1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy/phy.h> 31 #include <linux/phy.h> 32 #include <linux/phylink.h> 33 #include <linux/platform_device.h> 34 #include <linux/skbuff.h> 35 #include <net/hwbm.h> 36 #include "mvneta_bm.h" 37 #include <net/ip.h> 38 #include <net/ipv6.h> 39 #include <net/tso.h> 40 #include <net/page_pool/helpers.h> 41 #include <net/pkt_sched.h> 42 #include <linux/bpf_trace.h> 43 44 /* Registers */ 45 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 46 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 47 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 48 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 49 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 50 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 51 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 52 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 53 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 54 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 55 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 56 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 57 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 58 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 59 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 60 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 61 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 62 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 63 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 64 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 65 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 66 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 67 #define MVNETA_PORT_RX_RESET 0x1cc0 68 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 69 #define MVNETA_PHY_ADDR 0x2000 70 #define MVNETA_PHY_ADDR_MASK 0x1f 71 #define MVNETA_MBUS_RETRY 0x2010 72 #define MVNETA_UNIT_INTR_CAUSE 0x2080 73 #define MVNETA_UNIT_CONTROL 0x20B0 74 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 75 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 76 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 77 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 78 #define MVNETA_BASE_ADDR_ENABLE 0x2290 79 #define MVNETA_AC5_CNM_DDR_TARGET 0x2 80 #define MVNETA_AC5_CNM_DDR_ATTR 0xb 81 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 82 #define MVNETA_PORT_CONFIG 0x2400 83 #define MVNETA_UNI_PROMISC_MODE BIT(0) 84 #define MVNETA_DEF_RXQ(q) ((q) << 1) 85 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 86 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 87 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 88 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 89 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 90 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 91 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 92 MVNETA_DEF_RXQ_ARP(q) | \ 93 MVNETA_DEF_RXQ_TCP(q) | \ 94 MVNETA_DEF_RXQ_UDP(q) | \ 95 MVNETA_DEF_RXQ_BPDU(q) | \ 96 MVNETA_TX_UNSET_ERR_SUM | \ 97 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 98 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 99 #define MVNETA_MAC_ADDR_LOW 0x2414 100 #define MVNETA_MAC_ADDR_HIGH 0x2418 101 #define MVNETA_SDMA_CONFIG 0x241c 102 #define MVNETA_SDMA_BRST_SIZE_16 4 103 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 104 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 105 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 106 #define MVNETA_DESC_SWAP BIT(6) 107 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 108 #define MVNETA_VLAN_PRIO_TO_RXQ 0x2440 109 #define MVNETA_VLAN_PRIO_RXQ_MAP(prio, rxq) ((rxq) << ((prio) * 3)) 110 #define MVNETA_PORT_STATUS 0x2444 111 #define MVNETA_TX_IN_PRGRS BIT(0) 112 #define MVNETA_TX_FIFO_EMPTY BIT(8) 113 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 114 /* Only exists on Armada XP and Armada 370 */ 115 #define MVNETA_SERDES_CFG 0x24A0 116 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 117 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 118 #define MVNETA_HSGMII_SERDES_PROTO 0x1107 119 #define MVNETA_TYPE_PRIO 0x24bc 120 #define MVNETA_FORCE_UNI BIT(21) 121 #define MVNETA_TXQ_CMD_1 0x24e4 122 #define MVNETA_TXQ_CMD 0x2448 123 #define MVNETA_TXQ_DISABLE_SHIFT 8 124 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 125 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 126 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 127 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 128 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 129 #define MVNETA_ACC_MODE 0x2500 130 #define MVNETA_BM_ADDRESS 0x2504 131 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 132 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 133 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 134 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 135 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 136 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 137 138 /* Exception Interrupt Port/Queue Cause register 139 * 140 * Their behavior depend of the mapping done using the PCPX2Q 141 * registers. For a given CPU if the bit associated to a queue is not 142 * set, then for the register a read from this CPU will always return 143 * 0 and a write won't do anything 144 */ 145 146 #define MVNETA_INTR_NEW_CAUSE 0x25a0 147 #define MVNETA_INTR_NEW_MASK 0x25a4 148 149 /* bits 0..7 = TXQ SENT, one bit per queue. 150 * bits 8..15 = RXQ OCCUP, one bit per queue. 151 * bits 16..23 = RXQ FREE, one bit per queue. 152 * bit 29 = OLD_REG_SUM, see old reg ? 153 * bit 30 = TX_ERR_SUM, one bit for 4 ports 154 * bit 31 = MISC_SUM, one bit for 4 ports 155 */ 156 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 157 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 158 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 159 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 160 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 161 162 #define MVNETA_INTR_OLD_CAUSE 0x25a8 163 #define MVNETA_INTR_OLD_MASK 0x25ac 164 165 /* Data Path Port/Queue Cause Register */ 166 #define MVNETA_INTR_MISC_CAUSE 0x25b0 167 #define MVNETA_INTR_MISC_MASK 0x25b4 168 169 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 170 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 171 #define MVNETA_CAUSE_PTP BIT(4) 172 173 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 174 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 175 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 176 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 177 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 178 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 179 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 180 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 181 182 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 183 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 184 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 185 186 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 187 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 188 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 189 190 #define MVNETA_INTR_ENABLE 0x25b8 191 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 192 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 193 194 #define MVNETA_RXQ_CMD 0x2680 195 #define MVNETA_RXQ_DISABLE_SHIFT 8 196 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 197 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 198 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 199 #define MVNETA_GMAC_CTRL_0 0x2c00 200 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 201 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 202 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1) 203 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 204 #define MVNETA_GMAC_CTRL_2 0x2c08 205 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 206 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 207 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 208 #define MVNETA_GMAC2_PORT_RESET BIT(6) 209 #define MVNETA_GMAC_STATUS 0x2c10 210 #define MVNETA_GMAC_LINK_UP BIT(0) 211 #define MVNETA_GMAC_SPEED_1000 BIT(1) 212 #define MVNETA_GMAC_SPEED_100 BIT(2) 213 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 214 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 215 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 216 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 217 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 218 #define MVNETA_GMAC_AN_COMPLETE BIT(11) 219 #define MVNETA_GMAC_SYNC_OK BIT(14) 220 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 221 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 222 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 223 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 224 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3) 225 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4) 226 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 227 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 228 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 229 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8) 230 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9) 231 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 232 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 233 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 234 #define MVNETA_GMAC_CTRL_4 0x2c90 235 #define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1) 236 #define MVNETA_MIB_COUNTERS_BASE 0x3000 237 #define MVNETA_MIB_LATE_COLLISION 0x7c 238 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 239 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 240 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 241 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 242 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 243 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 244 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 245 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 246 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 247 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 248 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 249 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 250 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 251 #define MVNETA_PORT_TX_RESET 0x3cf0 252 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 253 #define MVNETA_TXQ_CMD1_REG 0x3e00 254 #define MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 BIT(3) 255 #define MVNETA_TXQ_CMD1_BW_LIM_EN BIT(0) 256 #define MVNETA_REFILL_NUM_CLK_REG 0x3e08 257 #define MVNETA_REFILL_MAX_NUM_CLK 0x0000ffff 258 #define MVNETA_TX_MTU 0x3e0c 259 #define MVNETA_TX_TOKEN_SIZE 0x3e14 260 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 261 #define MVNETA_TXQ_BUCKET_REFILL_REG(q) (0x3e20 + ((q) << 2)) 262 #define MVNETA_TXQ_BUCKET_REFILL_PERIOD_MASK 0x3ff00000 263 #define MVNETA_TXQ_BUCKET_REFILL_PERIOD_SHIFT 20 264 #define MVNETA_TXQ_BUCKET_REFILL_VALUE_MAX 0x0007ffff 265 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 266 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 267 268 /* The values of the bucket refill base period and refill period are taken from 269 * the reference manual, and adds up to a base resolution of 10Kbps. This allows 270 * to cover all rate-limit values from 10Kbps up to 5Gbps 271 */ 272 273 /* Base period for the rate limit algorithm */ 274 #define MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS 100 275 276 /* Number of Base Period to wait between each bucket refill */ 277 #define MVNETA_TXQ_BUCKET_REFILL_PERIOD 1000 278 279 /* The base resolution for rate limiting, in bps. Any max_rate value should be 280 * a multiple of that value. 281 */ 282 #define MVNETA_TXQ_RATE_LIMIT_RESOLUTION (NSEC_PER_SEC / \ 283 (MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS * \ 284 MVNETA_TXQ_BUCKET_REFILL_PERIOD)) 285 286 #define MVNETA_LPI_CTRL_0 0x2cc0 287 #define MVNETA_LPI_CTRL_1 0x2cc4 288 #define MVNETA_LPI_REQUEST_ENABLE BIT(0) 289 #define MVNETA_LPI_CTRL_2 0x2cc8 290 #define MVNETA_LPI_STATUS 0x2ccc 291 292 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 293 294 /* Descriptor ring Macros */ 295 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 296 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 297 298 /* Various constants */ 299 300 /* Coalescing */ 301 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 302 #define MVNETA_RX_COAL_PKTS 32 303 #define MVNETA_RX_COAL_USEC 100 304 305 /* The two bytes Marvell header. Either contains a special value used 306 * by Marvell switches when a specific hardware mode is enabled (not 307 * supported by this driver) or is filled automatically by zeroes on 308 * the RX side. Those two bytes being at the front of the Ethernet 309 * header, they allow to have the IP header aligned on a 4 bytes 310 * boundary automatically: the hardware skips those two bytes on its 311 * own. 312 */ 313 #define MVNETA_MH_SIZE 2 314 315 #define MVNETA_VLAN_TAG_LEN 4 316 317 #define MVNETA_TX_CSUM_DEF_SIZE 1600 318 #define MVNETA_TX_CSUM_MAX_SIZE 9800 319 #define MVNETA_ACC_MODE_EXT1 1 320 #define MVNETA_ACC_MODE_EXT2 2 321 322 #define MVNETA_MAX_DECODE_WIN 6 323 324 /* Timeout constants */ 325 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 326 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 327 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 328 329 #define MVNETA_TX_MTU_MAX 0x3ffff 330 331 /* The RSS lookup table actually has 256 entries but we do not use 332 * them yet 333 */ 334 #define MVNETA_RSS_LU_TABLE_SIZE 1 335 336 /* Max number of Rx descriptors */ 337 #define MVNETA_MAX_RXD 512 338 339 /* Max number of Tx descriptors */ 340 #define MVNETA_MAX_TXD 1024 341 342 /* Max number of allowed TCP segments for software TSO */ 343 #define MVNETA_MAX_TSO_SEGS 100 344 345 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 346 347 /* The size of a TSO header page */ 348 #define MVNETA_TSO_PAGE_SIZE (2 * PAGE_SIZE) 349 350 /* Number of TSO headers per page. This should be a power of 2 */ 351 #define MVNETA_TSO_PER_PAGE (MVNETA_TSO_PAGE_SIZE / TSO_HEADER_SIZE) 352 353 /* Maximum number of TSO header pages */ 354 #define MVNETA_MAX_TSO_PAGES (MVNETA_MAX_TXD / MVNETA_TSO_PER_PAGE) 355 356 /* descriptor aligned size */ 357 #define MVNETA_DESC_ALIGNED_SIZE 32 358 359 /* Number of bytes to be taken into account by HW when putting incoming data 360 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 361 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 362 */ 363 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 364 365 #define MVNETA_RX_PKT_SIZE(mtu) \ 366 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 367 ETH_HLEN + ETH_FCS_LEN, \ 368 cache_line_size()) 369 370 /* Driver assumes that the last 3 bits are 0 */ 371 #define MVNETA_SKB_HEADROOM ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) 372 #define MVNETA_SKB_PAD (SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \ 373 MVNETA_SKB_HEADROOM)) 374 #define MVNETA_MAX_RX_BUF_SIZE (PAGE_SIZE - MVNETA_SKB_PAD) 375 376 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 377 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 378 379 enum { 380 ETHTOOL_STAT_EEE_WAKEUP, 381 ETHTOOL_STAT_SKB_ALLOC_ERR, 382 ETHTOOL_STAT_REFILL_ERR, 383 ETHTOOL_XDP_REDIRECT, 384 ETHTOOL_XDP_PASS, 385 ETHTOOL_XDP_DROP, 386 ETHTOOL_XDP_TX, 387 ETHTOOL_XDP_TX_ERR, 388 ETHTOOL_XDP_XMIT, 389 ETHTOOL_XDP_XMIT_ERR, 390 ETHTOOL_MAX_STATS, 391 }; 392 393 struct mvneta_statistic { 394 unsigned short offset; 395 unsigned short type; 396 const char name[ETH_GSTRING_LEN]; 397 }; 398 399 #define T_REG_32 32 400 #define T_REG_64 64 401 #define T_SW 1 402 403 #define MVNETA_XDP_PASS 0 404 #define MVNETA_XDP_DROPPED BIT(0) 405 #define MVNETA_XDP_TX BIT(1) 406 #define MVNETA_XDP_REDIR BIT(2) 407 408 static const struct mvneta_statistic mvneta_statistics[] = { 409 { 0x3000, T_REG_64, "good_octets_received", }, 410 { 0x3010, T_REG_32, "good_frames_received", }, 411 { 0x3008, T_REG_32, "bad_octets_received", }, 412 { 0x3014, T_REG_32, "bad_frames_received", }, 413 { 0x3018, T_REG_32, "broadcast_frames_received", }, 414 { 0x301c, T_REG_32, "multicast_frames_received", }, 415 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 416 { 0x3058, T_REG_32, "good_fc_received", }, 417 { 0x305c, T_REG_32, "bad_fc_received", }, 418 { 0x3060, T_REG_32, "undersize_received", }, 419 { 0x3064, T_REG_32, "fragments_received", }, 420 { 0x3068, T_REG_32, "oversize_received", }, 421 { 0x306c, T_REG_32, "jabber_received", }, 422 { 0x3070, T_REG_32, "mac_receive_error", }, 423 { 0x3074, T_REG_32, "bad_crc_event", }, 424 { 0x3078, T_REG_32, "collision", }, 425 { 0x307c, T_REG_32, "late_collision", }, 426 { 0x2484, T_REG_32, "rx_discard", }, 427 { 0x2488, T_REG_32, "rx_overrun", }, 428 { 0x3020, T_REG_32, "frames_64_octets", }, 429 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 430 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 431 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 432 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 433 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 434 { 0x3038, T_REG_64, "good_octets_sent", }, 435 { 0x3040, T_REG_32, "good_frames_sent", }, 436 { 0x3044, T_REG_32, "excessive_collision", }, 437 { 0x3048, T_REG_32, "multicast_frames_sent", }, 438 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 439 { 0x3054, T_REG_32, "fc_sent", }, 440 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 441 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", }, 442 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", }, 443 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", }, 444 { ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", }, 445 { ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", }, 446 { ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", }, 447 { ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", }, 448 { ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", }, 449 { ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", }, 450 { ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", }, 451 }; 452 453 struct mvneta_stats { 454 u64 rx_packets; 455 u64 rx_bytes; 456 u64 tx_packets; 457 u64 tx_bytes; 458 /* xdp */ 459 u64 xdp_redirect; 460 u64 xdp_pass; 461 u64 xdp_drop; 462 u64 xdp_xmit; 463 u64 xdp_xmit_err; 464 u64 xdp_tx; 465 u64 xdp_tx_err; 466 }; 467 468 struct mvneta_ethtool_stats { 469 struct mvneta_stats ps; 470 u64 skb_alloc_error; 471 u64 refill_error; 472 }; 473 474 struct mvneta_pcpu_stats { 475 struct u64_stats_sync syncp; 476 477 struct mvneta_ethtool_stats es; 478 u64 rx_dropped; 479 u64 rx_errors; 480 }; 481 482 struct mvneta_pcpu_port { 483 /* Pointer to the shared port */ 484 struct mvneta_port *pp; 485 486 /* Pointer to the CPU-local NAPI struct */ 487 struct napi_struct napi; 488 489 /* Cause of the previous interrupt */ 490 u32 cause_rx_tx; 491 }; 492 493 enum { 494 __MVNETA_DOWN, 495 }; 496 497 struct mvneta_port { 498 u8 id; 499 struct mvneta_pcpu_port __percpu *ports; 500 struct mvneta_pcpu_stats __percpu *stats; 501 502 unsigned long state; 503 504 int pkt_size; 505 void __iomem *base; 506 struct mvneta_rx_queue *rxqs; 507 struct mvneta_tx_queue *txqs; 508 struct net_device *dev; 509 struct hlist_node node_online; 510 struct hlist_node node_dead; 511 int rxq_def; 512 /* Protect the access to the percpu interrupt registers, 513 * ensuring that the configuration remains coherent. 514 */ 515 spinlock_t lock; 516 bool is_stopped; 517 518 u32 cause_rx_tx; 519 struct napi_struct napi; 520 521 struct bpf_prog *xdp_prog; 522 523 /* Core clock */ 524 struct clk *clk; 525 /* AXI clock */ 526 struct clk *clk_bus; 527 u8 mcast_count[256]; 528 u16 tx_ring_size; 529 u16 rx_ring_size; 530 531 phy_interface_t phy_interface; 532 struct device_node *dn; 533 unsigned int tx_csum_limit; 534 struct phylink *phylink; 535 struct phylink_config phylink_config; 536 struct phylink_pcs phylink_pcs; 537 struct phy *comphy; 538 539 struct mvneta_bm *bm_priv; 540 struct mvneta_bm_pool *pool_long; 541 struct mvneta_bm_pool *pool_short; 542 int bm_win_id; 543 544 bool eee_enabled; 545 bool eee_active; 546 bool tx_lpi_enabled; 547 548 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 549 550 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 551 552 /* Flags for special SoC configurations */ 553 bool neta_armada3700; 554 bool neta_ac5; 555 u16 rx_offset_correction; 556 const struct mbus_dram_target_info *dram_target_info; 557 }; 558 559 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 560 * layout of the transmit and reception DMA descriptors, and their 561 * layout is therefore defined by the hardware design 562 */ 563 564 #define MVNETA_TX_L3_OFF_SHIFT 0 565 #define MVNETA_TX_IP_HLEN_SHIFT 8 566 #define MVNETA_TX_L4_UDP BIT(16) 567 #define MVNETA_TX_L3_IP6 BIT(17) 568 #define MVNETA_TXD_IP_CSUM BIT(18) 569 #define MVNETA_TXD_Z_PAD BIT(19) 570 #define MVNETA_TXD_L_DESC BIT(20) 571 #define MVNETA_TXD_F_DESC BIT(21) 572 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 573 MVNETA_TXD_L_DESC | \ 574 MVNETA_TXD_F_DESC) 575 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 576 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 577 578 #define MVNETA_RXD_ERR_CRC 0x0 579 #define MVNETA_RXD_BM_POOL_SHIFT 13 580 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 581 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 582 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 583 #define MVNETA_RXD_ERR_LEN BIT(18) 584 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 585 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 586 #define MVNETA_RXD_L3_IP4 BIT(25) 587 #define MVNETA_RXD_LAST_DESC BIT(26) 588 #define MVNETA_RXD_FIRST_DESC BIT(27) 589 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \ 590 MVNETA_RXD_LAST_DESC) 591 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 592 593 #if defined(__LITTLE_ENDIAN) 594 struct mvneta_tx_desc { 595 u32 command; /* Options used by HW for packet transmitting.