xref: /linux/drivers/net/ethernet/marvell/mvneta.c (revision 3494bec0f6ac8ac06e0ad7c35933db345b2c5a83)
1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40 #include <net/page_pool.h>
41 #include <linux/bpf_trace.h>
42 
43 /* Registers */
44 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
45 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
46 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
47 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
48 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
49 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
50 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
51 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
52 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
53 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
54 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
55 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
56 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
57 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
58 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
59 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
61 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
62 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
64 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
65 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
66 #define MVNETA_PORT_RX_RESET                    0x1cc0
67 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
68 #define MVNETA_PHY_ADDR                         0x2000
69 #define      MVNETA_PHY_ADDR_MASK               0x1f
70 #define MVNETA_MBUS_RETRY                       0x2010
71 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
72 #define MVNETA_UNIT_CONTROL                     0x20B0
73 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
74 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
75 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
76 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
77 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
78 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
79 #define MVNETA_PORT_CONFIG                      0x2400
80 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
81 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
82 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
83 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
84 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
85 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
86 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
87 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
88 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
89 						 MVNETA_DEF_RXQ_ARP(q)	 | \
90 						 MVNETA_DEF_RXQ_TCP(q)	 | \
91 						 MVNETA_DEF_RXQ_UDP(q)	 | \
92 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
93 						 MVNETA_TX_UNSET_ERR_SUM | \
94 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
95 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
96 #define MVNETA_MAC_ADDR_LOW                      0x2414
97 #define MVNETA_MAC_ADDR_HIGH                     0x2418
98 #define MVNETA_SDMA_CONFIG                       0x241c
99 #define      MVNETA_SDMA_BRST_SIZE_16            4
100 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
101 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
102 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
103 #define      MVNETA_DESC_SWAP                    BIT(6)
104 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
105 #define MVNETA_PORT_STATUS                       0x2444
106 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
107 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
108 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
109 #define MVNETA_SERDES_CFG			 0x24A0
110 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
111 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
112 #define MVNETA_TYPE_PRIO                         0x24bc
113 #define      MVNETA_FORCE_UNI                    BIT(21)
114 #define MVNETA_TXQ_CMD_1                         0x24e4
115 #define MVNETA_TXQ_CMD                           0x2448
116 #define      MVNETA_TXQ_DISABLE_SHIFT            8
117 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
118 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
119 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
120 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
121 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
122 #define MVNETA_ACC_MODE                          0x2500
123 #define MVNETA_BM_ADDRESS                        0x2504
124 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
125 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
126 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
127 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
128 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
129 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
130 
131 /* Exception Interrupt Port/Queue Cause register
132  *
133  * Their behavior depend of the mapping done using the PCPX2Q
134  * registers. For a given CPU if the bit associated to a queue is not
135  * set, then for the register a read from this CPU will always return
136  * 0 and a write won't do anything
137  */
138 
139 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
140 #define MVNETA_INTR_NEW_MASK                     0x25a4
141 
142 /* bits  0..7  = TXQ SENT, one bit per queue.
143  * bits  8..15 = RXQ OCCUP, one bit per queue.
144  * bits 16..23 = RXQ FREE, one bit per queue.
145  * bit  29 = OLD_REG_SUM, see old reg ?
146  * bit  30 = TX_ERR_SUM, one bit for 4 ports
147  * bit  31 = MISC_SUM,   one bit for 4 ports
148  */
149 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
150 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
151 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
152 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
153 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
154 
155 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
156 #define MVNETA_INTR_OLD_MASK                     0x25ac
157 
158 /* Data Path Port/Queue Cause Register */
159 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
160 #define MVNETA_INTR_MISC_MASK                    0x25b4
161 
162 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
163 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
164 #define      MVNETA_CAUSE_PTP                    BIT(4)
165 
166 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
167 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
168 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
169 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
170 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
171 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
172 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
173 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
174 
175 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
176 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
177 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
178 
179 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
180 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
181 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
182 
183 #define MVNETA_INTR_ENABLE                       0x25b8
184 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
185 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
186 
187 #define MVNETA_RXQ_CMD                           0x2680
188 #define      MVNETA_RXQ_DISABLE_SHIFT            8
189 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
190 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
191 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
192 #define MVNETA_GMAC_CTRL_0                       0x2c00
193 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
194 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
195 #define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
196 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
197 #define MVNETA_GMAC_CTRL_2                       0x2c08
198 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
199 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
200 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
201 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
202 #define MVNETA_GMAC_STATUS                       0x2c10
203 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
204 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
205 #define      MVNETA_GMAC_SPEED_100               BIT(2)
206 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
207 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
208 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
209 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
210 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
211 #define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
212 #define      MVNETA_GMAC_SYNC_OK                 BIT(14)
213 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
214 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
215 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
216 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
217 #define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
218 #define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
219 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
220 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
221 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
222 #define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
223 #define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
224 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
225 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
226 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
227 #define MVNETA_GMAC_CTRL_4                       0x2c90
228 #define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
229 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
230 #define      MVNETA_MIB_LATE_COLLISION           0x7c
231 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
232 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
233 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
234 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
235 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
236 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
237 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
238 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
239 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
240 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
241 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
242 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
243 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
244 #define MVNETA_PORT_TX_RESET                     0x3cf0
245 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
246 #define MVNETA_TX_MTU                            0x3e0c
247 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
248 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
249 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
250 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
251 
252 #define MVNETA_LPI_CTRL_0                        0x2cc0
253 #define MVNETA_LPI_CTRL_1                        0x2cc4
254 #define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
255 #define MVNETA_LPI_CTRL_2                        0x2cc8
256 #define MVNETA_LPI_STATUS                        0x2ccc
257 
258 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
259 
260 /* Descriptor ring Macros */
261 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
262 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
263 
264 /* Various constants */
265 
266 /* Coalescing */
267 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
268 #define MVNETA_RX_COAL_PKTS		32
269 #define MVNETA_RX_COAL_USEC		100
270 
271 /* The two bytes Marvell header. Either contains a special value used
272  * by Marvell switches when a specific hardware mode is enabled (not
273  * supported by this driver) or is filled automatically by zeroes on
274  * the RX side. Those two bytes being at the front of the Ethernet
275  * header, they allow to have the IP header aligned on a 4 bytes
276  * boundary automatically: the hardware skips those two bytes on its
277  * own.
278  */
279 #define MVNETA_MH_SIZE			2
280 
281 #define MVNETA_VLAN_TAG_LEN             4
282 
283 #define MVNETA_TX_CSUM_DEF_SIZE		1600
284 #define MVNETA_TX_CSUM_MAX_SIZE		9800
285 #define MVNETA_ACC_MODE_EXT1		1
286 #define MVNETA_ACC_MODE_EXT2		2
287 
288 #define MVNETA_MAX_DECODE_WIN		6
289 
290 /* Timeout constants */
291 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
292 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
293 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
294 
295 #define MVNETA_TX_MTU_MAX		0x3ffff
296 
297 /* The RSS lookup table actually has 256 entries but we do not use
298  * them yet
299  */
300 #define MVNETA_RSS_LU_TABLE_SIZE	1
301 
302 /* Max number of Rx descriptors */
303 #define MVNETA_MAX_RXD 512
304 
305 /* Max number of Tx descriptors */
306 #define MVNETA_MAX_TXD 1024
307 
308 /* Max number of allowed TCP segments for software TSO */
309 #define MVNETA_MAX_TSO_SEGS 100
310 
311 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
312 
313 /* descriptor aligned size */
314 #define MVNETA_DESC_ALIGNED_SIZE	32
315 
316 /* Number of bytes to be taken into account by HW when putting incoming data
317  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
318  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
319  */
320 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
321 
322 #define MVNETA_RX_PKT_SIZE(mtu) \
323 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
324 	      ETH_HLEN + ETH_FCS_LEN,			     \
325 	      cache_line_size())
326 
327 #define MVNETA_SKB_HEADROOM	max(XDP_PACKET_HEADROOM, NET_SKB_PAD)
328 #define MVNETA_SKB_PAD	(SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
329 			 MVNETA_SKB_HEADROOM))
330 #define MVNETA_SKB_SIZE(len)	(SKB_DATA_ALIGN(len) + MVNETA_SKB_PAD)
331 #define MVNETA_MAX_RX_BUF_SIZE	(PAGE_SIZE - MVNETA_SKB_PAD)
332 
333 #define IS_TSO_HEADER(txq, addr) \
334 	((addr >= txq->tso_hdrs_phys) && \
335 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
336 
337 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
338 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
339 
340 enum {
341 	ETHTOOL_STAT_EEE_WAKEUP,
342 	ETHTOOL_STAT_SKB_ALLOC_ERR,
343 	ETHTOOL_STAT_REFILL_ERR,
344 	ETHTOOL_XDP_REDIRECT,
345 	ETHTOOL_XDP_PASS,
346 	ETHTOOL_XDP_DROP,
347 	ETHTOOL_XDP_XMIT,
348 	ETHTOOL_XDP_TX,
349 	ETHTOOL_MAX_STATS,
350 };
351 
352 struct mvneta_statistic {
353 	unsigned short offset;
354 	unsigned short type;
355 	const char name[ETH_GSTRING_LEN];
356 };
357 
358 #define T_REG_32	32
359 #define T_REG_64	64
360 #define T_SW		1
361 
362 #define MVNETA_XDP_PASS		0
363 #define MVNETA_XDP_DROPPED	BIT(0)
364 #define MVNETA_XDP_TX		BIT(1)
365 #define MVNETA_XDP_REDIR	BIT(2)
366 
367 static const struct mvneta_statistic mvneta_statistics[] = {
368 	{ 0x3000, T_REG_64, "good_octets_received", },
369 	{ 0x3010, T_REG_32, "good_frames_received", },
370 	{ 0x3008, T_REG_32, "bad_octets_received", },
371 	{ 0x3014, T_REG_32, "bad_frames_received", },
372 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
373 	{ 0x301c, T_REG_32, "multicast_frames_received", },
374 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
375 	{ 0x3058, T_REG_32, "good_fc_received", },
376 	{ 0x305c, T_REG_32, "bad_fc_received", },
377 	{ 0x3060, T_REG_32, "undersize_received", },
378 	{ 0x3064, T_REG_32, "fragments_received", },
379 	{ 0x3068, T_REG_32, "oversize_received", },
380 	{ 0x306c, T_REG_32, "jabber_received", },
381 	{ 0x3070, T_REG_32, "mac_receive_error", },
382 	{ 0x3074, T_REG_32, "bad_crc_event", },
383 	{ 0x3078, T_REG_32, "collision", },
384 	{ 0x307c, T_REG_32, "late_collision", },
385 	{ 0x2484, T_REG_32, "rx_discard", },
386 	{ 0x2488, T_REG_32, "rx_overrun", },
387 	{ 0x3020, T_REG_32, "frames_64_octets", },
388 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
389 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
390 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
391 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
392 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
393 	{ 0x3038, T_REG_64, "good_octets_sent", },
394 	{ 0x3040, T_REG_32, "good_frames_sent", },
395 	{ 0x3044, T_REG_32, "excessive_collision", },
396 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
397 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
398 	{ 0x3054, T_REG_32, "fc_sent", },
399 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
400 	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
401 	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
402 	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
403 	{ ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
404 	{ ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
405 	{ ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
406 	{ ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
407 	{ ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
408 };
409 
410 struct mvneta_stats {
411 	u64	rx_packets;
412 	u64	rx_bytes;
413 	u64	tx_packets;
414 	u64	tx_bytes;
415 	/* xdp */
416 	u64	xdp_redirect;
417 	u64	xdp_pass;
418 	u64	xdp_drop;
419 	u64	xdp_xmit;
420 	u64	xdp_tx;
421 };
422 
423 struct mvneta_ethtool_stats {
424 	struct mvneta_stats ps;
425 	u64	skb_alloc_error;
426 	u64	refill_error;
427 };
428 
429 struct mvneta_pcpu_stats {
430 	struct u64_stats_sync syncp;
431 
432 	struct mvneta_ethtool_stats es;
433 	u64	rx_dropped;
434 	u64	rx_errors;
435 };
436 
437 struct mvneta_pcpu_port {
438 	/* Pointer to the shared port */
439 	struct mvneta_port	*pp;
440 
441 	/* Pointer to the CPU-local NAPI struct */
442 	struct napi_struct	napi;
443 
444 	/* Cause of the previous interrupt */
445 	u32			cause_rx_tx;
446 };
447 
448 struct mvneta_port {
449 	u8 id;
450 	struct mvneta_pcpu_port __percpu	*ports;
451 	struct mvneta_pcpu_stats __percpu	*stats;
452 
453 	int pkt_size;
454 	void __iomem *base;
455 	struct mvneta_rx_queue *rxqs;
456 	struct mvneta_tx_queue *txqs;
457 	struct net_device *dev;
458 	struct hlist_node node_online;
459 	struct hlist_node node_dead;
460 	int rxq_def;
461 	/* Protect the access to the percpu interrupt registers,
462 	 * ensuring that the configuration remains coherent.
463 	 */
464 	spinlock_t lock;
465 	bool is_stopped;
466 
467 	u32 cause_rx_tx;
468 	struct napi_struct napi;
469 
470 	struct bpf_prog *xdp_prog;
471 
472 	/* Core clock */
473 	struct clk *clk;
474 	/* AXI clock */
475 	struct clk *clk_bus;
476 	u8 mcast_count[256];
477 	u16 tx_ring_size;
478 	u16 rx_ring_size;
479 
480 	phy_interface_t phy_interface;
481 	struct device_node *dn;
482 	unsigned int tx_csum_limit;
483 	struct phylink *phylink;
484 	struct phylink_config phylink_config;
485 	struct phy *comphy;
486 
487 	struct mvneta_bm *bm_priv;
488 	struct mvneta_bm_pool *pool_long;
489 	struct mvneta_bm_pool *pool_short;
490 	int bm_win_id;
491 
492 	bool eee_enabled;
493 	bool eee_active;
494 	bool tx_lpi_enabled;
495 
496 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
497 
498 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
499 
500 	/* Flags for special SoC configurations */
501 	bool neta_armada3700;
502 	u16 rx_offset_correction;
503 	const struct mbus_dram_target_info *dram_target_info;
504 };
505 
506 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
507  * layout of the transmit and reception DMA descriptors, and their
508  * layout is therefore defined by the hardware design
509  */
510 
511 #define MVNETA_TX_L3_OFF_SHIFT	0
512 #define MVNETA_TX_IP_HLEN_SHIFT	8
513 #define MVNETA_TX_L4_UDP	BIT(16)
514 #define MVNETA_TX_L3_IP6	BIT(17)
515 #define MVNETA_TXD_IP_CSUM	BIT(18)
516 #define MVNETA_TXD_Z_PAD	BIT(19)
517 #define MVNETA_TXD_L_DESC	BIT(20)
518 #define MVNETA_TXD_F_DESC	BIT(21)
519 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
520 				 MVNETA_TXD_L_DESC | \
521 				 MVNETA_TXD_F_DESC)
522 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
523 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
524 
525 #define MVNETA_RXD_ERR_CRC		0x0
526 #define MVNETA_RXD_BM_POOL_SHIFT	13
527 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
528 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
529 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
530 #define MVNETA_RXD_ERR_LEN		BIT(18)
531 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
532 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
533 #define MVNETA_RXD_L3_IP4		BIT(25)
534 #define MVNETA_RXD_LAST_DESC		BIT(26)
535 #define MVNETA_RXD_FIRST_DESC		BIT(27)
536 #define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
537 					 MVNETA_RXD_LAST_DESC)
538 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
539 
540 #if defined(__LITTLE_ENDIAN)
541 struct mvneta_tx_desc {
542 	u32  command;		/* Options used by HW for packet transmitting.*/
543 	u16  reserved1;		/* csum_l4 (for future use)		*/
544 	u16  data_size;		/* Data size of transmitted packet in bytes */
545 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
546 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
547 	u32  reserved3[4];	/* Reserved - (for future use)		*/
548 };
549 
550 struct mvneta_rx_desc {
551 	u32  status;		/* Info about received packet		*/
552 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
553 	u16  data_size;		/* Size of received packet in bytes	*/
554 
555 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
556 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
557 
558 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
559 	u16  reserved3;		/* prefetch_cmd, for future use		*/
560 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
561 
562 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
563 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
564 };
565 #else
566 struct mvneta_tx_desc {
567 	u16  data_size;		/* Data size of transmitted packet in bytes */
568 	u16  reserved1;		/* csum_l4 (for future use)		*/
569 	u32  command;		/* Options used by HW for packet transmitting.*/
570 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
571 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
572 	u32  reserved3[4];	/* Reserved - (for future use)		*/
573 };
574 
575 struct mvneta_rx_desc {
576 	u16  data_size;		/* Size of received packet in bytes	*/
577 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
578 	u32  status;		/* Info about received packet		*/
579 
580 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
581 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
582 
583 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
584 	u16  reserved3;		/* prefetch_cmd, for future use		*/
585 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
586 
587 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
588 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
589 };
590 #endif
591 
592 enum mvneta_tx_buf_type {
593 	MVNETA_TYPE_SKB,
594 	MVNETA_TYPE_XDP_TX,
595 	MVNETA_TYPE_XDP_NDO,
596 };
597 
598 struct mvneta_tx_buf {
599 	enum mvneta_tx_buf_type type;
600 	union {
601 		struct xdp_frame *xdpf;
602 		struct sk_buff *skb;
603 	};
604 };
605 
606 struct mvneta_tx_queue {
607 	/* Number of this TX queue, in the range 0-7 */
608 	u8 id;
609 
610 	/* Number of TX DMA descriptors in the descriptor ring */
611 	int size;
612 
613 	/* Number of currently used TX DMA descriptor in the
614 	 * descriptor ring
615 	 */
616 	int count;
617 	int pending;
618 	int tx_stop_threshold;
619 	int tx_wake_threshold;
620 
621 	/* Array of transmitted buffers */
622 	struct mvneta_tx_buf *buf;
623 
624 	/* Index of last TX DMA descriptor that was inserted */
625 	int txq_put_index;
626 
627 	/* Index of the TX DMA descriptor to be cleaned up */
628 	int txq_get_index;
629 
630 	u32 done_pkts_coal;
631 
632 	/* Virtual address of the TX DMA descriptors array */
633 	struct mvneta_tx_desc *descs;
634 
635 	/* DMA address of the TX DMA descriptors array */
636 	dma_addr_t descs_phys;
637 
638 	/* Index of the last TX DMA descriptor */
639 	int last_desc;
640 
641 	/* Index of the next TX DMA descriptor to process */
642 	int next_desc_to_proc;
643 
644 	/* DMA buffers for TSO headers */
645 	char *tso_hdrs;
646 
647 	/* DMA address of TSO headers */
648 	dma_addr_t tso_hdrs_phys;
649 
650 	/* Affinity mask for CPUs*/
651 	cpumask_t affinity_mask;
652 };
653 
654 struct mvneta_rx_queue {
655 	/* rx queue number, in the range 0-7 */
656 	u8 id;
657 
658 	/* num of rx descriptors in the rx descriptor ring */
659 	int size;
660 
661 	u32 pkts_coal;
662 	u32 time_coal;
663 
664 	/* page_pool */
665 	struct page_pool *page_pool;
666 	struct xdp_rxq_info xdp_rxq;
667 
668 	/* Virtual address of the RX buffer */
669 	void  **buf_virt_addr;
670 
671 	/* Virtual address of the RX DMA descriptors array */
672 	struct mvneta_rx_desc *descs;
673 
674 	/* DMA address of the RX DMA descriptors array */
675 	dma_addr_t descs_phys;
676 
677 	/* Index of the last RX DMA descriptor */
678 	int last_desc;
679 
680 	/* Index of the next RX DMA descriptor to process */
681 	int next_desc_to_proc;
682 
683 	/* Index of first RX DMA descriptor to refill */
684 	int first_to_refill;
685 	u32 refill_num;
686 
687 	/* pointer to uncomplete skb buffer */
688 	struct sk_buff *skb;
689 	int left_size;
690 };
691 
692 static enum cpuhp_state online_hpstate;
693 /* The hardware supports eight (8) rx queues, but we are only allowing
694  * the first one to be used. Therefore, let's just allocate one queue.
