1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy/phy.h> 31 #include <linux/phy.h> 32 #include <linux/phylink.h> 33 #include <linux/platform_device.h> 34 #include <linux/skbuff.h> 35 #include <net/hwbm.h> 36 #include "mvneta_bm.h" 37 #include <net/ip.h> 38 #include <net/ipv6.h> 39 #include <net/tso.h> 40 #include <net/page_pool.h> 41 #include <net/pkt_cls.h> 42 #include <linux/bpf_trace.h> 43 44 /* Registers */ 45 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 46 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 47 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 48 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 49 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 50 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 51 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 52 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 53 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 54 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 55 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 56 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 57 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 58 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 59 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 60 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 61 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 62 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 63 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 64 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 65 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 66 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 67 #define MVNETA_PORT_RX_RESET 0x1cc0 68 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 69 #define MVNETA_PHY_ADDR 0x2000 70 #define MVNETA_PHY_ADDR_MASK 0x1f 71 #define MVNETA_MBUS_RETRY 0x2010 72 #define MVNETA_UNIT_INTR_CAUSE 0x2080 73 #define MVNETA_UNIT_CONTROL 0x20B0 74 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 75 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 76 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 77 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 78 #define MVNETA_BASE_ADDR_ENABLE 0x2290 79 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 80 #define MVNETA_PORT_CONFIG 0x2400 81 #define MVNETA_UNI_PROMISC_MODE BIT(0) 82 #define MVNETA_DEF_RXQ(q) ((q) << 1) 83 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 84 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 85 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 86 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 87 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 88 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 89 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 90 MVNETA_DEF_RXQ_ARP(q) | \ 91 MVNETA_DEF_RXQ_TCP(q) | \ 92 MVNETA_DEF_RXQ_UDP(q) | \ 93 MVNETA_DEF_RXQ_BPDU(q) | \ 94 MVNETA_TX_UNSET_ERR_SUM | \ 95 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 96 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 97 #define MVNETA_MAC_ADDR_LOW 0x2414 98 #define MVNETA_MAC_ADDR_HIGH 0x2418 99 #define MVNETA_SDMA_CONFIG 0x241c 100 #define MVNETA_SDMA_BRST_SIZE_16 4 101 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 102 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 103 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 104 #define MVNETA_DESC_SWAP BIT(6) 105 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 106 #define MVNETA_VLAN_PRIO_TO_RXQ 0x2440 107 #define MVNETA_VLAN_PRIO_RXQ_MAP(prio, rxq) ((rxq) << ((prio) * 3)) 108 #define MVNETA_PORT_STATUS 0x2444 109 #define MVNETA_TX_IN_PRGRS BIT(0) 110 #define MVNETA_TX_FIFO_EMPTY BIT(8) 111 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 112 /* Only exists on Armada XP and Armada 370 */ 113 #define MVNETA_SERDES_CFG 0x24A0 114 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 115 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 116 #define MVNETA_HSGMII_SERDES_PROTO 0x1107 117 #define MVNETA_TYPE_PRIO 0x24bc 118 #define MVNETA_FORCE_UNI BIT(21) 119 #define MVNETA_TXQ_CMD_1 0x24e4 120 #define MVNETA_TXQ_CMD 0x2448 121 #define MVNETA_TXQ_DISABLE_SHIFT 8 122 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 123 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 124 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 125 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 126 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 127 #define MVNETA_ACC_MODE 0x2500 128 #define MVNETA_BM_ADDRESS 0x2504 129 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 130 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 131 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 132 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 133 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 134 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 135 136 /* Exception Interrupt Port/Queue Cause register 137 * 138 * Their behavior depend of the mapping done using the PCPX2Q 139 * registers. For a given CPU if the bit associated to a queue is not 140 * set, then for the register a read from this CPU will always return 141 * 0 and a write won't do anything 142 */ 143 144 #define MVNETA_INTR_NEW_CAUSE 0x25a0 145 #define MVNETA_INTR_NEW_MASK 0x25a4 146 147 /* bits 0..7 = TXQ SENT, one bit per queue. 148 * bits 8..15 = RXQ OCCUP, one bit per queue. 149 * bits 16..23 = RXQ FREE, one bit per queue. 150 * bit 29 = OLD_REG_SUM, see old reg ? 151 * bit 30 = TX_ERR_SUM, one bit for 4 ports 152 * bit 31 = MISC_SUM, one bit for 4 ports 153 */ 154 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 155 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 156 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 157 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 158 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 159 160 #define MVNETA_INTR_OLD_CAUSE 0x25a8 161 #define MVNETA_INTR_OLD_MASK 0x25ac 162 163 /* Data Path Port/Queue Cause Register */ 164 #define MVNETA_INTR_MISC_CAUSE 0x25b0 165 #define MVNETA_INTR_MISC_MASK 0x25b4 166 167 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 168 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 169 #define MVNETA_CAUSE_PTP BIT(4) 170 171 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 172 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 173 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 174 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 175 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 176 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 177 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 178 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 179 180 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 181 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 182 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 183 184 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 185 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 186 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 187 188 #define MVNETA_INTR_ENABLE 0x25b8 189 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 190 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 191 192 #define MVNETA_RXQ_CMD 0x2680 193 #define MVNETA_RXQ_DISABLE_SHIFT 8 194 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 195 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 196 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 197 #define MVNETA_GMAC_CTRL_0 0x2c00 198 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 199 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 200 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1) 201 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 202 #define MVNETA_GMAC_CTRL_2 0x2c08 203 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 204 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 205 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 206 #define MVNETA_GMAC2_PORT_RESET BIT(6) 207 #define MVNETA_GMAC_STATUS 0x2c10 208 #define MVNETA_GMAC_LINK_UP BIT(0) 209 #define MVNETA_GMAC_SPEED_1000 BIT(1) 210 #define MVNETA_GMAC_SPEED_100 BIT(2) 211 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 212 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 213 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 214 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 215 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 216 #define MVNETA_GMAC_AN_COMPLETE BIT(11) 217 #define MVNETA_GMAC_SYNC_OK BIT(14) 218 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 219 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 220 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 221 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 222 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3) 223 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4) 224 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 225 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 226 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 227 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8) 228 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9) 229 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 230 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 231 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 232 #define MVNETA_GMAC_CTRL_4 0x2c90 233 #define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1) 234 #define MVNETA_MIB_COUNTERS_BASE 0x3000 235 #define MVNETA_MIB_LATE_COLLISION 0x7c 236 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 237 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 238 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 239 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 240 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 241 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 242 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 243 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 244 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 245 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 246 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 247 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 248 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 249 #define MVNETA_PORT_TX_RESET 0x3cf0 250 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 251 #define MVNETA_TXQ_CMD1_REG 0x3e00 252 #define MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 BIT(3) 253 #define MVNETA_TXQ_CMD1_BW_LIM_EN BIT(0) 254 #define MVNETA_REFILL_NUM_CLK_REG 0x3e08 255 #define MVNETA_REFILL_MAX_NUM_CLK 0x0000ffff 256 #define MVNETA_TX_MTU 0x3e0c 257 #define MVNETA_TX_TOKEN_SIZE 0x3e14 258 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 259 #define MVNETA_TXQ_BUCKET_REFILL_REG(q) (0x3e20 + ((q) << 2)) 260 #define MVNETA_TXQ_BUCKET_REFILL_PERIOD_MASK 0x3ff00000 261 #define MVNETA_TXQ_BUCKET_REFILL_PERIOD_SHIFT 20 262 #define MVNETA_TXQ_BUCKET_REFILL_VALUE_MAX 0x0007ffff 263 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 264 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 265 266 /* The values of the bucket refill base period and refill period are taken from 267 * the reference manual, and adds up to a base resolution of 10Kbps. This allows 268 * to cover all rate-limit values from 10Kbps up to 5Gbps 269 */ 270 271 /* Base period for the rate limit algorithm */ 272 #define MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS 100 273 274 /* Number of Base Period to wait between each bucket refill */ 275 #define MVNETA_TXQ_BUCKET_REFILL_PERIOD 1000 276 277 /* The base resolution for rate limiting, in bps. Any max_rate value should be 278 * a multiple of that value. 279 */ 280 #define MVNETA_TXQ_RATE_LIMIT_RESOLUTION (NSEC_PER_SEC / \ 281 (MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS * \ 282 MVNETA_TXQ_BUCKET_REFILL_PERIOD)) 283 284 #define MVNETA_LPI_CTRL_0 0x2cc0 285 #define MVNETA_LPI_CTRL_1 0x2cc4 286 #define MVNETA_LPI_REQUEST_ENABLE BIT(0) 287 #define MVNETA_LPI_CTRL_2 0x2cc8 288 #define MVNETA_LPI_STATUS 0x2ccc 289 290 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 291 292 /* Descriptor ring Macros */ 293 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 294 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 295 296 /* Various constants */ 297 298 /* Coalescing */ 299 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 300 #define MVNETA_RX_COAL_PKTS 32 301 #define MVNETA_RX_COAL_USEC 100 302 303 /* The two bytes Marvell header. Either contains a special value used 304 * by Marvell switches when a specific hardware mode is enabled (not 305 * supported by this driver) or is filled automatically by zeroes on 306 * the RX side. Those two bytes being at the front of the Ethernet 307 * header, they allow to have the IP header aligned on a 4 bytes 308 * boundary automatically: the hardware skips those two bytes on its 309 * own. 310 */ 311 #define MVNETA_MH_SIZE 2 312 313 #define MVNETA_VLAN_TAG_LEN 4 314 315 #define MVNETA_TX_CSUM_DEF_SIZE 1600 316 #define MVNETA_TX_CSUM_MAX_SIZE 9800 317 #define MVNETA_ACC_MODE_EXT1 1 318 #define MVNETA_ACC_MODE_EXT2 2 319 320 #define MVNETA_MAX_DECODE_WIN 6 321 322 /* Timeout constants */ 323 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 324 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 325 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 326 327 #define MVNETA_TX_MTU_MAX 0x3ffff 328 329 /* The RSS lookup table actually has 256 entries but we do not use 330 * them yet 331 */ 332 #define MVNETA_RSS_LU_TABLE_SIZE 1 333 334 /* Max number of Rx descriptors */ 335 #define MVNETA_MAX_RXD 512 336 337 /* Max number of Tx descriptors */ 338 #define MVNETA_MAX_TXD 1024 339 340 /* Max number of allowed TCP segments for software TSO */ 341 #define MVNETA_MAX_TSO_SEGS 100 342 343 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 344 345 /* descriptor aligned size */ 346 #define MVNETA_DESC_ALIGNED_SIZE 32 347 348 /* Number of bytes to be taken into account by HW when putting incoming data 349 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 350 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 351 */ 352 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 353 354 #define MVNETA_RX_PKT_SIZE(mtu) \ 355 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 356 ETH_HLEN + ETH_FCS_LEN, \ 357 cache_line_size()) 358 359 /* Driver assumes that the last 3 bits are 0 */ 360 #define MVNETA_SKB_HEADROOM ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8) 361 #define MVNETA_SKB_PAD (SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \ 362 MVNETA_SKB_HEADROOM)) 363 #define MVNETA_MAX_RX_BUF_SIZE (PAGE_SIZE - MVNETA_SKB_PAD) 364 365 #define IS_TSO_HEADER(txq, addr) \ 366 ((addr >= txq->tso_hdrs_phys) && \ 367 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 368 369 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 370 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 371 372 enum { 373 ETHTOOL_STAT_EEE_WAKEUP, 374 ETHTOOL_STAT_SKB_ALLOC_ERR, 375 ETHTOOL_STAT_REFILL_ERR, 376 ETHTOOL_XDP_REDIRECT, 377 ETHTOOL_XDP_PASS, 378 ETHTOOL_XDP_DROP, 379 ETHTOOL_XDP_TX, 380 ETHTOOL_XDP_TX_ERR, 381 ETHTOOL_XDP_XMIT, 382 ETHTOOL_XDP_XMIT_ERR, 383 ETHTOOL_MAX_STATS, 384 }; 385 386 struct mvneta_statistic { 387 unsigned short offset; 388 unsigned short type; 389 const char name[ETH_GSTRING_LEN]; 390 }; 391 392 #define T_REG_32 32 393 #define T_REG_64 64 394 #define T_SW 1 395 396 #define MVNETA_XDP_PASS 0 397 #define MVNETA_XDP_DROPPED BIT(0) 398 #define MVNETA_XDP_TX BIT(1) 399 #define MVNETA_XDP_REDIR BIT(2) 400 401 static const struct mvneta_statistic mvneta_statistics[] = { 402 { 0x3000, T_REG_64, "good_octets_received", }, 403 { 0x3010, T_REG_32, "good_frames_received", }, 404 { 0x3008, T_REG_32, "bad_octets_received", }, 405 { 0x3014, T_REG_32, "bad_frames_received", }, 406 { 0x3018, T_REG_32, "broadcast_frames_received", }, 407 { 0x301c, T_REG_32, "multicast_frames_received", }, 408 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 409 { 0x3058, T_REG_32, "good_fc_received", }, 410 { 0x305c, T_REG_32, "bad_fc_received", }, 411 { 0x3060, T_REG_32, "undersize_received", }, 412 { 0x3064, T_REG_32, "fragments_received", }, 413 { 0x3068, T_REG_32, "oversize_received", }, 414 { 0x306c, T_REG_32, "jabber_received", }, 415 { 0x3070, T_REG_32, "mac_receive_error", }, 416 { 0x3074, T_REG_32, "bad_crc_event", }, 417 { 0x3078, T_REG_32, "collision", }, 418 { 0x307c, T_REG_32, "late_collision", }, 419 { 0x2484, T_REG_32, "rx_discard", }, 420 { 0x2488, T_REG_32, "rx_overrun", }, 421 { 0x3020, T_REG_32, "frames_64_octets", }, 422 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 423 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 424 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 425 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 426 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 427 { 0x3038, T_REG_64, "good_octets_sent", }, 428 { 0x3040, T_REG_32, "good_frames_sent", }, 429 { 0x3044, T_REG_32, "excessive_collision", }, 430 { 0x3048, T_REG_32, "multicast_frames_sent", }, 431 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 432 { 0x3054, T_REG_32, "fc_sent", }, 433 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 434 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", }, 435 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", }, 436 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", }, 437 { ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", }, 438 { ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", }, 439 { ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", }, 440 { ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", }, 441 { ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", }, 442 { ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", }, 443 { ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", }, 444 }; 445 446 struct mvneta_stats { 447 u64 rx_packets; 448 u64 rx_bytes; 449 u64 tx_packets; 450 u64 tx_bytes; 451 /* xdp */ 452 u64 xdp_redirect; 453 u64 xdp_pass; 454 u64 xdp_drop; 455 u64 xdp_xmit; 456 u64 xdp_xmit_err; 457 u64 xdp_tx; 458 u64 xdp_tx_err; 459 }; 460 461 struct mvneta_ethtool_stats { 462 struct mvneta_stats ps; 463 u64 skb_alloc_error; 464 u64 refill_error; 465 }; 466 467 struct mvneta_pcpu_stats { 468 struct u64_stats_sync syncp; 469 470 struct mvneta_ethtool_stats es; 471 u64 rx_dropped; 472 u64 rx_errors; 473 }; 474 475 struct mvneta_pcpu_port { 476 /* Pointer to the shared port */ 477 struct mvneta_port *pp; 478 479 /* Pointer to the CPU-local NAPI struct */ 480 struct napi_struct napi; 481 482 /* Cause of the previous interrupt */ 483 u32 cause_rx_tx; 484 }; 485 486 enum { 487 __MVNETA_DOWN, 488 }; 489 490 struct mvneta_port { 491 u8 id; 492 struct mvneta_pcpu_port __percpu *ports; 493 struct mvneta_pcpu_stats __percpu *stats; 494 495 unsigned long state; 496 497 int pkt_size; 498 void __iomem *base; 499 struct mvneta_rx_queue *rxqs; 500 struct mvneta_tx_queue *txqs; 501 struct net_device *dev; 502 struct hlist_node node_online; 503 struct hlist_node node_dead; 504 int rxq_def; 505 /* Protect the access to the percpu interrupt registers, 506 * ensuring that the configuration remains coherent. 507 */ 508 spinlock_t lock; 509 bool is_stopped; 510 511 u32 cause_rx_tx; 512 struct napi_struct napi; 513 514 struct bpf_prog *xdp_prog; 515 516 /* Core clock */ 517 struct clk *clk; 518 /* AXI clock */ 519 struct clk *clk_bus; 520 u8 mcast_count[256]; 521 u16 tx_ring_size; 522 u16 rx_ring_size; 523 524 phy_interface_t phy_interface; 525 struct device_node *dn; 526 unsigned int tx_csum_limit; 527 struct phylink *phylink; 528 struct phylink_config phylink_config; 529 struct phylink_pcs phylink_pcs; 530 struct phy *comphy; 531 532 struct mvneta_bm *bm_priv; 533 struct mvneta_bm_pool *pool_long; 534 struct mvneta_bm_pool *pool_short; 535 int bm_win_id; 536 537 bool eee_enabled; 538 bool eee_active; 539 bool tx_lpi_enabled; 540 541 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 542 543 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 544 545 /* Flags for special SoC configurations */ 546 bool neta_armada3700; 547 u16 rx_offset_correction; 548 const struct mbus_dram_target_info *dram_target_info; 549 }; 550 551 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 552 * layout of the transmit and reception DMA descriptors, and their 553 * layout is therefore defined by the hardware design 554 */ 555 556 #define MVNETA_TX_L3_OFF_SHIFT 0 557 #define MVNETA_TX_IP_HLEN_SHIFT 8 558 #define MVNETA_TX_L4_UDP BIT(16) 559 #define MVNETA_TX_L3_IP6 BIT(17) 560 #define MVNETA_TXD_IP_CSUM BIT(18) 561 #define MVNETA_TXD_Z_PAD BIT(19) 562 #define MVNETA_TXD_L_DESC BIT(20) 563 #define MVNETA_TXD_F_DESC BIT(21) 564 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 565 MVNETA_TXD_L_DESC | \ 566 MVNETA_TXD_F_DESC) 567 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 568 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 569 570 #define MVNETA_RXD_ERR_CRC 0x0 571 #define MVNETA_RXD_BM_POOL_SHIFT 13 572 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 573 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 574 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 575 #define MVNETA_RXD_ERR_LEN BIT(18) 576 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 577 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 578 #define MVNETA_RXD_L3_IP4 BIT(25) 579 #define MVNETA_RXD_LAST_DESC BIT(26) 580 #define MVNETA_RXD_FIRST_DESC BIT(27) 581 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \ 582 MVNETA_RXD_LAST_DESC) 583 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 584 585 #if defined(__LITTLE_ENDIAN) 586 struct mvneta_tx_desc { 587 u32 command; /* Options used by HW for packet transmitting.