txq->descs_phys        = 0;
3456 }
3457 
3458 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3459 				 struct mvneta_tx_queue *txq)
3460 {
3461 	/* Set minimum bandwidth for disabled TXQs */
3462 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3463 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3464 
3465 	/* Set Tx descriptors queue starting address and size */
3466 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3467 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3468 }
3469 
3470 static void mvneta_txq_deinit(struct mvneta_port *pp,
3471 			      struct mvneta_tx_queue *txq)
3472 {
3473 	mvneta_txq_sw_deinit(pp, txq);
3474 	mvneta_txq_hw_deinit(pp, txq);
3475 }
3476 
3477 /* Cleanup all Tx queues */
3478 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3479 {
3480 	int queue;
3481 
3482 	for (queue = 0; queue < txq_number; queue++)
3483 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3484 }
3485 
3486 /* Cleanup all Rx queues */
3487 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3488 {
3489 	int queue;
3490 
3491 	for (queue = 0; queue < rxq_number; queue++)
3492 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3493 }
3494 
3495 
3496 /* Init all Rx queues */
3497 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3498 {
3499 	int queue;
3500 
3501 	for (queue = 0; queue < rxq_number; queue++) {
3502 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3503 
3504 		if (err) {
3505 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3506 				   __func__, queue);
3507 			mvneta_cleanup_rxqs(pp);
3508 			return err;
3509 		}
3510 	}
3511 
3512 	return 0;
3513 }
3514 
3515 /* Init all tx queues */
3516 static int mvneta_setup_txqs(struct mvneta_port *pp)
3517 {
3518 	int queue;
3519 
3520 	for (queue = 0; queue < txq_number; queue++) {
3521 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3522 		if (err) {
3523 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3524 				   __func__, queue);
3525 			mvneta_cleanup_txqs(pp);
3526 			return err;
3527 		}
3528 	}
3529 
3530 	return 0;
3531 }
3532 
3533 static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface)
3534 {
3535 	int ret;
3536 
3537 	ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface);
3538 	if (ret)
3539 		return ret;
3540 
3541 	return phy_power_on(pp->comphy);
3542 }
3543 
3544 static int mvneta_config_interface(struct mvneta_port *pp,
3545 				   phy_interface_t interface)
3546 {
3547 	int ret = 0;
3548 
3549 	if (pp->comphy) {
3550 		if (interface == PHY_INTERFACE_MODE_SGMII ||
3551 		    interface == PHY_INTERFACE_MODE_1000BASEX ||
3552 		    interface == PHY_INTERFACE_MODE_2500BASEX) {
3553 			ret = mvneta_comphy_init(pp, interface);
3554 		}
3555 	} else {
3556 		switch (interface) {
3557 		case PHY_INTERFACE_MODE_QSGMII:
3558 			mvreg_write(pp, MVNETA_SERDES_CFG,
3559 				    MVNETA_QSGMII_SERDES_PROTO);
3560 			break;
3561 
3562 		case PHY_INTERFACE_MODE_SGMII:
3563 		case PHY_INTERFACE_MODE_1000BASEX:
3564 			mvreg_write(pp, MVNETA_SERDES_CFG,
3565 				    MVNETA_SGMII_SERDES_PROTO);
3566 			break;
3567 
3568 		case PHY_INTERFACE_MODE_2500BASEX:
3569 			mvreg_write(pp, MVNETA_SERDES_CFG,
3570 				    MVNETA_HSGMII_SERDES_PROTO);
3571 			break;
3572 		default:
3573 			break;
3574 		}
3575 	}
3576 
3577 	pp->phy_interface = interface;
3578 
3579 	return ret;
3580 }
3581 
3582 static void mvneta_start_dev(struct mvneta_port *pp)
3583 {
3584 	int cpu;
3585 
3586 	WARN_ON(mvneta_config_interface(pp, pp->phy_interface));
3587 
3588 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3589 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3590 
3591 	/* start the Rx/Tx activity */
3592 	mvneta_port_enable(pp);
3593 
3594 	if (!pp->neta_armada3700) {
3595 		/* Enable polling on the port */
3596 		for_each_online_cpu(cpu) {
3597 			struct mvneta_pcpu_port *port =
3598 				per_cpu_ptr(pp->ports, cpu);
3599 
3600 			napi_enable(&port->napi);
3601 		}
3602 	} else {
3603 		napi_enable(&pp->napi);
3604 	}
3605 
3606 	/* Unmask interrupts. It has to be done from each CPU */
3607 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3608 
3609 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3610 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3611 		    MVNETA_CAUSE_LINK_CHANGE);
3612 
3613 	phylink_start(pp->phylink);
3614 
3615 	/* We may have called phy_speed_down before */
3616 	phylink_speed_up(pp->phylink);
3617 
3618 	netif_tx_start_all_queues(pp->dev);
3619 
3620 	clear_bit(__MVNETA_DOWN, &pp->state);
3621 }
3622 
3623 static void mvneta_stop_dev(struct mvneta_port *pp)
3624 {
3625 	unsigned int cpu;
3626 
3627 	set_bit(__MVNETA_DOWN, &pp->state);
3628 
3629 	if (device_may_wakeup(&pp->dev->dev))
3630 		phylink_speed_down(pp->phylink, false);
3631 
3632 	phylink_stop(pp->phylink);
3633 
3634 	if (!pp->neta_armada3700) {
3635 		for_each_online_cpu(cpu) {
3636 			struct mvneta_pcpu_port *port =
3637 				per_cpu_ptr(pp->ports, cpu);
3638 
3639 			napi_disable(&port->napi);
3640 		}
3641 	} else {
3642 		napi_disable(&pp->napi);
3643 	}
3644 
3645 	netif_carrier_off(pp->dev);
3646 
3647 	mvneta_port_down(pp);
3648 	netif_tx_stop_all_queues(pp->dev);
3649 
3650 	/* Stop the port activity */
3651 	mvneta_port_disable(pp);
3652 
3653 	/* Clear all ethernet port interrupts */
3654 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3655 
3656 	/* Mask all ethernet port interrupts */
3657 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3658 
3659 	mvneta_tx_reset(pp);
3660 	mvneta_rx_reset(pp);
3661 
3662 	WARN_ON(phy_power_off(pp->comphy));
3663 }
3664 
3665 static void mvneta_percpu_enable(void *arg)
3666 {
3667 	struct mvneta_port *pp = arg;
3668 
3669 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3670 }
3671 
3672 static void mvneta_percpu_disable(void *arg)
3673 {
3674 	struct mvneta_port *pp = arg;
3675 
3676 	disable_percpu_irq(pp->dev->irq);
3677 }
3678 
3679 /* Change the device mtu */
3680 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3681 {
3682 	struct mvneta_port *pp = netdev_priv(dev);
3683 	int ret;
3684 
3685 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3686 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3687 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3688 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3689 	}
3690 
3691 	if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) {
3692 		netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu);
3693 		return -EINVAL;
3694 	}
3695 
3696 	dev->mtu = mtu;
3697 
3698 	if (!netif_running(dev)) {
3699 		if (pp->bm_priv)
3700 			mvneta_bm_update_mtu(pp, mtu);
3701 
3702 		netdev_update_features(dev);
3703 		return 0;
3704 	}
3705 
3706 	/* The interface is running, so we have to force a
3707 	 * reallocation of the queues
3708 	 */
3709 	mvneta_stop_dev(pp);
3710 	on_each_cpu(mvneta_percpu_disable, pp, true);
3711 
3712 	mvneta_cleanup_txqs(pp);
3713 	mvneta_cleanup_rxqs(pp);
3714 
3715 	if (pp->bm_priv)
3716 		mvneta_bm_update_mtu(pp, mtu);
3717 
3718 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3719 
3720 	ret = mvneta_setup_rxqs(pp);
3721 	if (ret) {
3722 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3723 		return ret;
3724 	}
3725 
3726 	ret = mvneta_setup_txqs(pp);
3727 	if (ret) {
3728 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3729 		return ret;
3730 	}
3731 
3732 	on_each_cpu(mvneta_percpu_enable, pp, true);
3733 	mvneta_start_dev(pp);
3734 
3735 	netdev_update_features(dev);
3736 
3737 	return 0;
3738 }
3739 
3740 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3741 					     netdev_features_t features)
3742 {
3743 	struct mvneta_port *pp = netdev_priv(dev);
3744 
3745 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3746 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3747 		netdev_info(dev,
3748 			    "Disable IP checksum for MTU greater than %dB\n",
3749 			    pp->tx_csum_limit);
3750 	}
3751 
3752 	return features;
3753 }
3754 
3755 /* Get mac address */
3756 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3757 {
3758 	u32 mac_addr_l, mac_addr_h;
3759 
3760 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3761 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3762 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3763 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3764 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3765 	addr[3] = mac_addr_h & 0xFF;