695  */
696 static int rxq_number = 8;
697 static int txq_number = 8;
698 
699 static int rxq_def;
700 
701 static int rx_copybreak __read_mostly = 256;
702 
703 /* HW BM need that each port be identify by a unique ID */
704 static int global_port_id;
705 
706 #define MVNETA_DRIVER_NAME "mvneta"
707 #define MVNETA_DRIVER_VERSION "1.0"
708 
709 /* Utility/helper methods */
710 
711 /* Write helper method */
712 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
713 {
714 	writel(data, pp->base + offset);
715 }
716 
717 /* Read helper method */
718 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
719 {
720 	return readl(pp->base + offset);
721 }
722 
723 /* Increment txq get counter */
724 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
725 {
726 	txq->txq_get_index++;
727 	if (txq->txq_get_index == txq->size)
728 		txq->txq_get_index = 0;
729 }
730 
731 /* Increment txq put counter */
732 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
733 {
734 	txq->txq_put_index++;
735 	if (txq->txq_put_index == txq->size)
736 		txq->txq_put_index = 0;
737 }
738 
739 
740 /* Clear all MIB counters */
741 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
742 {
743 	int i;
744 	u32 dummy;
745 
746 	/* Perform dummy reads from MIB counters */
747 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
748 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
749 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
750 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
751 }
752 
753 /* Get System Network Statistics */
754 static void
755 mvneta_get_stats64(struct net_device *dev,
756 		   struct rtnl_link_stats64 *stats)
757 {
758 	struct mvneta_port *pp = netdev_priv(dev);
759 	unsigned int start;
760 	int cpu;
761 
762 	for_each_possible_cpu(cpu) {
763 		struct mvneta_pcpu_stats *cpu_stats;
764 		u64 rx_packets;
765 		u64 rx_bytes;
766 		u64 rx_dropped;
767 		u64 rx_errors;
768 		u64 tx_packets;
769 		u64 tx_bytes;
770 
771 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
772 		do {
773 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
774 			rx_packets = cpu_stats->es.ps.rx_packets;
775 			rx_bytes   = cpu_stats->es.ps.rx_bytes;
776 			rx_dropped = cpu_stats->rx_dropped;
777 			rx_errors  = cpu_stats->rx_errors;
778 			tx_packets = cpu_stats->es.ps.tx_packets;
779 			tx_bytes   = cpu_stats->es.ps.tx_bytes;
780 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
781 
782 		stats->rx_packets += rx_packets;
783 		stats->rx_bytes   += rx_bytes;
784 		stats->rx_dropped += rx_dropped;
785 		stats->rx_errors  += rx_errors;
786 		stats->tx_packets += tx_packets;
787 		stats->tx_bytes   += tx_bytes;
788 	}
789 
790 	stats->tx_dropped	= dev->stats.tx_dropped;
791 }
792 
793 /* Rx descriptors helper methods */
794 
795 /* Checks whether the RX descriptor having this status is both the first
796  * and the last descriptor for the RX packet. Each RX packet is currently
797  * received through a single RX descriptor, so not having each RX
798  * descriptor with its first and last bits set is an error
799  */
800 static int mvneta_rxq_desc_is_first_last(u32 status)
801 {
802 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
803 		MVNETA_RXD_FIRST_LAST_DESC;
804 }
805 
806 /* Add number of descriptors ready to receive new packets */
807 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
808 					  struct mvneta_rx_queue *rxq,
809 					  int ndescs)
810 {
811 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
812 	 * be added at once
813 	 */
814 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
815 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
816 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
817 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
818 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
819 	}
820 
821 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
822 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
823 }
824 
825 /* Get number of RX descriptors occupied by received packets */
826 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
827 					struct mvneta_rx_queue *rxq)
828 {
829 	u32 val;
830 
831 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
832 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
833 }
834 
835 /* Update num of rx desc called upon return from rx path or
836  * from mvneta_rxq_drop_pkts().
837  */
838 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
839 				       struct mvneta_rx_queue *rxq,
840 				       int rx_done, int rx_filled)
841 {
842 	u32 val;
843 
844 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
845 		val = rx_done |
846 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
847 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
848 		return;
849 	}
850 
851 	/* Only 255 descriptors can be added at once */
852 	while ((rx_done > 0) || (rx_filled > 0)) {
853 		if (rx_done <= 0xff) {
854 			val = rx_done;
855 			rx_done = 0;
856 		} else {
857 			val = 0xff;
858 			rx_done -= 0xff;
859 		}
860 		if (rx_filled <= 0xff) {
861 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
862 			rx_filled = 0;
863 		} else {
864 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
865 			rx_filled -= 0xff;
866 		}
867 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
868 	}
869 }
870 
871 /* Get pointer to next RX descriptor to be processed by SW */
872 static struct mvneta_rx_desc *
873 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
874 {
875 	int rx_desc = rxq->next_desc_to_proc;
876 
877 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
878 	prefetch(rxq->descs + rxq->next_desc_to_proc);
879 	return rxq->descs + rx_desc;
880 }
881 
882 /* Change maximum receive size of the port. */
883 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
884 {
885 	u32 val;
886 
887 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
888 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
889 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
890 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
891 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
892 }
893 
894 
895 /* Set rx queue offset */
896 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
897 				  struct mvneta_rx_queue *rxq,
898 				  int offset)
899 {
900 	u32 val;
901 
902 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
903 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
904 
905 	/* Offset is in */
906 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
907 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
908 }
909 
910 
911 /* Tx descriptors helper methods */
912 
913 /* Update HW with number of TX descriptors to be sent */
914 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
915 				     struct mvneta_tx_queue *txq,
916 				     int pend_desc)
917 {
918 	u32 val;
919 
920 	pend_desc += txq->pending;
921 
922 	/* Only 255 Tx descriptors can be added at once */
923 	do {
924 		val = min(pend_desc, 255);
925 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
926 		pend_desc -= val;
927 	} while (pend_desc > 0);
928 	txq->pending = 0;
929 }
930 
931 /* Get pointer to next TX descriptor to be processed (send) by HW */
932 static struct mvneta_tx_desc *
933 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
934 {
935 	int tx_desc = txq->next_desc_to_proc;
936 
937 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
938 	return txq->descs + tx_desc;
939 }
940 
941 /* Release the last allocated TX descriptor. Useful to handle DMA
942  * mapping failures in the TX path.
943  */
944 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
945 {
946 	if (txq->next_desc_to_proc == 0)
947 		txq->next_desc_to_proc = txq->last_desc - 1;
948 	else
949 		txq->next_desc_to_proc--;
950 }
951 
952 /* Set rxq buf size */
953 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
954 				    struct mvneta_rx_queue *rxq,
955 				    int buf_size)
956 {
957 	u32 val;
958 
959 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
960 
961 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
962 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
963 
964 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
965 }
966 
967 /* Disable buffer management (BM) */
968 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
969 				  struct mvneta_rx_queue *rxq)
970 {
971 	u32 val;
972 
973 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
974 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
975 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
976 }
977 
978 /* Enable buffer management (BM) */
979 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
980 				 struct mvneta_rx_queue *rxq)
981 {
982 	u32 val;
983 
984 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
985 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
986 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
987 }
988 
989 /* Notify HW about port's assignment of pool for bigger packets */
990 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
991 				     struct mvneta_rx_queue *rxq)
992 {
993 	u32 val;
994 
995 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
996 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
997 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
998 
999 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1000 }
1001 
1002 /* Notify HW about port's assignment of pool for smaller packets */
1003 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1004 				      struct mvneta_rx_queue *rxq)
1005 {
1006 	u32 val;
1007 
1008 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1009 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1010 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1011 
1012 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1013 }
1014 
1015 /* Set port's receive buffer size for assigned BM pool */
1016 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1017 					      int buf_size,
1018 					      u8 pool_id)
1019 {
1020 	u32 val;
1021 
1022 	if (!IS_ALIGNED(buf_size, 8)) {
1023 		dev_warn(pp->dev->dev.parent,
1024 			 "illegal buf_size value %d, round to %d\n",
1025 			 buf_size, ALIGN(buf_size, 8));
1026 		buf_size = ALIGN(buf_size, 8);
1027 	}
1028 
1029 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1030 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1031 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1032 }
1033 
1034 /* Configure MBUS window in order to enable access BM internal SRAM */
1035 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1036 				  u8 target, u8 attr)
1037 {
1038 	u32 win_enable, win_protect;
1039 	int i;
1040 
1041 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1042 
1043 	if (pp->bm_win_id < 0) {
1044 		/* Find first not occupied window */
1045 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1046 			if (win_enable & (1 << i)) {
1047 				pp->bm_win_id = i;
1048 				break;
1049 			}
1050 		}
1051 		if (i == MVNETA_MAX_DECODE_WIN)
1052 			return -ENOMEM;
1053 	} else {
1054 		i = pp->bm_win_id;
1055 	}
1056 
1057 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1058 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1059 
1060 	if (i < 4)
1061 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1062 
1063 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1064 		    (attr << 8) | target);
1065 
1066 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1067 
1068 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1069 	win_protect |= 3 << (2 * i);
1070 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1071 
1072 	win_enable &= ~(1 << i);
1073 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1074 
1075 	return 0;
1076 }
1077 
1078 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1079 {
1080 	u32 wsize;
1081 	u8 target, attr;
1082 	int err;
1083 
1084 	/* Get BM window information */
1085 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1086 					 &target, &attr);
1087 	if (err < 0)
1088 		return err;
1089 
1090 	pp->bm_win_id = -1;
1091 
1092 	/* Open NETA -> BM window */
1093 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1094 				     target, attr);
1095 	if (err < 0) {
1096 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1097 		return err;
1098 	}
1099 	return 0;
1100 }
1101 
1102 /* Assign and initialize pools for port. In case of fail
1103  * buffer manager will remain disabled for current port.
1104  */
1105 static int mvneta_bm_port_init(struct platform_device *pdev,
1106 			       struct mvneta_port *pp)
1107 {
1108 	struct device_node *dn = pdev->dev.of_node;
1109 	u32 long_pool_id, short_pool_id;
1110 
1111 	if (!pp->neta_armada3700) {
1112 		int ret;
1113 
1114 		ret = mvneta_bm_port_mbus_init(pp);
1115 		if (ret)
1116 			return ret;
1117 	}
1118 
1119 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1120 		netdev_info(pp->dev, "missing long pool id\n");
1121 		return -EINVAL;
1122 	}
1123 
1124 	/* Create port's long pool depending on mtu */
1125 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1126 					   MVNETA_BM_LONG, pp->id,
1127 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1128 	if (!pp->pool_long) {
1129 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1130 		return -ENOMEM;
1131 	}
1132 
1133 	pp->pool_long->port_map |= 1 << pp->id;
1134 
1135 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1136 				   pp->pool_long->id);
1137 
1138 	/* If short pool id is not defined, assume using single pool */
1139 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1140 		short_pool_id = long_pool_id;
1141 
1142 	/* Create port's short pool */
1143 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1144 					    MVNETA_BM_SHORT, pp->id,
1145 					    MVNETA_BM_SHORT_PKT_SIZE);
1146 	if (!pp->pool_short) {
1147 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1148 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1149 		return -ENOMEM;
1150 	}
1151 
1152 	if (short_pool_id != long_pool_id) {
1153 		pp->pool_short->port_map |= 1 << pp->id;
1154 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1155 					   pp->pool_short->id);
1156 	}
1157 
1158 	return 0;
1159 }
1160 
1161 /* Update settings of a pool for bigger packets */
1162 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1163 {
1164 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1165 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1166 	int num;
1167 
1168 	/* Release all buffers from long pool */
1169 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1170 	if (hwbm_pool->buf_num) {
1171 		WARN(1, "cannot free all buffers in pool %d\n",
1172 		     bm_pool->id);
1173 		goto bm_mtu_err;
1174 	}
1175 
1176 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1177 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1178 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1179 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1180 
1181 	/* Fill entire long pool */
1182 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1183 	if (num != hwbm_pool->size) {
1184 		WARN(1, "pool %d: %d of %d allocated\n",
1185 		     bm_pool->id, num, hwbm_pool->size);
1186 		goto bm_mtu_err;
1187 	}
1188 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1189 
1190 	return;
1191 
1192 bm_mtu_err:
1193 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1194 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1195 
1196 	pp->bm_priv = NULL;
1197 	pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1198 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1199 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1200 }
1201 
1202 /* Start the Ethernet port RX and TX activity */
1203 static void mvneta_port_up(struct mvneta_port *pp)
1204 {
1205 	int queue;
1206 	u32 q_map;
1207 
1208 	/* Enable all initialized TXs. */
1209 	q_map = 0;
1210 	for (queue = 0; queue < txq_number; queue++) {
1211 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1212 		if (txq->descs)
1213 			q_map |= (1 << queue);
1214 	}
1215 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1216 
1217 	q_map = 0;
1218 	/* Enable all initialized RXQs. */
1219 	for (queue = 0; queue < rxq_number; queue++) {
1220 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1221 
1222 		if (rxq->descs)
1223 			q_map |= (1 << queue);
1224 	}
1225 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1226 }
1227 
1228 /* Stop the Ethernet port activity */
1229 static void mvneta_port_down(struct mvneta_port *pp)
1230 {
1231 	u32 val;
1232 	int count;
1233 
1234 	/* Stop Rx port activity. Check port Rx activity. */
1235 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1236 
1237 	/* Issue stop command for active channels only */
1238 	if (val != 0)
1239 		mvreg_write(pp, MVNETA_RXQ_CMD,
1240 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1241 
1242 	/* Wait for all Rx activity to terminate. */
1243 	count = 0;
1244 	do {
1245 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1246 			netdev_warn(pp->dev,
1247 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1248 				    val);
1249 			break;
1250 		}
1251 		mdelay(1);
1252 
1253 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1254 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1255 
1256 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1257 	 * command for active channels only
1258 	 */
1259 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1260 
1261 	if (val != 0)
1262 		mvreg_write(pp, MVNETA_TXQ_CMD,
1263 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1264 
1265 	/* Wait for all Tx activity to terminate. */
1266 	count = 0;
1267 	do {
1268 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1269 			netdev_warn(pp->dev,
1270 				    "TIMEOUT for TX stopped status=0x%08x\n",
1271 				    val);
1272 			break;
1273 		}
1274 		mdelay(1);
1275 
1276 		/* Check TX Command reg that all Txqs are stopped */
1277 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1278 
1279 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1280 
1281 	/* Double check to verify that TX FIFO is empty */
1282 	count = 0;
1283 	do {
1284 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1285 			netdev_warn(pp->dev,
1286 				    "TX FIFO empty timeout status=0x%08x\n",
1287 				    val);
1288 			break;
1289 		}
1290 		mdelay(1);
1291 
1292 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1293 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1294 		 (val & MVNETA_TX_IN_PRGRS));
1295 
1296 	udelay(200);
1297 }
1298 
1299 /* Enable the port by setting the port enable bit of the MAC control register */
1300 static void mvneta_port_enable(struct mvneta_port *pp)
1301 {
1302 	u32 val;
1303 
1304 	/* Enable port */
1305 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1306 	val |= MVNETA_GMAC0_PORT_ENABLE;
1307 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1308 }
1309 
1310 /* Disable the port and wait for about 200 usec before retuning */
1311 static void mvneta_port_disable(struct mvneta_port *pp)
1312 {
1313 	u32 val;
1314 
1315 	/* Reset the Enable bit in the Serial Control Register */
1316 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1317 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1318 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1319 
1320 	udelay(200);
1321 }
1322 
1323 /* Multicast tables methods */
1324 
1325 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1326 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1327 {
1328 	int offset;
1329 	u32 val;
1330 
1331 	if (queue == -1) {
1332 		val = 0;
1333 	} else {
1334 		val = 0x1 | (queue << 1);
1335 		val |= (val << 24) | (val << 16) | (val << 8);
1336 	}
1337 
1338 	for (offset = 0; offset <= 0xc; offset += 4)
1339 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1340 }
1341 
1342 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1343 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1344 {
1345 	int offset;
1346 	u32 val;
1347 
1348 	if (queue == -1) {
1349 		val = 0;
1350 	} else {
1351 		val = 0x1 | (queue << 1);
1352 		val |= (val << 24) | (val << 16) | (val << 8);
1353 	}
1354 
1355 	for (offset = 0; offset <= 0xfc; offset += 4)
1356 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1357 
1358 }
1359 
1360 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1361 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1362 {
1363 	int offset;
1364 	u32 val;
1365 
1366 	if (queue == -1) {
1367 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1368 		val = 0;
1369 	} else {
1370 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1371 		val = 0x1 | (queue << 1);
1372 		val |= (val << 24) | (val << 16) | (val << 8);
1373 	}
1374 
1375 	for (offset = 0; offset <= 0xfc; offset += 4)
1376 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1377 }
1378 
1379 static void mvneta_percpu_unmask_interrupt(void *arg)
1380 {
1381 	struct mvneta_port *pp = arg;
1382 
1383 	/* All the queue are unmasked, but actually only the ones
1384 	 * mapped to this CPU will be unmasked
1385 	 */
1386 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1387 		    MVNETA_RX_INTR_MASK_ALL |
1388 		    MVNETA_TX_INTR_MASK_ALL |
1389 		    MVNETA_MISCINTR_INTR_MASK);
1390 }
1391 
1392 static void mvneta_percpu_mask_interrupt(void *arg)
1393 {
1394 	struct mvneta_port *pp = arg;
1395 
1396 	/* All the queue are masked, but actually only the ones
1397 	 * mapped to this CPU will be masked
1398 	 */
1399 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1400 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1401 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1402 }
1403 
1404 static void mvneta_percpu_clear_intr_cause(void *arg)
1405 {
1406 	struct mvneta_port *pp = arg;
1407 
1408 	/* All the queue are cleared, but actually only the ones
1409 	 * mapped to this CPU will be cleared
1410 	 */
1411 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1412 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1413 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1414 }
1415 
1416 /* This method sets defaults to the NETA port:
1417  *	Clears interrupt Cause and Mask registers.
1418  *	Clears all MAC tables.
1419  *	Sets defaults to all registers.
1420  *	Resets RX and TX descriptor rings.
1421  *	Resets PHY.
1422  * This method can be called after mvneta_port_down() to return the port
1423  *	settings to defaults.