*/ 588 u16 reserved1; /* csum_l4 (for future use) */ 589 u16 data_size; /* Data size of transmitted packet in bytes */ 590 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 591 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 592 u32 reserved3[4]; /* Reserved - (for future use) */ 593 }; 594 595 struct mvneta_rx_desc { 596 u32 status; /* Info about received packet */ 597 u16 reserved1; /* pnc_info - (for future use, PnC) */ 598 u16 data_size; /* Size of received packet in bytes */ 599 600 u32 buf_phys_addr; /* Physical address of the buffer */ 601 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 602 603 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 604 u16 reserved3; /* prefetch_cmd, for future use */ 605 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 606 607 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 608 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 609 }; 610 #else 611 struct mvneta_tx_desc { 612 u16 data_size; /* Data size of transmitted packet in bytes */ 613 u16 reserved1; /* csum_l4 (for future use) */ 614 u32 command; /* Options used by HW for packet transmitting.*/ 615 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 616 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 617 u32 reserved3[4]; /* Reserved - (for future use) */ 618 }; 619 620 struct mvneta_rx_desc { 621 u16 data_size; /* Size of received packet in bytes */ 622 u16 reserved1; /* pnc_info - (for future use, PnC) */ 623 u32 status; /* Info about received packet */ 624 625 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 626 u32 buf_phys_addr; /* Physical address of the buffer */ 627 628 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 629 u16 reserved3; /* prefetch_cmd, for future use */ 630 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 631 632 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 633 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 634 }; 635 #endif 636 637 enum mvneta_tx_buf_type { 638 MVNETA_TYPE_SKB, 639 MVNETA_TYPE_XDP_TX, 640 MVNETA_TYPE_XDP_NDO, 641 }; 642 643 struct mvneta_tx_buf { 644 enum mvneta_tx_buf_type type; 645 union { 646 struct xdp_frame *xdpf; 647 struct sk_buff *skb; 648 }; 649 }; 650 651 struct mvneta_tx_queue { 652 /* Number of this TX queue, in the range 0-7 */ 653 u8 id; 654 655 /* Number of TX DMA descriptors in the descriptor ring */ 656 int size; 657 658 /* Number of currently used TX DMA descriptor in the 659 * descriptor ring 660 */ 661 int count; 662 int pending; 663 int tx_stop_threshold; 664 int tx_wake_threshold; 665 666 /* Array of transmitted buffers */ 667 struct mvneta_tx_buf *buf; 668 669 /* Index of last TX DMA descriptor that was inserted */ 670 int txq_put_index; 671 672 /* Index of the TX DMA descriptor to be cleaned up */ 673 int txq_get_index; 674 675 u32 done_pkts_coal; 676 677 /* Virtual address of the TX DMA descriptors array */ 678 struct mvneta_tx_desc *descs; 679 680 /* DMA address of the TX DMA descriptors array */ 681 dma_addr_t descs_phys; 682 683 /* Index of the last TX DMA descriptor */ 684 int last_desc; 685 686 /* Index of the next TX DMA descriptor to process */ 687 int next_desc_to_proc; 688 689 /* DMA buffers for TSO headers */ 690 char *tso_hdrs; 691 692 /* DMA address of TSO headers */ 693 dma_addr_t tso_hdrs_phys; 694 695 /* Affinity mask for CPUs*/ 696 cpumask_t affinity_mask; 697 }; 698 699 struct mvneta_rx_queue { 700 /* rx queue number, in the range 0-7 */ 701 u8 id; 702 703 /* num of rx descriptors in the rx descriptor ring */ 704 int size; 705 706 u32 pkts_coal; 707 u32 time_coal; 708 709 /* page_pool */ 710 struct page_pool *page_pool; 711 struct xdp_rxq_info xdp_rxq; 712 713 /* Virtual address of the RX buffer */ 714 void **buf_virt_addr; 715 716 /* Virtual address of the RX DMA descriptors array */ 717 struct mvneta_rx_desc *descs; 718 719 /* DMA address of the RX DMA descriptors array */ 720 dma_addr_t descs_phys; 721 722 /* Index of the last RX DMA descriptor */ 723 int last_desc; 724 725 /* Index of the next RX DMA descriptor to process */ 726 int next_desc_to_proc; 727 728 /* Index of first RX DMA descriptor to refill */ 729 int first_to_refill; 730 u32 refill_num; 731 }; 732 733 static enum cpuhp_state online_hpstate; 734 /* The hardware supports eight (8) rx queues, but we are only allowing 735 * the first one to be used. Therefore, let's just allocate one queue. 736 */ 737 static int rxq_number = 8; 738 static int txq_number = 8; 739 740 static int rxq_def; 741 742 static int rx_copybreak __read_mostly = 256; 743 744 /* HW BM need that each port be identify by a unique ID */ 745 static int global_port_id; 746 747 #define MVNETA_DRIVER_NAME "mvneta" 748 #define MVNETA_DRIVER_VERSION "1.0" 749 750 /* Utility/helper methods */ 751 752 /* Write helper method */ 753 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 754 { 755 writel(data, pp->base + offset); 756 } 757 758 /* Read helper method */ 759 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 760 { 761 return readl(pp->base + offset); 762 } 763 764 /* Increment txq get counter */ 765 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 766 { 767 txq->txq_get_index++; 768 if (txq->txq_get_index == txq->size) 769 txq->txq_get_index = 0; 770 } 771 772 /* Increment txq put counter */ 773 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 774 { 775 txq->txq_put_index++; 776 if (txq->txq_put_index == txq->size) 777 txq->txq_put_index = 0; 778 } 779 780 781 /* Clear all MIB counters */ 782 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 783 { 784 int i; 785 786 /* Perform dummy reads from MIB counters */ 787 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 788 mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 789 mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 790 mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 791 } 792 793 /* Get System Network Statistics */ 794 static void 795 mvneta_get_stats64(struct net_device *dev, 796 struct rtnl_link_stats64 *stats) 797 { 798 struct mvneta_port *pp = netdev_priv(dev); 799 unsigned int start; 800 int cpu; 801 802 for_each_possible_cpu(cpu) { 803 struct mvneta_pcpu_stats *cpu_stats; 804 u64 rx_packets; 805 u64 rx_bytes; 806 u64 rx_dropped; 807 u64 rx_errors; 808 u64 tx_packets; 809 u64 tx_bytes; 810 811 cpu_stats = per_cpu_ptr(pp->stats, cpu); 812 do { 813 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 814 rx_packets = cpu_stats->es.ps.rx_packets; 815 rx_bytes = cpu_stats->es.ps.rx_bytes; 816 rx_dropped = cpu_stats->rx_dropped; 817 rx_errors = cpu_stats->rx_errors; 818 tx_packets = cpu_stats->es.ps.tx_packets; 819 tx_bytes = cpu_stats->es.ps.tx_bytes; 820 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 821 822 stats->rx_packets += rx_packets; 823 stats->rx_bytes += rx_bytes; 824 stats->rx_dropped += rx_dropped; 825 stats->rx_errors += rx_errors; 826 stats->tx_packets += tx_packets; 827 stats->tx_bytes += tx_bytes; 828 } 829 830 stats->tx_dropped = dev->stats.tx_dropped; 831 } 832 833 /* Rx descriptors helper methods */ 834 835 /* Checks whether the RX descriptor having this status is both the first 836 * and the last descriptor for the RX packet. Each RX packet is currently 837 * received through a single RX descriptor, so not having each RX 838 * descriptor with its first and last bits set is an error 839 */ 840 static int mvneta_rxq_desc_is_first_last(u32 status) 841 { 842 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 843 MVNETA_RXD_FIRST_LAST_DESC; 844 } 845 846 /* Add number of descriptors ready to receive new packets */ 847 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 848 struct mvneta_rx_queue *rxq, 849 int ndescs) 850 { 851 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 852 * be added at once 853 */ 854 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 855 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 856 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 857 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 858 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 859 } 860 861 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 862 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 863 } 864 865 /* Get number of RX descriptors occupied by received packets */ 866 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 867 struct mvneta_rx_queue *rxq) 868 { 869 u32 val; 870 871 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 872 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 873 } 874 875 /* Update num of rx desc called upon return from rx path or 876 * from mvneta_rxq_drop_pkts(). 877 */ 878 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 879 struct mvneta_rx_queue *rxq, 880 int rx_done, int rx_filled) 881 { 882 u32 val; 883 884 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 885 val = rx_done | 886 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 887 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 888 return; 889 } 890 891 /* Only 255 descriptors can be added at once */ 892 while ((rx_done > 0) || (rx_filled > 0)) { 893 if (rx_done <= 0xff) { 894 val = rx_done; 895 rx_done = 0; 896 } else { 897 val = 0xff; 898 rx_done -= 0xff; 899 } 900 if (rx_filled <= 0xff) { 901 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 902 rx_filled = 0; 903 } else { 904 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 905 rx_filled -= 0xff; 906 } 907 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 908 } 909 } 910 911 /* Get pointer to next RX descriptor to be processed by SW */ 912 static struct mvneta_rx_desc * 913 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 914 { 915 int rx_desc = rxq->next_desc_to_proc; 916 917 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 918 prefetch(rxq->descs + rxq->next_desc_to_proc); 919 return rxq->descs + rx_desc; 920 } 921 922 /* Change maximum receive size of the port. */ 923 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 924 { 925 u32 val; 926 927 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 928 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 929 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 930 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 931 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 932 } 933 934 935 /* Set rx queue offset */ 936 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 937 struct mvneta_rx_queue *rxq, 938 int offset) 939 { 940 u32 val; 941 942 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 943 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 944 945 /* Offset is in */ 946 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 947 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 948 } 949 950 951 /* Tx descriptors helper methods */ 952 953 /* Update HW with number of TX descriptors to be sent */ 954 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 955 struct mvneta_tx_queue *txq, 956 int pend_desc) 957 { 958 u32 val; 959 960 pend_desc += txq->pending; 961 962 /* Only 255 Tx descriptors can be added at once */ 963 do { 964 val = min(pend_desc, 255); 965 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 966 pend_desc -= val; 967 } while (pend_desc > 0); 968 txq->pending = 0; 969 } 970 971 /* Get pointer to next TX descriptor to be processed (send) by HW */ 972 static struct mvneta_tx_desc * 973 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 974 { 975 int tx_desc = txq->next_desc_to_proc; 976 977 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 978 return txq->descs + tx_desc; 979 } 980 981 /* Release the last allocated TX descriptor. Useful to handle DMA 982 * mapping failures in the TX path. 983 */ 984 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 985 { 986 if (txq->next_desc_to_proc == 0) 987 txq->next_desc_to_proc = txq->last_desc - 1; 988 else 989 txq->next_desc_to_proc--; 990 } 991 992 /* Set rxq buf size */ 993 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 994 struct mvneta_rx_queue *rxq, 995 int buf_size) 996 { 997 u32 val; 998 999 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 1000 1001 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 1002 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 1003 1004 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 1005 } 1006 1007 /* Disable buffer management (BM) */ 1008 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 1009 struct mvneta_rx_queue *rxq) 1010 { 1011 u32 val; 1012 1013 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1014 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 1015 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1016 } 1017 1018 /* Enable buffer management (BM) */ 1019 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 1020 struct mvneta_rx_queue *rxq) 1021 { 1022 u32 val; 1023 1024 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1025 val |= MVNETA_RXQ_HW_BUF_ALLOC; 1026 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1027 } 1028 1029 /* Notify HW about port's assignment of pool for bigger packets */ 1030 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 1031 struct mvneta_rx_queue *rxq) 1032 { 1033 u32 val; 1034 1035 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1036 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 1037 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 1038 1039 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1040 } 1041 1042 /* Notify HW about port's assignment of pool for smaller packets */ 1043 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 1044 struct mvneta_rx_queue *rxq) 1045 { 1046 u32 val; 1047 1048 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1049 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 1050 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 1051 1052 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1053 } 1054 1055 /* Set port's receive buffer size for assigned BM pool */ 1056 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 1057 int buf_size, 1058 u8 pool_id) 1059 { 1060 u32 val; 1061 1062 if (!IS_ALIGNED(buf_size, 8)) { 1063 dev_warn(pp->dev->dev.parent, 1064 "illegal buf_size value %d, round to %d\n", 1065 buf_size, ALIGN(buf_size, 8)); 1066 buf_size = ALIGN(buf_size, 8); 1067 } 1068 1069 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 1070 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 1071 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 1072 } 1073 1074 /* Configure MBUS window in order to enable access BM internal SRAM */ 1075 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 1076 u8 target, u8 attr) 1077 { 1078 u32 win_enable, win_protect; 1079 int i; 1080 1081 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 1082 1083 if (pp->bm_win_id < 0) { 1084 /* Find first not occupied window */ 1085 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 1086 if (win_enable & (1 << i)) { 1087 pp->bm_win_id = i; 1088 break; 1089 } 1090 } 1091 if (i == MVNETA_MAX_DECODE_WIN) 1092 return -ENOMEM; 1093 } else { 1094 i = pp->bm_win_id; 1095 } 1096 1097 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 1098 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 1099 1100 if (i < 4) 1101 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 1102 1103 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 1104 (attr << 8) | target); 1105 1106 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 1107 1108 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 1109 win_protect |= 3 << (2 * i); 1110 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 1111 1112 win_enable &= ~(1 << i); 1113 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 1114 1115 return 0; 1116 } 1117 1118 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 1119 { 1120 u32 wsize; 1121 u8 target, attr; 1122 int err; 1123 1124 /* Get BM window information */ 1125 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 1126 &target, &attr); 1127 if (err < 0) 1128 return err; 1129 1130 pp->bm_win_id = -1; 1131 1132 /* Open NETA -> BM window */ 1133 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 1134 target, attr); 1135 if (err < 0) { 1136 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 1137 return err; 1138 } 1139 return 0; 1140 } 1141 1142 /* Assign and initialize pools for port. In case of fail 1143 * buffer manager will remain disabled for current port. 1144 */ 1145 static int mvneta_bm_port_init(struct platform_device *pdev, 1146 struct mvneta_port *pp) 1147 { 1148 struct device_node *dn = pdev->dev.of_node; 1149 u32 long_pool_id, short_pool_id; 1150 1151 if (!pp->neta_armada3700) { 1152 int ret; 1153 1154 ret = mvneta_bm_port_mbus_init(pp); 1155 if (ret) 1156 return ret; 1157 } 1158 1159 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1160 netdev_info(pp->dev, "missing long pool id\n"); 1161 return -EINVAL; 1162 } 1163 1164 /* Create port's long pool depending on mtu */ 1165 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1166 MVNETA_BM_LONG, pp->id, 1167 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1168 if (!pp->pool_long) { 1169 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1170 return -ENOMEM; 1171 } 1172 1173 pp->pool_long->port_map |= 1 << pp->id; 1174 1175 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1176 pp->pool_long->id); 1177 1178 /* If short pool id is not defined, assume using single pool */ 1179 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1180 short_pool_id = long_pool_id; 1181 1182 /* Create port's short pool */ 1183 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1184 MVNETA_BM_SHORT, pp->id, 1185 MVNETA_BM_SHORT_PKT_SIZE); 1186 if (!pp->pool_short) { 1187 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1188 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1189 return -ENOMEM; 1190 } 1191 1192 if (short_pool_id != long_pool_id) { 1193 pp->pool_short->port_map |= 1 << pp->id; 1194 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1195 pp->pool_short->id); 1196 } 1197 1198 return 0; 1199 } 1200 1201 /* Update settings of a pool for bigger packets */ 1202 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1203 { 1204 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1205 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1206 int num; 1207 1208 /* Release all buffers from long pool */ 1209 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1210 if (hwbm_pool->buf_num) { 1211 WARN(1, "cannot free all buffers in pool %d\n", 1212 bm_pool->id); 1213 goto bm_mtu_err; 1214 } 1215 1216 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1217 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1218 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1219 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1220 1221 /* Fill entire long pool */ 1222 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size); 1223 if (num != hwbm_pool->size) { 1224 WARN(1, "pool %d: %d of %d allocated\n", 1225 bm_pool->id, num, hwbm_pool->size); 1226 goto bm_mtu_err; 1227 } 1228 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1229 1230 return; 1231 1232 bm_mtu_err: 1233 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1234 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1235 1236 pp->bm_priv = NULL; 1237 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 1238 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1239 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1240 } 1241 1242 /* Start the Ethernet port RX and TX activity */ 1243 static void mvneta_port_up(struct mvneta_port *pp) 1244 { 1245 int queue; 1246 u32 q_map; 1247 1248 /* Enable all initialized TXs. */ 1249 q_map = 0; 1250 for (queue = 0; queue < txq_number; queue++) { 1251 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1252 if (txq->descs) 1253 q_map |= (1 << queue); 1254 } 1255 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1256 1257 q_map = 0; 1258 /* Enable all initialized RXQs. */ 1259 for (queue = 0; queue < rxq_number; queue++) { 1260 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1261 1262 if (rxq->descs) 1263 q_map |= (1 << queue); 1264 } 1265 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1266 } 1267 1268 /* Stop the Ethernet port activity */ 1269 static void mvneta_port_down(struct mvneta_port *pp) 1270 { 1271 u32 val; 1272 int count; 1273 1274 /* Stop Rx port activity. Check port Rx activity. */ 1275 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1276 1277 /* Issue stop command for active channels only */ 1278 if (val != 0) 1279 mvreg_write(pp, MVNETA_RXQ_CMD, 1280 val << MVNETA_RXQ_DISABLE_SHIFT); 1281 1282 /* Wait for all Rx activity to terminate. */ 1283 count = 0; 1284 do { 1285 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1286 netdev_warn(pp->dev, 1287 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1288 val); 1289 break; 1290 } 1291 mdelay(1); 1292 1293 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1294 } while (val & MVNETA_RXQ_ENABLE_MASK); 1295 1296 /* Stop Tx port activity. Check port Tx activity. Issue stop 1297 * command for active channels only 1298 */ 1299 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1300 1301 if (val != 0) 1302 mvreg_write(pp, MVNETA_TXQ_CMD, 1303 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1304 1305 /* Wait for all Tx activity to terminate. */ 1306 count = 0; 1307 do { 1308 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1309 netdev_warn(pp->dev, 1310 "TIMEOUT for TX stopped status=0x%08x\n", 1311 val); 1312 break; 1313 } 1314 mdelay(1); 1315 1316 /* Check TX Command reg that all Txqs are stopped */ 1317 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1318 1319 } while (val & MVNETA_TXQ_ENABLE_MASK); 1320 1321 /* Double check to verify that TX FIFO is empty */ 1322 count = 0; 1323 do { 1324 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1325 netdev_warn(pp->dev, 1326 "TX FIFO empty timeout status=0x%08x\n", 1327 val); 1328 break; 1329 } 1330 mdelay(1); 1331 1332 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1333 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1334 (val & MVNETA_TX_IN_PRGRS)); 1335 1336 udelay(200); 1337 } 1338 1339 /* Enable the port by setting the port enable bit of the MAC control register */ 