xref: /linux/drivers/net/ethernet/marvell/mvneta.c (revision 5ba0a3be6ecc3a0b0d52c2a818b05564c6b42510)
1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/version.h>
16 #include <linux/netdevice.h>
17 #include <linux/etherdevice.h>
18 #include <linux/platform_device.h>
19 #include <linux/skbuff.h>
20 #include <linux/inetdevice.h>
21 #include <linux/mbus.h>
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <net/ip.h>
25 #include <net/ipv6.h>
26 #include <linux/of.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/of_address.h>
31 #include <linux/phy.h>
32 #include <linux/clk.h>
33 
34 /* Registers */
35 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
36 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(1)
37 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
38 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
39 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
40 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
41 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
42 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
43 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
44 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
45 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
46 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
47 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
48 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
49 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
50 #define MVNETA_PORT_RX_RESET                    0x1cc0
51 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
52 #define MVNETA_PHY_ADDR                         0x2000
53 #define      MVNETA_PHY_ADDR_MASK               0x1f
54 #define MVNETA_MBUS_RETRY                       0x2010
55 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
56 #define MVNETA_UNIT_CONTROL                     0x20B0
57 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
58 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
59 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
60 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
61 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
62 #define MVNETA_PORT_CONFIG                      0x2400
63 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
64 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
65 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
66 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
67 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
68 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
69 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
70 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
71 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
72 						 MVNETA_DEF_RXQ_ARP(q)	 | \
73 						 MVNETA_DEF_RXQ_TCP(q)	 | \
74 						 MVNETA_DEF_RXQ_UDP(q)	 | \
75 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
76 						 MVNETA_TX_UNSET_ERR_SUM | \
77 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
78 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
79 #define MVNETA_MAC_ADDR_LOW                      0x2414
80 #define MVNETA_MAC_ADDR_HIGH                     0x2418
81 #define MVNETA_SDMA_CONFIG                       0x241c
82 #define      MVNETA_SDMA_BRST_SIZE_16            4
83 #define      MVNETA_NO_DESC_SWAP                 0x0
84 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
85 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
86 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
87 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
88 #define MVNETA_PORT_STATUS                       0x2444
89 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
90 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
91 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
92 #define MVNETA_TYPE_PRIO                         0x24bc
93 #define      MVNETA_FORCE_UNI                    BIT(21)
94 #define MVNETA_TXQ_CMD_1                         0x24e4
95 #define MVNETA_TXQ_CMD                           0x2448
96 #define      MVNETA_TXQ_DISABLE_SHIFT            8
97 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
98 #define MVNETA_ACC_MODE                          0x2500
99 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
100 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
101 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
102 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
103 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
104 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
105 #define MVNETA_INTR_NEW_MASK                     0x25a4
106 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
107 #define MVNETA_INTR_OLD_MASK                     0x25ac
108 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
109 #define MVNETA_INTR_MISC_MASK                    0x25b4
110 #define MVNETA_INTR_ENABLE                       0x25b8
111 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
112 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0xff000000
113 #define MVNETA_RXQ_CMD                           0x2680
114 #define      MVNETA_RXQ_DISABLE_SHIFT            8
115 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
116 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
117 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
118 #define MVNETA_GMAC_CTRL_0                       0x2c00
119 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
120 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
121 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
122 #define MVNETA_GMAC_CTRL_2                       0x2c08
123 #define      MVNETA_GMAC2_PSC_ENABLE             BIT(3)
124 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
125 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
126 #define MVNETA_GMAC_STATUS                       0x2c10
127 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
128 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
129 #define      MVNETA_GMAC_SPEED_100               BIT(2)
130 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
131 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
132 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
133 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
134 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
135 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
136 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
137 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
138 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
139 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
140 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
141 #define MVNETA_MIB_COUNTERS_BASE                 0x3080
142 #define      MVNETA_MIB_LATE_COLLISION           0x7c
143 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
144 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
145 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
146 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
147 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
148 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
149 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
150 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
151 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
152 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
153 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
154 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
155 #define MVNETA_PORT_TX_RESET                     0x3cf0
156 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
157 #define MVNETA_TX_MTU                            0x3e0c
158 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
159 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
160 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
161 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
162 
163 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
164 
165 /* Descriptor ring Macros */
166 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
167 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
168 
169 /* Various constants */
170 
171 /* Coalescing */
172 #define MVNETA_TXDONE_COAL_PKTS		16
173 #define MVNETA_RX_COAL_PKTS		32
174 #define MVNETA_RX_COAL_USEC		100
175 
176 /* Timer */
177 #define MVNETA_TX_DONE_TIMER_PERIOD	10
178 
179 /* Napi polling weight */
180 #define MVNETA_RX_POLL_WEIGHT		64
181 
182 /* The two bytes Marvell header. Either contains a special value used
183  * by Marvell switches when a specific hardware mode is enabled (not
184  * supported by this driver) or is filled automatically by zeroes on
185  * the RX side. Those two bytes being at the front of the Ethernet
186  * header, they allow to have the IP header aligned on a 4 bytes
187  * boundary automatically: the hardware skips those two bytes on its
188  * own.
189  */
190 #define MVNETA_MH_SIZE			2
191 
192 #define MVNETA_VLAN_TAG_LEN             4
193 
194 #define MVNETA_CPU_D_CACHE_LINE_SIZE    32
195 #define MVNETA_TX_CSUM_MAX_SIZE		9800
196 #define MVNETA_ACC_MODE_EXT		1
197 
198 /* Timeout constants */
199 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
200 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
201 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
202 
203 #define MVNETA_TX_MTU_MAX		0x3ffff
204 
205 /* Max number of Rx descriptors */
206 #define MVNETA_MAX_RXD 128
207 
208 /* Max number of Tx descriptors */
209 #define MVNETA_MAX_TXD 532
210 
211 /* descriptor aligned size */
212 #define MVNETA_DESC_ALIGNED_SIZE	32
213 
214 #define MVNETA_RX_PKT_SIZE(mtu) \
215 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
216 	      ETH_HLEN + ETH_FCS_LEN,			     \
217 	      MVNETA_CPU_D_CACHE_LINE_SIZE)
218 
219 #define MVNETA_RX_BUF_SIZE(pkt_size)   ((pkt_size) + NET_SKB_PAD)
220 
221 struct mvneta_stats {
222 	struct	u64_stats_sync syncp;
223 	u64	packets;
224 	u64	bytes;
225 };
226 
227 struct mvneta_port {
228 	int pkt_size;
229 	void __iomem *base;
230 	struct mvneta_rx_queue *rxqs;
231 	struct mvneta_tx_queue *txqs;
232 	struct timer_list tx_done_timer;
233 	struct net_device *dev;
234 
235 	u32 cause_rx_tx;
236 	struct napi_struct napi;
237 
238 	/* Flags */
239 	unsigned long flags;
240 #define MVNETA_F_TX_DONE_TIMER_BIT  0
241 
242 	/* Napi weight */
243 	int weight;
244 
245 	/* Core clock */
246 	struct clk *clk;
247 	u8 mcast_count[256];
248 	u16 tx_ring_size;
249 	u16 rx_ring_size;
250 	struct mvneta_stats tx_stats;
251 	struct mvneta_stats rx_stats;
252 
253 	struct mii_bus *mii_bus;
254 	struct phy_device *phy_dev;
255 	phy_interface_t phy_interface;
256 	struct device_node *phy_node;
257 	unsigned int link;
258 	unsigned int duplex;
259 	unsigned int speed;
260 };
261 
262 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
263  * layout of the transmit and reception DMA descriptors, and their
264  * layout is therefore defined by the hardware design
265  */
266 struct mvneta_tx_desc {
267 	u32  command;		/* Options used by HW for packet transmitting.*/
268 #define MVNETA_TX_L3_OFF_SHIFT	0
269 #define MVNETA_TX_IP_HLEN_SHIFT	8
270 #define MVNETA_TX_L4_UDP	BIT(16)
271 #define MVNETA_TX_L3_IP6	BIT(17)
272 #define MVNETA_TXD_IP_CSUM	BIT(18)
273 #define MVNETA_TXD_Z_PAD	BIT(19)
274 #define MVNETA_TXD_L_DESC	BIT(20)
275 #define MVNETA_TXD_F_DESC	BIT(21)
276 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
277 				 MVNETA_TXD_L_DESC | \
278 				 MVNETA_TXD_F_DESC)
279 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
280 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
281 
282 	u16  reserverd1;	/* csum_l4 (for future use)		*/
283 	u16  data_size;		/* Data size of transmitted packet in bytes */
284 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
285 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
286 	u32  reserved3[4];	/* Reserved - (for future use)		*/
287 };
288 
289 struct mvneta_rx_desc {
290 	u32  status;		/* Info about received packet		*/
291 #define MVNETA_RXD_ERR_CRC		0x0
292 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
293 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
294 #define MVNETA_RXD_ERR_LEN		BIT(18)
295 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
296 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
297 #define MVNETA_RXD_L3_IP4		BIT(25)
298 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
299 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
300 
301 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
302 	u16  data_size;		/* Size of received packet in bytes	*/
303 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
304 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
305 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
306 	u16  reserved3;		/* prefetch_cmd, for future use		*/
307 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
308 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
309 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
310 };
311 
312 struct mvneta_tx_queue {
313 	/* Number of this TX queue, in the range 0-7 */
314 	u8 id;
315 
316 	/* Number of TX DMA descriptors in the descriptor ring */
317 	int size;
318 
319 	/* Number of currently used TX DMA descriptor in the
320 	 * descriptor ring
321 	 */
322 	int count;
323 
324 	/* Array of transmitted skb */
325 	struct sk_buff **tx_skb;
326 
327 	/* Index of last TX DMA descriptor that was inserted */
328 	int txq_put_index;
329 
330 	/* Index of the TX DMA descriptor to be cleaned up */
331 	int txq_get_index;
332 
333 	u32 done_pkts_coal;
334 
335 	/* Virtual address of the TX DMA descriptors array */
336 	struct mvneta_tx_desc *descs;
337 
338 	/* DMA address of the TX DMA descriptors array */
339 	dma_addr_t descs_phys;
340 
341 	/* Index of the last TX DMA descriptor */
342 	int last_desc;
343 
344 	/* Index of the next TX DMA descriptor to process */
345 	int next_desc_to_proc;
346 };
347 
348 struct mvneta_rx_queue {
349 	/* rx queue number, in the range 0-7 */
350 	u8 id;
351 
352 	/* num of rx descriptors in the rx descriptor ring */
353 	int size;
354 
355 	/* counter of times when mvneta_refill() failed */