*/ 596 u16 reserved1; /* csum_l4 (for future use) */ 597 u16 data_size; /* Data size of transmitted packet in bytes */ 598 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 599 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 600 u32 reserved3[4]; /* Reserved - (for future use) */ 601 }; 602 603 struct mvneta_rx_desc { 604 u32 status; /* Info about received packet */ 605 u16 reserved1; /* pnc_info - (for future use, PnC) */ 606 u16 data_size; /* Size of received packet in bytes */ 607 608 u32 buf_phys_addr; /* Physical address of the buffer */ 609 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 610 611 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 612 u16 reserved3; /* prefetch_cmd, for future use */ 613 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 614 615 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 616 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 617 }; 618 #else 619 struct mvneta_tx_desc { 620 u16 data_size; /* Data size of transmitted packet in bytes */ 621 u16 reserved1; /* csum_l4 (for future use) */ 622 u32 command; /* Options used by HW for packet transmitting.*/ 623 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 624 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 625 u32 reserved3[4]; /* Reserved - (for future use) */ 626 }; 627 628 struct mvneta_rx_desc { 629 u16 data_size; /* Size of received packet in bytes */ 630 u16 reserved1; /* pnc_info - (for future use, PnC) */ 631 u32 status; /* Info about received packet */ 632 633 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 634 u32 buf_phys_addr; /* Physical address of the buffer */ 635 636 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 637 u16 reserved3; /* prefetch_cmd, for future use */ 638 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 639 640 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 641 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 642 }; 643 #endif 644 645 enum mvneta_tx_buf_type { 646 MVNETA_TYPE_TSO, 647 MVNETA_TYPE_SKB, 648 MVNETA_TYPE_XDP_TX, 649 MVNETA_TYPE_XDP_NDO, 650 }; 651 652 struct mvneta_tx_buf { 653 enum mvneta_tx_buf_type type; 654 union { 655 struct xdp_frame *xdpf; 656 struct sk_buff *skb; 657 }; 658 }; 659 660 struct mvneta_tx_queue { 661 /* Number of this TX queue, in the range 0-7 */ 662 u8 id; 663 664 /* Number of TX DMA descriptors in the descriptor ring */ 665 int size; 666 667 /* Number of currently used TX DMA descriptor in the 668 * descriptor ring 669 */ 670 int count; 671 int pending; 672 int tx_stop_threshold; 673 int tx_wake_threshold; 674 675 /* Array of transmitted buffers */ 676 struct mvneta_tx_buf *buf; 677 678 /* Index of last TX DMA descriptor that was inserted */ 679 int txq_put_index; 680 681 /* Index of the TX DMA descriptor to be cleaned up */ 682 int txq_get_index; 683 684 u32 done_pkts_coal; 685 686 /* Virtual address of the TX DMA descriptors array */ 687 struct mvneta_tx_desc *descs; 688 689 /* DMA address of the TX DMA descriptors array */ 690 dma_addr_t descs_phys; 691 692 /* Index of the last TX DMA descriptor */ 693 int last_desc; 694 695 /* Index of the next TX DMA descriptor to process */ 696 int next_desc_to_proc; 697 698 /* DMA buffers for TSO headers */ 699 char *tso_hdrs[MVNETA_MAX_TSO_PAGES]; 700 701 /* DMA address of TSO headers */ 702 dma_addr_t tso_hdrs_phys[MVNETA_MAX_TSO_PAGES]; 703 704 /* Affinity mask for CPUs*/ 705 cpumask_t affinity_mask; 706 }; 707 708 struct mvneta_rx_queue { 709 /* rx queue number, in the range 0-7 */ 710 u8 id; 711 712 /* num of rx descriptors in the rx descriptor ring */ 713 int size; 714 715 u32 pkts_coal; 716 u32 time_coal; 717 718 /* page_pool */ 719 struct page_pool *page_pool; 720 struct xdp_rxq_info xdp_rxq; 721 722 /* Virtual address of the RX buffer */ 723 void **buf_virt_addr; 724 725 /* Virtual address of the RX DMA descriptors array */ 726 struct mvneta_rx_desc *descs; 727 728 /* DMA address of the RX DMA descriptors array */ 729 dma_addr_t descs_phys; 730 731 /* Index of the last RX DMA descriptor */ 732 int last_desc; 733 734 /* Index of the next RX DMA descriptor to process */ 735 int next_desc_to_proc; 736 737 /* Index of first RX DMA descriptor to refill */ 738 int first_to_refill; 739 u32 refill_num; 740 }; 741 742 static enum cpuhp_state online_hpstate; 743 /* The hardware supports eight (8) rx queues, but we are only allowing 744 * the first one to be used. Therefore, let's just allocate one queue. 745 */ 746 static int rxq_number = 8; 747 static int txq_number = 8; 748 749 static int rxq_def; 750 751 static int rx_copybreak __read_mostly = 256; 752 753 /* HW BM need that each port be identify by a unique ID */ 754 static int global_port_id; 755 756 #define MVNETA_DRIVER_NAME "mvneta" 757 #define MVNETA_DRIVER_VERSION "1.0" 758 759 /* Utility/helper methods */ 760 761 /* Write helper method */ 762 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 763 { 764 writel(data, pp->base + offset); 765 } 766 767 /* Read helper method */ 768 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 769 { 770 return readl(pp->base + offset); 771 } 772 773 /* Increment txq get counter */ 774 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 775 { 776 txq->txq_get_index++; 777 if (txq->txq_get_index == txq->size) 778 txq->txq_get_index = 0; 779 } 780 781 /* Increment txq put counter */ 782 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 783 { 784 txq->txq_put_index++; 785 if (txq->txq_put_index == txq->size) 786 txq->txq_put_index = 0; 787 } 788 789 790 /* Clear all MIB counters */ 791 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 792 { 793 int i; 794 795 /* Perform dummy reads from MIB counters */ 796 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 797 mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 798 mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 799 mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 800 } 801 802 /* Get System Network Statistics */ 803 static void 804 mvneta_get_stats64(struct net_device *dev, 805 struct rtnl_link_stats64 *stats) 806 { 807 struct mvneta_port *pp = netdev_priv(dev); 808 unsigned int start; 809 int cpu; 810 811 for_each_possible_cpu(cpu) { 812 struct mvneta_pcpu_stats *cpu_stats; 813 u64 rx_packets; 814 u64 rx_bytes; 815 u64 rx_dropped; 816 u64 rx_errors; 817 u64 tx_packets; 818 u64 tx_bytes; 819 820 cpu_stats = per_cpu_ptr(pp->stats, cpu); 821 do { 822 start = u64_stats_fetch_begin(&cpu_stats->syncp); 823 rx_packets = cpu_stats->es.ps.rx_packets; 824 rx_bytes = cpu_stats->es.ps.rx_bytes; 825 rx_dropped = cpu_stats->rx_dropped; 826 rx_errors = cpu_stats->rx_errors; 827 tx_packets = cpu_stats->es.ps.tx_packets; 828 tx_bytes = cpu_stats->es.ps.tx_bytes; 829 } while (u64_stats_fetch_retry(&cpu_stats->syncp, start)); 830 831 stats->rx_packets += rx_packets; 832 stats->rx_bytes += rx_bytes; 833 stats->rx_dropped += rx_dropped; 834 stats->rx_errors += rx_errors; 835 stats->tx_packets += tx_packets; 836 stats->tx_bytes += tx_bytes; 837 } 838 839 stats->tx_dropped = dev->stats.tx_dropped; 840 } 841 842 /* Rx descriptors helper methods */ 843 844 /* Checks whether the RX descriptor having this status is both the first 845 * and the last descriptor for the RX packet. Each RX packet is currently 846 * received through a single RX descriptor, so not having each RX 847 * descriptor with its first and last bits set is an error 848 */ 849 static int mvneta_rxq_desc_is_first_last(u32 status) 850 { 851 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 852 MVNETA_RXD_FIRST_LAST_DESC; 853 } 854 855 /* Add number of descriptors ready to receive new packets */ 856 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 857 struct mvneta_rx_queue *rxq, 858 int ndescs) 859 { 860 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 861 * be added at once 862 */ 863 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 864 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 865 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 866 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 867 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 868 } 869 870 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 871 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 872 } 873 874 /* Get number of RX descriptors occupied by received packets */ 875 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 876 struct mvneta_rx_queue *rxq) 877 { 878 u32 val; 879 880 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 881 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 882 } 883 884 /* Update num of rx desc called upon return from rx path or 885 * from mvneta_rxq_drop_pkts(). 886 */ 887 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 888 struct mvneta_rx_queue *rxq, 889 int rx_done, int rx_filled) 890 { 891 u32 val; 892 893 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 894 val = rx_done | 895 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 896 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 897 return; 898 } 899 900 /* Only 255 descriptors can be added at once */ 901 while ((rx_done > 0) || (rx_filled > 0)) { 902 if (rx_done <= 0xff) { 903 val = rx_done; 904 rx_done = 0; 905 } else { 906 val = 0xff; 907 rx_done -= 0xff; 908 } 909 if (rx_filled <= 0xff) { 910 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 911 rx_filled = 0; 912 } else { 913 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 914 rx_filled -= 0xff; 915 } 916 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 917 } 918 } 919 920 /* Get pointer to next RX descriptor to be processed by SW */ 921 static struct mvneta_rx_desc * 922 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 923 { 924 int rx_desc = rxq->next_desc_to_proc; 925 926 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 927 prefetch(rxq->descs + rxq->next_desc_to_proc); 928 return rxq->descs + rx_desc; 929 } 930 931 /* Change maximum receive size of the port. */ 932 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 933 { 934 u32 val; 935 936 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 937 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 938 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 939 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 940 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 941 } 942 943 944 /* Set rx queue offset */ 945 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 946 struct mvneta_rx_queue *rxq, 947 int offset) 948 { 949 u32 val; 950 951 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 952 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 953 954 /* Offset is in */ 955 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 956 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 957 } 958 959 960 /* Tx descriptors helper methods */ 961 962 /* Update HW with number of TX descriptors to be sent */ 963 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 964 struct mvneta_tx_queue *txq, 965 int pend_desc) 966 { 967 u32 val; 968 969 pend_desc += txq->pending; 970 971 /* Only 255 Tx descriptors can be added at once */ 972 do { 973 val = min(pend_desc, 255); 974 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 975 pend_desc -= val; 976 } while (pend_desc > 0); 977 txq->pending = 0; 978 } 979 980 /* Get pointer to next TX descriptor to be processed (send) by HW */ 981 static struct mvneta_tx_desc * 982 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 983 { 984 int tx_desc = txq->next_desc_to_proc; 985 986 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 987 return txq->descs + tx_desc; 988 } 989 990 /* Release the last allocated TX descriptor. Useful to handle DMA 991 * mapping failures in the TX path. 992 */ 993 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 994 { 995 if (txq->next_desc_to_proc == 0) 996 txq->next_desc_to_proc = txq->last_desc - 1; 997 else 998 txq->next_desc_to_proc--; 999 } 1000 1001 /* Set rxq buf size */ 1002 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 1003 struct mvneta_rx_queue *rxq, 1004 int buf_size) 1005 { 1006 u32 val; 1007 1008 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 1009 1010 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 1011 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 1012 1013 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 1014 } 1015 1016 /* Disable buffer management (BM) */ 1017 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 1018 struct mvneta_rx_queue *rxq) 1019 { 1020 u32 val; 1021 1022 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1023 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 1024 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1025 } 1026 1027 /* Enable buffer management (BM) */ 1028 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 1029 struct mvneta_rx_queue *rxq) 1030 { 1031 u32 val; 1032 1033 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1034 val |= MVNETA_RXQ_HW_BUF_ALLOC; 1035 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1036 } 1037 1038 /* Notify HW about port's assignment of pool for bigger packets */ 1039 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 1040 struct mvneta_rx_queue *rxq) 1041 { 1042 u32 val; 1043 1044 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1045 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 1046 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 1047 1048 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1049 } 1050 1051 /* Notify HW about port's assignment of pool for smaller packets */ 1052 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 1053 struct mvneta_rx_queue *rxq) 1054 { 1055 u32 val; 1056 1057 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1058 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 1059 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 1060 1061 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1062 } 1063 1064 /* Set port's receive buffer size for assigned BM pool */ 1065 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 1066 int buf_size, 1067 u8 pool_id) 1068 { 1069 u32 val; 1070 1071 if (!IS_ALIGNED(buf_size, 8)) { 1072 dev_warn(pp->dev->dev.parent, 1073 "illegal buf_size value %d, round to %d\n", 1074 buf_size, ALIGN(buf_size, 8)); 1075 buf_size = ALIGN(buf_size, 8); 1076 } 1077 1078 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 1079 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 1080 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 1081 } 1082 1083 /* Configure MBUS window in order to enable access BM internal SRAM */ 1084 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 1085 u8 target, u8 attr) 1086 { 1087 u32 win_enable, win_protect; 1088 int i; 1089 1090 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 1091 1092 if (pp->bm_win_id < 0) { 1093 /* Find first not occupied window */ 1094 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 1095 if (win_enable & (1 << i)) { 1096 pp->bm_win_id = i; 1097 break; 1098 } 1099 } 1100 if (i == MVNETA_MAX_DECODE_WIN) 1101 return -ENOMEM; 1102 } else { 1103 i = pp->bm_win_id; 1104 } 1105 1106 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 1107 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 1108 1109 if (i < 4) 1110 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 1111 1112 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 1113 (attr << 8) | target); 1114 1115 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 1116 1117 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 1118 win_protect |= 3 << (2 * i); 1119 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 1120 1121 win_enable &= ~(1 << i); 1122 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 1123 1124 return 0; 1125 } 1126 1127 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 1128 { 1129 u32 wsize; 1130 u8 target, attr; 1131 int err; 1132 1133 /* Get BM window information */ 1134 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 1135 &target, &attr); 1136 if (err < 0) 1137 return err; 1138 1139 pp->bm_win_id = -1; 1140 1141 /* Open NETA -> BM window */ 1142 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 1143 target, attr); 1144 if (err < 0) { 1145 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 1146 return err; 1147 } 1148 return 0; 1149 } 1150 1151 /* Assign and initialize pools for port. In case of fail 1152 * buffer manager will remain disabled for current port. 1153 */ 1154 static int mvneta_bm_port_init(struct platform_device *pdev, 1155 struct mvneta_port *pp) 1156 { 1157 struct device_node *dn = pdev->dev.of_node; 1158 u32 long_pool_id, short_pool_id; 1159 1160 if (!pp->neta_armada3700) { 1161 int ret; 1162 1163 ret = mvneta_bm_port_mbus_init(pp); 1164 if (ret) 1165 return ret; 1166 } 1167 1168 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1169 netdev_info(pp->dev, "missing long pool id\n"); 1170 return -EINVAL; 1171 } 1172 1173 /* Create port's long pool depending on mtu */ 1174 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1175 MVNETA_BM_LONG, pp->id, 1176 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1177 if (!pp->pool_long) { 1178 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1179 return -ENOMEM; 1180 } 1181 1182 pp->pool_long->port_map |= 1 << pp->id; 1183 1184 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1185 pp->pool_long->id); 1186 1187 /* If short pool id is not defined, assume using single pool */ 1188 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1189 short_pool_id = long_pool_id; 1190 1191 /* Create port's short pool */ 1192 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1193 MVNETA_BM_SHORT, pp->id, 1194 MVNETA_BM_SHORT_PKT_SIZE); 1195 if (!pp->pool_short) { 1196 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1197 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1198 return -ENOMEM; 1199 } 1200 1201 if (short_pool_id != long_pool_id) { 1202 pp->pool_short->port_map |= 1 << pp->id; 1203 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1204 pp->pool_short->id); 1205 } 1206 1207 return 0; 1208 } 1209 1210 /* Update settings of a pool for bigger packets */ 1211 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1212 { 1213 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1214 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1215 int num; 1216 1217 /* Release all buffers from long pool */ 1218 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1219 if (hwbm_pool->buf_num) { 1220 WARN(1, "cannot free all buffers in pool %d\n", 1221 bm_pool->id); 1222 goto bm_mtu_err; 1223 } 1224 1225 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1226 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1227 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1228 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1229 1230 /* Fill entire long pool */ 1231 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size); 1232 if (num != hwbm_pool->size) { 1233 WARN(1, "pool %d: %d of %d allocated\n", 1234 bm_pool->id, num, hwbm_pool->size); 1235 goto bm_mtu_err; 1236 } 1237 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1238 1239 return; 1240 1241 bm_mtu_err: 1242 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1243 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1244 1245 pp->bm_priv = NULL; 1246 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 1247 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1248 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1249 } 1250 1251 /* Start the Ethernet port RX and TX activity */ 1252 static void mvneta_port_up(struct mvneta_port *pp) 1253 { 1254 int queue; 1255 u32 q_map; 1256 1257 /* Enable all initialized TXs. */ 1258 q_map = 0; 1259 for (queue = 0; queue < txq_number; queue++) { 1260 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1261 if (txq->descs) 1262 q_map |= (1 << queue); 1263 } 1264 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1265 1266 q_map = 0; 1267 /* Enable all initialized RXQs. */ 1268 for (queue = 0; queue < rxq_number; queue++) { 1269 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1270 1271 if (rxq->descs) 1272 q_map |= (1 << queue); 1273 } 1274 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1275 } 1276 1277 /* Stop the Ethernet port activity */ 1278 static void mvneta_port_down(struct mvneta_port *pp) 1279 { 1280 u32 val; 1281 int count; 1282 1283 /* Stop Rx port activity. Check port Rx activity. */ 1284 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1285 1286 /* Issue stop command for active channels only */ 1287 if (val != 0) 1288 mvreg_write(pp, MVNETA_RXQ_CMD, 1289 val << MVNETA_RXQ_DISABLE_SHIFT); 1290 1291 /* Wait for all Rx activity to terminate. */ 1292 count = 0; 1293 do { 1294 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1295 netdev_warn(pp->dev, 1296 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1297 val); 1298 break; 1299 } 1300 mdelay(1); 1301 1302 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1303 } while (val & MVNETA_RXQ_ENABLE_MASK); 1304 1305 /* Stop Tx port activity. Check port Tx activity. Issue stop 1306 * command for active channels only 1307 */ 1308 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1309 1310 if (val != 0) 1311 mvreg_write(pp, MVNETA_TXQ_CMD, 1312 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1313 1314 /* Wait for all Tx activity to terminate. */ 1315 count = 0; 1316 do { 1317 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1318 netdev_warn(pp->dev, 1319 "TIMEOUT for TX stopped status=0x%08x\n", 1320 val); 1321 break; 1322 } 1323 mdelay(1); 1324 1325 /* Check TX Command reg that all Txqs are stopped */ 1326 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1327 1328 } while (val & MVNETA_TXQ_ENABLE_MASK); 1329 1330 /* Double check to verify that TX FIFO is empty */ 1331 count = 0; 1332 do { 1333 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1334 netdev_warn(pp->dev, 1335 "TX FIFO empty timeout status=0x%08x\n", 1336 val); 1337 break; 1338 } 1339 mdelay(1); 1340 1341 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1342 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1343 (val & MVNETA_TX_IN_PRGRS)); 1344 1345 udelay(200); 1346 } 1347 1348 /* Enable the port by setting the port enable bit of the MAC control register */ 1349 static void mvneta_port_enable(struct mvneta_port *pp) 1350 { 1351 u32 val; 1352 1353 /* Enable port */ 1354 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1355 val |= MVNETA_GMAC0_PORT_ENABLE; 1356 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1357 } 1358 1359 /* Disable the port and wait for about 200 usec before retuning */ 1360 static void mvneta_port_disable(struct mvneta_port *pp) 1361 { 1362 u32 val; 1363 1364 /* Reset the Enable bit in the Serial Control Register */ 1365 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1366 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1367 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1368 1369 udelay(200); 1370 } 1371 1372 /* Multicast tables methods */ 1373 1374 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1375 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1376 { 1377 int offset; 1378 u32 val; 1379 1380 if (queue == -1) { 1381 val = 0; 1382 } else { 1383 val = 0x1 | (queue << 1); 1384 val |= (val << 24) | (val << 16) | (val << 8); 1385 } 1386 1387 for (offset = 0; offset <= 0xc; offset += 4) 1388 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1389 } 1390 1391 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1392 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1393 { 1394 int offset; 1395 u32 val; 1396 1397 if (queue == -1) { 1398 val = 0; 1399 } else { 1400 val = 0x1 | (queue << 1); 1401 val |= (val << 24) | (val << 16) | (val << 8); 1402 } 1403 1404 for (offset = 0; offset <= 0xfc; offset += 4) 1405 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1406 1407 } 1408 1409 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1410 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1411 { 1412 int offset; 1413 u32 val; 1414 1415 if (queue == -1) { 1416 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1417 val = 0; 1418 } else { 1419 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1420 val = 0x1 | (queue << 1); 1421 val |= (val << 24) | (val << 16) | (val << 8); 1422 } 1423 1424 for (offset = 0; offset <= 0xfc; offset += 4) 1425 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1426 } 1427 1428 static void mvneta_percpu_unmask_interrupt(void *arg) 1429 { 1430 struct mvneta_port *pp = arg; 1431 1432 /* All the queue are unmasked, but actually only the ones 1433 * mapped to this CPU will be unmasked 1434 */ 1435 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1436 MVNETA_RX_INTR_MASK_ALL | 1437 MVNETA_TX_INTR_MASK_ALL | 1438 MVNETA_MISCINTR_INTR_MASK); 1439 } 1440 1441 static void mvneta_percpu_mask_interrupt(void *arg) 1442 { 1443 struct mvneta_port *pp = arg; 1444 1445 /* All the queue are masked, but actually only the ones 1446 * mapped to this CPU will be masked 1447 */ 1448 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1449 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1450 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1451 } 1452 1453 static void mvneta_percpu_clear_intr_cause(void *arg) 1454 { 1455 struct mvneta_port *pp = arg; 1456 1457 /* All the queue are cleared, but actually only the ones 1458 * mapped to this CPU will be cleared 1459 */ 1460 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1461 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1462 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1463 } 1464 1465 /* This method sets defaults to the NETA port: 1466 * Clears interrupt Cause and Mask registers. 