1424  */
1425 static void mvneta_defaults_set(struct mvneta_port *pp)
1426 {
1427 	int cpu;
1428 	int queue;
1429 	u32 val;
1430 	int max_cpu = num_present_cpus();
1431 
1432 	/* Clear all Cause registers */
1433 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1434 
1435 	/* Mask all interrupts */
1436 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1437 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1438 
1439 	/* Enable MBUS Retry bit16 */
1440 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1441 
1442 	/* Set CPU queue access map. CPUs are assigned to the RX and
1443 	 * TX queues modulo their number. If there is only one TX
1444 	 * queue then it is assigned to the CPU associated to the
1445 	 * default RX queue.
1446 	 */
1447 	for_each_present_cpu(cpu) {
1448 		int rxq_map = 0, txq_map = 0;
1449 		int rxq, txq;
1450 		if (!pp->neta_armada3700) {
1451 			for (rxq = 0; rxq < rxq_number; rxq++)
1452 				if ((rxq % max_cpu) == cpu)
1453 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1454 
1455 			for (txq = 0; txq < txq_number; txq++)
1456 				if ((txq % max_cpu) == cpu)
1457 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1458 
1459 			/* With only one TX queue we configure a special case
1460 			 * which will allow to get all the irq on a single
1461 			 * CPU
1462 			 */
1463 			if (txq_number == 1)
1464 				txq_map = (cpu == pp->rxq_def) ?
1465 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1466 
1467 		} else {
1468 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1469 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1470 		}
1471 
1472 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1473 	}
1474 
1475 	/* Reset RX and TX DMAs */
1476 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1477 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1478 
1479 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1480 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1481 	for (queue = 0; queue < txq_number; queue++) {
1482 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1483 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1484 	}
1485 
1486 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1487 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1488 
1489 	/* Set Port Acceleration Mode */
1490 	if (pp->bm_priv)
1491 		/* HW buffer management + legacy parser */
1492 		val = MVNETA_ACC_MODE_EXT2;
1493 	else
1494 		/* SW buffer management + legacy parser */
1495 		val = MVNETA_ACC_MODE_EXT1;
1496 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1497 
1498 	if (pp->bm_priv)
1499 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1500 
1501 	/* Update val of portCfg register accordingly with all RxQueue types */
1502 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1503 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1504 
1505 	val = 0;
1506 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1507 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1508 
1509 	/* Build PORT_SDMA_CONFIG_REG */
1510 	val = 0;
1511 
1512 	/* Default burst size */
1513 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1514 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1515 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1516 
1517 #if defined(__BIG_ENDIAN)
1518 	val |= MVNETA_DESC_SWAP;
1519 #endif
1520 
1521 	/* Assign port SDMA configuration */
1522 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1523 
1524 	/* Disable PHY polling in hardware, since we're using the
1525 	 * kernel phylib to do this.
1526 	 */
1527 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1528 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1529 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1530 
1531 	mvneta_set_ucast_table(pp, -1);
1532 	mvneta_set_special_mcast_table(pp, -1);
1533 	mvneta_set_other_mcast_table(pp, -1);
1534 
1535 	/* Set port interrupt enable register - default enable all */
1536 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1537 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1538 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1539 
1540 	mvneta_mib_counters_clear(pp);
1541 }
1542 
1543 /* Set max sizes for tx queues */
1544 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1545 
1546 {
1547 	u32 val, size, mtu;
1548 	int queue;
1549 
1550 	mtu = max_tx_size * 8;
1551 	if (mtu > MVNETA_TX_MTU_MAX)
1552 		mtu = MVNETA_TX_MTU_MAX;
1553 
1554 	/* Set MTU */
1555 	val = mvreg_read(pp, MVNETA_TX_MTU);
1556 	val &= ~MVNETA_TX_MTU_MAX;
1557 	val |= mtu;
1558 	mvreg_write(pp, MVNETA_TX_MTU, val);
1559 
1560 	/* TX token size and all TXQs token size must be larger that MTU */
1561 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1562 
1563 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1564 	if (size < mtu) {
1565 		size = mtu;
1566 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1567 		val |= size;
1568 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1569 	}
1570 	for (queue = 0; queue < txq_number; queue++) {
1571 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1572 
1573 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1574 		if (size < mtu) {
1575 			size = mtu;
1576 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1577 			val |= size;
1578 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1579 		}
1580 	}
1581 }
1582 
1583 /* Set unicast address */
1584 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1585 				  int queue)
1586 {
1587 	unsigned int unicast_reg;
1588 	unsigned int tbl_offset;
1589 	unsigned int reg_offset;
1590 
1591 	/* Locate the Unicast table entry */
1592 	last_nibble = (0xf & last_nibble);
1593 
1594 	/* offset from unicast tbl base */
1595 	tbl_offset = (last_nibble / 4) * 4;
1596 
1597 	/* offset within the above reg  */
1598 	reg_offset = last_nibble % 4;
1599 
1600 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1601 
1602 	if (queue == -1) {
1603 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1604 		unicast_reg &= ~(0xff << (8 * reg_offset));
1605 	} else {
1606 		unicast_reg &= ~(0xff << (8 * reg_offset));
1607 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1608 	}
1609 
1610 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1611 }
1612 
1613 /* Set mac address */
1614 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1615 				int queue)
1616 {
1617 	unsigned int mac_h;
1618 	unsigned int mac_l;
1619 
1620 	if (queue != -1) {
1621 		mac_l = (addr[4] << 8) | (addr[5]);
1622 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1623 			(addr[2] << 8) | (addr[3] << 0);
1624 
1625 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1626 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1627 	}
1628 
1629 	/* Accept frames of this address */
1630 	mvneta_set_ucast_addr(pp, addr[5], queue);
1631 }
1632 
1633 /* Set the number of packets that will be received before RX interrupt
1634  * will be generated by HW.
1635  */
1636 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1637 				    struct mvneta_rx_queue *rxq, u32 value)
1638 {
1639 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1640 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1641 }
1642 
1643 /* Set the time delay in usec before RX interrupt will be generated by
1644  * HW.
1645  */
1646 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1647 				    struct mvneta_rx_queue *rxq, u32 value)
1648 {
1649 	u32 val;
1650 	unsigned long clk_rate;
1651 
1652 	clk_rate = clk_get_rate(pp->clk);
1653 	val = (clk_rate / 1000000) * value;
1654 
1655 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1656 }
1657 
1658 /* Set threshold for TX_DONE pkts coalescing */
1659 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1660 					 struct mvneta_tx_queue *txq, u32 value)
1661 {
1662 	u32 val;
1663 
1664 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1665 
1666 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1667 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1668 
1669 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1670 }
1671 
1672 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1673 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1674 				u32 phys_addr, void *virt_addr,
1675 				struct mvneta_rx_queue *rxq)
1676 {
1677 	int i;
1678 
1679 	rx_desc->buf_phys_addr = phys_addr;
1680 	i = rx_desc - rxq->descs;
1681 	rxq->buf_virt_addr[i] = virt_addr;
1682 }
1683 
1684 /* Decrement sent descriptors counter */
1685 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1686 				     struct mvneta_tx_queue *txq,
1687 				     int sent_desc)
1688 {
1689 	u32 val;
1690 
1691 	/* Only 255 TX descriptors can be updated at once */
1692 	while (sent_desc > 0xff) {
1693 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1694 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1695 		sent_desc = sent_desc - 0xff;
1696 	}
1697 
1698 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1699 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1700 }
1701 
1702 /* Get number of TX descriptors already sent by HW */
1703 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1704 					struct mvneta_tx_queue *txq)
1705 {
1706 	u32 val;
1707 	int sent_desc;
1708 
1709 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1710 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1711 		MVNETA_TXQ_SENT_DESC_SHIFT;
1712 
1713 	return sent_desc;
1714 }
1715 
1716 /* Get number of sent descriptors and decrement counter.
1717  *  The number of sent descriptors is returned.
1718  */
1719 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1720 				     struct mvneta_tx_queue *txq)
1721 {
1722 	int sent_desc;
1723 
1724 	/* Get number of sent descriptors */
1725 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1726 
1727 	/* Decrement sent descriptors counter */
1728 	if (sent_desc)
1729 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1730 
1731 	return sent_desc;
1732 }
1733 
1734 /* Set TXQ descriptors fields relevant for CSUM calculation */
1735 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1736 				int ip_hdr_len, int l4_proto)
1737 {
1738 	u32 command;
1739 
1740 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1741 	 * G_L4_chk, L4_type; required only for checksum
1742 	 * calculation
1743 	 */
1744 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1745 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1746 
1747 	if (l3_proto == htons(ETH_P_IP))
1748 		command |= MVNETA_TXD_IP_CSUM;
1749 	else
1750 		command |= MVNETA_TX_L3_IP6;
1751 
1752 	if (l4_proto == IPPROTO_TCP)
1753 		command |=  MVNETA_TX_L4_CSUM_FULL;
1754 	else if (l4_proto == IPPROTO_UDP)
1755 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1756 	else
1757 		command |= MVNETA_TX_L4_CSUM_NOT;
1758 
1759 	return command;
1760 }
1761 
1762 
1763 /* Display more error info */
1764 static void mvneta_rx_error(struct mvneta_port *pp,
1765 			    struct mvneta_rx_desc *rx_desc)
1766 {
1767 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1768 	u32 status = rx_desc->status;
1769 
1770 	/* update per-cpu counter */
1771 	u64_stats_update_begin(&stats->syncp);
1772 	stats->rx_errors++;
1773 	u64_stats_update_end(&stats->syncp);
1774 
1775 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1776 	case MVNETA_RXD_ERR_CRC:
1777 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1778 			   status, rx_desc->data_size);
1779 		break;
1780 	case MVNETA_RXD_ERR_OVERRUN:
1781 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1782 			   status, rx_desc->data_size);
1783 		break;
1784 	case MVNETA_RXD_ERR_LEN:
1785 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1786 			   status, rx_desc->data_size);
1787 		break;
1788 	case MVNETA_RXD_ERR_RESOURCE:
1789 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1790 			   status, rx_desc->data_size);
1791 		break;
1792 	}
1793 }
1794 
1795 /* Handle RX checksum offload based on the descriptor's status */
1796 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1797 			   struct sk_buff *skb)
1798 {
1799 	if ((pp->dev->features & NETIF_F_RXCSUM) &&
1800 	    (status & MVNETA_RXD_L3_IP4) &&
1801 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1802 		skb->csum = 0;
1803 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1804 		return;
1805 	}
1806 
1807 	skb->ip_summed = CHECKSUM_NONE;
1808 }
1809 
1810 /* Return tx queue pointer (find last set bit) according to <cause> returned
1811  * form tx_done reg. <cause> must not be null. The return value is always a
1812  * valid queue for matching the first one found in <cause>.
1813  */
1814 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1815 						     u32 cause)
1816 {
1817 	int queue = fls(cause) - 1;
1818 
1819 	return &pp->txqs[queue];
1820 }
1821 
1822 /* Free tx queue skbuffs */
1823 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1824 				 struct mvneta_tx_queue *txq, int num,
1825 				 struct netdev_queue *nq)
1826 {
1827 	unsigned int bytes_compl = 0, pkts_compl = 0;
1828 	int i;
1829 
1830 	for (i = 0; i < num; i++) {
1831 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1832 		struct mvneta_tx_desc *tx_desc = txq->descs +
1833 			txq->txq_get_index;
1834 
1835 		mvneta_txq_inc_get(txq);
1836 
1837 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) &&
1838 		    buf->type != MVNETA_TYPE_XDP_TX)
1839 			dma_unmap_single(pp->dev->dev.parent,
1840 					 tx_desc->buf_phys_addr,
1841 					 tx_desc->data_size, DMA_TO_DEVICE);
1842 		if (buf->type == MVNETA_TYPE_SKB && buf->skb) {
1843 			bytes_compl += buf->skb->len;
1844 			pkts_compl++;
1845 			dev_kfree_skb_any(buf->skb);
1846 		} else if (buf->type == MVNETA_TYPE_XDP_TX ||
1847 			   buf->type == MVNETA_TYPE_XDP_NDO) {
1848 			xdp_return_frame(buf->xdpf);
1849 		}
1850 	}
1851 
1852 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1853 }
1854 
1855 /* Handle end of transmission */
1856 static void mvneta_txq_done(struct mvneta_port *pp,
1857 			   struct mvneta_tx_queue *txq)
1858 {
1859 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1860 	int tx_done;
1861 
1862 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1863 	if (!tx_done)
1864 		return;
1865 
1866 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1867 
1868 	txq->count -= tx_done;
1869 
1870 	if (netif_tx_queue_stopped(nq)) {
1871 		if (txq->count <= txq->tx_wake_threshold)
1872 			netif_tx_wake_queue(nq);
1873 	}
1874 }
1875 
1876 /* Refill processing for SW buffer management */
1877 /* Allocate page per descriptor */
1878 static int mvneta_rx_refill(struct mvneta_port *pp,
1879 			    struct mvneta_rx_desc *rx_desc,
1880 			    struct mvneta_rx_queue *rxq,
1881 			    gfp_t gfp_mask)
1882 {
1883 	dma_addr_t phys_addr;
1884 	struct page *page;
1885 
1886 	page = page_pool_alloc_pages(rxq->page_pool,
1887 				     gfp_mask | __GFP_NOWARN);
1888 	if (!page)
1889 		return -ENOMEM;
1890 
1891 	phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1892 	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1893 
1894 	return 0;
1895 }
1896 
1897 /* Handle tx checksum */
1898 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1899 {
1900 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1901 		int ip_hdr_len = 0;
1902 		__be16 l3_proto = vlan_get_protocol(skb);
1903 		u8 l4_proto;
1904 
1905 		if (l3_proto == htons(ETH_P_IP)) {
1906 			struct iphdr *ip4h = ip_hdr(skb);
1907 
1908 			/* Calculate IPv4 checksum and L4 checksum */
1909 			ip_hdr_len = ip4h->ihl;
1910 			l4_proto = ip4h->protocol;
1911 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1912 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1913 
1914 			/* Read l4_protocol from one of IPv6 extra headers */
1915 			if (skb_network_header_len(skb) > 0)
1916 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1917 			l4_proto = ip6h->nexthdr;
1918 		} else
1919 			return MVNETA_TX_L4_CSUM_NOT;
1920 
1921 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1922 					    l3_proto, ip_hdr_len, l4_proto);
1923 	}
1924 
1925 	return MVNETA_TX_L4_CSUM_NOT;
1926 }
1927 
1928 /* Drop packets received by the RXQ and free buffers */
1929 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1930 				 struct mvneta_rx_queue *rxq)
1931 {
1932 	int rx_done, i;
1933 
1934 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1935 	if (rx_done)
1936 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1937 
1938 	if (pp->bm_priv) {
1939 		for (i = 0; i < rx_done; i++) {
1940 			struct mvneta_rx_desc *rx_desc =
1941 						  mvneta_rxq_next_desc_get(rxq);
1942 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1943 			struct mvneta_bm_pool *bm_pool;
1944 
1945 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1946 			/* Return dropped buffer to the pool */
1947 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1948 					      rx_desc->buf_phys_addr);
1949 		}
1950 		return;
1951 	}
1952 
1953 	for (i = 0; i < rxq->size; i++) {
1954 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1955 		void *data = rxq->buf_virt_addr[i];
1956 		if (!data || !(rx_desc->buf_phys_addr))
1957 			continue;
1958 
1959 		page_pool_put_full_page(rxq->page_pool, data, false);
1960 	}
1961 	if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
1962 		xdp_rxq_info_unreg(&rxq->xdp_rxq);
1963 	page_pool_destroy(rxq->page_pool);
1964 	rxq->page_pool = NULL;
1965 }
1966 
1967 static void
1968 mvneta_update_stats(struct mvneta_port *pp,
1969 		    struct mvneta_stats *ps)
1970 {
1971 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1972 
1973 	u64_stats_update_begin(&stats->syncp);
1974 	stats->es.ps.rx_packets += ps->rx_packets;
1975 	stats->es.ps.rx_bytes += ps->rx_bytes;
1976 	/* xdp */
1977 	stats->es.ps.xdp_redirect += ps->xdp_redirect;
1978 	stats->es.ps.xdp_pass += ps->xdp_pass;
1979 	stats->es.ps.xdp_drop += ps->xdp_drop;
1980 	u64_stats_update_end(&stats->syncp);
1981 }
1982 
1983 static inline
1984 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
1985 {
1986 	struct mvneta_rx_desc *rx_desc;
1987 	int curr_desc = rxq->first_to_refill;
1988 	int i;
1989 
1990 	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
1991 		rx_desc = rxq->descs + curr_desc;
1992 		if (!(rx_desc->buf_phys_addr)) {
1993 			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
1994 				struct mvneta_pcpu_stats *stats;
1995 
1996 				pr_err("Can't refill queue %d. Done %d from %d\n",
1997 				       rxq->id, i, rxq->refill_num);
1998 
1999 				stats = this_cpu_ptr(pp->stats);
2000 				u64_stats_update_begin(&stats->syncp);
2001 				stats->es.refill_error++;
2002 				u64_stats_update_end(&stats->syncp);
2003 				break;
2004 			}
2005 		}
2006 		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2007 	}
2008 	rxq->refill_num -= i;