356 	int missed;
357 
358 	u32 pkts_coal;
359 	u32 time_coal;
360 
361 	/* Virtual address of the RX DMA descriptors array */
362 	struct mvneta_rx_desc *descs;
363 
364 	/* DMA address of the RX DMA descriptors array */
365 	dma_addr_t descs_phys;
366 
367 	/* Index of the last RX DMA descriptor */
368 	int last_desc;
369 
370 	/* Index of the next RX DMA descriptor to process */
371 	int next_desc_to_proc;
372 };
373 
374 static int rxq_number = 8;
375 static int txq_number = 8;
376 
377 static int rxq_def;
378 static int txq_def;
379 
380 #define MVNETA_DRIVER_NAME "mvneta"
381 #define MVNETA_DRIVER_VERSION "1.0"
382 
383 /* Utility/helper methods */
384 
385 /* Write helper method */
386 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
387 {
388 	writel(data, pp->base + offset);
389 }
390 
391 /* Read helper method */
392 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
393 {
394 	return readl(pp->base + offset);
395 }
396 
397 /* Increment txq get counter */
398 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
399 {
400 	txq->txq_get_index++;
401 	if (txq->txq_get_index == txq->size)
402 		txq->txq_get_index = 0;
403 }
404 
405 /* Increment txq put counter */
406 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
407 {
408 	txq->txq_put_index++;
409 	if (txq->txq_put_index == txq->size)
410 		txq->txq_put_index = 0;
411 }
412 
413 
414 /* Clear all MIB counters */
415 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
416 {
417 	int i;
418 	u32 dummy;
419 
420 	/* Perform dummy reads from MIB counters */
421 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
422 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
423 }
424 
425 /* Get System Network Statistics */
426 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
427 					     struct rtnl_link_stats64 *stats)
428 {
429 	struct mvneta_port *pp = netdev_priv(dev);
430 	unsigned int start;
431 
432 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
433 
434 	do {
435 		start = u64_stats_fetch_begin_bh(&pp->rx_stats.syncp);
436 		stats->rx_packets = pp->rx_stats.packets;
437 		stats->rx_bytes	= pp->rx_stats.bytes;
438 	} while (u64_stats_fetch_retry_bh(&pp->rx_stats.syncp, start));
439 
440 
441 	do {
442 		start = u64_stats_fetch_begin_bh(&pp->tx_stats.syncp);
443 		stats->tx_packets = pp->tx_stats.packets;
444 		stats->tx_bytes	= pp->tx_stats.bytes;
445 	} while (u64_stats_fetch_retry_bh(&pp->tx_stats.syncp, start));
446 
447 	stats->rx_errors	= dev->stats.rx_errors;
448 	stats->rx_dropped	= dev->stats.rx_dropped;
449 
450 	stats->tx_dropped	= dev->stats.tx_dropped;
451 
452 	return stats;
453 }
454 
455 /* Rx descriptors helper methods */
456 
457 /* Checks whether the given RX descriptor is both the first and the
458  * last descriptor for the RX packet. Each RX packet is currently
459  * received through a single RX descriptor, so not having each RX
460  * descriptor with its first and last bits set is an error
461  */
462 static int mvneta_rxq_desc_is_first_last(struct mvneta_rx_desc *desc)
463 {
464 	return (desc->status & MVNETA_RXD_FIRST_LAST_DESC) ==
465 		MVNETA_RXD_FIRST_LAST_DESC;
466 }
467 
468 /* Add number of descriptors ready to receive new packets */
469 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
470 					  struct mvneta_rx_queue *rxq,
471 					  int ndescs)
472 {
473 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
474 	 * be added at once
475 	 */
476 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
477 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
478 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
479 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
480 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
481 	}
482 
483 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
484 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
485 }
486 
487 /* Get number of RX descriptors occupied by received packets */
488 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
489 					struct mvneta_rx_queue *rxq)
490 {
491 	u32 val;
492 
493 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
494 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
495 }
496 
497 /* Update num of rx desc called upon return from rx path or
498  * from mvneta_rxq_drop_pkts().
499  */
500 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
501 				       struct mvneta_rx_queue *rxq,
502 				       int rx_done, int rx_filled)
503 {
504 	u32 val;
505 
506 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
507 		val = rx_done |
508 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
509 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
510 		return;
511 	}
512 
513 	/* Only 255 descriptors can be added at once */
514 	while ((rx_done > 0) || (rx_filled > 0)) {
515 		if (rx_done <= 0xff) {
516 			val = rx_done;
517 			rx_done = 0;
518 		} else {
519 			val = 0xff;
520 			rx_done -= 0xff;
521 		}
522 		if (rx_filled <= 0xff) {
523 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
524 			rx_filled = 0;
525 		} else {
526 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
527 			rx_filled -= 0xff;
528 		}
529 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
530 	}
531 }
532 
533 /* Get pointer to next RX descriptor to be processed by SW */
534 static struct mvneta_rx_desc *
535 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
536 {
537 	int rx_desc = rxq->next_desc_to_proc;
538 
539 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
540 	return rxq->descs + rx_desc;
541 }
542 
543 /* Change maximum receive size of the port. */
544 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
545 {
546 	u32 val;
547 
548 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
549 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
550 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
551 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
552 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
553 }
554 
555 
556 /* Set rx queue offset */
557 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
558 				  struct mvneta_rx_queue *rxq,
559 				  int offset)
560 {
561 	u32 val;
562 
563 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
564 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
565 
566 	/* Offset is in */
567 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
568 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
569 }
570 
571 
572 /* Tx descriptors helper methods */
573 
574 /* Update HW with number of TX descriptors to be sent */
575 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
576 				     struct mvneta_tx_queue *txq,
577 				     int pend_desc)
578 {
579 	u32 val;
580 
581 	/* Only 255 descriptors can be added at once ; Assume caller
582 	 * process TX desriptors in quanta less than 256
583 	 */
584 	val = pend_desc;
585 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
586 }
587 
588 /* Get pointer to next TX descriptor to be processed (send) by HW */
589 static struct mvneta_tx_desc *
590 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
591 {
592 	int tx_desc = txq->next_desc_to_proc;
593 
594 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
595 	return txq->descs + tx_desc;
596 }
597 
598 /* Release the last allocated TX descriptor. Useful to handle DMA
599  * mapping failures in the TX path.
600  */
601 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
602 {
603 	if (txq->next_desc_to_proc == 0)
604 		txq->next_desc_to_proc = txq->last_desc - 1;
605 	else
606 		txq->next_desc_to_proc--;
607 }
608 
609 /* Set rxq buf size */
610 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
611 				    struct mvneta_rx_queue *rxq,
612 				    int buf_size)
613 {
614 	u32 val;
615 
616 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
617 
618 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
619 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
620 
621 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
622 }
623 
624 /* Disable buffer management (BM) */
625 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
626 				  struct mvneta_rx_queue *rxq)
627 {
628 	u32 val;
629 
630 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
631 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
632 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
633 }
634 
635 
636 
637 /* Sets the RGMII Enable bit (RGMIIEn) in port MAC control register */
638 static void mvneta_gmac_rgmii_set(struct mvneta_port *pp, int enable)
639 {
640 	u32  val;
641 
642 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
643 
644 	if (enable)
645 		val |= MVNETA_GMAC2_PORT_RGMII;
646 	else
647 		val &= ~MVNETA_GMAC2_PORT_RGMII;
648 
649 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
650 }
651 
652 /* Config SGMII port */
653 static void mvneta_port_sgmii_config(struct mvneta_port *pp)
654 {
655 	u32 val;
656 
657 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
658 	val |= MVNETA_GMAC2_PSC_ENABLE;
659 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
660 }
661 
662 /* Start the Ethernet port RX and TX activity */
663 static void mvneta_port_up(struct mvneta_port *pp)
664 {
665 	int queue;
666 	u32 q_map;
667 
668 	/* Enable all initialized TXs. */
669 	mvneta_mib_counters_clear(pp);
670 	q_map = 0;
671 	for (queue = 0; queue < txq_number; queue++) {
672 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
673 		if (txq->descs != NULL)
674 			q_map |= (1 << queue);
675 	}
676 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
677 
678 	/* Enable all initialized RXQs. */
679 	q_map = 0;
680 	for (queue = 0; queue < rxq_number; queue++) {
681 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
682 		if (rxq->descs != NULL)
683 			q_map |= (1 << queue);
684 	}
685 
686 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
687 }
688 
689 /* Stop the Ethernet port activity */
690 static void mvneta_port_down(struct mvneta_port *pp)
691 {
692 	u32 val;
693 	int count;
694 
695 	/* Stop Rx port activity. Check port Rx activity. */
696 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
697 
698 	/* Issue stop command for active channels only */
699 	if (val != 0)
700 		mvreg_write(pp, MVNETA_RXQ_CMD,
701 			    val << MVNETA_RXQ_DISABLE_SHIFT);
702 
703 	/* Wait for all Rx activity to terminate. */
704 	count = 0;
705 	do {
706 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
707 			netdev_warn(pp->dev,
708 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
709 				    val);
710 			break;
711 		}
712 		mdelay(1);
713 
714 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
715 	} while (val & 0xff);
716 
717 	/* Stop Tx port activity. Check port Tx activity. Issue stop
718 	 * command for active channels only
719 	 */
720 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
721 
722 	if (val != 0)
723 		mvreg_write(pp, MVNETA_TXQ_CMD,
724 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
725 
726 	/* Wait for all Tx activity to terminate. */
727 	count = 0;
728 	do {
729 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
730 			netdev_warn(pp->dev,
731 				    "TIMEOUT for TX stopped status=0x%08x\n",
732 				    val);
733 			break;
734 		}
735 		mdelay(1);
736 
737 		/* Check TX Command reg that all Txqs are stopped */
738 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
739 
740 	} while (val & 0xff);
741 
742 	/* Double check to verify that TX FIFO is empty */
743 	count = 0;
744 	do {
745 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
746 			netdev_warn(pp->dev,
747 				    "TX FIFO empty timeout status=0x08%x\n",
748 				    val);
749 			break;
750 		}
751 		mdelay(1);
752 
753 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
754 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
755 		 (val & MVNETA_TX_IN_PRGRS));
756 
757 	udelay(200);
758 }
759 
760 /* Enable the port by setting the port enable bit of the MAC control register */
761 static void mvneta_port_enable(struct mvneta_port *pp)
762 {
763 	u32 val;
764 
765 	/* Enable port */
766 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
767 	val |= MVNETA_GMAC0_PORT_ENABLE;
768 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
769 }
770 
771 /* Disable the port and wait for about 200 usec before retuning */
772 static void mvneta_port_disable(struct mvneta_port *pp)
773 {
774 	u32 val;
775 
776 	/* Reset the Enable bit in the Serial Control Register */
777 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
778 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
779 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
780 
781 	udelay(200);
782 }
783 
784 /* Multicast tables methods */
785 
786 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
787 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
788 {
789 	int offset;
790 	u32 val;
791 
792 	if (queue == -1) {
793 		val = 0;
794 	} else {
795 		val = 0x1 | (queue << 1);
796 		val |= (val << 24) | (val << 16) | (val << 8);
797 	}
798 
799 	for (offset = 0; offset <= 0xc; offset += 4)
800 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
801 }
802 
803 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
804 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
805 {
806 	int offset;
807 	u32 val;
808 
809 	if (queue == -1) {
810 		val = 0;
811 	} else {
812 		val = 0x1 | (queue << 1);
813 		val |= (val << 24) | (val << 16) | (val << 8);
814 	}
815 
816 	for (offset = 0; offset <= 0xfc; offset += 4)
817 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
818 
819 }
820 
821 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
822 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
823 {
824 	int offset;
825 	u32 val;
826 
827 	if (queue == -1) {
828 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
829 		val = 0;
830 	} else {
831 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
832 		val = 0x1 | (queue << 1);
833 		val |= (val << 24) | (val << 16) | (val << 8);
834 	}
835 
836 	for (offset = 0; offset <= 0xfc; offset += 4)
837 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
838 }
839 
840 /* This method sets defaults to the NETA port:
841  *	Clears interrupt Cause and Mask registers.