1340 static void mvneta_port_enable(struct mvneta_port *pp) 1341 { 1342 u32 val; 1343 1344 /* Enable port */ 1345 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1346 val |= MVNETA_GMAC0_PORT_ENABLE; 1347 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1348 } 1349 1350 /* Disable the port and wait for about 200 usec before retuning */ 1351 static void mvneta_port_disable(struct mvneta_port *pp) 1352 { 1353 u32 val; 1354 1355 /* Reset the Enable bit in the Serial Control Register */ 1356 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1357 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1358 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1359 1360 udelay(200); 1361 } 1362 1363 /* Multicast tables methods */ 1364 1365 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1366 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1367 { 1368 int offset; 1369 u32 val; 1370 1371 if (queue == -1) { 1372 val = 0; 1373 } else { 1374 val = 0x1 | (queue << 1); 1375 val |= (val << 24) | (val << 16) | (val << 8); 1376 } 1377 1378 for (offset = 0; offset <= 0xc; offset += 4) 1379 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1380 } 1381 1382 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1383 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1384 { 1385 int offset; 1386 u32 val; 1387 1388 if (queue == -1) { 1389 val = 0; 1390 } else { 1391 val = 0x1 | (queue << 1); 1392 val |= (val << 24) | (val << 16) | (val << 8); 1393 } 1394 1395 for (offset = 0; offset <= 0xfc; offset += 4) 1396 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1397 1398 } 1399 1400 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1401 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1402 { 1403 int offset; 1404 u32 val; 1405 1406 if (queue == -1) { 1407 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1408 val = 0; 1409 } else { 1410 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1411 val = 0x1 | (queue << 1); 1412 val |= (val << 24) | (val << 16) | (val << 8); 1413 } 1414 1415 for (offset = 0; offset <= 0xfc; offset += 4) 1416 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1417 } 1418 1419 static void mvneta_percpu_unmask_interrupt(void *arg) 1420 { 1421 struct mvneta_port *pp = arg; 1422 1423 /* All the queue are unmasked, but actually only the ones 1424 * mapped to this CPU will be unmasked 1425 */ 1426 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1427 MVNETA_RX_INTR_MASK_ALL | 1428 MVNETA_TX_INTR_MASK_ALL | 1429 MVNETA_MISCINTR_INTR_MASK); 1430 } 1431 1432 static void mvneta_percpu_mask_interrupt(void *arg) 1433 { 1434 struct mvneta_port *pp = arg; 1435 1436 /* All the queue are masked, but actually only the ones 1437 * mapped to this CPU will be masked 1438 */ 1439 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1440 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1441 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1442 } 1443 1444 static void mvneta_percpu_clear_intr_cause(void *arg) 1445 { 1446 struct mvneta_port *pp = arg; 1447 1448 /* All the queue are cleared, but actually only the ones 1449 * mapped to this CPU will be cleared 1450 */ 1451 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1452 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1453 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1454 } 1455 1456 /* This method sets defaults to the NETA port: 1457 * Clears interrupt Cause and Mask registers. 1458 * Clears all MAC tables. 1459 * Sets defaults to all registers. 1460 * Resets RX and TX descriptor rings. 1461 * Resets PHY. 1462 * This method can be called after mvneta_port_down() to return the port 1463 * settings to defaults. 1464 */ 1465 static void mvneta_defaults_set(struct mvneta_port *pp) 1466 { 1467 int cpu; 1468 int queue; 1469 u32 val; 1470 int max_cpu = num_present_cpus(); 1471 1472 /* Clear all Cause registers */ 1473 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1474 1475 /* Mask all interrupts */ 1476 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1477 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1478 1479 /* Enable MBUS Retry bit16 */ 1480 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1481 1482 /* Set CPU queue access map. CPUs are assigned to the RX and 1483 * TX queues modulo their number. If there is only one TX 1484 * queue then it is assigned to the CPU associated to the 1485 * default RX queue. 1486 */ 1487 for_each_present_cpu(cpu) { 1488 int rxq_map = 0, txq_map = 0; 1489 int rxq, txq; 1490 if (!pp->neta_armada3700) { 1491 for (rxq = 0; rxq < rxq_number; rxq++) 1492 if ((rxq % max_cpu) == cpu) 1493 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1494 1495 for (txq = 0; txq < txq_number; txq++) 1496 if ((txq % max_cpu) == cpu) 1497 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1498 1499 /* With only one TX queue we configure a special case 1500 * which will allow to get all the irq on a single 1501 * CPU 1502 */ 1503 if (txq_number == 1) 1504 txq_map = (cpu == pp->rxq_def) ? 1505 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1506 1507 } else { 1508 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1509 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1510 } 1511 1512 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1513 } 1514 1515 /* Reset RX and TX DMAs */ 1516 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1517 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1518 1519 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1520 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1521 for (queue = 0; queue < txq_number; queue++) { 1522 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1523 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1524 } 1525 1526 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1527 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1528 1529 /* Set Port Acceleration Mode */ 1530 if (pp->bm_priv) 1531 /* HW buffer management + legacy parser */ 1532 val = MVNETA_ACC_MODE_EXT2; 1533 else 1534 /* SW buffer management + legacy parser */ 1535 val = MVNETA_ACC_MODE_EXT1; 1536 mvreg_write(pp, MVNETA_ACC_MODE, val); 1537 1538 if (pp->bm_priv) 1539 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1540 1541 /* Update val of portCfg register accordingly with all RxQueue types */ 1542 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1543 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1544 1545 val = 0; 1546 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1547 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1548 1549 /* Build PORT_SDMA_CONFIG_REG */ 1550 val = 0; 1551 1552 /* Default burst size */ 1553 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1554 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1555 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1556 1557 #if defined(__BIG_ENDIAN) 1558 val |= MVNETA_DESC_SWAP; 1559 #endif 1560 1561 /* Assign port SDMA configuration */ 1562 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1563 1564 /* Disable PHY polling in hardware, since we're using the 1565 * kernel phylib to do this. 1566 */ 1567 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1568 val &= ~MVNETA_PHY_POLLING_ENABLE; 1569 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1570 1571 mvneta_set_ucast_table(pp, -1); 1572 mvneta_set_special_mcast_table(pp, -1); 1573 mvneta_set_other_mcast_table(pp, -1); 1574 1575 /* Set port interrupt enable register - default enable all */ 1576 mvreg_write(pp, MVNETA_INTR_ENABLE, 1577 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1578 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1579 1580 mvneta_mib_counters_clear(pp); 1581 } 1582 1583 /* Set max sizes for tx queues */ 1584 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1585 1586 { 1587 u32 val, size, mtu; 1588 int queue; 1589 1590 mtu = max_tx_size * 8; 1591 if (mtu > MVNETA_TX_MTU_MAX) 1592 mtu = MVNETA_TX_MTU_MAX; 1593 1594 /* Set MTU */ 1595 val = mvreg_read(pp, MVNETA_TX_MTU); 1596 val &= ~MVNETA_TX_MTU_MAX; 1597 val |= mtu; 1598 mvreg_write(pp, MVNETA_TX_MTU, val); 1599 1600 /* TX token size and all TXQs token size must be larger that MTU */ 1601 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1602 1603 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1604 if (size < mtu) { 1605 size = mtu; 1606 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1607 val |= size; 1608 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1609 } 1610 for (queue = 0; queue < txq_number; queue++) { 1611 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1612 1613 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1614 if (size < mtu) { 1615 size = mtu; 1616 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1617 val |= size; 1618 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1619 } 1620 } 1621 } 1622 1623 /* Set unicast address */ 1624 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1625 int queue) 1626 { 1627 unsigned int unicast_reg; 1628 unsigned int tbl_offset; 1629 unsigned int reg_offset; 1630 1631 /* Locate the Unicast table entry */ 1632 last_nibble = (0xf & last_nibble); 1633 1634 /* offset from unicast tbl base */ 1635 tbl_offset = (last_nibble / 4) * 4; 1636 1637 /* offset within the above reg */ 1638 reg_offset = last_nibble % 4; 1639 1640 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1641 1642 if (queue == -1) { 1643 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1644 unicast_reg &= ~(0xff << (8 * reg_offset)); 1645 } else { 1646 unicast_reg &= ~(0xff << (8 * reg_offset)); 1647 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1648 } 1649 1650 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1651 } 1652 1653 /* Set mac address */ 1654 static void mvneta_mac_addr_set(struct mvneta_port *pp, 1655 const unsigned char *addr, int queue) 1656 { 1657 unsigned int mac_h; 1658 unsigned int mac_l; 1659 1660 if (queue != -1) { 1661 mac_l = (addr[4] << 8) | (addr[5]); 1662 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1663 (addr[2] << 8) | (addr[3] << 0); 1664 1665 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1666 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1667 } 1668 1669 /* Accept frames of this address */ 1670 mvneta_set_ucast_addr(pp, addr[5], queue); 1671 } 1672 1673 /* Set the number of packets that will be received before RX interrupt 1674 * will be generated by HW. 1675 */ 1676 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1677 struct mvneta_rx_queue *rxq, u32 value) 1678 { 1679 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1680 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1681 } 1682 1683 /* Set the time delay in usec before RX interrupt will be generated by 1684 * HW. 1685 */ 1686 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1687 struct mvneta_rx_queue *rxq, u32 value) 1688 { 1689 u32 val; 1690 unsigned long clk_rate; 1691 1692 clk_rate = clk_get_rate(pp->clk); 1693 val = (clk_rate / 1000000) * value; 1694 1695 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1696 } 1697 1698 /* Set threshold for TX_DONE pkts coalescing */ 1699 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1700 struct mvneta_tx_queue *txq, u32 value) 1701 { 1702 u32 val; 1703 1704 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1705 1706 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1707 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1708 1709 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1710 } 1711 1712 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1713 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1714 u32 phys_addr, void *virt_addr, 1715 struct mvneta_rx_queue *rxq) 1716 { 1717 int i; 1718 1719 rx_desc->buf_phys_addr = phys_addr; 1720 i = rx_desc - rxq->descs; 1721 rxq->buf_virt_addr[i] = virt_addr; 1722 } 1723 1724 /* Decrement sent descriptors counter */ 1725 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1726 struct mvneta_tx_queue *txq, 1727 int sent_desc) 1728 { 1729 u32 val; 1730 1731 /* Only 255 TX descriptors can be updated at once */ 1732 while (sent_desc > 0xff) { 1733 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1734 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1735 sent_desc = sent_desc - 0xff; 1736 } 1737 1738 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1739 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1740 } 1741 1742 /* Get number of TX descriptors already sent by HW */ 1743 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1744 struct mvneta_tx_queue *txq) 1745 { 1746 u32 val; 1747 int sent_desc; 1748 1749 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1750 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1751 MVNETA_TXQ_SENT_DESC_SHIFT; 1752 1753 return sent_desc; 1754 } 1755 1756 /* Get number of sent descriptors and decrement counter. 1757 * The number of sent descriptors is returned. 1758 */ 1759 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1760 struct mvneta_tx_queue *txq) 1761 { 1762 int sent_desc; 1763 1764 /* Get number of sent descriptors */ 1765 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1766 1767 /* Decrement sent descriptors counter */ 1768 if (sent_desc) 1769 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1770 1771 return sent_desc; 1772 } 1773 1774 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1775 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1776 int ip_hdr_len, int l4_proto) 1777 { 1778 u32 command; 1779 1780 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1781 * G_L4_chk, L4_type; required only for checksum 1782 * calculation 1783 */ 1784 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1785 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1786 1787 if (l3_proto == htons(ETH_P_IP)) 1788 command |= MVNETA_TXD_IP_CSUM; 1789 else 1790 command |= MVNETA_TX_L3_IP6; 1791 1792 if (l4_proto == IPPROTO_TCP) 1793 command |= MVNETA_TX_L4_CSUM_FULL; 1794 else if (l4_proto == IPPROTO_UDP) 1795 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1796 else 1797 command |= MVNETA_TX_L4_CSUM_NOT; 1798 1799 return command; 1800 } 1801 1802 1803 /* Display more error info */ 1804 static void mvneta_rx_error(struct mvneta_port *pp, 1805 struct mvneta_rx_desc *rx_desc) 1806 { 1807 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1808 u32 status = rx_desc->status; 1809 1810 /* update per-cpu counter */ 1811 u64_stats_update_begin(&stats->syncp); 1812 stats->rx_errors++; 1813 u64_stats_update_end(&stats->syncp); 1814 1815 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1816 case MVNETA_RXD_ERR_CRC: 1817 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1818 status, rx_desc->data_size); 1819 break; 1820 case MVNETA_RXD_ERR_OVERRUN: 1821 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1822 status, rx_desc->data_size); 1823 break; 1824 case MVNETA_RXD_ERR_LEN: 1825 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1826 status, rx_desc->data_size); 1827 break; 1828 case MVNETA_RXD_ERR_RESOURCE: 1829 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1830 status, rx_desc->data_size); 1831 break; 1832 } 1833 } 1834 1835 /* Handle RX checksum offload based on the descriptor's status */ 1836 static int mvneta_rx_csum(struct mvneta_port *pp, u32 status) 1837 { 1838 if ((pp->dev->features & NETIF_F_RXCSUM) && 1839 (status & MVNETA_RXD_L3_IP4) && 1840 (status & MVNETA_RXD_L4_CSUM_OK)) 1841 return CHECKSUM_UNNECESSARY; 1842 1843 return CHECKSUM_NONE; 1844 } 1845 1846 /* Return tx queue pointer (find last set bit) according to <cause> returned 1847 * form tx_done reg. <cause> must not be null. The return value is always a 1848 * valid queue for matching the first one found in <cause>. 1849 */ 1850 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1851 u32 cause) 1852 { 1853 int queue = fls(cause) - 1; 1854 1855 return &pp->txqs[queue]; 1856 } 1857 1858 /* Free tx queue skbuffs */ 1859 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1860 struct mvneta_tx_queue *txq, int num, 1861 struct netdev_queue *nq, bool napi) 1862 { 1863 unsigned int bytes_compl = 0, pkts_compl = 0; 1864 struct xdp_frame_bulk bq; 1865 int i; 1866 1867 xdp_frame_bulk_init(&bq); 1868 1869 rcu_read_lock(); /* need for xdp_return_frame_bulk */ 1870 1871 for (i = 0; i < num; i++) { 1872 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index]; 1873 struct mvneta_tx_desc *tx_desc = txq->descs + 1874 txq->txq_get_index; 1875 1876 mvneta_txq_inc_get(txq); 1877 1878 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) && 1879 buf->type != MVNETA_TYPE_XDP_TX) 1880 dma_unmap_single(pp->dev->dev.parent, 1881 tx_desc->buf_phys_addr, 1882 tx_desc->data_size, DMA_TO_DEVICE); 1883 if (buf->type == MVNETA_TYPE_SKB && buf->skb) { 1884 bytes_compl += buf->skb->len; 1885 pkts_compl++; 1886 dev_kfree_skb_any(buf->skb); 1887 } else if ((buf->type == MVNETA_TYPE_XDP_TX || 1888 buf->type == MVNETA_TYPE_XDP_NDO) && buf->xdpf) { 1889 if (napi && buf->type == MVNETA_TYPE_XDP_TX) 1890 xdp_return_frame_rx_napi(buf->xdpf); 1891 else 1892 xdp_return_frame_bulk(buf->xdpf, &bq); 1893 } 1894 } 1895 xdp_flush_frame_bulk(&bq); 1896 1897 rcu_read_unlock(); 1898 1899 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1900 } 1901 1902 /* Handle end of transmission */ 1903 static void mvneta_txq_done(struct mvneta_port *pp, 1904 struct mvneta_tx_queue *txq) 1905 { 1906 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1907 int tx_done; 1908 1909 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1910 if (!tx_done) 1911 return; 1912 1913 mvneta_txq_bufs_free(pp, txq, tx_done, nq, true); 1914 1915 txq->count -= tx_done; 1916 1917 if (netif_tx_queue_stopped(nq)) { 1918 if (txq->count <= txq->tx_wake_threshold) 1919 netif_tx_wake_queue(nq); 1920 } 1921 } 1922 1923 /* Refill processing for SW buffer management */ 1924 /* Allocate page per descriptor */ 1925 static int mvneta_rx_refill(struct mvneta_port *pp, 1926 struct mvneta_rx_desc *rx_desc, 1927 struct mvneta_rx_queue *rxq, 1928 gfp_t gfp_mask) 1929 { 1930 dma_addr_t phys_addr; 1931 struct page *page; 1932 1933 page = page_pool_alloc_pages(rxq->page_pool, 1934 gfp_mask | __GFP_NOWARN); 1935 if (!page) 1936 return -ENOMEM; 1937 1938 phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction; 1939 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq); 1940 1941 return 0; 1942 } 1943 1944 /* Handle tx checksum */ 1945 static u32 mvneta_skb_tx_csum(struct sk_buff *skb) 1946 { 1947 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1948 int ip_hdr_len = 0; 1949 __be16 l3_proto = vlan_get_protocol(skb); 1950 u8 l4_proto; 1951 1952 if (l3_proto == htons(ETH_P_IP)) { 1953 struct iphdr *ip4h = ip_hdr(skb); 1954 1955 /* Calculate IPv4 checksum and L4 checksum */ 1956 ip_hdr_len = ip4h->ihl; 1957 l4_proto = ip4h->protocol; 1958 } else if (l3_proto == htons(ETH_P_IPV6)) { 1959 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1960 1961 /* Read l4_protocol from one of IPv6 extra headers */ 1962 if (skb_network_header_len(skb) > 0) 1963 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1964 l4_proto = ip6h->nexthdr; 1965 } else 1966 return MVNETA_TX_L4_CSUM_NOT; 1967 1968 return mvneta_txq_desc_csum(skb_network_offset(skb), 1969 l3_proto, ip_hdr_len, l4_proto); 1970 } 1971 1972 return MVNETA_TX_L4_CSUM_NOT; 1973 } 1974 1975 /* Drop packets received by the RXQ and free buffers */ 1976 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1977 struct mvneta_rx_queue *rxq) 1978 { 1979 int rx_done, i; 1980 1981 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1982 if (rx_done) 1983 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1984 1985 if (pp->bm_priv) { 1986 for (i = 0; i < rx_done; i++) { 1987 struct mvneta_rx_desc *rx_desc = 1988 mvneta_rxq_next_desc_get(rxq); 1989 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1990 struct mvneta_bm_pool *bm_pool; 1991 1992 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1993 /* Return dropped buffer to the pool */ 1994 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1995 rx_desc->buf_phys_addr); 1996 } 1997 return; 1998 } 1999 2000 for (i = 0; i < rxq->size; i++) { 2001 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 2002 void *data = rxq->buf_virt_addr[i]; 2003 if (!data || !(rx_desc->buf_phys_addr)) 2004 continue; 2005 2006 page_pool_put_full_page(rxq->page_pool, data, false); 2007 } 2008 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 2009 xdp_rxq_info_unreg(&rxq->xdp_rxq); 2010 page_pool_destroy(rxq->page_pool); 2011 rxq->page_pool = NULL; 2012 } 2013 2014 static void 2015 mvneta_update_stats(struct mvneta_port *pp, 2016 struct mvneta_stats *ps) 2017 { 2018 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2019 2020 u64_stats_update_begin(&stats->syncp); 2021 stats->es.ps.rx_packets += ps->rx_packets; 2022 stats->es.ps.rx_bytes += ps->rx_bytes; 2023 /* xdp */ 2024 stats->es.ps.xdp_redirect += ps->xdp_redirect; 2025 stats->es.ps.xdp_pass += ps->xdp_pass; 2026 stats->es.ps.xdp_drop += ps->xdp_drop; 2027 u64_stats_update_end(&stats->syncp); 2028 } 2029 2030 static inline 2031 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) 2032 { 2033 struct mvneta_rx_desc *rx_desc; 2034 int curr_desc = rxq->first_to_refill; 2035 int i; 2036 2037 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) { 2038 rx_desc = rxq->descs + curr_desc; 2039 if (!