3766 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3767 	addr[5] = mac_addr_l & 0xFF;
3768 }
3769 
3770 /* Handle setting mac address */
3771 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3772 {
3773 	struct mvneta_port *pp = netdev_priv(dev);
3774 	struct sockaddr *sockaddr = addr;
3775 	int ret;
3776 
3777 	ret = eth_prepare_mac_addr_change(dev, addr);
3778 	if (ret < 0)
3779 		return ret;
3780 	/* Remove previous address table entry */
3781 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3782 
3783 	/* Set new addr in hw */
3784 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3785 
3786 	eth_commit_mac_addr_change(dev, addr);
3787 	return 0;
3788 }
3789 
3790 static void mvneta_validate(struct phylink_config *config,
3791 			    unsigned long *supported,
3792 			    struct phylink_link_state *state)
3793 {
3794 	struct net_device *ndev = to_net_dev(config->dev);
3795 	struct mvneta_port *pp = netdev_priv(ndev);
3796 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3797 
3798 	/* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3799 	if (state->interface != PHY_INTERFACE_MODE_NA &&
3800 	    state->interface != PHY_INTERFACE_MODE_QSGMII &&
3801 	    state->interface != PHY_INTERFACE_MODE_SGMII &&
3802 	    !phy_interface_mode_is_8023z(state->interface) &&
3803 	    !phy_interface_mode_is_rgmii(state->interface)) {
3804 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3805 		return;
3806 	}
3807 
3808 	/* Allow all the expected bits */
3809 	phylink_set(mask, Autoneg);
3810 	phylink_set_port_modes(mask);
3811 
3812 	/* Asymmetric pause is unsupported */
3813 	phylink_set(mask, Pause);
3814 
3815 	/* Half-duplex at speeds higher than 100Mbit is unsupported */
3816 	if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3817 		phylink_set(mask, 1000baseT_Full);
3818 		phylink_set(mask, 1000baseX_Full);
3819 	}
3820 	if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3821 		phylink_set(mask, 2500baseT_Full);
3822 		phylink_set(mask, 2500baseX_Full);
3823 	}
3824 
3825 	if (!phy_interface_mode_is_8023z(state->interface)) {
3826 		/* 10M and 100M are only supported in non-802.3z mode */
3827 		phylink_set(mask, 10baseT_Half);
3828 		phylink_set(mask, 10baseT_Full);
3829 		phylink_set(mask, 100baseT_Half);
3830 		phylink_set(mask, 100baseT_Full);
3831 	}
3832 
3833 	bitmap_and(supported, supported, mask,
3834 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3835 	bitmap_and(state->advertising, state->advertising, mask,
3836 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3837 
3838 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
3839 	 * to advertise both, only report advertising at 2500BaseX.
3840 	 */
3841 	phylink_helper_basex_speed(state);
3842 }
3843 
3844 static void mvneta_mac_pcs_get_state(struct phylink_config *config,
3845 				     struct phylink_link_state *state)
3846 {
3847 	struct net_device *ndev = to_net_dev(config->dev);
3848 	struct mvneta_port *pp = netdev_priv(ndev);
3849 	u32 gmac_stat;
3850 
3851 	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3852 
3853 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3854 		state->speed =
3855 			state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3856 			SPEED_2500 : SPEED_1000;
3857 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3858 		state->speed = SPEED_100;
3859 	else
3860 		state->speed = SPEED_10;
3861 
3862 	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3863 	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3864 	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3865 
3866 	state->pause = 0;
3867 	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3868 		state->pause |= MLO_PAUSE_RX;
3869 	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3870 		state->pause |= MLO_PAUSE_TX;
3871 }
3872 
3873 static void mvneta_mac_an_restart(struct phylink_config *config)
3874 {
3875 	struct net_device *ndev = to_net_dev(config->dev);
3876 	struct mvneta_port *pp = netdev_priv(ndev);
3877 	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3878 
3879 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3880 		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3881 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3882 		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3883 }
3884 
3885 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
3886 			      const struct phylink_link_state *state)
3887 {
3888 	struct net_device *ndev = to_net_dev(config->dev);
3889 	struct mvneta_port *pp = netdev_priv(ndev);
3890 	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3891 	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3892 	u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3893 	u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3894 	u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3895 
3896 	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3897 	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3898 				   MVNETA_GMAC2_PORT_RESET);
3899 	new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3900 	new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3901 	new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3902 			     MVNETA_GMAC_INBAND_RESTART_AN |
3903 			     MVNETA_GMAC_AN_SPEED_EN |
3904 			     MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3905 			     MVNETA_GMAC_AN_FLOW_CTRL_EN |
3906 			     MVNETA_GMAC_AN_DUPLEX_EN);
3907 
3908 	/* Even though it might look weird, when we're configured in
3909 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3910 	 */
3911 	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3912 
3913 	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3914 	    state->interface == PHY_INTERFACE_MODE_SGMII ||
3915 	    phy_interface_mode_is_8023z(state->interface))
3916 		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3917 
3918 	if (phylink_test(state->advertising, Pause))
3919 		new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3920 
3921 	if (!phylink_autoneg_inband(mode)) {
3922 		/* Phy or fixed speed - nothing to do, leave the
3923 		 * configured speed, duplex and flow control as-is.
3924 		 */
3925 	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3926 		/* SGMII mode receives the state from the PHY */
3927 		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3928 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3929 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3930 				     MVNETA_GMAC_FORCE_LINK_PASS |
3931 				     MVNETA_GMAC_CONFIG_MII_SPEED |
3932 				     MVNETA_GMAC_CONFIG_GMII_SPEED |
3933 				     MVNETA_GMAC_CONFIG_FULL_DUPLEX)) |
3934 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3935 			 MVNETA_GMAC_AN_SPEED_EN |
3936 			 MVNETA_GMAC_AN_DUPLEX_EN;
3937 	} else {
3938 		/* 802.3z negotiation - only 1000base-X */
3939 		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3940 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3941 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3942 				     MVNETA_GMAC_FORCE_LINK_PASS |
3943 				     MVNETA_GMAC_CONFIG_MII_SPEED)) |
3944 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3945 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3946 			 /* The MAC only supports FD mode */
3947 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3948 
3949 		if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3950 			new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3951 	}
3952 
3953 	/* Armada 370 documentation says we can only change the port mode
3954 	 * and in-band enable when the link is down, so force it down
3955 	 * while making these changes. We also do this for GMAC_CTRL2 */
3956 	if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3957 	    (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3958 	    (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3959 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3960 			    (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3961 			    MVNETA_GMAC_FORCE_LINK_DOWN);
3962 	}
3963 
3964 
3965 	/* When at 2.5G, the link partner can send frames with shortened
3966 	 * preambles.