842  *	Clears all MAC tables.
843  *	Sets defaults to all registers.
844  *	Resets RX and TX descriptor rings.
845  *	Resets PHY.
846  * This method can be called after mvneta_port_down() to return the port
847  *	settings to defaults.
848  */
849 static void mvneta_defaults_set(struct mvneta_port *pp)
850 {
851 	int cpu;
852 	int queue;
853 	u32 val;
854 
855 	/* Clear all Cause registers */
856 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
857 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
858 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
859 
860 	/* Mask all interrupts */
861 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
862 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
863 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
864 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
865 
866 	/* Enable MBUS Retry bit16 */
867 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
868 
869 	/* Set CPU queue access map - all CPUs have access to all RX
870 	 * queues and to all TX queues
871 	 */
872 	for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
873 		mvreg_write(pp, MVNETA_CPU_MAP(cpu),
874 			    (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
875 			     MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
876 
877 	/* Reset RX and TX DMAs */
878 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
879 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
880 
881 	/* Disable Legacy WRR, Disable EJP, Release from reset */
882 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
883 	for (queue = 0; queue < txq_number; queue++) {
884 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
885 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
886 	}
887 
888 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
889 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
890 
891 	/* Set Port Acceleration Mode */
892 	val = MVNETA_ACC_MODE_EXT;
893 	mvreg_write(pp, MVNETA_ACC_MODE, val);
894 
895 	/* Update val of portCfg register accordingly with all RxQueue types */
896 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
897 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
898 
899 	val = 0;
900 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
901 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
902 
903 	/* Build PORT_SDMA_CONFIG_REG */
904 	val = 0;
905 
906 	/* Default burst size */
907 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
908 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
909 
910 	val |= (MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP |
911 		MVNETA_NO_DESC_SWAP);
912 
913 	/* Assign port SDMA configuration */
914 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
915 
916 	mvneta_set_ucast_table(pp, -1);
917 	mvneta_set_special_mcast_table(pp, -1);
918 	mvneta_set_other_mcast_table(pp, -1);
919 
920 	/* Set port interrupt enable register - default enable all */
921 	mvreg_write(pp, MVNETA_INTR_ENABLE,
922 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
923 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
924 }
925 
926 /* Set max sizes for tx queues */
927 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
928 
929 {
930 	u32 val, size, mtu;
931 	int queue;
932 
933 	mtu = max_tx_size * 8;
934 	if (mtu > MVNETA_TX_MTU_MAX)
935 		mtu = MVNETA_TX_MTU_MAX;
936 
937 	/* Set MTU */
938 	val = mvreg_read(pp, MVNETA_TX_MTU);
939 	val &= ~MVNETA_TX_MTU_MAX;
940 	val |= mtu;
941 	mvreg_write(pp, MVNETA_TX_MTU, val);
942 
943 	/* TX token size and all TXQs token size must be larger that MTU */
944 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
945 
946 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
947 	if (size < mtu) {
948 		size = mtu;
949 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
950 		val |= size;
951 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
952 	}
953 	for (queue = 0; queue < txq_number; queue++) {
954 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
955 
956 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
957 		if (size < mtu) {
958 			size = mtu;
959 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
960 			val |= size;
961 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
962 		}
963 	}
964 }
965 
966 /* Set unicast address */
967 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
968 				  int queue)
969 {
970 	unsigned int unicast_reg;
971 	unsigned int tbl_offset;
972 	unsigned int reg_offset;
973 
974 	/* Locate the Unicast table entry */
975 	last_nibble = (0xf & last_nibble);
976 
977 	/* offset from unicast tbl base */
978 	tbl_offset = (last_nibble / 4) * 4;
979 
980 	/* offset within the above reg  */
981 	reg_offset = last_nibble % 4;
982 
983 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
984 
985 	if (queue == -1) {
986 		/* Clear accepts frame bit at specified unicast DA tbl entry */
987 		unicast_reg &= ~(0xff << (8 * reg_offset));
988 	} else {
989 		unicast_reg &= ~(0xff << (8 * reg_offset));
990 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
991 	}
992 
993 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
994 }
995 
996 /* Set mac address */
997 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
998 				int queue)
999 {
1000 	unsigned int mac_h;
1001 	unsigned int mac_l;
1002 
1003 	if (queue != -1) {
1004 		mac_l = (addr[4] << 8) | (addr[5]);
1005 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1006 			(addr[2] << 8) | (addr[3] << 0);
1007 
1008 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1009 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1010 	}
1011 
1012 	/* Accept frames of this address */
1013 	mvneta_set_ucast_addr(pp, addr[5], queue);
1014 }
1015 
1016 /* Set the number of packets that will be received before RX interrupt
1017  * will be generated by HW.
1018  */
1019 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1020 				    struct mvneta_rx_queue *rxq, u32 value)
1021 {
1022 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1023 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1024 	rxq->pkts_coal = value;
1025 }
1026 
1027 /* Set the time delay in usec before RX interrupt will be generated by
1028  * HW.
1029  */
1030 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1031 				    struct mvneta_rx_queue *rxq, u32 value)
1032 {
1033 	u32 val;
1034 	unsigned long clk_rate;
1035 
1036 	clk_rate = clk_get_rate(pp->clk);
1037 	val = (clk_rate / 1000000) * value;
1038 
1039 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1040 	rxq->time_coal = value;
1041 }
1042 
1043 /* Set threshold for TX_DONE pkts coalescing */
1044 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1045 					 struct mvneta_tx_queue *txq, u32 value)
1046 {
1047 	u32 val;
1048 
1049 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1050 
1051 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1052 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1053 
1054 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1055 
1056 	txq->done_pkts_coal = value;
1057 }
1058 
1059 /* Trigger tx done timer in MVNETA_TX_DONE_TIMER_PERIOD msecs */
1060 static void mvneta_add_tx_done_timer(struct mvneta_port *pp)
1061 {
1062 	if (test_and_set_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags) == 0) {
1063 		pp->tx_done_timer.expires = jiffies +
1064 			msecs_to_jiffies(MVNETA_TX_DONE_TIMER_PERIOD);
1065 		add_timer(&pp->tx_done_timer);
1066 	}
1067 }
1068 
1069 
1070 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1071 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1072 				u32 phys_addr, u32 cookie)
1073 {
1074 	rx_desc->buf_cookie = cookie;
1075 	rx_desc->buf_phys_addr = phys_addr;
1076 }
1077 
1078 /* Decrement sent descriptors counter */
1079 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1080 				     struct mvneta_tx_queue *txq,
1081 				     int sent_desc)
1082 {
1083 	u32 val;
1084 
1085 	/* Only 255 TX descriptors can be updated at once */
1086 	while (sent_desc > 0xff) {
1087 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1088 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1089 		sent_desc = sent_desc - 0xff;
1090 	}
1091 
1092 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1093 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1094 }
1095 
1096 /* Get number of TX descriptors already sent by HW */
1097 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1098 					struct mvneta_tx_queue *txq)
1099 {
1100 	u32 val;
1101 	int sent_desc;
1102 
1103 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1104 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1105 		MVNETA_TXQ_SENT_DESC_SHIFT;
1106 
1107 	return sent_desc;
1108 }
1109 
1110 /* Get number of sent descriptors and decrement counter.
1111  *  The number of sent descriptors is returned.