2009 	rxq->first_to_refill = curr_desc;
2010 
2011 	return i;
2012 }
2013 
2014 static int
2015 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2016 			struct xdp_frame *xdpf, bool dma_map)
2017 {
2018 	struct mvneta_tx_desc *tx_desc;
2019 	struct mvneta_tx_buf *buf;
2020 	dma_addr_t dma_addr;
2021 
2022 	if (txq->count >= txq->tx_stop_threshold)
2023 		return MVNETA_XDP_DROPPED;
2024 
2025 	tx_desc = mvneta_txq_next_desc_get(txq);
2026 
2027 	buf = &txq->buf[txq->txq_put_index];
2028 	if (dma_map) {
2029 		/* ndo_xdp_xmit */
2030 		dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data,
2031 					  xdpf->len, DMA_TO_DEVICE);
2032 		if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) {
2033 			mvneta_txq_desc_put(txq);
2034 			return MVNETA_XDP_DROPPED;
2035 		}
2036 		buf->type = MVNETA_TYPE_XDP_NDO;
2037 	} else {
2038 		struct page *page = virt_to_page(xdpf->data);
2039 
2040 		dma_addr = page_pool_get_dma_addr(page) +
2041 			   sizeof(*xdpf) + xdpf->headroom;
2042 		dma_sync_single_for_device(pp->dev->dev.parent, dma_addr,
2043 					   xdpf->len, DMA_BIDIRECTIONAL);
2044 		buf->type = MVNETA_TYPE_XDP_TX;
2045 	}
2046 	buf->xdpf = xdpf;
2047 
2048 	tx_desc->command = MVNETA_TXD_FLZ_DESC;
2049 	tx_desc->buf_phys_addr = dma_addr;
2050 	tx_desc->data_size = xdpf->len;
2051 
2052 	mvneta_txq_inc_put(txq);
2053 	txq->pending++;
2054 	txq->count++;
2055 
2056 	return MVNETA_XDP_TX;
2057 }
2058 
2059 static int
2060 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2061 {
2062 	struct mvneta_tx_queue *txq;
2063 	struct netdev_queue *nq;
2064 	struct xdp_frame *xdpf;
2065 	int cpu;
2066 	u32 ret;
2067 
2068 	xdpf = convert_to_xdp_frame(xdp);
2069 	if (unlikely(!xdpf))
2070 		return MVNETA_XDP_DROPPED;
2071 
2072 	cpu = smp_processor_id();
2073 	txq = &pp->txqs[cpu % txq_number];
2074 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2075 
2076 	__netif_tx_lock(nq, cpu);
2077 	ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false);
2078 	if (ret == MVNETA_XDP_TX) {
2079 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2080 
2081 		u64_stats_update_begin(&stats->syncp);
2082 		stats->es.ps.tx_bytes += xdpf->len;
2083 		stats->es.ps.tx_packets++;
2084 		stats->es.ps.xdp_tx++;
2085 		u64_stats_update_end(&stats->syncp);
2086 
2087 		mvneta_txq_pend_desc_add(pp, txq, 0);
2088 	}
2089 	__netif_tx_unlock(nq);
2090 
2091 	return ret;
2092 }
2093 
2094 static int
2095 mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2096 		struct xdp_frame **frames, u32 flags)
2097 {
2098 	struct mvneta_port *pp = netdev_priv(dev);
2099 	struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2100 	int i, nxmit_byte = 0, nxmit = num_frame;
2101 	int cpu = smp_processor_id();
2102 	struct mvneta_tx_queue *txq;
2103 	struct netdev_queue *nq;
2104 	u32 ret;
2105 
2106 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2107 		return -EINVAL;
2108 
2109 	txq = &pp->txqs[cpu % txq_number];
2110 	nq = netdev_get_tx_queue(pp->dev, txq->id);
2111 
2112 	__netif_tx_lock(nq, cpu);
2113 	for (i = 0; i < num_frame; i++) {
2114 		ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true);
2115 		if (ret == MVNETA_XDP_TX) {
2116 			nxmit_byte += frames[i]->len;
2117 		} else {
2118 			xdp_return_frame_rx_napi(frames[i]);
2119 			nxmit--;
2120 		}
2121 	}
2122 
2123 	if (unlikely(flags & XDP_XMIT_FLUSH))
2124 		mvneta_txq_pend_desc_add(pp, txq, 0);
2125 	__netif_tx_unlock(nq);
2126 
2127 	u64_stats_update_begin(&stats->syncp);
2128 	stats->es.ps.tx_bytes += nxmit_byte;
2129 	stats->es.ps.tx_packets += nxmit;
2130 	stats->es.ps.xdp_xmit += nxmit;
2131 	u64_stats_update_end(&stats->syncp);
2132 
2133 	return nxmit;
2134 }
2135 
2136 static int
2137 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2138 	       struct bpf_prog *prog, struct xdp_buff *xdp,
2139 	       struct mvneta_stats *stats)
2140 {
2141 	unsigned int len;
2142 	u32 ret, act;
2143 
2144 	len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2145 	act = bpf_prog_run_xdp(prog, xdp);
2146 
2147 	switch (act) {
2148 	case XDP_PASS:
2149 		stats->xdp_pass++;
2150 		return MVNETA_XDP_PASS;
2151 	case XDP_REDIRECT: {
2152 		int err;
2153 
2154 		err = xdp_do_redirect(pp->dev, xdp, prog);
2155 		if (err) {
2156 			ret = MVNETA_XDP_DROPPED;
2157 			page_pool_put_page(rxq->page_pool,
2158 					   virt_to_head_page(xdp->data), len,
2159 					   true);
2160 		} else {
2161 			ret = MVNETA_XDP_REDIR;
2162 			stats->xdp_redirect++;
2163 		}
2164 		break;
2165 	}
2166 	case XDP_TX:
2167 		ret = mvneta_xdp_xmit_back(pp, xdp);
2168 		if (ret != MVNETA_XDP_TX)
2169 			page_pool_put_page(rxq->page_pool,
2170 					   virt_to_head_page(xdp->data), len,
2171 					   true);
2172 		break;
2173 	default:
2174 		bpf_warn_invalid_xdp_action(act);
2175 		/* fall through */
2176 	case XDP_ABORTED:
2177 		trace_xdp_exception(pp->dev, prog, act);
2178 		/* fall through */
2179 	case XDP_DROP:
2180 		page_pool_put_page(rxq->page_pool,
2181 				   virt_to_head_page(xdp->data), len, true);
2182 		ret = MVNETA_XDP_DROPPED;
2183 		stats->xdp_drop++;
2184 		break;
2185 	}
2186 
2187 	stats->rx_bytes += xdp->data_end - xdp->data;
2188 	stats->rx_packets++;
2189 
2190 	return ret;
2191 }
2192 
2193 static int
2194 mvneta_swbm_rx_frame(struct mvneta_port *pp,
2195 		     struct mvneta_rx_desc *rx_desc,
2196 		     struct mvneta_rx_queue *rxq,
2197 		     struct xdp_buff *xdp,
2198 		     struct bpf_prog *xdp_prog,
2199 		     struct page *page,
2200 		     struct mvneta_stats *stats)
2201 {
2202 	unsigned char *data = page_address(page);
2203 	int data_len = -MVNETA_MH_SIZE, len;
2204 	struct net_device *dev = pp->dev;
2205 	enum dma_data_direction dma_dir;
2206 	int ret = 0;
2207 
2208 	if (MVNETA_SKB_SIZE(rx_desc->data_size) > PAGE_SIZE) {
2209 		len = MVNETA_MAX_RX_BUF_SIZE;
2210 		data_len += len;
2211 	} else {
2212 		len = rx_desc->data_size;
2213 		data_len += len - ETH_FCS_LEN;
2214 	}
2215 
2216 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2217 	dma_sync_single_for_cpu(dev->dev.parent,
2218 				rx_desc->buf_phys_addr,
2219 				len, dma_dir);
2220 
2221 	/* Prefetch header */
2222 	prefetch(data);
2223 
2224 	xdp->data_hard_start = data;
2225 	xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE;
2226 	xdp->data_end = xdp->data + data_len;
2227 	xdp_set_data_meta_invalid(xdp);
2228 
2229 	if (xdp_prog) {
2230 		ret = mvneta_run_xdp(pp, rxq, xdp_prog, xdp, stats);
2231 		if (ret)
2232 			goto out;
2233 	}
2234 
2235 	rxq->skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2236 	if (unlikely(!rxq->skb)) {
2237 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2238 
2239 		netdev_err(dev, "Can't allocate skb on queue %d\n", rxq->id);
2240 
2241 		u64_stats_update_begin(&stats->syncp);
2242 		stats->es.skb_alloc_error++;
2243 		stats->rx_dropped++;
2244 		u64_stats_update_end(&stats->syncp);
2245 
2246 		return -ENOMEM;
2247 	}
2248 	page_pool_release_page(rxq->page_pool, page);
2249 
2250 	skb_reserve(rxq->skb,
2251 		    xdp->data - xdp->data_hard_start);
2252 	skb_put(rxq->skb, xdp->data_end - xdp->data);
2253 	mvneta_rx_csum(pp, rx_desc->status, rxq->skb);
2254 
2255 	rxq->left_size = rx_desc->data_size - len;
2256 
2257 out:
2258 	rx_desc->buf_phys_addr = 0;
2259 
2260 	return ret;
2261 }
2262 
2263 static void
2264 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2265 			    struct mvneta_rx_desc *rx_desc,
2266 			    struct mvneta_rx_queue *rxq,
2267 			    struct page *page)
2268 {
2269 	struct net_device *dev = pp->dev;
2270 	enum dma_data_direction dma_dir;
2271 	int data_len, len;
2272 
2273 	if (rxq->left_size > MVNETA_MAX_RX_BUF_SIZE) {
2274 		len = MVNETA_MAX_RX_BUF_SIZE;
2275 		data_len = len;
2276 	} else {
2277 		len = rxq->left_size;
2278 		data_len = len - ETH_FCS_LEN;
2279 	}
2280 	dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2281 	dma_sync_single_for_cpu(dev->dev.parent,
2282 				rx_desc->buf_phys_addr,
2283 				len, dma_dir);
2284 	if (data_len > 0) {
2285 		/* refill descriptor with new buffer later */
2286 		skb_add_rx_frag(rxq->skb,
2287 				skb_shinfo(rxq->skb)->nr_frags,
2288 				page, pp->rx_offset_correction, data_len,
2289 				PAGE_SIZE);
2290 	}
2291 	page_pool_release_page(rxq->page_pool, page);
2292 	rx_desc->buf_phys_addr = 0;
2293 	rxq->left_size -= len;
2294 }
2295 
2296 /* Main rx processing when using software buffer management */
2297 static int mvneta_rx_swbm(struct napi_struct *napi,
2298 			  struct mvneta_port *pp, int budget,
2299 			  struct mvneta_rx_queue *rxq)
2300 {
2301 	int rx_proc = 0, rx_todo, refill;
2302 	struct net_device *dev = pp->dev;
2303 	struct mvneta_stats ps = {};
2304 	struct bpf_prog *xdp_prog;
2305 	struct xdp_buff xdp_buf;
2306 
2307 	/* Get number of received packets */
2308 	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2309 
2310 	rcu_read_lock();
2311 	xdp_prog = READ_ONCE(pp->xdp_prog);
2312 	xdp_buf.rxq = &rxq->xdp_rxq;
2313 
2314 	/* Fairness NAPI loop */
2315 	while (rx_proc < budget && rx_proc < rx_todo) {
2316 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2317 		u32 rx_status, index;
2318 		struct page *page;
2319 
2320 		index = rx_desc - rxq->descs;
2321 		page = (struct page *)rxq->buf_virt_addr[index];
2322 
2323 		rx_status = rx_desc->status;
2324 		rx_proc++;
2325 		rxq->refill_num++;
2326 
2327 		if (rx_status & MVNETA_RXD_FIRST_DESC) {
2328 			int err;
2329 
2330 			/* Check errors only for FIRST descriptor */
2331 			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2332 				mvneta_rx_error(pp, rx_desc);
2333 				/* leave the descriptor untouched */
2334 				continue;
2335 			}
2336 
2337 			err = mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2338 						   xdp_prog, page, &ps);
2339 			if (err)
2340 				continue;
2341 		} else {
2342 			if (unlikely(!rxq->skb)) {
2343 				pr_debug("no skb for rx_status 0x%x\n",
2344 					 rx_status);
2345 				continue;
2346 			}
2347 			mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, page);
2348 		} /* Middle or Last descriptor */
2349 
2350 		if (!(rx_status & MVNETA_RXD_LAST_DESC))
2351 			/* no last descriptor this time */
2352 			continue;
2353 
2354 		if (rxq->left_size) {
2355 			pr_err("get last desc, but left_size (%d) != 0\n",
2356 			       rxq->left_size);
2357 			dev_kfree_skb_any(rxq->skb);
2358 			rxq->left_size = 0;
2359 			rxq->skb = NULL;
2360 			continue;
2361 		}
2362 
2363 		ps.rx_bytes += rxq->skb->len;
2364 		ps.rx_packets++;
2365 
2366 		/* Linux processing */
2367 		rxq->skb->protocol = eth_type_trans(rxq->skb, dev);
2368 
2369 		napi_gro_receive(napi, rxq->skb);
2370 
2371 		/* clean uncomplete skb pointer in queue */
2372 		rxq->skb = NULL;
2373 	}
2374 	rcu_read_unlock();
2375 
2376 	if (ps.xdp_redirect)
2377 		xdp_do_flush_map();
2378 
2379 	if (ps.rx_packets)
2380 		mvneta_update_stats(pp, &ps);
2381 
2382 	/* return some buffers to hardware queue, one at a time is too slow */
2383 	refill = mvneta_rx_refill_queue(pp, rxq);
2384 
2385 	/* Update rxq management counters */
2386 	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2387 
2388 	return ps.rx_packets;
2389 }
2390 
2391 /* Main rx processing when using hardware buffer management */
2392 static int mvneta_rx_hwbm(struct napi_struct *napi,
2393 			  struct mvneta_port *pp, int rx_todo,
2394 			  struct mvneta_rx_queue *rxq)
2395 {
2396 	struct net_device *dev = pp->dev;
2397 	int rx_done;
2398 	u32 rcvd_pkts = 0;
2399 	u32 rcvd_bytes = 0;
2400 
2401 	/* Get number of received packets */
2402 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2403 
2404 	if (rx_todo > rx_done)
2405 		rx_todo = rx_done;
2406 
2407 	rx_done = 0;
2408 
2409 	/* Fairness NAPI loop */
2410 	while (rx_done < rx_todo) {
2411 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2412 		struct mvneta_bm_pool *bm_pool = NULL;
2413 		struct sk_buff *skb;
2414 		unsigned char *data;
2415 		dma_addr_t phys_addr;
2416 		u32 rx_status, frag_size;
2417 		int rx_bytes, err;
2418 		u8 pool_id;
2419 
2420 		rx_done++;
2421 		rx_status = rx_desc->status;
2422 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2423 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2424 		phys_addr = rx_desc->buf_phys_addr;
2425 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2426 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2427 
2428 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2429 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2430 err_drop_frame_ret_pool:
2431 			/* Return the buffer to the pool */
2432 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2433 					      rx_desc->buf_phys_addr);
2434 err_drop_frame:
2435 			mvneta_rx_error(pp, rx_desc);
2436 			/* leave the descriptor untouched */
2437 			continue;
2438 		}
2439 
2440 		if (rx_bytes <= rx_copybreak) {
2441 			/* better copy a small frame and not unmap the DMA region */
2442 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2443 			if (unlikely(!skb))
2444 				goto err_drop_frame_ret_pool;
2445 
2446 			dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2447 			                              rx_desc->buf_phys_addr,
2448 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2449 			                              rx_bytes,
2450 			                              DMA_FROM_DEVICE);
2451 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2452 				     rx_bytes);
2453 
2454 			skb->protocol = eth_type_trans(skb, dev);
2455 			mvneta_rx_csum(pp, rx_status, skb);
2456 			napi_gro_receive(napi, skb);
2457 
2458 			rcvd_pkts++;
2459 			rcvd_bytes += rx_bytes;
2460 
2461 			/* Return the buffer to the pool */
2462 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2463 					      rx_desc->buf_phys_addr);
2464 
2465 			/* leave the descriptor and buffer untouched */
2466 			continue;
2467 		}
2468 
2469 		/* Refill processing */
2470 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2471 		if (err) {
2472 			struct mvneta_pcpu_stats *stats;
2473 
2474 			netdev_err(dev, "Linux processing - Can't refill\n");
2475 
2476 			stats = this_cpu_ptr(pp->stats);
2477 			u64_stats_update_begin(&stats->syncp);
2478 			stats->es.refill_error++;
2479 			u64_stats_update_end(&stats->syncp);
2480 
2481 			goto err_drop_frame_ret_pool;
2482 		}
2483 
2484 		frag_size = bm_pool->hwbm_pool.frag_size;
2485 
2486 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2487 
2488 		/* After refill old buffer has to be unmapped regardless
2489 		 * the skb is successfully built or not.
2490 		 */
2491 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2492 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2493 		if (!skb)
2494 			goto err_drop_frame;
2495 
2496 		rcvd_pkts++;
2497 		rcvd_bytes += rx_bytes;
2498 
2499 		/* Linux processing */
2500 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2501 		skb_put(skb, rx_bytes);
2502 
2503 		skb->protocol = eth_type_trans(skb, dev);
2504 
2505 		mvneta_rx_csum(pp, rx_status, skb);
2506 
2507 		napi_gro_receive(napi, skb);
2508 	}
2509 
2510 	if (rcvd_pkts) {
2511 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2512 
2513 		u64_stats_update_begin(&stats->syncp);
2514 		stats->es.ps.rx_packets += rcvd_pkts;
2515 		stats->es.ps.rx_bytes += rcvd_bytes;
2516 		u64_stats_update_end(&stats->syncp);
2517 	}
2518 
2519 	/* Update rxq management counters */
2520 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2521 
2522 	return rx_done;
2523 }
2524 
2525 static inline void
2526 mvneta_tso_put_hdr(struct sk_buff *skb,
2527 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2528 {
2529 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2530 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2531 	struct mvneta_tx_desc *tx_desc;
2532 
2533 	tx_desc = mvneta_txq_next_desc_get(txq);
2534 	tx_desc->data_size = hdr_len;
2535 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2536 	tx_desc->command |= MVNETA_TXD_F_DESC;
2537 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2538 				 txq->txq_put_index * TSO_HEADER_SIZE;
2539 	buf->type = MVNETA_TYPE_SKB;
2540 	buf->skb = NULL;
2541 
2542 	mvneta_txq_inc_put(txq);
2543 }
2544 
2545 static inline int
2546 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2547 		    struct sk_buff *skb, char *data, int size,
2548 		    bool last_tcp, bool is_last)
2549 {
2550 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2551 	struct mvneta_tx_desc *tx_desc;
2552 
2553 	tx_desc = mvneta_txq_next_desc_get(txq);
2554 	tx_desc->data_size = size;
2555 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2556 						size, DMA_TO_DEVICE);
2557 	if (unlikely(dma_mapping_error(dev->dev.parent,
2558 		     tx_desc->buf_phys_addr))) {
2559 		mvneta_txq_desc_put(txq);
2560 		return -ENOMEM;
2561 	}
2562 
2563 	tx_desc->command = 0;
2564 	buf->type = MVNETA_TYPE_SKB;
2565 	buf->skb = NULL;
2566 
2567 	if (last_tcp) {
2568 		/* last descriptor in the TCP packet */
2569 		tx_desc->command = MVNETA_TXD_L_DESC;
2570 
2571 		/* last descriptor in SKB */
2572 		if (is_last)
2573 			buf->skb = skb;
2574 	}
2575 	mvneta_txq_inc_put(txq);
2576 	return 0;
2577 }
2578 
2579 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2580 			 struct mvneta_tx_queue *txq)
2581 {
2582 	int total_len, data_left;
2583 	int desc_count = 0;
2584 	struct mvneta_port *pp = netdev_priv(dev);
2585 	struct tso_t tso;
2586 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2587 	int i;
2588 
2589 	/* Count needed descriptors */
2590 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2591 		return 0;
2592 
2593 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2594 		pr_info("*** Is this even  possible???!?!?\n");
2595 		return 0;
2596 	}
2597 
2598 	/* Initialize the TSO handler, and prepare the first payload */
2599 	tso_start(skb, &tso);
2600 
2601 	total_len = skb->len - hdr_len;
2602 	while (total_len > 0) {
2603 		char *hdr;
2604 
2605 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2606 		total_len -= data_left;
2607 		desc_count++;
2608 
2609 		/* prepare packet headers: MAC + IP + TCP */
2610 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2611 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2612 
2613 		mvneta_tso_put_hdr(skb, pp, txq);
2614 
2615 		while (data_left > 0) {
2616 			int size;
2617 			desc_count++;
2618 
2619 			size = min_t(int, tso.size, data_left);
2620 
2621 			if (mvneta_tso_put_data(dev, txq, skb,
2622 						 tso.data, size,
2623 						 size == data_left,
2624 						 total_len == 0))
2625 				goto err_release;
2626 			data_left -= size;
2627 
2628 			tso_build_data(skb, &tso, size);
2629 		}
2630 	}
2631 
2632 	return desc_count;
2633 
2634 err_release:
2635 	/* Release all used data descriptors; header descriptors must not
2636 	 * be DMA-unmapped.
