xref: /linux/drivers/net/ethernet/marvell/mvneta.c (revision 5e3992fe72748ed3892be876f09d4d990548b7af)
1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40 #include <net/page_pool.h>
41 #include <net/pkt_sched.h>
42 #include <linux/bpf_trace.h>
43 
44 /* Registers */
45 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
46 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
47 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
48 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
49 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
50 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
51 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
52 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
53 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
54 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
55 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
56 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
57 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
58 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
59 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
60 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
61 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
62 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
63 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
64 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
65 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
66 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
67 #define MVNETA_PORT_RX_RESET                    0x1cc0
68 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
69 #define MVNETA_PHY_ADDR                         0x2000
70 #define      MVNETA_PHY_ADDR_MASK               0x1f
71 #define MVNETA_MBUS_RETRY                       0x2010
72 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
73 #define MVNETA_UNIT_CONTROL                     0x20B0
74 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
75 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
76 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
77 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
78 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
79 #define      MVNETA_AC5_CNM_DDR_TARGET		0x2
80 #define      MVNETA_AC5_CNM_DDR_ATTR		0xb
81 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
82 #define MVNETA_PORT_CONFIG                      0x2400
83 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
84 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
85 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
86 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
87 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
88 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
89 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
90 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
91 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
92 						 MVNETA_DEF_RXQ_ARP(q)	 | \
93 						 MVNETA_DEF_RXQ_TCP(q)	 | \
94 						 MVNETA_DEF_RXQ_UDP(q)	 | \
95 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
96 						 MVNETA_TX_UNSET_ERR_SUM | \
97 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
98 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
99 #define MVNETA_MAC_ADDR_LOW                      0x2414
100 #define MVNETA_MAC_ADDR_HIGH                     0x2418
101 #define MVNETA_SDMA_CONFIG                       0x241c
102 #define      MVNETA_SDMA_BRST_SIZE_16            4
103 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
104 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
105 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
106 #define      MVNETA_DESC_SWAP                    BIT(6)
107 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
108 #define	MVNETA_VLAN_PRIO_TO_RXQ			 0x2440
109 #define      MVNETA_VLAN_PRIO_RXQ_MAP(prio, rxq) ((rxq) << ((prio) * 3))
110 #define MVNETA_PORT_STATUS                       0x2444
111 #define      MVNETA_TX_IN_PRGRS                  BIT(0)
112 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
113 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
114 /* Only exists on Armada XP and Armada 370 */
115 #define MVNETA_SERDES_CFG			 0x24A0
116 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
117 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
118 #define      MVNETA_HSGMII_SERDES_PROTO		 0x1107
119 #define MVNETA_TYPE_PRIO                         0x24bc
120 #define      MVNETA_FORCE_UNI                    BIT(21)
121 #define MVNETA_TXQ_CMD_1                         0x24e4
122 #define MVNETA_TXQ_CMD                           0x2448
123 #define      MVNETA_TXQ_DISABLE_SHIFT            8
124 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
125 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
126 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
127 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
128 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
129 #define MVNETA_ACC_MODE                          0x2500
130 #define MVNETA_BM_ADDRESS                        0x2504
131 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
132 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
133 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
134 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
135 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
136 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
137 
138 /* Exception Interrupt Port/Queue Cause register
139  *
140  * Their behavior depend of the mapping done using the PCPX2Q
141  * registers. For a given CPU if the bit associated to a queue is not
142  * set, then for the register a read from this CPU will always return
143  * 0 and a write won't do anything
144  */
145 
146 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
147 #define MVNETA_INTR_NEW_MASK                     0x25a4
148 
149 /* bits  0..7  = TXQ SENT, one bit per queue.
150  * bits  8..15 = RXQ OCCUP, one bit per queue.
151  * bits 16..23 = RXQ FREE, one bit per queue.
152  * bit  29 = OLD_REG_SUM, see old reg ?
153  * bit  30 = TX_ERR_SUM, one bit for 4 ports
154  * bit  31 = MISC_SUM,   one bit for 4 ports
155  */
156 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
157 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
158 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
159 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
160 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
161 
162 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
163 #define MVNETA_INTR_OLD_MASK                     0x25ac
164 
165 /* Data Path Port/Queue Cause Register */
166 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
167 #define MVNETA_INTR_MISC_MASK                    0x25b4
168 
169 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
170 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
171 #define      MVNETA_CAUSE_PTP                    BIT(4)
172 
173 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
174 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
175 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
176 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
177 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
178 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
179 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
180 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
181 
182 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
183 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
184 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
185 
186 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
187 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
188 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
189 
190 #define MVNETA_INTR_ENABLE                       0x25b8
191 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
192 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
193 
194 #define MVNETA_RXQ_CMD                           0x2680
195 #define      MVNETA_RXQ_DISABLE_SHIFT            8
196 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
197 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
198 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
199 #define MVNETA_GMAC_CTRL_0                       0x2c00
200 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
201 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
202 #define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
203 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
204 #define MVNETA_GMAC_CTRL_2                       0x2c08
205 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
206 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
207 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
208 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
209 #define MVNETA_GMAC_STATUS                       0x2c10
210 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
211 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
212 #define      MVNETA_GMAC_SPEED_100               BIT(2)
213 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
214 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
215 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
216 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
217 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
218 #define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
219 #define      MVNETA_GMAC_SYNC_OK                 BIT(14)
220 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
221 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
222 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
223 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
224 #define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
225 #define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
226 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
227 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
228 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
229 #define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
230 #define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
231 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
232 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
233 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
234 #define MVNETA_GMAC_CTRL_4                       0x2c90
235 #define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
236 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
237 #define      MVNETA_MIB_LATE_COLLISION           0x7c
238 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
239 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
240 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
241 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
242 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
243 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
244 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
245 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
246 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
247 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
248 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
249 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
250 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
251 #define MVNETA_PORT_TX_RESET                     0x3cf0
252 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
253 #define MVNETA_TXQ_CMD1_REG			 0x3e00
254 #define      MVNETA_TXQ_CMD1_BW_LIM_SEL_V1	 BIT(3)
255 #define      MVNETA_TXQ_CMD1_BW_LIM_EN		 BIT(0)
256 #define MVNETA_REFILL_NUM_CLK_REG		 0x3e08
257 #define      MVNETA_REFILL_MAX_NUM_CLK		 0x0000ffff
258 #define MVNETA_TX_MTU                            0x3e0c
259 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
260 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
261 #define MVNETA_TXQ_BUCKET_REFILL_REG(q)		 (0x3e20 + ((q) << 2))
262 #define      MVNETA_TXQ_BUCKET_REFILL_PERIOD_MASK	0x3ff00000
263 #define      MVNETA_TXQ_BUCKET_REFILL_PERIOD_SHIFT	20
264 #define      MVNETA_TXQ_BUCKET_REFILL_VALUE_MAX	 0x0007ffff
265 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
266 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
267 
268 /* The values of the bucket refill base period and refill period are taken from
269  * the reference manual, and adds up to a base resolution of 10Kbps. This allows
270  * to cover all rate-limit values from 10Kbps up to 5Gbps
271  */
272 
273 /* Base period for the rate limit algorithm */
274 #define MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS	100
275 
276 /* Number of Base Period to wait between each bucket refill */
277 #define MVNETA_TXQ_BUCKET_REFILL_PERIOD	1000
278 
279 /* The base resolution for rate limiting, in bps. Any max_rate value should be
280  * a multiple of that value.
281  */
282 #define MVNETA_TXQ_RATE_LIMIT_RESOLUTION (NSEC_PER_SEC / \
283 					 (MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS * \
284 					  MVNETA_TXQ_BUCKET_REFILL_PERIOD))
285 
286 #define MVNETA_LPI_CTRL_0                        0x2cc0
287 #define MVNETA_LPI_CTRL_1                        0x2cc4
288 #define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
289 #define MVNETA_LPI_CTRL_2                        0x2cc8
290 #define MVNETA_LPI_STATUS                        0x2ccc
291 
292 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
293 
294 /* Descriptor ring Macros */
295 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
296 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
297 
298 /* Various constants */
299 
300 /* Coalescing */
301 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
302 #define MVNETA_RX_COAL_PKTS		32
303 #define MVNETA_RX_COAL_USEC		100
304 
305 /* The two bytes Marvell header. Either contains a special value used
306  * by Marvell switches when a specific hardware mode is enabled (not
307  * supported by this driver) or is filled automatically by zeroes on
308  * the RX side. Those two bytes being at the front of the Ethernet
309  * header, they allow to have the IP header aligned on a 4 bytes
310  * boundary automatically: the hardware skips those two bytes on its
311  * own.
312  */
313 #define MVNETA_MH_SIZE			2
314 
315 #define MVNETA_VLAN_TAG_LEN             4
316 
317 #define MVNETA_TX_CSUM_DEF_SIZE		1600
318 #define MVNETA_TX_CSUM_MAX_SIZE		9800
319 #define MVNETA_ACC_MODE_EXT1		1
320 #define MVNETA_ACC_MODE_EXT2		2
321 
322 #define MVNETA_MAX_DECODE_WIN		6
323 
324 /* Timeout constants */
325 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
326 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
327 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
328 
329 #define MVNETA_TX_MTU_MAX		0x3ffff
330 
331 /* The RSS lookup table actually has 256 entries but we do not use
332  * them yet
333  */
334 #define MVNETA_RSS_LU_TABLE_SIZE	1
335 
336 /* Max number of Rx descriptors */
337 #define MVNETA_MAX_RXD 512
338 
339 /* Max number of Tx descriptors */
340 #define MVNETA_MAX_TXD 1024
341 
342 /* Max number of allowed TCP segments for software TSO */
343 #define MVNETA_MAX_TSO_SEGS 100
344 
345 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
346 
347 /* descriptor aligned size */
348 #define MVNETA_DESC_ALIGNED_SIZE	32
349 
350 /* Number of bytes to be taken into account by HW when putting incoming data
351  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
352  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
353  */
354 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
355 
356 #define MVNETA_RX_PKT_SIZE(mtu) \
357 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
358 	      ETH_HLEN + ETH_FCS_LEN,			     \
359 	      cache_line_size())
360 
361 /* Driver assumes that the last 3 bits are 0 */
362 #define MVNETA_SKB_HEADROOM	ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8)
363 #define MVNETA_SKB_PAD	(SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
364 			 MVNETA_SKB_HEADROOM))
365 #define MVNETA_MAX_RX_BUF_SIZE	(PAGE_SIZE - MVNETA_SKB_PAD)
366 
367 #define IS_TSO_HEADER(txq, addr) \
368 	((addr >= txq->tso_hdrs_phys) && \
369 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
370 
371 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
372 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
373 
374 enum {
375 	ETHTOOL_STAT_EEE_WAKEUP,
376 	ETHTOOL_STAT_SKB_ALLOC_ERR,
377 	ETHTOOL_STAT_REFILL_ERR,
378 	ETHTOOL_XDP_REDIRECT,
379 	ETHTOOL_XDP_PASS,
380 	ETHTOOL_XDP_DROP,
381 	ETHTOOL_XDP_TX,
382 	ETHTOOL_XDP_TX_ERR,
383 	ETHTOOL_XDP_XMIT,
384 	ETHTOOL_XDP_XMIT_ERR,
385 	ETHTOOL_MAX_STATS,
386 };
387 
388 struct mvneta_statistic {
389 	unsigned short offset;
390 	unsigned short type;
391 	const char name[ETH_GSTRING_LEN];
392 };
393 
394 #define T_REG_32	32
395 #define T_REG_64	64
396 #define T_SW		1
397 
398 #define MVNETA_XDP_PASS		0
399 #define MVNETA_XDP_DROPPED	BIT(0)
400 #define MVNETA_XDP_TX		BIT(1)
401 #define MVNETA_XDP_REDIR	BIT(2)
402 
403 static const struct mvneta_statistic mvneta_statistics[] = {
404 	{ 0x3000, T_REG_64, "good_octets_received", },
405 	{ 0x3010, T_REG_32, "good_frames_received", },
406 	{ 0x3008, T_REG_32, "bad_octets_received", },
407 	{ 0x3014, T_REG_32, "bad_frames_received", },
408 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
409 	{ 0x301c, T_REG_32, "multicast_frames_received", },
410 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
411 	{ 0x3058, T_REG_32, "good_fc_received", },
412 	{ 0x305c, T_REG_32, "bad_fc_received", },
413 	{ 0x3060, T_REG_32, "undersize_received", },
414 	{ 0x3064, T_REG_32, "fragments_received", },
415 	{ 0x3068, T_REG_32, "oversize_received", },
416 	{ 0x306c, T_REG_32, "jabber_received", },
417 	{ 0x3070, T_REG_32, "mac_receive_error", },
418 	{ 0x3074, T_REG_32, "bad_crc_event", },
419 	{ 0x3078, T_REG_32, "collision", },
420 	{ 0x307c, T_REG_32, "late_collision", },
421 	{ 0x2484, T_REG_32, "rx_discard", },
422 	{ 0x2488, T_REG_32, "rx_overrun", },
423 	{ 0x3020, T_REG_32, "frames_64_octets", },
424 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
425 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
426 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
427 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
428 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
429 	{ 0x3038, T_REG_64, "good_octets_sent", },
430 	{ 0x3040, T_REG_32, "good_frames_sent", },
431 	{ 0x3044, T_REG_32, "excessive_collision", },
432 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
433 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
434 	{ 0x3054, T_REG_32, "fc_sent", },
435 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
436 	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
437 	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
438 	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
439 	{ ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
440 	{ ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
441 	{ ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
442 	{ ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
443 	{ ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
444 	{ ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
445 	{ ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
446 };
447 
448 struct mvneta_stats {
449 	u64	rx_packets;
450 	u64	rx_bytes;
451 	u64	tx_packets;
452 	u64	tx_bytes;
453 	/* xdp */
454 	u64	xdp_redirect;
455 	u64	xdp_pass;
456 	u64	xdp_drop;
457 	u64	xdp_xmit;
458 	u64	xdp_xmit_err;
459 	u64	xdp_tx;
460 	u64	xdp_tx_err;
461 };
462 
463 struct mvneta_ethtool_stats {
464 	struct mvneta_stats ps;
465 	u64	skb_alloc_error;
466 	u64	refill_error;
467 };
468 
469 struct mvneta_pcpu_stats {
470 	struct u64_stats_sync syncp;
471 
472 	struct mvneta_ethtool_stats es;
473 	u64	rx_dropped;
474 	u64	rx_errors;
475 };
476 
477 struct mvneta_pcpu_port {
478 	/* Pointer to the shared port */
479 	struct mvneta_port	*pp;
480 
481 	/* Pointer to the CPU-local NAPI struct */
482 	struct napi_struct	napi;
483 
484 	/* Cause of the previous interrupt */
485 	u32			cause_rx_tx;
486 };
487 
488 enum {
489 	__MVNETA_DOWN,
490 };
491 
492 struct mvneta_port {
493 	u8 id;
494 	struct mvneta_pcpu_port __percpu	*ports;
495 	struct mvneta_pcpu_stats __percpu	*stats;
496 
497 	unsigned long state;
498 
499 	int pkt_size;
500 	void __iomem *base;
501 	struct mvneta_rx_queue *rxqs;
502 	struct mvneta_tx_queue *txqs;
503 	struct net_device *dev;
504 	struct hlist_node node_online;
505 	struct hlist_node node_dead;
506 	int rxq_def;
507 	/* Protect the access to the percpu interrupt registers,
508 	 * ensuring that the configuration remains coherent.
509 	 */
510 	spinlock_t lock;
511 	bool is_stopped;
512 
513 	u32 cause_rx_tx;
514 	struct napi_struct napi;
515 
516 	struct bpf_prog *xdp_prog;
517 
518 	/* Core clock */
519 	struct clk *clk;
520 	/* AXI clock */
521 	struct clk *clk_bus;
522 	u8 mcast_count[256];
523 	u16 tx_ring_size;
524 	u16 rx_ring_size;
525 
526 	phy_interface_t phy_interface;
527 	struct device_node *dn;
528 	unsigned int tx_csum_limit;
529 	struct phylink *phylink;
530 	struct phylink_config phylink_config;
531 	struct phylink_pcs phylink_pcs;
532 	struct phy *comphy;
533 
534 	struct mvneta_bm *bm_priv;
535 	struct mvneta_bm_pool *pool_long;
536 	struct mvneta_bm_pool *pool_short;
537 	int bm_win_id;
538 
539 	bool eee_enabled;
540 	bool eee_active;
541 	bool tx_lpi_enabled;
542 
543 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
544 
545 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
546 
547 	/* Flags for special SoC configurations */
548 	bool neta_armada3700;
549 	bool neta_ac5;
550 	u16 rx_offset_correction;
551 	const struct mbus_dram_target_info *dram_target_info;
552 };
553 
554 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
555  * layout of the transmit and reception DMA descriptors, and their
556  * layout is therefore defined by the hardware design
557  */
558 
559 #define MVNETA_TX_L3_OFF_SHIFT	0
560 #define MVNETA_TX_IP_HLEN_SHIFT	8
561 #define MVNETA_TX_L4_UDP	BIT(16)
562 #define MVNETA_TX_L3_IP6	BIT(17)
563 #define MVNETA_TXD_IP_CSUM	BIT(18)
564 #define MVNETA_TXD_Z_PAD	BIT(19)
565 #define MVNETA_TXD_L_DESC	BIT(20)
566 #define MVNETA_TXD_F_DESC	BIT(21)
567 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
568 				 MVNETA_TXD_L_DESC | \
569 				 MVNETA_TXD_F_DESC)
570 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
571 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
572 
573 #define MVNETA_RXD_ERR_CRC		0x0
574 #define MVNETA_RXD_BM_POOL_SHIFT	13
575 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
576 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
577 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
578 #define MVNETA_RXD_ERR_LEN		BIT(18)
579 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
580 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
581 #define MVNETA_RXD_L3_IP4		BIT(25)
582 #define MVNETA_RXD_LAST_DESC		BIT(26)
583 #define MVNETA_RXD_FIRST_DESC		BIT(27)
584 #define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
585 					 MVNETA_RXD_LAST_DESC)
586 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
587 
588 #if defined(__LITTLE_ENDIAN)
589 struct mvneta_tx_desc {
590 	u32  command;		/* Options used by HW for packet transmitting.*/
591 	u16  reserved1;		/* csum_l4 (for future use)		*/
592 	u16  data_size;		/* Data size of transmitted packet in bytes */
593 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
594 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
595 	u32  reserved3[4];	/* Reserved - (for future use)		*/
596 };
597 
598 struct mvneta_rx_desc {
599 	u32  status;		/* Info about received packet		*/
600 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
601 	u16  data_size;		/* Size of received packet in bytes	*/
602 
603 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
604 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
605 
606 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
607 	u16  reserved3;		/* prefetch_cmd, for future use		*/
608 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
609 
610 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
611 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
612 };
613 #else
614 struct mvneta_tx_desc {
615 	u16  data_size;		/* Data size of transmitted packet in bytes */
616 	u16  reserved1;		/* csum_l4 (for future use)		*/
617 	u32  command;		/* Options used by HW for packet transmitting.*/
618 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
619 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
620 	u32  reserved3[4];	/* Reserved - (for future use)		*/
621 };
622 
623 struct mvneta_rx_desc {
624 	u16  data_size;		/* Size of received packet in bytes	*/
625 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
626 	u32  status;		/* Info about received packet		*/
627 
628 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
629 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
630 
631 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
632 	u16  reserved3;		/* prefetch_cmd, for future use		*/
633 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
634 
635 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
636 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
637 };
638 #endif
639 
640 enum mvneta_tx_buf_type {
641 	MVNETA_TYPE_SKB,
642 	MVNETA_TYPE_XDP_TX,
643 	MVNETA_TYPE_XDP_NDO,
644 };
645 
646 struct mvneta_tx_buf {
647 	enum mvneta_tx_buf_type type;
648 	union {
649 		struct xdp_frame *xdpf;
650 		struct sk_buff *skb;
651 	};
652 };
653 
654 struct mvneta_tx_queue {
655 	/* Number of this TX queue, in the range 0-7 */
656 	u8 id;
657 
658 	/* Number of TX DMA descriptors in the descriptor ring */
659 	int size;
660 
661 	/* Number of currently used TX DMA descriptor in the
662 	 * descriptor ring
663 	 */
664 	int count;
665 	int pending;
666 	int tx_stop_threshold;
667 	int tx_wake_threshold;
668 
669 	/* Array of transmitted buffers */
670 	struct mvneta_tx_buf *buf;
671 
672 	/* Index of last TX DMA descriptor that was inserted */
673 	int txq_put_index;
674 
675 	/* Index of the TX DMA descriptor to be cleaned up */
676 	int txq_get_index;
677 
678 	u32 done_pkts_coal;
679 
680 	/* Virtual address of the TX DMA descriptors array */
681 	struct mvneta_tx_desc *descs;
682 
683 	/* DMA address of the TX DMA descriptors array */
684 	dma_addr_t descs_phys;
685 
686 	/* Index of the last TX DMA descriptor */
687 	int last_desc;
688 
689 	/* Index of the next TX DMA descriptor to process */
690 	int next_desc_to_proc;
691 
692 	/* DMA buffers for TSO headers */
693 	char *tso_hdrs;
694 
695 	/* DMA address of TSO headers */
696 	dma_addr_t tso_hdrs_phys;
697 
698 	/* Affinity mask for CPUs*/
699 	cpumask_t affinity_mask;
700 };
701 
702 struct mvneta_rx_queue {
703 	/* rx queue number, in the range 0-7 */
704 	u8 id;
705 
706 	/* num of rx descriptors in the rx descriptor ring */
707 	int size;
708 
709 	u32 pkts_coal;
710 	u32 time_coal;
711 
712 	/* page_pool */
713 	struct page_pool *page_pool;
714 	struct xdp_rxq_info xdp_rxq;
715 
716 	/* Virtual address of the RX buffer */
717 	void  **buf_virt_addr;
718 
719 	/* Virtual address of the RX DMA descriptors array */
720 	struct mvneta_rx_desc *descs;
721 
722 	/* DMA address of the RX DMA descriptors array */
723 	dma_addr_t descs_phys;
724 
725 	/* Index of the last RX DMA descriptor */
726 	int last_desc;
727 
728 	/* Index of the next RX DMA descriptor to process */
729 	int next_desc_to_proc;
730 
731 	/* Index of first RX DMA descriptor to refill */
732 	int first_to_refill;
733 	u32 refill_num;
734 };
735 
736 static enum cpuhp_state online_hpstate;
737 /* The hardware supports eight (8) rx queues, but we are only allowing
738  * the first one to be used. Therefore, let's just allocate one queue.