1112  */
1113 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1114 				     struct mvneta_tx_queue *txq)
1115 {
1116 	int sent_desc;
1117 
1118 	/* Get number of sent descriptors */
1119 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1120 
1121 	/* Decrement sent descriptors counter */
1122 	if (sent_desc)
1123 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1124 
1125 	return sent_desc;
1126 }
1127 
1128 /* Set TXQ descriptors fields relevant for CSUM calculation */
1129 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1130 				int ip_hdr_len, int l4_proto)
1131 {
1132 	u32 command;
1133 
1134 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1135 	 * G_L4_chk, L4_type; required only for checksum
1136 	 * calculation
1137 	 */
1138 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1139 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1140 
1141 	if (l3_proto == swab16(ETH_P_IP))
1142 		command |= MVNETA_TXD_IP_CSUM;
1143 	else
1144 		command |= MVNETA_TX_L3_IP6;
1145 
1146 	if (l4_proto == IPPROTO_TCP)
1147 		command |=  MVNETA_TX_L4_CSUM_FULL;
1148 	else if (l4_proto == IPPROTO_UDP)
1149 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1150 	else
1151 		command |= MVNETA_TX_L4_CSUM_NOT;
1152 
1153 	return command;
1154 }
1155 
1156 
1157 /* Display more error info */
1158 static void mvneta_rx_error(struct mvneta_port *pp,
1159 			    struct mvneta_rx_desc *rx_desc)
1160 {
1161 	u32 status = rx_desc->status;
1162 
1163 	if (!mvneta_rxq_desc_is_first_last(rx_desc)) {
1164 		netdev_err(pp->dev,
1165 			   "bad rx status %08x (buffer oversize), size=%d\n",
1166 			   rx_desc->status, rx_desc->data_size);
1167 		return;
1168 	}
1169 
1170 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1171 	case MVNETA_RXD_ERR_CRC:
1172 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1173 			   status, rx_desc->data_size);
1174 		break;
1175 	case MVNETA_RXD_ERR_OVERRUN:
1176 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1177 			   status, rx_desc->data_size);
1178 		break;
1179 	case MVNETA_RXD_ERR_LEN:
1180 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1181 			   status, rx_desc->data_size);
1182 		break;
1183 	case MVNETA_RXD_ERR_RESOURCE:
1184 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1185 			   status, rx_desc->data_size);
1186 		break;
1187 	}
1188 }
1189 
1190 /* Handle RX checksum offload */
1191 static void mvneta_rx_csum(struct mvneta_port *pp,
1192 			   struct mvneta_rx_desc *rx_desc,
1193 			   struct sk_buff *skb)
1194 {
1195 	if ((rx_desc->status & MVNETA_RXD_L3_IP4) &&
1196 	    (rx_desc->status & MVNETA_RXD_L4_CSUM_OK)) {
1197 		skb->csum = 0;
1198 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1199 		return;
1200 	}
1201 
1202 	skb->ip_summed = CHECKSUM_NONE;
1203 }
1204 
1205 /* Return tx queue pointer (find last set bit) according to causeTxDone reg */
1206 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1207 						     u32 cause)
1208 {
1209 	int queue = fls(cause) - 1;
1210 
1211 	return (queue < 0 || queue >= txq_number) ? NULL : &pp->txqs[queue];
1212 }
1213 
1214 /* Free tx queue skbuffs */
1215 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1216 				 struct mvneta_tx_queue *txq, int num)
1217 {
1218 	int i;
1219 
1220 	for (i = 0; i < num; i++) {
1221 		struct mvneta_tx_desc *tx_desc = txq->descs +
1222 			txq->txq_get_index;
1223 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1224 
1225 		mvneta_txq_inc_get(txq);
1226 
1227 		if (!skb)
1228 			continue;
1229 
1230 		dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr,
1231 				 tx_desc->data_size, DMA_TO_DEVICE);
1232 		dev_kfree_skb_any(skb);
1233 	}
1234 }
1235 
1236 /* Handle end of transmission */
1237 static int mvneta_txq_done(struct mvneta_port *pp,
1238 			   struct mvneta_tx_queue *txq)
1239 {
1240 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1241 	int tx_done;
1242 
1243 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1244 	if (tx_done == 0)
1245 		return tx_done;
1246 	mvneta_txq_bufs_free(pp, txq, tx_done);
1247 
1248 	txq->count -= tx_done;
1249 
1250 	if (netif_tx_queue_stopped(nq)) {
1251 		if (txq->size - txq->count >= MAX_SKB_FRAGS + 1)
1252 			netif_tx_wake_queue(nq);
1253 	}
1254 
1255 	return tx_done;
1256 }
1257 
1258 /* Refill processing */
1259 static int mvneta_rx_refill(struct mvneta_port *pp,
1260 			    struct mvneta_rx_desc *rx_desc)
1261 
1262 {
1263 	dma_addr_t phys_addr;
1264 	struct sk_buff *skb;
1265 
1266 	skb = netdev_alloc_skb(pp->dev, pp->pkt_size);
1267 	if (!skb)
1268 		return -ENOMEM;
1269 
1270 	phys_addr = dma_map_single(pp->dev->dev.parent, skb->head,
1271 				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1272 				   DMA_FROM_DEVICE);
1273 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1274 		dev_kfree_skb(skb);
1275 		return -ENOMEM;
1276 	}
1277 
1278 	mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
1279 
1280 	return 0;
1281 }
1282 
1283 /* Handle tx checksum */
1284 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1285 {
1286 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1287 		int ip_hdr_len = 0;
1288 		u8 l4_proto;
1289 
1290 		if (skb->protocol == htons(ETH_P_IP)) {
1291 			struct iphdr *ip4h = ip_hdr(skb);
1292 
1293 			/* Calculate IPv4 checksum and L4 checksum */
1294 			ip_hdr_len = ip4h->ihl;
1295 			l4_proto = ip4h->protocol;
1296 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
1297 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1298 
1299 			/* Read l4_protocol from one of IPv6 extra headers */
1300 			if (skb_network_header_len(skb) > 0)
1301 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1302 			l4_proto = ip6h->nexthdr;
1303 		} else
1304 			return MVNETA_TX_L4_CSUM_NOT;
1305 
1306 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1307 				skb->protocol, ip_hdr_len, l4_proto);
1308 	}
1309 
1310 	return MVNETA_TX_L4_CSUM_NOT;
1311 }
1312 
1313 /* Returns rx queue pointer (find last set bit) according to causeRxTx
1314  * value
1315  */
1316 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
1317 						u32 cause)
1318 {
1319 	int queue = fls(cause >> 8) - 1;
1320 
1321 	return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
1322 }
1323 
1324 /* Drop packets received by the RXQ and free buffers */
1325 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1326 				 struct mvneta_rx_queue *rxq)
1327 {
1328 	int rx_done, i;
1329 
1330 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1331 	for (i = 0; i < rxq->size; i++) {
1332 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1333 		struct sk_buff *skb = (struct sk_buff *)rx_desc->buf_cookie;
1334 
1335 		dev_kfree_skb_any(skb);
1336 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1337 				 rx_desc->data_size, DMA_FROM_DEVICE);
1338 	}
1339 
1340 	if (rx_done)
1341 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1342 }
1343 
1344 /* Main rx processing */
1345 static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
1346 		     struct mvneta_rx_queue *rxq)
1347 {
1348 	struct net_device *dev = pp->dev;
1349 	int rx_done, rx_filled;
1350 
1351 	/* Get number of received packets */
1352 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1353 
1354 	if (rx_todo > rx_done)
1355 		rx_todo = rx_done;
1356 
1357 	rx_done = 0;
1358 	rx_filled = 0;
1359 
1360 	/* Fairness NAPI loop */
1361 	while (rx_done < rx_todo) {
1362 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1363 		struct sk_buff *skb;
1364 		u32 rx_status;
1365 		int rx_bytes, err;
1366 
1367 		prefetch(rx_desc);
1368 		rx_done++;
1369 		rx_filled++;
1370 		rx_status = rx_desc->status;
1371 		skb = (struct sk_buff *)rx_desc->buf_cookie;
1372 
1373 		if (!mvneta_rxq_desc_is_first_last(rx_desc) ||
1374 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1375 			dev->stats.rx_errors++;
1376 			mvneta_rx_error(pp, rx_desc);
1377 			mvneta_rx_desc_fill(rx_desc, rx_desc->buf_phys_addr,
1378 					    (u32)skb);
1379 			continue;
1380 		}
1381 
1382 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1383 				 rx_desc->data_size, DMA_FROM_DEVICE);
1384 
1385 		rx_bytes = rx_desc->data_size -
1386 			(ETH_FCS_LEN + MVNETA_MH_SIZE);
1387 		u64_stats_update_begin(&pp->rx_stats.syncp);
1388 		pp->rx_stats.packets++;
1389 		pp->rx_stats.bytes += rx_bytes;
1390 		u64_stats_update_end(&pp->rx_stats.syncp);
1391 
1392 		/* Linux processing */
1393 		skb_reserve(skb, MVNETA_MH_SIZE);
1394 		skb_put(skb, rx_bytes);
1395 
1396 		skb->protocol = eth_type_trans(skb, dev);
1397 
1398 		mvneta_rx_csum(pp, rx_desc, skb);
1399 
1400 		napi_gro_receive(&pp->napi, skb);
1401 
1402 		/* Refill processing */
1403 		err = mvneta_rx_refill(pp, rx_desc);
1404 		if (err) {
1405 			netdev_err(pp->dev, "Linux processing - Can't refill\n");
1406 			rxq->missed++;
1407 			rx_filled--;
1408 		}
1409 	}
1410 
1411 	/* Update rxq management counters */
1412 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
1413 
1414 	return rx_done;
1415 }
1416 
1417 /* Handle tx fragmentation processing */
1418 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
1419 				  struct mvneta_tx_queue *txq)
1420 {
1421 	struct mvneta_tx_desc *tx_desc;
1422 	int i;
1423 
1424 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1425 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1426 		void *addr = page_address(frag->page.p) + frag->page_offset;
1427 
1428 		tx_desc = mvneta_txq_next_desc_get(txq);
1429 		tx_desc->data_size = frag->size;
1430 
1431 		tx_desc->buf_phys_addr =
1432 			dma_map_single(pp->dev->dev.parent, addr,
1433 				       tx_desc->data_size, DMA_TO_DEVICE);
1434 
1435 		if (dma_mapping_error(pp->dev->dev.parent,
1436 				      tx_desc->buf_phys_addr)) {
1437 			mvneta_txq_desc_put(txq);
1438 			goto error;
1439 		}
1440 
1441 		if (i == (skb_shinfo(skb)->nr_frags - 1)) {
1442 			/* Last descriptor */
1443 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
1444 
1445 			txq->tx_skb[txq->txq_put_index] = skb;
1446 
1447 			mvneta_txq_inc_put(txq);
1448 		} else {
1449 			/* Descriptor in the middle: Not First, Not Last */
1450 			tx_desc->command = 0;
1451 
1452 			txq->tx_skb[txq->txq_put_index] = NULL;
1453 			mvneta_txq_inc_put(txq);
1454 		}
1455 	}
1456 
1457 	return 0;
1458 
1459 error:
1460 	/* Release all descriptors that were used to map fragments of
1461 	 * this packet, as well as the corresponding DMA mappings
1462 	 */
1463 	for (i = i - 1; i >= 0; i--) {
1464 		tx_desc = txq->descs + i;
1465 		dma_unmap_single(pp->dev->dev.parent,
1466 				 tx_desc->buf_phys_addr,
1467 				 tx_desc->data_size,
1468 				 DMA_TO_DEVICE);