2637 	 */
2638 	for (i = desc_count - 1; i >= 0; i--) {
2639 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2640 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2641 			dma_unmap_single(pp->dev->dev.parent,
2642 					 tx_desc->buf_phys_addr,
2643 					 tx_desc->data_size,
2644 					 DMA_TO_DEVICE);
2645 		mvneta_txq_desc_put(txq);
2646 	}
2647 	return 0;
2648 }
2649 
2650 /* Handle tx fragmentation processing */
2651 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2652 				  struct mvneta_tx_queue *txq)
2653 {
2654 	struct mvneta_tx_desc *tx_desc;
2655 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2656 
2657 	for (i = 0; i < nr_frags; i++) {
2658 		struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2659 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2660 		void *addr = skb_frag_address(frag);
2661 
2662 		tx_desc = mvneta_txq_next_desc_get(txq);
2663 		tx_desc->data_size = skb_frag_size(frag);
2664 
2665 		tx_desc->buf_phys_addr =
2666 			dma_map_single(pp->dev->dev.parent, addr,
2667 				       tx_desc->data_size, DMA_TO_DEVICE);
2668 
2669 		if (dma_mapping_error(pp->dev->dev.parent,
2670 				      tx_desc->buf_phys_addr)) {
2671 			mvneta_txq_desc_put(txq);
2672 			goto error;
2673 		}
2674 
2675 		if (i == nr_frags - 1) {
2676 			/* Last descriptor */
2677 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2678 			buf->skb = skb;
2679 		} else {
2680 			/* Descriptor in the middle: Not First, Not Last */
2681 			tx_desc->command = 0;
2682 			buf->skb = NULL;
2683 		}
2684 		buf->type = MVNETA_TYPE_SKB;
2685 		mvneta_txq_inc_put(txq);
2686 	}
2687 
2688 	return 0;
2689 
2690 error:
2691 	/* Release all descriptors that were used to map fragments of
2692 	 * this packet, as well as the corresponding DMA mappings
2693 	 */
2694 	for (i = i - 1; i >= 0; i--) {
2695 		tx_desc = txq->descs + i;
2696 		dma_unmap_single(pp->dev->dev.parent,
2697 				 tx_desc->buf_phys_addr,
2698 				 tx_desc->data_size,
2699 				 DMA_TO_DEVICE);
2700 		mvneta_txq_desc_put(txq);
2701 	}
2702 
2703 	return -ENOMEM;
2704 }
2705 
2706 /* Main tx processing */
2707 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2708 {
2709 	struct mvneta_port *pp = netdev_priv(dev);
2710 	u16 txq_id = skb_get_queue_mapping(skb);
2711 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2712 	struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2713 	struct mvneta_tx_desc *tx_desc;
2714 	int len = skb->len;
2715 	int frags = 0;
2716 	u32 tx_cmd;
2717 
2718 	if (!netif_running(dev))
2719 		goto out;
2720 
2721 	if (skb_is_gso(skb)) {
2722 		frags = mvneta_tx_tso(skb, dev, txq);
2723 		goto out;
2724 	}
2725 
2726 	frags = skb_shinfo(skb)->nr_frags + 1;
2727 
2728 	/* Get a descriptor for the first part of the packet */
2729 	tx_desc = mvneta_txq_next_desc_get(txq);
2730 
2731 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2732 
2733 	tx_desc->data_size = skb_headlen(skb);
2734 
2735 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2736 						tx_desc->data_size,
2737 						DMA_TO_DEVICE);
2738 	if (unlikely(dma_mapping_error(dev->dev.parent,
2739 				       tx_desc->buf_phys_addr))) {
2740 		mvneta_txq_desc_put(txq);
2741 		frags = 0;
2742 		goto out;
2743 	}
2744 
2745 	buf->type = MVNETA_TYPE_SKB;
2746 	if (frags == 1) {
2747 		/* First and Last descriptor */
2748 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2749 		tx_desc->command = tx_cmd;
2750 		buf->skb = skb;
2751 		mvneta_txq_inc_put(txq);
2752 	} else {
2753 		/* First but not Last */
2754 		tx_cmd |= MVNETA_TXD_F_DESC;
2755 		buf->skb = NULL;
2756 		mvneta_txq_inc_put(txq);
2757 		tx_desc->command = tx_cmd;
2758 		/* Continue with other skb fragments */
2759 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2760 			dma_unmap_single(dev->dev.parent,
2761 					 tx_desc->buf_phys_addr,
2762 					 tx_desc->data_size,
2763 					 DMA_TO_DEVICE);
2764 			mvneta_txq_desc_put(txq);
2765 			frags = 0;
2766 			goto out;
2767 		}
2768 	}
2769 
2770 out:
2771 	if (frags > 0) {
2772 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2773 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2774 
2775 		netdev_tx_sent_queue(nq, len);
2776 
2777 		txq->count += frags;
2778 		if (txq->count >= txq->tx_stop_threshold)
2779 			netif_tx_stop_queue(nq);
2780 
2781 		if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2782 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2783 			mvneta_txq_pend_desc_add(pp, txq, frags);
2784 		else
2785 			txq->pending += frags;
2786 
2787 		u64_stats_update_begin(&stats->syncp);
2788 		stats->es.ps.tx_bytes += len;
2789 		stats->es.ps.tx_packets++;
2790 		u64_stats_update_end(&stats->syncp);
2791 	} else {
2792 		dev->stats.tx_dropped++;
2793 		dev_kfree_skb_any(skb);
2794 	}
2795 
2796 	return NETDEV_TX_OK;
2797 }
2798 
2799 
2800 /* Free tx resources, when resetting a port */
2801 static void mvneta_txq_done_force(struct mvneta_port *pp,
2802 				  struct mvneta_tx_queue *txq)
2803 
2804 {
2805 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2806 	int tx_done = txq->count;
2807 
2808 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2809 
2810 	/* reset txq */
2811 	txq->count = 0;
2812 	txq->txq_put_index = 0;
2813 	txq->txq_get_index = 0;
2814 }
2815 
2816 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2817  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2818  */
2819 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2820 {
2821 	struct mvneta_tx_queue *txq;
2822 	struct netdev_queue *nq;
2823 	int cpu = smp_processor_id();
2824 
2825 	while (cause_tx_done) {
2826 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2827 
2828 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2829 		__netif_tx_lock(nq, cpu);
2830 
2831 		if (txq->count)
2832 			mvneta_txq_done(pp, txq);
2833 
2834 		__netif_tx_unlock(nq);
2835 		cause_tx_done &= ~((1 << txq->id));
2836 	}
2837 }
2838 
2839 /* Compute crc8 of the specified address, using a unique algorithm ,
2840  * according to hw spec, different than generic crc8 algorithm
2841  */
2842 static int mvneta_addr_crc(unsigned char *addr)
2843 {
2844 	int crc = 0;
2845 	int i;
2846 
2847 	for (i = 0; i < ETH_ALEN; i++) {
2848 		int j;
2849 
2850 		crc = (crc ^ addr[i]) << 8;
2851 		for (j = 7; j >= 0; j--) {
2852 			if (crc & (0x100 << j))
2853 				crc ^= 0x107 << j;
2854 		}
2855 	}
2856 
2857 	return crc;
2858 }
2859 
2860 /* This method controls the net device special MAC multicast support.
2861  * The Special Multicast Table for MAC addresses supports MAC of the form
2862  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2863  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2864  * Table entries in the DA-Filter table. This method set the Special
2865  * Multicast Table appropriate entry.
2866  */
2867 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2868 					  unsigned char last_byte,
2869 					  int queue)
2870 {
2871 	unsigned int smc_table_reg;
2872 	unsigned int tbl_offset;
2873 	unsigned int reg_offset;
2874 
2875 	/* Register offset from SMC table base    */
2876 	tbl_offset = (last_byte / 4);
2877 	/* Entry offset within the above reg */
2878 	reg_offset = last_byte % 4;
2879 
2880 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2881 					+ tbl_offset * 4));
2882 
2883 	if (queue == -1)
2884 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2885 	else {
2886 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2887 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2888 	}
2889 
2890 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2891 		    smc_table_reg);
2892 }
2893 
2894 /* This method controls the network device Other MAC multicast support.
2895  * The Other Multicast Table is used for multicast of another type.
2896  * A CRC-8 is used as an index to the Other Multicast Table entries
2897  * in the DA-Filter table.
2898  * The method gets the CRC-8 value from the calling routine and
2899  * sets the Other Multicast Table appropriate entry according to the
2900  * specified CRC-8 .
2901  */
2902 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2903 					unsigned char crc8,
2904 					int queue)
2905 {
2906 	unsigned int omc_table_reg;
2907 	unsigned int tbl_offset;
2908 	unsigned int reg_offset;
2909 
2910 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2911 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2912 
2913 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2914 
2915 	if (queue == -1) {
2916 		/* Clear accepts frame bit at specified Other DA table entry */
2917 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2918 	} else {
2919 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2920 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2921 	}
2922 
2923 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2924 }
2925 
2926 /* The network device supports multicast using two tables:
2927  *    1) Special Multicast Table for MAC addresses of the form
2928  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2929  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2930  *       Table entries in the DA-Filter table.
2931  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2932  *       is used as an index to the Other Multicast Table entries in the
2933  *       DA-Filter table.
2934  */
2935 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2936 				 int queue)
2937 {
2938 	unsigned char crc_result = 0;
2939 
2940 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2941 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2942 		return 0;
2943 	}
2944 
2945 	crc_result = mvneta_addr_crc(p_addr);
2946 	if (queue == -1) {
2947 		if (pp->mcast_count[crc_result] == 0) {
2948 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2949 				    crc_result);
2950 			return -EINVAL;
2951 		}
2952 
2953 		pp->mcast_count[crc_result]--;
2954 		if (pp->mcast_count[crc_result] != 0) {
2955 			netdev_info(pp->dev,
2956 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2957 				    pp->mcast_count[crc_result], crc_result);
2958 			return -EINVAL;
2959 		}
2960 	} else
2961 		pp->mcast_count[crc_result]++;
2962 
2963 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2964 
2965 	return 0;
2966 }
2967 
2968 /* Configure Fitering mode of Ethernet port */
2969 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2970 					  int is_promisc)
2971 {
2972 	u32 port_cfg_reg, val;
2973 
2974 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2975 
2976 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2977 
2978 	/* Set / Clear UPM bit in port configuration register */
2979 	if (is_promisc) {
2980 		/* Accept all Unicast addresses */
2981 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2982 		val |= MVNETA_FORCE_UNI;
2983 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2984 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2985 	} else {
2986 		/* Reject all Unicast addresses */
2987 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2988 		val &= ~MVNETA_FORCE_UNI;
2989 	}
2990 
2991 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2992 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2993 }
2994 
2995 /* register unicast and multicast addresses */
2996 static void mvneta_set_rx_mode(struct net_device *dev)
2997 {
2998 	struct mvneta_port *pp = netdev_priv(dev);
2999 	struct netdev_hw_addr *ha;
3000 
3001 	if (dev->flags & IFF_PROMISC) {
3002 		/* Accept all: Multicast + Unicast */
3003 		mvneta_rx_unicast_promisc_set(pp, 1);
3004 		mvneta_set_ucast_table(pp, pp->rxq_def);
3005 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
3006 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
3007 	} else {
3008 		/* Accept single Unicast */
3009 		mvneta_rx_unicast_promisc_set(pp, 0);
3010 		mvneta_set_ucast_table(pp, -1);
3011 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3012 
3013 		if (dev->flags & IFF_ALLMULTI) {
3014 			/* Accept all multicast */
3015 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
3016 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
3017 		} else {
3018 			/* Accept only initialized multicast */
3019 			mvneta_set_special_mcast_table(pp, -1);
3020 			mvneta_set_other_mcast_table(pp, -1);
3021 
3022 			if (!netdev_mc_empty(dev)) {
3023 				netdev_for_each_mc_addr(ha, dev) {
3024 					mvneta_mcast_addr_set(pp, ha->addr,
3025 							      pp->rxq_def);
3026 				}
3027 			}
3028 		}
3029 	}
3030 }
3031 
3032 /* Interrupt handling - the callback for request_irq() */
3033 static irqreturn_t mvneta_isr(int irq, void *dev_id)
3034 {
3035 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3036 
3037 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3038 	napi_schedule(&pp->napi);
3039 
3040 	return IRQ_HANDLED;
3041 }
3042 
3043 /* Interrupt handling - the callback for request_percpu_irq() */
3044 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3045 {
3046 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3047 
3048 	disable_percpu_irq(port->pp->dev->irq);
3049 	napi_schedule(&port->napi);
3050 
3051 	return IRQ_HANDLED;
3052 }
3053 
3054 static void mvneta_link_change(struct mvneta_port *pp)
3055 {
3056 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3057 
3058 	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3059 }
3060 
3061 /* NAPI handler
3062  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3063  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3064  * Bits 8 -15 of the cause Rx Tx register indicate that are received
3065  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3066  * Each CPU has its own causeRxTx register
3067  */
3068 static int mvneta_poll(struct napi_struct *napi, int budget)
3069 {
3070 	int rx_done = 0;
3071 	u32 cause_rx_tx;
3072 	int rx_queue;
3073 	struct mvneta_port *pp = netdev_priv(napi->dev);
3074 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3075 
3076 	if (!netif_running(pp->dev)) {
3077 		napi_complete(napi);
3078 		return rx_done;
3079 	}
3080 
3081 	/* Read cause register */
3082 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3083 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3084 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3085 
3086 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3087 
3088 		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3089 				  MVNETA_CAUSE_LINK_CHANGE))
3090 			mvneta_link_change(pp);
3091 	}
3092 
3093 	/* Release Tx descriptors */
3094 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3095 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3096 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3097 	}
3098 
3099 	/* For the case where the last mvneta_poll did not process all
3100 	 * RX packets
3101 	 */
3102 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3103 
3104 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3105 		port->cause_rx_tx;
3106 
3107 	if (rx_queue) {
3108 		rx_queue = rx_queue - 1;
3109 		if (pp->bm_priv)
3110 			rx_done = mvneta_rx_hwbm(napi, pp, budget,
3111 						 &pp->rxqs[rx_queue]);
3112 		else
3113 			rx_done = mvneta_rx_swbm(napi, pp, budget,
3114 						 &pp->rxqs[rx_queue]);
3115 	}
3116 
3117 	if (rx_done < budget) {
3118 		cause_rx_tx = 0;
3119 		napi_complete_done(napi, rx_done);
3120 
3121 		if (pp->neta_armada3700) {
3122 			unsigned long flags;
3123 
3124 			local_irq_save(flags);
3125 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3126 				    MVNETA_RX_INTR_MASK(rxq_number) |
3127 				    MVNETA_TX_INTR_MASK(txq_number) |
3128 				    MVNETA_MISCINTR_INTR_MASK);
3129 			local_irq_restore(flags);
3130 		} else {
3131 			enable_percpu_irq(pp->dev->irq, 0);
3132 		}
3133 	}
3134 
3135 	if (pp->neta_armada3700)
3136 		pp->cause_rx_tx = cause_rx_tx;
3137 	else
3138 		port->cause_rx_tx = cause_rx_tx;
3139 
3140 	return rx_done;
3141 }
3142 
3143 static int mvneta_create_page_pool(struct mvneta_port *pp,
3144 				   struct mvneta_rx_queue *rxq, int size)
3145 {
3146 	struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3147 	struct page_pool_params pp_params = {
3148 		.order = 0,
3149 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3150 		.pool_size = size,
3151 		.nid = NUMA_NO_NODE,
3152 		.dev = pp->dev->dev.parent,
3153 		.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3154 		.offset = pp->rx_offset_correction,
3155 		.max_len = MVNETA_MAX_RX_BUF_SIZE,
3156 	};
3157 	int err;
3158 
3159 	rxq->page_pool = page_pool_create(&pp_params);
3160 	if (IS_ERR(rxq->page_pool)) {
3161 		err = PTR_ERR(rxq->page_pool);
3162 		rxq->page_pool = NULL;
3163 		return err;
3164 	}
3165 
3166 	err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id);
3167 	if (err < 0)
3168 		goto err_free_pp;
3169 
3170 	err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3171 					 rxq->page_pool);
3172 	if (err)
3173 		goto err_unregister_rxq;
3174 
3175 	return 0;
3176 
3177 err_unregister_rxq:
3178 	xdp_rxq_info_unreg(&rxq->xdp_rxq);
3179 err_free_pp:
3180 	page_pool_destroy(rxq->page_pool);
3181 	rxq->page_pool = NULL;
3182 	return err;
3183 }
3184 
3185 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
3186 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3187 			   int num)
3188 {
3189 	int i, err;
3190 
3191 	err = mvneta_create_page_pool(pp, rxq, num);
3192 	if (err < 0)
3193 		return err;
3194 
3195 	for (i = 0; i < num; i++) {
3196 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3197 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3198 				     GFP_KERNEL) != 0) {
3199 			netdev_err(pp->dev,
3200 				   "%s:rxq %d, %d of %d buffs  filled\n",
3201 				   __func__, rxq->id, i, num);
3202 			break;
3203 		}
3204 	}
3205 
3206 	/* Add this number of RX descriptors as non occupied (ready to
3207 	 * get packets)
3208 	 */
3209 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3210 
3211 	return i;
3212 }
3213 
3214 /* Free all packets pending transmit from all TXQs and reset TX port */
3215 static void mvneta_tx_reset(struct mvneta_port *pp)
3216 {
3217 	int queue;
3218 
3219 	/* free the skb's in the tx ring */
3220 	for (queue = 0; queue < txq_number; queue++)
3221 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
3222 
3223 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3224 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3225 }
3226 
3227 static void mvneta_rx_reset(struct mvneta_port *pp)
3228 {
3229 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3230 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3231 }
3232 
3233 /* Rx/Tx queue initialization/cleanup methods */
3234 
3235 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3236 			      struct mvneta_rx_queue *rxq)
3237 {
3238 	rxq->size = pp->rx_ring_size;
3239 
3240 	/* Allocate memory for RX descriptors */
3241 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3242 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3243 					&rxq->descs_phys, GFP_KERNEL);
3244 	if (!rxq->descs)
3245 		return -ENOMEM;
3246 
3247 	rxq->last_desc = rxq->size - 1;
3248 
3249 	return 0;
3250 }
3251 
3252 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3253 			       struct mvneta_rx_queue *rxq)
3254 {
3255 	/* Set Rx descriptors queue starting address */
3256 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3257 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3258 
3259 	/* Set coalescing pkts and time */
3260 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3261 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3262 
3263 	if (!pp->bm_priv) {
3264 		/* Set Offset */
3265 		mvneta_rxq_offset_set(pp, rxq, 0);
3266 		mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3267 					MVNETA_MAX_RX_BUF_SIZE :
3268 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
3269 		mvneta_rxq_bm_disable(pp, rxq);
3270 		mvneta_rxq_fill(pp, rxq, rxq->size);
3271 	} else {
3272 		/* Set Offset */
3273 		mvneta_rxq_offset_set(pp, rxq,
3274 				      NET_SKB_PAD - pp->rx_offset_correction);
3275 
3276 		mvneta_rxq_bm_enable(pp, rxq);
3277 		/* Fill RXQ with buffers from RX pool */
3278 		mvneta_rxq_long_pool_set(pp, rxq);
3279 		mvneta_rxq_short_pool_set(pp, rxq);
3280 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3281 	}
3282 }
3283 
3284 /* Create a specified RX queue */
3285 static int mvneta_rxq_init(struct mvneta_port *pp,
3286 			   struct mvneta_rx_queue *rxq)
3287 
3288 {
3289 	int ret;
3290 
3291 	ret = mvneta_rxq_sw_init(pp, rxq);
3292 	if (ret < 0)
3293 		return ret;
3294 
3295 	mvneta_rxq_hw_init(pp, rxq);
3296 
3297 	return 0;
3298 }
3299 
3300 /* Cleanup Rx queue */
3301 static void mvneta_rxq_deinit(struct mvneta_port *pp,
3302 			      struct mvneta_rx_queue *rxq)
3303 {
3304 	mvneta_rxq_drop_pkts(pp, rxq);
3305 
3306 	if (rxq->skb)
3307 		dev_kfree_skb_any(rxq->skb);
3308 
3309 	if (rxq->descs)
3310 		dma_free_coherent(pp->dev->dev.parent,
3311 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3312 				  rxq->descs,
3313 				  rxq->descs_phys);
3314 
3315 	rxq->descs             = NULL;
3316 	rxq->last_desc         = 0;
3317 	rxq->next_desc_to_proc = 0;
3318 	rxq->descs_phys        = 0;
3319 	rxq->first_to_refill   = 0;
3320 	rxq->refill_num        = 0;
3321 	rxq->skb               = NULL;
3322 	rxq->left_size         = 0;
3323 }
3324 
3325 static int mvneta_txq_sw_init(struct mvneta_port *pp,
3326 			      struct mvneta_tx_queue *txq)
3327 {
3328 	int cpu;
3329 
3330 	txq->size = pp->tx_ring_size;
3331 
3332 	/* A queue must always have room for at least one skb.