739  */
740 static int rxq_number = 8;
741 static int txq_number = 8;
742 
743 static int rxq_def;
744 
745 static int rx_copybreak __read_mostly = 256;
746 
747 /* HW BM need that each port be identify by a unique ID */
748 static int global_port_id;
749 
750 #define MVNETA_DRIVER_NAME "mvneta"
751 #define MVNETA_DRIVER_VERSION "1.0"
752 
753 /* Utility/helper methods */
754 
755 /* Write helper method */
756 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
757 {
758 	writel(data, pp->base + offset);
759 }
760 
761 /* Read helper method */
762 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
763 {
764 	return readl(pp->base + offset);
765 }
766 
767 /* Increment txq get counter */
768 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
769 {
770 	txq->txq_get_index++;
771 	if (txq->txq_get_index == txq->size)
772 		txq->txq_get_index = 0;
773 }
774 
775 /* Increment txq put counter */
776 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
777 {
778 	txq->txq_put_index++;
779 	if (txq->txq_put_index == txq->size)
780 		txq->txq_put_index = 0;
781 }
782 
783 
784 /* Clear all MIB counters */
785 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
786 {
787 	int i;
788 
789 	/* Perform dummy reads from MIB counters */
790 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
791 		mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
792 	mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
793 	mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
794 }
795 
796 /* Get System Network Statistics */
797 static void
798 mvneta_get_stats64(struct net_device *dev,
799 		   struct rtnl_link_stats64 *stats)
800 {
801 	struct mvneta_port *pp = netdev_priv(dev);
802 	unsigned int start;
803 	int cpu;
804 
805 	for_each_possible_cpu(cpu) {
806 		struct mvneta_pcpu_stats *cpu_stats;
807 		u64 rx_packets;
808 		u64 rx_bytes;
809 		u64 rx_dropped;
810 		u64 rx_errors;
811 		u64 tx_packets;
812 		u64 tx_bytes;
813 
814 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
815 		do {
816 			start = u64_stats_fetch_begin(&cpu_stats->syncp);
817 			rx_packets = cpu_stats->es.ps.rx_packets;
818 			rx_bytes   = cpu_stats->es.ps.rx_bytes;
819 			rx_dropped = cpu_stats->rx_dropped;
820 			rx_errors  = cpu_stats->rx_errors;
821 			tx_packets = cpu_stats->es.ps.tx_packets;
822 			tx_bytes   = cpu_stats->es.ps.tx_bytes;
823 		} while (u64_stats_fetch_retry(&cpu_stats->syncp, start));
824 
825 		stats->rx_packets += rx_packets;
826 		stats->rx_bytes   += rx_bytes;
827 		stats->rx_dropped += rx_dropped;
828 		stats->rx_errors  += rx_errors;
829 		stats->tx_packets += tx_packets;
830 		stats->tx_bytes   += tx_bytes;
831 	}
832 
833 	stats->tx_dropped	= dev->stats.tx_dropped;
834 }
835 
836 /* Rx descriptors helper methods */
837 
838 /* Checks whether the RX descriptor having this status is both the first
839  * and the last descriptor for the RX packet. Each RX packet is currently
840  * received through a single RX descriptor, so not having each RX
841  * descriptor with its first and last bits set is an error
842  */
843 static int mvneta_rxq_desc_is_first_last(u32 status)
844 {
845 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
846 		MVNETA_RXD_FIRST_LAST_DESC;
847 }
848 
849 /* Add number of descriptors ready to receive new packets */
850 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
851 					  struct mvneta_rx_queue *rxq,
852 					  int ndescs)
853 {
854 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
855 	 * be added at once
856 	 */
857 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
858 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
859 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
860 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
861 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
862 	}
863 
864 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
865 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
866 }
867 
868 /* Get number of RX descriptors occupied by received packets */
869 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
870 					struct mvneta_rx_queue *rxq)
871 {
872 	u32 val;
873 
874 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
875 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
876 }
877 
878 /* Update num of rx desc called upon return from rx path or
879  * from mvneta_rxq_drop_pkts().
880  */
881 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
882 				       struct mvneta_rx_queue *rxq,
883 				       int rx_done, int rx_filled)
884 {
885 	u32 val;
886 
887 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
888 		val = rx_done |
889 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
890 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
891 		return;
892 	}
893 
894 	/* Only 255 descriptors can be added at once */
895 	while ((rx_done > 0) || (rx_filled > 0)) {
896 		if (rx_done <= 0xff) {
897 			val = rx_done;
898 			rx_done = 0;
899 		} else {
900 			val = 0xff;
901 			rx_done -= 0xff;
902 		}
903 		if (rx_filled <= 0xff) {
904 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
905 			rx_filled = 0;
906 		} else {
907 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
908 			rx_filled -= 0xff;
909 		}
910 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
911 	}
912 }
913 
914 /* Get pointer to next RX descriptor to be processed by SW */
915 static struct mvneta_rx_desc *
916 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
917 {
918 	int rx_desc = rxq->next_desc_to_proc;
919 
920 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
921 	prefetch(rxq->descs + rxq->next_desc_to_proc);
922 	return rxq->descs + rx_desc;
923 }
924 
925 /* Change maximum receive size of the port. */
926 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
927 {
928 	u32 val;
929 
930 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
931 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
932 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
933 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
934 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
935 }
936 
937 
938 /* Set rx queue offset */
939 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
940 				  struct mvneta_rx_queue *rxq,
941 				  int offset)
942 {
943 	u32 val;
944 
945 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
946 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
947 
948 	/* Offset is in */
949 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
950 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
951 }
952 
953 
954 /* Tx descriptors helper methods */
955 
956 /* Update HW with number of TX descriptors to be sent */
957 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
958 				     struct mvneta_tx_queue *txq,
959 				     int pend_desc)
960 {
961 	u32 val;
962 
963 	pend_desc += txq->pending;
964 
965 	/* Only 255 Tx descriptors can be added at once */
966 	do {
967 		val = min(pend_desc, 255);
968 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
969 		pend_desc -= val;
970 	} while (pend_desc > 0);
971 	txq->pending = 0;
972 }
973 
974 /* Get pointer to next TX descriptor to be processed (send) by HW */
975 static struct mvneta_tx_desc *
976 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
977 {
978 	int tx_desc = txq->next_desc_to_proc;
979 
980 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
981 	return txq->descs + tx_desc;
982 }
983 
984 /* Release the last allocated TX descriptor. Useful to handle DMA
985  * mapping failures in the TX path.
986  */
987 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
988 {
989 	if (txq->next_desc_to_proc == 0)
990 		txq->next_desc_to_proc = txq->last_desc - 1;
991 	else
992 		txq->next_desc_to_proc--;
993 }
994 
995 /* Set rxq buf size */
996 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
997 				    struct mvneta_rx_queue *rxq,
998 				    int buf_size)
999 {
1000 	u32 val;
1001 
1002 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
1003 
1004 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
1005 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
1006 
1007 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
1008 }
1009 
1010 /* Disable buffer management (BM) */
1011 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
1012 				  struct mvneta_rx_queue *rxq)
1013 {
1014 	u32 val;
1015 
1016 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1017 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
1018 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1019 }
1020 
1021 /* Enable buffer management (BM) */
1022 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
1023 				 struct mvneta_rx_queue *rxq)
1024 {
1025 	u32 val;
1026 
1027 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1028 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
1029 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1030 }
1031 
1032 /* Notify HW about port's assignment of pool for bigger packets */
1033 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
1034 				     struct mvneta_rx_queue *rxq)
1035 {
1036 	u32 val;
1037 
1038 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1039 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
1040 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
1041 
1042 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1043 }
1044 
1045 /* Notify HW about port's assignment of pool for smaller packets */
1046 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1047 				      struct mvneta_rx_queue *rxq)
1048 {
1049 	u32 val;
1050 
1051 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1052 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1053 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1054 
1055 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1056 }
1057 
1058 /* Set port's receive buffer size for assigned BM pool */
1059 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1060 					      int buf_size,
1061 					      u8 pool_id)
1062 {
1063 	u32 val;
1064 
1065 	if (!IS_ALIGNED(buf_size, 8)) {
1066 		dev_warn(pp->dev->dev.parent,
1067 			 "illegal buf_size value %d, round to %d\n",
1068 			 buf_size, ALIGN(buf_size, 8));
1069 		buf_size = ALIGN(buf_size, 8);
1070 	}
1071 
1072 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1073 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1074 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1075 }
1076 
1077 /* Configure MBUS window in order to enable access BM internal SRAM */
1078 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1079 				  u8 target, u8 attr)
1080 {
1081 	u32 win_enable, win_protect;
1082 	int i;
1083 
1084 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1085 
1086 	if (pp->bm_win_id < 0) {
1087 		/* Find first not occupied window */
1088 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1089 			if (win_enable & (1 << i)) {
1090 				pp->bm_win_id = i;
1091 				break;
1092 			}
1093 		}
1094 		if (i == MVNETA_MAX_DECODE_WIN)
1095 			return -ENOMEM;
1096 	} else {
1097 		i = pp->bm_win_id;
1098 	}
1099 
1100 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1101 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1102 
1103 	if (i < 4)
1104 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1105 
1106 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1107 		    (attr << 8) | target);
1108 
1109 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1110 
1111 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1112 	win_protect |= 3 << (2 * i);
1113 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1114 
1115 	win_enable &= ~(1 << i);
1116 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1117 
1118 	return 0;
1119 }
1120 
1121 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1122 {
1123 	u32 wsize;
1124 	u8 target, attr;
1125 	int err;
1126 
1127 	/* Get BM window information */
1128 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1129 					 &target, &attr);
1130 	if (err < 0)
1131 		return err;
1132 
1133 	pp->bm_win_id = -1;
1134 
1135 	/* Open NETA -> BM window */
1136 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1137 				     target, attr);
1138 	if (err < 0) {
1139 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1140 		return err;
1141 	}
1142 	return 0;
1143 }
1144 
1145 /* Assign and initialize pools for port. In case of fail
1146  * buffer manager will remain disabled for current port.
1147  */
1148 static int mvneta_bm_port_init(struct platform_device *pdev,
1149 			       struct mvneta_port *pp)
1150 {
1151 	struct device_node *dn = pdev->dev.of_node;
1152 	u32 long_pool_id, short_pool_id;
1153 
1154 	if (!pp->neta_armada3700) {
1155 		int ret;
1156 
1157 		ret = mvneta_bm_port_mbus_init(pp);
1158 		if (ret)
1159 			return ret;
1160 	}
1161 
1162 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1163 		netdev_info(pp->dev, "missing long pool id\n");
1164 		return -EINVAL;
1165 	}
1166 
1167 	/* Create port's long pool depending on mtu */
1168 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1169 					   MVNETA_BM_LONG, pp->id,
1170 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1171 	if (!pp->pool_long) {
1172 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1173 		return -ENOMEM;
1174 	}
1175 
1176 	pp->pool_long->port_map |= 1 << pp->id;
1177 
1178 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1179 				   pp->pool_long->id);
1180 
1181 	/* If short pool id is not defined, assume using single pool */
1182 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1183 		short_pool_id = long_pool_id;
1184 
1185 	/* Create port's short pool */
1186 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1187 					    MVNETA_BM_SHORT, pp->id,
1188 					    MVNETA_BM_SHORT_PKT_SIZE);
1189 	if (!pp->pool_short) {
1190 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1191 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1192 		return -ENOMEM;
1193 	}
1194 
1195 	if (short_pool_id != long_pool_id) {
1196 		pp->pool_short->port_map |= 1 << pp->id;
1197 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1198 					   pp->pool_short->id);
1199 	}
1200 
1201 	return 0;
1202 }
1203 
1204 /* Update settings of a pool for bigger packets */
1205 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1206 {
1207 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1208 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1209 	int num;
1210 
1211 	/* Release all buffers from long pool */
1212 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1213 	if (hwbm_pool->buf_num) {
1214 		WARN(1, "cannot free all buffers in pool %d\n",
1215 		     bm_pool->id);
1216 		goto bm_mtu_err;
1217 	}
1218 
1219 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1220 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1221 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1222 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1223 
1224 	/* Fill entire long pool */
1225 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1226 	if (num != hwbm_pool->size) {
1227 		WARN(1, "pool %d: %d of %d allocated\n",
1228 		     bm_pool->id, num, hwbm_pool->size);
1229 		goto bm_mtu_err;
1230 	}
1231 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1232 
1233 	return;
1234 
1235 bm_mtu_err:
1236 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1237 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1238 
1239 	pp->bm_priv = NULL;
1240 	pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1241 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1242 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1243 }
1244 
1245 /* Start the Ethernet port RX and TX activity */
1246 static void mvneta_port_up(struct mvneta_port *pp)
1247 {
1248 	int queue;
1249 	u32 q_map;
1250 
1251 	/* Enable all initialized TXs. */
1252 	q_map = 0;
1253 	for (queue = 0; queue < txq_number; queue++) {
1254 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1255 		if (txq->descs)
1256 			q_map |= (1 << queue);
1257 	}
1258 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1259 
1260 	q_map = 0;
1261 	/* Enable all initialized RXQs. */
1262 	for (queue = 0; queue < rxq_number; queue++) {
1263 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1264 
1265 		if (rxq->descs)
1266 			q_map |= (1 << queue);
1267 	}
1268 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1269 }
1270 
1271 /* Stop the Ethernet port activity */
1272 static void mvneta_port_down(struct mvneta_port *pp)
1273 {
1274 	u32 val;
1275 	int count;
1276 
1277 	/* Stop Rx port activity. Check port Rx activity. */
1278 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1279 
1280 	/* Issue stop command for active channels only */
1281 	if (val != 0)
1282 		mvreg_write(pp, MVNETA_RXQ_CMD,
1283 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1284 
1285 	/* Wait for all Rx activity to terminate. */
1286 	count = 0;
1287 	do {
1288 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1289 			netdev_warn(pp->dev,
1290 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1291 				    val);
1292 			break;
1293 		}
1294 		mdelay(1);
1295 
1296 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1297 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1298 
1299 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1300 	 * command for active channels only
1301 	 */
1302 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1303 
1304 	if (val != 0)
1305 		mvreg_write(pp, MVNETA_TXQ_CMD,
1306 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1307 
1308 	/* Wait for all Tx activity to terminate. */
1309 	count = 0;
1310 	do {
1311 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1312 			netdev_warn(pp->dev,
1313 				    "TIMEOUT for TX stopped status=0x%08x\n",
1314 				    val);
1315 			break;
1316 		}
1317 		mdelay(1);
1318 
1319 		/* Check TX Command reg that all Txqs are stopped */
1320 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1321 
1322 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1323 
1324 	/* Double check to verify that TX FIFO is empty */
1325 	count = 0;
1326 	do {
1327 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1328 			netdev_warn(pp->dev,
1329 				    "TX FIFO empty timeout status=0x%08x\n",
1330 				    val);
1331 			break;
1332 		}
1333 		mdelay(1);
1334 
1335 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1336 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1337 		 (val & MVNETA_TX_IN_PRGRS));
1338 
1339 	udelay(200);
1340 }
1341 
1342 /* Enable the port by setting the port enable bit of the MAC control register */
1343 static void mvneta_port_enable(struct mvneta_port *pp)
1344 {
1345 	u32 val;
1346 
1347 	/* Enable port */
1348 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1349 	val |= MVNETA_GMAC0_PORT_ENABLE;
1350 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1351 }
1352 
1353 /* Disable the port and wait for about 200 usec before retuning */
1354 static void mvneta_port_disable(struct mvneta_port *pp)
1355 {
1356 	u32 val;
1357 
1358 	/* Reset the Enable bit in the Serial Control Register */
1359 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1360 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1361 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1362 
1363 	udelay(200);
1364 }
1365 
1366 /* Multicast tables methods */
1367 
1368 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1369 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1370 {
1371 	int offset;
1372 	u32 val;
1373 
1374 	if (queue == -1) {
1375 		val = 0;
1376 	} else {
1377 		val = 0x1 | (queue << 1);
1378 		val |= (val << 24) | (val << 16) | (val << 8);
1379 	}
1380 
1381 	for (offset = 0; offset <= 0xc; offset += 4)
1382 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1383 }
1384 
1385 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1386 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1387 {
1388 	int offset;
1389 	u32 val;
1390 
1391 	if (queue == -1) {
1392 		val = 0;
1393 	} else {
1394 		val = 0x1 | (queue << 1);
1395 		val |= (val << 24) | (val << 16) | (val << 8);
1396 	}
1397 
1398 	for (offset = 0; offset <= 0xfc; offset += 4)
1399 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1400 
1401 }
1402 
1403 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1404 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1405 {
1406 	int offset;
1407 	u32 val;
1408 
1409 	if (queue == -1) {
1410 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1411 		val = 0;
1412 	} else {
1413 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1414 		val = 0x1 | (queue << 1);
1415 		val |= (val << 24) | (val << 16) | (val << 8);
1416 	}
1417 
1418 	for (offset = 0; offset <= 0xfc; offset += 4)
1419 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1420 }
1421 
1422 static void mvneta_percpu_unmask_interrupt(void *arg)
1423 {
1424 	struct mvneta_port *pp = arg;
1425 
1426 	/* All the queue are unmasked, but actually only the ones
1427 	 * mapped to this CPU will be unmasked
1428 	 */
1429 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1430 		    MVNETA_RX_INTR_MASK_ALL |
1431 		    MVNETA_TX_INTR_MASK_ALL |
1432 		    MVNETA_MISCINTR_INTR_MASK);
1433 }
1434 
1435 static void mvneta_percpu_mask_interrupt(void *arg)
1436 {
1437 	struct mvneta_port *pp = arg;
1438 
1439 	/* All the queue are masked, but actually only the ones
1440 	 * mapped to this CPU will be masked
1441 	 */
1442 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1443 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1444 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1445 }
1446 
1447 static void mvneta_percpu_clear_intr_cause(void *arg)
1448 {
1449 	struct mvneta_port *pp = arg;
1450 
1451 	/* All the queue are cleared, but actually only the ones
1452 	 * mapped to this CPU will be cleared
1453 	 */
1454 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1455 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1456 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1457 }
1458 
1459 /* This method sets defaults to the NETA port:
1460  *	Clears interrupt Cause and Mask registers.
1461  *	Clears all MAC tables.
1462  *	Sets defaults to all registers.
1463  *	Resets RX and TX descriptor rings.
1464  *	Resets PHY.
1465  * This method can be called after mvneta_port_down() to return the port
1466  *	settings to defaults.
1467  */
1468 static void mvneta_defaults_set(struct mvneta_port *pp)
1469 {
1470 	int cpu;
1471 	int queue;
1472 	u32 val;
1473 	int max_cpu = num_present_cpus();
1474 
1475 	/* Clear all Cause registers */
1476 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1477 
1478 	/* Mask all interrupts */
1479 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1480 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1481 
1482 	/* Enable MBUS Retry bit16 */
1483 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1484 
1485 	/* Set CPU queue access map. CPUs are assigned to the RX and
1486 	 * TX queues modulo their number. If there is only one TX
1487 	 * queue then it is assigned to the CPU associated to the
1488 	 * default RX queue.
1489 	 */
1490 	for_each_present_cpu(cpu) {
1491 		int rxq_map = 0, txq_map = 0;
1492 		int rxq, txq;
1493 		if (!pp->neta_armada3700) {
1494 			for (rxq = 0; rxq < rxq_number; rxq++)
1495 				if ((rxq % max_cpu) == cpu)
1496 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1497 
1498 			for (txq = 0; txq < txq_number; txq++)
1499 				if ((txq % max_cpu) == cpu)
1500 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1501 
1502 			/* With only one TX queue we configure a special case
1503 			 * which will allow to get all the irq on a single
1504 			 * CPU
1505 			 */
1506 			if (txq_number == 1)
1507 				txq_map = (cpu == pp->rxq_def) ?
1508 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1509 
1510 		} else {
1511 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1512 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1513 		}
1514 
1515 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1516 	}
1517 
1518 	/* Reset RX and TX DMAs */
1519 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1520 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1521 
1522 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1523 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1524 	for (queue = 0; queue < txq_number; queue++) {
1525 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1526 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1527 	}
1528 
1529 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1530 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1531 
1532 	/* Set Port Acceleration Mode */
1533 	if (pp->bm_priv)
1534 		/* HW buffer management + legacy parser */
1535 		val = MVNETA_ACC_MODE_EXT2;
1536 	else
1537 		/* SW buffer management + legacy parser */
1538 		val = MVNETA_ACC_MODE_EXT1;
1539 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1540 
1541 	if (pp->bm_priv)
1542 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1543 
1544 	/* Update val of portCfg register accordingly with all RxQueue types */
1545 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1546 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1547 
1548 	val = 0;
1549 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1550 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1551 
1552 	/* Build PORT_SDMA_CONFIG_REG */
1553 	val = 0;
1554 
1555 	/* Default burst size */
1556 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1557 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1558 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1559 
1560 #if defined(__BIG_ENDIAN)
1561 	val |= MVNETA_DESC_SWAP;
1562 #endif
1563 
1564 	/* Assign port SDMA configuration */
1565 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1566 
1567 	/* Disable PHY polling in hardware, since we're using the
1568 	 * kernel phylib to do this.
1569 	 */
1570 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1571 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1572 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1573 
1574 	mvneta_set_ucast_table(pp, -1);
1575 	mvneta_set_special_mcast_table(pp, -1);
1576 	mvneta_set_other_mcast_table(pp, -1);
1577 
1578 	/* Set port interrupt enable register - default enable all */
1579 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1580 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1581 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1582 
1583 	mvneta_mib_counters_clear(pp);
1584 }
1585 
1586 /* Set max sizes for tx queues */
1587 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1588 
1589 {
1590 	u32 val, size, mtu;
1591 	int queue;
1592 
1593 	mtu = max_tx_size * 8;
1594 	if (mtu > MVNETA_TX_MTU_MAX)
1595 		mtu = MVNETA_TX_MTU_MAX;
1596 
1597 	/* Set MTU */
1598 	val = mvreg_read(pp, MVNETA_TX_MTU);
1599 	val &= ~MVNETA_TX_MTU_MAX;
1600 	val |= mtu;
1601 	mvreg_write(pp, MVNETA_TX_MTU, val);
1602 
1603 	/* TX token size and all TXQs token size must be larger that MTU */
1604 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1605 
1606 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1607 	if (size < mtu) {
1608 		size = mtu;
1609 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1610 		val |= size;
1611 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1612 	}
1613 	for (queue = 0; queue < txq_number; queue++) {
1614 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1615 
1616 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1617 		if (size < mtu) {
1618 			size = mtu;
1619 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1620 			val |= size;
1621 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1622 		}
1623 	}
1624 }
1625 
1626 /* Set unicast address */
1627 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1628 				  int queue)
1629 {
1630 	unsigned int unicast_reg;
1631 	unsigned int tbl_offset;
1632 	unsigned int reg_offset;
1633 
1634 	/* Locate the Unicast table entry */
1635 	last_nibble = (0xf & last_nibble);
1636 
1637 	/* offset from unicast tbl base */
1638 	tbl_offset = (last_nibble / 4) * 4;
1639 
1640 	/* offset within the above reg  */
1641 	reg_offset = last_nibble % 4;
1642 
1643 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1644 
1645 	if (queue == -1) {
1646 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1647 		unicast_reg &= ~(0xff << (8 * reg_offset));
1648 	} else {
1649 		unicast_reg &= ~(0xff << (8 * reg_offset));
1650 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1651 	}
1652 
1653 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1654 }
1655 
1656 /* Set mac address */
1657 static void mvneta_mac_addr_set(struct mvneta_port *pp,
1658 				const unsigned char *addr, int queue)
1659 {
1660 	unsigned int mac_h;
1661 	unsigned int mac_l;
1662 
1663 	if (queue != -1) {
1664 		mac_l = (addr[4] << 8) | (addr[5]);
1665 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1666 			(addr[2] << 8) | (addr[3] << 0);
1667 
1668 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1669 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1670 	}
1671 
1672 	/* Accept frames of this address */
1673 	mvneta_set_ucast_addr(pp, addr[5], queue);
1674 }
1675 
1676 /* Set the number of packets that will be received before RX interrupt
1677  * will be generated by HW.
