1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/version.h> 16 #include <linux/netdevice.h> 17 #include <linux/etherdevice.h> 18 #include <linux/platform_device.h> 19 #include <linux/skbuff.h> 20 #include <linux/inetdevice.h> 21 #include <linux/mbus.h> 22 #include <linux/module.h> 23 #include <linux/interrupt.h> 24 #include <net/ip.h> 25 #include <net/ipv6.h> 26 #include <linux/of.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/of_address.h> 31 #include <linux/phy.h> 32 #include <linux/clk.h> 33 34 /* Registers */ 35 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 36 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1) 37 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 38 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 39 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 40 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 41 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 42 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 43 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 44 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 45 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 46 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 47 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 48 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 49 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 50 #define MVNETA_PORT_RX_RESET 0x1cc0 51 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 52 #define MVNETA_PHY_ADDR 0x2000 53 #define MVNETA_PHY_ADDR_MASK 0x1f 54 #define MVNETA_MBUS_RETRY 0x2010 55 #define MVNETA_UNIT_INTR_CAUSE 0x2080 56 #define MVNETA_UNIT_CONTROL 0x20B0 57 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 58 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 59 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 60 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 61 #define MVNETA_BASE_ADDR_ENABLE 0x2290 62 #define MVNETA_PORT_CONFIG 0x2400 63 #define MVNETA_UNI_PROMISC_MODE BIT(0) 64 #define MVNETA_DEF_RXQ(q) ((q) << 1) 65 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 66 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 67 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 68 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 69 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 70 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 71 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 72 MVNETA_DEF_RXQ_ARP(q) | \ 73 MVNETA_DEF_RXQ_TCP(q) | \ 74 MVNETA_DEF_RXQ_UDP(q) | \ 75 MVNETA_DEF_RXQ_BPDU(q) | \ 76 MVNETA_TX_UNSET_ERR_SUM | \ 77 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 78 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 79 #define MVNETA_MAC_ADDR_LOW 0x2414 80 #define MVNETA_MAC_ADDR_HIGH 0x2418 81 #define MVNETA_SDMA_CONFIG 0x241c 82 #define MVNETA_SDMA_BRST_SIZE_16 4 83 #define MVNETA_NO_DESC_SWAP 0x0 84 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 85 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 86 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 87 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 88 #define MVNETA_PORT_STATUS 0x2444 89 #define MVNETA_TX_IN_PRGRS BIT(1) 90 #define MVNETA_TX_FIFO_EMPTY BIT(8) 91 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 92 #define MVNETA_TYPE_PRIO 0x24bc 93 #define MVNETA_FORCE_UNI BIT(21) 94 #define MVNETA_TXQ_CMD_1 0x24e4 95 #define MVNETA_TXQ_CMD 0x2448 96 #define MVNETA_TXQ_DISABLE_SHIFT 8 97 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 98 #define MVNETA_ACC_MODE 0x2500 99 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 100 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 101 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 102 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 103 #define MVNETA_INTR_NEW_CAUSE 0x25a0 104 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 105 #define MVNETA_INTR_NEW_MASK 0x25a4 106 #define MVNETA_INTR_OLD_CAUSE 0x25a8 107 #define MVNETA_INTR_OLD_MASK 0x25ac 108 #define MVNETA_INTR_MISC_CAUSE 0x25b0 109 #define MVNETA_INTR_MISC_MASK 0x25b4 110 #define MVNETA_INTR_ENABLE 0x25b8 111 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 112 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 113 #define MVNETA_RXQ_CMD 0x2680 114 #define MVNETA_RXQ_DISABLE_SHIFT 8 115 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 116 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 117 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 118 #define MVNETA_GMAC_CTRL_0 0x2c00 119 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 120 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 121 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 122 #define MVNETA_GMAC_CTRL_2 0x2c08 123 #define MVNETA_GMAC2_PSC_ENABLE BIT(3) 124 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 125 #define MVNETA_GMAC2_PORT_RESET BIT(6) 126 #define MVNETA_GMAC_STATUS 0x2c10 127 #define MVNETA_GMAC_LINK_UP BIT(0) 128 #define MVNETA_GMAC_SPEED_1000 BIT(1) 129 #define MVNETA_GMAC_SPEED_100 BIT(2) 130 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 131 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 132 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 133 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 134 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 135 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 136 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 137 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 138 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 139 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 140 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 141 #define MVNETA_MIB_COUNTERS_BASE 0x3080 142 #define MVNETA_MIB_LATE_COLLISION 0x7c 143 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 144 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 145 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 146 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 147 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 148 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 149 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 150 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 151 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 152 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 153 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 154 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 155 #define MVNETA_PORT_TX_RESET 0x3cf0 156 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 157 #define MVNETA_TX_MTU 0x3e0c 158 #define MVNETA_TX_TOKEN_SIZE 0x3e14 159 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 160 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 161 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 162 163 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 164 165 /* Descriptor ring Macros */ 166 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 167 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 168 169 /* Various constants */ 170 171 /* Coalescing */ 172 #define MVNETA_TXDONE_COAL_PKTS 16 173 #define MVNETA_RX_COAL_PKTS 32 174 #define MVNETA_RX_COAL_USEC 100 175 176 /* Timer */ 177 #define MVNETA_TX_DONE_TIMER_PERIOD 10 178 179 /* Napi polling weight */ 180 #define MVNETA_RX_POLL_WEIGHT 64 181 182 /* The two bytes Marvell header. Either contains a special value used 183 * by Marvell switches when a specific hardware mode is enabled (not 184 * supported by this driver) or is filled automatically by zeroes on 185 * the RX side. Those two bytes being at the front of the Ethernet 186 * header, they allow to have the IP header aligned on a 4 bytes 187 * boundary automatically: the hardware skips those two bytes on its 188 * own. 189 */ 190 #define MVNETA_MH_SIZE 2 191 192 #define MVNETA_VLAN_TAG_LEN 4 193 194 #define MVNETA_CPU_D_CACHE_LINE_SIZE 32 195 #define MVNETA_TX_CSUM_MAX_SIZE 9800 196 #define MVNETA_ACC_MODE_EXT 1 197 198 /* Timeout constants */ 199 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 200 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 201 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 202 203 #define MVNETA_TX_MTU_MAX 0x3ffff 204 205 /* Max number of Rx descriptors */ 206 #define MVNETA_MAX_RXD 128 207 208 /* Max number of Tx descriptors */ 209 #define MVNETA_MAX_TXD 532 210 211 /* descriptor aligned size */ 212 #define MVNETA_DESC_ALIGNED_SIZE 32 213 214 #define MVNETA_RX_PKT_SIZE(mtu) \ 215 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 216 ETH_HLEN + ETH_FCS_LEN, \ 217 MVNETA_CPU_D_CACHE_LINE_SIZE) 218 219 #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD) 220 221 struct mvneta_stats { 222 struct u64_stats_sync syncp; 223 u64 packets; 224 u64 bytes; 225 }; 226 227 struct mvneta_port { 228 int pkt_size; 229 void __iomem *base; 230 struct mvneta_rx_queue *rxqs; 231 struct mvneta_tx_queue *txqs; 232 struct timer_list tx_done_timer; 233 struct net_device *dev; 234 235 u32 cause_rx_tx; 236 struct napi_struct napi; 237 238 /* Flags */ 239 unsigned long flags; 240 #define MVNETA_F_TX_DONE_TIMER_BIT 0 241 242 /* Napi weight */ 243 int weight; 244 245 /* Core clock */ 246 struct clk *clk; 247 u8 mcast_count[256]; 248 u16 tx_ring_size; 249 u16 rx_ring_size; 250 struct mvneta_stats tx_stats; 251 struct mvneta_stats rx_stats; 252 253 struct mii_bus *mii_bus; 254 struct phy_device *phy_dev; 255 phy_interface_t phy_interface; 256 struct device_node *phy_node; 257 unsigned int link; 258 unsigned int duplex; 259 unsigned int speed; 260 }; 261 262 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 263 * layout of the transmit and reception DMA descriptors, and their 264 * layout is therefore defined by the hardware design 265 */ 266 struct mvneta_tx_desc { 267 u32 command; /* Options used by HW for packet transmitting.