3967 	 */
3968 	if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
3969 		new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
3970 
3971 	if (pp->phy_interface != state->interface) {
3972 		if (pp->comphy)
3973 			WARN_ON(phy_power_off(pp->comphy));
3974 		WARN_ON(mvneta_config_interface(pp, state->interface));
3975 	}
3976 
3977 	if (new_ctrl0 != gmac_ctrl0)
3978 		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3979 	if (new_ctrl2 != gmac_ctrl2)
3980 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
3981 	if (new_ctrl4 != gmac_ctrl4)
3982 		mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
3983 	if (new_clk != gmac_clk)
3984 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
3985 	if (new_an != gmac_an)
3986 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
3987 
3988 	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
3989 		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3990 			MVNETA_GMAC2_PORT_RESET) != 0)
3991 			continue;
3992 	}
3993 }
3994 
3995 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
3996 {
3997 	u32 lpi_ctl1;
3998 
3999 	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
4000 	if (enable)
4001 		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
4002 	else
4003 		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
4004 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
4005 }
4006 
4007 static void mvneta_mac_link_down(struct phylink_config *config,
4008 				 unsigned int mode, phy_interface_t interface)
4009 {
4010 	struct net_device *ndev = to_net_dev(config->dev);
4011 	struct mvneta_port *pp = netdev_priv(ndev);
4012 	u32 val;
4013 
4014 	mvneta_port_down(pp);
4015 
4016 	if (!phylink_autoneg_inband(mode)) {
4017 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4018 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4019 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4020 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4021 	}
4022 
4023 	pp->eee_active = false;
4024 	mvneta_set_eee(pp, false);
4025 }
4026 
4027 static void mvneta_mac_link_up(struct phylink_config *config,
4028 			       struct phy_device *phy,
4029 			       unsigned int mode, phy_interface_t interface,
4030 			       int speed, int duplex,
4031 			       bool tx_pause, bool rx_pause)
4032 {
4033 	struct net_device *ndev = to_net_dev(config->dev);
4034 	struct mvneta_port *pp = netdev_priv(ndev);
4035 	u32 val;
4036 
4037 	if (!phylink_autoneg_inband(mode)) {
4038 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4039 		val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
4040 			 MVNETA_GMAC_CONFIG_MII_SPEED |
4041 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
4042 			 MVNETA_GMAC_CONFIG_FLOW_CTRL |
4043 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
4044 		val |= MVNETA_GMAC_FORCE_LINK_PASS;
4045 
4046 		if (speed == SPEED_1000 || speed == SPEED_2500)
4047 			val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
4048 		else if (speed == SPEED_100)
4049 			val |= MVNETA_GMAC_CONFIG_MII_SPEED;
4050 
4051 		if (duplex == DUPLEX_FULL)
4052 			val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4053 
4054 		if (tx_pause || rx_pause)
4055 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4056 
4057 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4058 	} else {
4059 		/* When inband doesn't cover flow control or flow control is
4060 		 * disabled, we need to manually configure it. This bit will
4061 		 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
4062 		 */
4063 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4064 		val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;
4065 
4066 		if (tx_pause || rx_pause)
4067 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4068 
4069 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4070 	}
4071 
4072 	mvneta_port_up(pp);
4073 
4074 	if (phy && pp->eee_enabled) {
4075 		pp->eee_active = phy_init_eee(phy, 0) >= 0;
4076 		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
4077 	}
4078 }
4079 
4080 static const struct phylink_mac_ops mvneta_phylink_ops = {
4081 	.validate = mvneta_validate,
4082 	.mac_pcs_get_state = mvneta_mac_pcs_get_state,
4083 	.mac_an_restart = mvneta_mac_an_restart,
4084 	.mac_config = mvneta_mac_config,
4085 	.mac_link_down = mvneta_mac_link_down,
4086 	.mac_link_up = mvneta_mac_link_up,
4087 };
4088 
4089 static int mvneta_mdio_probe(struct mvneta_port *pp)
4090 {
4091 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4092 	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4093 
4094 	if (err)
4095 		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4096 
4097 	phylink_ethtool_get_wol(pp->phylink, &wol);
4098 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4099 
4100 	/* PHY WoL may be enabled but device wakeup disabled */
4101 	if (wol.supported)
4102 		device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts);
4103 
4104 	return err;
4105 }
4106 
4107 static void mvneta_mdio_remove(struct mvneta_port *pp)
4108 {
4109 	phylink_disconnect_phy(pp->phylink);
4110 }
4111 
4112 /* Electing a CPU must be done in an atomic way: it should be done
4113  * after or before the removal/insertion of a CPU and this function is
4114  * not reentrant.
4115  */
4116 static void mvneta_percpu_elect(struct mvneta_port *pp)
4117 {
4118 	int elected_cpu = 0, max_cpu, cpu, i = 0;
4119 
4120 	/* Use the cpu associated to the rxq when it is online, in all
4121 	 * the other cases, use the cpu 0 which can't be offline.
4122 	 */
4123 	if (cpu_online(pp->rxq_def))
4124 		elected_cpu = pp->rxq_def;
4125 
4126 	max_cpu = num_present_cpus();
4127 
4128 	for_each_online_cpu(cpu) {
4129 		int rxq_map = 0, txq_map = 0;
4130 		int rxq;
4131 
4132 		for (rxq = 0; rxq < rxq_number; rxq++)
4133 			if ((rxq % max_cpu) == cpu)
4134 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4135 
4136 		if (cpu == elected_cpu)
4137 			/* Map the default receive queue queue to the
4138 			 * elected CPU
4139 			 */
4140 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4141 
4142 		/* We update the TX queue map only if we have one
4143 		 * queue. In this case we associate the TX queue to
4144 		 * the CPU bound to the default RX queue
4145 		 */
4146 		if (txq_number == 1)
4147 			txq_map = (cpu == elected_cpu) ?
4148 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
4149 		else
4150 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4151 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4152 
4153 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4154 
4155 		/* Update the interrupt mask on each CPU according the
4156 		 * new mapping
4157 		 */
4158 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4159 					 pp, true);
4160 		i++;
4161 
4162 	}
4163 };
4164 
4165 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4166 {
4167 	int other_cpu;
4168 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4169 						  node_online);
4170 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4171 
4172 
4173 	spin_lock(&pp->lock);
4174 	/*
4175 	 * Configuring the driver for a new CPU while the driver is
4176 	 * stopping is racy, so just avoid it.
4177 	 */
4178 	if (pp->is_stopped) {
4179 		spin_unlock(&pp->lock);
4180 		return 0;
4181 	}
4182 	netif_tx_stop_all_queues(pp->dev);
4183 
4184 	/*
4185 	 * We have to synchronise on tha napi of each CPU except the one
4186 	 * just being woken up
4187 	 */
4188 	for_each_online_cpu(other_cpu) {
4189 		if (other_cpu != cpu) {
4190 			struct mvneta_pcpu_port *other_port =
4191 				per_cpu_ptr(pp->ports, other_cpu);
4192 
4193 			napi_synchronize(&other_port->napi);
4194 		}
4195 	}
4196 
4197 	/* Mask all ethernet port interrupts */
4198 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4199 	napi_enable(&port->napi);
4200 
4201 	/*
4202 	 * Enable per-CPU interrupts on the CPU that is
4203 	 * brought up.
4204 	 */
4205 	mvneta_percpu_enable(pp);
4206 
4207 	/*
4208 	 * Enable per-CPU interrupt on the one CPU we care
4209 	 * about.
4210 	 */
4211 	mvneta_percpu_elect(pp);
4212 
4213 	/* Unmask all ethernet port interrupts */
4214 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4215 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4216 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4217 		    MVNETA_CAUSE_LINK_CHANGE);
4218 	netif_tx_start_all_queues(pp->dev);
4219 	spin_unlock(&pp->lock);
4220 	return 0;
4221 }
4222 
4223 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4224 {
4225 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4226 						  node_online);
4227 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4228 
4229 	/*
4230 	 * Thanks to this lock we are sure that any pending cpu election is
4231 	 * done.
4232 	 */
4233 	spin_lock(&pp->lock);
4234 	/* Mask all ethernet port interrupts */
4235 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4236 	spin_unlock(&pp->lock);
4237 
4238 	napi_synchronize(&port->napi);
4239 	napi_disable(&port->napi);
4240 	/* Disable per-CPU interrupts on the CPU that is brought down. */
4241 	mvneta_percpu_disable(pp);
4242 	return 0;
4243 }
4244 
4245 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4246 {
4247 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4248 						  node_dead);
4249 
4250 	/* Check if a new CPU must be elected now this on is down */
4251 	spin_lock(&pp->lock);
4252 	mvneta_percpu_elect(pp);
4253 	spin_unlock(&pp->lock);
4254 	/* Unmask all ethernet port interrupts */
4255 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4256 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4257 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4258 		    MVNETA_CAUSE_LINK_CHANGE);
4259 	netif_tx_start_all_queues(pp->dev);
4260 	return 0;
4261 }
4262 
4263 static int mvneta_open(struct net_device *dev)
4264 {
4265 	struct mvneta_port *pp = netdev_priv(dev);
4266 	int ret;
4267 
4268 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4269 
4270 	ret = mvneta_setup_rxqs(pp);
4271 	if (ret)
4272 		return ret;
4273 
4274 	ret = mvneta_setup_txqs(pp);
4275 	if (ret)
4276 		goto err_cleanup_rxqs;
4277 
4278 	/* Connect to port interrupt line */
4279 	if (pp->neta_armada3700)
4280 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4281 				  dev->name, pp);
4282 	else
4283 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4284 					 dev->name, pp->ports);
4285 	if (ret) {
4286 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4287 		goto err_cleanup_txqs;
4288 	}
4289 
4290 	if (!pp->neta_armada3700) {
4291 		/* Enable per-CPU interrupt on all the CPU to handle our RX
4292 		 * queue interrupts
4293 		 */
4294 		on_each_cpu(mvneta_percpu_enable, pp, true);
4295 
4296 		pp->is_stopped = false;
4297 		/* Register a CPU notifier to handle the case where our CPU
4298 		 * might be taken offline.