1467 * Clears all MAC tables. 1468 * Sets defaults to all registers. 1469 * Resets RX and TX descriptor rings. 1470 * Resets PHY. 1471 * This method can be called after mvneta_port_down() to return the port 1472 * settings to defaults. 1473 */ 1474 static void mvneta_defaults_set(struct mvneta_port *pp) 1475 { 1476 int cpu; 1477 int queue; 1478 u32 val; 1479 int max_cpu = num_present_cpus(); 1480 1481 /* Clear all Cause registers */ 1482 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1483 1484 /* Mask all interrupts */ 1485 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1486 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1487 1488 /* Enable MBUS Retry bit16 */ 1489 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1490 1491 /* Set CPU queue access map. CPUs are assigned to the RX and 1492 * TX queues modulo their number. If there is only one TX 1493 * queue then it is assigned to the CPU associated to the 1494 * default RX queue. 1495 */ 1496 for_each_present_cpu(cpu) { 1497 int rxq_map = 0, txq_map = 0; 1498 int rxq, txq; 1499 if (!pp->neta_armada3700) { 1500 for (rxq = 0; rxq < rxq_number; rxq++) 1501 if ((rxq % max_cpu) == cpu) 1502 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1503 1504 for (txq = 0; txq < txq_number; txq++) 1505 if ((txq % max_cpu) == cpu) 1506 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1507 1508 /* With only one TX queue we configure a special case 1509 * which will allow to get all the irq on a single 1510 * CPU 1511 */ 1512 if (txq_number == 1) 1513 txq_map = (cpu == pp->rxq_def) ? 1514 MVNETA_CPU_TXQ_ACCESS(0) : 0; 1515 1516 } else { 1517 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1518 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1519 } 1520 1521 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1522 } 1523 1524 /* Reset RX and TX DMAs */ 1525 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1526 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1527 1528 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1529 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1530 for (queue = 0; queue < txq_number; queue++) { 1531 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1532 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1533 } 1534 1535 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1536 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1537 1538 /* Set Port Acceleration Mode */ 1539 if (pp->bm_priv) 1540 /* HW buffer management + legacy parser */ 1541 val = MVNETA_ACC_MODE_EXT2; 1542 else 1543 /* SW buffer management + legacy parser */ 1544 val = MVNETA_ACC_MODE_EXT1; 1545 mvreg_write(pp, MVNETA_ACC_MODE, val); 1546 1547 if (pp->bm_priv) 1548 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1549 1550 /* Update val of portCfg register accordingly with all RxQueue types */ 1551 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1552 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1553 1554 val = 0; 1555 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1556 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1557 1558 /* Build PORT_SDMA_CONFIG_REG */ 1559 val = 0; 1560 1561 /* Default burst size */ 1562 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1563 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1564 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1565 1566 #if defined(__BIG_ENDIAN) 1567 val |= MVNETA_DESC_SWAP; 1568 #endif 1569 1570 /* Assign port SDMA configuration */ 1571 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1572 1573 /* Disable PHY polling in hardware, since we're using the 1574 * kernel phylib to do this. 1575 */ 1576 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1577 val &= ~MVNETA_PHY_POLLING_ENABLE; 1578 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1579 1580 mvneta_set_ucast_table(pp, -1); 1581 mvneta_set_special_mcast_table(pp, -1); 1582 mvneta_set_other_mcast_table(pp, -1); 1583 1584 /* Set port interrupt enable register - default enable all */ 1585 mvreg_write(pp, MVNETA_INTR_ENABLE, 1586 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1587 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1588 1589 mvneta_mib_counters_clear(pp); 1590 } 1591 1592 /* Set max sizes for tx queues */ 1593 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1594 1595 { 1596 u32 val, size, mtu; 1597 int queue; 1598 1599 mtu = max_tx_size * 8; 1600 if (mtu > MVNETA_TX_MTU_MAX) 1601 mtu = MVNETA_TX_MTU_MAX; 1602 1603 /* Set MTU */ 1604 val = mvreg_read(pp, MVNETA_TX_MTU); 1605 val &= ~MVNETA_TX_MTU_MAX; 1606 val |= mtu; 1607 mvreg_write(pp, MVNETA_TX_MTU, val); 1608 1609 /* TX token size and all TXQs token size must be larger that MTU */ 1610 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1611 1612 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1613 if (size < mtu) { 1614 size = mtu; 1615 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1616 val |= size; 1617 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1618 } 1619 for (queue = 0; queue < txq_number; queue++) { 1620 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1621 1622 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1623 if (size < mtu) { 1624 size = mtu; 1625 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1626 val |= size; 1627 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1628 } 1629 } 1630 } 1631 1632 /* Set unicast address */ 1633 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1634 int queue) 1635 { 1636 unsigned int unicast_reg; 1637 unsigned int tbl_offset; 1638 unsigned int reg_offset; 1639 1640 /* Locate the Unicast table entry */ 1641 last_nibble = (0xf & last_nibble); 1642 1643 /* offset from unicast tbl base */ 1644 tbl_offset = (last_nibble / 4) * 4; 1645 1646 /* offset within the above reg */ 1647 reg_offset = last_nibble % 4; 1648 1649 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1650 1651 if (queue == -1) { 1652 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1653 unicast_reg &= ~(0xff << (8 * reg_offset)); 1654 } else { 1655 unicast_reg &= ~(0xff << (8 * reg_offset)); 1656 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1657 } 1658 1659 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1660 } 1661 1662 /* Set mac address */ 1663 static void mvneta_mac_addr_set(struct mvneta_port *pp, 1664 const unsigned char *addr, int queue) 1665 { 1666 unsigned int mac_h; 1667 unsigned int mac_l; 1668 1669 if (queue != -1) { 1670 mac_l = (addr[4] << 8) | (addr[5]); 1671 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1672 (addr[2] << 8) | (addr[3] << 0); 1673 1674 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1675 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1676 } 1677 1678 /* Accept frames of this address */ 1679 mvneta_set_ucast_addr(pp, addr[5], queue); 1680 } 1681 1682 /* Set the number of packets that will be received before RX interrupt 1683 * will be generated by HW. 1684 */ 1685 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1686 struct mvneta_rx_queue *rxq, u32 value) 1687 { 1688 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1689 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1690 } 1691 1692 /* Set the time delay in usec before RX interrupt will be generated by 1693 * HW. 1694 */ 1695 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1696 struct mvneta_rx_queue *rxq, u32 value) 1697 { 1698 u32 val; 1699 unsigned long clk_rate; 1700 1701 clk_rate = clk_get_rate(pp->clk); 1702 val = (clk_rate / 1000000) * value; 1703 1704 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1705 } 1706 1707 /* Set threshold for TX_DONE pkts coalescing */ 1708 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1709 struct mvneta_tx_queue *txq, u32 value) 1710 { 1711 u32 val; 1712 1713 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1714 1715 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1716 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1717 1718 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1719 } 1720 1721 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1722 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1723 u32 phys_addr, void *virt_addr, 1724 struct mvneta_rx_queue *rxq) 1725 { 1726 int i; 1727 1728 rx_desc->buf_phys_addr = phys_addr; 1729 i = rx_desc - rxq->descs; 1730 rxq->buf_virt_addr[i] = virt_addr; 1731 } 1732 1733 /* Decrement sent descriptors counter */ 1734 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1735 struct mvneta_tx_queue *txq, 1736 int sent_desc) 1737 { 1738 u32 val; 1739 1740 /* Only 255 TX descriptors can be updated at once */ 1741 while (sent_desc > 0xff) { 1742 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1743 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1744 sent_desc = sent_desc - 0xff; 1745 } 1746 1747 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1748 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1749 } 1750 1751 /* Get number of TX descriptors already sent by HW */ 1752 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1753 struct mvneta_tx_queue *txq) 1754 { 1755 u32 val; 1756 int sent_desc; 1757 1758 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1759 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1760 MVNETA_TXQ_SENT_DESC_SHIFT; 1761 1762 return sent_desc; 1763 } 1764 1765 /* Get number of sent descriptors and decrement counter. 1766 * The number of sent descriptors is returned. 1767 */ 1768 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1769 struct mvneta_tx_queue *txq) 1770 { 1771 int sent_desc; 1772 1773 /* Get number of sent descriptors */ 1774 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1775 1776 /* Decrement sent descriptors counter */ 1777 if (sent_desc) 1778 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1779 1780 return sent_desc; 1781 } 1782 1783 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1784 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1785 int ip_hdr_len, int l4_proto) 1786 { 1787 u32 command; 1788 1789 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1790 * G_L4_chk, L4_type; required only for checksum 1791 * calculation 1792 */ 1793 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1794 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1795 1796 if (l3_proto == htons(ETH_P_IP)) 1797 command |= MVNETA_TXD_IP_CSUM; 1798 else 1799 command |= MVNETA_TX_L3_IP6; 1800 1801 if (l4_proto == IPPROTO_TCP) 1802 command |= MVNETA_TX_L4_CSUM_FULL; 1803 else if (l4_proto == IPPROTO_UDP) 1804 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1805 else 1806 command |= MVNETA_TX_L4_CSUM_NOT; 1807 1808 return command; 1809 } 1810 1811 1812 /* Display more error info */ 1813 static void mvneta_rx_error(struct mvneta_port *pp, 1814 struct mvneta_rx_desc *rx_desc) 1815 { 1816 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1817 u32 status = rx_desc->status; 1818 1819 /* update per-cpu counter */ 1820 u64_stats_update_begin(&stats->syncp); 1821 stats->rx_errors++; 1822 u64_stats_update_end(&stats->syncp); 1823 1824 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1825 case MVNETA_RXD_ERR_CRC: 1826 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1827 status, rx_desc->data_size); 1828 break; 1829 case MVNETA_RXD_ERR_OVERRUN: 1830 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1831 status, rx_desc->data_size); 1832 break; 1833 case MVNETA_RXD_ERR_LEN: 1834 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1835 status, rx_desc->data_size); 1836 break; 1837 case MVNETA_RXD_ERR_RESOURCE: 1838 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1839 status, rx_desc->data_size); 1840 break; 1841 } 1842 } 1843 1844 /* Handle RX checksum offload based on the descriptor's status */ 1845 static int mvneta_rx_csum(struct mvneta_port *pp, u32 status) 1846 { 1847 if ((pp->dev->features & NETIF_F_RXCSUM) && 1848 (status & MVNETA_RXD_L3_IP4) && 1849 (status & MVNETA_RXD_L4_CSUM_OK)) 1850 return CHECKSUM_UNNECESSARY; 1851 1852 return CHECKSUM_NONE; 1853 } 1854 1855 /* Return tx queue pointer (find last set bit) according to <cause> returned 1856 * form tx_done reg. <cause> must not be null. The return value is always a 1857 * valid queue for matching the first one found in <cause>. 1858 */ 1859 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1860 u32 cause) 1861 { 1862 int queue = fls(cause) - 1; 1863 1864 return &pp->txqs[queue]; 1865 } 1866 1867 /* Free tx queue skbuffs */ 1868 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1869 struct mvneta_tx_queue *txq, int num, 1870 struct netdev_queue *nq, bool napi) 1871 { 1872 unsigned int bytes_compl = 0, pkts_compl = 0; 1873 struct xdp_frame_bulk bq; 1874 int i; 1875 1876 xdp_frame_bulk_init(&bq); 1877 1878 rcu_read_lock(); /* need for xdp_return_frame_bulk */ 1879 1880 for (i = 0; i < num; i++) { 1881 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index]; 1882 struct mvneta_tx_desc *tx_desc = txq->descs + 1883 txq->txq_get_index; 1884 1885 mvneta_txq_inc_get(txq); 1886 1887 if (buf->type == MVNETA_TYPE_XDP_NDO || 1888 buf->type == MVNETA_TYPE_SKB) 1889 dma_unmap_single(pp->dev->dev.parent, 1890 tx_desc->buf_phys_addr, 1891 tx_desc->data_size, DMA_TO_DEVICE); 1892 if ((buf->type == MVNETA_TYPE_TSO || 1893 buf->type == MVNETA_TYPE_SKB) && buf->skb) { 1894 bytes_compl += buf->skb->len; 1895 pkts_compl++; 1896 dev_kfree_skb_any(buf->skb); 1897 } else if ((buf->type == MVNETA_TYPE_XDP_TX || 1898 buf->type == MVNETA_TYPE_XDP_NDO) && buf->xdpf) { 1899 if (napi && buf->type == MVNETA_TYPE_XDP_TX) 1900 xdp_return_frame_rx_napi(buf->xdpf); 1901 else 1902 xdp_return_frame_bulk(buf->xdpf, &bq); 1903 } 1904 } 1905 xdp_flush_frame_bulk(&bq); 1906 1907 rcu_read_unlock(); 1908 1909 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1910 } 1911 1912 /* Handle end of transmission */ 1913 static void mvneta_txq_done(struct mvneta_port *pp, 1914 struct mvneta_tx_queue *txq) 1915 { 1916 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1917 int tx_done; 1918 1919 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1920 if (!tx_done) 1921 return; 1922 1923 mvneta_txq_bufs_free(pp, txq, tx_done, nq, true); 1924 1925 txq->count -= tx_done; 1926 1927 if (netif_tx_queue_stopped(nq)) { 1928 if (txq->count <= txq->tx_wake_threshold) 1929 netif_tx_wake_queue(nq); 1930 } 1931 } 1932 1933 /* Refill processing for SW buffer management */ 1934 /* Allocate page per descriptor */ 1935 static int mvneta_rx_refill(struct mvneta_port *pp, 1936 struct mvneta_rx_desc *rx_desc, 1937 struct mvneta_rx_queue *rxq, 1938 gfp_t gfp_mask) 1939 { 1940 dma_addr_t phys_addr; 1941 struct page *page; 1942 1943 page = page_pool_alloc_pages(rxq->page_pool, 1944 gfp_mask | __GFP_NOWARN); 1945 if (!page) 1946 return -ENOMEM; 1947 1948 phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction; 1949 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq); 1950 1951 return 0; 1952 } 1953 1954 /* Handle tx checksum */ 1955 static u32 mvneta_skb_tx_csum(struct sk_buff *skb) 1956 { 1957 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1958 int ip_hdr_len = 0; 1959 __be16 l3_proto = vlan_get_protocol(skb); 1960 u8 l4_proto; 1961 1962 if (l3_proto == htons(ETH_P_IP)) { 1963 struct iphdr *ip4h = ip_hdr(skb); 1964 1965 /* Calculate IPv4 checksum and L4 checksum */ 1966 ip_hdr_len = ip4h->ihl; 1967 l4_proto = ip4h->protocol; 1968 } else if (l3_proto == htons(ETH_P_IPV6)) { 1969 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1970 1971 /* Read l4_protocol from one of IPv6 extra headers */ 1972 if (skb_network_header_len(skb) > 0) 1973 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1974 l4_proto = ip6h->nexthdr; 1975 } else 1976 return MVNETA_TX_L4_CSUM_NOT; 1977 1978 return mvneta_txq_desc_csum(skb_network_offset(skb), 1979 l3_proto, ip_hdr_len, l4_proto); 1980 } 1981 1982 return MVNETA_TX_L4_CSUM_NOT; 1983 } 1984 1985 /* Drop packets received by the RXQ and free buffers */ 1986 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1987 struct mvneta_rx_queue *rxq) 1988 { 1989 int rx_done, i; 1990 1991 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1992 if (rx_done) 1993 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1994 1995 if (pp->bm_priv) { 1996 for (i = 0; i < rx_done; i++) { 1997 struct mvneta_rx_desc *rx_desc = 1998 mvneta_rxq_next_desc_get(rxq); 1999 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2000 struct mvneta_bm_pool *bm_pool; 2001 2002 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2003 /* Return dropped buffer to the pool */ 2004 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2005 rx_desc->buf_phys_addr); 2006 } 2007 return; 2008 } 2009 2010 for (i = 0; i < rxq->size; i++) { 2011 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 2012 void *data = rxq->buf_virt_addr[i]; 2013 if (!data || !(rx_desc->buf_phys_addr)) 2014 continue; 2015 2016 page_pool_put_full_page(rxq->page_pool, data, false); 2017 } 2018 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 2019 xdp_rxq_info_unreg(&rxq->xdp_rxq); 2020 page_pool_destroy(rxq->page_pool); 2021 rxq->page_pool = NULL; 2022 } 2023 2024 static void 2025 mvneta_update_stats(struct mvneta_port *pp, 2026 struct mvneta_stats *ps) 2027 { 2028 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2029 2030 u64_stats_update_begin(&stats->syncp); 2031 stats->es.ps.rx_packets += ps->rx_packets; 2032 stats->es.ps.rx_bytes += ps->rx_bytes; 2033 /* xdp */ 2034 stats->es.ps.xdp_redirect += ps->xdp_redirect; 2035 stats->es.ps.xdp_pass += ps->xdp_pass; 2036 stats->es.ps.xdp_drop += ps->xdp_drop; 2037 u64_stats_update_end(&stats->syncp); 2038 } 2039 2040 static inline 2041 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) 2042 { 2043 struct mvneta_rx_desc *rx_desc; 2044 int curr_desc = rxq->first_to_refill; 2045 int i; 2046 2047 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) { 2048 rx_desc = rxq->descs + curr_desc; 2049 if (!