*/ 268 #define MVNETA_TX_L3_OFF_SHIFT 0 269 #define MVNETA_TX_IP_HLEN_SHIFT 8 270 #define MVNETA_TX_L4_UDP BIT(16) 271 #define MVNETA_TX_L3_IP6 BIT(17) 272 #define MVNETA_TXD_IP_CSUM BIT(18) 273 #define MVNETA_TXD_Z_PAD BIT(19) 274 #define MVNETA_TXD_L_DESC BIT(20) 275 #define MVNETA_TXD_F_DESC BIT(21) 276 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 277 MVNETA_TXD_L_DESC | \ 278 MVNETA_TXD_F_DESC) 279 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 280 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 281 282 u16 reserverd1; /* csum_l4 (for future use) */ 283 u16 data_size; /* Data size of transmitted packet in bytes */ 284 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 285 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 286 u32 reserved3[4]; /* Reserved - (for future use) */ 287 }; 288 289 struct mvneta_rx_desc { 290 u32 status; /* Info about received packet */ 291 #define MVNETA_RXD_ERR_CRC 0x0 292 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 293 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 294 #define MVNETA_RXD_ERR_LEN BIT(18) 295 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 296 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 297 #define MVNETA_RXD_L3_IP4 BIT(25) 298 #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27)) 299 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 300 301 u16 reserved1; /* pnc_info - (for future use, PnC) */ 302 u16 data_size; /* Size of received packet in bytes */ 303 u32 buf_phys_addr; /* Physical address of the buffer */ 304 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 305 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 306 u16 reserved3; /* prefetch_cmd, for future use */ 307 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 308 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 309 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 310 }; 311 312 struct mvneta_tx_queue { 313 /* Number of this TX queue, in the range 0-7 */ 314 u8 id; 315 316 /* Number of TX DMA descriptors in the descriptor ring */ 317 int size; 318 319 /* Number of currently used TX DMA descriptor in the 320 * descriptor ring 321 */ 322 int count; 323 324 /* Array of transmitted skb */ 325 struct sk_buff **tx_skb; 326 327 /* Index of last TX DMA descriptor that was inserted */ 328 int txq_put_index; 329 330 /* Index of the TX DMA descriptor to be cleaned up */ 331 int txq_get_index; 332 333 u32 done_pkts_coal; 334 335 /* Virtual address of the TX DMA descriptors array */ 336 struct mvneta_tx_desc *descs; 337 338 /* DMA address of the TX DMA descriptors array */ 339 dma_addr_t descs_phys; 340 341 /* Index of the last TX DMA descriptor */ 342 int last_desc; 343 344 /* Index of the next TX DMA descriptor to process */ 345 int next_desc_to_proc; 346 }; 347 348 struct mvneta_rx_queue { 349 /* rx queue number, in the range 0-7 */ 350 u8 id; 351 352 /* num of rx descriptors in the rx descriptor ring */ 353 int size; 354 355 /* counter of times when mvneta_refill() failed */ 356 int missed; 357 358 u32 pkts_coal; 359 u32 time_coal; 360 361 /* Virtual address of the RX DMA descriptors array */ 362 struct mvneta_rx_desc *descs; 363 364 /* DMA address of the RX DMA descriptors array */ 365 dma_addr_t descs_phys; 366 367 /* Index of the last RX DMA descriptor */ 368 int last_desc; 369 370 /* Index of the next RX DMA descriptor to process */ 371 int next_desc_to_proc; 372 }; 373 374 static int rxq_number = 8; 375 static int txq_number = 8; 376 377 static int rxq_def; 378 static int txq_def; 379 380 #define MVNETA_DRIVER_NAME "mvneta" 381 #define MVNETA_DRIVER_VERSION "1.0" 382 383 /* Utility/helper methods */ 384 385 /* Write helper method */ 386 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 387 { 388 writel(data, pp->base + offset); 389 } 390 391 /* Read helper method */ 392 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 393 { 394 return readl(pp->base + offset); 395 } 396 397 /* Increment txq get counter */ 398 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 399 { 400 txq->txq_get_index++; 401 if (txq->txq_get_index == txq->size) 402 txq->txq_get_index = 0; 403 } 404 405 /* Increment txq put counter */ 406 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 407 { 408 txq->txq_put_index++; 409 if (txq->txq_put_index == txq->size) 410 txq->txq_put_index = 0; 411 } 412 413 414 /* Clear all MIB counters */ 415 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 416 { 417 int i; 418 u32 dummy; 419 420 /* Perform dummy reads from MIB counters */ 421 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 422 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 423 } 424 425 /* Get System Network Statistics */ 426 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev, 427 struct rtnl_link_stats64 *stats) 428 { 429 struct mvneta_port *pp = netdev_priv(dev); 430 unsigned int start; 431 432 memset(stats, 0, sizeof(struct rtnl_link_stats64)); 433 434 do { 435 start = u64_stats_fetch_begin_bh(&pp->rx_stats.syncp); 436 stats->rx_packets = pp->rx_stats.packets; 437 stats->rx_bytes = pp->rx_stats.bytes; 438 } while (u64_stats_fetch_retry_bh(&pp->rx_stats.syncp, start)); 439 440 441 do { 442 start = u64_stats_fetch_begin_bh(&pp->tx_stats.syncp); 443 stats->tx_packets = pp->tx_stats.packets; 444 stats->tx_bytes = pp->tx_stats.bytes; 445 } while (u64_stats_fetch_retry_bh(&pp->tx_stats.syncp, start)); 446 447 stats->rx_errors = dev->stats.rx_errors; 448 stats->rx_dropped = dev->stats.rx_dropped; 449 450 stats->tx_dropped = dev->stats.tx_dropped; 451 452 return stats; 453 } 454 455 /* Rx descriptors helper methods */ 456 457 /* Checks whether the given RX descriptor is both the first and the 458 * last descriptor for the RX packet. Each RX packet is currently 459 * received through a single RX descriptor, so not having each RX 460 * descriptor with its first and last bits set is an error 461 */ 462 static int mvneta_rxq_desc_is_first_last(struct mvneta_rx_desc *desc) 463 { 464 return (desc->status & MVNETA_RXD_FIRST_LAST_DESC) == 465 MVNETA_RXD_FIRST_LAST_DESC; 466 } 467 468 /* Add number of descriptors ready to receive new packets */ 469 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 470 struct mvneta_rx_queue *rxq, 471 int ndescs) 472 { 473 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 474 * be added at once 475 */ 476 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 477 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 478 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 479 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 480 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 481 } 482 483 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 484 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 485 } 486 487 /* Get number of RX descriptors occupied by received packets */ 488 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 489 struct mvneta_rx_queue *rxq) 490 { 491 u32 val; 492 493 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 494 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 495 } 496 497 /* Update num of rx desc called upon return from rx path or 498 * from mvneta_rxq_drop_pkts(). 499 */ 500 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 501 struct mvneta_rx_queue *rxq, 502 int rx_done, int rx_filled) 503 { 504 u32 val; 505 506 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 507 val = rx_done | 508 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 509 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 510 return; 511 } 512 513 /* Only 255 descriptors can be added at once */ 514 while ((rx_done > 0) || (rx_filled > 0)) { 515 if (rx_done <= 0xff) { 516 val = rx_done; 517 rx_done = 0; 518 } else { 519 val = 0xff; 520 rx_done -= 0xff; 521 } 522 if (rx_filled <= 0xff) { 523 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 524 rx_filled = 0; 525 } else { 526 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 527 rx_filled -= 0xff; 528 } 529 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 530 } 531 } 532 533 /* Get pointer to next RX descriptor to be processed by SW */ 534 static struct mvneta_rx_desc * 535 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 536 { 537 int rx_desc = rxq->next_desc_to_proc; 538 539 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 540 return rxq->descs + rx_desc; 541 } 542 543 /* Change maximum receive size of the port. */ 544 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 545 { 546 u32 val; 547 548 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 549 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 550 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 551 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 552 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 553 } 554 555 556 /* Set rx queue offset */ 557 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 558 struct mvneta_rx_queue *rxq, 559 int offset) 560 { 561 u32 val; 562 563 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 564 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 565 566 /* Offset is in */ 567 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 568 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 569 } 570 571 572 /* Tx descriptors helper methods */ 573 574 /* Update HW with number of TX descriptors to be sent */ 575 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 576 struct mvneta_tx_queue *txq, 577 int pend_desc) 578 { 579 u32 val; 580 581 /* Only 255 descriptors can be added at once ; Assume caller 582 * process TX desriptors in quanta less than 256 583 */ 584 val = pend_desc; 585 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 586 } 587 588 /* Get pointer to next TX descriptor to be processed (send) by HW */ 589 static struct mvneta_tx_desc * 590 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 591 { 592 int tx_desc = txq->next_desc_to_proc; 593 594 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 595 return txq->descs + tx_desc; 596 } 597 598 /* Release the last allocated TX descriptor. Useful to handle DMA 599 * mapping failures in the TX path. 600 */ 601 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 602 { 603 if (txq->next_desc_to_proc == 0) 604 txq->next_desc_to_proc = txq->last_desc - 1; 605 else 606 txq->next_desc_to_proc--; 607 } 608 609 /* Set rxq buf size */ 610 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 611 struct mvneta_rx_queue *rxq, 612 int buf_size) 613 { 614 u32 val; 615 616 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 617 618 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 619 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 620 621 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 622 } 623 624 /* Disable buffer management (BM) */ 625 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 626 struct mvneta_rx_queue *rxq) 627 { 628 u32 val; 629 630 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 631 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 632 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 633 } 634 635 636 637 /* Sets the RGMII Enable bit (RGMIIEn) in port MAC control register */ 638 static