4299 		 */
4300 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4301 						       &pp->node_online);
4302 		if (ret)
4303 			goto err_free_irq;
4304 
4305 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4306 						       &pp->node_dead);
4307 		if (ret)
4308 			goto err_free_online_hp;
4309 	}
4310 
4311 	ret = mvneta_mdio_probe(pp);
4312 	if (ret < 0) {
4313 		netdev_err(dev, "cannot probe MDIO bus\n");
4314 		goto err_free_dead_hp;
4315 	}
4316 
4317 	mvneta_start_dev(pp);
4318 
4319 	return 0;
4320 
4321 err_free_dead_hp:
4322 	if (!pp->neta_armada3700)
4323 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4324 						    &pp->node_dead);
4325 err_free_online_hp:
4326 	if (!pp->neta_armada3700)
4327 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4328 						    &pp->node_online);
4329 err_free_irq:
4330 	if (pp->neta_armada3700) {
4331 		free_irq(pp->dev->irq, pp);
4332 	} else {
4333 		on_each_cpu(mvneta_percpu_disable, pp, true);
4334 		free_percpu_irq(pp->dev->irq, pp->ports);
4335 	}
4336 err_cleanup_txqs:
4337 	mvneta_cleanup_txqs(pp);
4338 err_cleanup_rxqs:
4339 	mvneta_cleanup_rxqs(pp);
4340 	return ret;
4341 }
4342 
4343 /* Stop the port, free port interrupt line */
4344 static int mvneta_stop(struct net_device *dev)
4345 {
4346 	struct mvneta_port *pp = netdev_priv(dev);
4347 
4348 	if (!pp->neta_armada3700) {
4349 		/* Inform that we are stopping so we don't want to setup the
4350 		 * driver for new CPUs in the notifiers. The code of the
4351 		 * notifier for CPU online is protected by the same spinlock,
4352 		 * so when we get the lock, the notifer work is done.
4353 		 */
4354 		spin_lock(&pp->lock);
4355 		pp->is_stopped = true;
4356 		spin_unlock(&pp->lock);
4357 
4358 		mvneta_stop_dev(pp);
4359 		mvneta_mdio_remove(pp);
4360 
4361 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4362 						    &pp->node_online);
4363 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4364 						    &pp->node_dead);
4365 		on_each_cpu(mvneta_percpu_disable, pp, true);
4366 		free_percpu_irq(dev->irq, pp->ports);
4367 	} else {
4368 		mvneta_stop_dev(pp);
4369 		mvneta_mdio_remove(pp);
4370 		free_irq(dev->irq, pp);
4371 	}
4372 
4373 	mvneta_cleanup_rxqs(pp);
4374 	mvneta_cleanup_txqs(pp);
4375 
4376 	return 0;
4377 }
4378 
4379 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4380 {
4381 	struct mvneta_port *pp = netdev_priv(dev);
4382 
4383 	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4384 }
4385 
4386 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4387 			    struct netlink_ext_ack *extack)
4388 {
4389 	bool need_update, running = netif_running(dev);
4390 	struct mvneta_port *pp = netdev_priv(dev);
4391 	struct bpf_prog *old_prog;
4392 
4393 	if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4394 		NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP");
4395 		return -EOPNOTSUPP;
4396 	}
4397 
4398 	if (pp->bm_priv) {
4399 		NL_SET_ERR_MSG_MOD(extack,
4400 				   "Hardware Buffer Management not supported on XDP");
4401 		return -EOPNOTSUPP;
4402 	}
4403 
4404 	need_update = !!pp->xdp_prog != !!prog;
4405 	if (running && need_update)
4406 		mvneta_stop(dev);
4407 
4408 	old_prog = xchg(&pp->xdp_prog, prog);
4409 	if (old_prog)
4410 		bpf_prog_put(old_prog);
4411 
4412 	if (running && need_update)
4413 		return mvneta_open(dev);
4414 
4415 	return 0;
4416 }
4417 
4418 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4419 {
4420 	struct mvneta_port *pp = netdev_priv(dev);
4421 
4422 	switch (xdp->command) {
4423 	case XDP_SETUP_PROG:
4424 		return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4425 	case XDP_QUERY_PROG:
4426 		xdp->prog_id = pp->xdp_prog ? pp->xdp_prog->aux->id : 0;
4427 		return 0;
4428 	default:
4429 		return -EINVAL;
4430 	}
4431 }
4432 
4433 /* Ethtool methods */
4434 
4435 /* Set link ksettings (phy address, speed) for ethtools */
4436 static int
4437 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4438 				  const struct ethtool_link_ksettings *cmd)
4439 {
4440 	struct mvneta_port *pp = netdev_priv(ndev);
4441 
4442 	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4443 }
4444 
4445 /* Get link ksettings for ethtools */
4446 static int
4447 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4448 				  struct ethtool_link_ksettings *cmd)
4449 {
4450 	struct mvneta_port *pp = netdev_priv(ndev);
4451 
4452 	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4453 }
4454 
4455 static int mvneta_ethtool_nway_reset(struct net_device *dev)
4456 {
4457 	struct mvneta_port *pp = netdev_priv(dev);
4458 
4459 	return phylink_ethtool_nway_reset(pp->phylink);
4460 }
4461 
4462 /* Set interrupt coalescing for ethtools */
4463 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
4464 				       struct ethtool_coalesce *c)
4465 {
4466 	struct mvneta_port *pp = netdev_priv(dev);
4467 	int queue;
4468 
4469 	for (queue = 0; queue < rxq_number; queue++) {
4470 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4471 		rxq->time_coal = c->rx_coalesce_usecs;
4472 		rxq->pkts_coal = c->rx_max_coalesced_frames;
4473 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4474 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4475 	}
4476 
4477 	for (queue = 0; queue < txq_number; queue++) {
4478 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4479 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
4480 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4481 	}
4482 
4483 	return 0;
4484 }
4485 
4486 /* get coalescing for ethtools */
4487 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
4488 				       struct ethtool_coalesce *c)
4489 {
4490 	struct mvneta_port *pp = netdev_priv(dev);
4491 
4492 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
4493 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
4494 
4495 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
4496 	return 0;
4497 }
4498 
4499 
4500 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4501 				    struct ethtool_drvinfo *drvinfo)
4502 {
4503 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4504 		sizeof(drvinfo->driver));
4505 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4506 		sizeof(drvinfo->version));
4507 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4508 		sizeof(drvinfo->bus_info));
4509 }
4510 
4511 
4512 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4513 					 struct ethtool_ringparam *ring)
4514 {
4515 	struct mvneta_port *pp = netdev_priv(netdev);
4516 
4517 	ring->rx_max_pending = MVNETA_MAX_RXD;
4518 	ring->tx_max_pending = MVNETA_MAX_TXD;
4519 	ring->rx_pending = pp->rx_ring_size;
4520 	ring->tx_pending = pp->tx_ring_size;
4521 }
4522 
4523 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4524 					struct ethtool_ringparam *ring)
4525 {
4526 	struct mvneta_port *pp = netdev_priv(dev);
4527 
4528 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4529 		return -EINVAL;
4530 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4531 		ring->rx_pending : MVNETA_MAX_RXD;
4532 
4533 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4534 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4535 	if (pp->tx_ring_size != ring->tx_pending)
4536 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4537 			    pp->tx_ring_size, ring->tx_pending);