(rx_desc->buf_phys_addr)) { 2040 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) { 2041 struct mvneta_pcpu_stats *stats; 2042 2043 pr_err("Can't refill queue %d. Done %d from %d\n", 2044 rxq->id, i, rxq->refill_num); 2045 2046 stats = this_cpu_ptr(pp->stats); 2047 u64_stats_update_begin(&stats->syncp); 2048 stats->es.refill_error++; 2049 u64_stats_update_end(&stats->syncp); 2050 break; 2051 } 2052 } 2053 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc); 2054 } 2055 rxq->refill_num -= i; 2056 rxq->first_to_refill = curr_desc; 2057 2058 return i; 2059 } 2060 2061 static void 2062 mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2063 struct xdp_buff *xdp, int sync_len) 2064 { 2065 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 2066 int i; 2067 2068 if (likely(!xdp_buff_has_frags(xdp))) 2069 goto out; 2070 2071 for (i = 0; i < sinfo->nr_frags; i++) 2072 page_pool_put_full_page(rxq->page_pool, 2073 skb_frag_page(&sinfo->frags[i]), true); 2074 2075 out: 2076 page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data), 2077 sync_len, true); 2078 } 2079 2080 static int 2081 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq, 2082 struct xdp_frame *xdpf, int *nxmit_byte, bool dma_map) 2083 { 2084 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); 2085 struct device *dev = pp->dev->dev.parent; 2086 struct mvneta_tx_desc *tx_desc; 2087 int i, num_frames = 1; 2088 struct page *page; 2089 2090 if (unlikely(xdp_frame_has_frags(xdpf))) 2091 num_frames += sinfo->nr_frags; 2092 2093 if (txq->count + num_frames >= txq->size) 2094 return MVNETA_XDP_DROPPED; 2095 2096 for (i = 0; i < num_frames; i++) { 2097 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2098 skb_frag_t *frag = NULL; 2099 int len = xdpf->len; 2100 dma_addr_t dma_addr; 2101 2102 if (unlikely(i)) { /* paged area */ 2103 frag = &sinfo->frags[i - 1]; 2104 len = skb_frag_size(frag); 2105 } 2106 2107 tx_desc = mvneta_txq_next_desc_get(txq); 2108 if (dma_map) { 2109 /* ndo_xdp_xmit */ 2110 void *data; 2111 2112 data = unlikely(frag) ? skb_frag_address(frag) 2113 : xdpf->data; 2114 dma_addr = dma_map_single(dev, data, len, 2115 DMA_TO_DEVICE); 2116 if (dma_mapping_error(dev, dma_addr)) { 2117 mvneta_txq_desc_put(txq); 2118 goto unmap; 2119 } 2120 2121 buf->type = MVNETA_TYPE_XDP_NDO; 2122 } else { 2123 page = unlikely(frag) ? skb_frag_page(frag) 2124 : virt_to_page(xdpf->data); 2125 dma_addr = page_pool_get_dma_addr(page); 2126 if (unlikely(frag)) 2127 dma_addr += skb_frag_off(frag); 2128 else 2129 dma_addr += sizeof(*xdpf) + xdpf->headroom; 2130 dma_sync_single_for_device(dev, dma_addr, len, 2131 DMA_BIDIRECTIONAL); 2132 buf->type = MVNETA_TYPE_XDP_TX; 2133 } 2134 buf->xdpf = unlikely(i) ? NULL : xdpf; 2135 2136 tx_desc->command = unlikely(i) ? 0 : MVNETA_TXD_F_DESC; 2137 tx_desc->buf_phys_addr = dma_addr; 2138 tx_desc->data_size = len; 2139 *nxmit_byte += len; 2140 2141 mvneta_txq_inc_put(txq); 2142 } 2143 /*last descriptor */ 2144 tx_desc->command |= MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2145 2146 txq->pending += num_frames; 2147 txq->count += num_frames; 2148 2149 return MVNETA_XDP_TX; 2150 2151 unmap: 2152 for (i--; i >= 0; i--) { 2153 mvneta_txq_desc_put(txq); 2154 tx_desc = txq->descs + txq->next_desc_to_proc; 2155 dma_unmap_single(dev, tx_desc->buf_phys_addr, 2156 tx_desc->data_size, 2157 DMA_TO_DEVICE); 2158 } 2159 2160 return MVNETA_XDP_DROPPED; 2161 } 2162 2163 static int 2164 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp) 2165 { 2166 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2167 struct mvneta_tx_queue *txq; 2168 struct netdev_queue *nq; 2169 int cpu, nxmit_byte = 0; 2170 struct xdp_frame *xdpf; 2171 u32 ret; 2172 2173 xdpf = xdp_convert_buff_to_frame(xdp); 2174 if (unlikely(!xdpf)) 2175 return MVNETA_XDP_DROPPED; 2176 2177 cpu = smp_processor_id(); 2178 txq = &pp->txqs[cpu % txq_number]; 2179 nq = netdev_get_tx_queue(pp->dev, txq->id); 2180 2181 __netif_tx_lock(nq, cpu); 2182 ret = mvneta_xdp_submit_frame(pp, txq, xdpf, &nxmit_byte, false); 2183 if (ret == MVNETA_XDP_TX) { 2184 u64_stats_update_begin(&stats->syncp); 2185 stats->es.ps.tx_bytes += nxmit_byte; 2186 stats->es.ps.tx_packets++; 2187 stats->es.ps.xdp_tx++; 2188 u64_stats_update_end(&stats->syncp); 2189 2190 mvneta_txq_pend_desc_add(pp, txq, 0); 2191 } else { 2192 u64_stats_update_begin(&stats->syncp); 2193 stats->es.ps.xdp_tx_err++; 2194 u64_stats_update_end(&stats->syncp); 2195 } 2196 __netif_tx_unlock(nq); 2197 2198 return ret; 2199 } 2200 2201 static int 2202 mvneta_xdp_xmit(struct net_device *dev, int num_frame, 2203 struct xdp_frame **frames, u32 flags) 2204 { 2205 struct mvneta_port *pp = netdev_priv(dev); 2206 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2207 int i, nxmit_byte = 0, nxmit = 0; 2208 int cpu = smp_processor_id(); 2209 struct mvneta_tx_queue *txq; 2210 struct netdev_queue *nq; 2211 u32 ret; 2212 2213 if (unlikely(test_bit(__MVNETA_DOWN, &pp->state))) 2214 return -ENETDOWN; 2215 2216 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2217 return -EINVAL; 2218 2219 txq = &pp->txqs[cpu % txq_number]; 2220 nq = netdev_get_tx_queue(pp->dev, txq->id); 2221 2222 __netif_tx_lock(nq, cpu); 2223 for (i = 0; i < num_frame; i++) { 2224 ret = mvneta_xdp_submit_frame(pp, txq, frames[i], &nxmit_byte, 2225 true); 2226 if (ret != MVNETA_XDP_TX) 2227 break; 2228 2229 nxmit++; 2230 } 2231 2232 if (unlikely(flags & XDP_XMIT_FLUSH)) 2233 mvneta_txq_pend_desc_add(pp, txq, 0); 2234 __netif_tx_unlock(nq); 2235 2236 u64_stats_update_begin(&stats->syncp); 2237 stats->es.ps.tx_bytes += nxmit_byte; 2238 stats->es.ps.tx_packets += nxmit; 2239 stats->es.ps.xdp_xmit += nxmit; 2240 stats->es.ps.xdp_xmit_err += num_frame - nxmit; 2241 u64_stats_update_end(&stats->syncp); 2242 2243 return nxmit; 2244 } 2245 2246 static int 2247 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2248 struct bpf_prog *prog, struct xdp_buff *xdp, 2249 u32 frame_sz, struct mvneta_stats *stats) 2250 { 2251 unsigned int len, data_len, sync; 2252 u32 ret, act; 2253 2254 len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2255 data_len = xdp->data_end - xdp->data; 2256 act = bpf_prog_run_xdp(prog, xdp); 2257 2258 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */ 2259 sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2260 sync = max(sync, len); 2261 2262 switch (act) { 2263 case XDP_PASS: 2264 stats->xdp_pass++; 2265 return MVNETA_XDP_PASS; 2266 case XDP_REDIRECT: { 2267 int err; 2268 2269 err = xdp_do_redirect(pp->dev, xdp, prog); 2270 if (unlikely(err)) { 2271 mvneta_xdp_put_buff(pp, rxq, xdp, sync); 2272 ret = MVNETA_XDP_DROPPED; 2273 } else { 2274 ret = MVNETA_XDP_REDIR; 2275 stats->xdp_redirect++; 2276 } 2277 break; 2278 } 2279 case XDP_TX: 2280 ret = mvneta_xdp_xmit_back(pp, xdp); 2281 if (ret != MVNETA_XDP_TX) 2282 mvneta_xdp_put_buff(pp, rxq, xdp, sync); 2283 break; 2284 default: 2285 bpf_warn_invalid_xdp_action(pp->dev, prog, act); 2286 fallthrough; 2287 case XDP_ABORTED: 2288 trace_xdp_exception(pp->dev, prog, act); 2289 fallthrough; 2290 case XDP_DROP: 2291 mvneta_xdp_put_buff(pp, rxq, xdp, sync); 2292 ret = MVNETA_XDP_DROPPED; 2293 stats->xdp_drop++; 2294 break; 2295 } 2296 2297 stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len; 2298 stats->rx_packets++; 2299 2300 return ret; 2301 } 2302 2303 static void 2304 mvneta_swbm_rx_frame(struct mvneta_port *pp, 2305 struct mvneta_rx_desc *rx_desc, 2306 struct mvneta_rx_queue *rxq, 2307 struct xdp_buff *xdp, int *size, 2308 struct page *page) 2309 { 2310 unsigned char *data = page_address(page); 2311 int data_len = -MVNETA_MH_SIZE, len; 2312 struct net_device *dev = pp->dev; 2313 enum dma_data_direction dma_dir; 2314 2315 if (*size > MVNETA_MAX_RX_BUF_SIZE) { 2316 len = MVNETA_MAX_RX_BUF_SIZE; 2317 data_len += len; 2318 } else { 2319 len = *size; 2320 data_len += len - ETH_FCS_LEN; 2321 } 2322 *size = *size - len; 2323 2324 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2325 dma_sync_single_for_cpu(dev->dev.parent, 2326 rx_desc->buf_phys_addr, 2327 len, dma_dir); 2328 2329 rx_desc->buf_phys_addr = 0; 2330 2331 /* Prefetch header */ 2332 prefetch(data); 2333 xdp_buff_clear_frags_flag(xdp); 2334 xdp_prepare_buff(xdp, data, pp->rx_offset_correction + MVNETA_MH_SIZE, 2335 data_len, false); 2336 } 2337 2338 static void 2339 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp, 2340 struct mvneta_rx_desc *rx_desc, 2341 struct mvneta_rx_queue *rxq, 2342 struct xdp_buff *xdp, int *size, 2343 struct page *page) 2344 { 2345 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 2346 struct net_device *dev = pp->dev; 2347 enum dma_data_direction dma_dir; 2348 int data_len, len; 2349 2350 if (*size > MVNETA_MAX_RX_BUF_SIZE) { 2351 len = MVNETA_MAX_RX_BUF_SIZE; 2352 data_len = len; 2353 } else { 2354 len = *size; 2355 data_len = len - ETH_FCS_LEN; 2356 } 2357 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2358 dma_sync_single_for_cpu(dev->dev.parent, 2359 rx_desc->buf_phys_addr, 2360 len, dma_dir); 2361 rx_desc->buf_phys_addr = 0; 2362 2363 if (!xdp_buff_has_frags(xdp)) 2364 sinfo->nr_frags = 0; 2365 2366 if (data_len > 0 && sinfo->nr_frags < MAX_SKB_FRAGS) { 2367 skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags++]; 2368 2369 skb_frag_off_set(frag, pp->rx_offset_correction); 2370 skb_frag_size_set(frag, data_len); 2371 __skb_frag_set_page(frag, page); 2372 2373 if (!xdp_buff_has_frags(xdp)) { 2374 sinfo->xdp_frags_size = *size; 2375 xdp_buff_set_frags_flag(xdp); 2376 } 2377 if (page_is_pfmemalloc(page)) 2378 xdp_buff_set_frag_pfmemalloc(xdp); 2379 } else { 2380 page_pool_put_full_page(rxq->page_pool, page, true); 2381 } 2382 *size -= len; 2383 } 2384 2385 static struct sk_buff * 2386 mvneta_swbm_build_skb(struct mvneta_port *pp, struct page_pool *pool, 2387 struct xdp_buff *xdp, u32 desc_status) 2388 { 2389 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); 2390 struct sk_buff *skb; 2391 u8 num_frags; 2392 2393 if (unlikely(xdp_buff_has_frags(xdp))) 2394 num_frags = sinfo->nr_frags; 2395 2396 skb = build_skb(xdp->data_hard_start, PAGE_SIZE); 2397 if (!skb) 2398 return ERR_PTR(-ENOMEM); 2399 2400 skb_mark_for_recycle(skb); 2401 2402 skb_reserve(skb, xdp->data - xdp->data_hard_start); 2403 skb_put(skb, xdp->data_end - xdp->data); 2404 skb->ip_summed = mvneta_rx_csum(pp, desc_status); 2405 2406 if (unlikely(xdp_buff_has_frags(xdp))) 2407 xdp_update_skb_shared_info(skb, num_frags, 2408 sinfo->xdp_frags_size, 2409 num_frags * xdp->frame_sz, 2410 xdp_buff_is_frag_pfmemalloc(xdp)); 2411 2412 return skb; 2413 } 2414 2415 /* Main rx processing when using software buffer management */ 2416 static int mvneta_rx_swbm(struct napi_struct *napi, 2417 struct mvneta_port *pp, int budget, 2418 struct mvneta_rx_queue *rxq) 2419 { 2420 int rx_proc = 0, rx_todo, refill, size = 0; 2421 struct net_device *dev = pp->dev; 2422 struct mvneta_stats ps = {}; 2423 struct bpf_prog *xdp_prog; 2424 u32 desc_status, frame_sz; 2425 struct xdp_buff xdp_buf; 2426 2427 xdp_init_buff(&xdp_buf, PAGE_SIZE, &rxq->xdp_rxq); 2428 xdp_buf.data_hard_start = NULL; 2429 2430 /* Get number of received packets */ 2431 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq); 2432 2433 xdp_prog = READ_ONCE(pp->xdp_prog); 2434 2435 /* Fairness NAPI loop */ 2436 while (rx_proc < budget && rx_proc < rx_todo) { 2437 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2438 u32 rx_status, index; 2439 struct sk_buff *skb; 2440 struct page *page; 2441 2442 index = rx_desc - rxq->descs; 2443 page = (struct page *)rxq->buf_virt_addr[index]; 2444 2445 rx_status = rx_desc->status; 2446 rx_proc++; 2447 rxq->refill_num++; 2448 2449 if (rx_status & MVNETA_RXD_FIRST_DESC) { 2450 /* Check errors only for FIRST descriptor */ 2451 if (rx_status & MVNETA_RXD_ERR_SUMMARY) { 2452 mvneta_rx_error(pp, rx_desc); 2453 goto next; 2454 } 2455 2456 size = rx_desc->data_size; 2457 frame_sz = size - ETH_FCS_LEN; 2458 desc_status = rx_status; 2459 2460 mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf, 2461 &size, page); 2462 } else { 2463 if (unlikely(!xdp_buf.data_hard_start)) { 2464 rx_desc->buf_phys_addr = 0; 2465 page_pool_put_full_page(rxq->page_pool, page, 2466 true); 2467 goto next; 2468 } 2469 2470 mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf, 2471 &size, page); 2472 } /* Middle or Last descriptor */ 2473 2474 if (!(rx_status & MVNETA_RXD_LAST_DESC)) 2475 /* no last descriptor this time */ 2476 continue; 2477 2478 if (size) { 2479 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1); 2480 goto next; 2481 } 2482 2483 if (xdp_prog && 2484 mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps)) 2485 goto next; 2486 2487 skb = mvneta_swbm_build_skb(pp, rxq->page_pool, &xdp_buf, desc_status); 2488 if (IS_ERR(skb)) { 2489 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2490 2491 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1); 2492 2493 u64_stats_update_begin(&stats->syncp); 2494 stats->es.skb_alloc_error++; 2495 stats->rx_dropped++; 2496 u64_stats_update_end(&stats->syncp); 2497 2498 goto next; 2499 } 2500 2501 ps.rx_bytes += skb->len; 2502 ps.rx_packets++; 2503 2504 skb->protocol = eth_type_trans(skb, dev); 2505 napi_gro_receive(napi, skb); 2506 next: 2507 xdp_buf.data_hard_start = NULL; 2508 } 2509 2510 if (xdp_buf.data_hard_start) 2511 mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1); 2512 2513 if (ps.xdp_redirect) 2514 xdp_do_flush_map(); 2515 2516 if (ps.rx_packets) 2517 mvneta_update_stats(pp, &ps); 2518 2519 /* return some buffers to hardware queue, one at a time is too slow */ 2520 refill = mvneta_rx_refill_queue(pp, rxq); 2521 2522 /* Update rxq management counters */ 2523 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill); 2524 2525 return ps.rx_packets; 2526 } 2527 2528 /* Main rx processing when using hardware buffer management */ 2529 static int mvneta_rx_hwbm(struct napi_struct *napi, 2530 struct mvneta_port *pp, int rx_todo, 2531 struct mvneta_rx_queue *rxq) 2532 { 2533 struct net_device *dev = pp->dev; 2534 int rx_done; 2535 u32 rcvd_pkts = 0; 2536 u32 rcvd_bytes = 0; 2537 2538 /* Get number of received packets */ 2539 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2540 2541 if (rx_todo > rx_done) 2542 rx_todo = rx_done; 2543 2544 rx_done = 0; 2545 2546 /* Fairness NAPI loop */ 2547 while (rx_done < rx_todo) { 2548 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2549 struct mvneta_bm_pool *bm_pool = NULL; 2550 struct sk_buff *skb; 2551 unsigned char *data; 2552 dma_addr_t phys_addr; 2553 u32 rx_status, frag_size; 2554 int rx_bytes, err; 2555 u8 pool_id; 2556 2557 rx_done++; 2558 rx_status = rx_desc->status; 2559 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2560 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2561 phys_addr = rx_desc->buf_phys_addr; 2562 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2563 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2564 2565 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2566 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2567 err_drop_frame_ret_pool: 2568 /* Return the buffer to the pool */ 2569 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2570 rx_desc->buf_phys_addr); 2571 err_drop_frame: 2572 mvneta_rx_error(pp, rx_desc); 2573 /* leave the descriptor untouched */ 2574 continue; 2575 } 2576 2577 if (rx_bytes <= rx_copybreak) { 2578 /* better copy a small frame and not unmap the DMA region */ 2579 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2580 if (unlikely(!skb)) 2581 goto err_drop_frame_ret_pool; 2582 2583 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev, 2584 rx_desc->buf_phys_addr, 2585 MVNETA_MH_SIZE + NET_SKB_PAD, 2586 rx_bytes, 2587 DMA_FROM_DEVICE); 2588 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 2589 rx_bytes); 2590 2591 skb->protocol = eth_type_trans(skb, dev); 2592 skb->ip_summed = mvneta_rx_csum(pp, rx_status); 2593 napi_gro_receive(napi, skb); 2594 2595 rcvd_pkts++; 2596 rcvd_bytes += rx_bytes; 2597 2598 /* Return the buffer to the pool */ 2599 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2600 rx_desc->buf_phys_addr); 2601 2602 /* leave the descriptor and buffer untouched */ 2603 continue; 2604 } 2605 2606 /* Refill processing */ 2607 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2608 if (err) { 2609 struct mvneta_pcpu_stats *stats; 2610 2611 netdev_err(dev, "Linux processing - Can't refill\n"); 2612 2613 stats = this_cpu_ptr(pp->stats); 2614 u64_stats_update_begin(&stats->syncp); 2615 stats->es.refill_error++; 2616 u64_stats_update_end(&stats->syncp); 2617 2618 goto err_drop_frame_ret_pool; 2619 } 2620 2621 frag_size = bm_pool->hwbm_pool.frag_size; 2622 2623 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2624 2625 /* After refill old buffer has to be unmapped regardless 2626 * the skb is successfully built or not. 2627 */ 2628 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2629 bm_pool->buf_size, DMA_FROM_DEVICE); 2630 if (!skb) 2631 goto err_drop_frame; 2632 2633 rcvd_pkts++; 2634 rcvd_bytes += rx_bytes; 2635 2636 /* Linux processing */ 2637 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2638 skb_put(skb, rx_bytes); 2639 2640 skb->protocol = eth_type_trans(skb, dev); 2641 skb->ip_summed = mvneta_rx_csum(pp, rx_status); 2642 2643 napi_gro_receive(napi, skb); 2644 } 2645 2646 if (rcvd_pkts) { 2647 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2648 2649 u64_stats_update_begin(&stats->syncp); 2650 stats->es.ps.rx_packets += rcvd_pkts; 2651 stats->es.ps.rx_bytes += rcvd_bytes; 2652 u64_stats_update_end(&stats->syncp); 2653 } 2654 2655 /* Update rxq management counters */ 2656 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2657 2658 return rx_done; 2659 } 2660 2661 static inline void 2662 mvneta_tso_put_hdr(struct sk_buff *skb, struct mvneta_tx_queue *txq) 2663 { 2664 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2665 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2666 struct mvneta_tx_desc *tx_desc; 2667 2668 tx_desc = mvneta_txq_next_desc_get(txq); 2669 tx_desc->data_size = hdr_len; 2670 tx_desc->command = mvneta_skb_tx_csum(skb); 2671 tx_desc->command |= MVNETA_TXD_F_DESC; 2672 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2673 txq->txq_put_index * TSO_HEADER_SIZE; 2674 buf->type = MVNETA_TYPE_SKB; 2675 buf->skb = NULL; 2676 2677 mvneta_txq_inc_put(txq); 2678 } 2679 2680 static inline int 2681 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2682 struct sk_buff *skb, char *data, int size, 2683 bool last_tcp, bool is_last) 2684 { 2685 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2686 struct mvneta_tx_desc *tx_desc; 2687 2688 tx_desc = mvneta_txq_next_desc_get(txq); 2689 tx_desc->data_size = size; 2690 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2691 size, DMA_TO_DEVICE); 2692 if (unlikely(dma_mapping_error(dev->dev.parent, 2693 tx_desc->buf_phys_addr))) { 2694 mvneta_txq_desc_put(txq); 2695 return -ENOMEM; 2696 } 2697 2698 tx_desc->command = 0; 2699 buf->type = MVNETA_TYPE_SKB; 2700 buf->skb = NULL; 2701 2702 if (last_tcp) { 2703 /* last descriptor in the TCP packet */ 2704 tx_desc->command = MVNETA_TXD_L_DESC; 2705 2706 /* last descriptor in SKB */ 2707 if (is_last) 2708 buf->skb = skb; 2709 } 2710 mvneta_txq_inc_put(txq); 2711 return 0; 2712 } 2713 2714 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2715 struct mvneta_tx_queue *txq) 2716 { 2717 int hdr_len, total_len, data_left; 2718 int desc_count = 0; 2719 struct mvneta_port *pp = netdev_priv(dev); 2720 struct tso_t tso; 2721 int i; 2722 2723 /* Count needed descriptors */ 2724 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2725 return 0; 2726 2727 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2728 pr_info("*** Is this even possible?\n"); 2729 return 0; 2730 } 2731 2732 /* Initialize the TSO handler, and prepare the first payload */ 2733 hdr_len = tso_start(skb, &tso); 2734 2735 total_len = skb->len - hdr_len; 2736 while (total_len > 0) { 2737 char *hdr; 2738 2739 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2740 total_len -= data_left; 2741 desc_count++; 2742 2743 /* prepare packet headers: MAC + IP + TCP */ 2744 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2745 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2746 2747 mvneta_tso_put_hdr(skb, txq); 2748 2749 while (data_left > 0) { 2750 int size; 2751 desc_count++; 2752 2753 size = min_t(int, tso.size, data_left); 2754 2755 if (mvneta_tso_put_data(dev, txq, skb, 2756 tso.data, size, 2757 size == data_left, 2758 total_len == 0)) 2759 goto err_release; 2760 data_left -= size; 2761 2762 tso_build_data(skb, &tso, size); 2763 } 2764 } 2765 2766 return desc_count; 2767 2768 err_release: 2769 /* Release all used data descriptors; header descriptors must not 2770 * be DMA-unmapped. 