void mvneta_gmac_rgmii_set(struct mvneta_port *pp, int enable) 639 { 640 u32 val; 641 642 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 643 644 if (enable) 645 val |= MVNETA_GMAC2_PORT_RGMII; 646 else 647 val &= ~MVNETA_GMAC2_PORT_RGMII; 648 649 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 650 } 651 652 /* Config SGMII port */ 653 static void mvneta_port_sgmii_config(struct mvneta_port *pp) 654 { 655 u32 val; 656 657 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 658 val |= MVNETA_GMAC2_PSC_ENABLE; 659 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 660 } 661 662 /* Start the Ethernet port RX and TX activity */ 663 static void mvneta_port_up(struct mvneta_port *pp) 664 { 665 int queue; 666 u32 q_map; 667 668 /* Enable all initialized TXs. */ 669 mvneta_mib_counters_clear(pp); 670 q_map = 0; 671 for (queue = 0; queue < txq_number; queue++) { 672 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 673 if (txq->descs != NULL) 674 q_map |= (1 << queue); 675 } 676 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 677 678 /* Enable all initialized RXQs. */ 679 q_map = 0; 680 for (queue = 0; queue < rxq_number; queue++) { 681 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 682 if (rxq->descs != NULL) 683 q_map |= (1 << queue); 684 } 685 686 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 687 } 688 689 /* Stop the Ethernet port activity */ 690 static void mvneta_port_down(struct mvneta_port *pp) 691 { 692 u32 val; 693 int count; 694 695 /* Stop Rx port activity. Check port Rx activity. */ 696 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 697 698 /* Issue stop command for active channels only */ 699 if (val != 0) 700 mvreg_write(pp, MVNETA_RXQ_CMD, 701 val << MVNETA_RXQ_DISABLE_SHIFT); 702 703 /* Wait for all Rx activity to terminate. */ 704 count = 0; 705 do { 706 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 707 netdev_warn(pp->dev, 708 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n", 709 val); 710 break; 711 } 712 mdelay(1); 713 714 val = mvreg_read(pp, MVNETA_RXQ_CMD); 715 } while (val & 0xff); 716 717 /* Stop Tx port activity. Check port Tx activity. Issue stop 718 * command for active channels only 719 */ 720 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 721 722 if (val != 0) 723 mvreg_write(pp, MVNETA_TXQ_CMD, 724 (val << MVNETA_TXQ_DISABLE_SHIFT)); 725 726 /* Wait for all Tx activity to terminate. */ 727 count = 0; 728 do { 729 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 730 netdev_warn(pp->dev, 731 "TIMEOUT for TX stopped status=0x%08x\n", 732 val); 733 break; 734 } 735 mdelay(1); 736 737 /* Check TX Command reg that all Txqs are stopped */ 738 val = mvreg_read(pp, MVNETA_TXQ_CMD); 739 740 } while (val & 0xff); 741 742 /* Double check to verify that TX FIFO is empty */ 743 count = 0; 744 do { 745 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 746 netdev_warn(pp->dev, 747 "TX FIFO empty timeout status=0x08%x\n", 748 val); 749 break; 750 } 751 mdelay(1); 752 753 val = mvreg_read(pp, MVNETA_PORT_STATUS); 754 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 755 (val & MVNETA_TX_IN_PRGRS)); 756 757 udelay(200); 758 } 759 760 /* Enable the port by setting the port enable bit of the MAC control register */ 761 static void mvneta_port_enable(struct mvneta_port *pp) 762 { 763 u32 val; 764 765 /* Enable port */ 766 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 767 val |= MVNETA_GMAC0_PORT_ENABLE; 768 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 769 } 770 771 /* Disable the port and wait for about 200 usec before retuning */ 772 static void mvneta_port_disable(struct mvneta_port *pp) 773 { 774 u32 val; 775 776 /* Reset the Enable bit in the Serial Control Register */ 777 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 778 val &= ~MVNETA_GMAC0_PORT_ENABLE; 779 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 780 781 udelay(200); 782 } 783 784 /* Multicast tables methods */ 785 786 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 787 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 788 { 789 int offset; 790 u32 val; 791 792 if (queue == -1) { 793 val = 0; 794 } else { 795 val = 0x1 | (queue << 1); 796 val |= (val << 24) | (val << 16) | (val << 8); 797 } 798 799 for (offset = 0; offset <= 0xc; offset += 4) 800 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 801 } 802 803 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 804 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 805 { 806 int offset; 807 u32 val; 808 809 if (queue == -1) { 810 val = 0; 811 } else { 812 val = 0x1 | (queue << 1); 813 val |= (val << 24) | (val << 16) | (val << 8); 814 } 815 816 for (offset = 0; offset <= 0xfc; offset += 4) 817 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 818 819 } 820 821 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 822 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 823 { 824 int offset; 825 u32 val; 826 827 if (queue == -1) { 828 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 829 val = 0; 830 } else { 831 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 832 val = 0x1 | (queue << 1); 833 val |= (val << 24) | (val << 16) | (val << 8); 834 } 835 836 for (offset = 0; offset <= 0xfc; offset += 4) 837 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 838 } 839 840 /* This method sets defaults to the NETA port: 841 * Clears interrupt Cause and Mask registers. 842 * Clears all MAC tables. 843 * Sets defaults to all registers. 844 * Resets RX and TX descriptor rings. 845 * Resets PHY. 846 * This method can be called after mvneta_port_down() to return the port 847 * settings to defaults. 848 */ 849 static void mvneta_defaults_set(struct mvneta_port *pp) 850 { 851 int cpu; 852 int queue; 853 u32 val; 854 855 /* Clear all Cause registers */ 856 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 857 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 858 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 859 860 /* Mask all interrupts */ 861 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 862 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 863 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 864 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 865 866 /* Enable MBUS Retry bit16 */ 867 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 868 869 /* Set CPU queue access map - all CPUs have access to all RX 870 * queues and to all TX queues 871 */ 872 for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++) 873 mvreg_write(pp, MVNETA_CPU_MAP(cpu), 874 (MVNETA_CPU_RXQ_ACCESS_ALL_MASK | 875 MVNETA_CPU_TXQ_ACCESS_ALL_MASK)); 876 877 /* Reset RX and TX DMAs */ 878 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 879 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 880 881 /* Disable Legacy WRR, Disable EJP, Release from reset */ 882 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 883 for (queue = 0; queue < txq_number; queue++) { 884 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 885 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 886 } 887 888 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 889 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 890 891 /* Set Port Acceleration Mode */ 892 val = MVNETA_ACC_MODE_EXT; 893 mvreg_write(pp, MVNETA_ACC_MODE, val); 894 895 /* Update val of portCfg register accordingly with all RxQueue types */ 896 val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def); 897 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 898 899 val = 0; 900 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 901 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 902 903 /* Build PORT_SDMA_CONFIG_REG */ 904 val = 0; 905 906 /* Default burst size */ 907 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 908 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 909 910 val |= (MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP | 911 MVNETA_NO_DESC_SWAP); 912 913 /* Assign port SDMA configuration */ 914 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 915 916 mvneta_set_ucast_table(pp, -1); 917 mvneta_set_special_mcast_table(pp, -1); 918 mvneta_set_other_mcast_table(pp, -1); 919 920 /* Set port interrupt enable register - default enable all */ 921 mvreg_write(pp, MVNETA_INTR_ENABLE, 922 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 923 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 924 } 925 926 /* Set max sizes for tx queues */ 927 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 928 929 { 930 u32 val, size, mtu; 931 int queue; 932 933 mtu = max_tx_size * 8; 934 if (mtu > MVNETA_TX_MTU_MAX) 935 mtu = MVNETA_TX_MTU_MAX; 936 937 /* Set MTU */ 938 val = mvreg_read(pp, MVNETA_TX_MTU); 939 val &= ~MVNETA_TX_MTU_MAX; 940 val |= mtu; 941 mvreg_write(pp, MVNETA_TX_MTU, val); 942 943 /* TX token size and all TXQs token size must be larger that MTU */ 944 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 945 946 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 947 if (size < mtu) { 948 size = mtu; 949 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 950 val |= size; 951 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 952 } 953 for (queue = 0; queue < txq_number; queue++) { 954 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 955 956 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 957 if (size < mtu) { 958 size = mtu; 959 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 960 val |= size; 961 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 962 } 963 } 964 } 965 966 /* Set unicast address */ 967 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 968 int queue) 969 { 970 unsigned int unicast_reg; 971 unsigned int tbl_offset; 972 unsigned int reg_offset; 973 974 /* Locate the Unicast table entry */ 975 last_nibble = (0xf & last_nibble); 976 977 /* offset from unicast tbl base */ 978 tbl_offset = (last_nibble / 4) * 4; 979 980 /* offset within the above reg */ 981 reg_offset = last_nibble % 4; 982 983 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 984 985 if (queue == -1) { 986 /* Clear accepts frame bit at specified unicast DA tbl entry */ 987 unicast_reg &= ~(0xff << (8 * reg_offset)); 988 } else { 989 unicast_reg &= ~(0xff << (8 * reg_offset)); 990 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 991 } 992 993 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 994 } 995 996 /* Set mac address */ 997 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 998 int queue) 999 { 1000 