4538 
4539 	if (netif_running(dev)) {
4540 		mvneta_stop(dev);
4541 		if (mvneta_open(dev)) {
4542 			netdev_err(dev,
4543 				   "error on opening device after ring param change\n");
4544 			return -ENOMEM;
4545 		}
4546 	}
4547 
4548 	return 0;
4549 }
4550 
4551 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4552 					  struct ethtool_pauseparam *pause)
4553 {
4554 	struct mvneta_port *pp = netdev_priv(dev);
4555 
4556 	phylink_ethtool_get_pauseparam(pp->phylink, pause);
4557 }
4558 
4559 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4560 					 struct ethtool_pauseparam *pause)
4561 {
4562 	struct mvneta_port *pp = netdev_priv(dev);
4563 
4564 	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4565 }
4566 
4567 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4568 				       u8 *data)
4569 {
4570 	if (sset == ETH_SS_STATS) {
4571 		int i;
4572 
4573 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4574 			memcpy(data + i * ETH_GSTRING_LEN,
4575 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
4576 	}
4577 }
4578 
4579 static void
4580 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4581 				 struct mvneta_ethtool_stats *es)
4582 {
4583 	unsigned int start;
4584 	int cpu;
4585 
4586 	for_each_possible_cpu(cpu) {
4587 		struct mvneta_pcpu_stats *stats;
4588 		u64 skb_alloc_error;
4589 		u64 refill_error;
4590 		u64 xdp_redirect;
4591 		u64 xdp_xmit_err;
4592 		u64 xdp_tx_err;
4593 		u64 xdp_pass;
4594 		u64 xdp_drop;
4595 		u64 xdp_xmit;
4596 		u64 xdp_tx;
4597 
4598 		stats = per_cpu_ptr(pp->stats, cpu);
4599 		do {
4600 			start = u64_stats_fetch_begin_irq(&stats->syncp);
4601 			skb_alloc_error = stats->es.skb_alloc_error;
4602 			refill_error = stats->es.refill_error;
4603 			xdp_redirect = stats->es.ps.xdp_redirect;
4604 			xdp_pass = stats->es.ps.xdp_pass;
4605 			xdp_drop = stats->es.ps.xdp_drop;
4606 			xdp_xmit = stats->es.ps.xdp_xmit;
4607 			xdp_xmit_err = stats->es.ps.xdp_xmit_err;
4608 			xdp_tx = stats->es.ps.xdp_tx;
4609 			xdp_tx_err = stats->es.ps.xdp_tx_err;
4610 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
4611 
4612 		es->skb_alloc_error += skb_alloc_error;
4613 		es->refill_error += refill_error;
4614 		es->ps.xdp_redirect += xdp_redirect;
4615 		es->ps.xdp_pass += xdp_pass;
4616 		es->ps.xdp_drop += xdp_drop;
4617 		es->ps.xdp_xmit += xdp_xmit;
4618 		es->ps.xdp_xmit_err += xdp_xmit_err;
4619 		es->ps.xdp_tx += xdp_tx;
4620 		es->ps.xdp_tx_err += xdp_tx_err;
4621 	}
4622 }
4623 
4624 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4625 {
4626 	struct mvneta_ethtool_stats stats = {};
4627 	const struct mvneta_statistic *s;
4628 	void __iomem *base = pp->base;
4629 	u32 high, low;
4630 	u64 val;
4631 	int i;
4632 
4633 	mvneta_ethtool_update_pcpu_stats(pp, &stats);
4634 	for (i = 0, s = mvneta_statistics;
4635 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4636 	     s++, i++) {
4637 		switch (s->type) {
4638 		case T_REG_32:
4639 			val = readl_relaxed(base + s->offset);
4640 			pp->ethtool_stats[i] += val;
4641 			break;
4642 		case T_REG_64:
4643 			/* Docs say to read low 32-bit then high */
4644 			low = readl_relaxed(base + s->offset);
4645 			high = readl_relaxed(base + s->offset + 4);
4646 			val = (u64)high << 32 | low;
4647 			pp->ethtool_stats[i] += val;
4648 			break;
4649 		case T_SW:
4650 			switch (s->offset) {
4651 			case ETHTOOL_STAT_EEE_WAKEUP:
4652 				val = phylink_get_eee_err(pp->phylink);
4653 				pp->ethtool_stats[i] += val;
4654 				break;
4655 			case ETHTOOL_STAT_SKB_ALLOC_ERR:
4656 				pp->ethtool_stats[i] = stats.skb_alloc_error;
4657 				break;
4658 			case ETHTOOL_STAT_REFILL_ERR:
4659 				pp->ethtool_stats[i] = stats.refill_error;
4660 				break;
4661 			case ETHTOOL_XDP_REDIRECT:
4662 				pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4663 				break;
4664 			case ETHTOOL_XDP_PASS:
4665 				pp->ethtool_stats[i] = stats.ps.xdp_pass;
4666 				break;
4667 			case ETHTOOL_XDP_DROP:
4668 				pp->ethtool_stats[i] = stats.ps.xdp_drop;
4669 				break;
4670 			case ETHTOOL_XDP_TX:
4671 				pp->ethtool_stats[i] = stats.ps.xdp_tx;
4672 				break;
4673 			case ETHTOOL_XDP_TX_ERR:
4674 				pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
4675 				break;
4676 			case ETHTOOL_XDP_XMIT:
4677 				pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4678 				break;
4679 			case ETHTOOL_XDP_XMIT_ERR:
4680 				pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
4681 				break;
4682 			}
4683 			break;
4684 		}
4685 	}
4686 }
4687 
4688 static void mvneta_ethtool_get_stats(struct net_device *dev,
4689 				     struct ethtool_stats *stats, u64 *data)
4690 {
4691 	struct mvneta_port *pp = netdev_priv(dev);
4692 	int i;
4693 
4694 	mvneta_ethtool_update_stats(pp);
4695 
4696 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4697 		*data++ = pp->ethtool_stats[i];
4698 }
4699 
4700 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4701 {
4702 	if (sset == ETH_SS_STATS)
4703 		return ARRAY_SIZE(mvneta_statistics);
4704 	return -EOPNOTSUPP;
4705 }
4706 
4707 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4708 {
4709 	return MVNETA_RSS_LU_TABLE_SIZE;
4710 }
4711 
4712 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4713 				    struct ethtool_rxnfc *info,
4714 				    u32 *rules __always_unused)
4715 {
4716 	switch (info->cmd) {
4717 	case ETHTOOL_GRXRINGS:
4718 		info->data =  rxq_number;
4719 		return 0;
4720 	case ETHTOOL_GRXFH:
4721 		return -EOPNOTSUPP;
4722 	default:
4723 		return -EOPNOTSUPP;
4724 	}
4725 }
4726 
4727 static int  mvneta_config_rss(struct mvneta_port *pp)
4728 {
4729 	int cpu;
4730 	u32 val;
4731 
4732 	netif_tx_stop_all_queues(pp->dev);
4733 
4734 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4735 
4736 	if (!pp->neta_armada3700) {
4737 		/* We have to synchronise on the napi of each CPU */
4738 		for_each_online_cpu(cpu) {
4739 			struct mvneta_pcpu_port *pcpu_port =
4740 				per_cpu_ptr(pp->ports, cpu);
4741 
4742 			napi_synchronize(&pcpu_port->napi);
4743 			napi_disable(&pcpu_port->napi);
4744 		}
4745 	} else {
4746 		napi_synchronize(&pp->napi);
4747 		napi_disable(&pp->napi);
4748 	}
4749 
4750 	pp->rxq_def = pp->indir[0];
4751 
4752 	/* Update unicast mapping */
4753 	mvneta_set_rx_mode(pp->dev);
4754 
4755 	/* Update val of portCfg register accordingly with all RxQueue types */
4756 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4757 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4758 
4759 	/* Update the elected CPU matching the new rxq_def */
4760 	spin_lock(&pp->lock);
4761 	mvneta_percpu_elect(pp);
4762 	spin_unlock(&pp->lock);
4763 
4764 	if (!pp->neta_armada3700) {
4765 		/* We have to synchronise on the napi of each CPU */
4766 		for_each_online_cpu(cpu) {
4767 			struct mvneta_pcpu_port *pcpu_port =
4768 				per_cpu_ptr(pp->ports, cpu);
4769 
4770 			napi_enable(&pcpu_port->napi);
4771 		}
4772 	} else {
4773 		napi_enable(&pp->napi);
4774 	}
4775 
4776 	netif_tx_start_all_queues(pp->dev);
4777 
4778 	return 0;
4779 }
4780 
4781 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4782 				   const u8 *key, const u8 hfunc)
4783 {
4784 	struct mvneta_port *pp = netdev_priv(dev);
4785 
4786 	/* Current code for Armada 3700 doesn't support RSS features yet */