1678  */
1679 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1680 				    struct mvneta_rx_queue *rxq, u32 value)
1681 {
1682 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1683 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1684 }
1685 
1686 /* Set the time delay in usec before RX interrupt will be generated by
1687  * HW.
1688  */
1689 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1690 				    struct mvneta_rx_queue *rxq, u32 value)
1691 {
1692 	u32 val;
1693 	unsigned long clk_rate;
1694 
1695 	clk_rate = clk_get_rate(pp->clk);
1696 	val = (clk_rate / 1000000) * value;
1697 
1698 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1699 }
1700 
1701 /* Set threshold for TX_DONE pkts coalescing */
1702 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1703 					 struct mvneta_tx_queue *txq, u32 value)
1704 {
1705 	u32 val;
1706 
1707 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1708 
1709 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1710 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1711 
1712 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1713 }
1714 
1715 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1716 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1717 				u32 phys_addr, void *virt_addr,
1718 				struct mvneta_rx_queue *rxq)
1719 {
1720 	int i;
1721 
1722 	rx_desc->buf_phys_addr = phys_addr;
1723 	i = rx_desc - rxq->descs;
1724 	rxq->buf_virt_addr[i] = virt_addr;
1725 }
1726 
1727 /* Decrement sent descriptors counter */
1728 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1729 				     struct mvneta_tx_queue *txq,
1730 				     int sent_desc)
1731 {
1732 	u32 val;
1733 
1734 	/* Only 255 TX descriptors can be updated at once */
1735 	while (sent_desc > 0xff) {
1736 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1737 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1738 		sent_desc = sent_desc - 0xff;
1739 	}
1740 
1741 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1742 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1743 }
1744 
1745 /* Get number of TX descriptors already sent by HW */
1746 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1747 					struct mvneta_tx_queue *txq)
1748 {
1749 	u32 val;
1750 	int sent_desc;
1751 
1752 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1753 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1754 		MVNETA_TXQ_SENT_DESC_SHIFT;
1755 
1756 	return sent_desc;
1757 }
1758 
1759 /* Get number of sent descriptors and decrement counter.
1760  *  The number of sent descriptors is returned.
1761  */
1762 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1763 				     struct mvneta_tx_queue *txq)
1764 {
1765 	int sent_desc;
1766 
1767 	/* Get number of sent descriptors */
1768 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1769 
1770 	/* Decrement sent descriptors counter */
1771 	if (sent_desc)
1772 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1773 
1774 	return sent_desc;
1775 }
1776 
1777 /* Set TXQ descriptors fields relevant for CSUM calculation */
1778 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1779 				int ip_hdr_len, int l4_proto)
1780 {
1781 	u32 command;
1782 
1783 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1784 	 * G_L4_chk, L4_type; required only for checksum
1785 	 * calculation
1786 	 */
1787 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1788 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1789 
1790 	if (l3_proto == htons(ETH_P_IP))
1791 		command |= MVNETA_TXD_IP_CSUM;
1792 	else
1793 		command |= MVNETA_TX_L3_IP6;
1794 
1795 	if (l4_proto == IPPROTO_TCP)
1796 		command |=  MVNETA_TX_L4_CSUM_FULL;
1797 	else if (l4_proto == IPPROTO_UDP)
1798 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1799 	else
1800 		command |= MVNETA_TX_L4_CSUM_NOT;
1801 
1802 	return command;
1803 }
1804 
1805 
1806 /* Display more error info */
1807 static void mvneta_rx_error(struct mvneta_port *pp,
1808 			    struct mvneta_rx_desc *rx_desc)
1809 {
1810 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1811 	u32 status = rx_desc->status;
1812 
1813 	/* update per-cpu counter */
1814 	u64_stats_update_begin(&stats->syncp);
1815 	stats->rx_errors++;
1816 	u64_stats_update_end(&stats->syncp);
1817 
1818 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1819 	case MVNETA_RXD_ERR_CRC:
1820 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1821 			   status, rx_desc->data_size);
1822 		break;
1823 	case MVNETA_RXD_ERR_OVERRUN:
1824 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1825 			   status, rx_desc->data_size);
1826 		break;
1827 	case MVNETA_RXD_ERR_LEN:
1828 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1829 			   status, rx_desc->data_size);
1830 		break;
1831 	case MVNETA_RXD_ERR_RESOURCE:
1832 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1833 			   status, rx_desc->data_size);
1834 		break;
1835 	}
1836 }
1837 
1838 /* Handle RX checksum offload based on the descriptor's status */
1839 static int mvneta_rx_csum(struct mvneta_port *pp, u32 status)
1840 {
1841 	if ((pp->dev->features & NETIF_F_RXCSUM) &&
1842 	    (status & MVNETA_RXD_L3_IP4) &&
1843 	    (status & MVNETA_RXD_L4_CSUM_OK))
1844 		return CHECKSUM_UNNECESSARY;
1845 
1846 	return CHECKSUM_NONE;
1847 }
1848 
1849 /* Return tx queue pointer (find last set bit) according to <cause> returned
1850  * form tx_done reg. <cause> must not be null. The return value is always a
1851  * valid queue for matching the first one found in <cause>.
1852  */
1853 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1854 						     u32 cause)
1855 {
1856 	int queue = fls(cause) - 1;
1857 
1858 	return &pp->txqs[queue];
1859 }
1860 
1861 /* Free tx queue skbuffs */
1862 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1863 				 struct mvneta_tx_queue *txq, int num,
1864 				 struct netdev_queue *nq, bool napi)
1865 {
1866 	unsigned int bytes_compl = 0, pkts_compl = 0;
1867 	struct xdp_frame_bulk bq;
1868 	int i;
1869 
1870 	xdp_frame_bulk_init(&bq);
1871 
1872 	rcu_read_lock(); /* need for xdp_return_frame_bulk */
1873 
1874 	for (i = 0; i < num; i++) {
1875 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1876 		struct mvneta_tx_desc *tx_desc = txq->descs +
1877 			txq->txq_get_index;
1878 
1879 		mvneta_txq_inc_get(txq);
1880 
1881 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) &&
1882 		    buf->type != MVNETA_TYPE_XDP_TX)
1883 			dma_unmap_single(pp->dev->dev.parent,
1884 					 tx_desc->buf_phys_addr,
1885 					 tx_desc->data_size, DMA_TO_DEVICE);
1886 		if (buf->type == MVNETA_TYPE_SKB && buf->skb) {
1887 			bytes_compl += buf->skb->len;
1888 			pkts_compl++;
1889 			dev_kfree_skb_any(buf->skb);
1890 		} else if ((buf->type == MVNETA_TYPE_XDP_TX ||
1891 			    buf->type == MVNETA_TYPE_XDP_NDO) && buf->xdpf) {
1892 			if (napi && buf->type == MVNETA_TYPE_XDP_TX)
1893 				xdp_return_frame_rx_napi(buf->xdpf);
1894 			else
1895 				xdp_return_frame_bulk(buf->xdpf, &bq);
1896 		}
1897 	}
1898 	xdp_flush_frame_bulk(&bq);
1899 
1900 	rcu_read_unlock();
1901 
1902 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1903 }
1904 
1905 /* Handle end of transmission */
1906 static void mvneta_txq_done(struct mvneta_port *pp,
1907 			   struct mvneta_tx_queue *txq)
1908 {
1909 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1910 	int tx_done;
1911 
1912 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1913 	if (!tx_done)
1914 		return;
1915 
1916 	mvneta_txq_bufs_free(pp, txq, tx_done, nq, true);
1917 
1918 	txq->count -= tx_done;
1919 
1920 	if (netif_tx_queue_stopped(nq)) {
1921 		if (txq->count <= txq->tx_wake_threshold)
1922 			netif_tx_wake_queue(nq);
1923 	}
1924 }
1925 
1926 /* Refill processing for SW buffer management */
1927 /* Allocate page per descriptor */
1928 static int mvneta_rx_refill(struct mvneta_port *pp,
1929 			    struct mvneta_rx_desc *rx_desc,
1930 			    struct mvneta_rx_queue *rxq,
1931 			    gfp_t gfp_mask)
1932 {
1933 	dma_addr_t phys_addr;
1934 	struct page *page;
1935 
1936 	page = page_pool_alloc_pages(rxq->page_pool,
1937 				     gfp_mask | __GFP_NOWARN);
1938 	if (!page)
1939 		return -ENOMEM;
1940 
1941 	phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1942 	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1943 
1944 	return 0;
1945 }
1946 
1947 /* Handle tx checksum */
1948 static u32 mvneta_skb_tx_csum(struct sk_buff *skb)
1949 {
1950 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1951 		int ip_hdr_len = 0;
1952 		__be16 l3_proto = vlan_get_protocol(skb);
1953 		u8 l4_proto;
1954 
1955 		if (l3_proto == htons(ETH_P_IP)) {
1956 			struct iphdr *ip4h = ip_hdr(skb);
1957 
1958 			/* Calculate IPv4 checksum and L4 checksum */
1959 			ip_hdr_len = ip4h->ihl;
1960 			l4_proto = ip4h->protocol;
1961 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1962 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1963 
1964 			/* Read l4_protocol from one of IPv6 extra headers */
1965 			if (skb_network_header_len(skb) > 0)
1966 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1967 			l4_proto = ip6h->nexthdr;
1968 		} else
1969 			return MVNETA_TX_L4_CSUM_NOT;
1970 
1971 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1972 					    l3_proto, ip_hdr_len, l4_proto);
1973 	}
1974 
1975 	return MVNETA_TX_L4_CSUM_NOT;
1976 }
1977 
1978 /* Drop packets received by the RXQ and free buffers */
1979 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1980 				 struct mvneta_rx_queue *rxq)
1981 {
1982 	int rx_done, i;
1983 
1984 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1985 	if (rx_done)
1986 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1987 
1988 	if (pp->bm_priv) {
1989 		for (i = 0; i < rx_done; i++) {
1990 			struct mvneta_rx_desc *rx_desc =
1991 						  mvneta_rxq_next_desc_get(rxq);
1992 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1993 			struct mvneta_bm_pool *bm_pool;
1994 
1995 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1996 			/* Return dropped buffer to the pool */
1997 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1998 					      rx_desc->buf_phys_addr);
1999 		}
2000 		return;
2001 	}
2002 
2003 	for (i = 0; i < rxq->size; i++) {
2004 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
2005 		void *data = rxq->buf_virt_addr[i];
2006 		if (!data || !(rx_desc->buf_phys_addr))
2007 			continue;
2008 
2009 		page_pool_put_full_page(rxq->page_pool, data, false);
2010 	}
2011 	if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
2012 		xdp_rxq_info_unreg(&rxq->xdp_rxq);
2013 	page_pool_destroy(rxq->page_pool);
2014 	rxq->page_pool = NULL;
2015 }
2016 
2017 static void
2018 mvneta_update_stats(struct mvneta_port *pp,
2019 		    struct mvneta_stats *ps)
2020 {
2021 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2022 
2023 	u64_stats_update_begin(&stats->syncp);
2024 	stats->es.ps.rx_packets += ps->rx_packets;
2025 	stats->es.ps.rx_bytes += ps->rx_bytes;
2026 	/* xdp */
2027 	stats->es.ps.xdp_redirect += ps->xdp_redirect;
2028 	stats->es.ps.xdp_pass += ps->xdp_pass;
2029 	stats->es.ps.xdp_drop += ps->xdp_drop;
2030 	u64_stats_update_end(&stats->syncp);
2031 }
2032 
2033 static inline
2034 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
2035 {
2036 	struct mvneta_rx_desc *rx_desc;
2037 	int curr_desc = rxq->first_to_refill;
2038 	int i;
2039 
2040 	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
2041 		rx_desc = rxq->descs + curr_desc;
2042 		if (!(rx_desc->buf_phys_addr)) {
2043 			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
2044 				struct mvneta_pcpu_stats *stats;
2045 
2046 				pr_err("Can't refill queue %d. Done %d from %d\n",
2047 				       rxq->id, i, rxq->refill_num);
2048 
2049 				stats = this_cpu_ptr(pp->stats);
2050 				u64_stats_update_begin(&stats->syncp);
2051 				stats->es.refill_error++;
2052 				u64_stats_update_end(&stats->syncp);
2053 				break;
2054 			}
2055 		}
2056 		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2057 	}
2058 	rxq->refill_num -= i;
2059 	rxq->first_to_refill = curr_desc;
2060 
2061 	return i;
2062 }
2063 
2064 static void
2065 mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2066 		    struct xdp_buff *xdp, int sync_len)
2067 {
2068 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2069 	int i;
2070 
2071 	if (likely(!xdp_buff_has_frags(xdp)))
2072 		goto out;
2073 
2074 	for (i = 0; i < sinfo->nr_frags; i++)
2075 		page_pool_put_full_page(rxq->page_pool,
2076 					skb_frag_page(&sinfo->frags[i]), true);
2077 
2078 out:
2079 	page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data),
2080 			   sync_len, true);
2081 }
2082 
2083 static int
2084 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2085 			struct xdp_frame *xdpf, int *nxmit_byte, bool dma_map)
2086 {
2087 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
2088 	struct device *dev = pp->dev->dev.parent;
2089 	struct mvneta_tx_desc *tx_desc;
2090 	int i, num_frames = 1;
2091 	struct page *page;
2092 
2093 	if (unlikely(xdp_frame_has_frags(xdpf)))
2094 		num_frames += sinfo->nr_frags;
2095 
2096 	if (txq->count + num_frames >= txq->size)
2097 		return MVNETA_XDP_DROPPED;
2098 
2099 	for (i = 0; i < num_frames; i++) {
2100 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2101 		skb_frag_t *frag = NULL;
2102 		int len = xdpf->len;
2103 		dma_addr_t dma_addr;
2104 
2105 		if (unlikely(i)) { /* paged area */
2106 			frag = &sinfo->frags[i - 1];
2107 			len = skb_frag_size(frag);
2108 		}
2109 
2110 		tx_desc = mvneta_txq_next_desc_get(txq);
2111 		if (dma_map) {
2112 			/* ndo_xdp_xmit */
2113 			void *data;
2114 
2115 			data = unlikely(frag) ? skb_frag_address(frag)
2116 					      : xdpf->data;
2117 			dma_addr = dma_map_single(dev, data, len,
2118 						  DMA_TO_DEVICE);
2119 			if (dma_mapping_error(dev, dma_addr)) {
2120 				mvneta_txq_desc_put(txq);
2121 				goto unmap;
2122 			}
2123 
2124 			buf->type = MVNETA_TYPE_XDP_NDO;
2125 		} else {
2126 			page = unlikely(frag) ? skb_frag_page(frag)
2127 					      : virt_to_page(xdpf->data);
2128 			dma_addr = page_pool_get_dma_addr(page);
2129 			if (unlikely(frag))
2130 				dma_addr += skb_frag_off(frag);
2131 			else
2132 				dma_addr += sizeof(*xdpf) + xdpf->headroom;
2133 			dma_sync_single_for_device(dev, dma_addr, len,
2134 						   DMA_BIDIRECTIONAL);
2135 			buf->type = MVNETA_TYPE_XDP_TX;
2136 		}
2137 		buf->xdpf = unlikely(i) ? NULL : xdpf;
2138 
2139 		tx_desc->command = unlikely(i) ? 0 : MVNETA_TXD_F_DESC;
2140 		tx_desc->buf_phys_addr = dma_addr;
2141 		tx_desc->data_size = len;
2142 		*nxmit_byte += len;
2143 
2144 		mvneta_txq_inc_put(txq);
2145 	}
2146 	/*last descriptor */
2147 	tx_desc->command |= MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2148 
2149 	txq->pending += num_frames;
2150 	txq->count += num_frames;
2151 
2152 	return MVNETA_XDP_TX;
2153 
2154 unmap:
2155 	for (i--; i >= 0; i--) {
2156 		mvneta_txq_desc_put(txq);
2157 		tx_desc = txq->descs + txq->next_desc_to_proc;
2158 		dma_unmap_single(dev, tx_desc->buf_phys_addr,
2159 				 tx_desc->data_size,
2160 				 DMA_TO_DEVICE);
2161 	}
2162 
2163 	return MVNETA_XDP_DROPPED;
2164 }
2165 
2166 static int
2167 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2168 {
2169 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2170 	struct mvneta_tx_queue *txq;
2171 	struct netdev_queue *nq;
2172 	int cpu, nxmit_byte = 0;
2173 	struct xdp_frame *xdpf;
2174 	u32 ret;
2175 
2176 	xdpf = xdp_convert_buff_to_frame(xdp);
2177 	if (unlikely(!xdpf))
2178 		return MVNETA_XDP_DROPPED;
2179 
2180 	cpu = smp_processor_id();
2181 	txq = &pp->txqs[cpu % txq_number];
2182 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2183 
2184 	__netif_tx_lock(nq, cpu);
2185 	ret = mvneta_xdp_submit_frame(pp, txq, xdpf, &nxmit_byte, false);
2186 	if (ret == MVNETA_XDP_TX) {
2187 		u64_stats_update_begin(&stats->syncp);
2188 		stats->es.ps.tx_bytes += nxmit_byte;
2189 		stats->es.ps.tx_packets++;
2190 		stats->es.ps.xdp_tx++;
2191 		u64_stats_update_end(&stats->syncp);
2192 
2193 		mvneta_txq_pend_desc_add(pp, txq, 0);
2194 	} else {
2195 		u64_stats_update_begin(&stats->syncp);
2196 		stats->es.ps.xdp_tx_err++;
2197 		u64_stats_update_end(&stats->syncp);
2198 	}
2199 	__netif_tx_unlock(nq);
2200 
2201 	return ret;
2202 }
2203 
2204 static int
2205 mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2206 		struct xdp_frame **frames, u32 flags)
2207 {
2208 	struct mvneta_port *pp = netdev_priv(dev);
2209 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2210 	int i, nxmit_byte = 0, nxmit = 0;
2211 	int cpu = smp_processor_id();
2212 	struct mvneta_tx_queue *txq;
2213 	struct netdev_queue *nq;
2214 	u32 ret;
2215 
2216 	if (unlikely(test_bit(__MVNETA_DOWN, &pp->state)))
2217 		return -ENETDOWN;
2218 
2219 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2220 		return -EINVAL;
2221 
2222 	txq = &pp->txqs[cpu % txq_number];
2223 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2224 
2225 	__netif_tx_lock(nq, cpu);
2226 	for (i = 0; i < num_frame; i++) {
2227 		ret = mvneta_xdp_submit_frame(pp, txq, frames[i], &nxmit_byte,
2228 					      true);
2229 		if (ret != MVNETA_XDP_TX)
2230 			break;
2231 
2232 		nxmit++;
2233 	}
2234 
2235 	if (unlikely(flags & XDP_XMIT_FLUSH))
2236 		mvneta_txq_pend_desc_add(pp, txq, 0);
2237 	__netif_tx_unlock(nq);
2238 
2239 	u64_stats_update_begin(&stats->syncp);
2240 	stats->es.ps.tx_bytes += nxmit_byte;
2241 	stats->es.ps.tx_packets += nxmit;
2242 	stats->es.ps.xdp_xmit += nxmit;
2243 	stats->es.ps.xdp_xmit_err += num_frame - nxmit;
2244 	u64_stats_update_end(&stats->syncp);
2245 
2246 	return nxmit;
2247 }
2248 
2249 static int
2250 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2251 	       struct bpf_prog *prog, struct xdp_buff *xdp,
2252 	       u32 frame_sz, struct mvneta_stats *stats)
2253 {
2254 	unsigned int len, data_len, sync;
2255 	u32 ret, act;
2256 
2257 	len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2258 	data_len = xdp->data_end - xdp->data;
2259 	act = bpf_prog_run_xdp(prog, xdp);
2260 
2261 	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
2262 	sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2263 	sync = max(sync, len);
2264 
2265 	switch (act) {
2266 	case XDP_PASS:
2267 		stats->xdp_pass++;
2268 		return MVNETA_XDP_PASS;
2269 	case XDP_REDIRECT: {
2270 		int err;
2271 
2272 		err = xdp_do_redirect(pp->dev, xdp, prog);
2273 		if (unlikely(err)) {
2274 			mvneta_xdp_put_buff(pp, rxq, xdp, sync);
2275 			ret = MVNETA_XDP_DROPPED;
2276 		} else {
2277 			ret = MVNETA_XDP_REDIR;
2278 			stats->xdp_redirect++;
2279 		}
2280 		break;
2281 	}
2282 	case XDP_TX:
2283 		ret = mvneta_xdp_xmit_back(pp, xdp);
2284 		if (ret != MVNETA_XDP_TX)
2285 			mvneta_xdp_put_buff(pp, rxq, xdp, sync);
2286 		break;
2287 	default:
2288 		bpf_warn_invalid_xdp_action(pp->dev, prog, act);
2289 		fallthrough;
2290 	case XDP_ABORTED:
2291 		trace_xdp_exception(pp->dev, prog, act);
2292 		fallthrough;
2293 	case XDP_DROP:
2294 		mvneta_xdp_put_buff(pp, rxq, xdp, sync);
2295 		ret = MVNETA_XDP_DROPPED;
2296 		stats->xdp_drop++;
2297 		break;
2298 	}
2299 
2300 	stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len;
2301 	stats->rx_packets++;
2302 
2303 	return ret;
2304 }
2305 
2306 static void
2307 mvneta_swbm_rx_frame(struct mvneta_port *pp,
2308 		     struct mvneta_rx_desc *rx_desc,
2309 		     struct mvneta_rx_queue *rxq,
2310 		     struct xdp_buff *xdp, int *size,
2311 		     struct page *page)
2312 {
2313 	unsigned char *data = page_address(page);
2314 	int data_len = -MVNETA_MH_SIZE, len;
2315 	struct net_device *dev = pp->dev;
2316 	enum dma_data_direction dma_dir;
2317 
2318 	if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2319 		len = MVNETA_MAX_RX_BUF_SIZE;
2320 		data_len += len;
2321 	} else {
2322 		len = *size;
2323 		data_len += len - ETH_FCS_LEN;
2324 	}
2325 	*size = *size - len;
2326 
2327 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2328 	dma_sync_single_for_cpu(dev->dev.parent,
2329 				rx_desc->buf_phys_addr,
2330 				len, dma_dir);
2331 
2332 	rx_desc->buf_phys_addr = 0;
2333 
2334 	/* Prefetch header */
2335 	prefetch(data);
2336 	xdp_buff_clear_frags_flag(xdp);
2337 	xdp_prepare_buff(xdp, data, pp->rx_offset_correction + MVNETA_MH_SIZE,
2338 			 data_len, false);
2339 }
2340 
2341 static void
2342 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2343 			    struct mvneta_rx_desc *rx_desc,
2344 			    struct mvneta_rx_queue *rxq,
2345 			    struct xdp_buff *xdp, int *size,
2346 			    struct page *page)
2347 {
2348 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2349 	struct net_device *dev = pp->dev;
2350 	enum dma_data_direction dma_dir;
2351 	int data_len, len;
2352 
2353 	if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2354 		len = MVNETA_MAX_RX_BUF_SIZE;
2355 		data_len = len;