unsigned int mac_h; 1001 unsigned int mac_l; 1002 1003 if (queue != -1) { 1004 mac_l = (addr[4] << 8) | (addr[5]); 1005 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1006 (addr[2] << 8) | (addr[3] << 0); 1007 1008 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1009 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1010 } 1011 1012 /* Accept frames of this address */ 1013 mvneta_set_ucast_addr(pp, addr[5], queue); 1014 } 1015 1016 /* Set the number of packets that will be received before RX interrupt 1017 * will be generated by HW. 1018 */ 1019 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1020 struct mvneta_rx_queue *rxq, u32 value) 1021 { 1022 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1023 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1024 rxq->pkts_coal = value; 1025 } 1026 1027 /* Set the time delay in usec before RX interrupt will be generated by 1028 * HW. 1029 */ 1030 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1031 struct mvneta_rx_queue *rxq, u32 value) 1032 { 1033 u32 val; 1034 unsigned long clk_rate; 1035 1036 clk_rate = clk_get_rate(pp->clk); 1037 val = (clk_rate / 1000000) * value; 1038 1039 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1040 rxq->time_coal = value; 1041 } 1042 1043 /* Set threshold for TX_DONE pkts coalescing */ 1044 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1045 struct mvneta_tx_queue *txq, u32 value) 1046 { 1047 u32 val; 1048 1049 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1050 1051 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1052 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1053 1054 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1055 1056 txq->done_pkts_coal = value; 1057 } 1058 1059 /* Trigger tx done timer in MVNETA_TX_DONE_TIMER_PERIOD msecs */ 1060 static void mvneta_add_tx_done_timer(struct mvneta_port *pp) 1061 { 1062 if (test_and_set_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags) == 0) { 1063 pp->tx_done_timer.expires = jiffies + 1064 msecs_to_jiffies(MVNETA_TX_DONE_TIMER_PERIOD); 1065 add_timer(&pp->tx_done_timer); 1066 } 1067 } 1068 1069 1070 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1071 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1072 u32 phys_addr, u32 cookie) 1073 { 1074 rx_desc->buf_cookie = cookie; 1075 rx_desc->buf_phys_addr = phys_addr; 1076 } 1077 1078 /* Decrement sent descriptors counter */ 1079 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1080 struct mvneta_tx_queue *txq, 1081 int sent_desc) 1082 { 1083 u32 val; 1084 1085 /* Only 255 TX descriptors can be updated at once */ 1086 while (sent_desc > 0xff) { 1087 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1088 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1089 sent_desc = sent_desc - 0xff; 1090 } 1091 1092 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1093 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1094 } 1095 1096 /* Get number of TX descriptors already sent by HW */ 1097 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1098 struct mvneta_tx_queue *txq) 1099 { 1100 u32 val; 1101 int sent_desc; 1102 1103 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1104 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1105 MVNETA_TXQ_SENT_DESC_SHIFT; 1106 1107 return sent_desc; 1108 } 1109 1110 /* Get number of sent descriptors and decrement counter. 1111 * The number of sent descriptors is returned. 1112 */ 1113 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1114 struct mvneta_tx_queue *txq) 1115 { 1116 int sent_desc; 1117 1118 /* Get number of sent descriptors */ 1119 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1120 1121 /* Decrement sent descriptors counter */ 1122 if (sent_desc) 1123 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1124 1125 return sent_desc; 1126 } 1127 1128 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1129 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1130 int ip_hdr_len, int l4_proto) 1131 { 1132 u32 command; 1133 1134 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1135 * G_L4_chk, L4_type; required only for checksum 1136 * calculation 1137 */ 1138 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1139 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1140 1141 if (l3_proto == swab16(ETH_P_IP)) 1142 command |= MVNETA_TXD_IP_CSUM; 1143 else 1144 command |= MVNETA_TX_L3_IP6; 1145 1146 if (l4_proto == IPPROTO_TCP) 1147 command |= MVNETA_TX_L4_CSUM_FULL; 1148 else if (l4_proto == IPPROTO_UDP) 1149 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1150 else 1151 command |= MVNETA_TX_L4_CSUM_NOT; 1152 1153 return command; 1154 } 1155 1156 1157 /* Display more error info */ 1158 static void mvneta_rx_error(struct mvneta_port *pp, 1159 struct mvneta_rx_desc *rx_desc) 1160 { 1161 u32 status = rx_desc->status; 1162 1163 if (!mvneta_rxq_desc_is_first_last(rx_desc)) { 1164 netdev_err(pp->dev, 1165 "bad rx status %08x (buffer oversize), size=%d\n", 1166 rx_desc->status, rx_desc->data_size); 1167 return; 1168 } 1169 1170 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1171 case MVNETA_RXD_ERR_CRC: 1172 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1173 status, rx_desc->data_size); 1174 break; 1175 case MVNETA_RXD_ERR_OVERRUN: 1176 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1177 status, rx_desc->data_size); 1178 break; 1179 case MVNETA_RXD_ERR_LEN: 1180 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1181 status, rx_desc->data_size); 1182 break; 1183 case MVNETA_RXD_ERR_RESOURCE: 1184 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1185 status, rx_desc->data_size); 1186 break; 1187 } 1188 } 1189 1190 /* Handle RX checksum offload */ 1191 static void mvneta_rx_csum(struct mvneta_port *pp, 1192 struct mvneta_rx_desc *rx_desc, 1193 struct sk_buff *skb) 1194 { 1195 if ((rx_desc->status & MVNETA_RXD_L3_IP4) && 1196 (rx_desc->status & MVNETA_RXD_L4_CSUM_OK)) { 1197 skb->csum = 0; 1198 skb->ip_summed = CHECKSUM_UNNECESSARY; 1199 return; 1200 } 1201 1202 skb->ip_summed = CHECKSUM_NONE; 1203 } 1204 1205 /* Return tx queue pointer (find last set bit) according to causeTxDone reg */ 1206 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1207 u32 cause) 1208 { 1209 int queue = fls(cause) - 1; 1210 1211 return (queue < 0 || queue >= txq_number) ? NULL : &pp->txqs[queue]; 1212 } 1213 1214 /* Free tx queue skbuffs */ 1215 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1216 struct mvneta_tx_queue *txq, int num) 1217 { 1218 int i; 1219 1220 for (i = 0; i < num; i++) { 1221 struct mvneta_tx_desc *tx_desc = txq->descs + 1222 txq->txq_get_index; 1223 struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; 1224 1225 mvneta_txq_inc_get(txq); 1226 1227 if (!skb) 1228 continue; 1229 1230 dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr, 1231 tx_desc->data_size, DMA_TO_DEVICE); 1232 dev_kfree_skb_any(skb); 1233 } 1234 } 1235 1236 /* Handle end of transmission */ 1237 static int mvneta_txq_done(struct mvneta_port *pp, 1238 struct mvneta_tx_queue *txq) 1239 { 1240 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1241 int tx_done; 1242 1243 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1244 if (tx_done == 0) 1245 return tx_done; 1246 mvneta_txq_bufs_free(pp, txq, tx_done); 1247 1248 txq->count -= tx_done; 1249 1250 if (netif_tx_queue_stopped(nq)) { 1251 if (txq->size - txq->count >= MAX_SKB_FRAGS + 1) 1252 netif_tx_wake_queue(nq); 1253 } 1254 1255 return tx_done; 1256 } 1257 1258 /* Refill processing */ 1259 static int mvneta_rx_refill(struct mvneta_port *pp, 1260 struct mvneta_rx_desc *rx_desc) 1261 1262 { 1263 dma_addr_t phys_addr; 1264 struct sk_buff *skb; 1265 1266 skb = netdev_alloc_skb(pp->dev, pp->pkt_size); 1267 if (!skb) 1268 return -ENOMEM; 1269 1270 phys_addr = dma_map_single(pp->dev->dev.parent, skb->head, 1271 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1272 DMA_FROM_DEVICE); 1273 if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { 1274 dev_kfree_skb(skb); 1275 return -ENOMEM; 1276 } 1277 1278 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb); 1279 1280 return 0; 1281 } 1282 1283 /* Handle tx checksum */ 1284 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1285 { 1286 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1287 int ip_hdr_len = 0; 1288 u8 l4_proto; 1289 1290 if (skb->protocol == htons(ETH_P_IP)) { 1291 struct iphdr *ip4h = ip_hdr(skb); 1292 1293 /* Calculate IPv4 checksum and L4 checksum */ 1294 ip_hdr_len = ip4h->ihl; 1295 l4_proto = ip4h->protocol; 1296 } else if (skb->protocol == htons(ETH_P_IPV6)) { 1297 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1298 1299 /* Read l4_protocol from one of IPv6 extra headers */ 1300 if (skb_network_header_len(skb) > 0) 1301 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1302 l4_proto = ip6h->nexthdr; 1303 } else 1304 return MVNETA_TX_L4_CSUM_NOT; 1305 1306 return mvneta_txq_desc_csum(skb_network_offset(skb), 1307 skb->protocol, ip_hdr_len, l4_proto); 1308 } 1309 1310 return MVNETA_TX_L4_CSUM_NOT; 1311 } 1312 1313 /* Returns rx queue pointer (find last set bit) according to causeRxTx 1314 * value 1315 */ 1316 static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp, 1317 u32 cause) 1318 { 1319 int queue = fls(cause >> 8) - 1; 1320 1321 return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue]; 1322 } 1323 1324 /* Drop packets received by the RXQ and free buffers */ 1325 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1326 struct mvneta_rx_queue *rxq) 1327 { 1328 int rx_done, i; 1329 1330 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1331 for (i = 0; i < rxq->size; i++) { 1332 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1333 struct sk_buff *skb = (struct sk_buff *)rx_desc->buf_cookie; 1334 1335 dev_kfree_skb_any(skb); 1336 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1337 rx_desc->data_size, DMA_FROM_DEVICE); 1338 } 1339 1340 if (rx_done) 1341 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1342 } 1343 1344 /* Main rx processing */ 1345 static int mvneta_rx(struct mvneta_port *pp, int rx_todo, 1346 struct mvneta_rx_queue *rxq) 1347 { 1348 struct net_device *dev = pp->dev; 1349 int rx_done, rx_filled; 1350 1351 /* Get number of received packets */ 1352 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1353 1354 if (rx_todo > rx_done) 1355 rx_todo = rx_done; 1356 1357 rx_done = 0; 1358 rx_filled = 0; 1359 1360 /* Fairness NAPI loop */ 1361 while (rx_done < rx_todo) { 1362 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 