4787 	if (pp->neta_armada3700)
4788 		return -EOPNOTSUPP;
4789 
4790 	/* We require at least one supported parameter to be changed
4791 	 * and no change in any of the unsupported parameters
4792 	 */
4793 	if (key ||
4794 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4795 		return -EOPNOTSUPP;
4796 
4797 	if (!indir)
4798 		return 0;
4799 
4800 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4801 
4802 	return mvneta_config_rss(pp);
4803 }
4804 
4805 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4806 				   u8 *hfunc)
4807 {
4808 	struct mvneta_port *pp = netdev_priv(dev);
4809 
4810 	/* Current code for Armada 3700 doesn't support RSS features yet */
4811 	if (pp->neta_armada3700)
4812 		return -EOPNOTSUPP;
4813 
4814 	if (hfunc)
4815 		*hfunc = ETH_RSS_HASH_TOP;
4816 
4817 	if (!indir)
4818 		return 0;
4819 
4820 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4821 
4822 	return 0;
4823 }
4824 
4825 static void mvneta_ethtool_get_wol(struct net_device *dev,
4826 				   struct ethtool_wolinfo *wol)
4827 {
4828 	struct mvneta_port *pp = netdev_priv(dev);
4829 
4830 	phylink_ethtool_get_wol(pp->phylink, wol);
4831 }
4832 
4833 static int mvneta_ethtool_set_wol(struct net_device *dev,
4834 				  struct ethtool_wolinfo *wol)
4835 {
4836 	struct mvneta_port *pp = netdev_priv(dev);
4837 	int ret;
4838 
4839 	ret = phylink_ethtool_set_wol(pp->phylink, wol);
4840 	if (!ret)
4841 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4842 
4843 	return ret;
4844 }
4845 
4846 static int mvneta_ethtool_get_eee(struct net_device *dev,
4847 				  struct ethtool_eee *eee)
4848 {
4849 	struct mvneta_port *pp = netdev_priv(dev);
4850 	u32 lpi_ctl0;
4851 
4852 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4853 
4854 	eee->eee_enabled = pp->eee_enabled;
4855 	eee->eee_active = pp->eee_active;
4856 	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4857 	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4858 
4859 	return phylink_ethtool_get_eee(pp->phylink, eee);
4860 }
4861 
4862 static int mvneta_ethtool_set_eee(struct net_device *dev,
4863 				  struct ethtool_eee *eee)
4864 {
4865 	struct mvneta_port *pp = netdev_priv(dev);
4866 	u32 lpi_ctl0;
4867 
4868 	/* The Armada 37x documents do not give limits for this other than
4869 	 * it being an 8-bit register. */
4870 	if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4871 		return -EINVAL;
4872 
4873 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4874 	lpi_ctl0 &= ~(0xff << 8);
4875 	lpi_ctl0 |= eee->tx_lpi_timer << 8;
4876 	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4877 
4878 	pp->eee_enabled = eee->eee_enabled;
4879 	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4880 
4881 	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4882 
4883 	return phylink_ethtool_set_eee(pp->phylink, eee);
4884 }
4885 
4886 static const struct net_device_ops mvneta_netdev_ops = {
4887 	.ndo_open            = mvneta_open,
4888 	.ndo_stop            = mvneta_stop,
4889 	.ndo_start_xmit      = mvneta_tx,
4890 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
4891 	.ndo_set_mac_address = mvneta_set_mac_addr,
4892 	.ndo_change_mtu      = mvneta_change_mtu,
4893 	.ndo_fix_features    = mvneta_fix_features,
4894 	.ndo_get_stats64     = mvneta_get_stats64,
4895 	.ndo_do_ioctl        = mvneta_ioctl,
4896 	.ndo_bpf	     = mvneta_xdp,
4897 	.ndo_xdp_xmit        = mvneta_xdp_xmit,
4898 };
4899 
4900 static const struct ethtool_ops mvneta_eth_tool_ops = {
4901 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
4902 				     ETHTOOL_COALESCE_MAX_FRAMES,
4903 	.nway_reset	= mvneta_ethtool_nway_reset,
4904 	.get_link       = ethtool_op_get_link,
4905 	.set_coalesce   = mvneta_ethtool_set_coalesce,
4906 	.get_coalesce   = mvneta_ethtool_get_coalesce,
4907 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
4908 	.get_ringparam  = mvneta_ethtool_get_ringparam,
4909 	.set_ringparam	= mvneta_ethtool_set_ringparam,
4910 	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
4911 	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
4912 	.get_strings	= mvneta_ethtool_get_strings,
4913 	.get_ethtool_stats = mvneta_ethtool_get_stats,
4914 	.get_sset_count	= mvneta_ethtool_get_sset_count,
4915 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4916 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
4917 	.get_rxfh	= mvneta_ethtool_get_rxfh,
4918 	.set_rxfh	= mvneta_ethtool_set_rxfh,
4919 	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4920 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4921 	.get_wol        = mvneta_ethtool_get_wol,
4922 	.set_wol        = mvneta_ethtool_set_wol,
4923 	.get_eee	= mvneta_ethtool_get_eee,
4924 	.set_eee	= mvneta_ethtool_set_eee,
4925 };
4926 
4927 /* Initialize hw */
4928 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4929 {
4930 	int queue;
4931 
4932 	/* Disable port */
4933 	mvneta_port_disable(pp);
4934 
4935 	/* Set port default values */
4936 	mvneta_defaults_set(pp);
4937 
4938 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4939 	if (!pp->txqs)
4940 		return -ENOMEM;
4941 
4942 	/* Initialize TX descriptor rings */
4943 	for (queue = 0; queue < txq_number; queue++) {
4944 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4945 		txq->id = queue;
4946 		txq->size = pp->tx_ring_size;
4947 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4948 	}
4949 
4950 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4951 	if (!pp->rxqs)
4952 		return -ENOMEM;
4953 
4954 	/* Create Rx descriptor rings */
4955 	for (queue = 0; queue < rxq_number; queue++) {
4956 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4957 		rxq->id = queue;
4958 		rxq->size = pp->rx_ring_size;
4959 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4960 		rxq->time_coal = MVNETA_RX_COAL_USEC;
4961 		rxq->buf_virt_addr
4962 			= devm_kmalloc_array(pp->dev->dev.parent,
4963 					     rxq->size,
4964 					     sizeof(*rxq->buf_virt_addr),
4965 					     GFP_KERNEL);
4966 		if (!rxq->buf_virt_addr)
4967 			return -ENOMEM;
4968 	}
4969 
4970 	return 0;
4971 }
4972 
4973 /* platform glue : initialize decoding windows */
4974 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4975 				     const struct mbus_dram_target_info *dram)
4976 {
4977 	u32 win_enable;
4978 	u32 win_protect;
4979 	int i;
4980 
4981 	for (i = 0; i < 6; i++) {
4982 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4983 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4984 
4985 		if (i < 4)
4986 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4987 	}
4988 
4989 	win_enable = 0x3f;
4990 	win_protect = 0;
4991 
4992 	if (dram) {
4993 		for (i = 0; i < dram->num_cs; i++) {
4994 			const struct mbus_dram_window *cs = dram->cs + i;
4995 
4996 			mvreg_write(pp, MVNETA_WIN_BASE(i),
4997 				    (cs->base & 0xffff0000) |
4998 				    (cs->mbus_attr << 8) |
4999 				    dram->mbus_dram_target_id);
5000 
5001 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
5002 				    (cs->size - 1) & 0xffff0000);
5003 
5004 			win_enable &= ~(1 << i);
5005 			win_protect |= 3 << (2 * i);
5006 		}
5007 	} else {
5008 		/* For Armada3700 open default 4GB Mbus window, leaving
5009 		 * arbitration of target/attribute to a different layer
5010 		 * of configuration.