(rx_desc->buf_phys_addr)) { 2050 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) { 2051 struct mvneta_pcpu_stats *stats; 2052 2053 pr_err("Can't refill queue %d. Done %d from %d\n", 2054 rxq->id, i, rxq->refill_num); 2055 2056 stats = this_cpu_ptr(pp->stats); 2057 u64_stats_update_begin(&stats->syncp); 2058 stats->es.refill_error++; 2059 u64_stats_update_end(&stats->syncp); 2060 break; 2061 } 2062 } 2063 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc); 2064 } 2065 rxq->refill_num -= i; 2066 rxq->first_to_refill = curr_desc; 2067 2068 return i; 2069 } 2070 2071 static void 2072 mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2073 struct xdp_buff *xdp, int sync_len) 2074 { 2075 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 2076 int i; 2077 2078 if (likely(!xdp_buff_has_frags(xdp))) 2079 goto out; 2080 2081 for (i = 0; i < sinfo->nr_frags; i++) 2082 page_pool_put_full_page(rxq->page_pool, 2083 skb_frag_page(&sinfo->frags[i]), true); 2084 2085 out: 2086 page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data), 2087 sync_len, true); 2088 } 2089 2090 static int 2091 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq, 2092 struct xdp_frame *xdpf, int *nxmit_byte, bool dma_map) 2093 { 2094 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 2095 struct device *dev = pp->dev->dev.parent; 2096 struct mvneta_tx_desc *tx_desc; 2097 int i, num_frames = 1; 2098 struct page *page; 2099 2100 if (unlikely(xdp_frame_has_frags(xdpf))) 2101 num_frames += sinfo->nr_frags; 2102 2103 if (txq->count + num_frames >= txq->size) 2104 return MVNETA_XDP_DROPPED; 2105 2106 for (i = 0; i < num_frames; i++) { 2107 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2108 skb_frag_t *frag = NULL; 2109 int len = xdpf->len; 2110 dma_addr_t dma_addr; 2111 2112 if (unlikely(i)) { /* paged area */ 2113 frag = &sinfo->frags[i - 1]; 2114 len = skb_frag_size(frag); 2115 } 2116 2117 tx_desc = mvneta_txq_next_desc_get(txq); 2118 if (dma_map) { 2119 /* ndo_xdp_xmit */ 2120 void *data; 2121 2122 data = unlikely(frag) ? skb_frag_address(frag) 2123 : xdpf->data; 2124 dma_addr = dma_map_single(dev, data, len, 2125 DMA_TO_DEVICE); 2126 if (dma_mapping_error(dev, dma_addr)) { 2127 mvneta_txq_desc_put(txq); 2128 goto unmap; 2129 } 2130 2131 buf->type = MVNETA_TYPE_XDP_NDO; 2132 } else { 2133 page = unlikely(frag) ? skb_frag_page(frag) 2134 : virt_to_page(xdpf->data); 2135 dma_addr = page_pool_get_dma_addr(page); 2136 if (unlikely(frag)) 2137 dma_addr += skb_frag_off(frag); 2138 else 2139 dma_addr += sizeof(*xdpf) + xdpf->headroom; 2140 dma_sync_single_for_device(dev, dma_addr, len, 2141 DMA_BIDIRECTIONAL); 2142 buf->type = MVNETA_TYPE_XDP_TX; 2143 } 2144 buf->xdpf = unlikely(i) ? NULL : xdpf; 2145 2146 tx_desc->command = unlikely(i) ? 0 : MVNETA_TXD_F_DESC; 2147 tx_desc->buf_phys_addr = dma_addr; 2148 tx_desc->data_size = len; 2149 *nxmit_byte += len; 2150 2151 mvneta_txq_inc_put(txq); 2152 } 2153 /*last descriptor */ 2154 tx_desc->command |= MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2155 2156 txq->pending += num_frames; 2157 txq->count += num_frames; 2158 2159 return MVNETA_XDP_TX; 2160 2161 unmap: 2162 for (i--; i >= 0; i--) { 2163 mvneta_txq_desc_put(txq); 2164 tx_desc = txq->descs + txq->next_desc_to_proc; 2165 dma_unmap_single(dev, tx_desc->buf_phys_addr, 2166 tx_desc->data_size, 2167 DMA_TO_DEVICE); 2168 } 2169 2170 return MVNETA_XDP_DROPPED; 2171 } 2172 2173 static int 2174 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp) 2175 { 2176 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2177 struct mvneta_tx_queue *txq; 2178 struct netdev_queue *nq; 2179 int cpu, nxmit_byte = 0; 2180 struct xdp_frame *xdpf; 2181 u32 ret; 2182 2183 xdpf = xdp_convert_buff_to_frame(xdp); 2184 if (unlikely(!xdpf)) 2185 return MVNETA_XDP_DROPPED; 2186 2187 cpu = smp_processor_id(); 2188 txq = &pp->txqs[cpu % txq_number]; 2189 nq = netdev_get_tx_queue(pp->dev, txq->id); 2190 2191 __netif_tx_lock(nq, cpu); 2192 ret = mvneta_xdp_submit_frame(pp, txq, xdpf, &nxmit_byte, false); 2193 if (ret == MVNETA_XDP_TX) { 2194 u64_stats_update_begin(&stats->syncp); 2195 stats->es.ps.tx_bytes += nxmit_byte; 2196 stats->es.ps.tx_packets++; 2197 stats->es.ps.xdp_tx++; 2198 u64_stats_update_end(&stats->syncp); 2199 2200 mvneta_txq_pend_desc_add(pp, txq, 0); 2201 } else { 2202 u64_stats_update_begin(&stats->syncp); 2203 stats->es.ps.xdp_tx_err++; 2204 u64_stats_update_end(&stats->syncp); 2205 } 2206 __netif_tx_unlock(nq); 2207 2208 return ret; 2209 } 2210 2211 static int 2212 mvneta_xdp_xmit(struct net_device *dev, int num_frame, 2213 struct xdp_frame **frames, u32 flags) 2214 { 2215 struct mvneta_port *pp = netdev_priv(dev); 2216 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2217 int i, nxmit_byte = 0, nxmit = 0; 2218 int cpu = smp_processor_id(); 2219 struct mvneta_tx_queue *txq; 2220 struct netdev_queue *nq; 2221 u32 ret; 2222 2223 if (unlikely(test_bit(__MVNETA_DOWN, &pp->state))) 2224 return -ENETDOWN; 2225 2226 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2227 return -EINVAL; 2228 2229 txq = &pp->txqs[cpu % txq_number]; 2230 nq = netdev_get_tx_queue(pp->dev, txq->id); 2231 2232 __netif_tx_lock(nq, cpu); 2233 for (i = 0; i < num_frame; i++) { 2234 ret = mvneta_xdp_submit_frame(pp, txq, frames[i], &nxmit_byte, 2235 true); 2236 if (ret != MVNETA_XDP_TX) 2237 break; 2238 2239 nxmit++; 2240 } 2241 2242 if (unlikely(flags & XDP_XMIT_FLUSH)) 2243 mvneta_txq_pend_desc_add(pp, txq, 0); 2244 __netif_tx_unlock(nq); 2245 2246 u64_stats_update_begin(&stats->syncp); 2247 stats->es.ps.tx_bytes += nxmit_byte; 2248 stats->es.ps.tx_packets += nxmit; 2249 stats->es.ps.xdp_xmit += nxmit; 2250 stats->es.ps.xdp_xmit_err += num_frame - nxmit; 2251 u64_stats_update_end(&stats->syncp); 2252 2253 return nxmit; 2254 } 2255 2256 static int 2257 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2258 struct bpf_prog *prog, struct xdp_buff *xdp, 2259 u32 frame_sz, struct mvneta_stats *stats) 2260 { 2261 unsigned int len, data_len, sync; 2262 u32 ret, act; 2263 2264 len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2265 data_len = xdp->data_end - xdp->data; 2266 act = bpf_prog_run_xdp(prog, xdp); 2267 2268 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */ 2269 sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2270 sync = max(sync, len); 2271 2272 switch (act) { 2273 case XDP_PASS: 2274 stats->xdp_pass++; 2275 return MVNETA_XDP_PASS; 2276 case XDP_REDIRECT: { 2277 int err; 2278 2279 err = xdp_do_redirect(pp->dev, xdp, prog); 2280 if (unlikely(err)) { 2281 mvneta_xdp_put_buff(pp, rxq, xdp, sync); 2282 ret = MVNETA_XDP_DROPPED; 2283 } else { 2284 ret = MVNETA_XDP_REDIR; 2285 stats->xdp_redirect++; 2286 } 2287 break; 2288 } 2289 case XDP_TX: 2290 ret = mvneta_xdp_xmit_back(pp, xdp); 2291 if (ret != MVNETA_XDP_TX) 2292 mvneta_xdp_put_buff(pp, rxq, xdp, sync); 2293 break; 2294 default: 2295 bpf_warn_invalid_xdp_action(pp->dev, prog, act); 2296 fallthrough; 2297 case XDP_ABORTED: 2298 trace_xdp_exception(pp->dev, prog, act); 2299 fallthrough; 2300 case XDP_DROP: 2301 mvneta_xdp_put_buff(pp, rxq, xdp, sync); 2302 ret = MVNETA_XDP_DROPPED; 2303 stats->xdp_drop++; 2304 break; 2305 } 2306 2307 stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len; 2308 stats->rx_packets++; 2309 2310 return ret; 2311 } 2312 2313 static void 2314 mvneta_swbm_rx_frame(struct mvneta_port *pp, 2315 struct mvneta_rx_desc *rx_desc, 2316 struct mvneta_rx_queue *rxq, 2317 struct xdp_buff *xdp, int *size, 2318 struct page *page) 2319 { 2320 unsigned char *data = page_address(page); 2321 int data_len = -MVNETA_MH_SIZE, len; 2322 struct net_device *dev = pp->dev; 2323 enum dma_data_direction dma_dir; 2324 2325 if (*size > MVNETA_MAX_RX_BUF_SIZE) { 2326 len = MVNETA_MAX_RX_BUF_SIZE; 2327 data_len += len; 2328 } else { 2329 len = *size; 2330 data_len += len - ETH_FCS_LEN; 2331 } 2332 *size = *size - len; 2333 2334 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2335 dma_sync_single_for_cpu(dev->dev.parent, 2336 rx_desc->buf_phys_addr, 2337 len, dma_dir); 2338 2339 rx_desc->buf_phys_addr = 0; 2340 2341 /* Prefetch header */ 2342 prefetch(data); 2343 xdp_buff_clear_frags_flag(xdp); 2344 xdp_prepare_buff(xdp, data, pp->rx_offset_correction + MVNETA_MH_SIZE, 2345 data_len, false); 2346 } 2347 2348 static void 2349 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp, 2350 struct mvneta_rx_desc *rx_desc, 2351 struct mvneta_rx_queue *rxq, 2352 struct xdp_buff *xdp, int *size, 2353 struct page *page) 2354 { 2355 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 2356 struct net_device *dev = pp->dev; 2357 enum dma_data_direction dma_dir; 2358 int data_len, len; 2359 2360 if (*size > MVNETA_MAX_RX_BUF_SIZE) { 2361 len = MVNETA_MAX_RX_BUF_SIZE; 2362 data_len = len; 2363 } else { 2364 len = *size; 2365 data_len = len - ETH_FCS_LEN; 2366 } 2367 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2368 dma_sync_single_for_cpu(dev->dev.parent, 2369 rx_desc->buf_phys_addr, 2370 len, dma_dir); 2371 rx_desc->buf_phys_addr = 0; 2372 2373 if (!xdp_buff_has_frags(xdp)) 2374 sinfo->nr_frags = 0; 2375 2376 if (data_len > 0 && sinfo->nr_frags < MAX_SKB_FRAGS) { 2377 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags++]; 2378 2379 skb_frag_fill_page_desc(frag, page, 2380 pp->rx_offset_correction, data_len); 2381 2382 if (!xdp_buff_has_frags(xdp)) { 2383 sinfo->xdp_frags_size = *size; 2384 xdp_buff_set_frags_flag(xdp); 2385 } 2386 if (page_is_pfmemalloc(page)) 2387 xdp_buff_set_frag_pfmemalloc(xdp); 2388 } else { 2389 page_pool_put_full_page(rxq->page_pool, page, true); 2390 } 2391 *size -= len; 2392 } 2393 2394 static struct sk_buff * 2395 mvneta_swbm_build_skb(struct mvneta_port *pp, struct page_pool *pool, 2396 struct xdp_buff *xdp, u32 desc_status) 2397 { 2398 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 2399 struct sk_buff *skb; 2400 u8 num_frags; 2401 2402 if (unlikely(xdp_buff_has_frags(xdp))) 2403 num_frags = sinfo->nr_frags; 2404 2405 skb = build_skb(xdp->data_hard_start, PAGE_SIZE); 2406 if (!skb) 2407 return ERR_PTR(-ENOMEM); 2408 2409 skb_mark_for_recycle(skb); 2410 2411 skb_reserve(skb, xdp->data - xdp->data_hard_start); 2412 skb_put(skb, xdp->data_end - xdp->data); 2413 skb->ip_summed = mvneta_rx_csum(pp, desc_status); 2414 2415 if (unlikely(xdp_buff_has_frags(xdp))) 2416 xdp_update_skb_shared_info(skb, num_frags, 2417 sinfo->xdp_frags_size, 2418 num_frags * xdp->frame_sz, 2419 xdp_buff_is_frag_pfmemalloc(xdp)); 2420 2421 return skb; 2422 } 2423 2424 /* Main rx processing when using software buffer management */ 2425 static int mvneta_rx_swbm(struct napi_struct *napi, 2426 struct mvneta_port *pp, int budget, 2427 struct mvneta_rx_queue *rxq) 2428 { 2429 int rx_proc = 0, rx_todo, refill, size = 0; 2430 struct net_device *dev = pp->dev; 2431 struct mvneta_stats ps = {}; 2432 struct bpf_prog *xdp_prog; 2433 u32 desc_status, frame_sz; 2434 struct xdp_buff xdp_buf; 2435 2436 xdp_init_buff(&xdp_buf, PAGE_SIZE, &rxq->xdp_rxq); 2437 xdp_buf.data_hard_start = NULL; 2438 2439 /* Get number of received packets */ 2440 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq); 2441 2442 xdp_prog = READ_ONCE(pp->xdp_prog); 2443 2444 /* Fairness NAPI loop */ 2445 while (rx_proc < budget && rx_proc < rx_todo) { 2446 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2447 u32 rx_status, index; 2448 struct sk_buff *skb; 2449 struct page *page; 2450 2451 index = rx_desc - rxq->descs; 2452 page = (struct page *)rxq->buf_virt_addr[index]; 2453 2454 rx_status = rx_desc->status; 2455 rx_proc++; 2456 rxq->refill_num++; 2457 2458 if (rx_status & MVNETA_RXD_FIRST_DESC) { 2459 /* Check errors only for FIRST descriptor */ 2460 if (rx_status & MVNETA_RXD_ERR_SUMMARY) { 2461 mvneta_rx_error(pp, rx_desc); 2462 goto next; 2463 } 2464 2465 size = rx_desc->data_size; 2466 frame_sz = size - ETH_FCS_LEN; 2467 desc_status = rx_status; 2468 2469 mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf, 2470 &size, page); 2471 } else { 2472 if (unlikely(!xdp_buf.data_hard_start)) { 2473 rx_desc->buf_phys_addr = 0; 2474 page_pool_put_full_page(rxq->page_pool, page, 2475 true); 2476 goto next; 2477 } 2478 2479 mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf, 2480 &size, page); 2481 } /* Middle or Last descriptor */ 2482 2483 if (!(rx_status & MVNETA_RXD_LAST_DESC)) 2484 /* no last descriptor this time */ 2485 continue; 2486 2487 if (size) { 2488 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1); 2489 goto next; 2490 } 2491 2492 if (xdp_prog && 2493 mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps)) 2494 goto next; 2495 2496 skb = mvneta_swbm_build_skb(pp, rxq->page_pool, &xdp_buf, desc_status); 2497 if (IS_ERR(skb)) { 2498 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2499 2500 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1); 2501 2502 u64_stats_update_begin(&stats->syncp); 2503 stats->es.skb_alloc_error++; 2504 stats->rx_dropped++; 2505 u64_stats_update_end(&stats->syncp); 2506 2507 goto next; 2508 } 2509 2510 ps.rx_bytes += skb->len; 2511 ps.rx_packets++; 2512 2513 skb->protocol = eth_type_trans(skb, dev); 2514 napi_gro_receive(napi, skb); 2515 next: 2516 xdp_buf.data_hard_start = NULL; 2517 } 2518 2519 if (xdp_buf.data_hard_start) 2520 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1); 2521 2522 if (ps.xdp_redirect) 2523 xdp_do_flush(); 2524 2525 if (ps.rx_packets) 2526 mvneta_update_stats(pp, &ps); 2527 2528 /* return some buffers to hardware queue, one at a time is too slow */ 2529 refill = mvneta_rx_refill_queue(pp, rxq); 2530 2531 /* Update rxq management counters */ 2532 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill); 2533 2534 return ps.rx_packets; 2535 } 2536 2537 /* Main rx processing when using hardware buffer management */ 2538 static int mvneta_rx_hwbm(struct napi_struct *napi, 2539 struct mvneta_port *pp, int rx_todo, 2540 struct mvneta_rx_queue *rxq) 2541 { 2542 struct net_device *dev = pp->dev; 2543 int rx_done; 2544 u32 rcvd_pkts = 0; 2545 u32 rcvd_bytes = 0; 2546 2547 /* Get number of received packets */ 2548 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2549 2550 if (rx_todo > rx_done) 2551 rx_todo = rx_done; 2552 2553 rx_done = 0; 2554 2555 /* Fairness NAPI loop */ 2556 while (rx_done < rx_todo) { 2557 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2558 struct mvneta_bm_pool *bm_pool = NULL; 2559 struct sk_buff *skb; 2560 unsigned char *data; 2561 dma_addr_t phys_addr; 2562 u32 rx_status, frag_size; 2563 int rx_bytes, err; 2564 u8 pool_id; 2565 2566 rx_done++; 2567 rx_status = rx_desc->status; 2568 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2569 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2570 phys_addr = rx_desc->buf_phys_addr; 2571 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2572 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2573 2574 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2575 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2576 err_drop_frame_ret_pool: 2577 /* Return the buffer to the pool */ 2578 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2579 rx_desc->buf_phys_addr); 2580 err_drop_frame: 2581 mvneta_rx_error(pp, rx_desc); 2582 /* leave the descriptor untouched */ 2583 continue; 2584 } 2585 2586 if (rx_bytes <= rx_copybreak) { 2587 /* better copy a small frame and not unmap the DMA region */ 2588 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2589 if (unlikely(!skb)) 2590 goto err_drop_frame_ret_pool; 2591 2592 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev, 2593 rx_desc->buf_phys_addr, 2594 MVNETA_MH_SIZE + NET_SKB_PAD, 2595 rx_bytes, 2596 DMA_FROM_DEVICE); 2597 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 2598 rx_bytes); 2599 2600 skb->protocol = eth_type_trans(skb, dev); 2601 skb->ip_summed = mvneta_rx_csum(pp, rx_status); 2602 napi_gro_receive(napi, skb); 2603 2604 rcvd_pkts++; 2605 rcvd_bytes += rx_bytes; 2606 2607 /* Return the buffer to the pool */ 2608 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2609 rx_desc->buf_phys_addr); 2610 2611 /* leave the descriptor and buffer untouched */ 2612 continue; 2613 } 2614 2615 /* Refill processing */ 2616 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2617 if (err) { 2618 struct mvneta_pcpu_stats *stats; 2619 2620 netdev_err(dev, "Linux processing - Can't refill\n"); 2621 2622 stats = this_cpu_ptr(pp->stats); 2623 u64_stats_update_begin(&stats->syncp); 2624 stats->es.refill_error++; 2625 u64_stats_update_end(&stats->syncp); 2626 2627 goto err_drop_frame_ret_pool; 2628 } 2629 2630 frag_size = bm_pool->hwbm_pool.frag_size; 2631 2632 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2633 2634 /* After refill old buffer has to be unmapped regardless 2635 * the skb is successfully built or not. 2636 */ 2637 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2638 bm_pool->buf_size, DMA_FROM_DEVICE); 2639 if (!skb) 2640 goto err_drop_frame; 2641 2642 rcvd_pkts++; 2643 rcvd_bytes += rx_bytes; 2644 2645 /* Linux processing */ 2646 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2647 skb_put(skb, rx_bytes); 2648 2649 skb->protocol = eth_type_trans(skb, dev); 2650 skb->ip_summed = mvneta_rx_csum(pp, rx_status); 2651 2652 napi_gro_receive(napi, skb); 2653 } 2654 2655 if (rcvd_pkts) { 2656 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2657 2658 u64_stats_update_begin(&stats->syncp); 2659 stats->es.ps.rx_packets += rcvd_pkts; 2660 stats->es.ps.rx_bytes += rcvd_bytes; 2661 u64_stats_update_end(&stats->syncp); 2662 } 2663 2664 /* Update rxq management counters */ 2665 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2666 2667 return rx_done; 2668 } 2669 2670 static void mvneta_free_tso_hdrs(struct mvneta_port *pp, 2671 struct mvneta_tx_queue *txq) 2672 { 2673 struct device *dev = pp->dev->dev.parent; 2674 int i; 2675 2676 for (i = 0; i < MVNETA_MAX_TSO_PAGES; i++) { 2677 if (txq->tso_hdrs[i]) { 2678 dma_free_coherent(dev, MVNETA_TSO_PAGE_SIZE, 2679 txq->tso_hdrs[i], 2680 txq->tso_hdrs_phys[i]); 2681 txq->tso_hdrs[i] = NULL; 2682 } 2683 } 2684 } 2685 2686 static int mvneta_alloc_tso_hdrs(struct mvneta_port *pp, 2687 struct mvneta_tx_queue *txq) 2688 { 2689 struct device *dev = pp->dev->dev.parent; 2690 int i, num; 2691 2692 num = DIV_ROUND_UP(txq->size, MVNETA_TSO_PER_PAGE); 2693 for (i = 0; i < num; i++) { 2694 txq->tso_hdrs[i] = dma_alloc_coherent(dev, MVNETA_TSO_PAGE_SIZE, 2695 &txq->tso_hdrs_phys[i], 2696 GFP_KERNEL); 2697 if (!txq->tso_hdrs[i]) { 2698 mvneta_free_tso_hdrs(pp, txq); 2699 return -ENOMEM; 2700 } 2701 } 2702 2703 return 0; 2704 } 2705 2706 static char *mvneta_get_tso_hdr(struct mvneta_tx_queue *txq, dma_addr_t *dma) 2707 { 2708 int index, offset; 2709 2710 index = txq->txq_put_index / MVNETA_TSO_PER_PAGE; 2711 offset = (txq->txq_put_index % MVNETA_TSO_PER_PAGE) * TSO_HEADER_SIZE; 2712 2713 *dma = txq->tso_hdrs_phys[index] + offset; 2714 2715 return txq->tso_hdrs[index] + offset; 2716 } 2717 2718 static void mvneta_tso_put_hdr(struct sk_buff *skb, struct mvneta_tx_queue *txq, 2719 struct tso_t *tso, int size, bool is_last) 2720 { 2721 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2722 int hdr_len = skb_tcp_all_headers(skb); 2723 struct mvneta_tx_desc *tx_desc; 2724 dma_addr_t hdr_phys; 2725 char *hdr; 2726 2727 hdr = mvneta_get_tso_hdr(txq, &hdr_phys); 2728 tso_build_hdr(skb, hdr, tso, size, is_last); 2729 2730 tx_desc = mvneta_txq_next_desc_get(txq); 2731 tx_desc->data_size = hdr_len; 2732 tx_desc->command = mvneta_skb_tx_csum(skb); 2733 tx_desc->command |= MVNETA_TXD_F_DESC; 2734 tx_desc->buf_phys_addr = hdr_phys; 2735 buf->type = MVNETA_TYPE_TSO; 2736 buf->skb = NULL; 2737 2738 mvneta_txq_inc_put(txq); 2739 } 2740 2741 static inline int 2742 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2743 struct sk_buff *skb, char *data, int size, 2744 bool last_tcp, bool is_last) 2745 { 2746 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2747 struct mvneta_tx_desc *tx_desc; 2748 2749 tx_desc = mvneta_txq_next_desc_get(txq); 2750 tx_desc->data_size = size; 2751 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2752 size, DMA_TO_DEVICE); 2753 if (unlikely(dma_mapping_error(dev->dev.parent, 2754 tx_desc->buf_phys_addr))) { 2755 mvneta_txq_desc_put(txq); 2756 return -ENOMEM; 2757 } 2758 2759 tx_desc->command = 0; 2760 buf->type = MVNETA_TYPE_SKB; 2761 buf->skb = NULL; 2762 2763 if (last_tcp) { 2764 /* last descriptor in the TCP packet */ 2765 tx_desc->command = MVNETA_TXD_L_DESC; 2766 2767 /* last descriptor in SKB */ 2768 if (is_last) 2769 buf->skb = skb; 2770 } 2771 mvneta_txq_inc_put(txq); 2772 return 0; 2773 } 2774 2775 static void mvneta_release_descs(struct mvneta_port *pp, 2776 struct mvneta_tx_queue *txq, 2777 int first, int num) 2778 { 2779 int desc_idx, i; 2780 2781 desc_idx = first + num; 2782 if (desc_idx >= txq->size) 2783 desc_idx -= txq->size; 2784 2785 for (i = num; i >= 0; i--) { 2786 struct mvneta_tx_desc *tx_desc = txq->descs + desc_idx; 2787 struct mvneta_tx_buf *buf = &txq->buf[desc_idx]; 2788 2789 if (buf->type == MVNETA_TYPE_SKB) 2790 dma_unmap_single(pp->dev->dev.parent, 2791 tx_desc->buf_phys_addr, 2792 tx_desc->data_size, 2793 DMA_TO_DEVICE); 2794 2795 mvneta_txq_desc_put(txq); 2796 2797 if (desc_idx == 0) 2798 desc_idx = txq->size; 2799 desc_idx -= 1; 2800 } 2801 } 2802 2803 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2804 struct mvneta_tx_queue *txq) 2805 { 2806 int hdr_len, total_len, data_left; 2807 int first_desc, desc_count = 0; 2808 struct mvneta_port *pp = netdev_priv(dev); 2809 struct tso_t tso; 2810 2811 /* Count needed descriptors */ 2812 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2813 return 0; 2814 2815 if (skb_headlen(skb) < skb_tcp_all_headers(skb)) { 2816 pr_info("*** Is this even possible?\n"); 2817 return 0; 2818 } 2819 2820 first_desc = txq->txq_put_index; 2821 2822 /* Initialize the TSO handler, and prepare the first payload */ 2823 hdr_len = tso_start(skb, &tso); 2824 2825 total_len = skb->len - hdr_len; 2826 while (total_len > 0) { 2827 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2828 total_len -= data_left; 2829 desc_count++; 2830 2831 /* prepare packet headers: MAC + IP + TCP */ 2832 mvneta_tso_put_hdr(skb, txq, &tso, data_left, total_len == 0); 2833 2834 while (data_left > 0) { 2835 int size; 2836 desc_count++; 2837 2838 size = min_t(int, tso.size, data_left); 2839 2840 if (mvneta_tso_put_data(dev, txq, skb, 2841 tso.data, size, 2842 size == data_left, 2843 total_len == 0)) 2844 goto err_release; 2845 data_left -= size; 2846 2847 tso_build_data(skb, &tso, size); 2848 } 2849 } 2850 2851 return desc_count; 2852 2853 err_release: 2854 /* Release all used data descriptors; header descriptors must not 2855 * be DMA-unmapped. 