2356 	} else {
2357 		len = *size;
2358 		data_len = len - ETH_FCS_LEN;
2359 	}
2360 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2361 	dma_sync_single_for_cpu(dev->dev.parent,
2362 				rx_desc->buf_phys_addr,
2363 				len, dma_dir);
2364 	rx_desc->buf_phys_addr = 0;
2365 
2366 	if (!xdp_buff_has_frags(xdp))
2367 		sinfo->nr_frags = 0;
2368 
2369 	if (data_len > 0 && sinfo->nr_frags < MAX_SKB_FRAGS) {
2370 		skb_frag_t *frag = &sinfo->frags[sinfo->nr_frags++];
2371 
2372 		skb_frag_off_set(frag, pp->rx_offset_correction);
2373 		skb_frag_size_set(frag, data_len);
2374 		__skb_frag_set_page(frag, page);
2375 
2376 		if (!xdp_buff_has_frags(xdp)) {
2377 			sinfo->xdp_frags_size = *size;
2378 			xdp_buff_set_frags_flag(xdp);
2379 		}
2380 		if (page_is_pfmemalloc(page))
2381 			xdp_buff_set_frag_pfmemalloc(xdp);
2382 	} else {
2383 		page_pool_put_full_page(rxq->page_pool, page, true);
2384 	}
2385 	*size -= len;
2386 }
2387 
2388 static struct sk_buff *
2389 mvneta_swbm_build_skb(struct mvneta_port *pp, struct page_pool *pool,
2390 		      struct xdp_buff *xdp, u32 desc_status)
2391 {
2392 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2393 	struct sk_buff *skb;
2394 	u8 num_frags;
2395 
2396 	if (unlikely(xdp_buff_has_frags(xdp)))
2397 		num_frags = sinfo->nr_frags;
2398 
2399 	skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2400 	if (!skb)
2401 		return ERR_PTR(-ENOMEM);
2402 
2403 	skb_mark_for_recycle(skb);
2404 
2405 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2406 	skb_put(skb, xdp->data_end - xdp->data);
2407 	skb->ip_summed = mvneta_rx_csum(pp, desc_status);
2408 
2409 	if (unlikely(xdp_buff_has_frags(xdp)))
2410 		xdp_update_skb_shared_info(skb, num_frags,
2411 					   sinfo->xdp_frags_size,
2412 					   num_frags * xdp->frame_sz,
2413 					   xdp_buff_is_frag_pfmemalloc(xdp));
2414 
2415 	return skb;
2416 }
2417 
2418 /* Main rx processing when using software buffer management */
2419 static int mvneta_rx_swbm(struct napi_struct *napi,
2420 			  struct mvneta_port *pp, int budget,
2421 			  struct mvneta_rx_queue *rxq)
2422 {
2423 	int rx_proc = 0, rx_todo, refill, size = 0;
2424 	struct net_device *dev = pp->dev;
2425 	struct mvneta_stats ps = {};
2426 	struct bpf_prog *xdp_prog;
2427 	u32 desc_status, frame_sz;
2428 	struct xdp_buff xdp_buf;
2429 
2430 	xdp_init_buff(&xdp_buf, PAGE_SIZE, &rxq->xdp_rxq);
2431 	xdp_buf.data_hard_start = NULL;
2432 
2433 	/* Get number of received packets */
2434 	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2435 
2436 	xdp_prog = READ_ONCE(pp->xdp_prog);
2437 
2438 	/* Fairness NAPI loop */
2439 	while (rx_proc < budget && rx_proc < rx_todo) {
2440 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2441 		u32 rx_status, index;
2442 		struct sk_buff *skb;
2443 		struct page *page;
2444 
2445 		index = rx_desc - rxq->descs;
2446 		page = (struct page *)rxq->buf_virt_addr[index];
2447 
2448 		rx_status = rx_desc->status;
2449 		rx_proc++;
2450 		rxq->refill_num++;
2451 
2452 		if (rx_status & MVNETA_RXD_FIRST_DESC) {
2453 			/* Check errors only for FIRST descriptor */
2454 			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2455 				mvneta_rx_error(pp, rx_desc);
2456 				goto next;
2457 			}
2458 
2459 			size = rx_desc->data_size;
2460 			frame_sz = size - ETH_FCS_LEN;
2461 			desc_status = rx_status;
2462 
2463 			mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2464 					     &size, page);
2465 		} else {
2466 			if (unlikely(!xdp_buf.data_hard_start)) {
2467 				rx_desc->buf_phys_addr = 0;
2468 				page_pool_put_full_page(rxq->page_pool, page,
2469 							true);
2470 				goto next;
2471 			}
2472 
2473 			mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf,
2474 						    &size, page);
2475 		} /* Middle or Last descriptor */
2476 
2477 		if (!(rx_status & MVNETA_RXD_LAST_DESC))
2478 			/* no last descriptor this time */
2479 			continue;
2480 
2481 		if (size) {
2482 			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1);
2483 			goto next;
2484 		}
2485 
2486 		if (xdp_prog &&
2487 		    mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps))
2488 			goto next;
2489 
2490 		skb = mvneta_swbm_build_skb(pp, rxq->page_pool, &xdp_buf, desc_status);
2491 		if (IS_ERR(skb)) {
2492 			struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2493 
2494 			mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1);
2495 
2496 			u64_stats_update_begin(&stats->syncp);
2497 			stats->es.skb_alloc_error++;
2498 			stats->rx_dropped++;
2499 			u64_stats_update_end(&stats->syncp);
2500 
2501 			goto next;
2502 		}
2503 
2504 		ps.rx_bytes += skb->len;
2505 		ps.rx_packets++;
2506 
2507 		skb->protocol = eth_type_trans(skb, dev);
2508 		napi_gro_receive(napi, skb);
2509 next:
2510 		xdp_buf.data_hard_start = NULL;
2511 	}
2512 
2513 	if (xdp_buf.data_hard_start)
2514 		mvneta_xdp_put_buff(pp, rxq, &xdp_buf, -1);
2515 
2516 	if (ps.xdp_redirect)
2517 		xdp_do_flush_map();
2518 
2519 	if (ps.rx_packets)
2520 		mvneta_update_stats(pp, &ps);
2521 
2522 	/* return some buffers to hardware queue, one at a time is too slow */
2523 	refill = mvneta_rx_refill_queue(pp, rxq);
2524 
2525 	/* Update rxq management counters */
2526 	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2527 
2528 	return ps.rx_packets;
2529 }
2530 
2531 /* Main rx processing when using hardware buffer management */
2532 static int mvneta_rx_hwbm(struct napi_struct *napi,
2533 			  struct mvneta_port *pp, int rx_todo,
2534 			  struct mvneta_rx_queue *rxq)
2535 {
2536 	struct net_device *dev = pp->dev;
2537 	int rx_done;
2538 	u32 rcvd_pkts = 0;
2539 	u32 rcvd_bytes = 0;
2540 
2541 	/* Get number of received packets */
2542 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2543 
2544 	if (rx_todo > rx_done)
2545 		rx_todo = rx_done;
2546 
2547 	rx_done = 0;
2548 
2549 	/* Fairness NAPI loop */
2550 	while (rx_done < rx_todo) {
2551 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2552 		struct mvneta_bm_pool *bm_pool = NULL;
2553 		struct sk_buff *skb;
2554 		unsigned char *data;
2555 		dma_addr_t phys_addr;
2556 		u32 rx_status, frag_size;
2557 		int rx_bytes, err;
2558 		u8 pool_id;
2559 
2560 		rx_done++;
2561 		rx_status = rx_desc->status;
2562 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2563 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2564 		phys_addr = rx_desc->buf_phys_addr;
2565 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2566 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2567 
2568 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2569 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2570 err_drop_frame_ret_pool:
2571 			/* Return the buffer to the pool */
2572 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2573 					      rx_desc->buf_phys_addr);
2574 err_drop_frame:
2575 			mvneta_rx_error(pp, rx_desc);
2576 			/* leave the descriptor untouched */
2577 			continue;
2578 		}
2579 
2580 		if (rx_bytes <= rx_copybreak) {
2581 			/* better copy a small frame and not unmap the DMA region */
2582 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2583 			if (unlikely(!skb))
2584 				goto err_drop_frame_ret_pool;
2585 
2586 			dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2587 			                              rx_desc->buf_phys_addr,
2588 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2589 			                              rx_bytes,
2590 			                              DMA_FROM_DEVICE);
2591 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2592 				     rx_bytes);
2593 
2594 			skb->protocol = eth_type_trans(skb, dev);
2595 			skb->ip_summed = mvneta_rx_csum(pp, rx_status);
2596 			napi_gro_receive(napi, skb);
2597 
2598 			rcvd_pkts++;
2599 			rcvd_bytes += rx_bytes;
2600 
2601 			/* Return the buffer to the pool */
2602 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2603 					      rx_desc->buf_phys_addr);
2604 
2605 			/* leave the descriptor and buffer untouched */
2606 			continue;
2607 		}
2608 
2609 		/* Refill processing */
2610 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2611 		if (err) {
2612 			struct mvneta_pcpu_stats *stats;
2613 
2614 			netdev_err(dev, "Linux processing - Can't refill\n");
2615 
2616 			stats = this_cpu_ptr(pp->stats);
2617 			u64_stats_update_begin(&stats->syncp);
2618 			stats->es.refill_error++;
2619 			u64_stats_update_end(&stats->syncp);
2620 
2621 			goto err_drop_frame_ret_pool;
2622 		}
2623 
2624 		frag_size = bm_pool->hwbm_pool.frag_size;
2625 
2626 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2627 
2628 		/* After refill old buffer has to be unmapped regardless
2629 		 * the skb is successfully built or not.
2630 		 */
2631 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2632 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2633 		if (!skb)
2634 			goto err_drop_frame;
2635 
2636 		rcvd_pkts++;
2637 		rcvd_bytes += rx_bytes;
2638 
2639 		/* Linux processing */
2640 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2641 		skb_put(skb, rx_bytes);
2642 
2643 		skb->protocol = eth_type_trans(skb, dev);
2644 		skb->ip_summed = mvneta_rx_csum(pp, rx_status);
2645 
2646 		napi_gro_receive(napi, skb);
2647 	}
2648 
2649 	if (rcvd_pkts) {
2650 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2651 
2652 		u64_stats_update_begin(&stats->syncp);
2653 		stats->es.ps.rx_packets += rcvd_pkts;
2654 		stats->es.ps.rx_bytes += rcvd_bytes;
2655 		u64_stats_update_end(&stats->syncp);
2656 	}
2657 
2658 	/* Update rxq management counters */
2659 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2660 
2661 	return rx_done;
2662 }
2663 
2664 static inline void
2665 mvneta_tso_put_hdr(struct sk_buff *skb, struct mvneta_tx_queue *txq)
2666 {
2667 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2668 	int hdr_len = skb_tcp_all_headers(skb);
2669 	struct mvneta_tx_desc *tx_desc;
2670 
2671 	tx_desc = mvneta_txq_next_desc_get(txq);
2672 	tx_desc->data_size = hdr_len;
2673 	tx_desc->command = mvneta_skb_tx_csum(skb);
2674 	tx_desc->command |= MVNETA_TXD_F_DESC;
2675 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2676 				 txq->txq_put_index * TSO_HEADER_SIZE;
2677 	buf->type = MVNETA_TYPE_SKB;
2678 	buf->skb = NULL;
2679 
2680 	mvneta_txq_inc_put(txq);
2681 }
2682 
2683 static inline int
2684 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2685 		    struct sk_buff *skb, char *data, int size,
2686 		    bool last_tcp, bool is_last)
2687 {
2688 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2689 	struct mvneta_tx_desc *tx_desc;
2690 
2691 	tx_desc = mvneta_txq_next_desc_get(txq);
2692 	tx_desc->data_size = size;
2693 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2694 						size, DMA_TO_DEVICE);
2695 	if (unlikely(dma_mapping_error(dev->dev.parent,
2696 		     tx_desc->buf_phys_addr))) {
2697 		mvneta_txq_desc_put(txq);
2698 		return -ENOMEM;
2699 	}
2700 
2701 	tx_desc->command = 0;
2702 	buf->type = MVNETA_TYPE_SKB;
2703 	buf->skb = NULL;
2704 
2705 	if (last_tcp) {
2706 		/* last descriptor in the TCP packet */
2707 		tx_desc->command = MVNETA_TXD_L_DESC;
2708 
2709 		/* last descriptor in SKB */
2710 		if (is_last)
2711 			buf->skb = skb;
2712 	}
2713 	mvneta_txq_inc_put(txq);
2714 	return 0;
2715 }
2716 
2717 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2718 			 struct mvneta_tx_queue *txq)
2719 {
2720 	int hdr_len, total_len, data_left;
2721 	int desc_count = 0;
2722 	struct mvneta_port *pp = netdev_priv(dev);
2723 	struct tso_t tso;
2724 	int i;
2725 
2726 	/* Count needed descriptors */
2727 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2728 		return 0;
2729 
2730 	if (skb_headlen(skb) < skb_tcp_all_headers(skb)) {
2731 		pr_info("*** Is this even possible?\n");
2732 		return 0;
2733 	}
2734 
2735 	/* Initialize the TSO handler, and prepare the first payload */
2736 	hdr_len = tso_start(skb, &tso);
2737 
2738 	total_len = skb->len - hdr_len;
2739 	while (total_len > 0) {
2740 		char *hdr;
2741 
2742 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2743 		total_len -= data_left;
2744 		desc_count++;
2745 
2746 		/* prepare packet headers: MAC + IP + TCP */
2747 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2748 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2749 
2750 		mvneta_tso_put_hdr(skb, txq);
2751 
2752 		while (data_left > 0) {
2753 			int size;
2754 			desc_count++;
2755 
2756 			size = min_t(int, tso.size, data_left);
2757 
2758 			if (mvneta_tso_put_data(dev, txq, skb,
2759 						 tso.data, size,
2760 						 size == data_left,
2761 						 total_len == 0))
2762 				goto err_release;
2763 			data_left -= size;
2764 
2765 			tso_build_data(skb, &tso, size);
2766 		}
2767 	}
2768 
2769 	return desc_count;
2770 
2771 err_release:
2772 	/* Release all used data descriptors; header descriptors must not
2773 	 * be DMA-unmapped.
2774 	 */
2775 	for (i = desc_count - 1; i >= 0; i--) {
2776 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2777 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2778 			dma_unmap_single(pp->dev->dev.parent,
2779 					 tx_desc->buf_phys_addr,
2780 					 tx_desc->data_size,
2781 					 DMA_TO_DEVICE);
2782 		mvneta_txq_desc_put(txq);
2783 	}
2784 	return 0;
2785 }
2786 
2787 /* Handle tx fragmentation processing */
2788 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2789 				  struct mvneta_tx_queue *txq)
2790 {
2791 	struct mvneta_tx_desc *tx_desc;
2792 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2793 
2794 	for (i = 0; i < nr_frags; i++) {
2795 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2796 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2797 		void *addr = skb_frag_address(frag);
2798 
2799 		tx_desc = mvneta_txq_next_desc_get(txq);
2800 		tx_desc->data_size = skb_frag_size(frag);
2801 
2802 		tx_desc->buf_phys_addr =
2803 			dma_map_single(pp->dev->dev.parent, addr,
2804 				       tx_desc->data_size, DMA_TO_DEVICE);
2805 
2806 		if (dma_mapping_error(pp->dev->dev.parent,
2807 				      tx_desc->buf_phys_addr)) {
2808 			mvneta_txq_desc_put(txq);
2809 			goto error;
2810 		}
2811 
2812 		if (i == nr_frags - 1) {
2813 			/* Last descriptor */
2814 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2815 			buf->skb = skb;
2816 		} else {
2817 			/* Descriptor in the middle: Not First, Not Last */
2818 			tx_desc->command = 0;
2819 			buf->skb = NULL;
2820 		}
2821 		buf->type = MVNETA_TYPE_SKB;
2822 		mvneta_txq_inc_put(txq);
2823 	}
2824 
2825 	return 0;
2826 
2827 error:
2828 	/* Release all descriptors that were used to map fragments of
2829 	 * this packet, as well as the corresponding DMA mappings
2830 	 */
2831 	for (i = i - 1; i >= 0; i--) {
2832 		tx_desc = txq->descs + i;
2833 		dma_unmap_single(pp->dev->dev.parent,
2834 				 tx_desc->buf_phys_addr,
2835 				 tx_desc->data_size,
2836 				 DMA_TO_DEVICE);
2837 		mvneta_txq_desc_put(txq);
2838 	}
2839 
2840 	return -ENOMEM;
2841 }
2842 
2843 /* Main tx processing */
2844 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2845 {
2846 	struct mvneta_port *pp = netdev_priv(dev);
2847 	u16 txq_id = skb_get_queue_mapping(skb);
2848 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2849 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2850 	struct mvneta_tx_desc *tx_desc;
2851 	int len = skb->len;
2852 	int frags = 0;
2853 	u32 tx_cmd;
2854 
2855 	if (!netif_running(dev))
2856 		goto out;
2857 
2858 	if (skb_is_gso(skb)) {
2859 		frags = mvneta_tx_tso(skb, dev, txq);
2860 		goto out;
2861 	}
2862 
2863 	frags = skb_shinfo(skb)->nr_frags + 1;
2864 
2865 	/* Get a descriptor for the first part of the packet */
2866 	tx_desc = mvneta_txq_next_desc_get(txq);
2867 
2868 	tx_cmd = mvneta_skb_tx_csum(skb);
2869 
2870 	tx_desc->data_size = skb_headlen(skb);
2871 
2872 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2873 						tx_desc->data_size,
2874 						DMA_TO_DEVICE);
2875 	if (unlikely(dma_mapping_error(dev->dev.parent,
2876 				       tx_desc->buf_phys_addr))) {
2877 		mvneta_txq_desc_put(txq);
2878 		frags = 0;
2879 		goto out;
2880 	}
2881 
2882 	buf->type = MVNETA_TYPE_SKB;
2883 	if (frags == 1) {
2884 		/* First and Last descriptor */
2885 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2886 		tx_desc->command = tx_cmd;
2887 		buf->skb = skb;
2888 		mvneta_txq_inc_put(txq);
2889 	} else {
2890 		/* First but not Last */
2891 		tx_cmd |= MVNETA_TXD_F_DESC;
2892 		buf->skb = NULL;
2893 		mvneta_txq_inc_put(txq);
2894 		tx_desc->command = tx_cmd;
2895 		/* Continue with other skb fragments */
2896 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2897 			dma_unmap_single(dev->dev.parent,
2898 					 tx_desc->buf_phys_addr,
2899 					 tx_desc->data_size,
2900 					 DMA_TO_DEVICE);
2901 			mvneta_txq_desc_put(txq);
2902 			frags = 0;
2903 			goto out;
2904 		}
2905 	}
2906 
2907 out:
2908 	if (frags > 0) {
2909 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2910 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2911 
2912 		netdev_tx_sent_queue(nq, len);
2913 
2914 		txq->count += frags;
2915 		if (txq->count >= txq->tx_stop_threshold)
2916 			netif_tx_stop_queue(nq);
2917 
2918 		if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2919 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2920 			mvneta_txq_pend_desc_add(pp, txq, frags);
2921 		else
2922 			txq->pending += frags;
2923 
2924 		u64_stats_update_begin(&stats->syncp);
2925 		stats->es.ps.tx_bytes += len;
2926 		stats->es.ps.tx_packets++;
2927 		u64_stats_update_end(&stats->syncp);
2928 	} else {
2929 		dev->stats.tx_dropped++;
2930 		dev_kfree_skb_any(skb);
2931 	}
2932 
2933 	return NETDEV_TX_OK;
2934 }
2935 
2936 
2937 /* Free tx resources, when resetting a port */
2938 static void mvneta_txq_done_force(struct mvneta_port *pp,
2939 				  struct mvneta_tx_queue *txq)
2940 
2941 {
2942 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2943 	int tx_done = txq->count;
2944 
2945 	mvneta_txq_bufs_free(pp, txq, tx_done, nq, false);
2946 
2947 	/* reset txq */
2948 	txq->count = 0;
2949 	txq->txq_put_index = 0;
2950 	txq->txq_get_index = 0;
2951 }
2952 
2953 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2954  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2955  */
2956 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2957 {
2958 	struct mvneta_tx_queue *txq;
2959 	struct netdev_queue *nq;
2960 	int cpu = smp_processor_id();
2961 
2962 	while (cause_tx_done) {
2963 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2964 
2965 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2966 		__netif_tx_lock(nq, cpu);
2967 
2968 		if (txq->count)
2969 			mvneta_txq_done(pp, txq);
2970 
2971 		__netif_tx_unlock(nq);
2972 		cause_tx_done &= ~((1 << txq->id));
2973 	}
2974 }
2975 
2976 /* Compute crc8 of the specified address, using a unique algorithm ,
2977  * according to hw spec, different than generic crc8 algorithm
2978  */
2979 static int mvneta_addr_crc(unsigned char *addr)
2980 {
2981 	int crc = 0;
2982 	int i;
2983 
2984 	for (i = 0; i < ETH_ALEN; i++) {
2985 		int j;
2986 
2987 		crc = (crc ^ addr[i]) << 8;
2988 		for (j = 7; j >= 0; j--) {
2989 			if (crc & (0x100 << j))
2990 				crc ^= 0x107 << j;
2991 		}
2992 	}
2993 
2994 	return crc;
2995 }
2996 
2997 /* This method controls the net device special MAC multicast support.
2998  * The Special Multicast Table for MAC addresses supports MAC of the form
2999  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
3000  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
3001  * Table entries in the DA-Filter table. This method set the Special
3002  * Multicast Table appropriate entry.
3003  */
3004 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
3005 					  unsigned char last_byte,
3006 					  int queue)
3007 {
3008 	unsigned int smc_table_reg;
3009 	unsigned int tbl_offset;
3010 	unsigned int reg_offset;
3011 
3012 	/* Register offset from SMC table base    */
3013 	tbl_offset = (last_byte / 4);
3014 	/* Entry offset within the above reg */
3015 	reg_offset = last_byte % 4;
3016 
3017 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
3018 					+ tbl_offset * 4));
3019 
3020 	if (queue == -1)
3021 		smc_table_reg &= ~(0xff << (8 * reg_offset));
3022 	else {
3023 		smc_table_reg &= ~(0xff << (8 * reg_offset));
3024 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
3025 	}
3026 
3027 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
3028 		    smc_table_reg);
3029 }
3030 
3031 /* This method controls the network device Other MAC multicast support.
3032  * The Other Multicast Table is used for multicast of another type.
3033  * A CRC-8 is used as an index to the Other Multicast Table entries
3034  * in the DA-Filter table.
3035  * The method gets the CRC-8 value from the calling routine and
3036  * sets the Other Multicast Table appropriate entry according to the
3037  * specified CRC-8 .