3333 	 * Therefore, stop the queue when the free entries reaches
3334 	 * the maximum number of descriptors per skb.
3335 	 */
3336 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3337 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3338 
3339 	/* Allocate memory for TX descriptors */
3340 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3341 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
3342 					&txq->descs_phys, GFP_KERNEL);
3343 	if (!txq->descs)
3344 		return -ENOMEM;
3345 
3346 	txq->last_desc = txq->size - 1;
3347 
3348 	txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3349 	if (!txq->buf) {
3350 		dma_free_coherent(pp->dev->dev.parent,
3351 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3352 				  txq->descs, txq->descs_phys);
3353 		return -ENOMEM;
3354 	}
3355 
3356 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3357 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3358 					   txq->size * TSO_HEADER_SIZE,
3359 					   &txq->tso_hdrs_phys, GFP_KERNEL);
3360 	if (!txq->tso_hdrs) {
3361 		kfree(txq->buf);
3362 		dma_free_coherent(pp->dev->dev.parent,
3363 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3364 				  txq->descs, txq->descs_phys);
3365 		return -ENOMEM;
3366 	}
3367 
3368 	/* Setup XPS mapping */
3369 	if (txq_number > 1)
3370 		cpu = txq->id % num_present_cpus();
3371 	else
3372 		cpu = pp->rxq_def % num_present_cpus();
3373 	cpumask_set_cpu(cpu, &txq->affinity_mask);
3374 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3375 
3376 	return 0;
3377 }
3378 
3379 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3380 			       struct mvneta_tx_queue *txq)
3381 {
3382 	/* Set maximum bandwidth for enabled TXQs */
3383 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3384 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3385 
3386 	/* Set Tx descriptors queue starting address */
3387 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3388 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3389 
3390 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3391 }
3392 
3393 /* Create and initialize a tx queue */
3394 static int mvneta_txq_init(struct mvneta_port *pp,
3395 			   struct mvneta_tx_queue *txq)
3396 {
3397 	int ret;
3398 
3399 	ret = mvneta_txq_sw_init(pp, txq);
3400 	if (ret < 0)
3401 		return ret;
3402 
3403 	mvneta_txq_hw_init(pp, txq);
3404 
3405 	return 0;
3406 }
3407 
3408 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3409 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3410 				 struct mvneta_tx_queue *txq)
3411 {
3412 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3413 
3414 	kfree(txq->buf);
3415 
3416 	if (txq->tso_hdrs)
3417 		dma_free_coherent(pp->dev->dev.parent,
3418 				  txq->size * TSO_HEADER_SIZE,
3419 				  txq->tso_hdrs, txq->tso_hdrs_phys);
3420 	if (txq->descs)
3421 		dma_free_coherent(pp->dev->dev.parent,
3422 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3423 				  txq->descs, txq->descs_phys);
3424 
3425 	netdev_tx_reset_queue(nq);
3426 
3427 	txq->descs             = NULL;
3428 	txq->last_desc         = 0;
3429 	txq->next_desc_to_proc = 0;
3430 	txq->descs_phys        = 0;
3431 }
3432 
3433 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3434 				 struct mvneta_tx_queue *txq)
3435 {
3436 	/* Set minimum bandwidth for disabled TXQs */
3437 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3438 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3439 
3440 	/* Set Tx descriptors queue starting address and size */
3441 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3442 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3443 }
3444 
3445 static void mvneta_txq_deinit(struct mvneta_port *pp,
3446 			      struct mvneta_tx_queue *txq)
3447 {
3448 	mvneta_txq_sw_deinit(pp, txq);
3449 	mvneta_txq_hw_deinit(pp, txq);
3450 }
3451 
3452 /* Cleanup all Tx queues */
3453 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3454 {
3455 	int queue;
3456 
3457 	for (queue = 0; queue < txq_number; queue++)
3458 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3459 }
3460 
3461 /* Cleanup all Rx queues */
3462 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3463 {
3464 	int queue;
3465 
3466 	for (queue = 0; queue < rxq_number; queue++)
3467 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3468 }
3469 
3470 
3471 /* Init all Rx queues */
3472 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3473 {
3474 	int queue;
3475 
3476 	for (queue = 0; queue < rxq_number; queue++) {
3477 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3478 
3479 		if (err) {
3480 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3481 				   __func__, queue);
3482 			mvneta_cleanup_rxqs(pp);
3483 			return err;
3484 		}
3485 	}
3486 
3487 	return 0;
3488 }
3489 
3490 /* Init all tx queues */
3491 static int mvneta_setup_txqs(struct mvneta_port *pp)
3492 {
3493 	int queue;
3494 
3495 	for (queue = 0; queue < txq_number; queue++) {
3496 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3497 		if (err) {
3498 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3499 				   __func__, queue);
3500 			mvneta_cleanup_txqs(pp);
3501 			return err;
3502 		}
3503 	}
3504 
3505 	return 0;
3506 }
3507 
3508 static int mvneta_comphy_init(struct mvneta_port *pp)
3509 {
3510 	int ret;
3511 
3512 	if (!pp->comphy)
3513 		return 0;
3514 
3515 	ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET,
3516 			       pp->phy_interface);
3517 	if (ret)
3518 		return ret;
3519 
3520 	return phy_power_on(pp->comphy);
3521 }
3522 
3523 static void mvneta_start_dev(struct mvneta_port *pp)
3524 {
3525 	int cpu;
3526 
3527 	WARN_ON(mvneta_comphy_init(pp));
3528 
3529 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3530 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3531 
3532 	/* start the Rx/Tx activity */
3533 	mvneta_port_enable(pp);
3534 
3535 	if (!pp->neta_armada3700) {
3536 		/* Enable polling on the port */
3537 		for_each_online_cpu(cpu) {
3538 			struct mvneta_pcpu_port *port =
3539 				per_cpu_ptr(pp->ports, cpu);
3540 
3541 			napi_enable(&port->napi);
3542 		}
3543 	} else {
3544 		napi_enable(&pp->napi);
3545 	}
3546 
3547 	/* Unmask interrupts. It has to be done from each CPU */
3548 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3549 
3550 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3551 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3552 		    MVNETA_CAUSE_LINK_CHANGE);
3553 
3554 	phylink_start(pp->phylink);
3555 	netif_tx_start_all_queues(pp->dev);
3556 }
3557 
3558 static void mvneta_stop_dev(struct mvneta_port *pp)
3559 {
3560 	unsigned int cpu;
3561 
3562 	phylink_stop(pp->phylink);
3563 
3564 	if (!pp->neta_armada3700) {
3565 		for_each_online_cpu(cpu) {
3566 			struct mvneta_pcpu_port *port =
3567 				per_cpu_ptr(pp->ports, cpu);
3568 
3569 			napi_disable(&port->napi);
3570 		}
3571 	} else {
3572 		napi_disable(&pp->napi);
3573 	}
3574 
3575 	netif_carrier_off(pp->dev);
3576 
3577 	mvneta_port_down(pp);
3578 	netif_tx_stop_all_queues(pp->dev);
3579 
3580 	/* Stop the port activity */
3581 	mvneta_port_disable(pp);
3582 
3583 	/* Clear all ethernet port interrupts */
3584 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3585 
3586 	/* Mask all ethernet port interrupts */
3587 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3588 
3589 	mvneta_tx_reset(pp);
3590 	mvneta_rx_reset(pp);
3591 
3592 	WARN_ON(phy_power_off(pp->comphy));
3593 }
3594 
3595 static void mvneta_percpu_enable(void *arg)
3596 {
3597 	struct mvneta_port *pp = arg;
3598 
3599 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3600 }
3601 
3602 static void mvneta_percpu_disable(void *arg)
3603 {
3604 	struct mvneta_port *pp = arg;
3605 
3606 	disable_percpu_irq(pp->dev->irq);
3607 }
3608 
3609 /* Change the device mtu */
3610 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3611 {
3612 	struct mvneta_port *pp = netdev_priv(dev);
3613 	int ret;
3614 
3615 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3616 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3617 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3618 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3619 	}
3620 
3621 	if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) {
3622 		netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu);
3623 		return -EINVAL;
3624 	}
3625 
3626 	dev->mtu = mtu;
3627 
3628 	if (!netif_running(dev)) {
3629 		if (pp->bm_priv)
3630 			mvneta_bm_update_mtu(pp, mtu);
3631 
3632 		netdev_update_features(dev);
3633 		return 0;
3634 	}
3635 
3636 	/* The interface is running, so we have to force a
3637 	 * reallocation of the queues
3638 	 */
3639 	mvneta_stop_dev(pp);
3640 	on_each_cpu(mvneta_percpu_disable, pp, true);
3641 
3642 	mvneta_cleanup_txqs(pp);
3643 	mvneta_cleanup_rxqs(pp);
3644 
3645 	if (pp->bm_priv)
3646 		mvneta_bm_update_mtu(pp, mtu);
3647 
3648 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3649 
3650 	ret = mvneta_setup_rxqs(pp);
3651 	if (ret) {
3652 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3653 		return ret;
3654 	}
3655 
3656 	ret = mvneta_setup_txqs(pp);
3657 	if (ret) {
3658 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3659 		return ret;
3660 	}
3661 
3662 	on_each_cpu(mvneta_percpu_enable, pp, true);
3663 	mvneta_start_dev(pp);
3664 
3665 	netdev_update_features(dev);
3666 
3667 	return 0;
3668 }
3669 
3670 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3671 					     netdev_features_t features)
3672 {
3673 	struct mvneta_port *pp = netdev_priv(dev);
3674 
3675 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3676 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3677 		netdev_info(dev,
3678 			    "Disable IP checksum for MTU greater than %dB\n",
3679 			    pp->tx_csum_limit);
3680 	}
3681 
3682 	return features;
3683 }
3684 
3685 /* Get mac address */
3686 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3687 {
3688 	u32 mac_addr_l, mac_addr_h;
3689 
3690 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3691 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3692 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3693 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3694 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3695 	addr[3] = mac_addr_h & 0xFF;
3696 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3697 	addr[5] = mac_addr_l & 0xFF;
3698 }
3699 
3700 /* Handle setting mac address */
3701 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3702 {
3703 	struct mvneta_port *pp = netdev_priv(dev);
3704 	struct sockaddr *sockaddr = addr;
3705 	int ret;
3706 
3707 	ret = eth_prepare_mac_addr_change(dev, addr);
3708 	if (ret < 0)
3709 		return ret;
3710 	/* Remove previous address table entry */
3711 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3712 
3713 	/* Set new addr in hw */
3714 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3715 
3716 	eth_commit_mac_addr_change(dev, addr);
3717 	return 0;
3718 }
3719 
3720 static void mvneta_validate(struct phylink_config *config,
3721 			    unsigned long *supported,
3722 			    struct phylink_link_state *state)
3723 {
3724 	struct net_device *ndev = to_net_dev(config->dev);
3725 	struct mvneta_port *pp = netdev_priv(ndev);
3726 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3727 
3728 	/* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3729 	if (state->interface != PHY_INTERFACE_MODE_NA &&
3730 	    state->interface != PHY_INTERFACE_MODE_QSGMII &&
3731 	    state->interface != PHY_INTERFACE_MODE_SGMII &&
3732 	    !phy_interface_mode_is_8023z(state->interface) &&
3733 	    !phy_interface_mode_is_rgmii(state->interface)) {
3734 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3735 		return;
3736 	}
3737 
3738 	/* Allow all the expected bits */
3739 	phylink_set(mask, Autoneg);
3740 	phylink_set_port_modes(mask);
3741 
3742 	/* Asymmetric pause is unsupported */
3743 	phylink_set(mask, Pause);
3744 
3745 	/* Half-duplex at speeds higher than 100Mbit is unsupported */
3746 	if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3747 		phylink_set(mask, 1000baseT_Full);
3748 		phylink_set(mask, 1000baseX_Full);
3749 	}
3750 	if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3751 		phylink_set(mask, 2500baseT_Full);
3752 		phylink_set(mask, 2500baseX_Full);
3753 	}
3754 
3755 	if (!phy_interface_mode_is_8023z(state->interface)) {
3756 		/* 10M and 100M are only supported in non-802.3z mode */
3757 		phylink_set(mask, 10baseT_Half);
3758 		phylink_set(mask, 10baseT_Full);
3759 		phylink_set(mask, 100baseT_Half);
3760 		phylink_set(mask, 100baseT_Full);
3761 	}
3762 
3763 	bitmap_and(supported, supported, mask,
3764 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3765 	bitmap_and(state->advertising, state->advertising, mask,
3766 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3767 
3768 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
3769 	 * to advertise both, only report advertising at 2500BaseX.
3770 	 */
3771 	phylink_helper_basex_speed(state);
3772 }
3773 
3774 static void mvneta_mac_pcs_get_state(struct phylink_config *config,
3775 				     struct phylink_link_state *state)
3776 {
3777 	struct net_device *ndev = to_net_dev(config->dev);
3778 	struct mvneta_port *pp = netdev_priv(ndev);
3779 	u32 gmac_stat;
3780 
3781 	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3782 
3783 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3784 		state->speed =
3785 			state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3786 			SPEED_2500 : SPEED_1000;
3787 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3788 		state->speed = SPEED_100;
3789 	else
3790 		state->speed = SPEED_10;
3791 
3792 	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3793 	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3794 	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3795 
3796 	state->pause = 0;
3797 	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3798 		state->pause |= MLO_PAUSE_RX;
3799 	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3800 		state->pause |= MLO_PAUSE_TX;
3801 }
3802 
3803 static void mvneta_mac_an_restart(struct phylink_config *config)
3804 {
3805 	struct net_device *ndev = to_net_dev(config->dev);
3806 	struct mvneta_port *pp = netdev_priv(ndev);
3807 	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3808 
3809 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3810 		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3811 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3812 		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3813 }
3814 
3815 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
3816 			      const struct phylink_link_state *state)
3817 {
3818 	struct net_device *ndev = to_net_dev(config->dev);
3819 	struct mvneta_port *pp = netdev_priv(ndev);
3820 	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3821 	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3822 	u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3823 	u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3824 	u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3825 
3826 	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3827 	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3828 				   MVNETA_GMAC2_PORT_RESET);
3829 	new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3830 	new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3831 	new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3832 			     MVNETA_GMAC_INBAND_RESTART_AN |
3833 			     MVNETA_GMAC_CONFIG_MII_SPEED |
3834 			     MVNETA_GMAC_CONFIG_GMII_SPEED |
3835 			     MVNETA_GMAC_AN_SPEED_EN |
3836 			     MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3837 			     MVNETA_GMAC_CONFIG_FLOW_CTRL |
3838 			     MVNETA_GMAC_AN_FLOW_CTRL_EN |
3839 			     MVNETA_GMAC_CONFIG_FULL_DUPLEX |
3840 			     MVNETA_GMAC_AN_DUPLEX_EN);
3841 
3842 	/* Even though it might look weird, when we're configured in
3843 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3844 	 */
3845 	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3846 
3847 	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3848 	    state->interface == PHY_INTERFACE_MODE_SGMII ||
3849 	    phy_interface_mode_is_8023z(state->interface))
3850 		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3851 
3852 	if (phylink_test(state->advertising, Pause))
3853 		new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3854 	if (state->pause & MLO_PAUSE_TXRX_MASK)
3855 		new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
3856 
3857 	if (!phylink_autoneg_inband(mode)) {
3858 		/* Phy or fixed speed */
3859 		if (state->duplex)
3860 			new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3861 
3862 		if (state->speed == SPEED_1000 || state->speed == SPEED_2500)
3863 			new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3864 		else if (state->speed == SPEED_100)
3865 			new_an |= MVNETA_GMAC_CONFIG_MII_SPEED;
3866 	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3867 		/* SGMII mode receives the state from the PHY */
3868 		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3869 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3870 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3871 				     MVNETA_GMAC_FORCE_LINK_PASS)) |
3872 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3873 			 MVNETA_GMAC_AN_SPEED_EN |
3874 			 MVNETA_GMAC_AN_DUPLEX_EN;
3875 	} else {
3876 		/* 802.3z negotiation - only 1000base-X */
3877 		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3878 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3879 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3880 				     MVNETA_GMAC_FORCE_LINK_PASS)) |
3881 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3882 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3883 			 /* The MAC only supports FD mode */
3884 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3885 
3886 		if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3887 			new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3888 	}
3889 
3890 	/* Armada 370 documentation says we can only change the port mode
3891 	 * and in-band enable when the link is down, so force it down
3892 	 * while making these changes. We also do this for GMAC_CTRL2 */
3893 	if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3894 	    (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3895 	    (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3896 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3897 			    (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3898 			    MVNETA_GMAC_FORCE_LINK_DOWN);
3899 	}
3900 
3901 
3902 	/* When at 2.5G, the link partner can send frames with shortened
3903 	 * preambles.