1469 		mvneta_txq_desc_put(txq);
1470 	}
1471 
1472 	return -ENOMEM;
1473 }
1474 
1475 /* Main tx processing */
1476 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
1477 {
1478 	struct mvneta_port *pp = netdev_priv(dev);
1479 	struct mvneta_tx_queue *txq = &pp->txqs[txq_def];
1480 	struct mvneta_tx_desc *tx_desc;
1481 	struct netdev_queue *nq;
1482 	int frags = 0;
1483 	u32 tx_cmd;
1484 
1485 	if (!netif_running(dev))
1486 		goto out;
1487 
1488 	frags = skb_shinfo(skb)->nr_frags + 1;
1489 	nq    = netdev_get_tx_queue(dev, txq_def);
1490 
1491 	/* Get a descriptor for the first part of the packet */
1492 	tx_desc = mvneta_txq_next_desc_get(txq);
1493 
1494 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
1495 
1496 	tx_desc->data_size = skb_headlen(skb);
1497 
1498 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
1499 						tx_desc->data_size,
1500 						DMA_TO_DEVICE);
1501 	if (unlikely(dma_mapping_error(dev->dev.parent,
1502 				       tx_desc->buf_phys_addr))) {
1503 		mvneta_txq_desc_put(txq);
1504 		frags = 0;
1505 		goto out;
1506 	}
1507 
1508 	if (frags == 1) {
1509 		/* First and Last descriptor */
1510 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
1511 		tx_desc->command = tx_cmd;
1512 		txq->tx_skb[txq->txq_put_index] = skb;
1513 		mvneta_txq_inc_put(txq);
1514 	} else {
1515 		/* First but not Last */
1516 		tx_cmd |= MVNETA_TXD_F_DESC;
1517 		txq->tx_skb[txq->txq_put_index] = NULL;
1518 		mvneta_txq_inc_put(txq);
1519 		tx_desc->command = tx_cmd;
1520 		/* Continue with other skb fragments */
1521 		if (mvneta_tx_frag_process(pp, skb, txq)) {
1522 			dma_unmap_single(dev->dev.parent,
1523 					 tx_desc->buf_phys_addr,
1524 					 tx_desc->data_size,
1525 					 DMA_TO_DEVICE);
1526 			mvneta_txq_desc_put(txq);
1527 			frags = 0;
1528 			goto out;
1529 		}
1530 	}
1531 
1532 	txq->count += frags;
1533 	mvneta_txq_pend_desc_add(pp, txq, frags);
1534 
1535 	if (txq->size - txq->count < MAX_SKB_FRAGS + 1)
1536 		netif_tx_stop_queue(nq);
1537 
1538 out:
1539 	if (frags > 0) {
1540 		u64_stats_update_begin(&pp->tx_stats.syncp);
1541 		pp->tx_stats.packets++;
1542 		pp->tx_stats.bytes += skb->len;
1543 		u64_stats_update_end(&pp->tx_stats.syncp);
1544 
1545 	} else {
1546 		dev->stats.tx_dropped++;
1547 		dev_kfree_skb_any(skb);
1548 	}
1549 
1550 	if (txq->count >= MVNETA_TXDONE_COAL_PKTS)
1551 		mvneta_txq_done(pp, txq);
1552 
1553 	/* If after calling mvneta_txq_done, count equals
1554 	 * frags, we need to set the timer
1555 	 */
1556 	if (txq->count == frags && frags > 0)
1557 		mvneta_add_tx_done_timer(pp);
1558 
1559 	return NETDEV_TX_OK;
1560 }
1561 
1562 
1563 /* Free tx resources, when resetting a port */
1564 static void mvneta_txq_done_force(struct mvneta_port *pp,
1565 				  struct mvneta_tx_queue *txq)
1566 
1567 {
1568 	int tx_done = txq->count;
1569 
1570 	mvneta_txq_bufs_free(pp, txq, tx_done);
1571 
1572 	/* reset txq */
1573 	txq->count = 0;
1574 	txq->txq_put_index = 0;
1575 	txq->txq_get_index = 0;
1576 }
1577 
1578 /* handle tx done - called from tx done timer callback */
1579 static u32 mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done,
1580 			      int *tx_todo)
1581 {
1582 	struct mvneta_tx_queue *txq;
1583 	u32 tx_done = 0;
1584 	struct netdev_queue *nq;
1585 
1586 	*tx_todo = 0;
1587 	while (cause_tx_done != 0) {
1588 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
1589 		if (!txq)
1590 			break;
1591 
1592 		nq = netdev_get_tx_queue(pp->dev, txq->id);
1593 		__netif_tx_lock(nq, smp_processor_id());
1594 
1595 		if (txq->count) {
1596 			tx_done += mvneta_txq_done(pp, txq);
1597 			*tx_todo += txq->count;
1598 		}
1599 
1600 		__netif_tx_unlock(nq);
1601 		cause_tx_done &= ~((1 << txq->id));
1602 	}
1603 
1604 	return tx_done;
1605 }
1606 
1607 /* Compute crc8 of the specified address, using a unique algorithm ,
1608  * according to hw spec, different than generic crc8 algorithm
1609  */
1610 static int mvneta_addr_crc(unsigned char *addr)
1611 {
1612 	int crc = 0;
1613 	int i;
1614 
1615 	for (i = 0; i < ETH_ALEN; i++) {
1616 		int j;
1617 
1618 		crc = (crc ^ addr[i]) << 8;
1619 		for (j = 7; j >= 0; j--) {
1620 			if (crc & (0x100 << j))
1621 				crc ^= 0x107 << j;
1622 		}
1623 	}
1624 
1625 	return crc;
1626 }
1627 
1628 /* This method controls the net device special MAC multicast support.
1629  * The Special Multicast Table for MAC addresses supports MAC of the form
1630  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1631  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1632  * Table entries in the DA-Filter table. This method set the Special
1633  * Multicast Table appropriate entry.
1634  */
1635 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
1636 					  unsigned char last_byte,
1637 					  int queue)
1638 {
1639 	unsigned int smc_table_reg;
1640 	unsigned int tbl_offset;
1641 	unsigned int reg_offset;
1642 
1643 	/* Register offset from SMC table base    */
1644 	tbl_offset = (last_byte / 4);
1645 	/* Entry offset within the above reg */
1646 	reg_offset = last_byte % 4;
1647 
1648 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
1649 					+ tbl_offset * 4));
1650 
1651 	if (queue == -1)
1652 		smc_table_reg &= ~(0xff << (8 * reg_offset));
1653 	else {
1654 		smc_table_reg &= ~(0xff << (8 * reg_offset));
1655 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1656 	}
1657 
1658 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
1659 		    smc_table_reg);
1660 }
1661 
1662 /* This method controls the network device Other MAC multicast support.
1663  * The Other Multicast Table is used for multicast of another type.
1664  * A CRC-8 is used as an index to the Other Multicast Table entries
1665  * in the DA-Filter table.
1666  * The method gets the CRC-8 value from the calling routine and
1667  * sets the Other Multicast Table appropriate entry according to the
1668  * specified CRC-8 .
1669  */
1670 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
1671 					unsigned char crc8,
1672 					int queue)
1673 {
1674 	unsigned int omc_table_reg;
1675 	unsigned int tbl_offset;
1676 	unsigned int reg_offset;
1677 
1678 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
1679 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
1680 
1681 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
1682 
1683 	if (queue == -1) {
1684 		/* Clear accepts frame bit at specified Other DA table entry */
1685 		omc_table_reg &= ~(0xff << (8 * reg_offset));
1686 	} else {
1687 		omc_table_reg &= ~(0xff << (8 * reg_offset));
1688 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1689 	}
1690 
1691 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
1692 }
1693 
1694 /* The network device supports multicast using two tables:
1695  *    1) Special Multicast Table for MAC addresses of the form
1696  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
1697  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1698  *       Table entries in the DA-Filter table.
1699  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
1700  *       is used as an index to the Other Multicast Table entries in the
1701  *       DA-Filter table.
1702  */
1703 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
1704 				 int queue)
1705 {
1706 	unsigned char crc_result = 0;
1707 
1708 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
1709 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
1710 		return 0;
1711 	}
1712 
1713 	crc_result = mvneta_addr_crc(p_addr);
1714 	if (queue == -1) {
1715 		if (pp->mcast_count[crc_result] == 0) {
1716 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
1717 				    crc_result);
1718 			return -EINVAL;
1719 		}
1720 
1721 		pp->mcast_count[crc_result]--;
1722 		if (pp->mcast_count[crc_result] != 0) {
1723 			netdev_info(pp->dev,
1724 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
1725 				    pp->mcast_count[crc_result], crc_result);
1726 			return -EINVAL;
1727 		}
1728 	} else
1729 		pp->mcast_count[crc_result]++;
1730 
1731 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
1732 
1733 	return 0;
1734 }
1735 
1736 /* Configure Fitering mode of Ethernet port */
1737 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
1738 					  int is_promisc)
1739 {
1740 	u32 port_cfg_reg, val;
1741 
1742 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
1743 
1744 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
1745 
1746 	/* Set / Clear UPM bit in port configuration register */
1747 	if (is_promisc) {
1748 		/* Accept all Unicast addresses */
1749 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
1750 		val |= MVNETA_FORCE_UNI;
1751 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
1752 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
1753 	} else {
1754 		/* Reject all Unicast addresses */
1755 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
1756 		val &= ~MVNETA_FORCE_UNI;
1757 	}
1758 
1759 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
1760 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
1761 }
1762 
1763 /* register unicast and multicast addresses */
1764 static void mvneta_set_rx_mode(struct net_device *dev)
1765 {
1766 	struct mvneta_port *pp = netdev_priv(dev);
1767 	struct netdev_hw_addr *ha;
1768 
1769 	if (dev->flags & IFF_PROMISC) {
1770 		/* Accept all: Multicast + Unicast */
1771 		mvneta_rx_unicast_promisc_set(pp, 1);
1772 		mvneta_set_ucast_table(pp, rxq_def);
1773 		mvneta_set_special_mcast_table(pp, rxq_def);
1774 		mvneta_set_other_mcast_table(pp, rxq_def);
1775 	} else {
1776 		/* Accept single Unicast */
1777 		mvneta_rx_unicast_promisc_set(pp, 0);
1778 		mvneta_set_ucast_table(pp, -1);
1779 		mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
1780 
1781 		if (dev->flags & IFF_ALLMULTI) {
1782 			/* Accept all multicast */
1783 			mvneta_set_special_mcast_table(pp, rxq_def);
1784 			mvneta_set_other_mcast_table(pp, rxq_def);
1785 		} else {
1786 			/* Accept only initialized multicast */
1787 			mvneta_set_special_mcast_table(pp, -1);
1788 			mvneta_set_other_mcast_table(pp, -1);
1789 
1790 			if (!netdev_mc_empty(dev)) {
1791 				netdev_for_each_mc_addr(ha, dev) {
1792 					mvneta_mcast_addr_set(pp, ha->addr,
1793 							      rxq_def);
1794 				}
1795 			}
1796 		}
1797 	}
1798 }
1799 
1800 /* Interrupt handling - the callback for request_irq() */
1801 static irqreturn_t mvneta_isr(int irq, void *dev_id)
1802 {
1803 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
1804 
1805 	/* Mask all interrupts */
1806 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1807 
1808 	napi_schedule(&pp->napi);
1809 
1810 	return IRQ_HANDLED;