3038  */
3039 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
3040 					unsigned char crc8,
3041 					int queue)
3042 {
3043 	unsigned int omc_table_reg;
3044 	unsigned int tbl_offset;
3045 	unsigned int reg_offset;
3046 
3047 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
3048 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
3049 
3050 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
3051 
3052 	if (queue == -1) {
3053 		/* Clear accepts frame bit at specified Other DA table entry */
3054 		omc_table_reg &= ~(0xff << (8 * reg_offset));
3055 	} else {
3056 		omc_table_reg &= ~(0xff << (8 * reg_offset));
3057 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
3058 	}
3059 
3060 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
3061 }
3062 
3063 /* The network device supports multicast using two tables:
3064  *    1) Special Multicast Table for MAC addresses of the form
3065  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
3066  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
3067  *       Table entries in the DA-Filter table.
3068  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
3069  *       is used as an index to the Other Multicast Table entries in the
3070  *       DA-Filter table.
3071  */
3072 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
3073 				 int queue)
3074 {
3075 	unsigned char crc_result = 0;
3076 
3077 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
3078 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
3079 		return 0;
3080 	}
3081 
3082 	crc_result = mvneta_addr_crc(p_addr);
3083 	if (queue == -1) {
3084 		if (pp->mcast_count[crc_result] == 0) {
3085 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
3086 				    crc_result);
3087 			return -EINVAL;
3088 		}
3089 
3090 		pp->mcast_count[crc_result]--;
3091 		if (pp->mcast_count[crc_result] != 0) {
3092 			netdev_info(pp->dev,
3093 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
3094 				    pp->mcast_count[crc_result], crc_result);
3095 			return -EINVAL;
3096 		}
3097 	} else
3098 		pp->mcast_count[crc_result]++;
3099 
3100 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
3101 
3102 	return 0;
3103 }
3104 
3105 /* Configure Fitering mode of Ethernet port */
3106 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
3107 					  int is_promisc)
3108 {
3109 	u32 port_cfg_reg, val;
3110 
3111 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
3112 
3113 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
3114 
3115 	/* Set / Clear UPM bit in port configuration register */
3116 	if (is_promisc) {
3117 		/* Accept all Unicast addresses */
3118 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
3119 		val |= MVNETA_FORCE_UNI;
3120 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
3121 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
3122 	} else {
3123 		/* Reject all Unicast addresses */
3124 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
3125 		val &= ~MVNETA_FORCE_UNI;
3126 	}
3127 
3128 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
3129 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
3130 }
3131 
3132 /* register unicast and multicast addresses */
3133 static void mvneta_set_rx_mode(struct net_device *dev)
3134 {
3135 	struct mvneta_port *pp = netdev_priv(dev);
3136 	struct netdev_hw_addr *ha;
3137 
3138 	if (dev->flags & IFF_PROMISC) {
3139 		/* Accept all: Multicast + Unicast */
3140 		mvneta_rx_unicast_promisc_set(pp, 1);
3141 		mvneta_set_ucast_table(pp, pp->rxq_def);
3142 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
3143 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
3144 	} else {
3145 		/* Accept single Unicast */
3146 		mvneta_rx_unicast_promisc_set(pp, 0);
3147 		mvneta_set_ucast_table(pp, -1);
3148 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3149 
3150 		if (dev->flags & IFF_ALLMULTI) {
3151 			/* Accept all multicast */
3152 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
3153 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
3154 		} else {
3155 			/* Accept only initialized multicast */
3156 			mvneta_set_special_mcast_table(pp, -1);
3157 			mvneta_set_other_mcast_table(pp, -1);
3158 
3159 			if (!netdev_mc_empty(dev)) {
3160 				netdev_for_each_mc_addr(ha, dev) {
3161 					mvneta_mcast_addr_set(pp, ha->addr,
3162 							      pp->rxq_def);
3163 				}
3164 			}
3165 		}
3166 	}
3167 }
3168 
3169 /* Interrupt handling - the callback for request_irq() */
3170 static irqreturn_t mvneta_isr(int irq, void *dev_id)
3171 {
3172 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3173 
3174 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3175 	napi_schedule(&pp->napi);
3176 
3177 	return IRQ_HANDLED;
3178 }
3179 
3180 /* Interrupt handling - the callback for request_percpu_irq() */
3181 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3182 {
3183 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3184 
3185 	disable_percpu_irq(port->pp->dev->irq);
3186 	napi_schedule(&port->napi);
3187 
3188 	return IRQ_HANDLED;
3189 }
3190 
3191 static void mvneta_link_change(struct mvneta_port *pp)
3192 {
3193 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3194 
3195 	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3196 }
3197 
3198 /* NAPI handler
3199  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3200  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3201  * Bits 8 -15 of the cause Rx Tx register indicate that are received
3202  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3203  * Each CPU has its own causeRxTx register
3204  */
3205 static int mvneta_poll(struct napi_struct *napi, int budget)
3206 {
3207 	int rx_done = 0;
3208 	u32 cause_rx_tx;
3209 	int rx_queue;
3210 	struct mvneta_port *pp = netdev_priv(napi->dev);
3211 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3212 
3213 	if (!netif_running(pp->dev)) {
3214 		napi_complete(napi);
3215 		return rx_done;
3216 	}
3217 
3218 	/* Read cause register */
3219 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3220 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3221 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3222 
3223 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3224 
3225 		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3226 				  MVNETA_CAUSE_LINK_CHANGE))
3227 			mvneta_link_change(pp);
3228 	}
3229 
3230 	/* Release Tx descriptors */
3231 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3232 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3233 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3234 	}
3235 
3236 	/* For the case where the last mvneta_poll did not process all
3237 	 * RX packets
3238 	 */
3239 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3240 		port->cause_rx_tx;
3241 
3242 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3243 	if (rx_queue) {
3244 		rx_queue = rx_queue - 1;
3245 		if (pp->bm_priv)
3246 			rx_done = mvneta_rx_hwbm(napi, pp, budget,
3247 						 &pp->rxqs[rx_queue]);
3248 		else
3249 			rx_done = mvneta_rx_swbm(napi, pp, budget,
3250 						 &pp->rxqs[rx_queue]);
3251 	}
3252 
3253 	if (rx_done < budget) {
3254 		cause_rx_tx = 0;
3255 		napi_complete_done(napi, rx_done);
3256 
3257 		if (pp->neta_armada3700) {
3258 			unsigned long flags;
3259 
3260 			local_irq_save(flags);
3261 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3262 				    MVNETA_RX_INTR_MASK(rxq_number) |
3263 				    MVNETA_TX_INTR_MASK(txq_number) |
3264 				    MVNETA_MISCINTR_INTR_MASK);
3265 			local_irq_restore(flags);
3266 		} else {
3267 			enable_percpu_irq(pp->dev->irq, 0);
3268 		}
3269 	}
3270 
3271 	if (pp->neta_armada3700)
3272 		pp->cause_rx_tx = cause_rx_tx;
3273 	else
3274 		port->cause_rx_tx = cause_rx_tx;
3275 
3276 	return rx_done;
3277 }
3278 
3279 static int mvneta_create_page_pool(struct mvneta_port *pp,
3280 				   struct mvneta_rx_queue *rxq, int size)
3281 {
3282 	struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3283 	struct page_pool_params pp_params = {
3284 		.order = 0,
3285 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3286 		.pool_size = size,
3287 		.nid = NUMA_NO_NODE,
3288 		.dev = pp->dev->dev.parent,
3289 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3290 		.offset = pp->rx_offset_correction,
3291 		.max_len = MVNETA_MAX_RX_BUF_SIZE,
3292 	};
3293 	int err;
3294 
3295 	rxq->page_pool = page_pool_create(&pp_params);
3296 	if (IS_ERR(rxq->page_pool)) {
3297 		err = PTR_ERR(rxq->page_pool);
3298 		rxq->page_pool = NULL;
3299 		return err;
3300 	}
3301 
3302 	err = __xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id, 0,
3303 				 PAGE_SIZE);
3304 	if (err < 0)
3305 		goto err_free_pp;
3306 
3307 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3308 					 rxq->page_pool);
3309 	if (err)
3310 		goto err_unregister_rxq;
3311 
3312 	return 0;
3313 
3314 err_unregister_rxq:
3315 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
3316 err_free_pp:
3317 	page_pool_destroy(rxq->page_pool);
3318 	rxq->page_pool = NULL;
3319 	return err;
3320 }
3321 
3322 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
3323 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3324 			   int num)
3325 {
3326 	int i, err;
3327 
3328 	err = mvneta_create_page_pool(pp, rxq, num);
3329 	if (err < 0)
3330 		return err;
3331 
3332 	for (i = 0; i < num; i++) {
3333 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3334 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3335 				     GFP_KERNEL) != 0) {
3336 			netdev_err(pp->dev,
3337 				   "%s:rxq %d, %d of %d buffs  filled\n",
3338 				   __func__, rxq->id, i, num);
3339 			break;
3340 		}
3341 	}
3342 
3343 	/* Add this number of RX descriptors as non occupied (ready to
3344 	 * get packets)
3345 	 */
3346 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3347 
3348 	return i;
3349 }
3350 
3351 /* Free all packets pending transmit from all TXQs and reset TX port */
3352 static void mvneta_tx_reset(struct mvneta_port *pp)
3353 {
3354 	int queue;
3355 
3356 	/* free the skb's in the tx ring */
3357 	for (queue = 0; queue < txq_number; queue++)
3358 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
3359 
3360 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3361 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3362 }
3363 
3364 static void mvneta_rx_reset(struct mvneta_port *pp)
3365 {
3366 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3367 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3368 }
3369 
3370 /* Rx/Tx queue initialization/cleanup methods */
3371 
3372 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3373 			      struct mvneta_rx_queue *rxq)
3374 {
3375 	rxq->size = pp->rx_ring_size;
3376 
3377 	/* Allocate memory for RX descriptors */
3378 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3379 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3380 					&rxq->descs_phys, GFP_KERNEL);
3381 	if (!rxq->descs)
3382 		return -ENOMEM;
3383 
3384 	rxq->last_desc = rxq->size - 1;
3385 
3386 	return 0;
3387 }
3388 
3389 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3390 			       struct mvneta_rx_queue *rxq)
3391 {
3392 	/* Set Rx descriptors queue starting address */
3393 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3394 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3395 
3396 	/* Set coalescing pkts and time */
3397 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3398 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3399 
3400 	if (!pp->bm_priv) {
3401 		/* Set Offset */
3402 		mvneta_rxq_offset_set(pp, rxq, 0);
3403 		mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3404 					MVNETA_MAX_RX_BUF_SIZE :
3405 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
3406 		mvneta_rxq_bm_disable(pp, rxq);
3407 		mvneta_rxq_fill(pp, rxq, rxq->size);
3408 	} else {
3409 		/* Set Offset */
3410 		mvneta_rxq_offset_set(pp, rxq,
3411 				      NET_SKB_PAD - pp->rx_offset_correction);
3412 
3413 		mvneta_rxq_bm_enable(pp, rxq);
3414 		/* Fill RXQ with buffers from RX pool */
3415 		mvneta_rxq_long_pool_set(pp, rxq);
3416 		mvneta_rxq_short_pool_set(pp, rxq);
3417 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3418 	}
3419 }
3420 
3421 /* Create a specified RX queue */
3422 static int mvneta_rxq_init(struct mvneta_port *pp,
3423 			   struct mvneta_rx_queue *rxq)
3424 
3425 {
3426 	int ret;
3427 
3428 	ret = mvneta_rxq_sw_init(pp, rxq);
3429 	if (ret < 0)
3430 		return ret;
3431 
3432 	mvneta_rxq_hw_init(pp, rxq);
3433 
3434 	return 0;
3435 }
3436 
3437 /* Cleanup Rx queue */
3438 static void mvneta_rxq_deinit(struct mvneta_port *pp,
3439 			      struct mvneta_rx_queue *rxq)
3440 {
3441 	mvneta_rxq_drop_pkts(pp, rxq);
3442 
3443 	if (rxq->descs)
3444 		dma_free_coherent(pp->dev->dev.parent,
3445 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3446 				  rxq->descs,
3447 				  rxq->descs_phys);
3448 
3449 	rxq->descs             = NULL;
3450 	rxq->last_desc         = 0;
3451 	rxq->next_desc_to_proc = 0;
3452 	rxq->descs_phys        = 0;
3453 	rxq->first_to_refill   = 0;
3454 	rxq->refill_num        = 0;
3455 }
3456 
3457 static int mvneta_txq_sw_init(struct mvneta_port *pp,
3458 			      struct mvneta_tx_queue *txq)
3459 {
3460 	int cpu;
3461 
3462 	txq->size = pp->tx_ring_size;
3463 
3464 	/* A queue must always have room for at least one skb.
3465 	 * Therefore, stop the queue when the free entries reaches
3466 	 * the maximum number of descriptors per skb.
3467 	 */
3468 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3469 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3470 
3471 	/* Allocate memory for TX descriptors */
3472 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3473 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
3474 					&txq->descs_phys, GFP_KERNEL);
3475 	if (!txq->descs)
3476 		return -ENOMEM;
3477 
3478 	txq->last_desc = txq->size - 1;
3479 
3480 	txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3481 	if (!txq->buf)
3482 		return -ENOMEM;
3483 
3484 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3485 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3486 					   txq->size * TSO_HEADER_SIZE,
3487 					   &txq->tso_hdrs_phys, GFP_KERNEL);
3488 	if (!txq->tso_hdrs)
3489 		return -ENOMEM;
3490 
3491 	/* Setup XPS mapping */
3492 	if (pp->neta_armada3700)
3493 		cpu = 0;
3494 	else if (txq_number > 1)
3495 		cpu = txq->id % num_present_cpus();
3496 	else
3497 		cpu = pp->rxq_def % num_present_cpus();
3498 	cpumask_set_cpu(cpu, &txq->affinity_mask);
3499 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3500 
3501 	return 0;
3502 }
3503 
3504 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3505 			       struct mvneta_tx_queue *txq)
3506 {
3507 	/* Set maximum bandwidth for enabled TXQs */
3508 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3509 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3510 
3511 	/* Set Tx descriptors queue starting address */
3512 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3513 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3514 
3515 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3516 }
3517 
3518 /* Create and initialize a tx queue */
3519 static int mvneta_txq_init(struct mvneta_port *pp,
3520 			   struct mvneta_tx_queue *txq)
3521 {
3522 	int ret;
3523 
3524 	ret = mvneta_txq_sw_init(pp, txq);
3525 	if (ret < 0)
3526 		return ret;
3527 
3528 	mvneta_txq_hw_init(pp, txq);
3529 
3530 	return 0;
3531 }
3532 
3533 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3534 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3535 				 struct mvneta_tx_queue *txq)
3536 {
3537 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3538 
3539 	kfree(txq->buf);
3540 
3541 	if (txq->tso_hdrs)
3542 		dma_free_coherent(pp->dev->dev.parent,
3543 				  txq->size * TSO_HEADER_SIZE,
3544 				  txq->tso_hdrs, txq->tso_hdrs_phys);
3545 	if (txq->descs)
3546 		dma_free_coherent(pp->dev->dev.parent,
3547 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3548 				  txq->descs, txq->descs_phys);
3549 
3550 	netdev_tx_reset_queue(nq);
3551 
3552 	txq->buf               = NULL;
3553 	txq->tso_hdrs          = NULL;
3554 	txq->descs             = NULL;
3555 	txq->last_desc         = 0;
3556 	txq->next_desc_to_proc = 0;
3557 	txq->descs_phys        = 0;
3558 }
3559 
3560 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3561 				 struct mvneta_tx_queue *txq)
3562 {
3563 	/* Set minimum bandwidth for disabled TXQs */
3564 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3565 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3566 
3567 	/* Set Tx descriptors queue starting address and size */
3568 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3569 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3570 }
3571 
3572 static void mvneta_txq_deinit(struct mvneta_port *pp,
3573 			      struct mvneta_tx_queue *txq)
3574 {
3575 	mvneta_txq_sw_deinit(pp, txq);
3576 	mvneta_txq_hw_deinit(pp, txq);
3577 }
3578 
3579 /* Cleanup all Tx queues */
3580 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3581 {
3582 	int queue;
3583 
3584 	for (queue = 0; queue < txq_number; queue++)
3585 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3586 }
3587 
3588 /* Cleanup all Rx queues */
3589 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3590 {
3591 	int queue;
3592 
3593 	for (queue = 0; queue < rxq_number; queue++)
3594 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3595 }
3596 
3597 
3598 /* Init all Rx queues */
3599 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3600 {
3601 	int queue;
3602 
3603 	for (queue = 0; queue < rxq_number; queue++) {
3604 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3605 
3606 		if (err) {
3607 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3608 				   __func__, queue);
3609 			mvneta_cleanup_rxqs(pp);
3610 			return err;
3611 		}
3612 	}
3613 
3614 	return 0;
3615 }
3616 
3617 /* Init all tx queues */
3618 static int mvneta_setup_txqs(struct mvneta_port *pp)
3619 {
3620 	int queue;
3621 
3622 	for (queue = 0; queue < txq_number; queue++) {
3623 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3624 		if (err) {
3625 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3626 				   __func__, queue);
3627 			mvneta_cleanup_txqs(pp);
3628 			return err;
3629 		}
3630 	}
3631 
3632 	return 0;
3633 }
3634 
3635 static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface)
3636 {
3637 	int ret;
3638 
3639 	ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface);
3640 	if (ret)
3641 		return ret;
3642 
3643 	return phy_power_on(pp->comphy);
3644 }
3645 
3646 static int mvneta_config_interface(struct mvneta_port *pp,
3647 				   phy_interface_t interface)
3648 {
3649 	int ret = 0;
3650 
3651 	if (pp->comphy) {
3652 		if (interface == PHY_INTERFACE_MODE_SGMII ||
3653 		    interface == PHY_INTERFACE_MODE_1000BASEX ||
3654 		    interface == PHY_INTERFACE_MODE_2500BASEX) {
3655 			ret = mvneta_comphy_init(pp, interface);
3656 		}
3657 	} else {
3658 		switch (interface) {
3659 		case PHY_INTERFACE_MODE_QSGMII:
3660 			mvreg_write(pp, MVNETA_SERDES_CFG,
3661 				    MVNETA_QSGMII_SERDES_PROTO);
3662 			break;
3663 
3664 		case PHY_INTERFACE_MODE_SGMII:
3665 		case PHY_INTERFACE_MODE_1000BASEX:
3666 			mvreg_write(pp, MVNETA_SERDES_CFG,
3667 				    MVNETA_SGMII_SERDES_PROTO);
3668 			break;
3669 
3670 		case PHY_INTERFACE_MODE_2500BASEX:
3671 			mvreg_write(pp, MVNETA_SERDES_CFG,
3672 				    MVNETA_HSGMII_SERDES_PROTO);
3673 			break;
3674 		default:
3675 			break;
3676 		}
3677 	}
3678 
3679 	pp->phy_interface = interface;
3680 
3681 	return ret;
3682 }
3683 
3684 static void mvneta_start_dev(struct mvneta_port *pp)
3685 {
3686 	int cpu;
3687 
3688 	WARN_ON(mvneta_config_interface(pp, pp->phy_interface));
3689 
3690 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3691 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3692 
3693 	/* start the Rx/Tx activity */
3694 	mvneta_port_enable(pp);
3695 
3696 	if (!pp->neta_armada3700) {
3697 		/* Enable polling on the port */
3698 		for_each_online_cpu(cpu) {
3699 			struct mvneta_pcpu_port *port =
3700 				per_cpu_ptr(pp->ports, cpu);
3701 
3702 			napi_enable(&port->napi);
3703 		}
3704 	} else {
3705 		napi_enable(&pp->napi);
3706 	}
3707 
3708 	/* Unmask interrupts. It has to be done from each CPU */
3709 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3710 
3711 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3712 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3713 		    MVNETA_CAUSE_LINK_CHANGE);
3714 
3715 	phylink_start(pp->phylink);
3716 
3717 	/* We may have called phylink_speed_down before */
3718 	phylink_speed_up(pp->phylink);
3719 
3720 	netif_tx_start_all_queues(pp->dev);
3721 
3722 	clear_bit(__MVNETA_DOWN, &pp->state);
3723 }
3724 
3725 static void mvneta_stop_dev(struct mvneta_port *pp)
3726 {
3727 	unsigned int cpu;
3728 
3729 	set_bit(__MVNETA_DOWN, &pp->state);
3730 
3731 	if (device_may_wakeup(&pp->dev->dev))
3732 		phylink_speed_down(pp->phylink, false);
3733 
3734 	phylink_stop(pp->phylink);
3735 
3736 	if (!pp->neta_armada3700) {
3737 		for_each_online_cpu(cpu) {
3738 			struct mvneta_pcpu_port *port =
3739 				per_cpu_ptr(pp->ports, cpu);
3740 
3741 			napi_disable(&port->napi);
3742 		}
3743 	} else {
3744 		napi_disable(&pp->napi);
3745 	}
3746 
3747 	netif_carrier_off(pp->dev);
3748 
3749 	mvneta_port_down(pp);
3750 	netif_tx_stop_all_queues(pp->dev);
3751 
3752 	/* Stop the port activity */
3753 	mvneta_port_disable(pp);
3754 
3755 	/* Clear all ethernet port interrupts */
3756 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3757 
3758 	/* Mask all ethernet port interrupts */
3759 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3760 
3761 	mvneta_tx_reset(pp);
3762 	mvneta_rx_reset(pp);
3763 
3764 	WARN_ON(phy_power_off(pp->comphy));
3765 }
3766 
3767 static void mvneta_percpu_enable(void *arg)
3768 {
3769 	struct mvneta_port *pp = arg;
3770 
3771 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3772 }
3773 
3774 static void mvneta_percpu_disable(void *arg)
3775 {
3776 	struct mvneta_port *pp = arg;
3777 
3778 	disable_percpu_irq(pp->dev->irq);
3779 }
3780 
3781 /* Change the device mtu */
3782 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3783 {
3784 	struct mvneta_port *pp = netdev_priv(dev);
3785 	struct bpf_prog *prog = pp->xdp_prog;
3786 	int ret;
3787 
3788 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3789 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3790 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3791 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3792 	}
3793 
3794 	if (prog && !prog->aux->xdp_has_frags &&
3795 	    mtu > MVNETA_MAX_RX_BUF_SIZE) {
3796 		netdev_info(dev, "Illegal MTU %d for XDP prog without frags\n",
3797 			    mtu);
3798 
3799 		return -EINVAL;
3800 	}
3801 
3802 	dev->mtu = mtu;
3803 
3804 	if (!netif_running(dev)) {
3805 		if (pp->bm_priv)
3806 			mvneta_bm_update_mtu(pp, mtu);
3807 
3808 		netdev_update_features(dev);
3809 		return 0;
3810 	}
3811 
3812 	/* The interface is running, so we have to force a
3813 	 * reallocation of the queues
3814 	 */
3815 	mvneta_stop_dev(pp);
3816 	on_each_cpu(mvneta_percpu_disable, pp, true);
3817 
3818 	mvneta_cleanup_txqs(pp);
3819 	mvneta_cleanup_rxqs(pp);
3820 
3821 	if (pp->bm_priv)
3822 		mvneta_bm_update_mtu(pp, mtu);
3823 
3824 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3825 
3826 	ret = mvneta_setup_rxqs(pp);
3827 	if (ret) {
3828 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3829 		return ret;
3830 	}
3831 
3832 	ret = mvneta_setup_txqs(pp);
3833 	if (ret) {
3834 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3835 		return ret;
3836 	}
3837 
3838 	on_each_cpu(mvneta_percpu_enable, pp, true);
3839 	mvneta_start_dev(pp);
3840 
3841 	netdev_update_features(dev);
3842 
3843 	return 0;
3844 }
3845 
3846 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3847 					     netdev_features_t features)
3848 {
3849 	struct mvneta_port *pp = netdev_priv(dev);
3850 
3851 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3852 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3853 		netdev_info(dev,
3854 			    "Disable IP checksum for MTU greater than %dB\n",
3855 			    pp->tx_csum_limit);
3856 	}
3857 
3858 	return features;
3859 }
3860 
3861 /* Get mac address */
3862 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3863 {
3864 	u32 mac_addr_l, mac_addr_h;
3865 
3866 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3867 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3868 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3869 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3870 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3871 	addr[3] = mac_addr_h & 0xFF;
3872 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3873 	addr[5] = mac_addr_l & 0xFF;
3874 }
3875 
3876 /* Handle setting mac address */
3877 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3878 {
3879 	struct mvneta_port *pp = netdev_priv(dev);
3880 	struct sockaddr *sockaddr = addr;
3881 	int ret;
3882 
3883 	ret = eth_prepare_mac_addr_change(dev, addr);
3884 	if (ret < 0)
3885 		return ret;
3886 	/* Remove previous address table entry */
3887 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3888 
3889 	/* Set new addr in hw */
3890 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3891 
3892 	eth_commit_mac_addr_change(dev, addr);
3893 	return 0;
3894 }
3895 
3896 static struct mvneta_port *mvneta_pcs_to_port(struct phylink_pcs *pcs)
3897 {
3898 	return container_of(pcs, struct mvneta_port, phylink_pcs);
3899 }
3900 
3901 static int mvneta_pcs_validate(struct phylink_pcs *pcs,
3902 			       unsigned long *supported,
3903 			       const struct phylink_link_state *state)
3904 {
3905 	/* We only support QSGMII, SGMII, 802.3z and RGMII modes.