2771 */ 2772 for (i = desc_count - 1; i >= 0; i--) { 2773 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2774 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2775 dma_unmap_single(pp->dev->dev.parent, 2776 tx_desc->buf_phys_addr, 2777 tx_desc->data_size, 2778 DMA_TO_DEVICE); 2779 mvneta_txq_desc_put(txq); 2780 } 2781 return 0; 2782 } 2783 2784 /* Handle tx fragmentation processing */ 2785 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2786 struct mvneta_tx_queue *txq) 2787 { 2788 struct mvneta_tx_desc *tx_desc; 2789 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2790 2791 for (i = 0; i < nr_frags; i++) { 2792 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2793 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2794 void *addr = skb_frag_address(frag); 2795 2796 tx_desc = mvneta_txq_next_desc_get(txq); 2797 tx_desc->data_size = skb_frag_size(frag); 2798 2799 tx_desc->buf_phys_addr = 2800 dma_map_single(pp->dev->dev.parent, addr, 2801 tx_desc->data_size, DMA_TO_DEVICE); 2802 2803 if (dma_mapping_error(pp->dev->dev.parent, 2804 tx_desc->buf_phys_addr)) { 2805 mvneta_txq_desc_put(txq); 2806 goto error; 2807 } 2808 2809 if (i == nr_frags - 1) { 2810 /* Last descriptor */ 2811 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2812 buf->skb = skb; 2813 } else { 2814 /* Descriptor in the middle: Not First, Not Last */ 2815 tx_desc->command = 0; 2816 buf->skb = NULL; 2817 } 2818 buf->type = MVNETA_TYPE_SKB; 2819 mvneta_txq_inc_put(txq); 2820 } 2821 2822 return 0; 2823 2824 error: 2825 /* Release all descriptors that were used to map fragments of 2826 * this packet, as well as the corresponding DMA mappings 2827 */ 2828 for (i = i - 1; i >= 0; i--) { 2829 tx_desc = txq->descs + i; 2830 dma_unmap_single(pp->dev->dev.parent, 2831 tx_desc->buf_phys_addr, 2832 tx_desc->data_size, 2833 DMA_TO_DEVICE); 2834 mvneta_txq_desc_put(txq); 2835 } 2836 2837 return -ENOMEM; 2838 } 2839 2840 /* Main tx processing */ 2841 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2842 { 2843 struct mvneta_port *pp = netdev_priv(dev); 2844 u16 txq_id = skb_get_queue_mapping(skb); 2845 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2846 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2847 struct mvneta_tx_desc *tx_desc; 2848 int len = skb->len; 2849 int frags = 0; 2850 u32 tx_cmd; 2851 2852 if (!netif_running(dev)) 2853 goto out; 2854 2855 if (skb_is_gso(skb)) { 2856 frags = mvneta_tx_tso(skb, dev, txq); 2857 goto out; 2858 } 2859 2860 frags = skb_shinfo(skb)->nr_frags + 1; 2861 2862 /* Get a descriptor for the first part of the packet */ 2863 tx_desc = mvneta_txq_next_desc_get(txq); 2864 2865 tx_cmd = mvneta_skb_tx_csum(skb); 2866 2867 tx_desc->data_size = skb_headlen(skb); 2868 2869 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2870 tx_desc->data_size, 2871 DMA_TO_DEVICE); 2872 if (unlikely(dma_mapping_error(dev->dev.parent, 2873 tx_desc->buf_phys_addr))) { 2874 mvneta_txq_desc_put(txq); 2875 frags = 0; 2876 goto out; 2877 } 2878 2879 buf->type = MVNETA_TYPE_SKB; 2880 if (frags == 1) { 2881 /* First and Last descriptor */ 2882 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2883 tx_desc->command = tx_cmd; 2884 buf->skb = skb; 2885 mvneta_txq_inc_put(txq); 2886 } else { 2887 /* First but not Last */ 2888 tx_cmd |= MVNETA_TXD_F_DESC; 2889 buf->skb = NULL; 2890 mvneta_txq_inc_put(txq); 2891 tx_desc->command = tx_cmd; 2892 /* Continue with other skb fragments */ 2893 if (mvneta_tx_frag_process(pp, skb, txq)) { 2894 dma_unmap_single(dev->dev.parent, 2895 tx_desc->buf_phys_addr, 2896 tx_desc->data_size, 2897 DMA_TO_DEVICE); 2898 mvneta_txq_desc_put(txq); 2899 frags = 0; 2900 goto out; 2901 } 2902 } 2903 2904 out: 2905 if (frags > 0) { 2906 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2907 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2908 2909 netdev_tx_sent_queue(nq, len); 2910 2911 txq->count += frags; 2912 if (txq->count >= txq->tx_stop_threshold) 2913 netif_tx_stop_queue(nq); 2914 2915 if (!netdev_xmit_more() || netif_xmit_stopped(nq) || 2916 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2917 mvneta_txq_pend_desc_add(pp, txq, frags); 2918 else 2919 txq->pending += frags; 2920 2921 u64_stats_update_begin(&stats->syncp); 2922 stats->es.ps.tx_bytes += len; 2923 stats->es.ps.tx_packets++; 2924 u64_stats_update_end(&stats->syncp); 2925 } else { 2926 dev->stats.tx_dropped++; 2927 dev_kfree_skb_any(skb); 2928 } 2929 2930 return NETDEV_TX_OK; 2931 } 2932 2933 2934 /* Free tx resources, when resetting a port */ 2935 static void mvneta_txq_done_force(struct mvneta_port *pp, 2936 struct mvneta_tx_queue *txq) 2937 2938 { 2939 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2940 int tx_done = txq->count; 2941 2942 mvneta_txq_bufs_free(pp, txq, tx_done, nq, false); 2943 2944 /* reset txq */ 2945 txq->count = 0; 2946 txq->txq_put_index = 0; 2947 txq->txq_get_index = 0; 2948 } 2949 2950 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2951 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2952 */ 2953 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2954 { 2955 struct mvneta_tx_queue *txq; 2956 struct netdev_queue *nq; 2957 int cpu = smp_processor_id(); 2958 2959 while (cause_tx_done) { 2960 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2961 2962 nq = netdev_get_tx_queue(pp->dev, txq->id); 2963 __netif_tx_lock(nq, cpu); 2964 2965 if (txq->count) 2966 mvneta_txq_done(pp, txq); 2967 2968 __netif_tx_unlock(nq); 2969 cause_tx_done &= ~((1 << txq->id)); 2970 } 2971 } 2972 2973 /* Compute crc8 of the specified address, using a unique algorithm , 2974 * according to hw spec, different than generic crc8 algorithm 2975 */ 2976 static int mvneta_addr_crc(unsigned char *addr) 2977 { 2978 int crc = 0; 2979 int i; 2980 2981 for (i = 0; i < ETH_ALEN; i++) { 2982 int j; 2983 2984 crc = (crc ^ addr[i]) << 8; 2985 for (j = 7; j >= 0; j--) { 2986 if (crc & (0x100 << j)) 2987 crc ^= 0x107 << j; 2988 } 2989 } 2990 2991 return crc; 2992 } 2993 2994 /* This method controls the net device special MAC multicast support. 2995 * The Special Multicast Table for MAC addresses supports MAC of the form 2996 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2997 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2998 * Table entries in the DA-Filter table. This method set the Special 2999 * Multicast Table appropriate entry. 3000 */ 3001 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 3002 unsigned char last_byte, 3003 int queue) 3004 { 3005 unsigned int smc_table_reg; 3006 unsigned int tbl_offset; 3007 unsigned int reg_offset; 3008 3009 /* Register offset from SMC table base */ 3010 tbl_offset = (last_byte / 4); 3011 /* Entry offset within the above reg */ 3012 reg_offset = last_byte % 4; 3013 3014 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 3015 + tbl_offset * 4)); 3016 3017 if (queue == -1) 3018 smc_table_reg &= ~(0xff << (8 * reg_offset)); 3019 else { 3020 smc_table_reg &= ~(0xff << (8 * reg_offset)); 3021 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 3022 } 3023 3024 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 3025 smc_table_reg); 3026 } 3027 3028 /* This method controls the network device Other MAC multicast support. 3029 * The Other Multicast Table is used for multicast of another type. 3030 * A CRC-8 is used as an index to the Other Multicast Table entries 3031 * in the DA-Filter table. 3032 * The method gets the CRC-8 value from the calling routine and 3033 * sets the Other Multicast Table appropriate entry according to the 3034 * specified CRC-8 . 3035 */ 3036 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 3037 unsigned char crc8, 3038 int queue) 3039 { 3040 unsigned int omc_table_reg; 3041 unsigned int tbl_offset; 3042 unsigned int reg_offset; 3043 3044 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 3045 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 3046 3047 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 3048 3049 if (queue == -1) { 3050 /* Clear accepts frame bit at specified Other DA table entry */ 3051 omc_table_reg &= ~(0xff << (8 * reg_offset)); 3052 } else { 3053 omc_table_reg &= ~(0xff << (8 * reg_offset)); 3054 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 3055 } 3056 3057 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 3058 } 3059 3060 /* The network device supports multicast using two tables: 3061 * 1) Special Multicast Table for MAC addresses of the form 3062 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 3063 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 3064 * Table entries in the DA-Filter table. 3065 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 3066 * is used as an index to the Other Multicast Table entries in the 3067 * DA-Filter table. 3068 */ 3069 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 3070 int queue) 3071 { 3072 unsigned char crc_result = 0; 3073 3074 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 3075 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 3076 return 0; 3077 } 3078 3079 crc_result = mvneta_addr_crc(p_addr); 3080 if (queue == -1) { 3081 if (pp->mcast_count[crc_result] == 0) { 3082 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 3083 crc_result); 3084 return -EINVAL; 3085 } 3086 3087 pp->mcast_count[crc_result]--; 3088 if (pp->mcast_count[crc_result] != 0) { 3089 netdev_info(pp->dev, 3090 "After delete there are %d valid Mcast for crc8=0x%02x\n", 3091 pp->mcast_count[crc_result], crc_result); 3092 return -EINVAL; 3093 } 3094 } else 3095 pp->mcast_count[crc_result]++; 3096 3097 mvneta_set_other_mcast_addr(pp, crc_result, queue); 3098 3099 return 0; 3100 } 3101 3102 /* Configure Fitering mode of Ethernet port */ 3103 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 3104 int is_promisc) 3105 { 3106 u32 port_cfg_reg, val; 3107 3108 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 3109 3110 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 3111 3112 /* Set / Clear UPM bit in port configuration register */ 3113 if (is_promisc) { 3114 /* Accept all Unicast addresses */ 3115 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 3116 val |= MVNETA_FORCE_UNI; 3117 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 3118 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 3119 } else { 3120 /* Reject all Unicast addresses */ 3121 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 3122 val &= ~MVNETA_FORCE_UNI; 3123 } 3124 3125 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 3126 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 3127 } 3128 3129 /* register unicast and multicast addresses */ 3130 static void mvneta_set_rx_mode(struct net_device *dev) 3131 { 3132 struct mvneta_port *pp = netdev_priv(dev); 3133 struct netdev_hw_addr *ha; 3134 3135 if (dev->flags & IFF_PROMISC) { 3136 /* Accept all: Multicast + Unicast */ 3137 mvneta_rx_unicast_promisc_set(pp, 1); 3138 mvneta_set_ucast_table(pp, pp->rxq_def); 3139 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3140 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3141 } else { 3142 /* Accept single Unicast */ 3143 mvneta_rx_unicast_promisc_set(pp, 0); 3144 mvneta_set_ucast_table(pp, -1); 3145 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 3146 3147 if (dev->flags & IFF_ALLMULTI) { 3148 /* Accept all multicast */ 3149 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3150 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3151 } else { 3152 /* Accept only initialized multicast */ 3153 mvneta_set_special_mcast_table(pp, -1); 3154 mvneta_set_other_mcast_table(pp, -1); 3155 3156 if (!netdev_mc_empty(dev)) { 3157 netdev_for_each_mc_addr(ha, dev) { 3158 mvneta_mcast_addr_set(pp, ha->addr, 3159 pp->rxq_def); 3160 } 3161 } 3162 } 3163 } 3164 } 3165 3166 /* Interrupt handling - the callback for request_irq() */ 3167 static irqreturn_t mvneta_isr(int irq, void *dev_id) 3168 { 3169 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 3170 3171 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 3172 napi_schedule(&pp->napi); 3173 3174 return IRQ_HANDLED; 3175 } 3176 3177 /* Interrupt handling - the callback for request_percpu_irq() */ 3178 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 3179 { 3180 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 3181 3182 disable_percpu_irq(port->pp->dev->irq); 3183 napi_schedule(&port->napi); 3184 3185 return IRQ_HANDLED; 3186 } 3187 3188 static void mvneta_link_change(struct mvneta_port *pp) 3189 { 3190 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3191 3192 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP)); 3193 } 3194 3195 /* NAPI handler 3196 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 3197 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 3198 * Bits 8 -15 of the cause Rx Tx register indicate that are received 3199 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 3200 * Each CPU has its own causeRxTx register 3201 */ 3202 static int mvneta_poll(struct napi_struct *napi, int budget) 3203 { 3204 int rx_done = 0; 3205 u32 cause_rx_tx; 3206 int rx_queue; 3207 struct mvneta_port *pp = netdev_priv(napi->dev); 3208 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 3209 3210 if (!netif_running(pp->dev)) { 3211 napi_complete(napi); 3212 return rx_done; 3213 } 3214 3215 /* Read cause register */ 3216 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 3217 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 3218 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 3219 3220 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 3221 3222 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE | 3223 MVNETA_CAUSE_LINK_CHANGE)) 3224 mvneta_link_change(pp); 3225 } 3226 3227 /* Release Tx descriptors */ 3228 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 3229 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 3230 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 3231 } 3232 3233 /* For the case where the last mvneta_poll did not process all 3234 * RX packets 3235 */ 3236 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 3237 port->cause_rx_tx; 3238 3239 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 3240 if (rx_queue) { 3241 rx_queue = rx_queue - 1; 3242 if (pp->bm_priv) 3243 rx_done = mvneta_rx_hwbm(napi, pp, budget, 3244 &pp->rxqs[rx_queue]); 3245 else 3246 rx_done = mvneta_rx_swbm(napi, pp, budget, 3247 &pp->rxqs[rx_queue]); 3248 } 3249 3250 if (rx_done < budget) { 3251 cause_rx_tx = 0; 3252 napi_complete_done(napi, rx_done); 3253 3254 if (pp->neta_armada3700) { 3255 unsigned long flags; 3256 3257 local_irq_save(flags); 3258 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 3259 MVNETA_RX_INTR_MASK(rxq_number) | 3260 MVNETA_TX_INTR_MASK(txq_number) | 3261 MVNETA_MISCINTR_INTR_MASK); 3262 local_irq_restore(flags); 3263 } else { 3264 enable_percpu_irq(pp->dev->irq, 0); 3265 } 3266 } 3267 3268 if (pp->neta_armada3700) 3269 pp->cause_rx_tx = cause_rx_tx; 3270 else 3271 port->cause_rx_tx = cause_rx_tx; 3272 3273 return rx_done; 3274 } 3275 3276 static int mvneta_create_page_pool(struct mvneta_port *pp, 3277 struct mvneta_rx_queue *rxq, int size) 3278 { 3279 struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog); 3280 struct page_pool_params pp_params = { 3281 .order = 0, 3282 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 3283 .pool_size = size, 3284 .nid = NUMA_NO_NODE, 3285 .dev = pp->dev->dev.parent, 3286 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 3287 .offset = pp->rx_offset_correction, 3288 .max_len = MVNETA_MAX_RX_BUF_SIZE, 3289 }; 3290 int err; 3291 3292 rxq->page_pool = page_pool_create(&pp_params); 3293 if (IS_ERR(rxq->page_pool)) { 3294 err = PTR_ERR(rxq->page_pool); 3295 rxq->page_pool = NULL; 3296 return err; 3297 } 3298 3299 err = __xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id, 0, 3300 PAGE_SIZE); 3301 if (err < 0) 3302 goto err_free_pp; 3303 3304 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 3305 rxq->page_pool); 3306 if (err) 3307 goto err_unregister_rxq; 3308 3309 return 0; 3310 3311 err_unregister_rxq: 3312 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3313 err_free_pp: 3314 page_pool_destroy(rxq->page_pool); 3315 rxq->page_pool = NULL; 3316 return err; 3317 } 3318 3319 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 3320 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 3321 int num) 3322 { 3323 int i, err; 3324 3325 err = mvneta_create_page_pool(pp, rxq, num); 3326 if (err < 0) 3327 return err; 3328 3329 for (i = 0; i < num; i++) { 3330 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 3331 if (mvneta_rx_refill(pp, rxq->descs + i, rxq, 3332 GFP_KERNEL) != 0) { 3333 netdev_err(pp->dev, 3334 "%s:rxq %d, %d of %d buffs filled\n", 3335 __func__, rxq->id, i, num); 3336 break; 3337 } 3338 } 3339 3340 /* Add this number of RX descriptors as non occupied (ready to 3341 * get packets) 3342 */ 3343 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 3344 3345 return i; 3346 } 3347 3348 /* Free all packets pending transmit from all TXQs and reset TX port */ 3349 static void mvneta_tx_reset(struct mvneta_port *pp) 3350 { 3351 int queue; 3352 3353 /* free the skb's in the tx ring */ 3354 for (queue = 0; queue < txq_number; queue++) 3355 mvneta_txq_done_force(pp, &pp->txqs[queue]); 3356 3357 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 3358 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 3359 } 3360 3361 static void mvneta_rx_reset(struct mvneta_port *pp) 3362 { 3363 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 3364 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 3365 } 3366 3367 /* Rx/Tx queue initialization/cleanup methods */ 3368 3369 static int mvneta_rxq_sw_init(struct mvneta_port *pp, 3370 struct mvneta_rx_queue *rxq) 3371 { 3372 rxq->size = pp->rx_ring_size; 3373 3374 /* Allocate memory for RX descriptors */ 3375 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3376 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3377 &rxq->descs_phys, GFP_KERNEL); 3378 if (!rxq->descs) 3379 return -ENOMEM; 3380 3381 rxq->last_desc = rxq->size - 1; 3382 3383 return 0; 3384 } 3385 3386 static void mvneta_rxq_hw_init(struct mvneta_port *pp, 3387 struct mvneta_rx_queue *rxq) 3388 { 3389 /* Set Rx descriptors queue starting address */ 3390 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 3391 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 3392 3393 /* Set coalescing pkts and time */ 3394 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3395 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3396 3397 if (!pp->bm_priv) { 3398 /* Set Offset */ 3399 mvneta_rxq_offset_set(pp, rxq, 0); 3400 mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ? 3401 MVNETA_MAX_RX_BUF_SIZE : 3402 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 3403 mvneta_rxq_bm_disable(pp, rxq); 3404 mvneta_rxq_fill(pp, rxq, rxq->size); 3405 } else { 3406 /* Set Offset */ 3407 mvneta_rxq_offset_set(pp, rxq, 3408 NET_SKB_PAD - pp->rx_offset_correction); 3409 3410 mvneta_rxq_bm_enable(pp, rxq); 3411 /* Fill RXQ with buffers from RX pool */ 3412 mvneta_rxq_long_pool_set(pp, rxq); 3413 mvneta_rxq_short_pool_set(pp, rxq); 3414 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 3415 } 3416 } 3417 3418 /* Create a specified RX queue */ 3419 static int mvneta_rxq_init(struct mvneta_port *pp, 3420 struct mvneta_rx_queue *rxq) 3421 3422 { 3423 int ret; 3424 3425 ret = mvneta_rxq_sw_init(pp, rxq); 3426 if (ret < 0) 3427 return ret; 3428 3429 mvneta_rxq_hw_init(pp, rxq); 3430 3431 return 0; 3432 } 3433 3434 /* Cleanup Rx queue */ 3435 static void mvneta_rxq_deinit(struct mvneta_port *pp, 3436 struct mvneta_rx_queue *rxq) 3437 { 3438 mvneta_rxq_drop_pkts(pp, rxq); 3439 3440 if (rxq->descs) 3441 dma_free_coherent(pp->dev->dev.parent, 3442 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3443 rxq->descs, 3444 rxq->descs_phys); 3445 3446 rxq->descs = NULL; 3447 rxq->last_desc = 0; 3448 rxq->next_desc_to_proc = 0; 3449 rxq->descs_phys = 0; 3450 rxq->first_to_refill = 0; 3451 rxq->refill_num = 0; 3452 } 3453 3454 static int mvneta_txq_sw_init(struct mvneta_port *pp, 3455 struct mvneta_tx_queue *txq) 3456 { 3457 int cpu; 3458 3459 txq->size = pp->tx_ring_size; 3460 3461 /* A queue must always have room for at least one skb. 3462 * Therefore, stop the queue when the free entries reaches 3463 * the maximum number of descriptors per skb. 3464 */ 3465 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 3466 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 3467 3468 /* Allocate memory for TX descriptors */ 3469 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3470 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3471 &txq->descs_phys, GFP_KERNEL); 3472 if (!txq->descs) 3473 return -ENOMEM; 3474 3475 txq->last_desc = txq->size - 1; 3476 3477 txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL); 3478 if (!txq->buf) 3479 return -ENOMEM; 3480 3481 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 3482 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 3483 txq->size * TSO_HEADER_SIZE, 3484 &txq->tso_hdrs_phys, GFP_KERNEL); 3485 if (!txq->tso_hdrs) 3486 return -ENOMEM; 3487 3488 /* Setup XPS mapping */ 3489 if (pp->neta_armada3700) 3490 cpu = 0; 3491 else if (txq_number > 1) 3492 cpu = txq->id % num_present_cpus(); 3493 else 3494 cpu = pp->rxq_def % num_present_cpus(); 3495 cpumask_set_cpu(cpu, &txq->affinity_mask); 3496 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 3497 3498 return 0; 3499 } 3500 3501 static void mvneta_txq_hw_init(struct mvneta_port *pp, 3502 struct mvneta_tx_queue *txq) 3503 { 3504 /* Set maximum bandwidth for enabled TXQs */ 3505 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 3506 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 3507 3508 /* Set Tx descriptors queue starting address */ 3509 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 3510 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 3511 3512 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3513 } 3514 3515 /* Create and initialize a tx queue */ 3516 static int mvneta_txq_init(struct mvneta_port *pp, 3517 struct mvneta_tx_queue *txq) 3518 { 3519 int ret; 3520 3521 ret = mvneta_txq_sw_init(pp, txq); 3522 if (ret < 0) 3523 return ret; 3524 3525 mvneta_txq_hw_init(pp, txq); 3526 3527 return 0; 3528 } 3529 3530 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 3531 static void mvneta_txq_sw_deinit(struct mvneta_port *pp, 3532 struct mvneta_tx_queue *txq) 3533 { 3534 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 3535 3536 kfree(txq->buf); 3537 3538 if (txq->tso_hdrs) 3539 dma_free_coherent(pp->dev->dev.parent, 3540 txq->size * TSO_HEADER_SIZE, 3541 txq->tso_hdrs, txq->tso_hdrs_phys); 3542 if (txq->descs) 3543 dma_free_coherent(pp->dev->dev.parent, 3544 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3545 txq->descs, txq->descs_phys); 3546 3547 netdev_tx_reset_queue(nq); 3548 3549 txq->descs = NULL; 3550 txq->last_desc = 0; 3551 txq->next_desc_to_proc = 0; 3552 txq->descs_phys = 0; 3553 } 3554 3555 static void mvneta_txq_hw_deinit(struct mvneta_port *pp, 3556 struct mvneta_tx_queue *txq) 3557 { 3558 /* Set minimum bandwidth for disabled TXQs */ 3559 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 3560 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 3561 3562 /* Set Tx descriptors queue starting address and size */ 3563 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 3564 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 3565 } 3566 3567 static void mvneta_txq_deinit(struct mvneta_port *pp, 3568 struct mvneta_tx_queue *txq) 3569 { 3570 mvneta_txq_sw_deinit(pp, txq); 3571 mvneta_txq_hw_deinit(pp, txq); 3572 } 3573 3574 /* Cleanup all Tx queues */ 3575 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 3576 { 3577 int queue; 3578 3579 for (queue = 0; queue < txq_number; queue++) 3580 mvneta_txq_deinit(pp, &pp->txqs[queue]); 3581 } 3582 3583 /* Cleanup all Rx queues */ 3584 