1811 }
1812 
1813 /* NAPI handler
1814  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
1815  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
1816  * Bits 8 -15 of the cause Rx Tx register indicate that are received
1817  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
1818  * Each CPU has its own causeRxTx register
1819  */
1820 static int mvneta_poll(struct napi_struct *napi, int budget)
1821 {
1822 	int rx_done = 0;
1823 	u32 cause_rx_tx;
1824 	unsigned long flags;
1825 	struct mvneta_port *pp = netdev_priv(napi->dev);
1826 
1827 	if (!netif_running(pp->dev)) {
1828 		napi_complete(napi);
1829 		return rx_done;
1830 	}
1831 
1832 	/* Read cause register */
1833 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
1834 		MVNETA_RX_INTR_MASK(rxq_number);
1835 
1836 	/* For the case where the last mvneta_poll did not process all
1837 	 * RX packets
1838 	 */
1839 	cause_rx_tx |= pp->cause_rx_tx;
1840 	if (rxq_number > 1) {
1841 		while ((cause_rx_tx != 0) && (budget > 0)) {
1842 			int count;
1843 			struct mvneta_rx_queue *rxq;
1844 			/* get rx queue number from cause_rx_tx */
1845 			rxq = mvneta_rx_policy(pp, cause_rx_tx);
1846 			if (!rxq)
1847 				break;
1848 
1849 			/* process the packet in that rx queue */
1850 			count = mvneta_rx(pp, budget, rxq);
1851 			rx_done += count;
1852 			budget -= count;
1853 			if (budget > 0) {
1854 				/* set off the rx bit of the
1855 				 * corresponding bit in the cause rx
1856 				 * tx register, so that next iteration
1857 				 * will find the next rx queue where
1858 				 * packets are received on
1859 				 */
1860 				cause_rx_tx &= ~((1 << rxq->id) << 8);
1861 			}
1862 		}
1863 	} else {
1864 		rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
1865 		budget -= rx_done;
1866 	}
1867 
1868 	if (budget > 0) {
1869 		cause_rx_tx = 0;
1870 		napi_complete(napi);
1871 		local_irq_save(flags);
1872 		mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1873 			    MVNETA_RX_INTR_MASK(rxq_number));
1874 		local_irq_restore(flags);
1875 	}
1876 
1877 	pp->cause_rx_tx = cause_rx_tx;
1878 	return rx_done;
1879 }
1880 
1881 /* tx done timer callback */
1882 static void mvneta_tx_done_timer_callback(unsigned long data)
1883 {
1884 	struct net_device *dev = (struct net_device *)data;
1885 	struct mvneta_port *pp = netdev_priv(dev);
1886 	int tx_done = 0, tx_todo = 0;
1887 
1888 	if (!netif_running(dev))
1889 		return ;
1890 
1891 	clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
1892 
1893 	tx_done = mvneta_tx_done_gbe(pp,
1894 				     (((1 << txq_number) - 1) &
1895 				      MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK),
1896 				     &tx_todo);
1897 	if (tx_todo > 0)
1898 		mvneta_add_tx_done_timer(pp);
1899 }
1900 
1901 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
1902 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
1903 			   int num)
1904 {
1905 	struct net_device *dev = pp->dev;
1906 	int i;
1907 
1908 	for (i = 0; i < num; i++) {
1909 		struct sk_buff *skb;
1910 		struct mvneta_rx_desc *rx_desc;
1911 		unsigned long phys_addr;
1912 
1913 		skb = dev_alloc_skb(pp->pkt_size);
1914 		if (!skb) {
1915 			netdev_err(dev, "%s:rxq %d, %d of %d buffs  filled\n",
1916 				__func__, rxq->id, i, num);
1917 			break;
1918 		}
1919 
1920 		rx_desc = rxq->descs + i;
1921 		memset(rx_desc, 0, sizeof(struct mvneta_rx_desc));
1922 		phys_addr = dma_map_single(dev->dev.parent, skb->head,
1923 					   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1924 					   DMA_FROM_DEVICE);
1925 		if (unlikely(dma_mapping_error(dev->dev.parent, phys_addr))) {
1926 			dev_kfree_skb(skb);
1927 			break;
1928 		}
1929 
1930 		mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb);
1931 	}
1932 
1933 	/* Add this number of RX descriptors as non occupied (ready to
1934 	 * get packets)
1935 	 */
1936 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
1937 
1938 	return i;
1939 }
1940 
1941 /* Free all packets pending transmit from all TXQs and reset TX port */
1942 static void mvneta_tx_reset(struct mvneta_port *pp)
1943 {
1944 	int queue;
1945 
1946 	/* free the skb's in the hal tx ring */
1947 	for (queue = 0; queue < txq_number; queue++)
1948 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
1949 
1950 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1951 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1952 }
1953 
1954 static void mvneta_rx_reset(struct mvneta_port *pp)
1955 {
1956 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1957 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1958 }
1959 
1960 /* Rx/Tx queue initialization/cleanup methods */
1961 
1962 /* Create a specified RX queue */
1963 static int mvneta_rxq_init(struct mvneta_port *pp,
1964 			   struct mvneta_rx_queue *rxq)
1965 
1966 {
1967 	rxq->size = pp->rx_ring_size;
1968 
1969 	/* Allocate memory for RX descriptors */
1970 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
1971 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
1972 					&rxq->descs_phys, GFP_KERNEL);
1973 	if (rxq->descs == NULL) {
1974 		netdev_err(pp->dev,
1975 			   "rxq=%d: Can't allocate %d bytes for %d RX descr\n",
1976 			   rxq->id, rxq->size * MVNETA_DESC_ALIGNED_SIZE,
1977 			   rxq->size);
1978 		return -ENOMEM;
1979 	}
1980 
1981 	BUG_ON(rxq->descs !=
1982 	       PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
1983 
1984 	rxq->last_desc = rxq->size - 1;
1985 
1986 	/* Set Rx descriptors queue starting address */
1987 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
1988 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
1989 
1990 	/* Set Offset */
1991 	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
1992 
1993 	/* Set coalescing pkts and time */
1994 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
1995 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
1996 
1997 	/* Fill RXQ with buffers from RX pool */
1998 	mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
1999 	mvneta_rxq_bm_disable(pp, rxq);
2000 	mvneta_rxq_fill(pp, rxq, rxq->size);
2001 
2002 	return 0;
2003 }
2004 
2005 /* Cleanup Rx queue */
2006 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2007 			      struct mvneta_rx_queue *rxq)
2008 {
2009 	mvneta_rxq_drop_pkts(pp, rxq);
2010 
2011 	if (rxq->descs)
2012 		dma_free_coherent(pp->dev->dev.parent,
2013 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2014 				  rxq->descs,
2015 				  rxq->descs_phys);
2016 
2017 	rxq->descs             = NULL;
2018 	rxq->last_desc         = 0;
2019 	rxq->next_desc_to_proc = 0;
2020 	rxq->descs_phys        = 0;
2021 }
2022 
2023 /* Create and initialize a tx queue */
2024 static int mvneta_txq_init(struct mvneta_port *pp,
2025 			   struct mvneta_tx_queue *txq)
2026 {
2027 	txq->size = pp->tx_ring_size;
2028 
2029 	/* Allocate memory for TX descriptors */
2030 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2031 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2032 					&txq->descs_phys, GFP_KERNEL);
2033 	if (txq->descs == NULL) {
2034 		netdev_err(pp->dev,
2035 			   "txQ=%d: Can't allocate %d bytes for %d TX descr\n",
2036 			   txq->id, txq->size * MVNETA_DESC_ALIGNED_SIZE,
2037 			   txq->size);
2038 		return -ENOMEM;
2039 	}
2040 
2041 	/* Make sure descriptor address is cache line size aligned  */
2042 	BUG_ON(txq->descs !=
2043 	       PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
2044 
2045 	txq->last_desc = txq->size - 1;
2046 
2047 	/* Set maximum bandwidth for enabled TXQs */
2048 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2049 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2050 
2051 	/* Set Tx descriptors queue starting address */
2052 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2053 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2054 
2055 	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2056 	if (txq->tx_skb == NULL) {
2057 		dma_free_coherent(pp->dev->dev.parent,
2058 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2059 				  txq->descs, txq->descs_phys);
2060 		return -ENOMEM;
2061 	}
2062 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2063 
2064 	return 0;
2065 }
2066 
2067 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2068 static void mvneta_txq_deinit(struct mvneta_port *pp,
2069 			      struct mvneta_tx_queue *txq)
2070 {
2071 	kfree(txq->tx_skb);
2072 
2073 	if (txq->descs)
2074 		dma_free_coherent(pp->dev->dev.parent,
2075 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2076 				  txq->descs, txq->descs_phys);
2077 
2078 	txq->descs             = NULL;
2079 	txq->last_desc         = 0;
2080 	txq->next_desc_to_proc = 0;
2081 	txq->descs_phys        = 0;
2082 
2083 	/* Set minimum bandwidth for disabled TXQs */
2084 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2085 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2086 
2087 	/* Set Tx descriptors queue starting address and size */
2088 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2089 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2090 }
2091 
2092 /* Cleanup all Tx queues */
2093 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2094 {
2095 	int queue;
2096 
2097 	for (queue = 0; queue < txq_number; queue++)
2098 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
2099 }
2100 
2101 /* Cleanup all Rx queues */
2102 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2103 {
2104 	int queue;
2105 
2106 	for (queue = 0; queue < rxq_number; queue++)
2107 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2108 }
2109 
2110 
2111 /* Init all Rx queues */
2112 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2113 {
2114 	int queue;
2115 
2116 	for (queue = 0; queue < rxq_number; queue++) {
2117 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2118 		if (err) {
2119 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2120 				   __func__, queue);
2121 			mvneta_cleanup_rxqs(pp);
2122 			return err;
2123 		}
2124 	}
2125 
2126 	return 0;
2127 }
2128 
2129 /* Init all tx queues */
2130 static int mvneta_setup_txqs(struct mvneta_port *pp)
2131 {
2132 	int queue;
2133 
2134 	for (queue = 0; queue < txq_number; queue++) {
2135 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2136 		if (err) {
2137 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
2138 				   __func__, queue);
2139 			mvneta_cleanup_txqs(pp);
2140 			return err;
2141 		}
2142 	}
2143 
2144 	return 0;
2145 }
2146 
2147 static void mvneta_start_dev(struct mvneta_port *pp)
2148 {
2149 	mvneta_max_rx_size_set(pp, pp->pkt_size);
2150 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2151 
2152 	/* start the Rx/Tx activity */