2856 */ 2857 mvneta_release_descs(pp, txq, first_desc, desc_count - 1); 2858 return 0; 2859 } 2860 2861 /* Handle tx fragmentation processing */ 2862 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2863 struct mvneta_tx_queue *txq) 2864 { 2865 struct mvneta_tx_desc *tx_desc; 2866 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2867 int first_desc = txq->txq_put_index; 2868 2869 for (i = 0; i < nr_frags; i++) { 2870 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2871 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2872 void *addr = skb_frag_address(frag); 2873 2874 tx_desc = mvneta_txq_next_desc_get(txq); 2875 tx_desc->data_size = skb_frag_size(frag); 2876 2877 tx_desc->buf_phys_addr = 2878 dma_map_single(pp->dev->dev.parent, addr, 2879 tx_desc->data_size, DMA_TO_DEVICE); 2880 2881 if (dma_mapping_error(pp->dev->dev.parent, 2882 tx_desc->buf_phys_addr)) { 2883 mvneta_txq_desc_put(txq); 2884 goto error; 2885 } 2886 2887 if (i == nr_frags - 1) { 2888 /* Last descriptor */ 2889 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2890 buf->skb = skb; 2891 } else { 2892 /* Descriptor in the middle: Not First, Not Last */ 2893 tx_desc->command = 0; 2894 buf->skb = NULL; 2895 } 2896 buf->type = MVNETA_TYPE_SKB; 2897 mvneta_txq_inc_put(txq); 2898 } 2899 2900 return 0; 2901 2902 error: 2903 /* Release all descriptors that were used to map fragments of 2904 * this packet, as well as the corresponding DMA mappings 2905 */ 2906 mvneta_release_descs(pp, txq, first_desc, i - 1); 2907 return -ENOMEM; 2908 } 2909 2910 /* Main tx processing */ 2911 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2912 { 2913 struct mvneta_port *pp = netdev_priv(dev); 2914 u16 txq_id = skb_get_queue_mapping(skb); 2915 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2916 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2917 struct mvneta_tx_desc *tx_desc; 2918 int len = skb->len; 2919 int frags = 0; 2920 u32 tx_cmd; 2921 2922 if (!netif_running(dev)) 2923 goto out; 2924 2925 if (skb_is_gso(skb)) { 2926 frags = mvneta_tx_tso(skb, dev, txq); 2927 goto out; 2928 } 2929 2930 frags = skb_shinfo(skb)->nr_frags + 1; 2931 2932 /* Get a descriptor for the first part of the packet */ 2933 tx_desc = mvneta_txq_next_desc_get(txq); 2934 2935 tx_cmd = mvneta_skb_tx_csum(skb); 2936 2937 tx_desc->data_size = skb_headlen(skb); 2938 2939 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2940 tx_desc->data_size, 2941 DMA_TO_DEVICE); 2942 if (unlikely(dma_mapping_error(dev->dev.parent, 2943 tx_desc->buf_phys_addr))) { 2944 mvneta_txq_desc_put(txq); 2945 frags = 0; 2946 goto out; 2947 } 2948 2949 buf->type = MVNETA_TYPE_SKB; 2950 if (frags == 1) { 2951 /* First and Last descriptor */ 2952 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2953 tx_desc->command = tx_cmd; 2954 buf->skb = skb; 2955 mvneta_txq_inc_put(txq); 2956 } else { 2957 /* First but not Last */ 2958 tx_cmd |= MVNETA_TXD_F_DESC; 2959 buf->skb = NULL; 2960 mvneta_txq_inc_put(txq); 2961 tx_desc->command = tx_cmd; 2962 /* Continue with other skb fragments */ 2963 if (mvneta_tx_frag_process(pp, skb, txq)) { 2964 dma_unmap_single(dev->dev.parent, 2965 tx_desc->buf_phys_addr, 2966 tx_desc->data_size, 2967 DMA_TO_DEVICE); 2968 mvneta_txq_desc_put(txq); 2969 frags = 0; 2970 goto out; 2971 } 2972 } 2973 2974 out: 2975 if (frags > 0) { 2976 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2977 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2978 2979 netdev_tx_sent_queue(nq, len); 2980 2981 txq->count += frags; 2982 if (txq->count >= txq->tx_stop_threshold) 2983 netif_tx_stop_queue(nq); 2984 2985 if (!netdev_xmit_more() || netif_xmit_stopped(nq) || 2986 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2987 mvneta_txq_pend_desc_add(pp, txq, frags); 2988 else 2989 txq->pending += frags; 2990 2991 u64_stats_update_begin(&stats->syncp); 2992 stats->es.ps.tx_bytes += len; 2993 stats->es.ps.tx_packets++; 2994 u64_stats_update_end(&stats->syncp); 2995 } else { 2996 dev->stats.tx_dropped++; 2997 dev_kfree_skb_any(skb); 2998 } 2999 3000 return NETDEV_TX_OK; 3001 } 3002 3003 3004 /* Free tx resources, when resetting a port */ 3005 static void mvneta_txq_done_force(struct mvneta_port *pp, 3006 struct mvneta_tx_queue *txq) 3007 3008 { 3009 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 3010 int tx_done = txq->count; 3011 3012 mvneta_txq_bufs_free(pp, txq, tx_done, nq, false); 3013 3014 /* reset txq */ 3015 txq->count = 0; 3016 txq->txq_put_index = 0; 3017 txq->txq_get_index = 0; 3018 } 3019 3020 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 3021 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 3022 */ 3023 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 3024 { 3025 struct mvneta_tx_queue *txq; 3026 struct netdev_queue *nq; 3027 int cpu = smp_processor_id(); 3028 3029 while (cause_tx_done) { 3030 txq = mvneta_tx_done_policy(pp, cause_tx_done); 3031 3032 nq = netdev_get_tx_queue(pp->dev, txq->id); 3033 __netif_tx_lock(nq, cpu); 3034 3035 if (txq->count) 3036 mvneta_txq_done(pp, txq); 3037 3038 __netif_tx_unlock(nq); 3039 cause_tx_done &= ~((1 << txq->id)); 3040 } 3041 } 3042 3043 /* Compute crc8 of the specified address, using a unique algorithm , 3044 * according to hw spec, different than generic crc8 algorithm 3045 */ 3046 static int mvneta_addr_crc(unsigned char *addr) 3047 { 3048 int crc = 0; 3049 int i; 3050 3051 for (i = 0; i < ETH_ALEN; i++) { 3052 int j; 3053 3054 crc = (crc ^ addr[i]) << 8; 3055 for (j = 7; j >= 0; j--) { 3056 if (crc & (0x100 << j)) 3057 crc ^= 0x107 << j; 3058 } 3059 } 3060 3061 return crc; 3062 } 3063 3064 /* This method controls the net device special MAC multicast support. 3065 * The Special Multicast Table for MAC addresses supports MAC of the form 3066 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 3067 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 3068 * Table entries in the DA-Filter table. This method set the Special 3069 * Multicast Table appropriate entry. 3070 */ 3071 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 3072 unsigned char last_byte, 3073 int queue) 3074 { 3075 unsigned int smc_table_reg; 3076 unsigned int tbl_offset; 3077 unsigned int reg_offset; 3078 3079 /* Register offset from SMC table base */ 3080 tbl_offset = (last_byte / 4); 3081 /* Entry offset within the above reg */ 3082 reg_offset = last_byte % 4; 3083 3084 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 3085 + tbl_offset * 4)); 3086 3087 if (queue == -1) 3088 smc_table_reg &= ~(0xff << (8 * reg_offset)); 3089 else { 3090 smc_table_reg &= ~(0xff << (8 * reg_offset)); 3091 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 3092 } 3093 3094 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 3095 smc_table_reg); 3096 } 3097 3098 /* This method controls the network device Other MAC multicast support. 3099 * The Other Multicast Table is used for multicast of another type. 3100 * A CRC-8 is used as an index to the Other Multicast Table entries 3101 * in the DA-Filter table. 3102 * The method gets the CRC-8 value from the calling routine and 3103 * sets the Other Multicast Table appropriate entry according to the 3104 * specified CRC-8 . 3105 */ 3106 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 3107 unsigned char crc8, 3108 int queue) 3109 { 3110 unsigned int omc_table_reg; 3111 unsigned int tbl_offset; 3112 unsigned int reg_offset; 3113 3114 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 3115 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 3116 3117 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 3118 3119 if (queue == -1) { 3120 /* Clear accepts frame bit at specified Other DA table entry */ 3121 omc_table_reg &= ~(0xff << (8 * reg_offset)); 3122 } else { 3123 omc_table_reg &= ~(0xff << (8 * reg_offset)); 3124 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 3125 } 3126 3127 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 3128 } 3129 3130 /* The network device supports multicast using two tables: 3131 * 1) Special Multicast Table for MAC addresses of the form 3132 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 3133 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 3134 * Table entries in the DA-Filter table. 3135 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 3136 * is used as an index to the Other Multicast Table entries in the 3137 * DA-Filter table. 3138 */ 3139 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 3140 int queue) 3141 { 3142 unsigned char crc_result = 0; 3143 3144 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 3145 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 3146 return 0; 3147 } 3148 3149 crc_result = mvneta_addr_crc(p_addr); 3150 if (queue == -1) { 3151 if (pp->mcast_count[crc_result] == 0) { 3152 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 3153 crc_result); 3154 return -EINVAL; 3155 } 3156 3157 pp->mcast_count[crc_result]--; 3158 if (pp->mcast_count[crc_result] != 0) { 3159 netdev_info(pp->dev, 3160 "After delete there are %d valid Mcast for crc8=0x%02x\n", 3161 pp->mcast_count[crc_result], crc_result); 3162 return -EINVAL; 3163 } 3164 } else 3165 pp->mcast_count[crc_result]++; 3166 3167 mvneta_set_other_mcast_addr(pp, crc_result, queue); 3168 3169 return 0; 3170 } 3171 3172 /* Configure Fitering mode of Ethernet port */ 3173 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 3174 int is_promisc) 3175 { 3176 u32 port_cfg_reg, val; 3177 3178 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 3179 3180 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 3181 3182 /* Set / Clear UPM bit in port configuration register */ 3183 if (is_promisc) { 3184 /* Accept all Unicast addresses */ 3185 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 3186 val |= MVNETA_FORCE_UNI; 3187 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 3188 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 3189 } else { 3190 /* Reject all Unicast addresses */ 3191 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 3192 val &= ~MVNETA_FORCE_UNI; 3193 } 3194 3195 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 3196 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 3197 } 3198 3199 /* register unicast and multicast addresses */ 3200 static void mvneta_set_rx_mode(struct net_device *dev) 3201 { 3202 struct mvneta_port *pp = netdev_priv(dev); 3203 struct netdev_hw_addr *ha; 3204 3205 if (dev->flags & IFF_PROMISC) { 3206 /* Accept all: Multicast + Unicast */ 3207 mvneta_rx_unicast_promisc_set(pp, 1); 3208 mvneta_set_ucast_table(pp, pp->rxq_def); 3209 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3210 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3211 } else { 3212 /* Accept single Unicast */ 3213 mvneta_rx_unicast_promisc_set(pp, 0); 3214 mvneta_set_ucast_table(pp, -1); 3215 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 3216 3217 if (dev->flags & IFF_ALLMULTI) { 3218 /* Accept all multicast */ 3219 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3220 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3221 } else { 3222 /* Accept only initialized multicast */ 3223 mvneta_set_special_mcast_table(pp, -1); 3224 mvneta_set_other_mcast_table(pp, -1); 3225 3226 if (!netdev_mc_empty(dev)) { 3227 netdev_for_each_mc_addr(ha, dev) { 3228 mvneta_mcast_addr_set(pp, ha->addr, 3229 pp->rxq_def); 3230 } 3231 } 3232 } 3233 } 3234 } 3235 3236 /* Interrupt handling - the callback for request_irq() */ 3237 static irqreturn_t mvneta_isr(int irq, void *dev_id) 3238 { 3239 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 3240 3241 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 3242 napi_schedule(&pp->napi); 3243 3244 return IRQ_HANDLED; 3245 } 3246 3247 /* Interrupt handling - the callback for request_percpu_irq() */ 3248 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 3249 { 3250 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 3251 3252 disable_percpu_irq(port->pp->dev->irq); 3253 napi_schedule(&port->napi); 3254 3255 return IRQ_HANDLED; 3256 } 3257 3258 static void mvneta_link_change(struct mvneta_port *pp) 3259 { 3260 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3261 3262 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP)); 3263 } 3264 3265 /* NAPI handler 3266 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 3267 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 3268 * Bits 8 -15 of the cause Rx Tx register indicate that are received 3269 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 3270 * Each CPU has its own causeRxTx register 3271 */ 3272 static int mvneta_poll(struct napi_struct *napi, int budget) 3273 { 3274 int rx_done = 0; 3275 u32 cause_rx_tx; 3276 int rx_queue; 3277 struct mvneta_port *pp = netdev_priv(napi->dev); 3278 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 3279 3280 if (!netif_running(pp->dev)) { 3281 napi_complete(napi); 3282 return rx_done; 3283 } 3284 3285 /* Read cause register */ 3286 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 3287 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 3288 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 3289 3290 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 3291 3292 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE | 3293 MVNETA_CAUSE_LINK_CHANGE)) 3294 mvneta_link_change(pp); 3295 } 3296 3297 /* Release Tx descriptors */ 3298 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 3299 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 3300 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 3301 } 3302 3303 /* For the case where the last mvneta_poll did not process all 3304 * RX packets 3305 */ 3306 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 3307 port->cause_rx_tx; 3308 3309 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 3310 if (rx_queue) { 3311 rx_queue = rx_queue - 1; 3312 if (pp->bm_priv) 3313 rx_done = mvneta_rx_hwbm(napi, pp, budget, 3314 &pp->rxqs[rx_queue]); 3315 else 3316 rx_done = mvneta_rx_swbm(napi, pp, budget, 3317 &pp->rxqs[rx_queue]); 3318 } 3319 3320 if (rx_done < budget) { 3321 cause_rx_tx = 0; 3322 napi_complete_done(napi, rx_done); 3323 3324 if (pp->neta_armada3700) { 3325 unsigned long flags; 3326 3327 local_irq_save(flags); 3328 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 3329 MVNETA_RX_INTR_MASK(rxq_number) | 3330 MVNETA_TX_INTR_MASK(txq_number) | 3331 MVNETA_MISCINTR_INTR_MASK); 3332 local_irq_restore(flags); 3333 } else { 3334 enable_percpu_irq(pp->dev->irq, 0); 3335 } 3336 } 3337 3338 if (pp->neta_armada3700) 3339 pp->cause_rx_tx = cause_rx_tx; 3340 else 3341 port->cause_rx_tx = cause_rx_tx; 3342 3343 return rx_done; 3344 } 3345 3346 static int mvneta_create_page_pool(struct mvneta_port *pp, 3347 struct mvneta_rx_queue *rxq, int size) 3348 { 3349 struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog); 3350 struct page_pool_params pp_params = { 3351 .order = 0, 3352 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 3353 .pool_size = size, 3354 .nid = NUMA_NO_NODE, 3355 .dev = pp->dev->dev.parent, 3356 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 3357 .offset = pp->rx_offset_correction, 3358 .max_len = MVNETA_MAX_RX_BUF_SIZE, 3359 }; 3360 int err; 3361 3362 rxq->page_pool = page_pool_create(&pp_params); 3363 if (IS_ERR(rxq->page_pool)) { 3364 err = PTR_ERR(rxq->page_pool); 3365 rxq->page_pool = NULL; 3366 return err; 3367 } 3368 3369 err = __xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id, 0, 3370 PAGE_SIZE); 3371 if (err < 0) 3372 goto err_free_pp; 3373 3374 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 3375 rxq->page_pool); 3376 if (err) 3377 goto err_unregister_rxq; 3378 3379 return 0; 3380 3381 err_unregister_rxq: 3382 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3383 err_free_pp: 3384 page_pool_destroy(rxq->page_pool); 3385 rxq->page_pool = NULL; 3386 return err; 3387 } 3388 3389 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 3390 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 3391 int num) 3392 { 3393 int i, err; 3394 3395 err = mvneta_create_page_pool(pp, rxq, num); 3396 if (err < 0) 3397 return err; 3398 3399 for (i = 0; i < num; i++) { 3400 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 3401 if (mvneta_rx_refill(pp, rxq->descs + i, rxq, 3402 GFP_KERNEL) != 0) { 3403 netdev_err(pp->dev, 3404 "%s:rxq %d, %d of %d buffs filled\n", 3405 __func__, rxq->id, i, num); 3406 break; 3407 } 3408 } 3409 3410 /* Add this number of RX descriptors as non occupied (ready to 3411 * get packets) 3412 */ 3413 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 3414 3415 return i; 3416 } 3417 3418 /* Free all packets pending transmit from all TXQs and reset TX port */ 3419 static void mvneta_tx_reset(struct mvneta_port *pp) 3420 { 3421 int queue; 3422 3423 /* free the skb's in the tx ring */ 3424 for (queue = 0; queue < txq_number; queue++) 3425 mvneta_txq_done_force(pp, &pp->txqs[queue]); 3426 3427 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 3428 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 3429 } 3430 3431 static void mvneta_rx_reset(struct mvneta_port *pp) 3432 { 3433 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 3434 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 3435 } 3436 3437 /* Rx/Tx queue initialization/cleanup methods */ 3438 3439 static int mvneta_rxq_sw_init(struct mvneta_port *pp, 3440 struct mvneta_rx_queue *rxq) 3441 { 3442 rxq->size = pp->rx_ring_size; 3443 3444 /* Allocate memory for RX descriptors */ 3445 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3446 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3447 &rxq->descs_phys, GFP_KERNEL); 3448 if (!rxq->descs) 3449 return -ENOMEM; 3450 3451 rxq->last_desc = rxq->size - 1; 3452 3453 return 0; 3454 } 3455 3456 static void mvneta_rxq_hw_init(struct mvneta_port *pp, 3457 struct mvneta_rx_queue *rxq) 3458 { 3459 /* Set Rx descriptors queue starting address */ 3460 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 3461 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 3462 3463 /* Set coalescing pkts and time */ 3464 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3465 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3466 3467 if (!pp->bm_priv) { 3468 /* Set Offset */ 3469 mvneta_rxq_offset_set(pp, rxq, 0); 3470 mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ? 3471 MVNETA_MAX_RX_BUF_SIZE : 3472 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 3473 mvneta_rxq_bm_disable(pp, rxq); 3474 mvneta_rxq_fill(pp, rxq, rxq->size); 3475 } else { 3476 /* Set Offset */ 3477 mvneta_rxq_offset_set(pp, rxq, 3478 NET_SKB_PAD - pp->rx_offset_correction); 3479 3480 mvneta_rxq_bm_enable(pp, rxq); 3481 /* Fill RXQ with buffers from RX pool */ 3482 mvneta_rxq_long_pool_set(pp, rxq); 3483 mvneta_rxq_short_pool_set(pp, rxq); 3484 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 3485 } 3486 } 3487 3488 /* Create a specified RX queue */ 3489 static int mvneta_rxq_init(struct mvneta_port *pp, 3490 struct mvneta_rx_queue *rxq) 3491 3492 { 3493 int ret; 3494 3495 ret = mvneta_rxq_sw_init(pp, rxq); 3496 if (ret < 0) 3497 return ret; 3498 3499 mvneta_rxq_hw_init(pp, rxq); 3500 3501 return 0; 3502 } 3503 3504 /* Cleanup Rx queue */ 3505 static void mvneta_rxq_deinit(struct mvneta_port *pp, 3506 struct mvneta_rx_queue *rxq) 3507 { 3508 mvneta_rxq_drop_pkts(pp, rxq); 3509 3510 if (rxq->descs) 3511 dma_free_coherent(pp->dev->dev.parent, 3512 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3513 rxq->descs, 3514 rxq->descs_phys); 3515 3516 rxq->descs = NULL; 3517 rxq->last_desc = 0; 3518 rxq->next_desc_to_proc = 0; 3519 rxq->descs_phys = 0; 3520 rxq->first_to_refill = 0; 3521 rxq->refill_num = 0; 3522 } 3523 3524 static int mvneta_txq_sw_init(struct mvneta_port *pp, 3525 struct mvneta_tx_queue *txq) 3526 { 3527 int cpu, err; 3528 3529 txq->size = pp->tx_ring_size; 3530 3531 /* A queue must always have room for at least one skb. 3532 * Therefore, stop the queue when the free entries reaches 3533 * the maximum number of descriptors per skb. 3534 */ 3535 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 3536 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 3537 3538 /* Allocate memory for TX descriptors */ 3539 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3540 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3541 &txq->descs_phys, GFP_KERNEL); 3542 if (!txq->descs) 3543 return -ENOMEM; 3544 3545 txq->last_desc = txq->size - 1; 3546 3547 txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL); 3548 if (!txq->buf) 3549 return -ENOMEM; 3550 3551 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 3552 err = mvneta_alloc_tso_hdrs(pp, txq); 3553 if (err) 3554 return err; 3555 3556 /* Setup XPS mapping */ 3557 if (pp->neta_armada3700) 3558 cpu = 0; 3559 else if (txq_number > 1) 3560 cpu = txq->id % num_present_cpus(); 3561 else 3562 cpu = pp->rxq_def % num_present_cpus(); 3563 cpumask_set_cpu(cpu, &txq->affinity_mask); 3564 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 3565 3566 return 0; 3567 } 3568 3569 static void mvneta_txq_hw_init(struct mvneta_port *pp, 3570 struct mvneta_tx_queue *txq) 3571 { 3572 /* Set maximum bandwidth for enabled TXQs */ 3573 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 3574 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 3575 3576 /* Set Tx descriptors queue starting address */ 3577 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 3578 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 3579 3580 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3581 } 3582 3583 /* Create and initialize a tx queue */ 3584 static int mvneta_txq_init(struct mvneta_port *pp, 3585 struct mvneta_tx_queue *txq) 3586 { 3587 int ret; 3588 3589 ret = mvneta_txq_sw_init(pp, txq); 3590 if (ret < 0) 3591 return ret; 3592 3593 mvneta_txq_hw_init(pp, txq); 3594 3595 return 0; 3596 } 3597 3598 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 3599 static void mvneta_txq_sw_deinit(struct mvneta_port *pp, 3600 struct mvneta_tx_queue *txq) 3601 { 3602 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 3603 3604 kfree(txq->buf); 3605 3606 mvneta_free_tso_hdrs(pp, txq); 3607 if (txq->descs) 3608 dma_free_coherent(pp->dev->dev.parent, 3609 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3610 txq->descs, txq->descs_phys); 3611 3612 netdev_tx_reset_queue(nq); 3613 3614 txq->buf = NULL; 3615 txq->descs = NULL; 3616 txq->last_desc = 0; 3617 txq->next_desc_to_proc = 0; 3618 txq->descs_phys = 0; 3619 } 3620 3621 static void mvneta_txq_hw_deinit(struct mvneta_port *pp, 3622 struct mvneta_tx_queue *txq) 3623 { 3624 /* Set minimum bandwidth for disabled TXQs */ 3625 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 3626 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 3627 3628 /* Set Tx descriptors queue starting address and size */ 3629 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 3630 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 3631 } 3632 3633 static void mvneta_txq_deinit(struct mvneta_port *pp, 3634 struct mvneta_tx_queue *txq) 3635 { 3636 mvneta_txq_sw_deinit(pp, txq); 3637 mvneta_txq_hw_deinit(pp, txq); 3638 } 3639 3640 /* Cleanup all Tx queues */ 3641 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 3642 { 3643 int queue; 3644 3645 for (queue = 0; queue < txq_number; queue++) 3646 mvneta_txq_deinit(pp, &pp->txqs[queue]); 