3904 	 */
3905 	if (state->speed == SPEED_2500)
3906 		new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
3907 
3908 	if (pp->comphy && pp->phy_interface != state->interface &&
3909 	    (state->interface == PHY_INTERFACE_MODE_SGMII ||
3910 	     state->interface == PHY_INTERFACE_MODE_1000BASEX ||
3911 	     state->interface == PHY_INTERFACE_MODE_2500BASEX)) {
3912 		pp->phy_interface = state->interface;
3913 
3914 		WARN_ON(phy_power_off(pp->comphy));
3915 		WARN_ON(mvneta_comphy_init(pp));
3916 	}
3917 
3918 	if (new_ctrl0 != gmac_ctrl0)
3919 		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3920 	if (new_ctrl2 != gmac_ctrl2)
3921 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
3922 	if (new_ctrl4 != gmac_ctrl4)
3923 		mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
3924 	if (new_clk != gmac_clk)
3925 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
3926 	if (new_an != gmac_an)
3927 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
3928 
3929 	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
3930 		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3931 			MVNETA_GMAC2_PORT_RESET) != 0)
3932 			continue;
3933 	}
3934 }
3935 
3936 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
3937 {
3938 	u32 lpi_ctl1;
3939 
3940 	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
3941 	if (enable)
3942 		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
3943 	else
3944 		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
3945 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
3946 }
3947 
3948 static void mvneta_mac_link_down(struct phylink_config *config,
3949 				 unsigned int mode, phy_interface_t interface)
3950 {
3951 	struct net_device *ndev = to_net_dev(config->dev);
3952 	struct mvneta_port *pp = netdev_priv(ndev);
3953 	u32 val;
3954 
3955 	mvneta_port_down(pp);
3956 
3957 	if (!phylink_autoneg_inband(mode)) {
3958 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3959 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3960 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3961 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3962 	}
3963 
3964 	pp->eee_active = false;
3965 	mvneta_set_eee(pp, false);
3966 }
3967 
3968 static void mvneta_mac_link_up(struct phylink_config *config, unsigned int mode,
3969 			       phy_interface_t interface,
3970 			       struct phy_device *phy)
3971 {
3972 	struct net_device *ndev = to_net_dev(config->dev);
3973 	struct mvneta_port *pp = netdev_priv(ndev);
3974 	u32 val;
3975 
3976 	if (!phylink_autoneg_inband(mode)) {
3977 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3978 		val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3979 		val |= MVNETA_GMAC_FORCE_LINK_PASS;
3980 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3981 	}
3982 
3983 	mvneta_port_up(pp);
3984 
3985 	if (phy && pp->eee_enabled) {
3986 		pp->eee_active = phy_init_eee(phy, 0) >= 0;
3987 		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
3988 	}
3989 }
3990 
3991 static const struct phylink_mac_ops mvneta_phylink_ops = {
3992 	.validate = mvneta_validate,
3993 	.mac_pcs_get_state = mvneta_mac_pcs_get_state,
3994 	.mac_an_restart = mvneta_mac_an_restart,
3995 	.mac_config = mvneta_mac_config,
3996 	.mac_link_down = mvneta_mac_link_down,
3997 	.mac_link_up = mvneta_mac_link_up,
3998 };
3999 
4000 static int mvneta_mdio_probe(struct mvneta_port *pp)
4001 {
4002 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4003 	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4004 
4005 	if (err)
4006 		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4007 
4008 	phylink_ethtool_get_wol(pp->phylink, &wol);
4009 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4010 
4011 	return err;
4012 }
4013 
4014 static void mvneta_mdio_remove(struct mvneta_port *pp)
4015 {
4016 	phylink_disconnect_phy(pp->phylink);
4017 }
4018 
4019 /* Electing a CPU must be done in an atomic way: it should be done
4020  * after or before the removal/insertion of a CPU and this function is
4021  * not reentrant.
4022  */
4023 static void mvneta_percpu_elect(struct mvneta_port *pp)
4024 {
4025 	int elected_cpu = 0, max_cpu, cpu, i = 0;
4026 
4027 	/* Use the cpu associated to the rxq when it is online, in all
4028 	 * the other cases, use the cpu 0 which can't be offline.
4029 	 */
4030 	if (cpu_online(pp->rxq_def))
4031 		elected_cpu = pp->rxq_def;
4032 
4033 	max_cpu = num_present_cpus();
4034 
4035 	for_each_online_cpu(cpu) {
4036 		int rxq_map = 0, txq_map = 0;
4037 		int rxq;
4038 
4039 		for (rxq = 0; rxq < rxq_number; rxq++)
4040 			if ((rxq % max_cpu) == cpu)
4041 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4042 
4043 		if (cpu == elected_cpu)
4044 			/* Map the default receive queue queue to the
4045 			 * elected CPU
4046 			 */
4047 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4048 
4049 		/* We update the TX queue map only if we have one
4050 		 * queue. In this case we associate the TX queue to
4051 		 * the CPU bound to the default RX queue
4052 		 */
4053 		if (txq_number == 1)
4054 			txq_map = (cpu == elected_cpu) ?
4055 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
4056 		else
4057 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4058 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4059 
4060 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4061 
4062 		/* Update the interrupt mask on each CPU according the
4063 		 * new mapping
4064 		 */
4065 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4066 					 pp, true);
4067 		i++;
4068 
4069 	}
4070 };
4071 
4072 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4073 {
4074 	int other_cpu;
4075 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4076 						  node_online);
4077 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4078 
4079 
4080 	spin_lock(&pp->lock);
4081 	/*
4082 	 * Configuring the driver for a new CPU while the driver is
4083 	 * stopping is racy, so just avoid it.
4084 	 */
4085 	if (pp->is_stopped) {
4086 		spin_unlock(&pp->lock);
4087 		return 0;
4088 	}
4089 	netif_tx_stop_all_queues(pp->dev);
4090 
4091 	/*
4092 	 * We have to synchronise on tha napi of each CPU except the one
4093 	 * just being woken up
4094 	 */
4095 	for_each_online_cpu(other_cpu) {
4096 		if (other_cpu != cpu) {
4097 			struct mvneta_pcpu_port *other_port =
4098 				per_cpu_ptr(pp->ports, other_cpu);
4099 
4100 			napi_synchronize(&other_port->napi);
4101 		}
4102 	}
4103 
4104 	/* Mask all ethernet port interrupts */
4105 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4106 	napi_enable(&port->napi);
4107 
4108 	/*
4109 	 * Enable per-CPU interrupts on the CPU that is
4110 	 * brought up.
4111 	 */
4112 	mvneta_percpu_enable(pp);
4113 
4114 	/*
4115 	 * Enable per-CPU interrupt on the one CPU we care
4116 	 * about.
4117 	 */
4118 	mvneta_percpu_elect(pp);
4119 
4120 	/* Unmask all ethernet port interrupts */
4121 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4122 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4123 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4124 		    MVNETA_CAUSE_LINK_CHANGE);
4125 	netif_tx_start_all_queues(pp->dev);
4126 	spin_unlock(&pp->lock);
4127 	return 0;
4128 }
4129 
4130 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4131 {
4132 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4133 						  node_online);
4134 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4135 
4136 	/*
4137 	 * Thanks to this lock we are sure that any pending cpu election is
4138 	 * done.
4139 	 */
4140 	spin_lock(&pp->lock);
4141 	/* Mask all ethernet port interrupts */
4142 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4143 	spin_unlock(&pp->lock);
4144 
4145 	napi_synchronize(&port->napi);
4146 	napi_disable(&port->napi);
4147 	/* Disable per-CPU interrupts on the CPU that is brought down. */
4148 	mvneta_percpu_disable(pp);
4149 	return 0;
4150 }
4151 
4152 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4153 {
4154 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4155 						  node_dead);
4156 
4157 	/* Check if a new CPU must be elected now this on is down */
4158 	spin_lock(&pp->lock);
4159 	mvneta_percpu_elect(pp);
4160 	spin_unlock(&pp->lock);
4161 	/* Unmask all ethernet port interrupts */
4162 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4163 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4164 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4165 		    MVNETA_CAUSE_LINK_CHANGE);
4166 	netif_tx_start_all_queues(pp->dev);
4167 	return 0;
4168 }
4169 
4170 static int mvneta_open(struct net_device *dev)
4171 {
4172 	struct mvneta_port *pp = netdev_priv(dev);
4173 	int ret;
4174 
4175 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4176 
4177 	ret = mvneta_setup_rxqs(pp);
4178 	if (ret)
4179 		return ret;
4180 
4181 	ret = mvneta_setup_txqs(pp);
4182 	if (ret)
4183 		goto err_cleanup_rxqs;
4184 
4185 	/* Connect to port interrupt line */
4186 	if (pp->neta_armada3700)
4187 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4188 				  dev->name, pp);
4189 	else
4190 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4191 					 dev->name, pp->ports);
4192 	if (ret) {
4193 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4194 		goto err_cleanup_txqs;
4195 	}
4196 
4197 	if (!pp->neta_armada3700) {
4198 		/* Enable per-CPU interrupt on all the CPU to handle our RX
4199 		 * queue interrupts
4200 		 */
4201 		on_each_cpu(mvneta_percpu_enable, pp, true);
4202 
4203 		pp->is_stopped = false;
4204 		/* Register a CPU notifier to handle the case where our CPU
4205 		 * might be taken offline.
4206 		 */
4207 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4208 						       &pp->node_online);
4209 		if (ret)
4210 			goto err_free_irq;
4211 
4212 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4213 						       &pp->node_dead);
4214 		if (ret)
4215 			goto err_free_online_hp;
4216 	}
4217 
4218 	ret = mvneta_mdio_probe(pp);
4219 	if (ret < 0) {
4220 		netdev_err(dev, "cannot probe MDIO bus\n");
4221 		goto err_free_dead_hp;
4222 	}
4223 
4224 	mvneta_start_dev(pp);
4225 
4226 	return 0;
4227 
4228 err_free_dead_hp:
4229 	if (!pp->neta_armada3700)
4230 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4231 						    &pp->node_dead);
4232 err_free_online_hp:
4233 	if (!pp->neta_armada3700)
4234 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4235 						    &pp->node_online);
4236 err_free_irq:
4237 	if (pp->neta_armada3700) {
4238 		free_irq(pp->dev->irq, pp);
4239 	} else {
4240 		on_each_cpu(mvneta_percpu_disable, pp, true);
4241 		free_percpu_irq(pp->dev->irq, pp->ports);
4242 	}
4243 err_cleanup_txqs:
4244 	mvneta_cleanup_txqs(pp);
4245 err_cleanup_rxqs:
4246 	mvneta_cleanup_rxqs(pp);
4247 	return ret;
4248 }
4249 
4250 /* Stop the port, free port interrupt line */
4251 static int mvneta_stop(struct net_device *dev)
4252 {
4253 	struct mvneta_port *pp = netdev_priv(dev);
4254 
4255 	if (!pp->neta_armada3700) {
4256 		/* Inform that we are stopping so we don't want to setup the
4257 		 * driver for new CPUs in the notifiers. The code of the
4258 		 * notifier for CPU online is protected by the same spinlock,
4259 		 * so when we get the lock, the notifer work is done.
4260 		 */
4261 		spin_lock(&pp->lock);
4262 		pp->is_stopped = true;
4263 		spin_unlock(&pp->lock);
4264 
4265 		mvneta_stop_dev(pp);
4266 		mvneta_mdio_remove(pp);
4267 
4268 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4269 						    &pp->node_online);
4270 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4271 						    &pp->node_dead);
4272 		on_each_cpu(mvneta_percpu_disable, pp, true);
4273 		free_percpu_irq(dev->irq, pp->ports);
4274 	} else {
4275 		mvneta_stop_dev(pp);
4276 		mvneta_mdio_remove(pp);
4277 		free_irq(dev->irq, pp);
4278 	}
4279 
4280 	mvneta_cleanup_rxqs(pp);
4281 	mvneta_cleanup_txqs(pp);
4282 
4283 	return 0;
4284 }
4285 
4286 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4287 {
4288 	struct mvneta_port *pp = netdev_priv(dev);
4289 
4290 	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4291 }
4292 
4293 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4294 			    struct netlink_ext_ack *extack)
4295 {
4296 	bool need_update, running = netif_running(dev);
4297 	struct mvneta_port *pp = netdev_priv(dev);
4298 	struct bpf_prog *old_prog;
4299 
4300 	if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4301 		NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP");
4302 		return -EOPNOTSUPP;
4303 	}
4304 
4305 	if (pp->bm_priv) {
4306 		NL_SET_ERR_MSG_MOD(extack,
4307 				   "Hardware Buffer Management not supported on XDP");
4308 		return -EOPNOTSUPP;
4309 	}
4310 
4311 	need_update = !!pp->xdp_prog != !!prog;
4312 	if (running && need_update)
4313 		mvneta_stop(dev);
4314 
4315 	old_prog = xchg(&pp->xdp_prog, prog);
4316 	if (old_prog)
4317 		bpf_prog_put(old_prog);
4318 
4319 	if (running && need_update)
4320 		return mvneta_open(dev);
4321 
4322 	return 0;
4323 }
4324 
4325 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4326 {
4327 	struct mvneta_port *pp = netdev_priv(dev);
4328 
4329 	switch (xdp->command) {
4330 	case XDP_SETUP_PROG:
4331 		return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4332 	case XDP_QUERY_PROG:
4333 		xdp->prog_id = pp->xdp_prog ? pp->xdp_prog->aux->id : 0;
4334 		return 0;
4335 	default:
4336 		return -EINVAL;
4337 	}
4338 }
4339 
4340 /* Ethtool methods */
4341 
4342 /* Set link ksettings (phy address, speed) for ethtools */
4343 static int
4344 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4345 				  const struct ethtool_link_ksettings *cmd)
4346 {
4347 	struct mvneta_port *pp = netdev_priv(ndev);
4348 
4349 	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4350 }
4351 
4352 /* Get link ksettings for ethtools */
4353 static int
4354 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4355 				  struct ethtool_link_ksettings *cmd)
4356 {
4357 	struct mvneta_port *pp = netdev_priv(ndev);
4358 
4359 	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4360 }
4361 
4362 static int mvneta_ethtool_nway_reset(struct net_device *dev)
4363 {
4364 	struct mvneta_port *pp = netdev_priv(dev);
4365 
4366 	return phylink_ethtool_nway_reset(pp->phylink);
4367 }
4368 
4369 /* Set interrupt coalescing for ethtools */
4370 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
4371 				       struct ethtool_coalesce *c)
4372 {
4373 	struct mvneta_port *pp = netdev_priv(dev);
4374 	int queue;
4375 
4376 	for (queue = 0; queue < rxq_number; queue++) {
4377 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4378 		rxq->time_coal = c->rx_coalesce_usecs;
4379 		rxq->pkts_coal = c->rx_max_coalesced_frames;
4380 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4381 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4382 	}
4383 
4384 	for (queue = 0; queue < txq_number; queue++) {
4385 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4386 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
4387 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4388 	}
4389 
4390 	return 0;
4391 }
4392 
4393 /* get coalescing for ethtools */
4394 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
4395 				       struct ethtool_coalesce *c)
4396 {
4397 	struct mvneta_port *pp = netdev_priv(dev);
4398 
4399 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
4400 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
4401 
4402 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
4403 	return 0;
4404 }
4405 
4406 
4407 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4408 				    struct ethtool_drvinfo *drvinfo)
4409 {
4410 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4411 		sizeof(drvinfo->driver));
4412 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4413 		sizeof(drvinfo->version));
4414 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4415 		sizeof(drvinfo->bus_info));
4416 }
4417 
4418 
4419 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4420 					 struct ethtool_ringparam *ring)
4421 {
4422 	struct mvneta_port *pp = netdev_priv(netdev);
4423 
4424 	ring->rx_max_pending = MVNETA_MAX_RXD;
4425 	ring->tx_max_pending = MVNETA_MAX_TXD;
4426 	ring->rx_pending = pp->rx_ring_size;
4427 	ring->tx_pending = pp->tx_ring_size;
4428 }
4429 
4430 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4431 					struct ethtool_ringparam *ring)
4432 {
4433 	struct mvneta_port *pp = netdev_priv(dev);
4434 
4435 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4436 		return -EINVAL;
4437 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4438 		ring->rx_pending : MVNETA_MAX_RXD;
4439 
4440 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4441 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4442 	if (pp->tx_ring_size != ring->tx_pending)
4443 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4444 			    pp->tx_ring_size, ring->tx_pending);
4445 
4446 	if (netif_running(dev)) {
4447 		mvneta_stop(dev);
4448 		if (mvneta_open(dev)) {
4449 			netdev_err(dev,
4450 				   "error on opening device after ring param change\n");
4451 			return -ENOMEM;
4452 		}
4453 	}
4454 
4455 	return 0;
4456 }
4457 
4458 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4459 					  struct ethtool_pauseparam *pause)
4460 {
4461 	struct mvneta_port *pp = netdev_priv(dev);
4462 
4463 	phylink_ethtool_get_pauseparam(pp->phylink, pause);
4464 }
4465 
4466 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4467 					 struct ethtool_pauseparam *pause)
4468 {
4469 	struct mvneta_port *pp = netdev_priv(dev);
4470 
4471 	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4472 }
4473 
4474 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4475 				       u8 *data)
4476 {
4477 	if (sset == ETH_SS_STATS) {
4478 		int i;
4479 
4480 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4481 			memcpy(data + i * ETH_GSTRING_LEN,
4482 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
4483 	}
4484 }
4485 
4486 static void
4487 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4488 				 struct mvneta_ethtool_stats *es)
4489 {
4490 	unsigned int start;
4491 	int cpu;
4492 
4493 	for_each_possible_cpu(cpu) {
4494 		struct mvneta_pcpu_stats *stats;
4495 		u64 skb_alloc_error;
4496 		u64 refill_error;
4497 		u64 xdp_redirect;
4498 		u64 xdp_pass;
4499 		u64 xdp_drop;
4500 		u64 xdp_xmit;
4501 		u64 xdp_tx;
4502 
4503 		stats = per_cpu_ptr(pp->stats, cpu);
4504 		do {
4505 			start = u64_stats_fetch_begin_irq(&stats->syncp);
4506 			skb_alloc_error = stats->es.skb_alloc_error;
4507 			refill_error = stats->es.refill_error;
4508 			xdp_redirect = stats->es.ps.xdp_redirect;
4509 			xdp_pass = stats->es.ps.xdp_pass;
4510 			xdp_drop = stats->es.ps.xdp_drop;
4511 			xdp_xmit = stats->es.ps.xdp_xmit;
4512 			xdp_tx = stats->es.ps.xdp_tx;
4513 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