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 3585 { 3586 int queue; 3587 3588 for (queue = 0; queue < rxq_number; queue++) 3589 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 3590 } 3591 3592 3593 /* Init all Rx queues */ 3594 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3595 { 3596 int queue; 3597 3598 for (queue = 0; queue < rxq_number; queue++) { 3599 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3600 3601 if (err) { 3602 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3603 __func__, queue); 3604 mvneta_cleanup_rxqs(pp); 3605 return err; 3606 } 3607 } 3608 3609 return 0; 3610 } 3611 3612 /* Init all tx queues */ 3613 static int mvneta_setup_txqs(struct mvneta_port *pp) 3614 { 3615 int queue; 3616 3617 for (queue = 0; queue < txq_number; queue++) { 3618 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3619 if (err) { 3620 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3621 __func__, queue); 3622 mvneta_cleanup_txqs(pp); 3623 return err; 3624 } 3625 } 3626 3627 return 0; 3628 } 3629 3630 static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface) 3631 { 3632 int ret; 3633 3634 ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface); 3635 if (ret) 3636 return ret; 3637 3638 return phy_power_on(pp->comphy); 3639 } 3640 3641 static int mvneta_config_interface(struct mvneta_port *pp, 3642 phy_interface_t interface) 3643 { 3644 int ret = 0; 3645 3646 if (pp->comphy) { 3647 if (interface == PHY_INTERFACE_MODE_SGMII || 3648 interface == PHY_INTERFACE_MODE_1000BASEX || 3649 interface == PHY_INTERFACE_MODE_2500BASEX) { 3650 ret = mvneta_comphy_init(pp, interface); 3651 } 3652 } else { 3653 switch (interface) { 3654 case PHY_INTERFACE_MODE_QSGMII: 3655 mvreg_write(pp, MVNETA_SERDES_CFG, 3656 MVNETA_QSGMII_SERDES_PROTO); 3657 break; 3658 3659 case PHY_INTERFACE_MODE_SGMII: 3660 case PHY_INTERFACE_MODE_1000BASEX: 3661 mvreg_write(pp, MVNETA_SERDES_CFG, 3662 MVNETA_SGMII_SERDES_PROTO); 3663 break; 3664 3665 case PHY_INTERFACE_MODE_2500BASEX: 3666 mvreg_write(pp, MVNETA_SERDES_CFG, 3667 MVNETA_HSGMII_SERDES_PROTO); 3668 break; 3669 default: 3670 break; 3671 } 3672 } 3673 3674 pp->phy_interface = interface; 3675 3676 return ret; 3677 } 3678 3679 static void mvneta_start_dev(struct mvneta_port *pp) 3680 { 3681 int cpu; 3682 3683 WARN_ON(mvneta_config_interface(pp, pp->phy_interface)); 3684 3685 mvneta_max_rx_size_set(pp, pp->pkt_size); 3686 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3687 3688 /* start the Rx/Tx activity */ 3689 mvneta_port_enable(pp); 3690 3691 if (!pp->neta_armada3700) { 3692 /* Enable polling on the port */ 3693 for_each_online_cpu(cpu) { 3694 struct mvneta_pcpu_port *port = 3695 per_cpu_ptr(pp->ports, cpu); 3696 3697 napi_enable(&port->napi); 3698 } 3699 } else { 3700 napi_enable(&pp->napi); 3701 } 3702 3703 /* Unmask interrupts. It has to be done from each CPU */ 3704 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3705 3706 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3707 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3708 MVNETA_CAUSE_LINK_CHANGE); 3709 3710 phylink_start(pp->phylink); 3711 3712 /* We may have called phylink_speed_down before */ 3713 phylink_speed_up(pp->phylink); 3714 3715 netif_tx_start_all_queues(pp->dev); 3716 3717 clear_bit(__MVNETA_DOWN, &pp->state); 3718 } 3719 3720 static void mvneta_stop_dev(struct mvneta_port *pp) 3721 { 3722 unsigned int cpu; 3723 3724 set_bit(__MVNETA_DOWN, &pp->state); 3725 3726 if (device_may_wakeup(&pp->dev->dev)) 3727 phylink_speed_down(pp->phylink, false); 3728 3729 phylink_stop(pp->phylink); 3730 3731 if (!pp->neta_armada3700) { 3732 for_each_online_cpu(cpu) { 3733 struct mvneta_pcpu_port *port = 3734 per_cpu_ptr(pp->ports, cpu); 3735 3736 napi_disable(&port->napi); 3737 } 3738 } else { 3739 napi_disable(&pp->napi); 3740 } 3741 3742 netif_carrier_off(pp->dev); 3743 3744 mvneta_port_down(pp); 3745 netif_tx_stop_all_queues(pp->dev); 3746 3747 /* Stop the port activity */ 3748 mvneta_port_disable(pp); 3749 3750 /* Clear all ethernet port interrupts */ 3751 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3752 3753 /* Mask all ethernet port interrupts */ 3754 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3755 3756 mvneta_tx_reset(pp); 3757 mvneta_rx_reset(pp); 3758 3759 WARN_ON(phy_power_off(pp->comphy)); 3760 } 3761 3762 static void mvneta_percpu_enable(void *arg) 3763 { 3764 struct mvneta_port *pp = arg; 3765 3766 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3767 } 3768 3769 static void mvneta_percpu_disable(void *arg) 3770 { 3771 struct mvneta_port *pp = arg; 3772 3773 disable_percpu_irq(pp->dev->irq); 3774 } 3775 3776 /* Change the device mtu */ 3777 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3778 { 3779 struct mvneta_port *pp = netdev_priv(dev); 3780 struct bpf_prog *prog = pp->xdp_prog; 3781 int ret; 3782 3783 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3784 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3785 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3786 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3787 } 3788 3789 if (prog && !prog->aux->xdp_has_frags && 3790 mtu > MVNETA_MAX_RX_BUF_SIZE) { 3791 netdev_info(dev, "Illegal MTU %d for XDP prog without frags\n", 3792 mtu); 3793 3794 return -EINVAL; 3795 } 3796 3797 dev->mtu = mtu; 3798 3799 if (!netif_running(dev)) { 3800 if (pp->bm_priv) 3801 mvneta_bm_update_mtu(pp, mtu); 3802 3803 netdev_update_features(dev); 3804 return 0; 3805 } 3806 3807 /* The interface is running, so we have to force a 3808 * reallocation of the queues 3809 */ 3810 mvneta_stop_dev(pp); 3811 on_each_cpu(mvneta_percpu_disable, pp, true); 3812 3813 mvneta_cleanup_txqs(pp); 3814 mvneta_cleanup_rxqs(pp); 3815 3816 if (pp->bm_priv) 3817 mvneta_bm_update_mtu(pp, mtu); 3818 3819 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3820 3821 ret = mvneta_setup_rxqs(pp); 3822 if (ret) { 3823 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3824 return ret; 3825 } 3826 3827 ret = mvneta_setup_txqs(pp); 3828 if (ret) { 3829 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3830 return ret; 3831 } 3832 3833 on_each_cpu(mvneta_percpu_enable, pp, true); 3834 mvneta_start_dev(pp); 3835 3836 netdev_update_features(dev); 3837 3838 return 0; 3839 } 3840 3841 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3842 netdev_features_t features) 3843 { 3844 struct mvneta_port *pp = netdev_priv(dev); 3845 3846 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3847 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3848 netdev_info(dev, 3849 "Disable IP checksum for MTU greater than %dB\n", 3850 pp->tx_csum_limit); 3851 } 3852 3853 return features; 3854 } 3855 3856 /* Get mac address */ 3857 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3858 { 3859 u32 mac_addr_l, mac_addr_h; 3860 3861 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3862 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3863 addr[0] = (mac_addr_h >> 24) & 0xFF; 3864 addr[1] = (mac_addr_h >> 16) & 0xFF; 3865 addr[2] = (mac_addr_h >> 8) & 0xFF; 3866 addr[3] = mac_addr_h & 0xFF; 3867 addr[4] = (mac_addr_l >> 8) & 0xFF; 3868 addr[5] = mac_addr_l & 0xFF; 3869 } 3870 3871 /* Handle setting mac address */ 3872 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3873 { 3874 struct mvneta_port *pp = netdev_priv(dev); 3875 struct sockaddr *sockaddr = addr; 3876 int ret; 3877 3878 ret = eth_prepare_mac_addr_change(dev, addr); 3879 if (ret < 0) 3880 return ret; 3881 /* Remove previous address table entry */ 3882 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3883 3884 /* Set new addr in hw */ 3885 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3886 3887 eth_commit_mac_addr_change(dev, addr); 3888 return 0; 3889 } 3890 3891 static struct mvneta_port *mvneta_pcs_to_port(struct phylink_pcs *pcs) 3892 { 3893 return container_of(pcs, struct mvneta_port, phylink_pcs); 3894 } 3895 3896 static int mvneta_pcs_validate(struct phylink_pcs *pcs, 3897 unsigned long *supported, 3898 const struct phylink_link_state *state) 3899 { 3900 /* We only support QSGMII, SGMII, 802.3z and RGMII modes. 3901 * When in 802.3z mode, we must have AN enabled: 3902 * "Bit 2 Field InBandAnEn In-band Auto-Negotiation enable. ... 3903 * When <PortType> = 1 (1000BASE-X) this field must be set to 1." 3904 */ 3905 if (phy_interface_mode_is_8023z(state->interface) && 3906 !phylink_test(state->advertising, Autoneg)) 3907 return -EINVAL; 3908 3909 return 0; 3910 } 3911 3912 static void mvneta_pcs_get_state(struct phylink_pcs *pcs, 3913 struct phylink_link_state *state) 3914 { 3915 struct mvneta_port *pp = mvneta_pcs_to_port(pcs); 3916 u32 gmac_stat; 3917 3918 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3919 3920 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 3921 state->speed = 3922 state->interface == PHY_INTERFACE_MODE_2500BASEX ? 3923 SPEED_2500 : SPEED_1000; 3924 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 3925 state->speed = SPEED_100; 3926 else 3927 state->speed = SPEED_10; 3928 3929 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE); 3930 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 3931 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 3932 3933 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE) 3934 state->pause |= MLO_PAUSE_RX; 3935 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE) 3936 state->pause |= MLO_PAUSE_TX; 3937 } 3938 3939 static int mvneta_pcs_config(struct phylink_pcs *pcs, 3940 unsigned int mode, phy_interface_t interface, 3941 const unsigned long *advertising, 3942 bool permit_pause_to_mac) 3943 { 3944 struct mvneta_port *pp = mvneta_pcs_to_port(pcs); 3945 u32 mask, val, an, old_an, changed; 3946 3947 mask = MVNETA_GMAC_INBAND_AN_ENABLE | 3948 MVNETA_GMAC_INBAND_RESTART_AN | 3949 MVNETA_GMAC_AN_SPEED_EN | 3950 MVNETA_GMAC_AN_FLOW_CTRL_EN | 3951 MVNETA_GMAC_AN_DUPLEX_EN; 3952 3953 if (phylink_autoneg_inband(mode)) { 3954 mask |= MVNETA_GMAC_CONFIG_MII_SPEED | 3955 MVNETA_GMAC_CONFIG_GMII_SPEED | 3956 MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3957 val = MVNETA_GMAC_INBAND_AN_ENABLE; 3958 3959 if (interface == PHY_INTERFACE_MODE_SGMII) { 3960 /* SGMII mode receives the speed and duplex from PHY */ 3961 val |= MVNETA_GMAC_AN_SPEED_EN | 3962 MVNETA_GMAC_AN_DUPLEX_EN; 3963 } else { 3964 /* 802.3z mode has fixed speed and duplex */ 3965 val |= MVNETA_GMAC_CONFIG_GMII_SPEED | 3966 MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3967 3968 /* The FLOW_CTRL_EN bit selects either the hardware 3969 * automatically or the CONFIG_FLOW_CTRL manually 3970 * controls the GMAC pause mode. 3971 */ 3972 if (permit_pause_to_mac) 3973 val |= MVNETA_GMAC_AN_FLOW_CTRL_EN; 3974 3975 /* Update the advertisement bits */ 3976 mask |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; 3977 if (phylink_test(advertising, Pause)) 3978 val |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; 3979 } 3980 } else { 3981 /* Phy or fixed speed - disable in-band AN modes */ 3982 val = 0; 3983 } 3984 3985 old_an = an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3986 an = (an & ~mask) | val; 3987 changed = old_an ^ an; 3988 if (changed) 3989 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, an); 3990 3991 /* We are only interested in the advertisement bits changing */ 3992 return !!(changed & MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL); 3993 } 3994 3995 static void mvneta_pcs_an_restart(struct phylink_pcs *pcs) 3996 { 3997 struct mvneta_port *pp = mvneta_pcs_to_port(pcs); 3998 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3999 4000 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 4001 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN); 4002 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 4003 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN); 4004 } 4005 4006 static const struct phylink_pcs_ops mvneta_phylink_pcs_ops = { 4007 .pcs_validate = mvneta_pcs_validate, 4008 .pcs_get_state = mvneta_pcs_get_state, 4009 .pcs_config = mvneta_pcs_config, 4010 .pcs_an_restart = mvneta_pcs_an_restart, 4011 }; 4012 4013 static struct phylink_pcs *mvneta_mac_select_pcs(struct phylink_config *config, 4014 phy_interface_t interface) 4015 { 4016 struct net_device *ndev = to_net_dev(config->dev); 4017 struct mvneta_port *pp = netdev_priv(ndev); 4018 4019 return &pp->phylink_pcs; 4020 } 4021 4022 static int mvneta_mac_prepare(struct phylink_config *config, unsigned int mode, 4023 phy_interface_t interface) 4024 { 4025 struct net_device *ndev = to_net_dev(config->dev); 4026 struct mvneta_port *pp = netdev_priv(ndev); 4027 u32 val; 4028 4029 if (pp->phy_interface != interface || 4030 phylink_autoneg_inband(mode)) { 4031 /* Force the link down when changing the interface or if in 4032 * in-band mode. According to Armada 370 documentation, we 4033 * can only change the port mode and in-band enable when the 4034 * link is down. 4035 */ 4036 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4037 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 4038 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 4039 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4040 } 4041 4042 if (pp->phy_interface != interface) 4043 WARN_ON(phy_power_off(pp->comphy)); 4044 4045 /* Enable the 1ms clock */ 4046 if (phylink_autoneg_inband(mode)) { 4047 unsigned long rate = clk_get_rate(pp->clk); 4048 4049 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, 4050 MVNETA_GMAC_1MS_CLOCK_ENABLE | (rate / 1000)); 4051 } 4052 4053 return 0; 4054 } 4055 4056 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode, 4057 const struct phylink_link_state *state) 4058 { 4059 struct net_device *ndev = to_net_dev(config->dev); 4060 struct mvneta_port *pp = netdev_priv(ndev); 4061 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 4062 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 4063 u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4); 4064 4065 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X; 4066 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE | 4067 MVNETA_GMAC2_PORT_RESET); 4068 new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE); 4069 4070 /* Even though it might look weird, when we're configured in 4071 * SGMII or QSGMII mode, the RGMII bit needs to be set. 4072 */ 4073 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII; 4074 4075 if (state->interface == PHY_INTERFACE_MODE_QSGMII || 4076 state->interface == PHY_INTERFACE_MODE_SGMII || 4077 phy_interface_mode_is_8023z(state->interface)) 4078 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE; 4079 4080 if (!phylink_autoneg_inband(mode)) { 4081 /* Phy or fixed speed - nothing to do, leave the 4082 * configured speed, duplex and flow control as-is. 4083 */ 4084 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { 4085 /* SGMII mode receives the state from the PHY */ 4086 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE; 4087 } else { 4088 /* 802.3z negotiation - only 1000base-X */ 4089 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X; 4090 } 4091 4092 /* When at 2.5G, the link partner can send frames with shortened 4093 * preambles. 4094 */ 4095 if (state->interface == PHY_INTERFACE_MODE_2500BASEX) 4096 new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE; 4097 4098 if (new_ctrl0 != gmac_ctrl0) 4099 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0); 4100 if (new_ctrl2 != gmac_ctrl2) 4101 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2); 4102 if (new_ctrl4 != gmac_ctrl4) 4103 mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4); 4104 4105 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) { 4106 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 4107 MVNETA_GMAC2_PORT_RESET) != 0) 4108 continue; 4109 } 4110 } 4111 4112 static int mvneta_mac_finish(struct phylink_config *config, unsigned int mode, 4113 phy_interface_t interface) 4114 { 4115 struct net_device *ndev = to_net_dev(config->dev); 4116 struct mvneta_port *pp = netdev_priv(ndev); 4117 u32 val, clk; 4118 4119 /* Disable 1ms clock if not in in-band mode */ 4120 if (!phylink_autoneg_inband(mode)) { 4121 clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 4122 clk &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 4123 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, clk); 4124 } 4125 4126 if (pp->phy_interface != interface) 4127 /* Enable the Serdes PHY */ 4128 WARN_ON(mvneta_config_interface(pp, interface)); 4129 4130 /* Allow the link to come up if in in-band mode, otherwise the 4131 * link is forced via mac_link_down()/mac_link_up() 4132 */ 4133 if (phylink_autoneg_inband(mode)) { 4134 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4135 val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; 4136 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4137 } 4138 4139 return 0; 4140 } 4141 4142 static void mvneta_set_eee(struct mvneta_port *pp, bool enable) 4143 { 4144 u32 lpi_ctl1; 4145 4146 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1); 4147 if (enable) 4148 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE; 4149 else 4150 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE; 4151 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1); 4152 } 4153 4154 static void mvneta_mac_link_down(struct phylink_config *config, 4155 unsigned int mode, phy_interface_t interface) 4156 { 4157 struct net_device *ndev = to_net_dev(config->dev); 4158 struct mvneta_port *pp = netdev_priv(ndev); 4159 u32 val; 4160 4161 mvneta_port_down(pp); 4162 4163 if (!phylink_autoneg_inband(mode)) { 4164 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4165 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 4166 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 4167 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4168 } 4169 4170 pp->eee_active = false; 4171 mvneta_set_eee(pp, false); 4172 } 4173 4174 static void mvneta_mac_link_up(struct phylink_config *config, 4175 struct phy_device *phy, 4176 unsigned int mode, phy_interface_t interface, 4177 int speed, int duplex, 4178 bool tx_pause, bool rx_pause) 4179 { 4180 struct net_device *ndev = to_net_dev(config->dev); 4181 struct mvneta_port *pp = netdev_priv(ndev); 4182 u32 val; 4183 4184 if (!phylink_autoneg_inband(mode)) { 4185 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4186 val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN | 4187 MVNETA_GMAC_CONFIG_MII_SPEED | 4188 MVNETA_GMAC_CONFIG_GMII_SPEED | 4189 MVNETA_GMAC_CONFIG_FLOW_CTRL | 4190 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 4191 val |= MVNETA_GMAC_FORCE_LINK_PASS; 4192 4193 if (speed == SPEED_1000 || speed == SPEED_2500) 4194 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 4195 else if (speed == SPEED_100) 4196 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 4197 4198 if (duplex == DUPLEX_FULL) 4199 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 4200 4201 if (tx_pause || rx_pause) 4202 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4203 4204 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4205 } else { 4206 /* When inband doesn't cover flow control or flow control is 4207 * disabled, we need to manually configure it. This bit will 4208 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset. 4209 */ 4210 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4211 val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL; 4212 4213 if (tx_pause || rx_pause) 4214 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4215 4216 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4217 } 4218 4219 mvneta_port_up(pp); 4220 4221 if (phy && pp->eee_enabled) { 4222 pp->eee_active = phy_init_eee(phy, false) >= 0; 4223 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled); 4224 } 4225 } 4226 4227 static const struct phylink_mac_ops mvneta_phylink_ops = { 4228 .validate = phylink_generic_validate, 4229 .mac_select_pcs = mvneta_mac_select_pcs, 4230 .mac_prepare = mvneta_mac_prepare, 4231 .mac_config = mvneta_mac_config, 4232 .mac_finish = mvneta_mac_finish, 4233 .mac_link_down = mvneta_mac_link_down, 4234 .mac_link_up = mvneta_mac_link_up, 4235 }; 4236 4237 static int mvneta_mdio_probe(struct mvneta_port *pp) 4238 { 4239 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 4240 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0); 4241 4242 if (err) 4243 netdev_err(pp->dev, "could not attach PHY: %d\n", err); 4244 4245 phylink_ethtool_get_wol(pp->phylink, &wol); 4246 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); 4247 4248 /* PHY WoL may be enabled but device wakeup disabled */ 4249 if (wol.supported) 4250 device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts); 4251 4252 return err; 4253 } 4254 4255 static void mvneta_mdio_remove(struct mvneta_port *pp) 4256 { 4257 phylink_disconnect_phy(pp->phylink); 4258 } 4259 4260 /* Electing a CPU must be done in an atomic way: it should be done 4261 * after or before the removal/insertion of a CPU and this function is 4262 * not reentrant. 4263 */ 4264 static void mvneta_percpu_elect(struct mvneta_port *pp) 4265 { 4266 int elected_cpu = 0, max_cpu, cpu, i = 0; 4267 4268 /* Use the cpu associated to the rxq when it is online, in all 4269 * the other cases, use the cpu 0 which can't be offline. 4270 */ 4271 if (cpu_online(pp->rxq_def)) 4272 elected_cpu = pp->rxq_def; 4273 4274 max_cpu = num_present_cpus(); 4275 4276 for_each_online_cpu(cpu) { 4277 int rxq_map = 0, txq_map = 0; 4278 int rxq; 4279 4280 for (rxq = 0; rxq < rxq_number; rxq++) 4281 if ((rxq % max_cpu) == cpu) 4282 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 4283 4284 if (cpu == elected_cpu) 4285 /* Map the default receive queue to the elected CPU */ 4286 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 4287 4288 /* We update the TX queue map only if we have one 4289 * queue. In this case we associate the TX queue to 4290 * the CPU bound to the default RX queue 4291 */ 4292 if (txq_number == 1) 4293 txq_map = (cpu == elected_cpu) ? 