3906 	 * When in 802.3z mode, we must have AN enabled:
3907 	 * "Bit 2 Field InBandAnEn In-band Auto-Negotiation enable. ...
3908 	 * When <PortType> = 1 (1000BASE-X) this field must be set to 1."
3909 	 */
3910 	if (phy_interface_mode_is_8023z(state->interface) &&
3911 	    !phylink_test(state->advertising, Autoneg))
3912 		return -EINVAL;
3913 
3914 	return 0;
3915 }
3916 
3917 static void mvneta_pcs_get_state(struct phylink_pcs *pcs,
3918 				 struct phylink_link_state *state)
3919 {
3920 	struct mvneta_port *pp = mvneta_pcs_to_port(pcs);
3921 	u32 gmac_stat;
3922 
3923 	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3924 
3925 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3926 		state->speed =
3927 			state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3928 			SPEED_2500 : SPEED_1000;
3929 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3930 		state->speed = SPEED_100;
3931 	else
3932 		state->speed = SPEED_10;
3933 
3934 	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3935 	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3936 	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3937 
3938 	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3939 		state->pause |= MLO_PAUSE_RX;
3940 	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3941 		state->pause |= MLO_PAUSE_TX;
3942 }
3943 
3944 static int mvneta_pcs_config(struct phylink_pcs *pcs,
3945 			     unsigned int mode, phy_interface_t interface,
3946 			     const unsigned long *advertising,
3947 			     bool permit_pause_to_mac)
3948 {
3949 	struct mvneta_port *pp = mvneta_pcs_to_port(pcs);
3950 	u32 mask, val, an, old_an, changed;
3951 
3952 	mask = MVNETA_GMAC_INBAND_AN_ENABLE |
3953 	       MVNETA_GMAC_INBAND_RESTART_AN |
3954 	       MVNETA_GMAC_AN_SPEED_EN |
3955 	       MVNETA_GMAC_AN_FLOW_CTRL_EN |
3956 	       MVNETA_GMAC_AN_DUPLEX_EN;
3957 
3958 	if (phylink_autoneg_inband(mode)) {
3959 		mask |= MVNETA_GMAC_CONFIG_MII_SPEED |
3960 			MVNETA_GMAC_CONFIG_GMII_SPEED |
3961 			MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3962 		val = MVNETA_GMAC_INBAND_AN_ENABLE;
3963 
3964 		if (interface == PHY_INTERFACE_MODE_SGMII) {
3965 			/* SGMII mode receives the speed and duplex from PHY */
3966 			val |= MVNETA_GMAC_AN_SPEED_EN |
3967 			       MVNETA_GMAC_AN_DUPLEX_EN;
3968 		} else {
3969 			/* 802.3z mode has fixed speed and duplex */
3970 			val |= MVNETA_GMAC_CONFIG_GMII_SPEED |
3971 			       MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3972 
3973 			/* The FLOW_CTRL_EN bit selects either the hardware
3974 			 * automatically or the CONFIG_FLOW_CTRL manually
3975 			 * controls the GMAC pause mode.
3976 			 */
3977 			if (permit_pause_to_mac)
3978 				val |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3979 
3980 			/* Update the advertisement bits */
3981 			mask |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3982 			if (phylink_test(advertising, Pause))
3983 				val |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3984 		}
3985 	} else {
3986 		/* Phy or fixed speed - disable in-band AN modes */
3987 		val = 0;
3988 	}
3989 
3990 	old_an = an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3991 	an = (an & ~mask) | val;
3992 	changed = old_an ^ an;
3993 	if (changed)
3994 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, an);
3995 
3996 	/* We are only interested in the advertisement bits changing */
3997 	return !!(changed & MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL);
3998 }
3999 
4000 static void mvneta_pcs_an_restart(struct phylink_pcs *pcs)
4001 {
4002 	struct mvneta_port *pp = mvneta_pcs_to_port(pcs);
4003 	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4004 
4005 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
4006 		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
4007 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
4008 		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
4009 }
4010 
4011 static const struct phylink_pcs_ops mvneta_phylink_pcs_ops = {
4012 	.pcs_validate = mvneta_pcs_validate,
4013 	.pcs_get_state = mvneta_pcs_get_state,
4014 	.pcs_config = mvneta_pcs_config,
4015 	.pcs_an_restart = mvneta_pcs_an_restart,
4016 };
4017 
4018 static struct phylink_pcs *mvneta_mac_select_pcs(struct phylink_config *config,
4019 						 phy_interface_t interface)
4020 {
4021 	struct net_device *ndev = to_net_dev(config->dev);
4022 	struct mvneta_port *pp = netdev_priv(ndev);
4023 
4024 	return &pp->phylink_pcs;
4025 }
4026 
4027 static int mvneta_mac_prepare(struct phylink_config *config, unsigned int mode,
4028 			      phy_interface_t interface)
4029 {
4030 	struct net_device *ndev = to_net_dev(config->dev);
4031 	struct mvneta_port *pp = netdev_priv(ndev);
4032 	u32 val;
4033 
4034 	if (pp->phy_interface != interface ||
4035 	    phylink_autoneg_inband(mode)) {
4036 		/* Force the link down when changing the interface or if in
4037 		 * in-band mode. According to Armada 370 documentation, we
4038 		 * can only change the port mode and in-band enable when the
4039 		 * link is down.
4040 		 */
4041 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4042 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4043 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4044 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4045 	}
4046 
4047 	if (pp->phy_interface != interface)
4048 		WARN_ON(phy_power_off(pp->comphy));
4049 
4050 	/* Enable the 1ms clock */
4051 	if (phylink_autoneg_inband(mode)) {
4052 		unsigned long rate = clk_get_rate(pp->clk);
4053 
4054 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER,
4055 			    MVNETA_GMAC_1MS_CLOCK_ENABLE | (rate / 1000));
4056 	}
4057 
4058 	return 0;
4059 }
4060 
4061 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
4062 			      const struct phylink_link_state *state)
4063 {
4064 	struct net_device *ndev = to_net_dev(config->dev);
4065 	struct mvneta_port *pp = netdev_priv(ndev);
4066 	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
4067 	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
4068 	u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
4069 
4070 	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
4071 	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
4072 				   MVNETA_GMAC2_PORT_RESET);
4073 	new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
4074 
4075 	/* Even though it might look weird, when we're configured in
4076 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
4077 	 */
4078 	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
4079 
4080 	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
4081 	    state->interface == PHY_INTERFACE_MODE_SGMII ||
4082 	    phy_interface_mode_is_8023z(state->interface))
4083 		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
4084 
4085 	if (!phylink_autoneg_inband(mode)) {
4086 		/* Phy or fixed speed - nothing to do, leave the
4087 		 * configured speed, duplex and flow control as-is.
4088 		 */
4089 	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
4090 		/* SGMII mode receives the state from the PHY */
4091 		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
4092 	} else {
4093 		/* 802.3z negotiation - only 1000base-X */
4094 		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
4095 	}
4096 
4097 	/* When at 2.5G, the link partner can send frames with shortened
4098 	 * preambles.
4099 	 */
4100 	if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
4101 		new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
4102 
4103 	if (new_ctrl0 != gmac_ctrl0)
4104 		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
4105 	if (new_ctrl2 != gmac_ctrl2)
4106 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
4107 	if (new_ctrl4 != gmac_ctrl4)
4108 		mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
4109 
4110 	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
4111 		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4112 			MVNETA_GMAC2_PORT_RESET) != 0)
4113 			continue;
4114 	}
4115 }
4116 
4117 static int mvneta_mac_finish(struct phylink_config *config, unsigned int mode,
4118 			     phy_interface_t interface)
4119 {
4120 	struct net_device *ndev = to_net_dev(config->dev);
4121 	struct mvneta_port *pp = netdev_priv(ndev);
4122 	u32 val, clk;
4123 
4124 	/* Disable 1ms clock if not in in-band mode */
4125 	if (!phylink_autoneg_inband(mode)) {
4126 		clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
4127 		clk &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
4128 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, clk);
4129 	}
4130 
4131 	if (pp->phy_interface != interface)
4132 		/* Enable the Serdes PHY */
4133 		WARN_ON(mvneta_config_interface(pp, interface));
4134 
4135 	/* Allow the link to come up if in in-band mode, otherwise the
4136 	 * link is forced via mac_link_down()/mac_link_up()
4137 	 */
4138 	if (phylink_autoneg_inband(mode)) {
4139 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4140 		val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
4141 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4142 	}
4143 
4144 	return 0;
4145 }
4146 
4147 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
4148 {
4149 	u32 lpi_ctl1;
4150 
4151 	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
4152 	if (enable)
4153 		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
4154 	else
4155 		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
4156 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
4157 }
4158 
4159 static void mvneta_mac_link_down(struct phylink_config *config,
4160 				 unsigned int mode, phy_interface_t interface)
4161 {
4162 	struct net_device *ndev = to_net_dev(config->dev);
4163 	struct mvneta_port *pp = netdev_priv(ndev);
4164 	u32 val;
4165 
4166 	mvneta_port_down(pp);
4167 
4168 	if (!phylink_autoneg_inband(mode)) {
4169 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4170 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4171 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4172 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4173 	}
4174 
4175 	pp->eee_active = false;
4176 	mvneta_set_eee(pp, false);
4177 }
4178 
4179 static void mvneta_mac_link_up(struct phylink_config *config,
4180 			       struct phy_device *phy,
4181 			       unsigned int mode, phy_interface_t interface,
4182 			       int speed, int duplex,
4183 			       bool tx_pause, bool rx_pause)
4184 {
4185 	struct net_device *ndev = to_net_dev(config->dev);
4186 	struct mvneta_port *pp = netdev_priv(ndev);
4187 	u32 val;
4188 
4189 	if (!phylink_autoneg_inband(mode)) {
4190 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4191 		val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
4192 			 MVNETA_GMAC_CONFIG_MII_SPEED |
4193 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
4194 			 MVNETA_GMAC_CONFIG_FLOW_CTRL |
4195 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
4196 		val |= MVNETA_GMAC_FORCE_LINK_PASS;
4197 
4198 		if (speed == SPEED_1000 || speed == SPEED_2500)
4199 			val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
4200 		else if (speed == SPEED_100)
4201 			val |= MVNETA_GMAC_CONFIG_MII_SPEED;
4202 
4203 		if (duplex == DUPLEX_FULL)
4204 			val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4205 
4206 		if (tx_pause || rx_pause)
4207 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4208 
4209 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4210 	} else {
4211 		/* When inband doesn't cover flow control or flow control is
4212 		 * disabled, we need to manually configure it. This bit will
4213 		 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
4214 		 */
4215 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4216 		val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;
4217 
4218 		if (tx_pause || rx_pause)
4219 			val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4220 
4221 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4222 	}
4223 
4224 	mvneta_port_up(pp);
4225 
4226 	if (phy && pp->eee_enabled) {
4227 		pp->eee_active = phy_init_eee(phy, false) >= 0;
4228 		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
4229 	}
4230 }
4231 
4232 static const struct phylink_mac_ops mvneta_phylink_ops = {
4233 	.mac_select_pcs = mvneta_mac_select_pcs,
4234 	.mac_prepare = mvneta_mac_prepare,
4235 	.mac_config = mvneta_mac_config,
4236 	.mac_finish = mvneta_mac_finish,
4237 	.mac_link_down = mvneta_mac_link_down,
4238 	.mac_link_up = mvneta_mac_link_up,
4239 };
4240 
4241 static int mvneta_mdio_probe(struct mvneta_port *pp)
4242 {
4243 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4244 	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4245 
4246 	if (err)
4247 		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4248 
4249 	phylink_ethtool_get_wol(pp->phylink, &wol);
4250 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4251 
4252 	/* PHY WoL may be enabled but device wakeup disabled */
4253 	if (wol.supported)
4254 		device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts);
4255 
4256 	return err;
4257 }
4258 
4259 static void mvneta_mdio_remove(struct mvneta_port *pp)
4260 {
4261 	phylink_disconnect_phy(pp->phylink);
4262 }
4263 
4264 /* Electing a CPU must be done in an atomic way: it should be done
4265  * after or before the removal/insertion of a CPU and this function is
4266  * not reentrant.
4267  */
4268 static void mvneta_percpu_elect(struct mvneta_port *pp)
4269 {
4270 	int elected_cpu = 0, max_cpu, cpu;
4271 
4272 	/* Use the cpu associated to the rxq when it is online, in all
4273 	 * the other cases, use the cpu 0 which can't be offline.
4274 	 */
4275 	if (pp->rxq_def < nr_cpu_ids && cpu_online(pp->rxq_def))
4276 		elected_cpu = pp->rxq_def;
4277 
4278 	max_cpu = num_present_cpus();
4279 
4280 	for_each_online_cpu(cpu) {
4281 		int rxq_map = 0, txq_map = 0;
4282 		int rxq;
4283 
4284 		for (rxq = 0; rxq < rxq_number; rxq++)
4285 			if ((rxq % max_cpu) == cpu)
4286 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4287 
4288 		if (cpu == elected_cpu)
4289 			/* Map the default receive queue to the elected CPU */
4290 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4291 
4292 		/* We update the TX queue map only if we have one
4293 		 * queue. In this case we associate the TX queue to
4294 		 * the CPU bound to the default RX queue
4295 		 */
4296 		if (txq_number == 1)
4297 			txq_map = (cpu == elected_cpu) ?
4298 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
4299 		else
4300 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4301 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4302 
4303 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4304 
4305 		/* Update the interrupt mask on each CPU according the
4306 		 * new mapping
4307 		 */
4308 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4309 					 pp, true);
4310 	}
4311 };
4312 
4313 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4314 {
4315 	int other_cpu;
4316 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4317 						  node_online);
4318 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4319 
4320 	/* Armada 3700's per-cpu interrupt for mvneta is broken, all interrupts
4321 	 * are routed to CPU 0, so we don't need all the cpu-hotplug support
4322 	 */
4323 	if (pp->neta_armada3700)
4324 		return 0;
4325 
4326 	spin_lock(&pp->lock);
4327 	/*
4328 	 * Configuring the driver for a new CPU while the driver is
4329 	 * stopping is racy, so just avoid it.
4330 	 */
4331 	if (pp->is_stopped) {
4332 		spin_unlock(&pp->lock);
4333 		return 0;
4334 	}
4335 	netif_tx_stop_all_queues(pp->dev);
4336 
4337 	/*
4338 	 * We have to synchronise on tha napi of each CPU except the one
4339 	 * just being woken up
4340 	 */
4341 	for_each_online_cpu(other_cpu) {
4342 		if (other_cpu != cpu) {
4343 			struct mvneta_pcpu_port *other_port =
4344 				per_cpu_ptr(pp->ports, other_cpu);
4345 
4346 			napi_synchronize(&other_port->napi);
4347 		}
4348 	}
4349 
4350 	/* Mask all ethernet port interrupts */
4351 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4352 	napi_enable(&port->napi);
4353 
4354 	/*
4355 	 * Enable per-CPU interrupts on the CPU that is
4356 	 * brought up.
4357 	 */
4358 	mvneta_percpu_enable(pp);
4359 
4360 	/*
4361 	 * Enable per-CPU interrupt on the one CPU we care
4362 	 * about.
4363 	 */
4364 	mvneta_percpu_elect(pp);
4365 
4366 	/* Unmask all ethernet port interrupts */
4367 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4368 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4369 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4370 		    MVNETA_CAUSE_LINK_CHANGE);
4371 	netif_tx_start_all_queues(pp->dev);
4372 	spin_unlock(&pp->lock);
4373 	return 0;
4374 }
4375 
4376 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4377 {
4378 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4379 						  node_online);
4380 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4381 
4382 	/*
4383 	 * Thanks to this lock we are sure that any pending cpu election is
4384 	 * done.
4385 	 */
4386 	spin_lock(&pp->lock);
4387 	/* Mask all ethernet port interrupts */
4388 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4389 	spin_unlock(&pp->lock);
4390 
4391 	napi_synchronize(&port->napi);
4392 	napi_disable(&port->napi);
4393 	/* Disable per-CPU interrupts on the CPU that is brought down. */
4394 	mvneta_percpu_disable(pp);
4395 	return 0;
4396 }
4397 
4398 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4399 {
4400 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4401 						  node_dead);
4402 
4403 	/* Check if a new CPU must be elected now this on is down */
4404 	spin_lock(&pp->lock);
4405 	mvneta_percpu_elect(pp);
4406 	spin_unlock(&pp->lock);
4407 	/* Unmask all ethernet port interrupts */
4408 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4409 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4410 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4411 		    MVNETA_CAUSE_LINK_CHANGE);
4412 	netif_tx_start_all_queues(pp->dev);
4413 	return 0;
4414 }
4415 
4416 static int mvneta_open(struct net_device *dev)
4417 {
4418 	struct mvneta_port *pp = netdev_priv(dev);
4419 	int ret;
4420 
4421 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4422 
4423 	ret = mvneta_setup_rxqs(pp);
4424 	if (ret)
4425 		return ret;
4426 
4427 	ret = mvneta_setup_txqs(pp);
4428 	if (ret)
4429 		goto err_cleanup_rxqs;
4430 
4431 	/* Connect to port interrupt line */
4432 	if (pp->neta_armada3700)
4433 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4434 				  dev->name, pp);
4435 	else
4436 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4437 					 dev->name, pp->ports);
4438 	if (ret) {
4439 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4440 		goto err_cleanup_txqs;
4441 	}
4442 
4443 	if (!pp->neta_armada3700) {
4444 		/* Enable per-CPU interrupt on all the CPU to handle our RX
4445 		 * queue interrupts
4446 		 */
4447 		on_each_cpu(mvneta_percpu_enable, pp, true);
4448 
4449 		pp->is_stopped = false;
4450 		/* Register a CPU notifier to handle the case where our CPU
4451 		 * might be taken offline.
4452 		 */
4453 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4454 						       &pp->node_online);
4455 		if (ret)
4456 			goto err_free_irq;
4457 
4458 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4459 						       &pp->node_dead);
4460 		if (ret)
4461 			goto err_free_online_hp;
4462 	}
4463 
4464 	ret = mvneta_mdio_probe(pp);
4465 	if (ret < 0) {
4466 		netdev_err(dev, "cannot probe MDIO bus\n");
4467 		goto err_free_dead_hp;
4468 	}
4469 
4470 	mvneta_start_dev(pp);
4471 
4472 	return 0;
4473 
4474 err_free_dead_hp:
4475 	if (!pp->neta_armada3700)
4476 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4477 						    &pp->node_dead);
4478 err_free_online_hp:
4479 	if (!pp->neta_armada3700)
4480 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4481 						    &pp->node_online);
4482 err_free_irq:
4483 	if (pp->neta_armada3700) {
4484 		free_irq(pp->dev->irq, pp);
4485 	} else {
4486 		on_each_cpu(mvneta_percpu_disable, pp, true);
4487 		free_percpu_irq(pp->dev->irq, pp->ports);
4488 	}
4489 err_cleanup_txqs:
4490 	mvneta_cleanup_txqs(pp);
4491 err_cleanup_rxqs:
4492 	mvneta_cleanup_rxqs(pp);
4493 	return ret;
4494 }
4495 
4496 /* Stop the port, free port interrupt line */
4497 static int mvneta_stop(struct net_device *dev)
4498 {
4499 	struct mvneta_port *pp = netdev_priv(dev);
4500 
4501 	if (!pp->neta_armada3700) {
4502 		/* Inform that we are stopping so we don't want to setup the
4503 		 * driver for new CPUs in the notifiers. The code of the
4504 		 * notifier for CPU online is protected by the same spinlock,
4505 		 * so when we get the lock, the notifer work is done.