3647 } 3648 3649 /* Cleanup all Rx queues */ 3650 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 3651 { 3652 int queue; 3653 3654 for (queue = 0; queue < rxq_number; queue++) 3655 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 3656 } 3657 3658 3659 /* Init all Rx queues */ 3660 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3661 { 3662 int queue; 3663 3664 for (queue = 0; queue < rxq_number; queue++) { 3665 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3666 3667 if (err) { 3668 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3669 __func__, queue); 3670 mvneta_cleanup_rxqs(pp); 3671 return err; 3672 } 3673 } 3674 3675 return 0; 3676 } 3677 3678 /* Init all tx queues */ 3679 static int mvneta_setup_txqs(struct mvneta_port *pp) 3680 { 3681 int queue; 3682 3683 for (queue = 0; queue < txq_number; queue++) { 3684 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3685 if (err) { 3686 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3687 __func__, queue); 3688 mvneta_cleanup_txqs(pp); 3689 return err; 3690 } 3691 } 3692 3693 return 0; 3694 } 3695 3696 static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface) 3697 { 3698 int ret; 3699 3700 ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface); 3701 if (ret) 3702 return ret; 3703 3704 return phy_power_on(pp->comphy); 3705 } 3706 3707 static int mvneta_config_interface(struct mvneta_port *pp, 3708 phy_interface_t interface) 3709 { 3710 int ret = 0; 3711 3712 if (pp->comphy) { 3713 if (interface == PHY_INTERFACE_MODE_SGMII || 3714 interface == PHY_INTERFACE_MODE_1000BASEX || 3715 interface == PHY_INTERFACE_MODE_2500BASEX) { 3716 ret = mvneta_comphy_init(pp, interface); 3717 } 3718 } else { 3719 switch (interface) { 3720 case PHY_INTERFACE_MODE_QSGMII: 3721 mvreg_write(pp, MVNETA_SERDES_CFG, 3722 MVNETA_QSGMII_SERDES_PROTO); 3723 break; 3724 3725 case PHY_INTERFACE_MODE_SGMII: 3726 case PHY_INTERFACE_MODE_1000BASEX: 3727 mvreg_write(pp, MVNETA_SERDES_CFG, 3728 MVNETA_SGMII_SERDES_PROTO); 3729 break; 3730 3731 case PHY_INTERFACE_MODE_2500BASEX: 3732 mvreg_write(pp, MVNETA_SERDES_CFG, 3733 MVNETA_HSGMII_SERDES_PROTO); 3734 break; 3735 default: 3736 break; 3737 } 3738 } 3739 3740 pp->phy_interface = interface; 3741 3742 return ret; 3743 } 3744 3745 static void mvneta_start_dev(struct mvneta_port *pp) 3746 { 3747 int cpu; 3748 3749 WARN_ON(mvneta_config_interface(pp, pp->phy_interface)); 3750 3751 mvneta_max_rx_size_set(pp, pp->pkt_size); 3752 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3753 3754 /* start the Rx/Tx activity */ 3755 mvneta_port_enable(pp); 3756 3757 if (!pp->neta_armada3700) { 3758 /* Enable polling on the port */ 3759 for_each_online_cpu(cpu) { 3760 struct mvneta_pcpu_port *port = 3761 per_cpu_ptr(pp->ports, cpu); 3762 3763 napi_enable(&port->napi); 3764 } 3765 } else { 3766 napi_enable(&pp->napi); 3767 } 3768 3769 /* Unmask interrupts. It has to be done from each CPU */ 3770 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3771 3772 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3773 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3774 MVNETA_CAUSE_LINK_CHANGE); 3775 3776 phylink_start(pp->phylink); 3777 3778 /* We may have called phylink_speed_down before */ 3779 phylink_speed_up(pp->phylink); 3780 3781 netif_tx_start_all_queues(pp->dev); 3782 3783 clear_bit(__MVNETA_DOWN, &pp->state); 3784 } 3785 3786 static void mvneta_stop_dev(struct mvneta_port *pp) 3787 { 3788 unsigned int cpu; 3789 3790 set_bit(__MVNETA_DOWN, &pp->state); 3791 3792 if (device_may_wakeup(&pp->dev->dev)) 3793 phylink_speed_down(pp->phylink, false); 3794 3795 phylink_stop(pp->phylink); 3796 3797 if (!pp->neta_armada3700) { 3798 for_each_online_cpu(cpu) { 3799 struct mvneta_pcpu_port *port = 3800 per_cpu_ptr(pp->ports, cpu); 3801 3802 napi_disable(&port->napi); 3803 } 3804 } else { 3805 napi_disable(&pp->napi); 3806 } 3807 3808 netif_carrier_off(pp->dev); 3809 3810 mvneta_port_down(pp); 3811 netif_tx_stop_all_queues(pp->dev); 3812 3813 /* Stop the port activity */ 3814 mvneta_port_disable(pp); 3815 3816 /* Clear all ethernet port interrupts */ 3817 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3818 3819 /* Mask all ethernet port interrupts */ 3820 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3821 3822 mvneta_tx_reset(pp); 3823 mvneta_rx_reset(pp); 3824 3825 WARN_ON(phy_power_off(pp->comphy)); 3826 } 3827 3828 static void mvneta_percpu_enable(void *arg) 3829 { 3830 struct mvneta_port *pp = arg; 3831 3832 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3833 } 3834 3835 static void mvneta_percpu_disable(void *arg) 3836 { 3837 struct mvneta_port *pp = arg; 3838 3839 disable_percpu_irq(pp->dev->irq); 3840 } 3841 3842 /* Change the device mtu */ 3843 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3844 { 3845 struct mvneta_port *pp = netdev_priv(dev); 3846 struct bpf_prog *prog = pp->xdp_prog; 3847 int ret; 3848 3849 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3850 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3851 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3852 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3853 } 3854 3855 if (prog && !prog->aux->xdp_has_frags && 3856 mtu > MVNETA_MAX_RX_BUF_SIZE) { 3857 netdev_info(dev, "Illegal MTU %d for XDP prog without frags\n", 3858 mtu); 3859 3860 return -EINVAL; 3861 } 3862 3863 dev->mtu = mtu; 3864 3865 if (!netif_running(dev)) { 3866 if (pp->bm_priv) 3867 mvneta_bm_update_mtu(pp, mtu); 3868 3869 netdev_update_features(dev); 3870 return 0; 3871 } 3872 3873 /* The interface is running, so we have to force a 3874 * reallocation of the queues 3875 */ 3876 mvneta_stop_dev(pp); 3877 on_each_cpu(mvneta_percpu_disable, pp, true); 3878 3879 mvneta_cleanup_txqs(pp); 3880 mvneta_cleanup_rxqs(pp); 3881 3882 if (pp->bm_priv) 3883 mvneta_bm_update_mtu(pp, mtu); 3884 3885 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3886 3887 ret = mvneta_setup_rxqs(pp); 3888 if (ret) { 3889 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3890 return ret; 3891 } 3892 3893 ret = mvneta_setup_txqs(pp); 3894 if (ret) { 3895 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3896 return ret; 3897 } 3898 3899 on_each_cpu(mvneta_percpu_enable, pp, true); 3900 mvneta_start_dev(pp); 3901 3902 netdev_update_features(dev); 3903 3904 return 0; 3905 } 3906 3907 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3908 netdev_features_t features) 3909 { 3910 struct mvneta_port *pp = netdev_priv(dev); 3911 3912 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3913 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3914 netdev_info(dev, 3915 "Disable IP checksum for MTU greater than %dB\n", 3916 pp->tx_csum_limit); 3917 } 3918 3919 return features; 3920 } 3921 3922 /* Get mac address */ 3923 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3924 { 3925 u32 mac_addr_l, mac_addr_h; 3926 3927 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3928 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3929 addr[0] = (mac_addr_h >> 24) & 0xFF; 3930 addr[1] = (mac_addr_h >> 16) & 0xFF; 3931 addr[2] = (mac_addr_h >> 8) & 0xFF; 3932 addr[3] = mac_addr_h & 0xFF; 3933 addr[4] = (mac_addr_l >> 8) & 0xFF; 3934 addr[5] = mac_addr_l & 0xFF; 3935 } 3936 3937 /* Handle setting mac address */ 3938 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3939 { 3940 struct mvneta_port *pp = netdev_priv(dev); 3941 struct sockaddr *sockaddr = addr; 3942 int ret; 3943 3944 ret = eth_prepare_mac_addr_change(dev, addr); 3945 if (ret < 0) 3946 return ret; 3947 /* Remove previous address table entry */ 3948 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3949 3950 /* Set new addr in hw */ 3951 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3952 3953 eth_commit_mac_addr_change(dev, addr); 3954 return 0; 3955 } 3956 3957 static struct mvneta_port *mvneta_pcs_to_port(struct phylink_pcs *pcs) 3958 { 3959 return container_of(pcs, struct mvneta_port, phylink_pcs); 3960 } 3961 3962 static int mvneta_pcs_validate(struct phylink_pcs *pcs, 3963 unsigned long *supported, 3964 const struct phylink_link_state *state) 3965 { 3966 /* We only support QSGMII, SGMII, 802.3z and RGMII modes. 3967 * When in 802.3z mode, we must have AN enabled: 3968 * "Bit 2 Field InBandAnEn In-band Auto-Negotiation enable. ... 3969 * When <PortType> = 1 (1000BASE-X) this field must be set to 1." 3970 */ 3971 if (phy_interface_mode_is_8023z(state->interface) && 3972 !phylink_test(state->advertising, Autoneg)) 3973 return -EINVAL; 3974 3975 return 0; 3976 } 3977 3978 static void mvneta_pcs_get_state(struct phylink_pcs *pcs, 3979 struct phylink_link_state *state) 3980 { 3981 struct mvneta_port *pp = mvneta_pcs_to_port(pcs); 3982 u32 gmac_stat; 3983 3984 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3985 3986 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 3987 state->speed = 3988 state->interface == PHY_INTERFACE_MODE_2500BASEX ? 3989 SPEED_2500 : SPEED_1000; 3990 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 3991 state->speed = SPEED_100; 3992 else 3993 state->speed = SPEED_10; 3994 3995 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE); 3996 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 3997 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 3998 3999 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE) 4000 state->pause |= MLO_PAUSE_RX; 4001 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE) 4002 state->pause |= MLO_PAUSE_TX; 4003 } 4004 4005 static int mvneta_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode, 4006 phy_interface_t interface, 4007 const unsigned long *advertising, 4008 bool permit_pause_to_mac) 4009 { 4010 struct mvneta_port *pp = mvneta_pcs_to_port(pcs); 4011 u32 mask, val, an, old_an, changed; 4012 4013 mask = MVNETA_GMAC_INBAND_AN_ENABLE | 4014 MVNETA_GMAC_INBAND_RESTART_AN | 4015 MVNETA_GMAC_AN_SPEED_EN | 4016 MVNETA_GMAC_AN_FLOW_CTRL_EN | 4017 MVNETA_GMAC_AN_DUPLEX_EN; 4018 4019 if (neg_mode == PHYLINK_PCS_NEG_INBAND_ENABLED) { 4020 mask |= MVNETA_GMAC_CONFIG_MII_SPEED | 4021 MVNETA_GMAC_CONFIG_GMII_SPEED | 4022 MVNETA_GMAC_CONFIG_FULL_DUPLEX; 4023 val = MVNETA_GMAC_INBAND_AN_ENABLE; 4024 4025 if (interface == PHY_INTERFACE_MODE_SGMII) { 4026 /* SGMII mode receives the speed and duplex from PHY */ 4027 val |= MVNETA_GMAC_AN_SPEED_EN | 4028 MVNETA_GMAC_AN_DUPLEX_EN; 4029 } else { 4030 /* 802.3z mode has fixed speed and duplex */ 4031 val |= MVNETA_GMAC_CONFIG_GMII_SPEED | 4032 MVNETA_GMAC_CONFIG_FULL_DUPLEX; 4033 4034 /* The FLOW_CTRL_EN bit selects either the hardware 4035 * automatically or the CONFIG_FLOW_CTRL manually 4036 * controls the GMAC pause mode. 4037 */ 4038 if (permit_pause_to_mac) 4039 val |= MVNETA_GMAC_AN_FLOW_CTRL_EN; 4040 4041 /* Update the advertisement bits */ 4042 mask |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; 4043 if (phylink_test(advertising, Pause)) 4044 val |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; 4045 } 4046 } else { 4047 /* Phy or fixed speed - disable in-band AN modes */ 4048 val = 0; 4049 } 4050 4051 old_an = an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4052 an = (an & ~mask) | val; 4053 changed = old_an ^ an; 4054 if (changed) 4055 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, an); 4056 4057 /* We are only interested in the advertisement bits changing */ 4058 return !!(changed & MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL); 4059 } 4060 4061 static void mvneta_pcs_an_restart(struct phylink_pcs *pcs) 4062 { 4063 struct mvneta_port *pp = mvneta_pcs_to_port(pcs); 4064 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4065 4066 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 4067 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN); 4068 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 4069 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN); 4070 } 4071 4072 static const struct phylink_pcs_ops mvneta_phylink_pcs_ops = { 4073 .pcs_validate = mvneta_pcs_validate, 4074 .pcs_get_state = mvneta_pcs_get_state, 4075 .pcs_config = mvneta_pcs_config, 4076 .pcs_an_restart = mvneta_pcs_an_restart, 4077 }; 4078 4079 static struct phylink_pcs *mvneta_mac_select_pcs(struct phylink_config *config, 4080 phy_interface_t interface) 4081 { 4082 struct net_device *ndev = to_net_dev(config->dev); 4083 struct mvneta_port *pp = netdev_priv(ndev); 4084 4085 return &pp->phylink_pcs; 4086 } 4087 4088 static int mvneta_mac_prepare(struct phylink_config *config, unsigned int mode, 4089 phy_interface_t interface) 4090 { 4091 struct net_device *ndev = to_net_dev(config->dev); 4092 struct mvneta_port *pp = netdev_priv(ndev); 4093 u32 val; 4094 4095 if (pp->phy_interface != interface || 4096 phylink_autoneg_inband(mode)) { 4097 /* Force the link down when changing the interface or if in 4098 * in-band mode. According to Armada 370 documentation, we 4099 * can only change the port mode and in-band enable when the 4100 * link is down. 4101 */ 4102 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4103 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 4104 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 4105 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4106 } 4107 4108 if (pp->phy_interface != interface) 4109 WARN_ON(phy_power_off(pp->comphy)); 4110 4111 /* Enable the 1ms clock */ 4112 if (phylink_autoneg_inband(mode)) { 4113 unsigned long rate = clk_get_rate(pp->clk); 4114 4115 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, 4116 MVNETA_GMAC_1MS_CLOCK_ENABLE | (rate / 1000)); 4117 } 4118 4119 return 0; 4120 } 4121 4122 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode, 4123 const struct phylink_link_state *state) 4124 { 4125 struct net_device *ndev = to_net_dev(config->dev); 4126 struct mvneta_port *pp = netdev_priv(ndev); 4127 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 4128 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 4129 u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4); 4130 4131 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X; 4132 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE | 4133 MVNETA_GMAC2_PORT_RESET); 4134 new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE); 4135 4136 /* Even though it might look weird, when we're configured in 4137 * SGMII or QSGMII mode, the RGMII bit needs to be set. 4138 */ 4139 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII; 4140 4141 if (state->interface == PHY_INTERFACE_MODE_QSGMII || 4142 state->interface == PHY_INTERFACE_MODE_SGMII || 4143 phy_interface_mode_is_8023z(state->interface)) 4144 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE; 4145 4146 if (!phylink_autoneg_inband(mode)) { 4147 /* Phy or fixed speed - nothing to do, leave the 4148 * configured speed, duplex and flow control as-is. 4149 */ 4150 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { 4151 /* SGMII mode receives the state from the PHY */ 4152 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE; 4153 } else { 4154 /* 802.3z negotiation - only 1000base-X */ 4155 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X; 4156 } 4157 4158 /* When at 2.5G, the link partner can send frames with shortened 4159 * preambles. 4160 */ 4161 if (state->interface == PHY_INTERFACE_MODE_2500BASEX) 4162 new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE; 4163 4164 if (new_ctrl0 != gmac_ctrl0) 4165 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0); 4166 if (new_ctrl2 != gmac_ctrl2) 4167 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2); 4168 if (new_ctrl4 != gmac_ctrl4) 4169 mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4); 4170 4171 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) { 4172 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 4173 MVNETA_GMAC2_PORT_RESET) != 0) 4174 continue; 4175 } 4176 } 4177 4178 static int mvneta_mac_finish(struct phylink_config *config, unsigned int mode, 4179 phy_interface_t interface) 4180 { 4181 struct net_device *ndev = to_net_dev(config->dev); 4182 struct mvneta_port *pp = netdev_priv(ndev); 4183 u32 val, clk; 4184 4185 /* Disable 1ms clock if not in in-band mode */ 4186 if (!phylink_autoneg_inband(mode)) { 4187 clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 4188 clk &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 4189 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, clk); 4190 } 4191 4192 if (pp->phy_interface != interface) 4193 /* Enable the Serdes PHY */ 4194 WARN_ON(mvneta_config_interface(pp, interface)); 4195 4196 /* Allow the link to come up if in in-band mode, otherwise the 4197 * link is forced via mac_link_down()/mac_link_up() 4198 */ 4199 if (phylink_autoneg_inband(mode)) { 4200 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4201 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 4202 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4203 } 4204 4205 return 0; 4206 } 4207 4208 static void mvneta_set_eee(struct mvneta_port *pp, bool enable) 4209 { 4210 u32 lpi_ctl1; 4211 4212 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1); 4213 if (enable) 4214 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE; 4215 else 4216 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE; 4217 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1); 4218 } 4219 4220 static void mvneta_mac_link_down(struct phylink_config *config, 4221 unsigned int mode, phy_interface_t interface) 4222 { 4223 struct net_device *ndev = to_net_dev(config->dev); 4224 struct mvneta_port *pp = netdev_priv(ndev); 4225 u32 val; 4226 4227 mvneta_port_down(pp); 4228 4229 if (!phylink_autoneg_inband(mode)) { 4230 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4231 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 4232 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 4233 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4234 } 4235 4236 pp->eee_active = false; 4237 mvneta_set_eee(pp, false); 4238 } 4239 4240 static void mvneta_mac_link_up(struct phylink_config *config, 4241 struct phy_device *phy, 4242 unsigned int mode, phy_interface_t interface, 4243 int speed, int duplex, 4244 bool tx_pause, bool rx_pause) 4245 { 4246 struct net_device *ndev = to_net_dev(config->dev); 4247 struct mvneta_port *pp = netdev_priv(ndev); 4248 u32 val; 4249 4250 if (!phylink_autoneg_inband(mode)) { 4251 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4252 val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN | 4253 MVNETA_GMAC_CONFIG_MII_SPEED | 4254 MVNETA_GMAC_CONFIG_GMII_SPEED | 4255 MVNETA_GMAC_CONFIG_FLOW_CTRL | 4256 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 4257 val |= MVNETA_GMAC_FORCE_LINK_PASS; 4258 4259 if (speed == SPEED_1000 || speed == SPEED_2500) 4260 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 4261 else if (speed == SPEED_100) 4262 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 4263 4264 if (duplex == DUPLEX_FULL) 4265 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 4266 4267 if (tx_pause || rx_pause) 4268 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4269 4270 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4271 } else { 4272 /* When inband doesn't cover flow control or flow control is 4273 * disabled, we need to manually configure it. This bit will 4274 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset. 4275 */ 4276 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4277 val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL; 4278 4279 if (tx_pause || rx_pause) 4280 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4281 4282 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4283 } 4284 4285 mvneta_port_up(pp); 4286 4287 if (phy && pp->eee_enabled) { 4288 pp->eee_active = phy_init_eee(phy, false) >= 0; 4289 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled); 4290 } 4291 } 4292 4293 static const struct phylink_mac_ops mvneta_phylink_ops = { 4294 .mac_select_pcs = mvneta_mac_select_pcs, 4295 .mac_prepare = mvneta_mac_prepare, 4296 .mac_config = mvneta_mac_config, 4297 .mac_finish = mvneta_mac_finish, 4298 .mac_link_down = mvneta_mac_link_down, 4299 .mac_link_up = mvneta_mac_link_up, 4300 }; 4301 4302 static int mvneta_mdio_probe(struct mvneta_port *pp) 4303 { 4304 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 4305 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0); 4306 4307 if (err) 4308 netdev_err(pp->dev, "could not attach PHY: %d\n", err); 4309 4310 phylink_ethtool_get_wol(pp->phylink, &wol); 4311 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); 4312 4313 /* PHY WoL may be enabled but device wakeup disabled */ 4314 if (wol.supported) 4315 device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts); 4316 4317 return err; 4318 } 4319 4320 static void mvneta_mdio_remove(struct mvneta_port *pp) 4321 { 4322 phylink_disconnect_phy(pp->phylink); 4323 } 4324 4325 /* Electing a CPU must be done in an atomic way: it should be done 4326 * after or before the removal/insertion of a CPU and this function is 4327 * not reentrant. 4328 */ 4329 static void mvneta_percpu_elect(struct mvneta_port *pp) 4330 { 4331 int elected_cpu = 0, max_cpu, cpu; 4332 4333 /* Use the cpu associated to the rxq when it is online, in all 4334 * the other cases, use the cpu 0 which can't be offline. 4335 */ 4336 if (pp->rxq_def < nr_cpu_ids && cpu_online(pp->rxq_def)) 4337 elected_cpu = pp->rxq_def; 4338 4339 max_cpu = num_present_cpus(); 4340 4341 for_each_online_cpu(cpu) { 4342 int rxq_map = 0, txq_map = 0; 4343 int rxq; 4344 4345 for (rxq = 0; rxq < rxq_number; rxq++) 4346 if ((rxq % max_cpu) == cpu) 4347 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 4348 4349 if (cpu == elected_cpu) 4350 /* Map the default receive queue to the elected CPU */ 4351 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 4352 4353 /* We update the TX queue map only if we have one 4354 * queue. In this case we associate the TX queue to 4355 * the CPU bound to the default RX queue 4356 */ 4357 if (txq_number == 1) 4358 txq_map = (cpu == elected_cpu) ? 