4294 MVNETA_CPU_TXQ_ACCESS(1) : 0; 4295 else 4296 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 4297 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 4298 4299 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 4300 4301 /* Update the interrupt mask on each CPU according the 4302 * new mapping 4303 */ 4304 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 4305 pp, true); 4306 i++; 4307 4308 } 4309 }; 4310 4311 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 4312 { 4313 int other_cpu; 4314 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4315 node_online); 4316 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4317 4318 /* Armada 3700's per-cpu interrupt for mvneta is broken, all interrupts 4319 * are routed to CPU 0, so we don't need all the cpu-hotplug support 4320 */ 4321 if (pp->neta_armada3700) 4322 return 0; 4323 4324 spin_lock(&pp->lock); 4325 /* 4326 * Configuring the driver for a new CPU while the driver is 4327 * stopping is racy, so just avoid it. 4328 */ 4329 if (pp->is_stopped) { 4330 spin_unlock(&pp->lock); 4331 return 0; 4332 } 4333 netif_tx_stop_all_queues(pp->dev); 4334 4335 /* 4336 * We have to synchronise on tha napi of each CPU except the one 4337 * just being woken up 4338 */ 4339 for_each_online_cpu(other_cpu) { 4340 if (other_cpu != cpu) { 4341 struct mvneta_pcpu_port *other_port = 4342 per_cpu_ptr(pp->ports, other_cpu); 4343 4344 napi_synchronize(&other_port->napi); 4345 } 4346 } 4347 4348 /* Mask all ethernet port interrupts */ 4349 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4350 napi_enable(&port->napi); 4351 4352 /* 4353 * Enable per-CPU interrupts on the CPU that is 4354 * brought up. 4355 */ 4356 mvneta_percpu_enable(pp); 4357 4358 /* 4359 * Enable per-CPU interrupt on the one CPU we care 4360 * about. 4361 */ 4362 mvneta_percpu_elect(pp); 4363 4364 /* Unmask all ethernet port interrupts */ 4365 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4366 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4367 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4368 MVNETA_CAUSE_LINK_CHANGE); 4369 netif_tx_start_all_queues(pp->dev); 4370 spin_unlock(&pp->lock); 4371 return 0; 4372 } 4373 4374 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 4375 { 4376 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4377 node_online); 4378 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4379 4380 /* 4381 * Thanks to this lock we are sure that any pending cpu election is 4382 * done. 4383 */ 4384 spin_lock(&pp->lock); 4385 /* Mask all ethernet port interrupts */ 4386 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4387 spin_unlock(&pp->lock); 4388 4389 napi_synchronize(&port->napi); 4390 napi_disable(&port->napi); 4391 /* Disable per-CPU interrupts on the CPU that is brought down. */ 4392 mvneta_percpu_disable(pp); 4393 return 0; 4394 } 4395 4396 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 4397 { 4398 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4399 node_dead); 4400 4401 /* Check if a new CPU must be elected now this on is down */ 4402 spin_lock(&pp->lock); 4403 mvneta_percpu_elect(pp); 4404 spin_unlock(&pp->lock); 4405 /* Unmask all ethernet port interrupts */ 4406 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4407 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4408 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4409 MVNETA_CAUSE_LINK_CHANGE); 4410 netif_tx_start_all_queues(pp->dev); 4411 return 0; 4412 } 4413 4414 static int mvneta_open(struct net_device *dev) 4415 { 4416 struct mvneta_port *pp = netdev_priv(dev); 4417 int ret; 4418 4419 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 4420 4421 ret = mvneta_setup_rxqs(pp); 4422 if (ret) 4423 return ret; 4424 4425 ret = mvneta_setup_txqs(pp); 4426 if (ret) 4427 goto err_cleanup_rxqs; 4428 4429 /* Connect to port interrupt line */ 4430 if (pp->neta_armada3700) 4431 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 4432 dev->name, pp); 4433 else 4434 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 4435 dev->name, pp->ports); 4436 if (ret) { 4437 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 4438 goto err_cleanup_txqs; 4439 } 4440 4441 if (!pp->neta_armada3700) { 4442 /* Enable per-CPU interrupt on all the CPU to handle our RX 4443 * queue interrupts 4444 */ 4445 on_each_cpu(mvneta_percpu_enable, pp, true); 4446 4447 pp->is_stopped = false; 4448 /* Register a CPU notifier to handle the case where our CPU 4449 * might be taken offline. 4450 */ 4451 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 4452 &pp->node_online); 4453 if (ret) 4454 goto err_free_irq; 4455 4456 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4457 &pp->node_dead); 4458 if (ret) 4459 goto err_free_online_hp; 4460 } 4461 4462 ret = mvneta_mdio_probe(pp); 4463 if (ret < 0) { 4464 netdev_err(dev, "cannot probe MDIO bus\n"); 4465 goto err_free_dead_hp; 4466 } 4467 4468 mvneta_start_dev(pp); 4469 4470 return 0; 4471 4472 err_free_dead_hp: 4473 if (!pp->neta_armada3700) 4474 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4475 &pp->node_dead); 4476 err_free_online_hp: 4477 if (!pp->neta_armada3700) 4478 cpuhp_state_remove_instance_nocalls(online_hpstate, 4479 &pp->node_online); 4480 err_free_irq: 4481 if (pp->neta_armada3700) { 4482 free_irq(pp->dev->irq, pp); 4483 } else { 4484 on_each_cpu(mvneta_percpu_disable, pp, true); 4485 free_percpu_irq(pp->dev->irq, pp->ports); 4486 } 4487 err_cleanup_txqs: 4488 mvneta_cleanup_txqs(pp); 4489 err_cleanup_rxqs: 4490 mvneta_cleanup_rxqs(pp); 4491 return ret; 4492 } 4493 4494 /* Stop the port, free port interrupt line */ 4495 static int mvneta_stop(struct net_device *dev) 4496 { 4497 struct mvneta_port *pp = netdev_priv(dev); 4498 4499 if (!pp->neta_armada3700) { 4500 /* Inform that we are stopping so we don't want to setup the 4501 * driver for new CPUs in the notifiers. The code of the 4502 * notifier for CPU online is protected by the same spinlock, 4503 * so when we get the lock, the notifer work is done. 4504 */ 4505 spin_lock(&pp->lock); 4506 pp->is_stopped = true; 4507 spin_unlock(&pp->lock); 4508 4509 mvneta_stop_dev(pp); 4510 mvneta_mdio_remove(pp); 4511 4512 cpuhp_state_remove_instance_nocalls(online_hpstate, 4513 &pp->node_online); 4514 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4515 &pp->node_dead); 4516 on_each_cpu(mvneta_percpu_disable, pp, true); 4517 free_percpu_irq(dev->irq, pp->ports); 4518 } else { 4519 mvneta_stop_dev(pp); 4520 mvneta_mdio_remove(pp); 4521 free_irq(dev->irq, pp); 4522 } 4523 4524 mvneta_cleanup_rxqs(pp); 4525 mvneta_cleanup_txqs(pp); 4526 4527 return 0; 4528 } 4529 4530 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4531 { 4532 struct mvneta_port *pp = netdev_priv(dev); 4533 4534 return phylink_mii_ioctl(pp->phylink, ifr, cmd); 4535 } 4536 4537 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog, 4538 struct netlink_ext_ack *extack) 4539 { 4540 bool need_update, running = netif_running(dev); 4541 struct mvneta_port *pp = netdev_priv(dev); 4542 struct bpf_prog *old_prog; 4543 4544 if (prog && !prog->aux->xdp_has_frags && 4545 dev->mtu > MVNETA_MAX_RX_BUF_SIZE) { 4546 NL_SET_ERR_MSG_MOD(extack, "prog does not support XDP frags"); 4547 return -EOPNOTSUPP; 4548 } 4549 4550 if (pp->bm_priv) { 4551 NL_SET_ERR_MSG_MOD(extack, 4552 "Hardware Buffer Management not supported on XDP"); 4553 return -EOPNOTSUPP; 4554 } 4555 4556 need_update = !!pp->xdp_prog != !!prog; 4557 if (running && need_update) 4558 mvneta_stop(dev); 4559 4560 old_prog = xchg(&pp->xdp_prog, prog); 4561 if (old_prog) 4562 bpf_prog_put(old_prog); 4563 4564 if (running && need_update) 4565 return mvneta_open(dev); 4566 4567 return 0; 4568 } 4569 4570 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4571 { 4572 switch (xdp->command) { 4573 case XDP_SETUP_PROG: 4574 return mvneta_xdp_setup(dev, xdp->prog, xdp->extack); 4575 default: 4576 return -EINVAL; 4577 } 4578 } 4579 4580 /* Ethtool methods */ 4581 4582 /* Set link ksettings (phy address, speed) for ethtools */ 4583 static int 4584 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 4585 const struct ethtool_link_ksettings *cmd) 4586 { 4587 struct mvneta_port *pp = netdev_priv(ndev); 4588 4589 return phylink_ethtool_ksettings_set(pp->phylink, cmd); 4590 } 4591 4592 /* Get link ksettings for ethtools */ 4593 static int 4594 mvneta_ethtool_get_link_ksettings(struct net_device *ndev, 4595 struct ethtool_link_ksettings *cmd) 4596 { 4597 struct mvneta_port *pp = netdev_priv(ndev); 4598 4599 return phylink_ethtool_ksettings_get(pp->phylink, cmd); 4600 } 4601 4602 static int mvneta_ethtool_nway_reset(struct net_device *dev) 4603 { 4604 struct mvneta_port *pp = netdev_priv(dev); 4605 4606 return phylink_ethtool_nway_reset(pp->phylink); 4607 } 4608 4609 /* Set interrupt coalescing for ethtools */ 4610 static int 4611 mvneta_ethtool_set_coalesce(struct net_device *dev, 4612 struct ethtool_coalesce *c, 4613 struct kernel_ethtool_coalesce *kernel_coal, 4614 struct netlink_ext_ack *extack) 4615 { 4616 struct mvneta_port *pp = netdev_priv(dev); 4617 int queue; 4618 4619 for (queue = 0; queue < rxq_number; queue++) { 4620 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4621 rxq->time_coal = c->rx_coalesce_usecs; 4622 rxq->pkts_coal = c->rx_max_coalesced_frames; 4623 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 4624 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 4625 } 4626 4627 for (queue = 0; queue < txq_number; queue++) { 4628 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4629 txq->done_pkts_coal = c->tx_max_coalesced_frames; 4630 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 4631 } 4632 4633 return 0; 4634 } 4635 4636 /* get coalescing for ethtools */ 4637 static int 4638 mvneta_ethtool_get_coalesce(struct net_device *dev, 4639 struct ethtool_coalesce *c, 4640 struct kernel_ethtool_coalesce *kernel_coal, 4641 struct netlink_ext_ack *extack) 4642 { 4643 struct mvneta_port *pp = netdev_priv(dev); 4644 4645 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 4646 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 4647 4648 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 4649 return 0; 4650 } 4651 4652 4653 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 4654 struct ethtool_drvinfo *drvinfo) 4655 { 4656 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 4657 sizeof(drvinfo->driver)); 4658 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 4659 sizeof(drvinfo->version)); 4660 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 4661 sizeof(drvinfo->bus_info)); 4662 } 4663 4664 4665 static void 4666 mvneta_ethtool_get_ringparam(struct net_device *netdev, 4667 struct ethtool_ringparam *ring, 4668 struct kernel_ethtool_ringparam *kernel_ring, 4669 struct netlink_ext_ack *extack) 4670 { 4671 struct mvneta_port *pp = netdev_priv(netdev); 4672 4673 ring->rx_max_pending = MVNETA_MAX_RXD; 4674 ring->tx_max_pending = MVNETA_MAX_TXD; 4675 ring->rx_pending = pp->rx_ring_size; 4676 ring->tx_pending = pp->tx_ring_size; 4677 } 4678 4679 static int 4680 mvneta_ethtool_set_ringparam(struct net_device *dev, 4681 struct ethtool_ringparam *ring, 4682 struct kernel_ethtool_ringparam *kernel_ring, 4683 struct netlink_ext_ack *extack) 4684 { 4685 struct mvneta_port *pp = netdev_priv(dev); 4686 4687 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 4688 return -EINVAL; 4689 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 4690 ring->rx_pending : MVNETA_MAX_RXD; 4691 4692 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 4693 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 4694 if (pp->tx_ring_size != ring->tx_pending) 4695 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 4696 pp->tx_ring_size, ring->tx_pending); 4697 4698 if (netif_running(dev)) { 4699 mvneta_stop(dev); 4700 if (mvneta_open(dev)) { 4701 netdev_err(dev, 4702 "error on opening device after ring param change\n"); 4703 return -ENOMEM; 4704 } 4705 } 4706 4707 return 0; 4708 } 4709 4710 static void mvneta_ethtool_get_pauseparam(struct net_device *dev, 4711 struct ethtool_pauseparam *pause) 4712 { 4713 struct mvneta_port *pp = netdev_priv(dev); 4714 4715 phylink_ethtool_get_pauseparam(pp->phylink, pause); 4716 } 4717 4718 static int mvneta_ethtool_set_pauseparam(struct net_device *dev, 4719 struct ethtool_pauseparam *pause) 4720 { 4721 struct mvneta_port *pp = netdev_priv(dev); 4722 4723 return phylink_ethtool_set_pauseparam(pp->phylink, pause); 4724 } 4725 4726 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 4727 u8 *data) 4728 { 4729 if (sset == ETH_SS_STATS) { 4730 int i; 4731 4732 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4733 memcpy(data + i * ETH_GSTRING_LEN, 4734 mvneta_statistics[i].name, ETH_GSTRING_LEN); 4735 } 4736 } 4737 4738 static void 4739 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp, 4740 struct mvneta_ethtool_stats *es) 4741 { 4742 unsigned int start; 4743 int cpu; 4744 4745 for_each_possible_cpu(cpu) { 4746 struct mvneta_pcpu_stats *stats; 4747 u64 skb_alloc_error; 4748 u64 refill_error; 4749 u64 xdp_redirect; 4750 u64 xdp_xmit_err; 4751 u64 xdp_tx_err; 4752 u64 xdp_pass; 4753 u64 xdp_drop; 4754 u64 xdp_xmit; 4755 u64 xdp_tx; 4756 4757 stats = per_cpu_ptr(pp->stats, cpu); 4758 do { 4759 start = u64_stats_fetch_begin_irq(&stats->syncp); 4760 skb_alloc_error = stats->es.skb_alloc_error; 4761 refill_error = stats->es.refill_error; 4762 xdp_redirect = stats->es.ps.xdp_redirect; 4763 xdp_pass = stats->es.ps.xdp_pass; 4764 xdp_drop = stats->es.ps.xdp_drop; 4765 xdp_xmit = stats->es.ps.xdp_xmit; 4766 xdp_xmit_err = stats->es.ps.xdp_xmit_err; 4767 xdp_tx = stats->es.ps.xdp_tx; 4768 xdp_tx_err = stats->es.ps.xdp_tx_err; 4769 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 4770 4771 es->skb_alloc_error += skb_alloc_error; 4772 es->refill_error += refill_error; 4773 es->ps.xdp_redirect += xdp_redirect; 4774 es->ps.xdp_pass += xdp_pass; 4775 es->ps.xdp_drop += xdp_drop; 4776 es->ps.xdp_xmit += xdp_xmit; 4777 es->ps.xdp_xmit_err += xdp_xmit_err; 4778 es->ps.xdp_tx += xdp_tx; 4779 es->ps.xdp_tx_err += xdp_tx_err; 4780 } 4781 } 4782 4783 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 4784 { 4785 struct mvneta_ethtool_stats stats = {}; 4786 const struct mvneta_statistic *s; 4787 void __iomem *base = pp->base; 4788 u32 high, low; 4789 u64 val; 4790 int i; 4791 4792 mvneta_ethtool_update_pcpu_stats(pp, &stats); 4793 for (i = 0, s = mvneta_statistics; 4794 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 4795 s++, i++) { 4796 switch (s->type) { 4797 case T_REG_32: 4798 val = readl_relaxed(base + s->offset); 4799 pp->ethtool_stats[i] += val; 4800 break; 4801 case T_REG_64: 4802 /* Docs say to read low 32-bit then high */ 4803 low = readl_relaxed(base + s->offset); 4804 high = readl_relaxed(base + s->offset + 4); 4805 val = (u64)high << 32 | low; 4806 pp->ethtool_stats[i] += val; 4807 break; 4808 case T_SW: 4809 switch (s->offset) { 4810 case ETHTOOL_STAT_EEE_WAKEUP: 4811 val = phylink_get_eee_err(pp->phylink); 4812 pp->ethtool_stats[i] += val; 4813 break; 4814 case ETHTOOL_STAT_SKB_ALLOC_ERR: 4815 pp->ethtool_stats[i] = stats.skb_alloc_error; 4816 break; 4817 case ETHTOOL_STAT_REFILL_ERR: 4818 pp->ethtool_stats[i] = stats.refill_error; 4819 break; 4820 case ETHTOOL_XDP_REDIRECT: 4821 pp->ethtool_stats[i] = stats.ps.xdp_redirect; 4822 break; 4823 case ETHTOOL_XDP_PASS: 4824 pp->ethtool_stats[i] = stats.ps.xdp_pass; 4825 break; 4826 case ETHTOOL_XDP_DROP: 4827 pp->ethtool_stats[i] = stats.ps.xdp_drop; 4828 break; 4829 case ETHTOOL_XDP_TX: 4830 pp->ethtool_stats[i] = stats.ps.xdp_tx; 4831 break; 4832 case ETHTOOL_XDP_TX_ERR: 4833 pp->ethtool_stats[i] = stats.ps.xdp_tx_err; 4834 break; 4835 case ETHTOOL_XDP_XMIT: 4836 pp->ethtool_stats[i] = stats.ps.xdp_xmit; 4837 break; 4838 case ETHTOOL_XDP_XMIT_ERR: 4839 pp->ethtool_stats[i] = stats.ps.xdp_xmit_err; 4840 break; 4841 } 4842 break; 4843 } 4844 } 4845 } 4846 4847 static void mvneta_ethtool_get_stats(struct net_device *dev, 4848 struct ethtool_stats *stats, u64 *data) 4849 { 4850 struct mvneta_port *pp = netdev_priv(dev); 4851 int i; 4852 4853 mvneta_ethtool_update_stats(pp); 4854 4855 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4856 *data++ = pp->ethtool_stats[i]; 4857 } 4858 4859 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 4860 { 4861 if (sset == ETH_SS_STATS) 4862 return ARRAY_SIZE(mvneta_statistics); 4863 return -EOPNOTSUPP; 4864 } 4865 4866 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 4867 { 4868 return MVNETA_RSS_LU_TABLE_SIZE; 4869 } 4870 4871 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 4872 struct ethtool_rxnfc *info, 4873 u32 *rules __always_unused) 4874 { 4875 switch (info->cmd) { 4876 case ETHTOOL_GRXRINGS: 4877 info->data = rxq_number; 4878 return 0; 4879 case ETHTOOL_GRXFH: 4880 return -EOPNOTSUPP; 4881 default: 4882 return -EOPNOTSUPP; 4883 } 4884 } 4885 4886 static int mvneta_config_rss(struct mvneta_port *pp) 4887 { 4888 int cpu; 4889 u32 val; 4890 4891 netif_tx_stop_all_queues(pp->dev); 4892 4893 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4894 4895 if (!pp->neta_armada3700) { 4896 /* We have to synchronise on the napi of each CPU */ 4897 for_each_online_cpu(cpu) { 4898 struct mvneta_pcpu_port *pcpu_port = 4899 per_cpu_ptr(pp->ports, cpu); 4900 4901 napi_synchronize(&pcpu_port->napi); 4902 napi_disable(&pcpu_port->napi); 4903 } 4904 } else { 4905 napi_synchronize(&pp->napi); 4906 napi_disable(&pp->napi); 4907 } 4908 4909 pp->rxq_def = pp->indir[0]; 4910 4911 /* Update unicast mapping */ 4912 mvneta_set_rx_mode(pp->dev); 4913 4914 /* Update val of portCfg register accordingly with all RxQueue types */ 4915 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 4916 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 4917 4918 /* Update the elected CPU matching the new rxq_def */ 4919 spin_lock(&pp->lock); 4920 mvneta_percpu_elect(pp); 4921 spin_unlock(&pp->lock); 4922 4923 if (!pp->neta_armada3700) { 4924 /* We have to synchronise on the napi of each CPU */ 4925 for_each_online_cpu(cpu) { 4926 struct mvneta_pcpu_port *pcpu_port = 4927 per_cpu_ptr(pp->ports, cpu); 4928 4929 napi_enable(&pcpu_port->napi); 4930 } 4931 } else { 4932 napi_enable(&pp->napi); 4933 } 4934 4935 netif_tx_start_all_queues(pp->dev); 4936 4937 return 0; 4938 } 4939 4940 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 4941 const u8 *key, const u8 hfunc) 4942 { 4943 struct mvneta_port *pp = netdev_priv(dev); 4944 4945 /* Current code for Armada 3700 doesn't support RSS features yet */ 4946 if (pp->neta_armada3700) 4947 return -EOPNOTSUPP; 4948 4949 /* We require at least one supported parameter to be changed 4950 * and no change in any of the unsupported parameters 4951 */ 4952 if (key || 4953 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 4954 return -EOPNOTSUPP; 4955 4956 if (!indir) 4957 return 0; 4958 4959 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 4960 4961 return mvneta_config_rss(pp); 4962 } 4963 4964 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 4965 u8 *hfunc) 4966 { 4967 struct mvneta_port *pp = netdev_priv(dev); 4968 4969 /* Current code for Armada 3700 doesn't support RSS features yet */ 4970 if (pp->neta_armada3700) 4971 return -EOPNOTSUPP; 4972 4973 if (hfunc) 4974 *hfunc = ETH_RSS_HASH_TOP; 4975 4976 if (!indir) 4977 return 0; 4978 4979 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 4980 4981 return 0; 4982 } 4983 4984 static void mvneta_ethtool_get_wol(struct net_device *dev, 4985 struct ethtool_wolinfo *wol) 4986 { 4987 struct mvneta_port *pp = netdev_priv(dev); 4988 4989 phylink_ethtool_get_wol(pp->phylink, wol); 4990 } 4991 4992 static int mvneta_ethtool_set_wol(struct net_device *dev, 4993 struct ethtool_wolinfo *wol) 4994 { 4995 struct mvneta_port *pp = netdev_priv(dev); 4996 int ret; 4997 4998 ret = phylink_ethtool_set_wol(pp->phylink, wol); 4999 if (!ret) 5000 device_set_wakeup_enable(&dev->dev, !!wol->wolopts); 5001 5002 return ret; 5003 } 5004 5005 static int mvneta_ethtool_get_eee(struct net_device *dev, 5006 struct ethtool_eee *eee) 5007 { 5008 struct mvneta_port *pp = netdev_priv(dev); 5009 u32 lpi_ctl0; 5010 5011 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 5012 5013 eee->eee_enabled = pp->eee_enabled; 5014 eee->eee_active = pp->eee_active; 5015 eee->tx_lpi_enabled = pp->tx_lpi_enabled; 5016 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale; 5017 5018 return phylink_ethtool_get_eee(pp->phylink, eee); 5019 } 5020 5021 static int mvneta_ethtool_set_eee(struct net_device *dev, 5022 struct ethtool_eee *eee) 5023 { 5024 struct mvneta_port *pp = netdev_priv(dev); 5025 u32 lpi_ctl0; 5026 5027 /* The Armada 37x documents do not give limits for this other than 5028 * it being an 8-bit register. 