2153 	mvneta_port_enable(pp);
2154 
2155 	/* Enable polling on the port */
2156 	napi_enable(&pp->napi);
2157 
2158 	/* Unmask interrupts */
2159 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2160 		    MVNETA_RX_INTR_MASK(rxq_number));
2161 
2162 	phy_start(pp->phy_dev);
2163 	netif_tx_start_all_queues(pp->dev);
2164 }
2165 
2166 static void mvneta_stop_dev(struct mvneta_port *pp)
2167 {
2168 	phy_stop(pp->phy_dev);
2169 
2170 	napi_disable(&pp->napi);
2171 
2172 	netif_carrier_off(pp->dev);
2173 
2174 	mvneta_port_down(pp);
2175 	netif_tx_stop_all_queues(pp->dev);
2176 
2177 	/* Stop the port activity */
2178 	mvneta_port_disable(pp);
2179 
2180 	/* Clear all ethernet port interrupts */
2181 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2182 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
2183 
2184 	/* Mask all ethernet port interrupts */
2185 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2186 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
2187 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
2188 
2189 	mvneta_tx_reset(pp);
2190 	mvneta_rx_reset(pp);
2191 }
2192 
2193 /* tx timeout callback - display a message and stop/start the network device */
2194 static void mvneta_tx_timeout(struct net_device *dev)
2195 {
2196 	struct mvneta_port *pp = netdev_priv(dev);
2197 
2198 	netdev_info(dev, "tx timeout\n");
2199 	mvneta_stop_dev(pp);
2200 	mvneta_start_dev(pp);
2201 }
2202 
2203 /* Return positive if MTU is valid */
2204 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
2205 {
2206 	if (mtu < 68) {
2207 		netdev_err(dev, "cannot change mtu to less than 68\n");
2208 		return -EINVAL;
2209 	}
2210 
2211 	/* 9676 == 9700 - 20 and rounding to 8 */
2212 	if (mtu > 9676) {
2213 		netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
2214 		mtu = 9676;
2215 	}
2216 
2217 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
2218 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
2219 			mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
2220 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
2221 	}
2222 
2223 	return mtu;
2224 }
2225 
2226 /* Change the device mtu */
2227 static int mvneta_change_mtu(struct net_device *dev, int mtu)
2228 {
2229 	struct mvneta_port *pp = netdev_priv(dev);
2230 	int ret;
2231 
2232 	mtu = mvneta_check_mtu_valid(dev, mtu);
2233 	if (mtu < 0)
2234 		return -EINVAL;
2235 
2236 	dev->mtu = mtu;
2237 
2238 	if (!netif_running(dev))
2239 		return 0;
2240 
2241 	/* The interface is running, so we have to force a
2242 	 * reallocation of the RXQs
2243 	 */
2244 	mvneta_stop_dev(pp);
2245 
2246 	mvneta_cleanup_txqs(pp);
2247 	mvneta_cleanup_rxqs(pp);
2248 
2249 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2250 
2251 	ret = mvneta_setup_rxqs(pp);
2252 	if (ret) {
2253 		netdev_err(pp->dev, "unable to setup rxqs after MTU change\n");
2254 		return ret;
2255 	}
2256 
2257 	mvneta_setup_txqs(pp);
2258 
2259 	mvneta_start_dev(pp);
2260 	mvneta_port_up(pp);
2261 
2262 	return 0;
2263 }
2264 
2265 /* Handle setting mac address */
2266 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
2267 {
2268 	struct mvneta_port *pp = netdev_priv(dev);
2269 	u8 *mac = addr + 2;
2270 	int i;
2271 
2272 	if (netif_running(dev))
2273 		return -EBUSY;
2274 
2275 	/* Remove previous address table entry */
2276 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
2277 
2278 	/* Set new addr in hw */
2279 	mvneta_mac_addr_set(pp, mac, rxq_def);
2280 
2281 	/* Set addr in the device */
2282 	for (i = 0; i < ETH_ALEN; i++)
2283 		dev->dev_addr[i] = mac[i];
2284 
2285 	return 0;
2286 }
2287 
2288 static void mvneta_adjust_link(struct net_device *ndev)
2289 {
2290 	struct mvneta_port *pp = netdev_priv(ndev);
2291 	struct phy_device *phydev = pp->phy_dev;
2292 	int status_change = 0;
2293 
2294 	if (phydev->link) {
2295 		if ((pp->speed != phydev->speed) ||
2296 		    (pp->duplex != phydev->duplex)) {
2297 			u32 val;
2298 
2299 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2300 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
2301 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
2302 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
2303 
2304 			if (phydev->duplex)
2305 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
2306 
2307 			if (phydev->speed == SPEED_1000)
2308 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
2309 			else
2310 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
2311 
2312 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2313 
2314 			pp->duplex = phydev->duplex;
2315 			pp->speed  = phydev->speed;
2316 		}
2317 	}
2318 
2319 	if (phydev->link != pp->link) {
2320 		if (!phydev->link) {
2321 			pp->duplex = -1;
2322 			pp->speed = 0;
2323 		}
2324 
2325 		pp->link = phydev->link;
2326 		status_change = 1;
2327 	}
2328 
2329 	if (status_change) {
2330 		if (phydev->link) {
2331 			u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
2332 			val |= (MVNETA_GMAC_FORCE_LINK_PASS |
2333 				MVNETA_GMAC_FORCE_LINK_DOWN);
2334 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
2335 			mvneta_port_up(pp);
2336 			netdev_info(pp->dev, "link up\n");
2337 		} else {
2338 			mvneta_port_down(pp);
2339 			netdev_info(pp->dev, "link down\n");
2340 		}
2341 	}
2342 }
2343 
2344 static int mvneta_mdio_probe(struct mvneta_port *pp)
2345 {
2346 	struct phy_device *phy_dev;
2347 
2348 	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
2349 				 pp->phy_interface);
2350 	if (!phy_dev) {
2351 		netdev_err(pp->dev, "could not find the PHY\n");
2352 		return -ENODEV;
2353 	}
2354 
2355 	phy_dev->supported &= PHY_GBIT_FEATURES;
2356 	phy_dev->advertising = phy_dev->supported;
2357 
2358 	pp->phy_dev = phy_dev;
2359 	pp->link    = 0;
2360 	pp->duplex  = 0;
2361 	pp->speed   = 0;
2362 
2363 	return 0;
2364 }
2365 
2366 static void mvneta_mdio_remove(struct mvneta_port *pp)
2367 {
2368 	phy_disconnect(pp->phy_dev);
2369 	pp->phy_dev = NULL;
2370 }
2371 
2372 static int mvneta_open(struct net_device *dev)
2373 {
2374 	struct mvneta_port *pp = netdev_priv(dev);
2375 	int ret;
2376 
2377 	mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
2378 
2379 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
2380 
2381 	ret = mvneta_setup_rxqs(pp);
2382 	if (ret)
2383 		return ret;
2384 
2385 	ret = mvneta_setup_txqs(pp);
2386 	if (ret)
2387 		goto err_cleanup_rxqs;
2388 
2389 	/* Connect to port interrupt line */
2390 	ret = request_irq(pp->dev->irq, mvneta_isr, 0,
2391 			  MVNETA_DRIVER_NAME, pp);
2392 	if (ret) {
2393 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
2394 		goto err_cleanup_txqs;
2395 	}
2396 
2397 	/* In default link is down */
2398 	netif_carrier_off(pp->dev);
2399 
2400 	ret = mvneta_mdio_probe(pp);
2401 	if (ret < 0) {
2402 		netdev_err(dev, "cannot probe MDIO bus\n");
2403 		goto err_free_irq;
2404 	}
2405 
2406 	mvneta_start_dev(pp);
2407 
2408 	return 0;
2409 
2410 err_free_irq:
2411 	free_irq(pp->dev->irq, pp);
2412 err_cleanup_txqs:
2413 	mvneta_cleanup_txqs(pp);
2414 err_cleanup_rxqs:
2415 	mvneta_cleanup_rxqs(pp);
2416 	return ret;
2417 }
2418 
2419 /* Stop the port, free port interrupt line */
2420 static int mvneta_stop(struct net_device *dev)
2421 {
2422 	struct mvneta_port *pp = netdev_priv(dev);
2423 
2424 	mvneta_stop_dev(pp);
2425 	mvneta_mdio_remove(pp);
2426 	free_irq(dev->irq, pp);
2427 	mvneta_cleanup_rxqs(pp);
2428 	mvneta_cleanup_txqs(pp);
2429 	del_timer(&pp->tx_done_timer);
2430 	clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
2431 
2432 	return 0;
2433 }
2434 
2435 /* Ethtool methods */
2436 
2437 /* Get settings (phy address, speed) for ethtools */
2438 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2439 {
2440 	struct mvneta_port *pp = netdev_priv(dev);
2441 
2442 	if (!pp->phy_dev)
2443 		return -ENODEV;
2444 
2445 	return phy_ethtool_gset(pp->phy_dev, cmd);
2446 }
2447 
2448 /* Set settings (phy address, speed) for ethtools */
2449 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2450 {
2451 	struct mvneta_port *pp = netdev_priv(dev);
2452 
2453 	if (!pp->phy_dev)
2454 		return -ENODEV;
2455 
2456 	return phy_ethtool_sset(pp->phy_dev, cmd);
2457 }
2458 
2459 /* Set interrupt coalescing for ethtools */
2460 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
2461 				       struct ethtool_coalesce *c)
2462 {
2463 	struct mvneta_port *pp = netdev_priv(dev);
2464 	int queue;
2465 
2466 	for (queue = 0; queue < rxq_number; queue++) {
2467 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2468 		rxq->time_coal = c->rx_coalesce_usecs;
2469 		rxq->pkts_coal = c->rx_max_coalesced_frames;
2470 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2471 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2472 	}
2473 
2474 	for (queue = 0; queue < txq_number; queue++) {
2475 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2476 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
2477 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2478 	}
2479 
2480 	return 0;
2481 }
2482 
2483 /* get coalescing for ethtools */
2484 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
2485 				       struct ethtool_coalesce *c)
2486 {
2487 	struct mvneta_port *pp = netdev_priv(dev);
2488 
2489 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
2490 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
2491 
2492 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
2493 	return 0;
2494 }
2495 
2496 
2497 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
2498 				    struct ethtool_drvinfo *drvinfo)
2499 {
2500 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
2501 		sizeof(drvinfo->driver));
2502 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
2503 		sizeof(drvinfo->version));
2504 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
2505 		sizeof(drvinfo->bus_info));
2506 }
2507 
2508 
2509 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
2510 					 struct ethtool_ringparam *ring)
2511 {
2512 	struct mvneta_port *pp = netdev_priv(netdev);
2513 
2514 	ring->rx_max_pending = MVNETA_MAX_RXD;
2515 	ring->tx_max_pending = MVNETA_MAX_TXD;
2516 	ring->rx_pending = pp->rx_ring_size;
2517 	ring->tx_pending = pp->tx_ring_size;
2518 }
2519 
2520 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
2521 					struct ethtool_ringparam *ring)
2522 {
2523 	struct mvneta_port *pp = netdev_priv(dev);
2524 
2525 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
2526 		return -EINVAL;
2527 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
2528 		ring->rx_pending : MVNETA_MAX_RXD;
2529 	pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ?