4359 MVNETA_CPU_TXQ_ACCESS(0) : 0; 4360 else 4361 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 4362 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 4363 4364 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 4365 4366 /* Update the interrupt mask on each CPU according the 4367 * new mapping 4368 */ 4369 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 4370 pp, true); 4371 } 4372 }; 4373 4374 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 4375 { 4376 int other_cpu; 4377 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4378 node_online); 4379 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4380 4381 /* Armada 3700's per-cpu interrupt for mvneta is broken, all interrupts 4382 * are routed to CPU 0, so we don't need all the cpu-hotplug support 4383 */ 4384 if (pp->neta_armada3700) 4385 return 0; 4386 4387 spin_lock(&pp->lock); 4388 /* 4389 * Configuring the driver for a new CPU while the driver is 4390 * stopping is racy, so just avoid it. 4391 */ 4392 if (pp->is_stopped) { 4393 spin_unlock(&pp->lock); 4394 return 0; 4395 } 4396 netif_tx_stop_all_queues(pp->dev); 4397 4398 /* 4399 * We have to synchronise on tha napi of each CPU except the one 4400 * just being woken up 4401 */ 4402 for_each_online_cpu(other_cpu) { 4403 if (other_cpu != cpu) { 4404 struct mvneta_pcpu_port *other_port = 4405 per_cpu_ptr(pp->ports, other_cpu); 4406 4407 napi_synchronize(&other_port->napi); 4408 } 4409 } 4410 4411 /* Mask all ethernet port interrupts */ 4412 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4413 napi_enable(&port->napi); 4414 4415 /* 4416 * Enable per-CPU interrupts on the CPU that is 4417 * brought up. 4418 */ 4419 mvneta_percpu_enable(pp); 4420 4421 /* 4422 * Enable per-CPU interrupt on the one CPU we care 4423 * about. 4424 */ 4425 mvneta_percpu_elect(pp); 4426 4427 /* Unmask all ethernet port interrupts */ 4428 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4429 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4430 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4431 MVNETA_CAUSE_LINK_CHANGE); 4432 netif_tx_start_all_queues(pp->dev); 4433 spin_unlock(&pp->lock); 4434 return 0; 4435 } 4436 4437 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 4438 { 4439 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4440 node_online); 4441 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4442 4443 /* 4444 * Thanks to this lock we are sure that any pending cpu election is 4445 * done. 4446 */ 4447 spin_lock(&pp->lock); 4448 /* Mask all ethernet port interrupts */ 4449 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4450 spin_unlock(&pp->lock); 4451 4452 napi_synchronize(&port->napi); 4453 napi_disable(&port->napi); 4454 /* Disable per-CPU interrupts on the CPU that is brought down. */ 4455 mvneta_percpu_disable(pp); 4456 return 0; 4457 } 4458 4459 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 4460 { 4461 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4462 node_dead); 4463 4464 /* Check if a new CPU must be elected now this on is down */ 4465 spin_lock(&pp->lock); 4466 mvneta_percpu_elect(pp); 4467 spin_unlock(&pp->lock); 4468 /* Unmask all ethernet port interrupts */ 4469 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4470 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4471 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4472 MVNETA_CAUSE_LINK_CHANGE); 4473 netif_tx_start_all_queues(pp->dev); 4474 return 0; 4475 } 4476 4477 static int mvneta_open(struct net_device *dev) 4478 { 4479 struct mvneta_port *pp = netdev_priv(dev); 4480 int ret; 4481 4482 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 4483 4484 ret = mvneta_setup_rxqs(pp); 4485 if (ret) 4486 return ret; 4487 4488 ret = mvneta_setup_txqs(pp); 4489 if (ret) 4490 goto err_cleanup_rxqs; 4491 4492 /* Connect to port interrupt line */ 4493 if (pp->neta_armada3700) 4494 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 4495 dev->name, pp); 4496 else 4497 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 4498 dev->name, pp->ports); 4499 if (ret) { 4500 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 4501 goto err_cleanup_txqs; 4502 } 4503 4504 if (!pp->neta_armada3700) { 4505 /* Enable per-CPU interrupt on all the CPU to handle our RX 4506 * queue interrupts 4507 */ 4508 on_each_cpu(mvneta_percpu_enable, pp, true); 4509 4510 pp->is_stopped = false; 4511 /* Register a CPU notifier to handle the case where our CPU 4512 * might be taken offline. 4513 */ 4514 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 4515 &pp->node_online); 4516 if (ret) 4517 goto err_free_irq; 4518 4519 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4520 &pp->node_dead); 4521 if (ret) 4522 goto err_free_online_hp; 4523 } 4524 4525 ret = mvneta_mdio_probe(pp); 4526 if (ret < 0) { 4527 netdev_err(dev, "cannot probe MDIO bus\n"); 4528 goto err_free_dead_hp; 4529 } 4530 4531 mvneta_start_dev(pp); 4532 4533 return 0; 4534 4535 err_free_dead_hp: 4536 if (!pp->neta_armada3700) 4537 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4538 &pp->node_dead); 4539 err_free_online_hp: 4540 if (!pp->neta_armada3700) 4541 cpuhp_state_remove_instance_nocalls(online_hpstate, 4542 &pp->node_online); 4543 err_free_irq: 4544 if (pp->neta_armada3700) { 4545 free_irq(pp->dev->irq, pp); 4546 } else { 4547 on_each_cpu(mvneta_percpu_disable, pp, true); 4548 free_percpu_irq(pp->dev->irq, pp->ports); 4549 } 4550 err_cleanup_txqs: 4551 mvneta_cleanup_txqs(pp); 4552 err_cleanup_rxqs: 4553 mvneta_cleanup_rxqs(pp); 4554 return ret; 4555 } 4556 4557 /* Stop the port, free port interrupt line */ 4558 static int mvneta_stop(struct net_device *dev) 4559 { 4560 struct mvneta_port *pp = netdev_priv(dev); 4561 4562 if (!pp->neta_armada3700) { 4563 /* Inform that we are stopping so we don't want to setup the 4564 * driver for new CPUs in the notifiers. The code of the 4565 * notifier for CPU online is protected by the same spinlock, 4566 * so when we get the lock, the notifer work is done. 4567 */ 4568 spin_lock(&pp->lock); 4569 pp->is_stopped = true; 4570 spin_unlock(&pp->lock); 4571 4572 mvneta_stop_dev(pp); 4573 mvneta_mdio_remove(pp); 4574 4575 cpuhp_state_remove_instance_nocalls(online_hpstate, 4576 &pp->node_online); 4577 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4578 &pp->node_dead); 4579 on_each_cpu(mvneta_percpu_disable, pp, true); 4580 free_percpu_irq(dev->irq, pp->ports); 4581 } else { 4582 mvneta_stop_dev(pp); 4583 mvneta_mdio_remove(pp); 4584 free_irq(dev->irq, pp); 4585 } 4586 4587 mvneta_cleanup_rxqs(pp); 4588 mvneta_cleanup_txqs(pp); 4589 4590 return 0; 4591 } 4592 4593 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4594 { 4595 struct mvneta_port *pp = netdev_priv(dev); 4596 4597 return phylink_mii_ioctl(pp->phylink, ifr, cmd); 4598 } 4599 4600 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog, 4601 struct netlink_ext_ack *extack) 4602 { 4603 bool need_update, running = netif_running(dev); 4604 struct mvneta_port *pp = netdev_priv(dev); 4605 struct bpf_prog *old_prog; 4606 4607 if (prog && !prog->aux->xdp_has_frags && 4608 dev->mtu > MVNETA_MAX_RX_BUF_SIZE) { 4609 NL_SET_ERR_MSG_MOD(extack, "prog does not support XDP frags"); 4610 return -EOPNOTSUPP; 4611 } 4612 4613 if (pp->bm_priv) { 4614 NL_SET_ERR_MSG_MOD(extack, 4615 "Hardware Buffer Management not supported on XDP"); 4616 return -EOPNOTSUPP; 4617 } 4618 4619 need_update = !!pp->xdp_prog != !!prog; 4620 if (running && need_update) 4621 mvneta_stop(dev); 4622 4623 old_prog = xchg(&pp->xdp_prog, prog); 4624 if (old_prog) 4625 bpf_prog_put(old_prog); 4626 4627 if (running && need_update) 4628 return mvneta_open(dev); 4629 4630 return 0; 4631 } 4632 4633 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4634 { 4635 switch (xdp->command) { 4636 case XDP_SETUP_PROG: 4637 return mvneta_xdp_setup(dev, xdp->prog, xdp->extack); 4638 default: 4639 return -EINVAL; 4640 } 4641 } 4642 4643 /* Ethtool methods */ 4644 4645 /* Set link ksettings (phy address, speed) for ethtools */ 4646 static int 4647 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 4648 const struct ethtool_link_ksettings *cmd) 4649 { 4650 struct mvneta_port *pp = netdev_priv(ndev); 4651 4652 return phylink_ethtool_ksettings_set(pp->phylink, cmd); 4653 } 4654 4655 /* Get link ksettings for ethtools */ 4656 static int 4657 mvneta_ethtool_get_link_ksettings(struct net_device *ndev, 4658 struct ethtool_link_ksettings *cmd) 4659 { 4660 struct mvneta_port *pp = netdev_priv(ndev); 4661 4662 return phylink_ethtool_ksettings_get(pp->phylink, cmd); 4663 } 4664 4665 static int mvneta_ethtool_nway_reset(struct net_device *dev) 4666 { 4667 struct mvneta_port *pp = netdev_priv(dev); 4668 4669 return phylink_ethtool_nway_reset(pp->phylink); 4670 } 4671 4672 /* Set interrupt coalescing for ethtools */ 4673 static int 4674 mvneta_ethtool_set_coalesce(struct net_device *dev, 4675 struct ethtool_coalesce *c, 4676 struct kernel_ethtool_coalesce *kernel_coal, 4677 struct netlink_ext_ack *extack) 4678 { 4679 struct mvneta_port *pp = netdev_priv(dev); 4680 int queue; 4681 4682 for (queue = 0; queue < rxq_number; queue++) { 4683 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4684 rxq->time_coal = c->rx_coalesce_usecs; 4685 rxq->pkts_coal = c->rx_max_coalesced_frames; 4686 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 4687 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 4688 } 4689 4690 for (queue = 0; queue < txq_number; queue++) { 4691 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4692 txq->done_pkts_coal = c->tx_max_coalesced_frames; 4693 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 4694 } 4695 4696 return 0; 4697 } 4698 4699 /* get coalescing for ethtools */ 4700 static int 4701 mvneta_ethtool_get_coalesce(struct net_device *dev, 4702 struct ethtool_coalesce *c, 4703 struct kernel_ethtool_coalesce *kernel_coal, 4704 struct netlink_ext_ack *extack) 4705 { 4706 struct mvneta_port *pp = netdev_priv(dev); 4707 4708 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 4709 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 4710 4711 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 4712 return 0; 4713 } 4714 4715 4716 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 4717 struct ethtool_drvinfo *drvinfo) 4718 { 4719 strscpy(drvinfo->driver, MVNETA_DRIVER_NAME, 4720 sizeof(drvinfo->driver)); 4721 strscpy(drvinfo->version, MVNETA_DRIVER_VERSION, 4722 sizeof(drvinfo->version)); 4723 strscpy(drvinfo->bus_info, dev_name(&dev->dev), 4724 sizeof(drvinfo->bus_info)); 4725 } 4726 4727 4728 static void 4729 mvneta_ethtool_get_ringparam(struct net_device *netdev, 4730 struct ethtool_ringparam *ring, 4731 struct kernel_ethtool_ringparam *kernel_ring, 4732 struct netlink_ext_ack *extack) 4733 { 4734 struct mvneta_port *pp = netdev_priv(netdev); 4735 4736 ring->rx_max_pending = MVNETA_MAX_RXD; 4737 ring->tx_max_pending = MVNETA_MAX_TXD; 4738 ring->rx_pending = pp->rx_ring_size; 4739 ring->tx_pending = pp->tx_ring_size; 4740 } 4741 4742 static int 4743 mvneta_ethtool_set_ringparam(struct net_device *dev, 4744 struct ethtool_ringparam *ring, 4745 struct kernel_ethtool_ringparam *kernel_ring, 4746 struct netlink_ext_ack *extack) 4747 { 4748 struct mvneta_port *pp = netdev_priv(dev); 4749 4750 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 4751 return -EINVAL; 4752 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 4753 ring->rx_pending : MVNETA_MAX_RXD; 4754 4755 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 4756 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 4757 if (pp->tx_ring_size != ring->tx_pending) 4758 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 4759 pp->tx_ring_size, ring->tx_pending); 4760 4761 if (netif_running(dev)) { 4762 mvneta_stop(dev); 4763 if (mvneta_open(dev)) { 4764 netdev_err(dev, 4765 "error on opening device after ring param change\n"); 4766 return -ENOMEM; 4767 } 4768 } 4769 4770 return 0; 4771 } 4772 4773 static void mvneta_ethtool_get_pauseparam(struct net_device *dev, 4774 struct ethtool_pauseparam *pause) 4775 { 4776 struct mvneta_port *pp = netdev_priv(dev); 4777 4778 phylink_ethtool_get_pauseparam(pp->phylink, pause); 4779 } 4780 4781 static int mvneta_ethtool_set_pauseparam(struct net_device *dev, 4782 struct ethtool_pauseparam *pause) 4783 { 4784 struct mvneta_port *pp = netdev_priv(dev); 4785 4786 return phylink_ethtool_set_pauseparam(pp->phylink, pause); 4787 } 4788 4789 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 4790 u8 *data) 4791 { 4792 if (sset == ETH_SS_STATS) { 4793 int i; 4794 4795 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4796 memcpy(data + i * ETH_GSTRING_LEN, 4797 mvneta_statistics[i].name, ETH_GSTRING_LEN); 4798 4799 data += ETH_GSTRING_LEN * ARRAY_SIZE(mvneta_statistics); 4800 page_pool_ethtool_stats_get_strings(data); 4801 } 4802 } 4803 4804 static void 4805 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp, 4806 struct mvneta_ethtool_stats *es) 4807 { 4808 unsigned int start; 4809 int cpu; 4810 4811 for_each_possible_cpu(cpu) { 4812 struct mvneta_pcpu_stats *stats; 4813 u64 skb_alloc_error; 4814 u64 refill_error; 4815 u64 xdp_redirect; 4816 u64 xdp_xmit_err; 4817 u64 xdp_tx_err; 4818 u64 xdp_pass; 4819 u64 xdp_drop; 4820 u64 xdp_xmit; 4821 u64 xdp_tx; 4822 4823 stats = per_cpu_ptr(pp->stats, cpu); 4824 do { 4825 start = u64_stats_fetch_begin(&stats->syncp); 4826 skb_alloc_error = stats->es.skb_alloc_error; 4827 refill_error = stats->es.refill_error; 4828 xdp_redirect = stats->es.ps.xdp_redirect; 4829 xdp_pass = stats->es.ps.xdp_pass; 4830 xdp_drop = stats->es.ps.xdp_drop; 4831 xdp_xmit = stats->es.ps.xdp_xmit; 4832 xdp_xmit_err = stats->es.ps.xdp_xmit_err; 4833 xdp_tx = stats->es.ps.xdp_tx; 4834 xdp_tx_err = stats->es.ps.xdp_tx_err; 4835 } while (u64_stats_fetch_retry(&stats->syncp, start)); 4836 4837 es->skb_alloc_error += skb_alloc_error; 4838 es->refill_error += refill_error; 4839 es->ps.xdp_redirect += xdp_redirect; 4840 es->ps.xdp_pass += xdp_pass; 4841 es->ps.xdp_drop += xdp_drop; 4842 es->ps.xdp_xmit += xdp_xmit; 4843 es->ps.xdp_xmit_err += xdp_xmit_err; 4844 es->ps.xdp_tx += xdp_tx; 4845 es->ps.xdp_tx_err += xdp_tx_err; 4846 } 4847 } 4848 4849 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 4850 { 4851 struct mvneta_ethtool_stats stats = {}; 4852 const struct mvneta_statistic *s; 4853 void __iomem *base = pp->base; 4854 u32 high, low; 4855 u64 val; 4856 int i; 4857 4858 mvneta_ethtool_update_pcpu_stats(pp, &stats); 4859 for (i = 0, s = mvneta_statistics; 4860 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 4861 s++, i++) { 4862 switch (s->type) { 4863 case T_REG_32: 4864 val = readl_relaxed(base + s->offset); 4865 pp->ethtool_stats[i] += val; 4866 break; 4867 case T_REG_64: 4868 /* Docs say to read low 32-bit then high */ 4869 low = readl_relaxed(base + s->offset); 4870 high = readl_relaxed(base + s->offset + 4); 4871 val = (u64)high << 32 | low; 4872 pp->ethtool_stats[i] += val; 4873 break; 4874 case T_SW: 4875 switch (s->offset) { 4876 case ETHTOOL_STAT_EEE_WAKEUP: 4877 val = phylink_get_eee_err(pp->phylink); 4878 pp->ethtool_stats[i] += val; 4879 break; 4880 case ETHTOOL_STAT_SKB_ALLOC_ERR: 4881 pp->ethtool_stats[i] = stats.skb_alloc_error; 4882 break; 4883 case ETHTOOL_STAT_REFILL_ERR: 4884 pp->ethtool_stats[i] = stats.refill_error; 4885 break; 4886 case ETHTOOL_XDP_REDIRECT: 4887 pp->ethtool_stats[i] = stats.ps.xdp_redirect; 4888 break; 4889 case ETHTOOL_XDP_PASS: 4890 pp->ethtool_stats[i] = stats.ps.xdp_pass; 4891 break; 4892 case ETHTOOL_XDP_DROP: 4893 pp->ethtool_stats[i] = stats.ps.xdp_drop; 4894 break; 4895 case ETHTOOL_XDP_TX: 4896 pp->ethtool_stats[i] = stats.ps.xdp_tx; 4897 break; 4898 case ETHTOOL_XDP_TX_ERR: 4899 pp->ethtool_stats[i] = stats.ps.xdp_tx_err; 4900 break; 4901 case ETHTOOL_XDP_XMIT: 4902 pp->ethtool_stats[i] = stats.ps.xdp_xmit; 4903 break; 4904 case ETHTOOL_XDP_XMIT_ERR: 4905 pp->ethtool_stats[i] = stats.ps.xdp_xmit_err; 4906 break; 4907 } 4908 break; 4909 } 4910 } 4911 } 4912 4913 static void mvneta_ethtool_pp_stats(struct mvneta_port *pp, u64 *data) 4914 { 4915 struct page_pool_stats stats = {}; 4916 int i; 4917 4918 for (i = 0; i < rxq_number; i++) 4919 page_pool_get_stats(pp->rxqs[i].page_pool, &stats); 4920 4921 page_pool_ethtool_stats_get(data, &stats); 4922 } 4923 4924 static void mvneta_ethtool_get_stats(struct net_device *dev, 4925 struct ethtool_stats *stats, u64 *data) 4926 { 4927 struct mvneta_port *pp = netdev_priv(dev); 4928 int i; 4929 4930 mvneta_ethtool_update_stats(pp); 4931 4932 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4933 *data++ = pp->ethtool_stats[i]; 4934 4935 mvneta_ethtool_pp_stats(pp, data); 4936 } 4937 4938 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 4939 { 4940 if (sset == ETH_SS_STATS) 4941 return ARRAY_SIZE(mvneta_statistics) + 4942 page_pool_ethtool_stats_get_count(); 4943 4944 return -EOPNOTSUPP; 4945 } 4946 4947 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 4948 { 4949 return MVNETA_RSS_LU_TABLE_SIZE; 4950 } 4951 4952 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 4953 struct ethtool_rxnfc *info, 4954 u32 *rules __always_unused) 4955 { 4956 switch (info->cmd) { 4957 case ETHTOOL_GRXRINGS: 4958 info->data = rxq_number; 4959 return 0; 4960 case ETHTOOL_GRXFH: 4961 return -EOPNOTSUPP; 4962 default: 4963 return -EOPNOTSUPP; 4964 } 4965 } 4966 4967 static int mvneta_config_rss(struct mvneta_port *pp) 4968 { 4969 int cpu; 4970 u32 val; 4971 4972 netif_tx_stop_all_queues(pp->dev); 4973 4974 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4975 4976 if (!pp->neta_armada3700) { 4977 /* We have to synchronise on the napi of each CPU */ 4978 for_each_online_cpu(cpu) { 4979 struct mvneta_pcpu_port *pcpu_port = 4980 per_cpu_ptr(pp->ports, cpu); 4981 4982 napi_synchronize(&pcpu_port->napi); 4983 napi_disable(&pcpu_port->napi); 4984 } 4985 } else { 4986 napi_synchronize(&pp->napi); 4987 napi_disable(&pp->napi); 4988 } 4989 4990 pp->rxq_def = pp->indir[0]; 4991 4992 /* Update unicast mapping */ 4993 mvneta_set_rx_mode(pp->dev); 4994 4995 /* Update val of portCfg register accordingly with all RxQueue types */ 4996 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 4997 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 4998 4999 /* Update the elected CPU matching the new rxq_def */ 5000 spin_lock(&pp->lock); 5001 mvneta_percpu_elect(pp); 5002 spin_unlock(&pp->lock); 5003 5004 if (!pp->neta_armada3700) { 5005 /* We have to synchronise on the napi of each CPU */ 5006 for_each_online_cpu(cpu) { 5007 struct mvneta_pcpu_port *pcpu_port = 5008 per_cpu_ptr(pp->ports, cpu); 5009 5010 napi_enable(&pcpu_port->napi); 5011 } 5012 } else { 5013 napi_enable(&pp->napi); 5014 } 5015 5016 netif_tx_start_all_queues(pp->dev); 5017 5018 return 0; 5019 } 5020 5021 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 5022 const u8 *key, const u8 hfunc) 5023 { 5024 struct mvneta_port *pp = netdev_priv(dev); 5025 5026 /* Current code for Armada 3700 doesn't support RSS features yet */ 5027 if (pp->neta_armada3700) 5028 return -EOPNOTSUPP; 5029 5030 /* We require at least one supported parameter to be changed 5031 * and no change in any of the unsupported parameters 5032 */ 5033 if (key || 5034 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 5035 return -EOPNOTSUPP; 5036 5037 if (!indir) 5038 return 0; 5039 5040 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 5041 5042 return mvneta_config_rss(pp); 5043 } 5044 5045 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 5046 u8 *hfunc) 5047 { 5048 struct mvneta_port *pp = netdev_priv(dev); 5049 5050 /* Current code for Armada 3700 doesn't support RSS features yet */ 5051 if (pp->neta_armada3700) 5052 return -EOPNOTSUPP; 5053 5054 if (hfunc) 5055 *hfunc = ETH_RSS_HASH_TOP; 5056 5057 if (!indir) 5058 return 0; 5059 5060 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 5061 5062 return 0; 5063 } 5064 5065 static void mvneta_ethtool_get_wol(struct net_device *dev, 5066 struct ethtool_wolinfo *wol) 5067 { 5068 struct mvneta_port *pp = netdev_priv(dev); 5069 5070 phylink_ethtool_get_wol(pp->phylink, wol); 5071 } 5072 5073 static int mvneta_ethtool_set_wol(struct net_device *dev, 5074 struct ethtool_wolinfo *wol) 5075 { 5076 struct mvneta_port *pp = netdev_priv(dev); 5077 int ret; 5078 5079 ret = phylink_ethtool_set_wol(pp->phylink, wol); 5080 if (!ret) 5081 device_set_wakeup_enable(&dev->dev, !!wol->wolopts); 5082 5083 return ret; 5084 } 5085 5086 static int mvneta_ethtool_get_eee(struct net_device *dev, 5087 struct ethtool_eee *eee) 5088 { 5089 struct mvneta_port *pp = netdev_priv(dev); 5090 u32 lpi_ctl0; 5091 5092 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 5093 5094 eee->eee_enabled = pp->eee_enabled; 5095 eee->eee_active = pp->eee_active; 5096 eee->tx_lpi_enabled = pp->tx_lpi_enabled; 5097 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale; 5098 5099 return phylink_ethtool_get_eee(pp->phylink, eee); 5100 } 5101 5102 static int mvneta_ethtool_set_eee(struct net_device *dev, 5103 struct ethtool_eee *eee) 5104 { 5105 struct mvneta_port *pp = netdev_priv(dev); 5106 u32 lpi_ctl0; 5107 5108 /* The Armada 37x documents do not give limits for this other than 5109 * it being an 8-bit register. 