1363 struct sk_buff *skb; 1364 u32 rx_status; 1365 int rx_bytes, err; 1366 1367 prefetch(rx_desc); 1368 rx_done++; 1369 rx_filled++; 1370 rx_status = rx_desc->status; 1371 skb = (struct sk_buff *)rx_desc->buf_cookie; 1372 1373 if (!mvneta_rxq_desc_is_first_last(rx_desc) || 1374 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 1375 dev->stats.rx_errors++; 1376 mvneta_rx_error(pp, rx_desc); 1377 mvneta_rx_desc_fill(rx_desc, rx_desc->buf_phys_addr, 1378 (u32)skb); 1379 continue; 1380 } 1381 1382 dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr, 1383 rx_desc->data_size, DMA_FROM_DEVICE); 1384 1385 rx_bytes = rx_desc->data_size - 1386 (ETH_FCS_LEN + MVNETA_MH_SIZE); 1387 u64_stats_update_begin(&pp->rx_stats.syncp); 1388 pp->rx_stats.packets++; 1389 pp->rx_stats.bytes += rx_bytes; 1390 u64_stats_update_end(&pp->rx_stats.syncp); 1391 1392 /* Linux processing */ 1393 skb_reserve(skb, MVNETA_MH_SIZE); 1394 skb_put(skb, rx_bytes); 1395 1396 skb->protocol = eth_type_trans(skb, dev); 1397 1398 mvneta_rx_csum(pp, rx_desc, skb); 1399 1400 napi_gro_receive(&pp->napi, skb); 1401 1402 /* Refill processing */ 1403 err = mvneta_rx_refill(pp, rx_desc); 1404 if (err) { 1405 netdev_err(pp->dev, "Linux processing - Can't refill\n"); 1406 rxq->missed++; 1407 rx_filled--; 1408 } 1409 } 1410 1411 /* Update rxq management counters */ 1412 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled); 1413 1414 return rx_done; 1415 } 1416 1417 /* Handle tx fragmentation processing */ 1418 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 1419 struct mvneta_tx_queue *txq) 1420 { 1421 struct mvneta_tx_desc *tx_desc; 1422 int i; 1423 1424 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1425 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1426 void *addr = page_address(frag->page.p) + frag->page_offset; 1427 1428 tx_desc = mvneta_txq_next_desc_get(txq); 1429 tx_desc->data_size = frag->size; 1430 1431 tx_desc->buf_phys_addr = 1432 dma_map_single(pp->dev->dev.parent, addr, 1433 tx_desc->data_size, DMA_TO_DEVICE); 1434 1435 if (dma_mapping_error(pp->dev->dev.parent, 1436 tx_desc->buf_phys_addr)) { 1437 mvneta_txq_desc_put(txq); 1438 goto error; 1439 } 1440 1441 if (i == (skb_shinfo(skb)->nr_frags - 1)) { 1442 /* Last descriptor */ 1443 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 1444 1445 txq->tx_skb[txq->txq_put_index] = skb; 1446 1447 mvneta_txq_inc_put(txq); 1448 } else { 1449 /* Descriptor in the middle: Not First, Not Last */ 1450 tx_desc->command = 0; 1451 1452 txq->tx_skb[txq->txq_put_index] = NULL; 1453 mvneta_txq_inc_put(txq); 1454 } 1455 } 1456 1457 return 0; 1458 1459 error: 1460 /* Release all descriptors that were used to map fragments of 1461 * this packet, as well as the corresponding DMA mappings 1462 */ 1463 for (i = i - 1; i >= 0; i--) { 1464 tx_desc = txq->descs + i; 1465 dma_unmap_single(pp->dev->dev.parent, 1466 tx_desc->buf_phys_addr, 1467 tx_desc->data_size, 1468 DMA_TO_DEVICE); 1469 mvneta_txq_desc_put(txq); 1470 } 1471 1472 return -ENOMEM; 1473 } 1474 1475 /* Main tx processing */ 1476 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev) 1477 { 1478 struct mvneta_port *pp = netdev_priv(dev); 1479 struct mvneta_tx_queue *txq = &pp->txqs[txq_def]; 1480 struct mvneta_tx_desc *tx_desc; 1481 struct netdev_queue *nq; 1482 int frags = 0; 1483 u32 tx_cmd; 1484 1485 if (!netif_running(dev)) 1486 goto out; 1487 1488 frags = skb_shinfo(skb)->nr_frags + 1; 1489 nq = netdev_get_tx_queue(dev, txq_def); 1490 1491 /* Get a descriptor for the first part of the packet */ 1492 tx_desc = mvneta_txq_next_desc_get(txq); 1493 1494 tx_cmd = mvneta_skb_tx_csum(pp, skb); 1495 1496 tx_desc->data_size = skb_headlen(skb); 1497 1498 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 1499 tx_desc->data_size, 1500 DMA_TO_DEVICE); 1501 if (unlikely(dma_mapping_error(dev->dev.parent, 1502 tx_desc->buf_phys_addr))) { 1503 mvneta_txq_desc_put(txq); 1504 frags = 0; 1505 goto out; 1506 } 1507 1508 if (frags == 1) { 1509 /* First and Last descriptor */ 1510 tx_cmd |= MVNETA_TXD_FLZ_DESC; 1511 tx_desc->command = tx_cmd; 1512 txq->tx_skb[txq->txq_put_index] = skb; 1513 mvneta_txq_inc_put(txq); 1514 } else { 1515 /* First but not Last */ 1516 tx_cmd |= MVNETA_TXD_F_DESC; 1517 txq->tx_skb[txq->txq_put_index] = NULL; 1518 mvneta_txq_inc_put(txq); 1519 tx_desc->command = tx_cmd; 1520 /* Continue with other skb fragments */ 1521 if (mvneta_tx_frag_process(pp, skb, txq)) { 1522 dma_unmap_single(dev->dev.parent, 1523 tx_desc->buf_phys_addr, 1524 tx_desc->data_size, 1525 DMA_TO_DEVICE); 1526 mvneta_txq_desc_put(txq); 1527 frags = 0; 1528 goto out; 1529 } 1530 } 1531 1532 txq->count += frags; 1533 mvneta_txq_pend_desc_add(pp, txq, frags); 1534 1535 if (txq->size - txq->count < MAX_SKB_FRAGS + 1) 1536 netif_tx_stop_queue(nq); 1537 1538 out: 1539 if (frags > 0) { 1540 u64_stats_update_begin(&pp->tx_stats.syncp); 1541 pp->tx_stats.packets++; 1542 pp->tx_stats.bytes += skb->len; 1543 u64_stats_update_end(&pp->tx_stats.syncp); 1544 1545 } else { 1546 dev->stats.tx_dropped++; 1547 dev_kfree_skb_any(skb); 1548 } 1549 1550 if (txq->count >= MVNETA_TXDONE_COAL_PKTS) 1551 mvneta_txq_done(pp, txq); 1552 1553 /* If after calling mvneta_txq_done, count equals 1554 * frags, we need to set the timer 1555 */ 1556 if (txq->count == frags && frags > 0) 1557 mvneta_add_tx_done_timer(pp); 1558 1559 return NETDEV_TX_OK; 1560 } 1561 1562 1563 /* Free tx resources, when resetting a port */ 1564 static void mvneta_txq_done_force(struct mvneta_port *pp, 1565 struct mvneta_tx_queue *txq) 1566 1567 { 1568 int tx_done = txq->count; 1569 1570 mvneta_txq_bufs_free(pp, txq, tx_done); 1571 1572 /* reset txq */ 1573 txq->count = 0; 1574 txq->txq_put_index = 0; 1575 txq->txq_get_index = 0; 1576 } 1577 1578 /* handle tx done - called from tx done timer callback */ 1579 static u32 mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done, 1580 int *tx_todo) 1581 { 1582 struct mvneta_tx_queue *txq; 1583 u32 tx_done = 0; 1584 struct netdev_queue *nq; 1585 1586 *tx_todo = 0; 1587 while (cause_tx_done != 0) { 1588 txq = mvneta_tx_done_policy(pp, cause_tx_done); 1589 if (!txq) 1590 break; 1591 1592 nq = netdev_get_tx_queue(pp->dev, txq->id); 1593 __netif_tx_lock(nq, smp_processor_id()); 1594 1595 if (txq->count) { 1596 tx_done += mvneta_txq_done(pp, txq); 1597 *tx_todo += txq->count; 1598 } 1599 1600 __netif_tx_unlock(nq); 1601 cause_tx_done &= ~((1 << txq->id)); 1602 } 1603 1604 return tx_done; 1605 } 1606 1607 /* Compute crc8 of the specified address, using a unique algorithm , 1608 * according to hw spec, different than generic crc8 algorithm 1609 */ 1610 static int mvneta_addr_crc(unsigned char *addr) 1611 { 1612 int crc = 0; 1613 int i; 1614 1615 for (i = 0; i < ETH_ALEN; i++) { 1616 int j; 1617 1618 crc = (crc ^ addr[i]) << 8; 1619 for (j = 7; j >= 0; j--) { 1620 if (crc & (0x100 << j)) 1621 crc ^= 0x107 << j; 1622 } 1623 } 1624 1625 return crc; 1626 } 1627 1628 /* This method controls the net device special MAC multicast support. 1629 * The Special Multicast Table for MAC addresses supports MAC of the form 1630 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 1631 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 1632 * Table entries in the DA-Filter table. This method set the Special 1633 * Multicast Table appropriate entry. 1634 */ 1635 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 1636 unsigned char last_byte, 1637 int queue) 1638 { 1639 unsigned int smc_table_reg; 1640 unsigned int tbl_offset; 1641 unsigned int reg_offset; 1642 1643 /* Register offset from SMC table base */ 1644 tbl_offset = (last_byte / 4); 1645 /* Entry offset within the above reg */ 1646 reg_offset = last_byte % 4; 1647 1648 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 1649 + tbl_offset * 4)); 1650 1651 if (queue == -1) 1652 smc_table_reg &= ~(0xff << (8 * reg_offset)); 1653 else { 1654 smc_table_reg &= ~(0xff << (8 * reg_offset)); 1655 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1656 } 1657 1658 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 1659 smc_table_reg); 1660 } 1661 1662 /* This method controls the network device Other MAC multicast support. 1663 * The Other Multicast Table is used for multicast of another type. 1664 * A CRC-8 is used as an index to the Other Multicast Table entries 1665 * in the DA-Filter table. 1666 * The method gets the CRC-8 value from the calling routine and 1667 * sets the Other Multicast Table appropriate entry according to the 1668 * specified CRC-8 . 1669 */ 1670 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 1671 unsigned char crc8, 1672 int queue) 1673 { 1674 unsigned int omc_table_reg; 1675 unsigned int tbl_offset; 1676 unsigned int reg_offset; 1677 1678 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 1679 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 1680 1681 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 1682 1683 if (queue == -1) { 1684 /* Clear accepts frame bit at specified Other DA table entry */ 1685 omc_table_reg &= ~(0xff << (8 * reg_offset)); 1686 } else { 1687 omc_table_reg &= ~(0xff << (8 * reg_offset)); 1688 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1689 } 1690 1691 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 1692 } 1693 1694 /* The network device supports multicast using two tables: 1695 * 1) Special Multicast Table for MAC addresses of the form 1696 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 1697 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 1698 * Table entries in the DA-Filter table. 1699 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 1700 * is used as an index to the Other Multicast Table entries in the 1701 * DA-Filter table. 