2530 		ring->tx_pending : MVNETA_MAX_TXD;
2531 
2532 	if (netif_running(dev)) {
2533 		mvneta_stop(dev);
2534 		if (mvneta_open(dev)) {
2535 			netdev_err(dev,
2536 				   "error on opening device after ring param change\n");
2537 			return -ENOMEM;
2538 		}
2539 	}
2540 
2541 	return 0;
2542 }
2543 
2544 static const struct net_device_ops mvneta_netdev_ops = {
2545 	.ndo_open            = mvneta_open,
2546 	.ndo_stop            = mvneta_stop,
2547 	.ndo_start_xmit      = mvneta_tx,
2548 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
2549 	.ndo_set_mac_address = mvneta_set_mac_addr,
2550 	.ndo_change_mtu      = mvneta_change_mtu,
2551 	.ndo_tx_timeout      = mvneta_tx_timeout,
2552 	.ndo_get_stats64     = mvneta_get_stats64,
2553 };
2554 
2555 const struct ethtool_ops mvneta_eth_tool_ops = {
2556 	.get_link       = ethtool_op_get_link,
2557 	.get_settings   = mvneta_ethtool_get_settings,
2558 	.set_settings   = mvneta_ethtool_set_settings,
2559 	.set_coalesce   = mvneta_ethtool_set_coalesce,
2560 	.get_coalesce   = mvneta_ethtool_get_coalesce,
2561 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
2562 	.get_ringparam  = mvneta_ethtool_get_ringparam,
2563 	.set_ringparam	= mvneta_ethtool_set_ringparam,
2564 };
2565 
2566 /* Initialize hw */
2567 static int mvneta_init(struct mvneta_port *pp, int phy_addr)
2568 {
2569 	int queue;
2570 
2571 	/* Disable port */
2572 	mvneta_port_disable(pp);
2573 
2574 	/* Set port default values */
2575 	mvneta_defaults_set(pp);
2576 
2577 	pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue),
2578 			   GFP_KERNEL);
2579 	if (!pp->txqs)
2580 		return -ENOMEM;
2581 
2582 	/* Initialize TX descriptor rings */
2583 	for (queue = 0; queue < txq_number; queue++) {
2584 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
2585 		txq->id = queue;
2586 		txq->size = pp->tx_ring_size;
2587 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
2588 	}
2589 
2590 	pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue),
2591 			   GFP_KERNEL);
2592 	if (!pp->rxqs) {
2593 		kfree(pp->txqs);
2594 		return -ENOMEM;
2595 	}
2596 
2597 	/* Create Rx descriptor rings */
2598 	for (queue = 0; queue < rxq_number; queue++) {
2599 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
2600 		rxq->id = queue;
2601 		rxq->size = pp->rx_ring_size;
2602 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
2603 		rxq->time_coal = MVNETA_RX_COAL_USEC;
2604 	}
2605 
2606 	return 0;
2607 }
2608 
2609 static void mvneta_deinit(struct mvneta_port *pp)
2610 {
2611 	kfree(pp->txqs);
2612 	kfree(pp->rxqs);
2613 }
2614 
2615 /* platform glue : initialize decoding windows */
2616 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
2617 				     const struct mbus_dram_target_info *dram)
2618 {
2619 	u32 win_enable;
2620 	u32 win_protect;
2621 	int i;
2622 
2623 	for (i = 0; i < 6; i++) {
2624 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
2625 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
2626 
2627 		if (i < 4)
2628 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
2629 	}
2630 
2631 	win_enable = 0x3f;
2632 	win_protect = 0;
2633 
2634 	for (i = 0; i < dram->num_cs; i++) {
2635 		const struct mbus_dram_window *cs = dram->cs + i;
2636 		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
2637 			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
2638 
2639 		mvreg_write(pp, MVNETA_WIN_SIZE(i),
2640 			    (cs->size - 1) & 0xffff0000);
2641 
2642 		win_enable &= ~(1 << i);
2643 		win_protect |= 3 << (2 * i);
2644 	}
2645 
2646 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
2647 }
2648 
2649 /* Power up the port */
2650 static void mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
2651 {
2652 	u32 val;
2653 
2654 	/* MAC Cause register should be cleared */
2655 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
2656 
2657 	if (phy_mode == PHY_INTERFACE_MODE_SGMII)
2658 		mvneta_port_sgmii_config(pp);
2659 
2660 	mvneta_gmac_rgmii_set(pp, 1);
2661 
2662 	/* Cancel Port Reset */
2663 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
2664 	val &= ~MVNETA_GMAC2_PORT_RESET;
2665 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
2666 
2667 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
2668 		MVNETA_GMAC2_PORT_RESET) != 0)
2669 		continue;
2670 }
2671 
2672 /* Device initialization routine */
2673 static int mvneta_probe(struct platform_device *pdev)
2674 {
2675 	const struct mbus_dram_target_info *dram_target_info;
2676 	struct device_node *dn = pdev->dev.of_node;
2677 	struct device_node *phy_node;
2678 	u32 phy_addr;
2679 	struct mvneta_port *pp;
2680 	struct net_device *dev;
2681 	const char *mac_addr;
2682 	int phy_mode;
2683 	int err;
2684 
2685 	/* Our multiqueue support is not complete, so for now, only
2686 	 * allow the usage of the first RX queue
2687 	 */
2688 	if (rxq_def != 0) {
2689 		dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
2690 		return -EINVAL;
2691 	}
2692 
2693 	dev = alloc_etherdev_mq(sizeof(struct mvneta_port), 8);
2694 	if (!dev)
2695 		return -ENOMEM;
2696 
2697 	dev->irq = irq_of_parse_and_map(dn, 0);
2698 	if (dev->irq == 0) {
2699 		err = -EINVAL;
2700 		goto err_free_netdev;
2701 	}
2702 
2703 	phy_node = of_parse_phandle(dn, "phy", 0);
2704 	if (!phy_node) {
2705 		dev_err(&pdev->dev, "no associated PHY\n");
2706 		err = -ENODEV;
2707 		goto err_free_irq;
2708 	}
2709 
2710 	phy_mode = of_get_phy_mode(dn);
2711 	if (phy_mode < 0) {
2712 		dev_err(&pdev->dev, "incorrect phy-mode\n");
2713 		err = -EINVAL;
2714 		goto err_free_irq;
2715 	}
2716 
2717 	mac_addr = of_get_mac_address(dn);
2718 
2719 	if (!mac_addr || !is_valid_ether_addr(mac_addr))
2720 		eth_hw_addr_random(dev);
2721 	else
2722 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
2723 
2724 	dev->tx_queue_len = MVNETA_MAX_TXD;
2725 	dev->watchdog_timeo = 5 * HZ;
2726 	dev->netdev_ops = &mvneta_netdev_ops;
2727 
2728 	SET_ETHTOOL_OPS(dev, &mvneta_eth_tool_ops);
2729 
2730 	pp = netdev_priv(dev);
2731 
2732 	pp->tx_done_timer.function = mvneta_tx_done_timer_callback;
2733 	init_timer(&pp->tx_done_timer);
2734 	clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags);
2735 
2736 	pp->weight = MVNETA_RX_POLL_WEIGHT;
2737 	pp->phy_node = phy_node;
2738 	pp->phy_interface = phy_mode;
2739 
2740 	pp->base = of_iomap(dn, 0);
2741 	if (pp->base == NULL) {
2742 		err = -ENOMEM;
2743 		goto err_free_irq;
2744 	}
2745 
2746 	pp->clk = devm_clk_get(&pdev->dev, NULL);
2747 	if (IS_ERR(pp->clk)) {
2748 		err = PTR_ERR(pp->clk);
2749 		goto err_unmap;
2750 	}
2751 
2752 	clk_prepare_enable(pp->clk);
2753 
2754 	pp->tx_done_timer.data = (unsigned long)dev;
2755 
2756 	pp->tx_ring_size = MVNETA_MAX_TXD;
2757 	pp->rx_ring_size = MVNETA_MAX_RXD;
2758 
2759 	pp->dev = dev;
2760 	SET_NETDEV_DEV(dev, &pdev->dev);
2761 
2762 	err = mvneta_init(pp, phy_addr);
2763 	if (err < 0) {
2764 		dev_err(&pdev->dev, "can't init eth hal\n");
2765 		goto err_clk;
2766 	}
2767 	mvneta_port_power_up(pp, phy_mode);
2768 
2769 	dram_target_info = mv_mbus_dram_info();
2770 	if (dram_target_info)
2771 		mvneta_conf_mbus_windows(pp, dram_target_info);
2772 
2773 	netif_napi_add(dev, &pp->napi, mvneta_poll, pp->weight);
2774 
2775 	err = register_netdev(dev);
2776 	if (err < 0) {
2777 		dev_err(&pdev->dev, "failed to register\n");
2778 		goto err_deinit;
2779 	}
2780 
2781 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
2782 	dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM;
2783 	dev->priv_flags |= IFF_UNICAST_FLT;
2784 
2785 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
2786 
2787 	platform_set_drvdata(pdev, pp->dev);
2788 
2789 	return 0;
2790 
2791 err_deinit:
2792 	mvneta_deinit(pp);
2793 err_clk:
2794 	clk_disable_unprepare(pp->clk);
2795 err_unmap:
2796 	iounmap(pp->base);
2797 err_free_irq:
2798 	irq_dispose_mapping(dev->irq);
2799 err_free_netdev:
2800 	free_netdev(dev);
2801 	return err;
2802 }
2803 
2804 /* Device removal routine */
2805 static int mvneta_remove(struct platform_device *pdev)
2806 {
2807 	struct net_device  *dev = platform_get_drvdata(pdev);
2808 	struct mvneta_port *pp = netdev_priv(dev);
2809 
2810 	unregister_netdev(dev);
2811 	mvneta_deinit(pp);
2812 	clk_disable_unprepare(pp->clk);
2813 	iounmap(pp->base);
2814 	irq_dispose_mapping(dev->irq);
2815 	free_netdev(dev);
2816 
2817 	platform_set_drvdata(pdev, NULL);
2818 
2819 	return 0;
2820 }
2821 
2822 static const struct of_device_id mvneta_match[] = {
2823 	{ .compatible = "marvell,armada-370-neta" },
2824 	{ }
2825 };
2826 MODULE_DEVICE_TABLE(of, mvneta_match);
2827 
2828 static struct platform_driver mvneta_driver = {
2829 	.probe = mvneta_probe,
2830 	.remove = mvneta_remove,
2831 	.driver = {
2832 		.name = MVNETA_DRIVER_NAME,
2833 		.of_match_table = mvneta_match,
2834 	},
2835 };
2836 
2837 module_platform_driver(mvneta_driver);
2838 
2839 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
2840 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
2841 MODULE_LICENSE("GPL");
2842 
2843 module_param(rxq_number, int, S_IRUGO);
2844 module_param(txq_number, int, S_IRUGO);
2845 
2846 module_param(rxq_def, int, S_IRUGO);
2847 module_param(txq_def, int, S_IRUGO);
2848