4506 		 */
4507 		spin_lock(&pp->lock);
4508 		pp->is_stopped = true;
4509 		spin_unlock(&pp->lock);
4510 
4511 		mvneta_stop_dev(pp);
4512 		mvneta_mdio_remove(pp);
4513 
4514 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4515 						    &pp->node_online);
4516 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4517 						    &pp->node_dead);
4518 		on_each_cpu(mvneta_percpu_disable, pp, true);
4519 		free_percpu_irq(dev->irq, pp->ports);
4520 	} else {
4521 		mvneta_stop_dev(pp);
4522 		mvneta_mdio_remove(pp);
4523 		free_irq(dev->irq, pp);
4524 	}
4525 
4526 	mvneta_cleanup_rxqs(pp);
4527 	mvneta_cleanup_txqs(pp);
4528 
4529 	return 0;
4530 }
4531 
4532 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4533 {
4534 	struct mvneta_port *pp = netdev_priv(dev);
4535 
4536 	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4537 }
4538 
4539 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4540 			    struct netlink_ext_ack *extack)
4541 {
4542 	bool need_update, running = netif_running(dev);
4543 	struct mvneta_port *pp = netdev_priv(dev);
4544 	struct bpf_prog *old_prog;
4545 
4546 	if (prog && !prog->aux->xdp_has_frags &&
4547 	    dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4548 		NL_SET_ERR_MSG_MOD(extack, "prog does not support XDP frags");
4549 		return -EOPNOTSUPP;
4550 	}
4551 
4552 	if (pp->bm_priv) {
4553 		NL_SET_ERR_MSG_MOD(extack,
4554 				   "Hardware Buffer Management not supported on XDP");
4555 		return -EOPNOTSUPP;
4556 	}
4557 
4558 	need_update = !!pp->xdp_prog != !!prog;
4559 	if (running && need_update)
4560 		mvneta_stop(dev);
4561 
4562 	old_prog = xchg(&pp->xdp_prog, prog);
4563 	if (old_prog)
4564 		bpf_prog_put(old_prog);
4565 
4566 	if (running && need_update)
4567 		return mvneta_open(dev);
4568 
4569 	return 0;
4570 }
4571 
4572 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4573 {
4574 	switch (xdp->command) {
4575 	case XDP_SETUP_PROG:
4576 		return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4577 	default:
4578 		return -EINVAL;
4579 	}
4580 }
4581 
4582 /* Ethtool methods */
4583 
4584 /* Set link ksettings (phy address, speed) for ethtools */
4585 static int
4586 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4587 				  const struct ethtool_link_ksettings *cmd)
4588 {
4589 	struct mvneta_port *pp = netdev_priv(ndev);
4590 
4591 	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4592 }
4593 
4594 /* Get link ksettings for ethtools */
4595 static int
4596 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4597 				  struct ethtool_link_ksettings *cmd)
4598 {
4599 	struct mvneta_port *pp = netdev_priv(ndev);
4600 
4601 	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4602 }
4603 
4604 static int mvneta_ethtool_nway_reset(struct net_device *dev)
4605 {
4606 	struct mvneta_port *pp = netdev_priv(dev);
4607 
4608 	return phylink_ethtool_nway_reset(pp->phylink);
4609 }
4610 
4611 /* Set interrupt coalescing for ethtools */
4612 static int
4613 mvneta_ethtool_set_coalesce(struct net_device *dev,
4614 			    struct ethtool_coalesce *c,
4615 			    struct kernel_ethtool_coalesce *kernel_coal,
4616 			    struct netlink_ext_ack *extack)
4617 {
4618 	struct mvneta_port *pp = netdev_priv(dev);
4619 	int queue;
4620 
4621 	for (queue = 0; queue < rxq_number; queue++) {
4622 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4623 		rxq->time_coal = c->rx_coalesce_usecs;
4624 		rxq->pkts_coal = c->rx_max_coalesced_frames;
4625 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4626 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4627 	}
4628 
4629 	for (queue = 0; queue < txq_number; queue++) {
4630 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4631 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
4632 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4633 	}
4634 
4635 	return 0;
4636 }
4637 
4638 /* get coalescing for ethtools */
4639 static int
4640 mvneta_ethtool_get_coalesce(struct net_device *dev,
4641 			    struct ethtool_coalesce *c,
4642 			    struct kernel_ethtool_coalesce *kernel_coal,
4643 			    struct netlink_ext_ack *extack)
4644 {
4645 	struct mvneta_port *pp = netdev_priv(dev);
4646 
4647 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
4648 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
4649 
4650 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
4651 	return 0;
4652 }
4653 
4654 
4655 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4656 				    struct ethtool_drvinfo *drvinfo)
4657 {
4658 	strscpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4659 		sizeof(drvinfo->driver));
4660 	strscpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4661 		sizeof(drvinfo->version));
4662 	strscpy(drvinfo->bus_info, dev_name(&dev->dev),
4663 		sizeof(drvinfo->bus_info));
4664 }
4665 
4666 
4667 static void
4668 mvneta_ethtool_get_ringparam(struct net_device *netdev,
4669 			     struct ethtool_ringparam *ring,
4670 			     struct kernel_ethtool_ringparam *kernel_ring,
4671 			     struct netlink_ext_ack *extack)
4672 {
4673 	struct mvneta_port *pp = netdev_priv(netdev);
4674 
4675 	ring->rx_max_pending = MVNETA_MAX_RXD;
4676 	ring->tx_max_pending = MVNETA_MAX_TXD;
4677 	ring->rx_pending = pp->rx_ring_size;
4678 	ring->tx_pending = pp->tx_ring_size;
4679 }
4680 
4681 static int
4682 mvneta_ethtool_set_ringparam(struct net_device *dev,
4683 			     struct ethtool_ringparam *ring,
4684 			     struct kernel_ethtool_ringparam *kernel_ring,
4685 			     struct netlink_ext_ack *extack)
4686 {
4687 	struct mvneta_port *pp = netdev_priv(dev);
4688 
4689 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4690 		return -EINVAL;
4691 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4692 		ring->rx_pending : MVNETA_MAX_RXD;
4693 
4694 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4695 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4696 	if (pp->tx_ring_size != ring->tx_pending)
4697 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4698 			    pp->tx_ring_size, ring->tx_pending);
4699 
4700 	if (netif_running(dev)) {
4701 		mvneta_stop(dev);
4702 		if (mvneta_open(dev)) {
4703 			netdev_err(dev,
4704 				   "error on opening device after ring param change\n");
4705 			return -ENOMEM;
4706 		}
4707 	}
4708 
4709 	return 0;
4710 }
4711 
4712 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4713 					  struct ethtool_pauseparam *pause)
4714 {
4715 	struct mvneta_port *pp = netdev_priv(dev);
4716 
4717 	phylink_ethtool_get_pauseparam(pp->phylink, pause);
4718 }
4719 
4720 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4721 					 struct ethtool_pauseparam *pause)
4722 {
4723 	struct mvneta_port *pp = netdev_priv(dev);
4724 
4725 	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4726 }
4727 
4728 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4729 				       u8 *data)
4730 {
4731 	if (sset == ETH_SS_STATS) {
4732 		int i;
4733 
4734 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4735 			memcpy(data + i * ETH_GSTRING_LEN,
4736 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
4737 
4738 		data += ETH_GSTRING_LEN * ARRAY_SIZE(mvneta_statistics);
4739 		page_pool_ethtool_stats_get_strings(data);
4740 	}
4741 }
4742 
4743 static void
4744 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4745 				 struct mvneta_ethtool_stats *es)
4746 {
4747 	unsigned int start;
4748 	int cpu;
4749 
4750 	for_each_possible_cpu(cpu) {
4751 		struct mvneta_pcpu_stats *stats;
4752 		u64 skb_alloc_error;
4753 		u64 refill_error;
4754 		u64 xdp_redirect;
4755 		u64 xdp_xmit_err;
4756 		u64 xdp_tx_err;
4757 		u64 xdp_pass;
4758 		u64 xdp_drop;
4759 		u64 xdp_xmit;
4760 		u64 xdp_tx;
4761 
4762 		stats = per_cpu_ptr(pp->stats, cpu);
4763 		do {
4764 			start = u64_stats_fetch_begin(&stats->syncp);
4765 			skb_alloc_error = stats->es.skb_alloc_error;
4766 			refill_error = stats->es.refill_error;
4767 			xdp_redirect = stats->es.ps.xdp_redirect;
4768 			xdp_pass = stats->es.ps.xdp_pass;
4769 			xdp_drop = stats->es.ps.xdp_drop;
4770 			xdp_xmit = stats->es.ps.xdp_xmit;
4771 			xdp_xmit_err = stats->es.ps.xdp_xmit_err;
4772 			xdp_tx = stats->es.ps.xdp_tx;
4773 			xdp_tx_err = stats->es.ps.xdp_tx_err;
4774 		} while (u64_stats_fetch_retry(&stats->syncp, start));
4775 
4776 		es->skb_alloc_error += skb_alloc_error;
4777 		es->refill_error += refill_error;
4778 		es->ps.xdp_redirect += xdp_redirect;
4779 		es->ps.xdp_pass += xdp_pass;
4780 		es->ps.xdp_drop += xdp_drop;
4781 		es->ps.xdp_xmit += xdp_xmit;
4782 		es->ps.xdp_xmit_err += xdp_xmit_err;
4783 		es->ps.xdp_tx += xdp_tx;
4784 		es->ps.xdp_tx_err += xdp_tx_err;
4785 	}
4786 }
4787 
4788 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4789 {
4790 	struct mvneta_ethtool_stats stats = {};
4791 	const struct mvneta_statistic *s;
4792 	void __iomem *base = pp->base;
4793 	u32 high, low;
4794 	u64 val;
4795 	int i;
4796 
4797 	mvneta_ethtool_update_pcpu_stats(pp, &stats);
4798 	for (i = 0, s = mvneta_statistics;
4799 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4800 	     s++, i++) {
4801 		switch (s->type) {
4802 		case T_REG_32:
4803 			val = readl_relaxed(base + s->offset);
4804 			pp->ethtool_stats[i] += val;
4805 			break;
4806 		case T_REG_64:
4807 			/* Docs say to read low 32-bit then high */
4808 			low = readl_relaxed(base + s->offset);
4809 			high = readl_relaxed(base + s->offset + 4);
4810 			val = (u64)high << 32 | low;
4811 			pp->ethtool_stats[i] += val;
4812 			break;
4813 		case T_SW:
4814 			switch (s->offset) {
4815 			case ETHTOOL_STAT_EEE_WAKEUP:
4816 				val = phylink_get_eee_err(pp->phylink);
4817 				pp->ethtool_stats[i] += val;
4818 				break;
4819 			case ETHTOOL_STAT_SKB_ALLOC_ERR:
4820 				pp->ethtool_stats[i] = stats.skb_alloc_error;
4821 				break;
4822 			case ETHTOOL_STAT_REFILL_ERR:
4823 				pp->ethtool_stats[i] = stats.refill_error;
4824 				break;
4825 			case ETHTOOL_XDP_REDIRECT:
4826 				pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4827 				break;
4828 			case ETHTOOL_XDP_PASS:
4829 				pp->ethtool_stats[i] = stats.ps.xdp_pass;
4830 				break;
4831 			case ETHTOOL_XDP_DROP:
4832 				pp->ethtool_stats[i] = stats.ps.xdp_drop;
4833 				break;
4834 			case ETHTOOL_XDP_TX:
4835 				pp->ethtool_stats[i] = stats.ps.xdp_tx;
4836 				break;
4837 			case ETHTOOL_XDP_TX_ERR:
4838 				pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
4839 				break;
4840 			case ETHTOOL_XDP_XMIT:
4841 				pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4842 				break;
4843 			case ETHTOOL_XDP_XMIT_ERR:
4844 				pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
4845 				break;
4846 			}
4847 			break;
4848 		}
4849 	}
4850 }
4851 
4852 static void mvneta_ethtool_pp_stats(struct mvneta_port *pp, u64 *data)
4853 {
4854 	struct page_pool_stats stats = {};
4855 	int i;
4856 
4857 	for (i = 0; i < rxq_number; i++)
4858 		page_pool_get_stats(pp->rxqs[i].page_pool, &stats);
4859 
4860 	page_pool_ethtool_stats_get(data, &stats);
4861 }
4862 
4863 static void mvneta_ethtool_get_stats(struct net_device *dev,
4864 				     struct ethtool_stats *stats, u64 *data)
4865 {
4866 	struct mvneta_port *pp = netdev_priv(dev);
4867 	int i;
4868 
4869 	mvneta_ethtool_update_stats(pp);
4870 
4871 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4872 		*data++ = pp->ethtool_stats[i];
4873 
4874 	mvneta_ethtool_pp_stats(pp, data);
4875 }
4876 
4877 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4878 {
4879 	if (sset == ETH_SS_STATS)
4880 		return ARRAY_SIZE(mvneta_statistics) +
4881 		       page_pool_ethtool_stats_get_count();
4882 
4883 	return -EOPNOTSUPP;
4884 }
4885 
4886 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4887 {
4888 	return MVNETA_RSS_LU_TABLE_SIZE;
4889 }
4890 
4891 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4892 				    struct ethtool_rxnfc *info,
4893 				    u32 *rules __always_unused)
4894 {
4895 	switch (info->cmd) {
4896 	case ETHTOOL_GRXRINGS:
4897 		info->data =  rxq_number;
4898 		return 0;
4899 	case ETHTOOL_GRXFH:
4900 		return -EOPNOTSUPP;
4901 	default:
4902 		return -EOPNOTSUPP;
4903 	}
4904 }
4905 
4906 static int  mvneta_config_rss(struct mvneta_port *pp)
4907 {
4908 	int cpu;
4909 	u32 val;
4910 
4911 	netif_tx_stop_all_queues(pp->dev);
4912 
4913 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4914 
4915 	if (!pp->neta_armada3700) {
4916 		/* We have to synchronise on the napi of each CPU */
4917 		for_each_online_cpu(cpu) {
4918 			struct mvneta_pcpu_port *pcpu_port =
4919 				per_cpu_ptr(pp->ports, cpu);
4920 
4921 			napi_synchronize(&pcpu_port->napi);
4922 			napi_disable(&pcpu_port->napi);
4923 		}
4924 	} else {
4925 		napi_synchronize(&pp->napi);
4926 		napi_disable(&pp->napi);
4927 	}
4928 
4929 	pp->rxq_def = pp->indir[0];
4930 
4931 	/* Update unicast mapping */
4932 	mvneta_set_rx_mode(pp->dev);
4933 
4934 	/* Update val of portCfg register accordingly with all RxQueue types */
4935 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4936 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4937 
4938 	/* Update the elected CPU matching the new rxq_def */
4939 	spin_lock(&pp->lock);
4940 	mvneta_percpu_elect(pp);
4941 	spin_unlock(&pp->lock);
4942 
4943 	if (!pp->neta_armada3700) {
4944 		/* We have to synchronise on the napi of each CPU */
4945 		for_each_online_cpu(cpu) {
4946 			struct mvneta_pcpu_port *pcpu_port =
4947 				per_cpu_ptr(pp->ports, cpu);
4948 
4949 			napi_enable(&pcpu_port->napi);
4950 		}
4951 	} else {
4952 		napi_enable(&pp->napi);
4953 	}
4954 
4955 	netif_tx_start_all_queues(pp->dev);
4956 
4957 	return 0;
4958 }
4959 
4960 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4961 				   const u8 *key, const u8 hfunc)
4962 {
4963 	struct mvneta_port *pp = netdev_priv(dev);
4964 
4965 	/* Current code for Armada 3700 doesn't support RSS features yet */
4966 	if (pp->neta_armada3700)
4967 		return -EOPNOTSUPP;
4968 
4969 	/* We require at least one supported parameter to be changed
4970 	 * and no change in any of the unsupported parameters
4971 	 */
4972 	if (key ||
4973 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4974 		return -EOPNOTSUPP;
4975 
4976 	if (!indir)
4977 		return 0;
4978 
4979 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4980 
4981 	return mvneta_config_rss(pp);
4982 }
4983 
4984 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4985 				   u8 *hfunc)
4986 {
4987 	struct mvneta_port *pp = netdev_priv(dev);
4988 
4989 	/* Current code for Armada 3700 doesn't support RSS features yet */
4990 	if (pp->neta_armada3700)
4991 		return -EOPNOTSUPP;
4992 
4993 	if (hfunc)
4994 		*hfunc = ETH_RSS_HASH_TOP;
4995 
4996 	if (!indir)
4997 		return 0;
4998 
4999 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
5000 
5001 	return 0;
5002 }
5003 
5004 static void mvneta_ethtool_get_wol(struct net_device *dev,
5005 				   struct ethtool_wolinfo *wol)
5006 {
5007 	struct mvneta_port *pp = netdev_priv(dev);
5008 
5009 	phylink_ethtool_get_wol(pp->phylink, wol);
5010 }
5011 
5012 static int mvneta_ethtool_set_wol(struct net_device *dev,
5013 				  struct ethtool_wolinfo *wol)
5014 {
5015 	struct mvneta_port *pp = netdev_priv(dev);
5016 	int ret;
5017 
5018 	ret = phylink_ethtool_set_wol(pp->phylink, wol);
5019 	if (!ret)
5020 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
5021 
5022 	return ret;
5023 }
5024 
5025 static int mvneta_ethtool_get_eee(struct net_device *dev,
5026 				  struct ethtool_eee *eee)
5027 {
5028 	struct mvneta_port *pp = netdev_priv(dev);
5029 	u32 lpi_ctl0;
5030 
5031 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
5032 
5033 	eee->eee_enabled = pp->eee_enabled;
5034 	eee->eee_active = pp->eee_active;
5035 	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
5036 	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
5037 
5038 	return phylink_ethtool_get_eee(pp->phylink, eee);
5039 }
5040 
5041 static int mvneta_ethtool_set_eee(struct net_device *dev,
5042 				  struct ethtool_eee *eee)
5043 {
5044 	struct mvneta_port *pp = netdev_priv(dev);
5045 	u32 lpi_ctl0;
5046 
5047 	/* The Armada 37x documents do not give limits for this other than
5048 	 * it being an 8-bit register.
5049 	 */
5050 	if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
5051 		return -EINVAL;
5052 
5053 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
5054 	lpi_ctl0 &= ~(0xff << 8);
5055 	lpi_ctl0 |= eee->tx_lpi_timer << 8;
5056 	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
5057 
5058 	pp->eee_enabled = eee->eee_enabled;
5059 	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
5060 
5061 	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
5062 
5063 	return phylink_ethtool_set_eee(pp->phylink, eee);
5064 }
5065 
5066 static void mvneta_clear_rx_prio_map(struct mvneta_port *pp)
5067 {
5068 	mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, 0);
5069 }
5070 
5071 static void mvneta_map_vlan_prio_to_rxq(struct mvneta_port *pp, u8 pri, u8 rxq)
5072 {
5073 	u32 val = mvreg_read(pp, MVNETA_VLAN_PRIO_TO_RXQ);
5074 
5075 	val &= ~MVNETA_VLAN_PRIO_RXQ_MAP(pri, 0x7);
5076 	val |= MVNETA_VLAN_PRIO_RXQ_MAP(pri, rxq);
5077 
5078 	mvreg_write(pp, MVNETA_VLAN_PRIO_TO_RXQ, val);
5079 }
5080 
5081 static int mvneta_enable_per_queue_rate_limit(struct mvneta_port *pp)
5082 {
5083 	unsigned long core_clk_rate;
5084 	u32 refill_cycles;
5085 	u32 val;
5086 
5087 	core_clk_rate = clk_get_rate(pp->clk);
5088 	if (!core_clk_rate)
5089 		return -EINVAL;
5090 
5091 	refill_cycles = MVNETA_TXQ_BUCKET_REFILL_BASE_PERIOD_NS /
5092 			(NSEC_PER_SEC / core_clk_rate);
5093 
5094 	if (refill_cycles > MVNETA_REFILL_MAX_NUM_CLK)
5095 		return -EINVAL;
5096 
5097 	/* Enable bw limit algorithm version 3 */
5098 	val = mvreg_read(pp, MVNETA_TXQ_CMD1_REG);
5099 	val &= ~(MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 | MVNETA_TXQ_CMD1_BW_LIM_EN);
5100 	mvreg_write(pp, MVNETA_TXQ_CMD1_REG, val);
5101 
5102 	/* Set the base refill rate */
5103 	mvreg_write(pp, MVNETA_REFILL_NUM_CLK_REG, refill_cycles);
5104 
5105 	return 0;
5106 }
5107 
5108 static void mvneta_disable_per_queue_rate_limit(struct mvneta_port *pp)
5109 {
5110 	u32 val = mvreg_read(pp, MVNETA_TXQ_CMD1_REG);
5111 
5112 	val |= (MVNETA_TXQ_CMD1_BW_LIM_SEL_V1 | MVNETA_TXQ_CMD1_BW_LIM_EN);
5113 	mvreg_write(pp, MVNETA_TXQ_CMD1_REG, val);
5114 }
5115 
5116 static int mvneta_setup_queue_rates(struct mvneta_port *pp, int queue,
5117 				    u64 min_rate, u64 max_rate)
5118 {
5119 	u32 refill_val, rem;
5120 	u32 val = 0;
5121 
5122 	/* Convert to from Bps to bps */
5123 	max_rate *= 8;
5124 
5125 	if (min_rate)
5126 		return -EINVAL;
5127 
5128 	refill_val = div_u64_rem(max_rate, MVNETA_TXQ_RATE_LIMIT_RESOLUTION,
5129 				 &rem);
5130 
5131 	if (rem || !refill_val ||
5132 	    refill_val > MVNETA_TXQ_BUCKET_REFILL_VALUE_MAX)
5133 		return -EINVAL;
5134 
5135 	val = refill_val;
5136 	val |= (MVNETA_TXQ_BUCKET_REFILL_PERIOD <<
5137 		MVNETA_TXQ_BUCKET_REFILL_PERIOD_SHIFT);
5138 
5139 	mvreg_write(pp, MVNETA_TXQ_BUCKET_REFILL_REG(queue), val);
5140 
5141 	return 0;
5142 }
5143 
5144 static int mvneta_setup_mqprio(struct net_device *dev,
5145 			       struct tc_mqprio_qopt_offload *mqprio)
5146 {
5147 	struct mvneta_port *pp = netdev_priv(dev);
5148 	int rxq, txq, tc, ret;
5149 	u8 num_tc;
5150 
5151 	if (mqprio->qopt.hw != TC_MQPRIO_HW_OFFLOAD_TCS)
5152 		return 0;
5153 
5154 	num_tc = mqprio->qopt.num_tc;
5155 
5156 	if (num_tc > rxq_number)
5157 		return -EINVAL;
5158 
5159 	mvneta_clear_rx_prio_map(pp);
5160 
5161 	if (!num_tc) {
5162 		mvneta_disable_per_queue_rate_limit(pp);
5163 		netdev_reset_tc(dev);
5164 		return 0;
5165 	}
5166 
5167 	netdev_set_num_tc(dev, mqprio->qopt.num_tc);
5168 
5169 	for (tc = 0; tc < mqprio->qopt.num_tc; tc++) {
5170 		netdev_set_tc_queue(dev, tc, mqprio->qopt.count[tc],
5171 				    mqprio->qopt.offset[tc]);
5172 
5173 		for (rxq = mqprio->qopt.offset[tc];
5174 		     rxq < mqprio->qopt.count[tc] + mqprio->qopt.offset[tc];
5175 		     rxq++) {
5176 			if (rxq >= rxq_number)
5177 				return -EINVAL;
5178 
5179 			mvneta_map_vlan_prio_to_rxq(pp, tc, rxq);
5180 		}
5181 	}
5182 
5183 	if (mqprio->shaper != TC_MQPRIO_SHAPER_BW_RATE) {
5184 		mvneta_disable_per_queue_rate_limit(pp);
5185 		return 0;
5186 	}
5187 
5188 	if (mqprio->qopt.num_tc > txq_number)
5189 		return -EINVAL;
5190 
5191 	ret = mvneta_enable_per_queue_rate_limit(pp);
5192 	if (ret)
5193 		return ret;
5194 
5195 	for (tc = 0; tc < mqprio->qopt.num_tc; tc++) {
5196 		for (txq = mqprio->qopt.offset[tc];
5197 		     txq < mqprio->qopt.count[tc] + mqprio->qopt.offset[tc];
5198 		     txq++) {
5199 			if (txq >= txq_number)
5200 				return -EINVAL;
5201 
5202 			ret = mvneta_setup_queue_rates(pp, txq,
5203 						       mqprio->min_rate[tc],
5204 						       mqprio->max_rate[tc]);
5205 			if (ret)
5206 				return ret;
5207 		}
5208 	}
5209 
5210 	return 0;
5211 }
5212 
5213 static int mvneta_setup_tc(struct net_device *dev, enum tc_setup_type type,
5214 			   void *type_data)
5215 {
5216 	switch (type) {
5217 	case TC_SETUP_QDISC_MQPRIO:
5218 		return mvneta_setup_mqprio(dev, type_data);
5219 	default:
5220 		return -EOPNOTSUPP;
5221 	}
5222 }
5223 
5224 static const struct net_device_ops mvneta_netdev_ops = {
5225 	.ndo_open            = mvneta_open,
5226 	.ndo_stop            = mvneta_stop,
5227 	.ndo_start_xmit      = mvneta_tx,
5228 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
5229 	.ndo_set_mac_address = mvneta_set_mac_addr,
5230 	.ndo_change_mtu      = mvneta_change_mtu,
5231 	.ndo_fix_features    = mvneta_fix_features,
5232 	.ndo_get_stats64     = mvneta_get_stats64,
5233 	.ndo_eth_ioctl        = mvneta_ioctl,
5234 	.ndo_bpf	     = mvneta_xdp,
5235 	.ndo_xdp_xmit        = mvneta_xdp_xmit,
5236 	.ndo_setup_tc	     = mvneta_setup_tc,
5237 };
5238 
5239 static const struct ethtool_ops mvneta_eth_tool_ops = {
5240 	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
5241 				     ETHTOOL_COALESCE_MAX_FRAMES,
5242 	.nway_reset	= mvneta_ethtool_nway_reset,
5243 	.get_link       = ethtool_op_get_link,
5244 	.set_coalesce   = mvneta_ethtool_set_coalesce,
5245 	.get_coalesce   = mvneta_ethtool_get_coalesce,
5246 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
5247 	.get_ringparam  = mvneta_ethtool_get_ringparam,
5248 	.set_ringparam	= mvneta_ethtool_set_ringparam,
5249 	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
5250 	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
5251 	.get_strings	= mvneta_ethtool_get_strings,
5252 	.get_ethtool_stats = mvneta_ethtool_get_stats,
5253 	.get_sset_count	= mvneta_ethtool_get_sset_count,
5254 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
5255 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
5256 	.get_rxfh	= mvneta_ethtool_get_rxfh,
5257 	.set_rxfh	= mvneta_ethtool_set_rxfh,
5258 	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
5259 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
5260 	.get_wol        = mvneta_ethtool_get_wol,
5261 	.set_wol        = mvneta_ethtool_set_wol,
5262 	.get_eee	= mvneta_ethtool_get_eee,
5263 	.set_eee	= mvneta_ethtool_set_eee,
5264 };
5265 
5266 /* Initialize hw */
5267 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
5268 {
5269 	int queue;
5270 
5271 	/* Disable port */
5272 	mvneta_port_disable(pp);
5273 
5274 	/* Set port default values */
5275 	mvneta_defaults_set(pp);
5276 
5277 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
5278 	if (!pp->txqs)
5279 		return -ENOMEM;
5280 
5281 	/* Initialize TX descriptor rings */
5282 	for (queue = 0; queue < txq_number; queue++) {
5283 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5284 		txq->id = queue;
5285 		txq->size = pp->tx_ring_size;
5286 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
5287 	}
5288 
5289 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
5290 	if (!pp->rxqs)
5291 		return -ENOMEM;
5292 
5293 	/* Create Rx descriptor rings */
5294 	for (queue = 0; queue < rxq_number; queue++) {
5295 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5296 		rxq->id = queue;
5297 		rxq->size = pp->rx_ring_size;
5298 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
5299 		rxq->time_coal = MVNETA_RX_COAL_USEC;
5300 		rxq->buf_virt_addr
5301 			= devm_kmalloc_array(pp->dev->dev.parent,
5302 					     rxq->size,
5303 					     sizeof(*rxq->buf_virt_addr),
5304 					     GFP_KERNEL);
5305 		if (!rxq->buf_virt_addr)
5306 			return -ENOMEM;
5307 	}
5308 
5309 	return 0;
5310 }
5311 
5312 /* platform glue : initialize decoding windows */
5313 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
5314 				     const struct mbus_dram_target_info *dram)
5315 {
5316 	u32 win_enable;
5317 	u32 win_protect;
5318 	int i;
5319 
5320 	for (i = 0; i < 6; i++) {
5321 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
5322 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
5323 
5324 		if (i < 4)
5325 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
5326 	}
5327 
5328 	win_enable = 0x3f;
5329 	win_protect = 0;
5330 
5331 	if (dram) {
5332 		for (i = 0; i < dram->num_cs; i++) {
5333 			const struct mbus_dram_window *cs = dram->cs + i;
5334 
5335 			mvreg_write(pp, MVNETA_WIN_BASE(i),
5336 				    (cs->base & 0xffff0000) |
5337 				    (cs->mbus_attr << 8) |
5338 				    dram->mbus_dram_target_id);
5339 
5340 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
5341 				    (cs->size - 1) & 0xffff0000);
5342 
5343 			win_enable &= ~(1 << i);
5344 			win_protect |= 3 << (2 * i);
5345 		}
5346 	} else {
5347 		if (pp->neta_ac5)
5348 			mvreg_write(pp, MVNETA_WIN_BASE(0),
5349 				    (MVNETA_AC5_CNM_DDR_ATTR << 8) |
5350 				    MVNETA_AC5_CNM_DDR_TARGET);
5351 		/* For Armada3700 open default 4GB Mbus window, leaving
5352 		 * arbitration of target/attribute to a different layer
5353 		 * of configuration.