5110 */ 5111 if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255) 5112 return -EINVAL; 5113 5114 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 5115 lpi_ctl0 &= ~(0xff << 8); 5116 lpi_ctl0 |= eee->tx_lpi_timer << 8; 5117 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0); 5118 5119 pp->eee_enabled = eee->eee_enabled; 5120 pp->tx_lpi_enabled = eee->tx_lpi_enabled; 5121 5122 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled); 5123 5124 return phylink_ethtool_set_eee(pp->phylink, eee); 5125 } 5126 5127 static void mvneta_clear_rx_prio_map(struct mvneta_port *pp) 5128 { 5129 mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, 0); 5130 } 5131 5132 static void mvneta_map_vlan_prio_to_rxq(struct mvneta_port *pp, u8 pri, u8 rxq) 5133 { 5134 u32 val = mvreg_read(pp, MVNETA_VLAN_PRIO_TO_RXQ); 5135 5136 val &= ~MVNETA_VLAN_PRIO_RXQ_MAP(pri, 0x7); 5137 val |= MVNETA_VLAN_PRIO_RXQ_MAP(pri, rxq); 5138 5139 mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, val); 5140 } 5141 5142 static int mvneta_enable_per_queue_rate_limit(struct mvneta_port *pp) 5143 { 5144 unsigned long core_clk_rate; 5145 u32 refill_cycles; 5146 u32 val; 5147 5148 core_clk_rate = clk_get_rate(pp->clk); 5149 if (!core_clk_rate) 5150 return -EINVAL; 5151 5152 refill_cycles = MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS / 5153 (NSEC_PER_SEC / core_clk_rate); 5154 5155 if (refill_cycles > MVNETA_REFILL_MAX_NUM_CLK) 5156 return -EINVAL; 5157 5158 /* Enable bw limit algorithm version 3 */ 5159 val = mvreg_read(pp, MVNETA_TXQ_CMD1_REG); 5160 val &= ~(MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 | MVNETA_TXQ_CMD1_BW_LIM_EN); 5161 mvreg_write(pp, MVNETA_TXQ_CMD1_REG, val); 5162 5163 /* Set the base refill rate */ 5164 mvreg_write(pp, MVNETA_REFILL_NUM_CLK_REG, refill_cycles); 5165 5166 return 0; 5167 } 5168 5169 static void mvneta_disable_per_queue_rate_limit(struct mvneta_port *pp) 5170 { 5171 u32 val = mvreg_read(pp, MVNETA_TXQ_CMD1_REG); 5172 5173 val |= (MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 | MVNETA_TXQ_CMD1_BW_LIM_EN); 5174 mvreg_write(pp, MVNETA_TXQ_CMD1_REG, val); 5175 } 5176 5177 static int mvneta_setup_queue_rates(struct mvneta_port *pp, int queue, 5178 u64 min_rate, u64 max_rate) 5179 { 5180 u32 refill_val, rem; 5181 u32 val = 0; 5182 5183 /* Convert to from Bps to bps */ 5184 max_rate *= 8; 5185 5186 if (min_rate) 5187 return -EINVAL; 5188 5189 refill_val = div_u64_rem(max_rate, MVNETA_TXQ_RATE_LIMIT_RESOLUTION, 5190 &rem); 5191 5192 if (rem || !refill_val || 5193 refill_val > MVNETA_TXQ_BUCKET_REFILL_VALUE_MAX) 5194 return -EINVAL; 5195 5196 val = refill_val; 5197 val |= (MVNETA_TXQ_BUCKET_REFILL_PERIOD << 5198 MVNETA_TXQ_BUCKET_REFILL_PERIOD_SHIFT); 5199 5200 mvreg_write(pp, MVNETA_TXQ_BUCKET_REFILL_REG(queue), val); 5201 5202 return 0; 5203 } 5204 5205 static int mvneta_setup_mqprio(struct net_device *dev, 5206 struct tc_mqprio_qopt_offload *mqprio) 5207 { 5208 struct mvneta_port *pp = netdev_priv(dev); 5209 int rxq, txq, tc, ret; 5210 u8 num_tc; 5211 5212 if (mqprio->qopt.hw != TC_MQPRIO_HW_OFFLOAD_TCS) 5213 return 0; 5214 5215 num_tc = mqprio->qopt.num_tc; 5216 5217 if (num_tc > rxq_number) 5218 return -EINVAL; 5219 5220 mvneta_clear_rx_prio_map(pp); 5221 5222 if (!num_tc) { 5223 mvneta_disable_per_queue_rate_limit(pp); 5224 netdev_reset_tc(dev); 5225 return 0; 5226 } 5227 5228 netdev_set_num_tc(dev, mqprio->qopt.num_tc); 5229 5230 for (tc = 0; tc < mqprio->qopt.num_tc; tc++) { 5231 netdev_set_tc_queue(dev, tc, mqprio->qopt.count[tc], 5232 mqprio->qopt.offset[tc]); 5233 5234 for (rxq = mqprio->qopt.offset[tc]; 5235 rxq < mqprio->qopt.count[tc] + mqprio->qopt.offset[tc]; 5236 rxq++) { 5237 if (rxq >= rxq_number) 5238 return -EINVAL; 5239 5240 mvneta_map_vlan_prio_to_rxq(pp, tc, rxq); 5241 } 5242 } 5243 5244 if (mqprio->shaper != TC_MQPRIO_SHAPER_BW_RATE) { 5245 mvneta_disable_per_queue_rate_limit(pp); 5246 return 0; 5247 } 5248 5249 if (mqprio->qopt.num_tc > txq_number) 5250 return -EINVAL; 5251 5252 ret = mvneta_enable_per_queue_rate_limit(pp); 5253 if (ret) 5254 return ret; 5255 5256 for (tc = 0; tc < mqprio->qopt.num_tc; tc++) { 5257 for (txq = mqprio->qopt.offset[tc]; 5258 txq < mqprio->qopt.count[tc] + mqprio->qopt.offset[tc]; 5259 txq++) { 5260 if (txq >= txq_number) 5261 return -EINVAL; 5262 5263 ret = mvneta_setup_queue_rates(pp, txq, 5264 mqprio->min_rate[tc], 5265 mqprio->max_rate[tc]); 5266 if (ret) 5267 return ret; 5268 } 5269 } 5270 5271 return 0; 5272 } 5273 5274 static int mvneta_setup_tc(struct net_device *dev, enum tc_setup_type type, 5275 void *type_data) 5276 { 5277 switch (type) { 5278 case TC_SETUP_QDISC_MQPRIO: 5279 return mvneta_setup_mqprio(dev, type_data); 5280 default: 5281 return -EOPNOTSUPP; 5282 } 5283 } 5284 5285 static const struct net_device_ops mvneta_netdev_ops = { 5286 .ndo_open = mvneta_open, 5287 .ndo_stop = mvneta_stop, 5288 .ndo_start_xmit = mvneta_tx, 5289 .ndo_set_rx_mode = mvneta_set_rx_mode, 5290 .ndo_set_mac_address = mvneta_set_mac_addr, 5291 .ndo_change_mtu = mvneta_change_mtu, 5292 .ndo_fix_features = mvneta_fix_features, 5293 .ndo_get_stats64 = mvneta_get_stats64, 5294 .ndo_eth_ioctl = mvneta_ioctl, 5295 .ndo_bpf = mvneta_xdp, 5296 .ndo_xdp_xmit = mvneta_xdp_xmit, 5297 .ndo_setup_tc = mvneta_setup_tc, 5298 }; 5299 5300 static const struct ethtool_ops mvneta_eth_tool_ops = { 5301 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS | 5302 ETHTOOL_COALESCE_MAX_FRAMES, 5303 .nway_reset = mvneta_ethtool_nway_reset, 5304 .get_link = ethtool_op_get_link, 5305 .set_coalesce = mvneta_ethtool_set_coalesce, 5306 .get_coalesce = mvneta_ethtool_get_coalesce, 5307 .get_drvinfo = mvneta_ethtool_get_drvinfo, 5308 .get_ringparam = mvneta_ethtool_get_ringparam, 5309 .set_ringparam = mvneta_ethtool_set_ringparam, 5310 .get_pauseparam = mvneta_ethtool_get_pauseparam, 5311 .set_pauseparam = mvneta_ethtool_set_pauseparam, 5312 .get_strings = mvneta_ethtool_get_strings, 5313 .get_ethtool_stats = mvneta_ethtool_get_stats, 5314 .get_sset_count = mvneta_ethtool_get_sset_count, 5315 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 5316 .get_rxnfc = mvneta_ethtool_get_rxnfc, 5317 .get_rxfh = mvneta_ethtool_get_rxfh, 5318 .set_rxfh = mvneta_ethtool_set_rxfh, 5319 .get_link_ksettings = mvneta_ethtool_get_link_ksettings, 5320 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 5321 .get_wol = mvneta_ethtool_get_wol, 5322 .set_wol = mvneta_ethtool_set_wol, 5323 .get_eee = mvneta_ethtool_get_eee, 5324 .set_eee = mvneta_ethtool_set_eee, 5325 }; 5326 5327 /* Initialize hw */ 5328 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 5329 { 5330 int queue; 5331 5332 /* Disable port */ 5333 mvneta_port_disable(pp); 5334 5335 /* Set port default values */ 5336 mvneta_defaults_set(pp); 5337 5338 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); 5339 if (!pp->txqs) 5340 return -ENOMEM; 5341 5342 /* Initialize TX descriptor rings */ 5343 for (queue = 0; queue < txq_number; queue++) { 5344 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5345 txq->id = queue; 5346 txq->size = pp->tx_ring_size; 5347 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 5348 } 5349 5350 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); 5351 if (!pp->rxqs) 5352 return -ENOMEM; 5353 5354 /* Create Rx descriptor rings */ 5355 for (queue = 0; queue < rxq_number; queue++) { 5356 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5357 rxq->id = queue; 5358 rxq->size = pp->rx_ring_size; 5359 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 5360 rxq->time_coal = MVNETA_RX_COAL_USEC; 5361 rxq->buf_virt_addr 5362 = devm_kmalloc_array(pp->dev->dev.parent, 5363 rxq->size, 5364 sizeof(*rxq->buf_virt_addr), 5365 GFP_KERNEL); 5366 if (!rxq->buf_virt_addr) 5367 return -ENOMEM; 5368 } 5369 5370 return 0; 5371 } 5372 5373 /* platform glue : initialize decoding windows */ 5374 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 5375 const struct mbus_dram_target_info *dram) 5376 { 5377 u32 win_enable; 5378 u32 win_protect; 5379 int i; 5380 5381 for (i = 0; i < 6; i++) { 5382 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 5383 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 5384 5385 if (i < 4) 5386 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 5387 } 5388 5389 win_enable = 0x3f; 5390 win_protect = 0; 5391 5392 if (dram) { 5393 for (i = 0; i < dram->num_cs; i++) { 5394 const struct mbus_dram_window *cs = dram->cs + i; 5395 5396 mvreg_write(pp, MVNETA_WIN_BASE(i), 5397 (cs->base & 0xffff0000) | 5398 (cs->mbus_attr << 8) | 5399 dram->mbus_dram_target_id); 5400 5401 mvreg_write(pp, MVNETA_WIN_SIZE(i), 5402 (cs->size - 1) & 0xffff0000); 5403 5404 win_enable &= ~(1 << i); 5405 win_protect |= 3 << (2 * i); 5406 } 5407 } else { 5408 if (pp->neta_ac5) 5409 mvreg_write(pp, MVNETA_WIN_BASE(0), 5410 (MVNETA_AC5_CNM_DDR_ATTR << 8) | 5411 MVNETA_AC5_CNM_DDR_TARGET); 5412 /* For Armada3700 open default 4GB Mbus window, leaving 5413 * arbitration of target/attribute to a different layer 5414 * of configuration. 5415 */ 5416 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 5417 win_enable &= ~BIT(0); 5418 win_protect = 3; 5419 } 5420 5421 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 5422 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 5423 } 5424 5425 /* Power up the port */ 5426 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 5427 { 5428 /* MAC Cause register should be cleared */ 5429 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 5430 5431 if (phy_mode != PHY_INTERFACE_MODE_QSGMII && 5432 phy_mode != PHY_INTERFACE_MODE_SGMII && 5433 !phy_interface_mode_is_8023z(phy_mode) && 5434 !phy_interface_mode_is_rgmii(phy_mode)) 5435 return -EINVAL; 5436 5437 return 0; 5438 } 5439 5440 /* Device initialization routine */ 5441 static int mvneta_probe(struct platform_device *pdev) 5442 { 5443 struct device_node *dn = pdev->dev.of_node; 5444 struct device_node *bm_node; 5445 struct mvneta_port *pp; 5446 struct net_device *dev; 5447 struct phylink *phylink; 5448 struct phy *comphy; 5449 char hw_mac_addr[ETH_ALEN]; 5450 phy_interface_t phy_mode; 5451 const char *mac_from; 5452 int tx_csum_limit; 5453 int err; 5454 int cpu; 5455 5456 dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port), 5457 txq_number, rxq_number); 5458 if (!dev) 5459 return -ENOMEM; 5460 5461 dev->tx_queue_len = MVNETA_MAX_TXD; 5462 dev->watchdog_timeo = 5 * HZ; 5463 dev->netdev_ops = &mvneta_netdev_ops; 5464 dev->ethtool_ops = &mvneta_eth_tool_ops; 5465 5466 pp = netdev_priv(dev); 5467 spin_lock_init(&pp->lock); 5468 pp->dn = dn; 5469 5470 pp->rxq_def = rxq_def; 5471 pp->indir[0] = rxq_def; 5472 5473 err = of_get_phy_mode(dn, &phy_mode); 5474 if (err) { 5475 dev_err(&pdev->dev, "incorrect phy-mode\n"); 5476 return err; 5477 } 5478 5479 pp->phy_interface = phy_mode; 5480 5481 comphy = devm_of_phy_get(&pdev->dev, dn, NULL); 5482 if (comphy == ERR_PTR(-EPROBE_DEFER)) 5483 return -EPROBE_DEFER; 5484 5485 if (IS_ERR(comphy)) 5486 comphy = NULL; 5487 5488 pp->comphy = comphy; 5489 5490 pp->base = devm_platform_ioremap_resource(pdev, 0); 5491 if (IS_ERR(pp->base)) 5492 return PTR_ERR(pp->base); 5493 5494 /* Get special SoC configurations */ 5495 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 5496 pp->neta_armada3700 = true; 5497 if (of_device_is_compatible(dn, "marvell,armada-ac5-neta")) { 5498 pp->neta_armada3700 = true; 5499 pp->neta_ac5 = true; 5500 } 5501 5502 dev->irq = irq_of_parse_and_map(dn, 0); 5503 if (dev->irq == 0) 5504 return -EINVAL; 5505 5506 pp->clk = devm_clk_get(&pdev->dev, "core"); 5507 if (IS_ERR(pp->clk)) 5508 pp->clk = devm_clk_get(&pdev->dev, NULL); 5509 if (IS_ERR(pp->clk)) { 5510 err = PTR_ERR(pp->clk); 5511 goto err_free_irq; 5512 } 5513 5514 clk_prepare_enable(pp->clk); 5515 5516 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 5517 if (!IS_ERR(pp->clk_bus)) 5518 clk_prepare_enable(pp->clk_bus); 5519 5520 pp->phylink_pcs.ops = &mvneta_phylink_pcs_ops; 5521 pp->phylink_pcs.neg_mode = true; 5522 5523 pp->phylink_config.dev = &dev->dev; 5524 pp->phylink_config.type = PHYLINK_NETDEV; 5525 pp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_10 | 5526 MAC_100 | MAC_1000FD | MAC_2500FD; 5527 5528 phy_interface_set_rgmii(pp->phylink_config.supported_interfaces); 5529 __set_bit(PHY_INTERFACE_MODE_QSGMII, 5530 pp->phylink_config.supported_interfaces); 5531 if (comphy) { 5532 /* If a COMPHY is present, we can support any of the serdes 5533 * modes and switch between them. 5534 */ 5535 __set_bit(PHY_INTERFACE_MODE_SGMII, 5536 pp->phylink_config.supported_interfaces); 5537 __set_bit(PHY_INTERFACE_MODE_1000BASEX, 5538 pp->phylink_config.supported_interfaces); 5539 __set_bit(PHY_INTERFACE_MODE_2500BASEX, 5540 pp->phylink_config.supported_interfaces); 5541 } else if (phy_mode == PHY_INTERFACE_MODE_2500BASEX) { 5542 /* No COMPHY, with only 2500BASE-X mode supported */ 5543 __set_bit(PHY_INTERFACE_MODE_2500BASEX, 5544 pp->phylink_config.supported_interfaces); 5545 } else if (phy_mode == PHY_INTERFACE_MODE_1000BASEX || 5546 phy_mode == PHY_INTERFACE_MODE_SGMII) { 5547 /* No COMPHY, we can switch between 1000BASE-X and SGMII */ 5548 __set_bit(PHY_INTERFACE_MODE_1000BASEX, 5549 pp->phylink_config.supported_interfaces); 5550 __set_bit(PHY_INTERFACE_MODE_SGMII, 5551 pp->phylink_config.supported_interfaces); 5552 } 5553 5554 phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode, 5555 phy_mode, &mvneta_phylink_ops); 5556 if (IS_ERR(phylink)) { 5557 err = PTR_ERR(phylink); 5558 goto err_clk; 5559 } 5560 5561 pp->phylink = phylink; 5562 5563 /* Alloc per-cpu port structure */ 5564 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 5565 if (!pp->ports) { 5566 err = -ENOMEM; 5567 goto err_free_phylink; 5568 } 5569 5570 /* Alloc per-cpu stats */ 5571 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 5572 if (!pp->stats) { 5573 err = -ENOMEM; 5574 goto err_free_ports; 5575 } 5576 5577 err = of_get_ethdev_address(dn, dev); 5578 if (!err) { 5579 mac_from = "device tree"; 5580 } else { 5581 mvneta_get_mac_addr(pp, hw_mac_addr); 5582 if (is_valid_ether_addr(hw_mac_addr)) { 5583 mac_from = "hardware"; 5584 eth_hw_addr_set(dev, hw_mac_addr); 5585 } else { 5586 mac_from = "random"; 5587 eth_hw_addr_random(dev); 5588 } 5589 } 5590 5591 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 5592 if (tx_csum_limit < 0 || 5593 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 5594 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5595 dev_info(&pdev->dev, 5596 "Wrong TX csum limit in DT, set to %dB\n", 5597 MVNETA_TX_CSUM_DEF_SIZE); 5598 } 5599 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 5600 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5601 } else { 5602 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 5603 } 5604 5605 pp->tx_csum_limit = tx_csum_limit; 5606 5607 pp->dram_target_info = mv_mbus_dram_info(); 5608 /* Armada3700 requires setting default configuration of Mbus 5609 * windows, however without using filled mbus_dram_target_info 5610 * structure. 5611 */ 5612 if (pp->dram_target_info || pp->neta_armada3700) 5613 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5614 5615 pp->tx_ring_size = MVNETA_MAX_TXD; 5616 pp->rx_ring_size = MVNETA_MAX_RXD; 5617 5618 pp->dev = dev; 5619 SET_NETDEV_DEV(dev, &pdev->dev); 5620 5621 pp->id = global_port_id++; 5622 5623 /* Obtain access to BM resources if enabled and already initialized */ 5624 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 5625 if (bm_node) { 5626 pp->bm_priv = mvneta_bm_get(bm_node); 5627 if (pp->bm_priv) { 5628 err = mvneta_bm_port_init(pdev, pp); 5629 if (err < 0) { 5630 dev_info(&pdev->dev, 5631 "use SW buffer management\n"); 5632 mvneta_bm_put(pp->bm_priv); 5633 pp->bm_priv = NULL; 5634 } 5635 } 5636 /* Set RX packet offset correction for platforms, whose 5637 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 5638 * platforms and 0B for 32-bit ones. 5639 */ 5640 pp->rx_offset_correction = max(0, 5641 NET_SKB_PAD - 5642 MVNETA_RX_PKT_OFFSET_CORRECTION); 5643 } 5644 of_node_put(bm_node); 5645 5646 /* sw buffer management */ 5647 if (!pp->bm_priv) 5648 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5649 5650 err = mvneta_init(&pdev->dev, pp); 5651 if (err < 0) 5652 goto err_netdev; 5653 5654 err = mvneta_port_power_up(pp, pp->phy_interface); 5655 if (err < 0) { 5656 dev_err(&pdev->dev, "can't power up port\n"); 5657 goto err_netdev; 5658 } 5659 5660 /* Armada3700 network controller does not support per-cpu 5661 * operation, so only single NAPI should be initialized. 5662 */ 5663 if (pp->neta_armada3700) { 5664 netif_napi_add(dev, &pp->napi, mvneta_poll); 5665 } else { 5666 for_each_present_cpu(cpu) { 5667 struct mvneta_pcpu_port *port = 5668 per_cpu_ptr(pp->ports, cpu); 5669 5670 netif_napi_add(dev, &port->napi, mvneta_poll); 5671 port->pp = pp; 5672 } 5673 } 5674 5675 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5676 NETIF_F_TSO | NETIF_F_RXCSUM; 5677 dev->hw_features |= dev->features; 5678 dev->vlan_features |= dev->features; 5679 if (!pp->bm_priv) 5680 dev->xdp_features = NETDEV_XDP_ACT_BASIC | 5681 NETDEV_XDP_ACT_REDIRECT | 5682 NETDEV_XDP_ACT_NDO_XMIT | 5683 NETDEV_XDP_ACT_RX_SG | 5684 NETDEV_XDP_ACT_NDO_XMIT_SG; 5685 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 5686 netif_set_tso_max_segs(dev, MVNETA_MAX_TSO_SEGS); 5687 5688 /* MTU range: 68 - 9676 */ 5689 dev->min_mtu = ETH_MIN_MTU; 5690 /* 9676 == 9700 - 20 and rounding to 8 */ 5691 dev->max_mtu = 9676; 5692 5693 err = register_netdev(dev); 5694 if (err < 0) { 5695 dev_err(&pdev->dev, "failed to register\n"); 5696 goto err_netdev; 5697 } 5698 5699 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 5700 dev->dev_addr); 5701 5702 platform_set_drvdata(pdev, pp->dev); 5703 5704 return 0; 5705 5706 err_netdev: 5707 if (pp->bm_priv) { 5708 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5709 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5710 1 << pp->id); 5711 mvneta_bm_put(pp->bm_priv); 5712 } 5713 free_percpu(pp->stats); 5714 err_free_ports: 5715 free_percpu(pp->ports); 5716 err_free_phylink: 5717 if (pp->phylink) 5718 phylink_destroy(pp->phylink); 5719 err_clk: 5720 clk_disable_unprepare(pp->clk_bus); 5721 clk_disable_unprepare(pp->clk); 5722 err_free_irq: 5723 irq_dispose_mapping(dev->irq); 5724 return err; 5725 } 5726 5727 /* Device removal routine */ 5728 static void mvneta_remove(struct platform_device *pdev) 5729 { 5730 struct net_device *dev = platform_get_drvdata(pdev); 5731 struct mvneta_port *pp = netdev_priv(dev); 5732 5733 unregister_netdev(dev); 5734 clk_disable_unprepare(pp->clk_bus); 5735 clk_disable_unprepare(pp->clk); 5736 free_percpu(pp->ports); 5737 free_percpu(pp->stats); 5738 irq_dispose_mapping(dev->irq); 5739 phylink_destroy(pp->phylink); 5740 5741 if (pp->bm_priv) { 5742 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5743 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5744 1 << pp->id); 5745 mvneta_bm_put(pp->bm_priv); 5746 } 5747 } 5748 5749 #ifdef CONFIG_PM_SLEEP 5750 static int mvneta_suspend(struct device *device) 5751 { 5752 int queue; 5753 struct net_device *dev = dev_get_drvdata(device); 5754 struct mvneta_port *pp = netdev_priv(dev); 5755 5756 if (!netif_running(dev)) 5757 goto clean_exit; 5758 5759 if (!pp->neta_armada3700) { 5760 spin_lock(&pp->lock); 5761 pp->is_stopped = true; 5762 spin_unlock(&pp->lock); 5763 5764 cpuhp_state_remove_instance_nocalls(online_hpstate, 5765 &pp->node_online); 5766 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5767 &pp->node_dead); 5768 } 5769 5770 rtnl_lock(); 5771 mvneta_stop_dev(pp); 5772 rtnl_unlock(); 5773 5774 for (queue = 0; queue < rxq_number; queue++) { 5775 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5776 5777 mvneta_rxq_drop_pkts(pp, rxq); 5778 } 5779 5780 for (queue = 0; queue < txq_number; queue++) { 5781 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5782 5783 mvneta_txq_hw_deinit(pp, txq); 5784 } 5785 5786 clean_exit: 5787 netif_device_detach(dev); 5788 clk_disable_unprepare(pp->clk_bus); 5789 clk_disable_unprepare(pp->clk); 5790 5791 return 0; 5792 } 5793 5794 static int mvneta_resume(struct device *device) 5795 { 5796 struct platform_device *pdev = to_platform_device(device); 5797 struct net_device *dev = dev_get_drvdata(device); 5798 struct mvneta_port *pp = netdev_priv(dev); 5799 int err, queue; 5800 5801 clk_prepare_enable(pp->clk); 5802 if (!IS_ERR(pp->clk_bus)) 5803 clk_prepare_enable(pp->clk_bus); 5804 if (pp->dram_target_info || pp->neta_armada3700) 5805 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5806 if (pp->bm_priv) { 5807 err = mvneta_bm_port_init(pdev, pp); 5808 if (err < 0) { 5809 dev_info(&pdev->dev, "use SW buffer management\n"); 5810 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5811 pp->bm_priv = NULL; 5812 } 5813 } 5814 mvneta_defaults_set(pp); 5815 err = mvneta_port_power_up(pp, pp->phy_interface); 5816 if (err < 0) { 5817 dev_err(device, "can't power up port\n"); 5818 return err; 5819 } 5820 5821 netif_device_attach(dev); 5822 5823 if (!netif_running(dev)) 5824 return 0; 5825 5826 for (queue = 0; queue < rxq_number; queue++) { 5827 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5828 5829 rxq->next_desc_to_proc = 0; 5830 mvneta_rxq_hw_init(pp, rxq); 5831 } 5832 5833 for (queue = 0; queue < txq_number; queue++) { 5834 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5835 5836 txq->next_desc_to_proc = 0; 5837 mvneta_txq_hw_init(pp, txq); 5838 } 5839 5840 if (!pp->neta_armada3700) { 5841 spin_lock(&pp->lock); 5842 pp->is_stopped = false; 5843 spin_unlock(&pp->lock); 5844 cpuhp_state_add_instance_nocalls(online_hpstate, 5845 &pp->node_online); 5846 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5847 &pp->node_dead); 5848 } 5849 5850 rtnl_lock(); 5851 mvneta_start_dev(pp); 5852 rtnl_unlock(); 5853 mvneta_set_rx_mode(dev); 5854 5855 return 0; 5856 } 5857 #endif 5858 5859 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); 5860 5861 static const struct of_device_id mvneta_match[] = { 5862 { .compatible = "marvell,armada-370-neta" }, 5863 { .compatible = "marvell,armada-xp-neta" }, 5864 { .compatible = "marvell,armada-3700-neta" }, 5865 { .compatible = "marvell,armada-ac5-neta" }, 5866 { } 5867 }; 5868 MODULE_DEVICE_TABLE(of, mvneta_match); 5869 5870 static struct platform_driver mvneta_driver = { 5871 .probe = mvneta_probe, 5872 .remove_new = mvneta_remove, 5873 .driver = { 5874 .name = MVNETA_DRIVER_NAME, 5875 .of_match_table = mvneta_match, 5876 .pm = &mvneta_pm_ops, 5877 }, 5878 }; 5879 5880 static int __init mvneta_driver_init(void) 5881 { 5882 int ret; 5883 5884 BUILD_BUG_ON_NOT_POWER_OF_2(MVNETA_TSO_PER_PAGE); 5885 5886 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online", 5887 mvneta_cpu_online, 5888 mvneta_cpu_down_prepare); 5889 if (ret < 0) 5890 goto out; 5891 online_hpstate = ret; 5892 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 5893 NULL, mvneta_cpu_dead); 5894 if (ret) 5895 goto err_dead; 5896 5897 ret = platform_driver_register(&mvneta_driver); 5898 if (ret) 5899 goto err; 5900 return 0; 5901 5902 err: 5903 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5904 err_dead: 5905 cpuhp_remove_multi_state(online_hpstate); 5906 out: 5907 return ret; 5908 } 5909 module_init(mvneta_driver_init); 5910 5911 static void __exit mvneta_driver_exit(void) 5912 { 5913 platform_driver_unregister(&mvneta_driver); 5914 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5915 cpuhp_remove_multi_state(online_hpstate); 5916 } 5917 module_exit(mvneta_driver_exit); 5918 5919 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 5920 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 5921 MODULE_LICENSE("GPL"); 5922 5923 module_param(rxq_number, int, 0444); 5924 module_param(txq_number, int, 0444); 5925 5926 module_param(rxq_def, int, 0444); 5927 module_param(rx_copybreak, int, 0644); 5928