5011 		 */
5012 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
5013 		win_enable &= ~BIT(0);
5014 		win_protect = 3;
5015 	}
5016 
5017 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
5018 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
5019 }
5020 
5021 /* Power up the port */
5022 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
5023 {
5024 	/* MAC Cause register should be cleared */
5025 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
5026 
5027 	if (phy_mode != PHY_INTERFACE_MODE_QSGMII &&
5028 	    phy_mode != PHY_INTERFACE_MODE_SGMII &&
5029 	    !phy_interface_mode_is_8023z(phy_mode) &&
5030 	    !phy_interface_mode_is_rgmii(phy_mode))
5031 		return -EINVAL;
5032 
5033 	return 0;
5034 }
5035 
5036 /* Device initialization routine */
5037 static int mvneta_probe(struct platform_device *pdev)
5038 {
5039 	struct device_node *dn = pdev->dev.of_node;
5040 	struct device_node *bm_node;
5041 	struct mvneta_port *pp;
5042 	struct net_device *dev;
5043 	struct phylink *phylink;
5044 	struct phy *comphy;
5045 	const char *dt_mac_addr;
5046 	char hw_mac_addr[ETH_ALEN];
5047 	phy_interface_t phy_mode;
5048 	const char *mac_from;
5049 	int tx_csum_limit;
5050 	int err;
5051 	int cpu;
5052 
5053 	dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
5054 				      txq_number, rxq_number);
5055 	if (!dev)
5056 		return -ENOMEM;
5057 
5058 	dev->irq = irq_of_parse_and_map(dn, 0);
5059 	if (dev->irq == 0)
5060 		return -EINVAL;
5061 
5062 	err = of_get_phy_mode(dn, &phy_mode);
5063 	if (err) {
5064 		dev_err(&pdev->dev, "incorrect phy-mode\n");
5065 		goto err_free_irq;
5066 	}
5067 
5068 	comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
5069 	if (comphy == ERR_PTR(-EPROBE_DEFER)) {
5070 		err = -EPROBE_DEFER;
5071 		goto err_free_irq;
5072 	} else if (IS_ERR(comphy)) {
5073 		comphy = NULL;
5074 	}
5075 
5076 	pp = netdev_priv(dev);
5077 	spin_lock_init(&pp->lock);
5078 
5079 	pp->phylink_config.dev = &dev->dev;
5080 	pp->phylink_config.type = PHYLINK_NETDEV;
5081 
5082 	phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
5083 				 phy_mode, &mvneta_phylink_ops);
5084 	if (IS_ERR(phylink)) {
5085 		err = PTR_ERR(phylink);
5086 		goto err_free_irq;
5087 	}
5088 
5089 	dev->tx_queue_len = MVNETA_MAX_TXD;
5090 	dev->watchdog_timeo = 5 * HZ;
5091 	dev->netdev_ops = &mvneta_netdev_ops;
5092 
5093 	dev->ethtool_ops = &mvneta_eth_tool_ops;
5094 
5095 	pp->phylink = phylink;
5096 	pp->comphy = comphy;
5097 	pp->phy_interface = phy_mode;
5098 	pp->dn = dn;
5099 
5100 	pp->rxq_def = rxq_def;
5101 	pp->indir[0] = rxq_def;
5102 
5103 	/* Get special SoC configurations */
5104 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5105 		pp->neta_armada3700 = true;
5106 
5107 	pp->clk = devm_clk_get(&pdev->dev, "core");
5108 	if (IS_ERR(pp->clk))
5109 		pp->clk = devm_clk_get(&pdev->dev, NULL);
5110 	if (IS_ERR(pp->clk)) {
5111 		err = PTR_ERR(pp->clk);
5112 		goto err_free_phylink;
5113 	}
5114 
5115 	clk_prepare_enable(pp->clk);
5116 
5117 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5118 	if (!IS_ERR(pp->clk_bus))
5119 		clk_prepare_enable(pp->clk_bus);
5120 
5121 	pp->base = devm_platform_ioremap_resource(pdev, 0);
5122 	if (IS_ERR(pp->base)) {
5123 		err = PTR_ERR(pp->base);
5124 		goto err_clk;
5125 	}
5126 
5127 	/* Alloc per-cpu port structure */
5128 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5129 	if (!pp->ports) {
5130 		err = -ENOMEM;
5131 		goto err_clk;
5132 	}
5133 
5134 	/* Alloc per-cpu stats */
5135 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5136 	if (!pp->stats) {
5137 		err = -ENOMEM;
5138 		goto err_free_ports;
5139 	}
5140 
5141 	dt_mac_addr = of_get_mac_address(dn);
5142 	if (!IS_ERR(dt_mac_addr)) {
5143 		mac_from = "device tree";
5144 		ether_addr_copy(dev->dev_addr, dt_mac_addr);
5145 	} else {
5146 		mvneta_get_mac_addr(pp, hw_mac_addr);
5147 		if (is_valid_ether_addr(hw_mac_addr)) {
5148 			mac_from = "hardware";
5149 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
5150 		} else {
5151 			mac_from = "random";
5152 			eth_hw_addr_random(dev);
5153 		}
5154 	}
5155 
5156 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5157 		if (tx_csum_limit < 0 ||
5158 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5159 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5160 			dev_info(&pdev->dev,
5161 				 "Wrong TX csum limit in DT, set to %dB\n",
5162 				 MVNETA_TX_CSUM_DEF_SIZE);
5163 		}
5164 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5165 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5166 	} else {
5167 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5168 	}
5169 
5170 	pp->tx_csum_limit = tx_csum_limit;
5171 
5172 	pp->dram_target_info = mv_mbus_dram_info();
5173 	/* Armada3700 requires setting default configuration of Mbus
5174 	 * windows, however without using filled mbus_dram_target_info
5175 	 * structure.
5176 	 */
5177 	if (pp->dram_target_info || pp->neta_armada3700)
5178 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5179 
5180 	pp->tx_ring_size = MVNETA_MAX_TXD;
5181 	pp->rx_ring_size = MVNETA_MAX_RXD;
5182 
5183 	pp->dev = dev;
5184 	SET_NETDEV_DEV(dev, &pdev->dev);
5185 
5186 	pp->id = global_port_id++;
5187 
5188 	/* Obtain access to BM resources if enabled and already initialized */
5189 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5190 	if (bm_node) {
5191 		pp->bm_priv = mvneta_bm_get(bm_node);
5192 		if (pp->bm_priv) {
5193 			err = mvneta_bm_port_init(pdev, pp);
5194 			if (err < 0) {
5195 				dev_info(&pdev->dev,
5196 					 "use SW buffer management\n");
5197 				mvneta_bm_put(pp->bm_priv);
5198 				pp->bm_priv = NULL;
5199 			}
5200 		}
5201 		/* Set RX packet offset correction for platforms, whose
5202 		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5203 		 * platforms and 0B for 32-bit ones.
5204 		 */
5205 		pp->rx_offset_correction = max(0,
5206 					       NET_SKB_PAD -
5207 					       MVNETA_RX_PKT_OFFSET_CORRECTION);
5208 	}
5209 	of_node_put(bm_node);
5210 
5211 	/* sw buffer management */
5212 	if (!pp->bm_priv)
5213 		pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5214 
5215 	err = mvneta_init(&pdev->dev, pp);
5216 	if (err < 0)
5217 		goto err_netdev;
5218 
5219 	err = mvneta_port_power_up(pp, pp->phy_interface);
5220 	if (err < 0) {
5221 		dev_err(&pdev->dev, "can't power up port\n");
5222 		return err;
5223 	}
5224 
5225 	/* Armada3700 network controller does not support per-cpu
5226 	 * operation, so only single NAPI should be initialized.