5029 */ 5030 if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255) 5031 return -EINVAL; 5032 5033 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 5034 lpi_ctl0 &= ~(0xff << 8); 5035 lpi_ctl0 |= eee->tx_lpi_timer << 8; 5036 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0); 5037 5038 pp->eee_enabled = eee->eee_enabled; 5039 pp->tx_lpi_enabled = eee->tx_lpi_enabled; 5040 5041 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled); 5042 5043 return phylink_ethtool_set_eee(pp->phylink, eee); 5044 } 5045 5046 static void mvneta_clear_rx_prio_map(struct mvneta_port *pp) 5047 { 5048 mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, 0); 5049 } 5050 5051 static void mvneta_map_vlan_prio_to_rxq(struct mvneta_port *pp, u8 pri, u8 rxq) 5052 { 5053 u32 val = mvreg_read(pp, MVNETA_VLAN_PRIO_TO_RXQ); 5054 5055 val &= ~MVNETA_VLAN_PRIO_RXQ_MAP(pri, 0x7); 5056 val |= MVNETA_VLAN_PRIO_RXQ_MAP(pri, rxq); 5057 5058 mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, val); 5059 } 5060 5061 static int mvneta_enable_per_queue_rate_limit(struct mvneta_port *pp) 5062 { 5063 unsigned long core_clk_rate; 5064 u32 refill_cycles; 5065 u32 val; 5066 5067 core_clk_rate = clk_get_rate(pp->clk); 5068 if (!core_clk_rate) 5069 return -EINVAL; 5070 5071 refill_cycles = MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS / 5072 (NSEC_PER_SEC / core_clk_rate); 5073 5074 if (refill_cycles > MVNETA_REFILL_MAX_NUM_CLK) 5075 return -EINVAL; 5076 5077 /* Enable bw limit algorithm version 3 */ 5078 val = mvreg_read(pp, MVNETA_TXQ_CMD1_REG); 5079 val &= ~(MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 | MVNETA_TXQ_CMD1_BW_LIM_EN); 5080 mvreg_write(pp, MVNETA_TXQ_CMD1_REG, val); 5081 5082 /* Set the base refill rate */ 5083 mvreg_write(pp, MVNETA_REFILL_NUM_CLK_REG, refill_cycles); 5084 5085 return 0; 5086 } 5087 5088 static void mvneta_disable_per_queue_rate_limit(struct mvneta_port *pp) 5089 { 5090 u32 val = mvreg_read(pp, MVNETA_TXQ_CMD1_REG); 5091 5092 val |= (MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 | MVNETA_TXQ_CMD1_BW_LIM_EN); 5093 mvreg_write(pp, MVNETA_TXQ_CMD1_REG, val); 5094 } 5095 5096 static int mvneta_setup_queue_rates(struct mvneta_port *pp, int queue, 5097 u64 min_rate, u64 max_rate) 5098 { 5099 u32 refill_val, rem; 5100 u32 val = 0; 5101 5102 /* Convert to from Bps to bps */ 5103 max_rate *= 8; 5104 5105 if (min_rate) 5106 return -EINVAL; 5107 5108 refill_val = div_u64_rem(max_rate, MVNETA_TXQ_RATE_LIMIT_RESOLUTION, 5109 &rem); 5110 5111 if (rem || !refill_val || 5112 refill_val > MVNETA_TXQ_BUCKET_REFILL_VALUE_MAX) 5113 return -EINVAL; 5114 5115 val = refill_val; 5116 val |= (MVNETA_TXQ_BUCKET_REFILL_PERIOD << 5117 MVNETA_TXQ_BUCKET_REFILL_PERIOD_SHIFT); 5118 5119 mvreg_write(pp, MVNETA_TXQ_BUCKET_REFILL_REG(queue), val); 5120 5121 return 0; 5122 } 5123 5124 static int mvneta_setup_mqprio(struct net_device *dev, 5125 struct tc_mqprio_qopt_offload *mqprio) 5126 { 5127 struct mvneta_port *pp = netdev_priv(dev); 5128 int rxq, txq, tc, ret; 5129 u8 num_tc; 5130 5131 if (mqprio->qopt.hw != TC_MQPRIO_HW_OFFLOAD_TCS) 5132 return 0; 5133 5134 num_tc = mqprio->qopt.num_tc; 5135 5136 if (num_tc > rxq_number) 5137 return -EINVAL; 5138 5139 mvneta_clear_rx_prio_map(pp); 5140 5141 if (!num_tc) { 5142 mvneta_disable_per_queue_rate_limit(pp); 5143 netdev_reset_tc(dev); 5144 return 0; 5145 } 5146 5147 netdev_set_num_tc(dev, mqprio->qopt.num_tc); 5148 5149 for (tc = 0; tc < mqprio->qopt.num_tc; tc++) { 5150 netdev_set_tc_queue(dev, tc, mqprio->qopt.count[tc], 5151 mqprio->qopt.offset[tc]); 5152 5153 for (rxq = mqprio->qopt.offset[tc]; 5154 rxq < mqprio->qopt.count[tc] + mqprio->qopt.offset[tc]; 5155 rxq++) { 5156 if (rxq >= rxq_number) 5157 return -EINVAL; 5158 5159 mvneta_map_vlan_prio_to_rxq(pp, tc, rxq); 5160 } 5161 } 5162 5163 if (mqprio->shaper != TC_MQPRIO_SHAPER_BW_RATE) { 5164 mvneta_disable_per_queue_rate_limit(pp); 5165 return 0; 5166 } 5167 5168 if (mqprio->qopt.num_tc > txq_number) 5169 return -EINVAL; 5170 5171 ret = mvneta_enable_per_queue_rate_limit(pp); 5172 if (ret) 5173 return ret; 5174 5175 for (tc = 0; tc < mqprio->qopt.num_tc; tc++) { 5176 for (txq = mqprio->qopt.offset[tc]; 5177 txq < mqprio->qopt.count[tc] + mqprio->qopt.offset[tc]; 5178 txq++) { 5179 if (txq >= txq_number) 5180 return -EINVAL; 5181 5182 ret = mvneta_setup_queue_rates(pp, txq, 5183 mqprio->min_rate[tc], 5184 mqprio->max_rate[tc]); 5185 if (ret) 5186 return ret; 5187 } 5188 } 5189 5190 return 0; 5191 } 5192 5193 static int mvneta_setup_tc(struct net_device *dev, enum tc_setup_type type, 5194 void *type_data) 5195 { 5196 switch (type) { 5197 case TC_SETUP_QDISC_MQPRIO: 5198 return mvneta_setup_mqprio(dev, type_data); 5199 default: 5200 return -EOPNOTSUPP; 5201 } 5202 } 5203 5204 static const struct net_device_ops mvneta_netdev_ops = { 5205 .ndo_open = mvneta_open, 5206 .ndo_stop = mvneta_stop, 5207 .ndo_start_xmit = mvneta_tx, 5208 .ndo_set_rx_mode = mvneta_set_rx_mode, 5209 .ndo_set_mac_address = mvneta_set_mac_addr, 5210 .ndo_change_mtu = mvneta_change_mtu, 5211 .ndo_fix_features = mvneta_fix_features, 5212 .ndo_get_stats64 = mvneta_get_stats64, 5213 .ndo_eth_ioctl = mvneta_ioctl, 5214 .ndo_bpf = mvneta_xdp, 5215 .ndo_xdp_xmit = mvneta_xdp_xmit, 5216 .ndo_setup_tc = mvneta_setup_tc, 5217 }; 5218 5219 static const struct ethtool_ops mvneta_eth_tool_ops = { 5220 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS | 5221 ETHTOOL_COALESCE_MAX_FRAMES, 5222 .nway_reset = mvneta_ethtool_nway_reset, 5223 .get_link = ethtool_op_get_link, 5224 .set_coalesce = mvneta_ethtool_set_coalesce, 5225 .get_coalesce = mvneta_ethtool_get_coalesce, 5226 .get_drvinfo = mvneta_ethtool_get_drvinfo, 5227 .get_ringparam = mvneta_ethtool_get_ringparam, 5228 .set_ringparam = mvneta_ethtool_set_ringparam, 5229 .get_pauseparam = mvneta_ethtool_get_pauseparam, 5230 .set_pauseparam = mvneta_ethtool_set_pauseparam, 5231 .get_strings = mvneta_ethtool_get_strings, 5232 .get_ethtool_stats = mvneta_ethtool_get_stats, 5233 .get_sset_count = mvneta_ethtool_get_sset_count, 5234 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 5235 .get_rxnfc = mvneta_ethtool_get_rxnfc, 5236 .get_rxfh = mvneta_ethtool_get_rxfh, 5237 .set_rxfh = mvneta_ethtool_set_rxfh, 5238 .get_link_ksettings = mvneta_ethtool_get_link_ksettings, 5239 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 5240 .get_wol = mvneta_ethtool_get_wol, 5241 .set_wol = mvneta_ethtool_set_wol, 5242 .get_eee = mvneta_ethtool_get_eee, 5243 .set_eee = mvneta_ethtool_set_eee, 5244 }; 5245 5246 /* Initialize hw */ 5247 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 5248 { 5249 int queue; 5250 5251 /* Disable port */ 5252 mvneta_port_disable(pp); 5253 5254 /* Set port default values */ 5255 mvneta_defaults_set(pp); 5256 5257 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); 5258 if (!pp->txqs) 5259 return -ENOMEM; 5260 5261 /* Initialize TX descriptor rings */ 5262 for (queue = 0; queue < txq_number; queue++) { 5263 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5264 txq->id = queue; 5265 txq->size = pp->tx_ring_size; 5266 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 5267 } 5268 5269 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); 5270 if (!pp->rxqs) 5271 return -ENOMEM; 5272 5273 /* Create Rx descriptor rings */ 5274 for (queue = 0; queue < rxq_number; queue++) { 5275 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5276 rxq->id = queue; 5277 rxq->size = pp->rx_ring_size; 5278 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 5279 rxq->time_coal = MVNETA_RX_COAL_USEC; 5280 rxq->buf_virt_addr 5281 = devm_kmalloc_array(pp->dev->dev.parent, 5282 rxq->size, 5283 sizeof(*rxq->buf_virt_addr), 5284 GFP_KERNEL); 5285 if (!rxq->buf_virt_addr) 5286 return -ENOMEM; 5287 } 5288 5289 return 0; 5290 } 5291 5292 /* platform glue : initialize decoding windows */ 5293 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 5294 const struct mbus_dram_target_info *dram) 5295 { 5296 u32 win_enable; 5297 u32 win_protect; 5298 int i; 5299 5300 for (i = 0; i < 6; i++) { 5301 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 5302 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 5303 5304 if (i < 4) 5305 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 5306 } 5307 5308 win_enable = 0x3f; 5309 win_protect = 0; 5310 5311 if (dram) { 5312 for (i = 0; i < dram->num_cs; i++) { 5313 const struct mbus_dram_window *cs = dram->cs + i; 5314 5315 mvreg_write(pp, MVNETA_WIN_BASE(i), 5316 (cs->base & 0xffff0000) | 5317 (cs->mbus_attr << 8) | 5318 dram->mbus_dram_target_id); 5319 5320 mvreg_write(pp, MVNETA_WIN_SIZE(i), 5321 (cs->size - 1) & 0xffff0000); 5322 5323 win_enable &= ~(1 << i); 5324 win_protect |= 3 << (2 * i); 5325 } 5326 } else { 5327 /* For Armada3700 open default 4GB Mbus window, leaving 5328 * arbitration of target/attribute to a different layer 5329 * of configuration. 5330 */ 5331 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 5332 win_enable &= ~BIT(0); 5333 win_protect = 3; 5334 } 5335 5336 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 5337 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 5338 } 5339 5340 /* Power up the port */ 5341 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 5342 { 5343 /* MAC Cause register should be cleared */ 5344 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 5345 5346 if (phy_mode != PHY_INTERFACE_MODE_QSGMII && 5347 phy_mode != PHY_INTERFACE_MODE_SGMII && 5348 !phy_interface_mode_is_8023z(phy_mode) && 5349 !phy_interface_mode_is_rgmii(phy_mode)) 5350 return -EINVAL; 5351 5352 return 0; 5353 } 5354 5355 /* Device initialization routine */ 5356 static int mvneta_probe(struct platform_device *pdev) 5357 { 5358 struct device_node *dn = pdev->dev.of_node; 5359 struct device_node *bm_node; 5360 struct mvneta_port *pp; 5361 struct net_device *dev; 5362 struct phylink *phylink; 5363 struct phy *comphy; 5364 char hw_mac_addr[ETH_ALEN]; 5365 phy_interface_t phy_mode; 5366 const char *mac_from; 5367 int tx_csum_limit; 5368 int err; 5369 int cpu; 5370 5371 dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port), 5372 txq_number, rxq_number); 5373 if (!dev) 5374 return -ENOMEM; 5375 5376 dev->tx_queue_len = MVNETA_MAX_TXD; 5377 dev->watchdog_timeo = 5 * HZ; 5378 dev->netdev_ops = &mvneta_netdev_ops; 5379 dev->ethtool_ops = &mvneta_eth_tool_ops; 5380 5381 pp = netdev_priv(dev); 5382 spin_lock_init(&pp->lock); 5383 pp->dn = dn; 5384 5385 pp->rxq_def = rxq_def; 5386 pp->indir[0] = rxq_def; 5387 5388 err = of_get_phy_mode(dn, &phy_mode); 5389 if (err) { 5390 dev_err(&pdev->dev, "incorrect phy-mode\n"); 5391 return err; 5392 } 5393 5394 pp->phy_interface = phy_mode; 5395 5396 comphy = devm_of_phy_get(&pdev->dev, dn, NULL); 5397 if (comphy == ERR_PTR(-EPROBE_DEFER)) 5398 return -EPROBE_DEFER; 5399 5400 if (IS_ERR(comphy)) 5401 comphy = NULL; 5402 5403 pp->comphy = comphy; 5404 5405 pp->base = devm_platform_ioremap_resource(pdev, 0); 5406 if (IS_ERR(pp->base)) 5407 return PTR_ERR(pp->base); 5408 5409 /* Get special SoC configurations */ 5410 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 5411 pp->neta_armada3700 = true; 5412 5413 dev->irq = irq_of_parse_and_map(dn, 0); 5414 if (dev->irq == 0) 5415 return -EINVAL; 5416 5417 pp->clk = devm_clk_get(&pdev->dev, "core"); 5418 if (IS_ERR(pp->clk)) 5419 pp->clk = devm_clk_get(&pdev->dev, NULL); 5420 if (IS_ERR(pp->clk)) { 5421 err = PTR_ERR(pp->clk); 5422 goto err_free_irq; 5423 } 5424 5425 clk_prepare_enable(pp->clk); 5426 5427 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 5428 if (!IS_ERR(pp->clk_bus)) 5429 clk_prepare_enable(pp->clk_bus); 5430 5431 pp->phylink_pcs.ops = &mvneta_phylink_pcs_ops; 5432 5433 pp->phylink_config.dev = &dev->dev; 5434 pp->phylink_config.type = PHYLINK_NETDEV; 5435 pp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_10 | 5436 MAC_100 | MAC_1000FD | MAC_2500FD; 5437 5438 phy_interface_set_rgmii(pp->phylink_config.supported_interfaces); 5439 __set_bit(PHY_INTERFACE_MODE_QSGMII, 5440 pp->phylink_config.supported_interfaces); 5441 if (comphy) { 5442 /* If a COMPHY is present, we can support any of the serdes 5443 * modes and switch between them. 5444 */ 5445 __set_bit(PHY_INTERFACE_MODE_SGMII, 5446 pp->phylink_config.supported_interfaces); 5447 __set_bit(PHY_INTERFACE_MODE_1000BASEX, 5448 pp->phylink_config.supported_interfaces); 5449 __set_bit(PHY_INTERFACE_MODE_2500BASEX, 5450 pp->phylink_config.supported_interfaces); 5451 } else if (phy_mode == PHY_INTERFACE_MODE_2500BASEX) { 5452 /* No COMPHY, with only 2500BASE-X mode supported */ 5453 __set_bit(PHY_INTERFACE_MODE_2500BASEX, 5454 pp->phylink_config.supported_interfaces); 5455 } else if (phy_mode == PHY_INTERFACE_MODE_1000BASEX || 5456 phy_mode == PHY_INTERFACE_MODE_SGMII) { 5457 /* No COMPHY, we can switch between 1000BASE-X and SGMII */ 5458 __set_bit(PHY_INTERFACE_MODE_1000BASEX, 5459 pp->phylink_config.supported_interfaces); 5460 __set_bit(PHY_INTERFACE_MODE_SGMII, 5461 pp->phylink_config.supported_interfaces); 5462 } 5463 5464 phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode, 5465 phy_mode, &mvneta_phylink_ops); 5466 if (IS_ERR(phylink)) { 5467 err = PTR_ERR(phylink); 5468 goto err_clk; 5469 } 5470 5471 pp->phylink = phylink; 5472 5473 /* Alloc per-cpu port structure */ 5474 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 5475 if (!pp->ports) { 5476 err = -ENOMEM; 5477 goto err_free_phylink; 5478 } 5479 5480 /* Alloc per-cpu stats */ 5481 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 5482 if (!pp->stats) { 5483 err = -ENOMEM; 5484 goto err_free_ports; 5485 } 5486 5487 err = of_get_ethdev_address(dn, dev); 5488 if (!err) { 5489 mac_from = "device tree"; 5490 } else { 5491 mvneta_get_mac_addr(pp, hw_mac_addr); 5492 if (is_valid_ether_addr(hw_mac_addr)) { 5493 mac_from = "hardware"; 5494 eth_hw_addr_set(dev, hw_mac_addr); 5495 } else { 5496 mac_from = "random"; 5497 eth_hw_addr_random(dev); 5498 } 5499 } 5500 5501 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 5502 if (tx_csum_limit < 0 || 5503 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 5504 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5505 dev_info(&pdev->dev, 5506 "Wrong TX csum limit in DT, set to %dB\n", 5507 MVNETA_TX_CSUM_DEF_SIZE); 5508 } 5509 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 5510 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5511 } else { 5512 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 5513 } 5514 5515 pp->tx_csum_limit = tx_csum_limit; 5516 5517 pp->dram_target_info = mv_mbus_dram_info(); 5518 /* Armada3700 requires setting default configuration of Mbus 5519 * windows, however without using filled mbus_dram_target_info 5520 * structure. 5521 */ 5522 if (pp->dram_target_info || pp->neta_armada3700) 5523 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5524 5525 pp->tx_ring_size = MVNETA_MAX_TXD; 5526 pp->rx_ring_size = MVNETA_MAX_RXD; 5527 5528 pp->dev = dev; 5529 SET_NETDEV_DEV(dev, &pdev->dev); 5530 5531 pp->id = global_port_id++; 5532 5533 /* Obtain access to BM resources if enabled and already initialized */ 5534 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 5535 if (bm_node) { 5536 pp->bm_priv = mvneta_bm_get(bm_node); 5537 if (pp->bm_priv) { 5538 err = mvneta_bm_port_init(pdev, pp); 5539 if (err < 0) { 5540 dev_info(&pdev->dev, 5541 "use SW buffer management\n"); 5542 mvneta_bm_put(pp->bm_priv); 5543 pp->bm_priv = NULL; 5544 } 5545 } 5546 /* Set RX packet offset correction for platforms, whose 5547 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 5548 * platforms and 0B for 32-bit ones. 5549 */ 5550 pp->rx_offset_correction = max(0, 5551 NET_SKB_PAD - 5552 MVNETA_RX_PKT_OFFSET_CORRECTION); 5553 } 5554 of_node_put(bm_node); 5555 5556 /* sw buffer management */ 5557 if (!pp->bm_priv) 5558 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5559 5560 err = mvneta_init(&pdev->dev, pp); 5561 if (err < 0) 5562 goto err_netdev; 5563 5564 err = mvneta_port_power_up(pp, pp->phy_interface); 5565 if (err < 0) { 5566 dev_err(&pdev->dev, "can't power up port\n"); 5567 goto err_netdev; 5568 } 5569 5570 /* Armada3700 network controller does not support per-cpu 5571 * operation, so only single NAPI should be initialized. 5572 */ 5573 if (pp->neta_armada3700) { 5574 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 5575 } else { 5576 for_each_present_cpu(cpu) { 5577 struct mvneta_pcpu_port *port = 5578 per_cpu_ptr(pp->ports, cpu); 5579 5580 netif_napi_add(dev, &port->napi, mvneta_poll, 5581 NAPI_POLL_WEIGHT); 5582 port->pp = pp; 5583 } 5584 } 5585 5586 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5587 NETIF_F_TSO | NETIF_F_RXCSUM; 5588 dev->hw_features |= dev->features; 5589 dev->vlan_features |= dev->features; 5590 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 5591 netif_set_gso_max_segs(dev, MVNETA_MAX_TSO_SEGS); 5592 5593 /* MTU range: 68 - 9676 */ 5594 dev->min_mtu = ETH_MIN_MTU; 5595 /* 9676 == 9700 - 20 and rounding to 8 */ 5596 dev->max_mtu = 9676; 5597 5598 err = register_netdev(dev); 5599 if (err < 0) { 5600 dev_err(&pdev->dev, "failed to register\n"); 5601 goto err_netdev; 5602 } 5603 5604 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 5605 dev->dev_addr); 5606 5607 platform_set_drvdata(pdev, pp->dev); 5608 5609 return 0; 5610 5611 err_netdev: 5612 if (pp->bm_priv) { 5613 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5614 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5615 1 << pp->id); 5616 mvneta_bm_put(pp->bm_priv); 5617 } 5618 free_percpu(pp->stats); 5619 err_free_ports: 5620 free_percpu(pp->ports); 5621 err_free_phylink: 5622 if (pp->phylink) 5623 phylink_destroy(pp->phylink); 5624 err_clk: 5625 clk_disable_unprepare(pp->clk_bus); 5626 clk_disable_unprepare(pp->clk); 5627 err_free_irq: 5628 irq_dispose_mapping(dev->irq); 5629 return err; 5630 } 5631 5632 /* Device removal routine */ 5633 static int mvneta_remove(struct platform_device *pdev) 5634 { 5635 struct net_device *dev = platform_get_drvdata(pdev); 5636 struct mvneta_port *pp = netdev_priv(dev); 5637 5638 unregister_netdev(dev); 5639 clk_disable_unprepare(pp->clk_bus); 5640 clk_disable_unprepare(pp->clk); 5641 free_percpu(pp->ports); 5642 free_percpu(pp->stats); 5643 irq_dispose_mapping(dev->irq); 5644 phylink_destroy(pp->phylink); 5645 5646 if (pp->bm_priv) { 5647 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5648 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5649 1 << pp->id); 5650 mvneta_bm_put(pp->bm_priv); 5651 } 5652 5653 return 0; 5654 } 5655 5656 #ifdef CONFIG_PM_SLEEP 5657 static int mvneta_suspend(struct device *device) 5658 { 5659 int queue; 5660 struct net_device *dev = dev_get_drvdata(device); 5661 struct mvneta_port *pp = netdev_priv(dev); 5662 5663 if (!netif_running(dev)) 5664 goto clean_exit; 5665 5666 if (!pp->neta_armada3700) { 5667 spin_lock(&pp->lock); 5668 pp->is_stopped = true; 5669 spin_unlock(&pp->lock); 5670 5671 cpuhp_state_remove_instance_nocalls(online_hpstate, 5672 &pp->node_online); 5673 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5674 &pp->node_dead); 5675 } 5676 5677 rtnl_lock(); 5678 mvneta_stop_dev(pp); 5679 rtnl_unlock(); 5680 5681 for (queue = 0; queue < rxq_number; queue++) { 5682 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5683 5684 mvneta_rxq_drop_pkts(pp, rxq); 5685 } 5686 5687 for (queue = 0; queue < txq_number; queue++) { 5688 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5689 5690 mvneta_txq_hw_deinit(pp, txq); 5691 } 5692 5693 clean_exit: 5694 netif_device_detach(dev); 5695 clk_disable_unprepare(pp->clk_bus); 5696 clk_disable_unprepare(pp->clk); 5697 5698 return 0; 5699 } 5700 5701 static int mvneta_resume(struct device *device) 5702 { 5703 struct platform_device *pdev = to_platform_device(device); 5704 struct net_device *dev = dev_get_drvdata(device); 5705 struct mvneta_port *pp = netdev_priv(dev); 5706 int err, queue; 5707 5708 clk_prepare_enable(pp->clk); 5709 if (!IS_ERR(pp->clk_bus)) 5710 clk_prepare_enable(pp->clk_bus); 5711 if (pp->dram_target_info || pp->neta_armada3700) 5712 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5713 if (pp->bm_priv) { 5714 err = mvneta_bm_port_init(pdev, pp); 5715 if (err < 0) { 5716 dev_info(&pdev->dev, "use SW buffer management\n"); 5717 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5718 pp->bm_priv = NULL; 5719 } 5720 } 5721 mvneta_defaults_set(pp); 5722 err = mvneta_port_power_up(pp, pp->phy_interface); 5723 if (err < 0) { 5724 dev_err(device, "can't power up port\n"); 5725 return err; 5726 } 5727 5728 netif_device_attach(dev); 5729 5730 if (!netif_running(dev)) 5731 return 0; 5732 5733 for (queue = 0; queue < rxq_number; queue++) { 5734 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5735 5736 rxq->next_desc_to_proc = 0; 5737 mvneta_rxq_hw_init(pp, rxq); 5738 } 5739 5740 for (queue = 0; queue < txq_number; queue++) { 5741 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5742 5743 txq->next_desc_to_proc = 0; 5744 mvneta_txq_hw_init(pp, txq); 5745 } 5746 5747 if (!pp->neta_armada3700) { 5748 spin_lock(&pp->lock); 5749 pp->is_stopped = false; 5750 spin_unlock(&pp->lock); 5751 cpuhp_state_add_instance_nocalls(online_hpstate, 5752 &pp->node_online); 5753 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5754 &pp->node_dead); 5755 } 5756 5757 rtnl_lock(); 5758 mvneta_start_dev(pp); 5759 rtnl_unlock(); 5760 mvneta_set_rx_mode(dev); 5761 5762 return 0; 5763 } 5764 #endif 5765 5766 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); 5767 5768 static const struct of_device_id mvneta_match[] = { 5769 { .compatible = "marvell,armada-370-neta" }, 5770 { .compatible = "marvell,armada-xp-neta" }, 5771 { .compatible = "marvell,armada-3700-neta" }, 5772 { } 5773 }; 5774 MODULE_DEVICE_TABLE(of, mvneta_match); 5775 5776 static struct platform_driver mvneta_driver = { 5777 .probe = mvneta_probe, 5778 .remove = mvneta_remove, 5779 .driver = { 5780 .name = MVNETA_DRIVER_NAME, 5781 .of_match_table = mvneta_match, 5782 .pm = &mvneta_pm_ops, 5783 }, 5784 }; 5785 5786 static int __init mvneta_driver_init(void) 5787 { 5788 int ret; 5789 5790 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online", 5791 mvneta_cpu_online, 5792 mvneta_cpu_down_prepare); 5793 if (ret < 0) 5794 goto out; 5795 online_hpstate = ret; 5796 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 5797 NULL, mvneta_cpu_dead); 5798 if (ret) 5799 goto err_dead; 5800 5801 ret = platform_driver_register(&mvneta_driver); 5802 if (ret) 5803 goto err; 5804 return 0; 5805 5806 err: 5807 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5808 err_dead: 5809 cpuhp_remove_multi_state(online_hpstate); 5810 out: 5811 return ret; 5812 } 5813 module_init(mvneta_driver_init); 5814 5815 static void __exit mvneta_driver_exit(void) 5816 { 5817 platform_driver_unregister(&mvneta_driver); 5818 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5819 cpuhp_remove_multi_state(online_hpstate); 5820 } 5821 module_exit(mvneta_driver_exit); 5822 5823 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 5824 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 5825 MODULE_LICENSE("GPL"); 5826 5827 module_param(rxq_number, int, 0444); 5828 module_param(txq_number, int, 0444); 5829 5830 module_param(rxq_def, int, 0444); 5831 module_param(rx_copybreak, int, 0644); 5832