5354 		 */
5355 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
5356 		win_enable &= ~BIT(0);
5357 		win_protect = 3;
5358 	}
5359 
5360 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
5361 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
5362 }
5363 
5364 /* Power up the port */
5365 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
5366 {
5367 	/* MAC Cause register should be cleared */
5368 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
5369 
5370 	if (phy_mode != PHY_INTERFACE_MODE_QSGMII &&
5371 	    phy_mode != PHY_INTERFACE_MODE_SGMII &&
5372 	    !phy_interface_mode_is_8023z(phy_mode) &&
5373 	    !phy_interface_mode_is_rgmii(phy_mode))
5374 		return -EINVAL;
5375 
5376 	return 0;
5377 }
5378 
5379 /* Device initialization routine */
5380 static int mvneta_probe(struct platform_device *pdev)
5381 {
5382 	struct device_node *dn = pdev->dev.of_node;
5383 	struct device_node *bm_node;
5384 	struct mvneta_port *pp;
5385 	struct net_device *dev;
5386 	struct phylink *phylink;
5387 	struct phy *comphy;
5388 	char hw_mac_addr[ETH_ALEN];
5389 	phy_interface_t phy_mode;
5390 	const char *mac_from;
5391 	int tx_csum_limit;
5392 	int err;
5393 	int cpu;
5394 
5395 	dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
5396 				      txq_number, rxq_number);
5397 	if (!dev)
5398 		return -ENOMEM;
5399 
5400 	dev->tx_queue_len = MVNETA_MAX_TXD;
5401 	dev->watchdog_timeo = 5 * HZ;
5402 	dev->netdev_ops = &mvneta_netdev_ops;
5403 	dev->ethtool_ops = &mvneta_eth_tool_ops;
5404 
5405 	pp = netdev_priv(dev);
5406 	spin_lock_init(&pp->lock);
5407 	pp->dn = dn;
5408 
5409 	pp->rxq_def = rxq_def;
5410 	pp->indir[0] = rxq_def;
5411 
5412 	err = of_get_phy_mode(dn, &phy_mode);
5413 	if (err) {
5414 		dev_err(&pdev->dev, "incorrect phy-mode\n");
5415 		return err;
5416 	}
5417 
5418 	pp->phy_interface = phy_mode;
5419 
5420 	comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
5421 	if (comphy == ERR_PTR(-EPROBE_DEFER))
5422 		return -EPROBE_DEFER;
5423 
5424 	if (IS_ERR(comphy))
5425 		comphy = NULL;
5426 
5427 	pp->comphy = comphy;
5428 
5429 	pp->base = devm_platform_ioremap_resource(pdev, 0);
5430 	if (IS_ERR(pp->base))
5431 		return PTR_ERR(pp->base);
5432 
5433 	/* Get special SoC configurations */
5434 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5435 		pp->neta_armada3700 = true;
5436 	if (of_device_is_compatible(dn, "marvell,armada-ac5-neta")) {
5437 		pp->neta_armada3700 = true;
5438 		pp->neta_ac5 = true;
5439 	}
5440 
5441 	dev->irq = irq_of_parse_and_map(dn, 0);
5442 	if (dev->irq == 0)
5443 		return -EINVAL;
5444 
5445 	pp->clk = devm_clk_get(&pdev->dev, "core");
5446 	if (IS_ERR(pp->clk))
5447 		pp->clk = devm_clk_get(&pdev->dev, NULL);
5448 	if (IS_ERR(pp->clk)) {
5449 		err = PTR_ERR(pp->clk);
5450 		goto err_free_irq;
5451 	}
5452 
5453 	clk_prepare_enable(pp->clk);
5454 
5455 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5456 	if (!IS_ERR(pp->clk_bus))
5457 		clk_prepare_enable(pp->clk_bus);
5458 
5459 	pp->phylink_pcs.ops = &mvneta_phylink_pcs_ops;
5460 
5461 	pp->phylink_config.dev = &dev->dev;
5462 	pp->phylink_config.type = PHYLINK_NETDEV;
5463 	pp->phylink_config.mac_capabilities = MAC_SYM_PAUSE | MAC_10 |
5464 		MAC_100 | MAC_1000FD | MAC_2500FD;
5465 
5466 	phy_interface_set_rgmii(pp->phylink_config.supported_interfaces);
5467 	__set_bit(PHY_INTERFACE_MODE_QSGMII,
5468 		  pp->phylink_config.supported_interfaces);
5469 	if (comphy) {
5470 		/* If a COMPHY is present, we can support any of the serdes
5471 		 * modes and switch between them.
5472 		 */
5473 		__set_bit(PHY_INTERFACE_MODE_SGMII,
5474 			  pp->phylink_config.supported_interfaces);
5475 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
5476 			  pp->phylink_config.supported_interfaces);
5477 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
5478 			  pp->phylink_config.supported_interfaces);
5479 	} else if (phy_mode == PHY_INTERFACE_MODE_2500BASEX) {
5480 		/* No COMPHY, with only 2500BASE-X mode supported */
5481 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
5482 			  pp->phylink_config.supported_interfaces);
5483 	} else if (phy_mode == PHY_INTERFACE_MODE_1000BASEX ||
5484 		   phy_mode == PHY_INTERFACE_MODE_SGMII) {
5485 		/* No COMPHY, we can switch between 1000BASE-X and SGMII */
5486 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
5487 			  pp->phylink_config.supported_interfaces);
5488 		__set_bit(PHY_INTERFACE_MODE_SGMII,
5489 			  pp->phylink_config.supported_interfaces);
5490 	}
5491 
5492 	phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
5493 				 phy_mode, &mvneta_phylink_ops);
5494 	if (IS_ERR(phylink)) {
5495 		err = PTR_ERR(phylink);
5496 		goto err_clk;
5497 	}
5498 
5499 	pp->phylink = phylink;
5500 
5501 	/* Alloc per-cpu port structure */
5502 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5503 	if (!pp->ports) {
5504 		err = -ENOMEM;
5505 		goto err_free_phylink;
5506 	}
5507 
5508 	/* Alloc per-cpu stats */
5509 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5510 	if (!pp->stats) {
5511 		err = -ENOMEM;
5512 		goto err_free_ports;
5513 	}
5514 
5515 	err = of_get_ethdev_address(dn, dev);
5516 	if (!err) {
5517 		mac_from = "device tree";
5518 	} else {
5519 		mvneta_get_mac_addr(pp, hw_mac_addr);
5520 		if (is_valid_ether_addr(hw_mac_addr)) {
5521 			mac_from = "hardware";
5522 			eth_hw_addr_set(dev, hw_mac_addr);
5523 		} else {
5524 			mac_from = "random";
5525 			eth_hw_addr_random(dev);
5526 		}
5527 	}
5528 
5529 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5530 		if (tx_csum_limit < 0 ||
5531 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5532 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5533 			dev_info(&pdev->dev,
5534 				 "Wrong TX csum limit in DT, set to %dB\n",
5535 				 MVNETA_TX_CSUM_DEF_SIZE);
5536 		}
5537 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5538 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5539 	} else {
5540 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5541 	}
5542 
5543 	pp->tx_csum_limit = tx_csum_limit;
5544 
5545 	pp->dram_target_info = mv_mbus_dram_info();
5546 	/* Armada3700 requires setting default configuration of Mbus
5547 	 * windows, however without using filled mbus_dram_target_info
5548 	 * structure.
5549 	 */
5550 	if (pp->dram_target_info || pp->neta_armada3700)
5551 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5552 
5553 	pp->tx_ring_size = MVNETA_MAX_TXD;
5554 	pp->rx_ring_size = MVNETA_MAX_RXD;
5555 
5556 	pp->dev = dev;
5557 	SET_NETDEV_DEV(dev, &pdev->dev);
5558 
5559 	pp->id = global_port_id++;
5560 
5561 	/* Obtain access to BM resources if enabled and already initialized */
5562 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5563 	if (bm_node) {
5564 		pp->bm_priv = mvneta_bm_get(bm_node);
5565 		if (pp->bm_priv) {
5566 			err = mvneta_bm_port_init(pdev, pp);
5567 			if (err < 0) {
5568 				dev_info(&pdev->dev,
5569 					 "use SW buffer management\n");
5570 				mvneta_bm_put(pp->bm_priv);
5571 				pp->bm_priv = NULL;
5572 			}
5573 		}
5574 		/* Set RX packet offset correction for platforms, whose
5575 		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5576 		 * platforms and 0B for 32-bit ones.
5577 		 */
5578 		pp->rx_offset_correction = max(0,
5579 					       NET_SKB_PAD -
5580 					       MVNETA_RX_PKT_OFFSET_CORRECTION);
5581 	}
5582 	of_node_put(bm_node);
5583 
5584 	/* sw buffer management */
5585 	if (!pp->bm_priv)
5586 		pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5587 
5588 	err = mvneta_init(&pdev->dev, pp);
5589 	if (err < 0)
5590 		goto err_netdev;
5591 
5592 	err = mvneta_port_power_up(pp, pp->phy_interface);
5593 	if (err < 0) {
5594 		dev_err(&pdev->dev, "can't power up port\n");
5595 		goto err_netdev;
5596 	}
5597 
5598 	/* Armada3700 network controller does not support per-cpu
5599 	 * operation, so only single NAPI should be initialized.
5600 	 */
5601 	if (pp->neta_armada3700) {
5602 		netif_napi_add(dev, &pp->napi, mvneta_poll);
5603 	} else {
5604 		for_each_present_cpu(cpu) {
5605 			struct mvneta_pcpu_port *port =
5606 				per_cpu_ptr(pp->ports, cpu);
5607 
5608 			netif_napi_add(dev, &port->napi, mvneta_poll);
5609 			port->pp = pp;
5610 		}
5611 	}
5612 
5613 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5614 			NETIF_F_TSO | NETIF_F_RXCSUM;
5615 	dev->hw_features |= dev->features;
5616 	dev->vlan_features |= dev->features;
5617 	if (!pp->bm_priv)
5618 		dev->xdp_features = NETDEV_XDP_ACT_BASIC |
5619 				    NETDEV_XDP_ACT_REDIRECT |
5620 				    NETDEV_XDP_ACT_NDO_XMIT |
5621 				    NETDEV_XDP_ACT_RX_SG |
5622 				    NETDEV_XDP_ACT_NDO_XMIT_SG;
5623 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5624 	netif_set_tso_max_segs(dev, MVNETA_MAX_TSO_SEGS);
5625 
5626 	/* MTU range: 68 - 9676 */
5627 	dev->min_mtu = ETH_MIN_MTU;
5628 	/* 9676 == 9700 - 20 and rounding to 8 */
5629 	dev->max_mtu = 9676;
5630 
5631 	err = register_netdev(dev);
5632 	if (err < 0) {
5633 		dev_err(&pdev->dev, "failed to register\n");
5634 		goto err_netdev;
5635 	}
5636 
5637 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5638 		    dev->dev_addr);
5639 
5640 	platform_set_drvdata(pdev, pp->dev);
5641 
5642 	return 0;
5643 
5644 err_netdev:
5645 	if (pp->bm_priv) {
5646 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5647 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5648 				       1 << pp->id);
5649 		mvneta_bm_put(pp->bm_priv);
5650 	}
5651 	free_percpu(pp->stats);
5652 err_free_ports:
5653 	free_percpu(pp->ports);
5654 err_free_phylink:
5655 	if (pp->phylink)
5656 		phylink_destroy(pp->phylink);
5657 err_clk:
5658 	clk_disable_unprepare(pp->clk_bus);
5659 	clk_disable_unprepare(pp->clk);
5660 err_free_irq:
5661 	irq_dispose_mapping(dev->irq);
5662 	return err;
5663 }
5664 
5665 /* Device removal routine */
5666 static int mvneta_remove(struct platform_device *pdev)
5667 {
5668 	struct net_device  *dev = platform_get_drvdata(pdev);
5669 	struct mvneta_port *pp = netdev_priv(dev);
5670 
5671 	unregister_netdev(dev);
5672 	clk_disable_unprepare(pp->clk_bus);
5673 	clk_disable_unprepare(pp->clk);
5674 	free_percpu(pp->ports);
5675 	free_percpu(pp->stats);
5676 	irq_dispose_mapping(dev->irq);
5677 	phylink_destroy(pp->phylink);
5678 
5679 	if (pp->bm_priv) {
5680 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5681 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5682 				       1 << pp->id);
5683 		mvneta_bm_put(pp->bm_priv);
5684 	}
5685 
5686 	return 0;
5687 }
5688 
5689 #ifdef CONFIG_PM_SLEEP
5690 static int mvneta_suspend(struct device *device)
5691 {
5692 	int queue;
5693 	struct net_device *dev = dev_get_drvdata(device);
5694 	struct mvneta_port *pp = netdev_priv(dev);
5695 
5696 	if (!netif_running(dev))
5697 		goto clean_exit;
5698 
5699 	if (!pp->neta_armada3700) {
5700 		spin_lock(&pp->lock);
5701 		pp->is_stopped = true;
5702 		spin_unlock(&pp->lock);
5703 
5704 		cpuhp_state_remove_instance_nocalls(online_hpstate,
5705 						    &pp->node_online);
5706 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5707 						    &pp->node_dead);
5708 	}
5709 
5710 	rtnl_lock();
5711 	mvneta_stop_dev(pp);
5712 	rtnl_unlock();
5713 
5714 	for (queue = 0; queue < rxq_number; queue++) {
5715 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5716 
5717 		mvneta_rxq_drop_pkts(pp, rxq);
5718 	}
5719 
5720 	for (queue = 0; queue < txq_number; queue++) {
5721 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5722 
5723 		mvneta_txq_hw_deinit(pp, txq);
5724 	}
5725 
5726 clean_exit:
5727 	netif_device_detach(dev);
5728 	clk_disable_unprepare(pp->clk_bus);
5729 	clk_disable_unprepare(pp->clk);
5730 
5731 	return 0;
5732 }
5733 
5734 static int mvneta_resume(struct device *device)
5735 {
5736 	struct platform_device *pdev = to_platform_device(device);
5737 	struct net_device *dev = dev_get_drvdata(device);
5738 	struct mvneta_port *pp = netdev_priv(dev);
5739 	int err, queue;
5740 
5741 	clk_prepare_enable(pp->clk);
5742 	if (!IS_ERR(pp->clk_bus))
5743 		clk_prepare_enable(pp->clk_bus);
5744 	if (pp->dram_target_info || pp->neta_armada3700)
5745 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5746 	if (pp->bm_priv) {
5747 		err = mvneta_bm_port_init(pdev, pp);
5748 		if (err < 0) {
5749 			dev_info(&pdev->dev, "use SW buffer management\n");
5750 			pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5751 			pp->bm_priv = NULL;
5752 		}
5753 	}
5754 	mvneta_defaults_set(pp);
5755 	err = mvneta_port_power_up(pp, pp->phy_interface);
5756 	if (err < 0) {
5757 		dev_err(device, "can't power up port\n");
5758 		return err;
5759 	}
5760 
5761 	netif_device_attach(dev);
5762 
5763 	if (!netif_running(dev))
5764 		return 0;
5765 
5766 	for (queue = 0; queue < rxq_number; queue++) {
5767 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5768 
5769 		rxq->next_desc_to_proc = 0;
5770 		mvneta_rxq_hw_init(pp, rxq);
5771 	}
5772 
5773 	for (queue = 0; queue < txq_number; queue++) {
5774 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5775 
5776 		txq->next_desc_to_proc = 0;
5777 		mvneta_txq_hw_init(pp, txq);
5778 	}
5779 
5780 	if (!pp->neta_armada3700) {
5781 		spin_lock(&pp->lock);
5782 		pp->is_stopped = false;
5783 		spin_unlock(&pp->lock);
5784 		cpuhp_state_add_instance_nocalls(online_hpstate,
5785 						 &pp->node_online);
5786 		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5787 						 &pp->node_dead);
5788 	}
5789 
5790 	rtnl_lock();
5791 	mvneta_start_dev(pp);
5792 	rtnl_unlock();
5793 	mvneta_set_rx_mode(dev);
5794 
5795 	return 0;
5796 }
5797 #endif
5798 
5799 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5800 
5801 static const struct of_device_id mvneta_match[] = {
5802 	{ .compatible = "marvell,armada-370-neta" },
5803 	{ .compatible = "marvell,armada-xp-neta" },
5804 	{ .compatible = "marvell,armada-3700-neta" },
5805 	{ .compatible = "marvell,armada-ac5-neta" },
5806 	{ }
5807 };
5808 MODULE_DEVICE_TABLE(of, mvneta_match);
5809 
5810 static struct platform_driver mvneta_driver = {
5811 	.probe = mvneta_probe,
5812 	.remove = mvneta_remove,
5813 	.driver = {
5814 		.name = MVNETA_DRIVER_NAME,
5815 		.of_match_table = mvneta_match,
5816 		.pm = &mvneta_pm_ops,
5817 	},
5818 };
5819 
5820 static int __init mvneta_driver_init(void)
5821 {
5822 	int ret;
5823 
5824 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online",
5825 				      mvneta_cpu_online,
5826 				      mvneta_cpu_down_prepare);
5827 	if (ret < 0)
5828 		goto out;
5829 	online_hpstate = ret;
5830 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5831 				      NULL, mvneta_cpu_dead);
5832 	if (ret)
5833 		goto err_dead;
5834 
5835 	ret = platform_driver_register(&mvneta_driver);
5836 	if (ret)
5837 		goto err;
5838 	return 0;
5839 
5840 err:
5841 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5842 err_dead:
5843 	cpuhp_remove_multi_state(online_hpstate);
5844 out:
5845 	return ret;
5846 }
5847 module_init(mvneta_driver_init);
5848 
5849 static void __exit mvneta_driver_exit(void)
5850 {
5851 	platform_driver_unregister(&mvneta_driver);
5852 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5853 	cpuhp_remove_multi_state(online_hpstate);
5854 }
5855 module_exit(mvneta_driver_exit);
5856 
5857 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5858 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5859 MODULE_LICENSE("GPL");
5860 
5861 module_param(rxq_number, int, 0444);
5862 module_param(txq_number, int, 0444);
5863 
5864 module_param(rxq_def, int, 0444);
5865 module_param(rx_copybreak, int, 0644);
5866