1702 */ 1703 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 1704 int queue) 1705 { 1706 unsigned char crc_result = 0; 1707 1708 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 1709 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 1710 return 0; 1711 } 1712 1713 crc_result = mvneta_addr_crc(p_addr); 1714 if (queue == -1) { 1715 if (pp->mcast_count[crc_result] == 0) { 1716 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 1717 crc_result); 1718 return -EINVAL; 1719 } 1720 1721 pp->mcast_count[crc_result]--; 1722 if (pp->mcast_count[crc_result] != 0) { 1723 netdev_info(pp->dev, 1724 "After delete there are %d valid Mcast for crc8=0x%02x\n", 1725 pp->mcast_count[crc_result], crc_result); 1726 return -EINVAL; 1727 } 1728 } else 1729 pp->mcast_count[crc_result]++; 1730 1731 mvneta_set_other_mcast_addr(pp, crc_result, queue); 1732 1733 return 0; 1734 } 1735 1736 /* Configure Fitering mode of Ethernet port */ 1737 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 1738 int is_promisc) 1739 { 1740 u32 port_cfg_reg, val; 1741 1742 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 1743 1744 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 1745 1746 /* Set / Clear UPM bit in port configuration register */ 1747 if (is_promisc) { 1748 /* Accept all Unicast addresses */ 1749 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 1750 val |= MVNETA_FORCE_UNI; 1751 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 1752 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 1753 } else { 1754 /* Reject all Unicast addresses */ 1755 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 1756 val &= ~MVNETA_FORCE_UNI; 1757 } 1758 1759 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 1760 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 1761 } 1762 1763 /* register unicast and multicast addresses */ 1764 static void mvneta_set_rx_mode(struct net_device *dev) 1765 { 1766 struct mvneta_port *pp = netdev_priv(dev); 1767 struct netdev_hw_addr *ha; 1768 1769 if (dev->flags & IFF_PROMISC) { 1770 /* Accept all: Multicast + Unicast */ 1771 mvneta_rx_unicast_promisc_set(pp, 1); 1772 mvneta_set_ucast_table(pp, rxq_def); 1773 mvneta_set_special_mcast_table(pp, rxq_def); 1774 mvneta_set_other_mcast_table(pp, rxq_def); 1775 } else { 1776 /* Accept single Unicast */ 1777 mvneta_rx_unicast_promisc_set(pp, 0); 1778 mvneta_set_ucast_table(pp, -1); 1779 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def); 1780 1781 if (dev->flags & IFF_ALLMULTI) { 1782 /* Accept all multicast */ 1783 mvneta_set_special_mcast_table(pp, rxq_def); 1784 mvneta_set_other_mcast_table(pp, rxq_def); 1785 } else { 1786 /* Accept only initialized multicast */ 1787 mvneta_set_special_mcast_table(pp, -1); 1788 mvneta_set_other_mcast_table(pp, -1); 1789 1790 if (!netdev_mc_empty(dev)) { 1791 netdev_for_each_mc_addr(ha, dev) { 1792 mvneta_mcast_addr_set(pp, ha->addr, 1793 rxq_def); 1794 } 1795 } 1796 } 1797 } 1798 } 1799 1800 /* Interrupt handling - the callback for request_irq() */ 1801 static irqreturn_t mvneta_isr(int irq, void *dev_id) 1802 { 1803 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 1804 1805 /* Mask all interrupts */ 1806 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1807 1808 napi_schedule(&pp->napi); 1809 1810 return IRQ_HANDLED; 1811 } 1812 1813 /* NAPI handler 1814 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 1815 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 1816 * Bits 8 -15 of the cause Rx Tx register indicate that are received 1817 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 1818 * Each CPU has its own causeRxTx register 1819 */ 1820 static int mvneta_poll(struct napi_struct *napi, int budget) 1821 { 1822 int rx_done = 0; 1823 u32 cause_rx_tx; 1824 unsigned long flags; 1825 struct mvneta_port *pp = netdev_priv(napi->dev); 1826 1827 if (!netif_running(pp->dev)) { 1828 napi_complete(napi); 1829 return rx_done; 1830 } 1831 1832 /* Read cause register */ 1833 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) & 1834 MVNETA_RX_INTR_MASK(rxq_number); 1835 1836 /* For the case where the last mvneta_poll did not process all 1837 * RX packets 1838 */ 1839 cause_rx_tx |= pp->cause_rx_tx; 1840 if (rxq_number > 1) { 1841 while ((cause_rx_tx != 0) && (budget > 0)) { 1842 int count; 1843 struct mvneta_rx_queue *rxq; 1844 /* get rx queue number from cause_rx_tx */ 1845 rxq = mvneta_rx_policy(pp, cause_rx_tx); 1846 if (!rxq) 1847 break; 1848 1849 /* process the packet in that rx queue */ 1850 count = mvneta_rx(pp, budget, rxq); 1851 rx_done += count; 1852 budget -= count; 1853 if (budget > 0) { 1854 /* set off the rx bit of the 1855 * corresponding bit in the cause rx 1856 * tx register, so that next iteration 1857 * will find the next rx queue where 1858 * packets are received on 1859 */ 1860 cause_rx_tx &= ~((1 << rxq->id) << 8); 1861 } 1862 } 1863 } else { 1864 rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]); 1865 budget -= rx_done; 1866 } 1867 1868 if (budget > 0) { 1869 cause_rx_tx = 0; 1870 napi_complete(napi); 1871 local_irq_save(flags); 1872 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1873 MVNETA_RX_INTR_MASK(rxq_number)); 1874 local_irq_restore(flags); 1875 } 1876 1877 pp->cause_rx_tx = cause_rx_tx; 1878 return rx_done; 1879 } 1880 1881 /* tx done timer callback */ 1882 static void mvneta_tx_done_timer_callback(unsigned long data) 1883 { 1884 struct net_device *dev = (struct net_device *)data; 1885 struct mvneta_port *pp = netdev_priv(dev); 1886 int tx_done = 0, tx_todo = 0; 1887 1888 if (!netif_running(dev)) 1889 return ; 1890 1891 clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags); 1892 1893 tx_done = mvneta_tx_done_gbe(pp, 1894 (((1 << txq_number) - 1) & 1895 MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK), 1896 &tx_todo); 1897 if (tx_todo > 0) 1898 mvneta_add_tx_done_timer(pp); 1899 } 1900 1901 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 1902 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 1903 int num) 1904 { 1905 struct net_device *dev = pp->dev; 1906 int i; 1907 1908 for (i = 0; i < num; i++) { 1909 struct sk_buff *skb; 1910 struct mvneta_rx_desc *rx_desc; 1911 unsigned long phys_addr; 1912 1913 skb = dev_alloc_skb(pp->pkt_size); 1914 if (!skb) { 1915 netdev_err(dev, "%s:rxq %d, %d of %d buffs filled\n", 1916 __func__, rxq->id, i, num); 1917 break; 1918 } 1919 1920 rx_desc = rxq->descs + i; 1921 memset(rx_desc, 0, sizeof(struct mvneta_rx_desc)); 1922 phys_addr = dma_map_single(dev->dev.parent, skb->head, 1923 MVNETA_RX_BUF_SIZE(pp->pkt_size), 1924 DMA_FROM_DEVICE); 1925 if (unlikely(dma_mapping_error(dev->dev.parent, phys_addr))) { 1926 dev_kfree_skb(skb); 1927 break; 1928 } 1929 1930 mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)skb); 1931 } 1932 1933 /* Add this number of RX descriptors as non occupied (ready to 1934 * get packets) 1935 */ 1936 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 1937 1938 return i; 1939 } 1940 1941 /* Free all packets pending transmit from all TXQs and reset TX port */ 1942 static void mvneta_tx_reset(struct mvneta_port *pp) 1943 { 1944 int queue; 1945 1946 /* free the skb's in the hal tx ring */ 1947 for (queue = 0; queue < txq_number; queue++) 1948 mvneta_txq_done_force(pp, &pp->txqs[queue]); 1949 1950 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1951 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1952 } 1953 1954 static void mvneta_rx_reset(struct mvneta_port *pp) 1955 { 1956 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1957 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1958 } 1959 1960 /* Rx/Tx queue initialization/cleanup methods */ 1961 1962 /* Create a specified RX queue */ 1963 static int mvneta_rxq_init(struct mvneta_port *pp, 1964 struct mvneta_rx_queue *rxq) 1965 1966 { 1967 rxq->size = pp->rx_ring_size; 1968 1969 /* Allocate memory for RX descriptors */ 1970 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 1971 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 1972 &rxq->descs_phys, GFP_KERNEL); 1973 if (rxq->descs == NULL) { 1974 netdev_err(pp->dev, 1975 "rxq=%d: Can't allocate %d bytes for %d RX descr\n", 1976 rxq->id, rxq->size * MVNETA_DESC_ALIGNED_SIZE, 1977 rxq->size); 1978 return -ENOMEM; 1979 } 1980 1981 BUG_ON(rxq->descs != 1982 PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 1983 1984 rxq->last_desc = rxq->size - 1; 1985 1986 /* Set Rx descriptors queue starting address */ 1987 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 1988 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 1989 1990 /* Set Offset */ 1991 mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD); 1992 1993 /* Set coalescing pkts and time */ 1994 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 1995 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 1996 1997 /* Fill RXQ with buffers from RX pool */ 1998 mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size)); 1999 mvneta_rxq_bm_disable(pp, rxq); 2000 mvneta_rxq_fill(pp, rxq, rxq->size); 2001 2002 return 0; 2003 } 2004 2005 /* Cleanup Rx queue */ 2006 static void mvneta_rxq_deinit(struct mvneta_port *pp, 2007 struct mvneta_rx_queue *rxq) 2008 { 2009 mvneta_rxq_drop_pkts(pp, rxq); 2010 2011 if (rxq->descs) 2012 dma_free_coherent(pp->dev->dev.parent, 2013 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 2014 rxq->descs, 2015 rxq->descs_phys); 2016 2017 rxq->descs = NULL; 2018 rxq->last_desc = 0; 2019 rxq->next_desc_to_proc = 0; 2020 rxq->descs_phys = 0; 2021 } 2022 2023 /* Create and initialize a tx queue */ 2024 static int mvneta_txq_init(struct mvneta_port *pp, 2025 struct mvneta_tx_queue *txq) 2026 { 2027 txq->size = pp->tx_ring_size; 2028 2029 /* Allocate memory for TX descriptors */ 2030 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 2031 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2032 &txq->descs_phys, GFP_KERNEL); 2033 if (txq->descs == NULL) { 2034 netdev_err(pp->dev, 2035 "txQ=%d: Can't allocate %d bytes for %d TX descr\n", 2036 txq->id, txq->size * MVNETA_DESC_ALIGNED_SIZE, 2037 txq->size); 2038 return -ENOMEM; 2039 } 2040 2041 /* Make sure descriptor address is cache line size aligned */ 2042 BUG_ON(txq->descs != 2043 PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE)); 2044 2045 txq->last_desc = txq->size - 1; 2046 2047 /* Set maximum bandwidth for enabled TXQs */ 2048 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 2049 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 2050 2051 /* Set Tx descriptors queue starting address */ 2052 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 2053 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 2054 2055 txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL); 2056 if (txq->tx_skb == NULL) { 2057 dma_free_coherent(pp->dev->dev.parent, 2058 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2059 txq->descs, txq->descs_phys); 2060 return -ENOMEM; 2061 } 2062 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2063 2064 return 0; 2065 } 2066 2067 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 2068 static void mvneta_txq_deinit(struct mvneta_port *pp, 2069 struct mvneta_tx_queue *txq) 2070 { 2071 kfree(txq->tx_skb); 2072 2073 if (txq->descs) 2074 dma_free_coherent(pp->dev->dev.parent, 2075 txq->size * MVNETA_DESC_ALIGNED_SIZE, 2076 txq->descs, txq->descs_phys); 2077 2078 txq->descs = NULL; 2079 txq->last_desc = 0; 2080 txq->next_desc_to_proc = 0; 2081 txq->descs_phys = 0; 2082 2083 /* Set minimum bandwidth for disabled TXQs */ 2084 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 2085 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 2086 2087 /* Set Tx descriptors queue starting address and size */ 2088 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 2089 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 2090 } 2091 2092 /* Cleanup all Tx queues */ 2093 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 2094 { 2095 int queue; 2096 2097 for (queue = 0; queue < txq_number; queue++) 2098 mvneta_txq_deinit(pp, &pp->txqs[queue]); 2099 } 2100 2101 /* Cleanup all Rx queues */ 2102 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 2103 { 2104 int queue; 2105 2106 for (queue = 0; queue < rxq_number; queue++) 2107 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 2108 } 2109 2110 2111 /* Init all Rx queues */ 2112 static int mvneta_setup_rxqs(struct mvneta_port *pp) 2113 { 2114 int queue; 2115 2116 for (queue = 0; queue < rxq_number; queue++) { 2117 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 2118 if (err) { 2119 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 2120 __func__, queue); 2121 mvneta_cleanup_rxqs(pp); 2122 return err; 2123 } 2124 } 2125 2126 return 0; 2127 } 2128 2129 /* Init all tx queues */ 2130 static int mvneta_setup_txqs(struct mvneta_port *pp) 2131 { 2132 int queue; 2133 2134 for (queue = 0; queue < txq_number; queue++) { 2135 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 2136 if (err) { 2137 netdev_err(pp->dev, "%s: can't create txq=%d\n", 2138 __func__, queue); 2139 mvneta_cleanup_txqs(pp); 2140 return err; 2141 } 2142 } 2143 2144 return 0; 2145 } 2146 2147 static void mvneta_start_dev(struct mvneta_port *pp) 2148 { 2149 mvneta_max_rx_size_set(pp, pp->pkt_size); 2150 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 2151 2152 /* start the Rx/Tx activity */ 2153 mvneta_port_enable(pp); 2154 2155 /* Enable polling on the port */ 2156 napi_enable(&pp->napi); 2157 2158 /* Unmask interrupts */ 2159 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 2160 MVNETA_RX_INTR_MASK(rxq_number)); 2161 2162 phy_start(pp->phy_dev); 2163 netif_tx_start_all_queues(pp->dev); 2164 } 2165 2166 static void mvneta_stop_dev(struct mvneta_port *pp) 2167 { 2168 phy_stop(pp->phy_dev); 2169 2170 napi_disable(&pp->napi); 2171 2172 netif_carrier_off(pp->dev); 2173 2174 mvneta_port_down(pp); 2175 netif_tx_stop_all_queues(pp->dev); 2176 2177 /* Stop the port activity */ 2178 mvneta_port_disable(pp); 2179 2180 /* Clear all ethernet port interrupts */ 2181 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 2182 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 2183 2184 /* Mask all ethernet port interrupts */ 2185 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 2186 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 2187 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 2188 2189 mvneta_tx_reset(pp); 2190 mvneta_rx_reset(pp); 2191 } 2192 2193 /* tx timeout callback - display a message and stop/start the network device */ 2194 static void mvneta_tx_timeout(struct net_device *dev) 2195 { 2196 struct mvneta_port *pp = netdev_priv(dev); 2197 2198 netdev_info(dev, "tx timeout\n"); 2199 mvneta_stop_dev(pp); 2200 mvneta_start_dev(pp); 2201 } 2202 2203 /* Return positive if MTU is valid */ 2204 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu) 2205 { 2206 if (mtu < 68) { 2207 netdev_err(dev, "cannot change mtu to less than 68\n"); 2208 return -EINVAL; 2209 } 2210 2211 /* 9676 == 9700 - 20 and rounding to 8 */ 2212 if (mtu > 9676) { 2213 netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu); 2214 mtu = 9676; 2215 } 2216 2217 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 2218 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 2219 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 2220 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 2221 } 2222 2223 return mtu; 2224 } 2225 2226 /* Change the device mtu */ 2227 static int mvneta_change_mtu(struct net_device *dev, int mtu) 2228 { 2229 struct mvneta_port *pp = netdev_priv(dev); 2230 int ret; 2231 2232 mtu = mvneta_check_mtu_valid(dev, mtu); 2233 if (mtu < 0) 2234 return -EINVAL; 2235 2236 dev->mtu = mtu; 2237 2238 if (!netif_running(dev)) 2239 return 0; 2240 2241 /* The interface is running, so we have to force a 2242 * reallocation of the RXQs 2243 */ 2244 mvneta_stop_dev(pp); 2245 2246 mvneta_cleanup_txqs(pp); 2247 mvneta_cleanup_rxqs(pp); 2248 2249 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 2250 2251 ret = mvneta_setup_rxqs(pp); 2252 if (ret) { 2253 netdev_err(pp->dev, "unable to setup rxqs after MTU change\n"); 2254 return ret; 2255 } 2256 2257 mvneta_setup_txqs(pp); 2258 2259 mvneta_start_dev(pp); 2260 mvneta_port_up(pp); 2261 2262 return 0; 2263 } 2264 2265 /* Handle setting mac address */ 2266 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 2267 { 2268 struct mvneta_port *pp = netdev_priv(dev); 2269 u8 *mac = addr + 2; 2270 int i; 2271 2272 if (netif_running(dev)) 2273 return -EBUSY; 2274 2275 /* Remove previous address table entry */ 2276 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 2277 2278 /* Set new addr in hw */ 2279 mvneta_mac_addr_set(pp, mac, rxq_def); 2280 2281 /* Set addr in the device */ 2282 for (i = 0; i < ETH_ALEN; i++) 2283 dev->dev_addr[i] = mac[i]; 2284 2285 return 0; 2286 } 2287 2288 static void mvneta_adjust_link(struct net_device *ndev) 2289 { 2290 struct mvneta_port *pp = netdev_priv(ndev); 2291 struct phy_device *phydev = pp->phy_dev; 2292 int status_change = 0; 2293 2294 if (phydev->link) { 2295 if ((pp->speed != phydev->speed) || 2296 (pp->duplex != phydev->duplex)) { 2297 u32 val; 2298 2299 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 2300 val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED | 2301 MVNETA_GMAC_CONFIG_GMII_SPEED | 2302 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 2303 2304 if (phydev->duplex) 2305 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 2306 2307 if (phydev->speed == SPEED_1000) 2308 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 2309 else 2310 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 2311 2312 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 2313 2314 pp->duplex = phydev->duplex; 2315 pp->speed = phydev->speed; 2316 } 2317 } 2318 2319 if (phydev->link != pp->link) { 2320 if (!phydev->link) { 2321 pp->duplex = -1; 2322 pp->speed = 0; 2323 } 2324 2325 pp->link = phydev->link; 2326 status_change = 1; 2327 } 2328 2329 if (status_change) { 2330 if (phydev->link) { 2331 u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 2332 val |= (MVNETA_GMAC_FORCE_LINK_PASS | 2333 MVNETA_GMAC_FORCE_LINK_DOWN); 2334 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 2335 mvneta_port_up(pp); 2336 netdev_info(pp->dev, "link up\n"); 2337 } else { 2338 mvneta_port_down(pp); 2339 netdev_info(pp->dev, "link down\n"); 2340 } 2341 } 2342 } 2343 2344 static int mvneta_mdio_probe(struct mvneta_port *pp) 2345 { 2346 struct phy_device *phy_dev; 2347 2348 phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0, 2349 pp->phy_interface); 2350 if (!phy_dev) { 2351 netdev_err(pp->dev, "could not find the PHY\n"); 2352 return -ENODEV; 2353 } 2354 2355 phy_dev->supported &= PHY_GBIT_FEATURES; 2356 phy_dev->advertising = phy_dev->supported; 2357 2358 pp->phy_dev = phy_dev; 2359 pp->link = 0; 2360 pp->duplex = 0; 2361 pp->speed = 0; 2362 2363 return 0; 2364 } 2365 2366 static void mvneta_mdio_remove(struct mvneta_port *pp) 2367 { 2368 phy_disconnect(pp->phy_dev); 2369 pp->phy_dev = NULL; 2370 } 2371 2372 static int mvneta_open(struct net_device *dev) 2373 { 2374 struct mvneta_port *pp = netdev_priv(dev); 2375 int ret; 2376 2377 mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def); 2378 2379 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 2380 2381 ret = mvneta_setup_rxqs(pp); 2382 if (ret) 2383 return ret; 2384 2385 ret = mvneta_setup_txqs(pp); 2386 if (ret) 2387 goto err_cleanup_rxqs; 2388 2389 /* Connect to port interrupt line */ 2390 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 2391 MVNETA_DRIVER_NAME, pp); 2392 if (ret) { 2393 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 2394 goto err_cleanup_txqs; 2395 } 2396 2397 /* In default link is down */ 2398 netif_carrier_off(pp->dev); 2399 2400 ret = mvneta_mdio_probe(pp); 2401 if (ret < 0) { 2402 netdev_err(dev, "cannot probe MDIO bus\n"); 2403 goto err_free_irq; 2404 } 2405 2406 mvneta_start_dev(pp); 2407 2408 return 0; 2409 2410 err_free_irq: 2411 free_irq(pp->dev->irq, pp); 2412 err_cleanup_txqs: 2413 mvneta_cleanup_txqs(pp); 2414 err_cleanup_rxqs: 2415 mvneta_cleanup_rxqs(pp); 2416 return ret; 2417 } 2418 2419 /* Stop the port, free port interrupt line */ 2420 static int mvneta_stop(struct net_device *dev) 2421 { 2422 struct mvneta_port *pp = netdev_priv(dev); 2423 2424 mvneta_stop_dev(pp); 2425 mvneta_mdio_remove(pp); 2426 free_irq(dev->irq, pp); 2427 mvneta_cleanup_rxqs(pp); 2428 mvneta_cleanup_txqs(pp); 2429 del_timer(&pp->tx_done_timer); 2430 clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags); 2431 2432 return 0; 2433 } 2434 2435 /* Ethtool methods */ 2436 2437 /* Get settings (phy address, speed) for ethtools */ 2438 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2439 { 2440 struct mvneta_port *pp = netdev_priv(dev); 2441 2442 if (!pp->phy_dev) 2443 return -ENODEV; 2444 2445 return phy_ethtool_gset(pp->phy_dev, cmd); 2446 } 2447 2448 /* Set settings (phy address, speed) for ethtools */ 2449 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2450 { 2451 struct mvneta_port *pp = netdev_priv(dev); 2452 2453 if (!pp->phy_dev) 2454 return -ENODEV; 2455 2456 return phy_ethtool_sset(pp->phy_dev, cmd); 2457 } 2458 2459 /* Set interrupt coalescing for ethtools */ 2460 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 2461 struct ethtool_coalesce *c) 2462 { 2463 struct mvneta_port *pp = netdev_priv(dev); 2464 int queue; 2465 2466 for (queue = 0; queue < rxq_number; queue++) { 2467 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 2468 rxq->time_coal = c->rx_coalesce_usecs; 2469 rxq->pkts_coal = c->rx_max_coalesced_frames; 2470 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 2471 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 2472 } 2473 2474 for (queue = 0; queue < txq_number; queue++) { 2475 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 2476 txq->done_pkts_coal = c->tx_max_coalesced_frames; 2477 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 2478 } 2479 2480 return 0; 2481 } 2482 2483 /* get coalescing for ethtools */ 2484 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 2485 struct ethtool_coalesce *c) 2486 { 2487 struct mvneta_port *pp = netdev_priv(dev); 2488 2489 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 2490 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 2491 2492 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 2493 return 0; 2494 } 2495 2496 2497 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 2498 struct ethtool_drvinfo *drvinfo) 2499 { 2500 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 2501 sizeof(drvinfo->driver)); 2502 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 2503 sizeof(drvinfo->version)); 2504 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 2505 sizeof(drvinfo->bus_info)); 2506 } 2507 2508 2509 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 2510 struct ethtool_ringparam *ring) 2511 { 2512 struct mvneta_port *pp = netdev_priv(netdev); 2513 2514 ring->rx_max_pending = MVNETA_MAX_RXD; 2515 ring->tx_max_pending = MVNETA_MAX_TXD; 2516 ring->rx_pending = pp->rx_ring_size; 2517 ring->tx_pending = pp->tx_ring_size; 2518 } 2519 2520 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 2521 struct ethtool_ringparam *ring) 2522 { 2523 struct mvneta_port *pp = netdev_priv(dev); 2524 2525 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 2526 return -EINVAL; 2527 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 2528 ring->rx_pending : MVNETA_MAX_RXD; 2529 pp->tx_ring_size = ring->tx_pending < MVNETA_MAX_TXD ? 2530 ring->tx_pending : MVNETA_MAX_TXD; 2531 2532 if (netif_running(dev)) { 2533 mvneta_stop(dev); 2534 if (mvneta_open(dev)) { 2535 netdev_err(dev, 2536 "error on opening device after ring param change\n"); 2537 return -ENOMEM; 2538 } 2539 } 2540 2541 return 0; 2542 } 2543 2544 static const struct net_device_ops mvneta_netdev_ops = { 2545 .ndo_open = mvneta_open, 2546 .ndo_stop = mvneta_stop, 2547 .ndo_start_xmit = mvneta_tx, 2548 .ndo_set_rx_mode = mvneta_set_rx_mode, 2549 .ndo_set_mac_address = mvneta_set_mac_addr, 2550 .ndo_change_mtu = mvneta_change_mtu, 2551 .ndo_tx_timeout = mvneta_tx_timeout, 2552 .ndo_get_stats64 = mvneta_get_stats64, 2553 }; 2554 2555 const struct ethtool_ops mvneta_eth_tool_ops = { 2556 .get_link = ethtool_op_get_link, 2557 .get_settings = mvneta_ethtool_get_settings, 2558 .set_settings = mvneta_ethtool_set_settings, 2559 .set_coalesce = mvneta_ethtool_set_coalesce, 2560 .get_coalesce = mvneta_ethtool_get_coalesce, 2561 .get_drvinfo = mvneta_ethtool_get_drvinfo, 2562 .get_ringparam = mvneta_ethtool_get_ringparam, 2563 .set_ringparam = mvneta_ethtool_set_ringparam, 2564 }; 2565 2566 /* Initialize hw */ 2567 static int mvneta_init(struct mvneta_port *pp, int phy_addr) 2568 { 2569 int queue; 2570 2571 /* Disable port */ 2572 mvneta_port_disable(pp); 2573 2574 /* Set port default values */ 2575 mvneta_defaults_set(pp); 2576 2577 pp->txqs = kzalloc(txq_number * sizeof(struct mvneta_tx_queue), 2578 GFP_KERNEL); 2579 if (!pp->txqs) 2580 return -ENOMEM; 2581 2582 /* Initialize TX descriptor rings */ 2583 for (queue = 0; queue < txq_number; queue++) { 2584 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 2585 txq->id = queue; 2586 txq->size = pp->tx_ring_size; 2587 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 2588 } 2589 2590 pp->rxqs = kzalloc(rxq_number * sizeof(struct mvneta_rx_queue), 2591 GFP_KERNEL); 2592 if (!pp->rxqs) { 2593 kfree(pp->txqs); 2594 return -ENOMEM; 2595 } 2596 2597 /* Create Rx descriptor rings */ 2598 for (queue = 0; queue < rxq_number; queue++) { 2599 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 2600 rxq->id = queue; 2601 rxq->size = pp->rx_ring_size; 2602 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 2603 rxq->time_coal = MVNETA_RX_COAL_USEC; 2604 } 2605 2606 return 0; 2607 } 2608 2609 static void mvneta_deinit(struct mvneta_port *pp) 2610 { 2611 kfree(pp->txqs); 2612 kfree(pp->rxqs); 2613 } 2614 2615 /* platform glue : initialize decoding windows */ 2616 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 2617 const struct mbus_dram_target_info *dram) 2618 { 2619 u32 win_enable; 2620 u32 win_protect; 2621 int i; 2622 2623 for (i = 0; i < 6; i++) { 2624 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 2625 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 2626 2627 if (i < 4) 2628 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 2629 } 2630 2631 win_enable = 0x3f; 2632 win_protect = 0; 2633 2634 for (i = 0; i < dram->num_cs; i++) { 2635 const struct mbus_dram_window *cs = dram->cs + i; 2636 mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) | 2637 (cs->mbus_attr << 8) | dram->mbus_dram_target_id); 2638 2639 mvreg_write(pp, MVNETA_WIN_SIZE(i), 2640 (cs->size - 1) & 0xffff0000); 2641 2642 win_enable &= ~(1 << i); 2643 win_protect |= 3 << (2 * i); 2644 } 2645 2646 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 2647 } 2648 2649 /* Power up the port */ 2650 static void mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 2651 { 2652 u32 val; 2653 2654 /* MAC Cause register should be cleared */ 2655 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 2656 2657 if (phy_mode == PHY_INTERFACE_MODE_SGMII) 2658 mvneta_port_sgmii_config(pp); 2659 2660 mvneta_gmac_rgmii_set(pp, 1); 2661 2662 /* Cancel Port Reset */ 2663 val = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 2664 val &= ~MVNETA_GMAC2_PORT_RESET; 2665 mvreg_write(pp, MVNETA_GMAC_CTRL_2, val); 2666 2667 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 2668 MVNETA_GMAC2_PORT_RESET) != 0) 2669 continue; 2670 } 2671 2672 /* Device initialization routine */ 2673 static int mvneta_probe(struct platform_device *pdev) 2674 { 2675 const struct mbus_dram_target_info *dram_target_info; 2676 struct device_node *dn = pdev->dev.of_node; 2677 struct device_node *phy_node; 2678 u32 phy_addr; 2679 struct mvneta_port *pp; 2680 struct net_device *dev; 2681 const char *mac_addr; 2682 int phy_mode; 2683 int err; 2684 2685 /* Our multiqueue support is not complete, so for now, only 2686 * allow the usage of the first RX queue 2687 */ 2688 if (rxq_def != 0) { 2689 dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def); 2690 return -EINVAL; 2691 } 2692 2693 dev = alloc_etherdev_mq(sizeof(struct mvneta_port), 8); 2694 if (!dev) 2695 return -ENOMEM; 2696 2697 dev->irq = irq_of_parse_and_map(dn, 0); 2698 if (dev->irq == 0) { 2699 err = -EINVAL; 2700 goto err_free_netdev; 2701 } 2702 2703 phy_node = of_parse_phandle(dn, "phy", 0); 2704 if (!phy_node) { 2705 dev_err(&pdev->dev, "no associated PHY\n"); 2706 err = -ENODEV; 2707 goto err_free_irq; 2708 } 2709 2710 phy_mode = of_get_phy_mode(dn); 2711 if (phy_mode < 0) { 2712 dev_err(&pdev->dev, "incorrect phy-mode\n"); 2713 err = -EINVAL; 2714 goto err_free_irq; 2715 } 2716 2717 mac_addr = of_get_mac_address(dn); 2718 2719 if (!mac_addr || !is_valid_ether_addr(mac_addr)) 2720 eth_hw_addr_random(dev); 2721 else 2722 memcpy(dev->dev_addr, mac_addr, ETH_ALEN); 2723 2724 dev->tx_queue_len = MVNETA_MAX_TXD; 2725 dev->watchdog_timeo = 5 * HZ; 2726 dev->netdev_ops = &mvneta_netdev_ops; 2727 2728 SET_ETHTOOL_OPS(dev, &mvneta_eth_tool_ops); 2729 2730 pp = netdev_priv(dev); 2731 2732 pp->tx_done_timer.function = mvneta_tx_done_timer_callback; 2733 init_timer(&pp->tx_done_timer); 2734 clear_bit(MVNETA_F_TX_DONE_TIMER_BIT, &pp->flags); 2735 2736 pp->weight = MVNETA_RX_POLL_WEIGHT; 2737 pp->phy_node = phy_node; 2738 pp->phy_interface = phy_mode; 2739 2740 pp->base = of_iomap(dn, 0); 2741 if (pp->base == NULL) { 2742 err = -ENOMEM; 2743 goto err_free_irq; 2744 } 2745 2746 pp->clk = devm_clk_get(&pdev->dev, NULL); 2747 if (IS_ERR(pp->clk)) { 2748 err = PTR_ERR(pp->clk); 2749 goto err_unmap; 2750 } 2751 2752 clk_prepare_enable(pp->clk); 2753 2754 pp->tx_done_timer.data = (unsigned long)dev; 2755 2756 pp->tx_ring_size = MVNETA_MAX_TXD; 2757 pp->rx_ring_size = MVNETA_MAX_RXD; 2758 2759 pp->dev = dev; 2760 SET_NETDEV_DEV(dev, &pdev->dev); 2761 2762 err = mvneta_init(pp, phy_addr); 2763 if (err < 0) { 2764 dev_err(&pdev->dev, "can't init eth hal\n"); 2765 goto err_clk; 2766 } 2767 mvneta_port_power_up(pp, phy_mode); 2768 2769 dram_target_info = mv_mbus_dram_info(); 2770 if (dram_target_info) 2771 mvneta_conf_mbus_windows(pp, dram_target_info); 2772 2773 netif_napi_add(dev, &pp->napi, mvneta_poll, pp->weight); 2774 2775 err = register_netdev(dev); 2776 if (err < 0) { 2777 dev_err(&pdev->dev, "failed to register\n"); 2778 goto err_deinit; 2779 } 2780 2781 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM; 2782 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM; 2783 dev->priv_flags |= IFF_UNICAST_FLT; 2784 2785 netdev_info(dev, "mac: %pM\n", dev->dev_addr); 2786 2787 platform_set_drvdata(pdev, pp->dev); 2788 2789 return 0; 2790 2791 err_deinit: 2792 mvneta_deinit(pp); 2793 err_clk: 2794 clk_disable_unprepare(pp->clk); 2795 err_unmap: 2796 iounmap(pp->base); 2797 err_free_irq: 2798 irq_dispose_mapping(dev->irq); 2799 err_free_netdev: 2800 free_netdev(dev); 2801 return err; 2802 } 2803 2804 /* Device removal routine */ 2805 static int mvneta_remove(struct platform_device *pdev) 2806 { 2807 struct net_device *dev = platform_get_drvdata(pdev); 2808 struct mvneta_port *pp = netdev_priv(dev); 2809 2810 unregister_netdev(dev); 2811 mvneta_deinit(pp); 2812 clk_disable_unprepare(pp->clk); 2813 iounmap(pp->base); 2814 irq_dispose_mapping(dev->irq); 2815 free_netdev(dev); 2816 2817 platform_set_drvdata(pdev, NULL); 2818 2819 return 0; 2820 } 2821 2822 static const struct of_device_id mvneta_match[] = { 2823 { .compatible = "marvell,armada-370-neta" }, 2824 { } 2825 }; 2826 MODULE_DEVICE_TABLE(of, mvneta_match); 2827 2828 static struct platform_driver mvneta_driver = { 2829 .probe = mvneta_probe, 2830 .remove = mvneta_remove, 2831 .driver = { 2832 .name = MVNETA_DRIVER_NAME, 2833 .of_match_table = mvneta_match, 2834 }, 2835 }; 2836 2837 module_platform_driver(mvneta_driver); 2838 2839 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 2840 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 2841 MODULE_LICENSE("GPL"); 2842 2843 module_param(rxq_number, int, S_IRUGO); 2844 module_param(txq_number, int, S_IRUGO); 2845 2846 module_param(rxq_def, int, S_IRUGO); 2847 module_param(txq_def, int, S_IRUGO); 2848