5227 	 */
5228 	if (pp->neta_armada3700) {
5229 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
5230 	} else {
5231 		for_each_present_cpu(cpu) {
5232 			struct mvneta_pcpu_port *port =
5233 				per_cpu_ptr(pp->ports, cpu);
5234 
5235 			netif_napi_add(dev, &port->napi, mvneta_poll,
5236 				       NAPI_POLL_WEIGHT);
5237 			port->pp = pp;
5238 		}
5239 	}
5240 
5241 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5242 			NETIF_F_TSO | NETIF_F_RXCSUM;
5243 	dev->hw_features |= dev->features;
5244 	dev->vlan_features |= dev->features;
5245 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5246 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
5247 
5248 	/* MTU range: 68 - 9676 */
5249 	dev->min_mtu = ETH_MIN_MTU;
5250 	/* 9676 == 9700 - 20 and rounding to 8 */
5251 	dev->max_mtu = 9676;
5252 
5253 	err = register_netdev(dev);
5254 	if (err < 0) {
5255 		dev_err(&pdev->dev, "failed to register\n");
5256 		goto err_netdev;
5257 	}
5258 
5259 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5260 		    dev->dev_addr);
5261 
5262 	platform_set_drvdata(pdev, pp->dev);
5263 
5264 	return 0;
5265 
5266 err_netdev:
5267 	if (pp->bm_priv) {
5268 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5269 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5270 				       1 << pp->id);
5271 		mvneta_bm_put(pp->bm_priv);
5272 	}
5273 	free_percpu(pp->stats);
5274 err_free_ports:
5275 	free_percpu(pp->ports);
5276 err_clk:
5277 	clk_disable_unprepare(pp->clk_bus);
5278 	clk_disable_unprepare(pp->clk);
5279 err_free_phylink:
5280 	if (pp->phylink)
5281 		phylink_destroy(pp->phylink);
5282 err_free_irq:
5283 	irq_dispose_mapping(dev->irq);
5284 	return err;
5285 }
5286 
5287 /* Device removal routine */
5288 static int mvneta_remove(struct platform_device *pdev)
5289 {
5290 	struct net_device  *dev = platform_get_drvdata(pdev);
5291 	struct mvneta_port *pp = netdev_priv(dev);
5292 
5293 	unregister_netdev(dev);
5294 	clk_disable_unprepare(pp->clk_bus);
5295 	clk_disable_unprepare(pp->clk);
5296 	free_percpu(pp->ports);
5297 	free_percpu(pp->stats);
5298 	irq_dispose_mapping(dev->irq);
5299 	phylink_destroy(pp->phylink);
5300 
5301 	if (pp->bm_priv) {
5302 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5303 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5304 				       1 << pp->id);
5305 		mvneta_bm_put(pp->bm_priv);
5306 	}
5307 
5308 	return 0;
5309 }
5310 
5311 #ifdef CONFIG_PM_SLEEP
5312 static int mvneta_suspend(struct device *device)
5313 {
5314 	int queue;
5315 	struct net_device *dev = dev_get_drvdata(device);
5316 	struct mvneta_port *pp = netdev_priv(dev);
5317 
5318 	if (!netif_running(dev))
5319 		goto clean_exit;
5320 
5321 	if (!pp->neta_armada3700) {
5322 		spin_lock(&pp->lock);
5323 		pp->is_stopped = true;
5324 		spin_unlock(&pp->lock);
5325 
5326 		cpuhp_state_remove_instance_nocalls(online_hpstate,
5327 						    &pp->node_online);
5328 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5329 						    &pp->node_dead);
5330 	}
5331 
5332 	rtnl_lock();
5333 	mvneta_stop_dev(pp);
5334 	rtnl_unlock();
5335 
5336 	for (queue = 0; queue < rxq_number; queue++) {
5337 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5338 
5339 		mvneta_rxq_drop_pkts(pp, rxq);
5340 	}
5341 
5342 	for (queue = 0; queue < txq_number; queue++) {
5343 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5344 
5345 		mvneta_txq_hw_deinit(pp, txq);
5346 	}
5347 
5348 clean_exit:
5349 	netif_device_detach(dev);
5350 	clk_disable_unprepare(pp->clk_bus);
5351 	clk_disable_unprepare(pp->clk);
5352 
5353 	return 0;
5354 }
5355 
5356 static int mvneta_resume(struct device *device)
5357 {
5358 	struct platform_device *pdev = to_platform_device(device);
5359 	struct net_device *dev = dev_get_drvdata(device);
5360 	struct mvneta_port *pp = netdev_priv(dev);
5361 	int err, queue;
5362 
5363 	clk_prepare_enable(pp->clk);
5364 	if (!IS_ERR(pp->clk_bus))
5365 		clk_prepare_enable(pp->clk_bus);
5366 	if (pp->dram_target_info || pp->neta_armada3700)
5367 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5368 	if (pp->bm_priv) {
5369 		err = mvneta_bm_port_init(pdev, pp);
5370 		if (err < 0) {
5371 			dev_info(&pdev->dev, "use SW buffer management\n");
5372 			pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5373 			pp->bm_priv = NULL;
5374 		}
5375 	}
5376 	mvneta_defaults_set(pp);
5377 	err = mvneta_port_power_up(pp, pp->phy_interface);
5378 	if (err < 0) {
5379 		dev_err(device, "can't power up port\n");
5380 		return err;
5381 	}
5382 
5383 	netif_device_attach(dev);
5384 
5385 	if (!netif_running(dev))
5386 		return 0;
5387 
5388 	for (queue = 0; queue < rxq_number; queue++) {
5389 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5390 
5391 		rxq->next_desc_to_proc = 0;
5392 		mvneta_rxq_hw_init(pp, rxq);
5393 	}
5394 
5395 	for (queue = 0; queue < txq_number; queue++) {
5396 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5397 
5398 		txq->next_desc_to_proc = 0;
5399 		mvneta_txq_hw_init(pp, txq);
5400 	}
5401 
5402 	if (!pp->neta_armada3700) {
5403 		spin_lock(&pp->lock);
5404 		pp->is_stopped = false;
5405 		spin_unlock(&pp->lock);
5406 		cpuhp_state_add_instance_nocalls(online_hpstate,
5407 						 &pp->node_online);
5408 		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5409 						 &pp->node_dead);
5410 	}
5411 
5412 	rtnl_lock();
5413 	mvneta_start_dev(pp);
5414 	rtnl_unlock();
5415 	mvneta_set_rx_mode(dev);
5416 
5417 	return 0;
5418 }
5419 #endif
5420 
5421 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5422 
5423 static const struct of_device_id mvneta_match[] = {
5424 	{ .compatible = "marvell,armada-370-neta" },
5425 	{ .compatible = "marvell,armada-xp-neta" },
5426 	{ .compatible = "marvell,armada-3700-neta" },
5427 	{ }
5428 };
5429 MODULE_DEVICE_TABLE(of, mvneta_match);
5430 
5431 static struct platform_driver mvneta_driver = {
5432 	.probe = mvneta_probe,
5433 	.remove = mvneta_remove,
5434 	.driver = {
5435 		.name = MVNETA_DRIVER_NAME,
5436 		.of_match_table = mvneta_match,
5437 		.pm = &mvneta_pm_ops,
5438 	},
5439 };
5440 
5441 static int __init mvneta_driver_init(void)
5442 {
5443 	int ret;
5444 
5445 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online",
5446 				      mvneta_cpu_online,
5447 				      mvneta_cpu_down_prepare);
5448 	if (ret < 0)
5449 		goto out;
5450 	online_hpstate = ret;
5451 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5452 				      NULL, mvneta_cpu_dead);
5453 	if (ret)
5454 		goto err_dead;
5455 
5456 	ret = platform_driver_register(&mvneta_driver);
5457 	if (ret)
5458 		goto err;
5459 	return 0;
5460 
5461 err:
5462 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5463 err_dead:
5464 	cpuhp_remove_multi_state(online_hpstate);
5465 out:
5466 	return ret;
5467 }
5468 module_init(mvneta_driver_init);
5469 
5470 static void __exit mvneta_driver_exit(void)
5471 {
5472 	platform_driver_unregister(&mvneta_driver);
5473 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5474 	cpuhp_remove_multi_state(online_hpstate);
5475 }
5476 module_exit(mvneta_driver_exit);
5477 
5478 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5479 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5480 MODULE_LICENSE("GPL");
5481 
5482 module_param(rxq_number, int, 0444);
5483 module_param(txq_number, int, 0444);
5484 
5485 module_param(rxq_def, int, 0444);
5486 module_param(rx_copybreak, int, 0644);
5487