4514 
4515 		es->skb_alloc_error += skb_alloc_error;
4516 		es->refill_error += refill_error;
4517 		es->ps.xdp_redirect += xdp_redirect;
4518 		es->ps.xdp_pass += xdp_pass;
4519 		es->ps.xdp_drop += xdp_drop;
4520 		es->ps.xdp_xmit += xdp_xmit;
4521 		es->ps.xdp_tx += xdp_tx;
4522 	}
4523 }
4524 
4525 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4526 {
4527 	struct mvneta_ethtool_stats stats = {};
4528 	const struct mvneta_statistic *s;
4529 	void __iomem *base = pp->base;
4530 	u32 high, low;
4531 	u64 val;
4532 	int i;
4533 
4534 	mvneta_ethtool_update_pcpu_stats(pp, &stats);
4535 	for (i = 0, s = mvneta_statistics;
4536 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4537 	     s++, i++) {
4538 		switch (s->type) {
4539 		case T_REG_32:
4540 			val = readl_relaxed(base + s->offset);
4541 			pp->ethtool_stats[i] += val;
4542 			break;
4543 		case T_REG_64:
4544 			/* Docs say to read low 32-bit then high */
4545 			low = readl_relaxed(base + s->offset);
4546 			high = readl_relaxed(base + s->offset + 4);
4547 			val = (u64)high << 32 | low;
4548 			pp->ethtool_stats[i] += val;
4549 			break;
4550 		case T_SW:
4551 			switch (s->offset) {
4552 			case ETHTOOL_STAT_EEE_WAKEUP:
4553 				val = phylink_get_eee_err(pp->phylink);
4554 				pp->ethtool_stats[i] += val;
4555 				break;
4556 			case ETHTOOL_STAT_SKB_ALLOC_ERR:
4557 				pp->ethtool_stats[i] = stats.skb_alloc_error;
4558 				break;
4559 			case ETHTOOL_STAT_REFILL_ERR:
4560 				pp->ethtool_stats[i] = stats.refill_error;
4561 				break;
4562 			case ETHTOOL_XDP_REDIRECT:
4563 				pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4564 				break;
4565 			case ETHTOOL_XDP_PASS:
4566 				pp->ethtool_stats[i] = stats.ps.xdp_pass;
4567 				break;
4568 			case ETHTOOL_XDP_DROP:
4569 				pp->ethtool_stats[i] = stats.ps.xdp_drop;
4570 				break;
4571 			case ETHTOOL_XDP_TX:
4572 				pp->ethtool_stats[i] = stats.ps.xdp_tx;
4573 				break;
4574 			case ETHTOOL_XDP_XMIT:
4575 				pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4576 				break;
4577 			}
4578 			break;
4579 		}
4580 	}
4581 }
4582 
4583 static void mvneta_ethtool_get_stats(struct net_device *dev,
4584 				     struct ethtool_stats *stats, u64 *data)
4585 {
4586 	struct mvneta_port *pp = netdev_priv(dev);
4587 	int i;
4588 
4589 	mvneta_ethtool_update_stats(pp);
4590 
4591 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4592 		*data++ = pp->ethtool_stats[i];
4593 }
4594 
4595 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4596 {
4597 	if (sset == ETH_SS_STATS)
4598 		return ARRAY_SIZE(mvneta_statistics);
4599 	return -EOPNOTSUPP;
4600 }
4601 
4602 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4603 {
4604 	return MVNETA_RSS_LU_TABLE_SIZE;
4605 }
4606 
4607 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4608 				    struct ethtool_rxnfc *info,
4609 				    u32 *rules __always_unused)
4610 {
4611 	switch (info->cmd) {
4612 	case ETHTOOL_GRXRINGS:
4613 		info->data =  rxq_number;
4614 		return 0;
4615 	case ETHTOOL_GRXFH:
4616 		return -EOPNOTSUPP;
4617 	default:
4618 		return -EOPNOTSUPP;
4619 	}
4620 }
4621 
4622 static int  mvneta_config_rss(struct mvneta_port *pp)
4623 {
4624 	int cpu;
4625 	u32 val;
4626 
4627 	netif_tx_stop_all_queues(pp->dev);
4628 
4629 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4630 
4631 	if (!pp->neta_armada3700) {
4632 		/* We have to synchronise on the napi of each CPU */
4633 		for_each_online_cpu(cpu) {
4634 			struct mvneta_pcpu_port *pcpu_port =
4635 				per_cpu_ptr(pp->ports, cpu);
4636 
4637 			napi_synchronize(&pcpu_port->napi);
4638 			napi_disable(&pcpu_port->napi);
4639 		}
4640 	} else {
4641 		napi_synchronize(&pp->napi);
4642 		napi_disable(&pp->napi);
4643 	}
4644 
4645 	pp->rxq_def = pp->indir[0];
4646 
4647 	/* Update unicast mapping */
4648 	mvneta_set_rx_mode(pp->dev);
4649 
4650 	/* Update val of portCfg register accordingly with all RxQueue types */
4651 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4652 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4653 
4654 	/* Update the elected CPU matching the new rxq_def */
4655 	spin_lock(&pp->lock);
4656 	mvneta_percpu_elect(pp);
4657 	spin_unlock(&pp->lock);
4658 
4659 	if (!pp->neta_armada3700) {
4660 		/* We have to synchronise on the napi of each CPU */
4661 		for_each_online_cpu(cpu) {
4662 			struct mvneta_pcpu_port *pcpu_port =
4663 				per_cpu_ptr(pp->ports, cpu);
4664 
4665 			napi_enable(&pcpu_port->napi);
4666 		}
4667 	} else {
4668 		napi_enable(&pp->napi);
4669 	}
4670 
4671 	netif_tx_start_all_queues(pp->dev);
4672 
4673 	return 0;
4674 }
4675 
4676 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4677 				   const u8 *key, const u8 hfunc)
4678 {
4679 	struct mvneta_port *pp = netdev_priv(dev);
4680 
4681 	/* Current code for Armada 3700 doesn't support RSS features yet */
4682 	if (pp->neta_armada3700)
4683 		return -EOPNOTSUPP;
4684 
4685 	/* We require at least one supported parameter to be changed
4686 	 * and no change in any of the unsupported parameters
4687 	 */
4688 	if (key ||
4689 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4690 		return -EOPNOTSUPP;
4691 
4692 	if (!indir)
4693 		return 0;
4694 
4695 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4696 
4697 	return mvneta_config_rss(pp);
4698 }
4699 
4700 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4701 				   u8 *hfunc)
4702 {
4703 	struct mvneta_port *pp = netdev_priv(dev);
4704 
4705 	/* Current code for Armada 3700 doesn't support RSS features yet */
4706 	if (pp->neta_armada3700)
4707 		return -EOPNOTSUPP;
4708 
4709 	if (hfunc)
4710 		*hfunc = ETH_RSS_HASH_TOP;
4711 
4712 	if (!indir)
4713 		return 0;
4714 
4715 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4716 
4717 	return 0;
4718 }
4719 
4720 static void mvneta_ethtool_get_wol(struct net_device *dev,
4721 				   struct ethtool_wolinfo *wol)
4722 {
4723 	struct mvneta_port *pp = netdev_priv(dev);
4724 
4725 	phylink_ethtool_get_wol(pp->phylink, wol);
4726 }
4727 
4728 static int mvneta_ethtool_set_wol(struct net_device *dev,
4729 				  struct ethtool_wolinfo *wol)
4730 {
4731 	struct mvneta_port *pp = netdev_priv(dev);
4732 	int ret;
4733 
4734 	ret = phylink_ethtool_set_wol(pp->phylink, wol);
4735 	if (!ret)
4736 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4737 
4738 	return ret;
4739 }
4740 
4741 static int mvneta_ethtool_get_eee(struct net_device *dev,
4742 				  struct ethtool_eee *eee)
4743 {
4744 	struct mvneta_port *pp = netdev_priv(dev);
4745 	u32 lpi_ctl0;
4746 
4747 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4748 
4749 	eee->eee_enabled = pp->eee_enabled;
4750 	eee->eee_active = pp->eee_active;
4751 	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4752 	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4753 
4754 	return phylink_ethtool_get_eee(pp->phylink, eee);
4755 }
4756 
4757 static int mvneta_ethtool_set_eee(struct net_device *dev,
4758 				  struct ethtool_eee *eee)
4759 {
4760 	struct mvneta_port *pp = netdev_priv(dev);
4761 	u32 lpi_ctl0;
4762 
4763 	/* The Armada 37x documents do not give limits for this other than
4764 	 * it being an 8-bit register. */
4765 	if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4766 		return -EINVAL;
4767 
4768 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4769 	lpi_ctl0 &= ~(0xff << 8);
4770 	lpi_ctl0 |= eee->tx_lpi_timer << 8;
4771 	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4772 
4773 	pp->eee_enabled = eee->eee_enabled;
4774 	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4775 
4776 	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4777 
4778 	return phylink_ethtool_set_eee(pp->phylink, eee);
4779 }
4780 
4781 static const struct net_device_ops mvneta_netdev_ops = {
4782 	.ndo_open            = mvneta_open,
4783 	.ndo_stop            = mvneta_stop,
4784 	.ndo_start_xmit      = mvneta_tx,
4785 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
4786 	.ndo_set_mac_address = mvneta_set_mac_addr,
4787 	.ndo_change_mtu      = mvneta_change_mtu,
4788 	.ndo_fix_features    = mvneta_fix_features,
4789 	.ndo_get_stats64     = mvneta_get_stats64,
4790 	.ndo_do_ioctl        = mvneta_ioctl,
4791 	.ndo_bpf	     = mvneta_xdp,
4792 	.ndo_xdp_xmit        = mvneta_xdp_xmit,
4793 };
4794 
4795 static const struct ethtool_ops mvneta_eth_tool_ops = {
4796 	.nway_reset	= mvneta_ethtool_nway_reset,
4797 	.get_link       = ethtool_op_get_link,
4798 	.set_coalesce   = mvneta_ethtool_set_coalesce,
4799 	.get_coalesce   = mvneta_ethtool_get_coalesce,
4800 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
4801 	.get_ringparam  = mvneta_ethtool_get_ringparam,
4802 	.set_ringparam	= mvneta_ethtool_set_ringparam,
4803 	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
4804 	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
4805 	.get_strings	= mvneta_ethtool_get_strings,
4806 	.get_ethtool_stats = mvneta_ethtool_get_stats,
4807 	.get_sset_count	= mvneta_ethtool_get_sset_count,
4808 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4809 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
4810 	.get_rxfh	= mvneta_ethtool_get_rxfh,
4811 	.set_rxfh	= mvneta_ethtool_set_rxfh,
4812 	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4813 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4814 	.get_wol        = mvneta_ethtool_get_wol,
4815 	.set_wol        = mvneta_ethtool_set_wol,
4816 	.get_eee	= mvneta_ethtool_get_eee,
4817 	.set_eee	= mvneta_ethtool_set_eee,
4818 };
4819 
4820 /* Initialize hw */
4821 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4822 {
4823 	int queue;
4824 
4825 	/* Disable port */
4826 	mvneta_port_disable(pp);
4827 
4828 	/* Set port default values */
4829 	mvneta_defaults_set(pp);
4830 
4831 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4832 	if (!pp->txqs)
4833 		return -ENOMEM;
4834 
4835 	/* Initialize TX descriptor rings */
4836 	for (queue = 0; queue < txq_number; queue++) {
4837 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4838 		txq->id = queue;
4839 		txq->size = pp->tx_ring_size;
4840 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4841 	}
4842 
4843 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4844 	if (!pp->rxqs)
4845 		return -ENOMEM;
4846 
4847 	/* Create Rx descriptor rings */
4848 	for (queue = 0; queue < rxq_number; queue++) {
4849 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4850 		rxq->id = queue;
4851 		rxq->size = pp->rx_ring_size;
4852 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4853 		rxq->time_coal = MVNETA_RX_COAL_USEC;
4854 		rxq->buf_virt_addr
4855 			= devm_kmalloc_array(pp->dev->dev.parent,
4856 					     rxq->size,
4857 					     sizeof(*rxq->buf_virt_addr),
4858 					     GFP_KERNEL);
4859 		if (!rxq->buf_virt_addr)
4860 			return -ENOMEM;
4861 	}
4862 
4863 	return 0;
4864 }
4865 
4866 /* platform glue : initialize decoding windows */
4867 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4868 				     const struct mbus_dram_target_info *dram)
4869 {
4870 	u32 win_enable;
4871 	u32 win_protect;
4872 	int i;
4873 
4874 	for (i = 0; i < 6; i++) {
4875 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4876 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4877 
4878 		if (i < 4)
4879 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4880 	}
4881 
4882 	win_enable = 0x3f;
4883 	win_protect = 0;
4884 
4885 	if (dram) {
4886 		for (i = 0; i < dram->num_cs; i++) {
4887 			const struct mbus_dram_window *cs = dram->cs + i;
4888 
4889 			mvreg_write(pp, MVNETA_WIN_BASE(i),
4890 				    (cs->base & 0xffff0000) |
4891 				    (cs->mbus_attr << 8) |
4892 				    dram->mbus_dram_target_id);
4893 
4894 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
4895 				    (cs->size - 1) & 0xffff0000);
4896 
4897 			win_enable &= ~(1 << i);
4898 			win_protect |= 3 << (2 * i);
4899 		}
4900 	} else {
4901 		/* For Armada3700 open default 4GB Mbus window, leaving
4902 		 * arbitration of target/attribute to a different layer
4903 		 * of configuration.
4904 		 */
4905 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4906 		win_enable &= ~BIT(0);
4907 		win_protect = 3;
4908 	}
4909 
4910 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4911 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4912 }
4913 
4914 /* Power up the port */
4915 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4916 {
4917 	/* MAC Cause register should be cleared */
4918 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4919 
4920 	if (phy_mode == PHY_INTERFACE_MODE_QSGMII)
4921 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4922 	else if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
4923 		 phy_interface_mode_is_8023z(phy_mode))
4924 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4925 	else if (!phy_interface_mode_is_rgmii(phy_mode))
4926 		return -EINVAL;
4927 
4928 	return 0;
4929 }
4930 
4931 /* Device initialization routine */
4932 static int mvneta_probe(struct platform_device *pdev)
4933 {
4934 	struct device_node *dn = pdev->dev.of_node;
4935 	struct device_node *bm_node;
4936 	struct mvneta_port *pp;
4937 	struct net_device *dev;
4938 	struct phylink *phylink;
4939 	struct phy *comphy;
4940 	const char *dt_mac_addr;
4941 	char hw_mac_addr[ETH_ALEN];
4942 	phy_interface_t phy_mode;
4943 	const char *mac_from;
4944 	int tx_csum_limit;
4945 	int err;
4946 	int cpu;
4947 
4948 	dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
4949 				      txq_number, rxq_number);
4950 	if (!dev)
4951 		return -ENOMEM;
4952 
4953 	dev->irq = irq_of_parse_and_map(dn, 0);
4954 	if (dev->irq == 0)
4955 		return -EINVAL;
4956 
4957 	err = of_get_phy_mode(dn, &phy_mode);
4958 	if (err) {
4959 		dev_err(&pdev->dev, "incorrect phy-mode\n");
4960 		goto err_free_irq;
4961 	}
4962 
4963 	comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
4964 	if (comphy == ERR_PTR(-EPROBE_DEFER)) {
4965 		err = -EPROBE_DEFER;
4966 		goto err_free_irq;
4967 	} else if (IS_ERR(comphy)) {
4968 		comphy = NULL;
4969 	}
4970 
4971 	pp = netdev_priv(dev);
4972 	spin_lock_init(&pp->lock);
4973 
4974 	pp->phylink_config.dev = &dev->dev;
4975 	pp->phylink_config.type = PHYLINK_NETDEV;
4976 
4977 	phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
4978 				 phy_mode, &mvneta_phylink_ops);
4979 	if (IS_ERR(phylink)) {
4980 		err = PTR_ERR(phylink);
4981 		goto err_free_irq;
4982 	}
4983 
4984 	dev->tx_queue_len = MVNETA_MAX_TXD;
4985 	dev->watchdog_timeo = 5 * HZ;
4986 	dev->netdev_ops = &mvneta_netdev_ops;
4987 
4988 	dev->ethtool_ops = &mvneta_eth_tool_ops;
4989 
4990 	pp->phylink = phylink;
4991 	pp->comphy = comphy;
4992 	pp->phy_interface = phy_mode;
4993 	pp->dn = dn;
4994 
4995 	pp->rxq_def = rxq_def;
4996 	pp->indir[0] = rxq_def;
4997 
4998 	/* Get special SoC configurations */
4999 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5000 		pp->neta_armada3700 = true;
5001 
5002 	pp->clk = devm_clk_get(&pdev->dev, "core");
5003 	if (IS_ERR(pp->clk))
5004 		pp->clk = devm_clk_get(&pdev->dev, NULL);
5005 	if (IS_ERR(pp->clk)) {
5006 		err = PTR_ERR(pp->clk);
5007 		goto err_free_phylink;
5008 	}
5009 
5010 	clk_prepare_enable(pp->clk);
5011 
5012 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5013 	if (!IS_ERR(pp->clk_bus))
5014 		clk_prepare_enable(pp->clk_bus);
5015 
5016 	pp->base = devm_platform_ioremap_resource(pdev, 0);
5017 	if (IS_ERR(pp->base)) {
5018 		err = PTR_ERR(pp->base);
5019 		goto err_clk;
5020 	}
5021 
5022 	/* Alloc per-cpu port structure */
5023 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5024 	if (!pp->ports) {
5025 		err = -ENOMEM;
5026 		goto err_clk;
5027 	}
5028 
5029 	/* Alloc per-cpu stats */
5030 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5031 	if (!pp->stats) {
5032 		err = -ENOMEM;
5033 		goto err_free_ports;
5034 	}
5035 
5036 	dt_mac_addr = of_get_mac_address(dn);
5037 	if (!IS_ERR(dt_mac_addr)) {
5038 		mac_from = "device tree";
5039 		ether_addr_copy(dev->dev_addr, dt_mac_addr);
5040 	} else {
5041 		mvneta_get_mac_addr(pp, hw_mac_addr);
5042 		if (is_valid_ether_addr(hw_mac_addr)) {
5043 			mac_from = "hardware";
5044 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
5045 		} else {
5046 			mac_from = "random";
5047 			eth_hw_addr_random(dev);
5048 		}
5049 	}
5050 
5051 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5052 		if (tx_csum_limit < 0 ||
5053 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5054 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5055 			dev_info(&pdev->dev,
5056 				 "Wrong TX csum limit in DT, set to %dB\n",
5057 				 MVNETA_TX_CSUM_DEF_SIZE);
5058 		}
5059 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5060 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5061 	} else {
5062 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5063 	}
5064 
5065 	pp->tx_csum_limit = tx_csum_limit;
5066 
5067 	pp->dram_target_info = mv_mbus_dram_info();
5068 	/* Armada3700 requires setting default configuration of Mbus
5069 	 * windows, however without using filled mbus_dram_target_info
5070 	 * structure.
5071 	 */
5072 	if (pp->dram_target_info || pp->neta_armada3700)
5073 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5074 
5075 	pp->tx_ring_size = MVNETA_MAX_TXD;
5076 	pp->rx_ring_size = MVNETA_MAX_RXD;
5077 
5078 	pp->dev = dev;
5079 	SET_NETDEV_DEV(dev, &pdev->dev);
5080 
5081 	pp->id = global_port_id++;
5082 
5083 	/* Obtain access to BM resources if enabled and already initialized */
5084 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5085 	if (bm_node) {
5086 		pp->bm_priv = mvneta_bm_get(bm_node);
5087 		if (pp->bm_priv) {
5088 			err = mvneta_bm_port_init(pdev, pp);
5089 			if (err < 0) {
5090 				dev_info(&pdev->dev,
5091 					 "use SW buffer management\n");
5092 				mvneta_bm_put(pp->bm_priv);
5093 				pp->bm_priv = NULL;
5094 			}
5095 		}
5096 		/* Set RX packet offset correction for platforms, whose
5097 		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5098 		 * platforms and 0B for 32-bit ones.
5099 		 */
5100 		pp->rx_offset_correction = max(0,
5101 					       NET_SKB_PAD -
5102 					       MVNETA_RX_PKT_OFFSET_CORRECTION);
5103 	}
5104 	of_node_put(bm_node);
5105 
5106 	/* sw buffer management */
5107 	if (!pp->bm_priv)
5108 		pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5109 
5110 	err = mvneta_init(&pdev->dev, pp);
5111 	if (err < 0)
5112 		goto err_netdev;
5113 
5114 	err = mvneta_port_power_up(pp, phy_mode);
5115 	if (err < 0) {
5116 		dev_err(&pdev->dev, "can't power up port\n");
5117 		goto err_netdev;
5118 	}
5119 
5120 	/* Armada3700 network controller does not support per-cpu
5121 	 * operation, so only single NAPI should be initialized.
5122 	 */
5123 	if (pp->neta_armada3700) {
5124 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
5125 	} else {
5126 		for_each_present_cpu(cpu) {
5127 			struct mvneta_pcpu_port *port =
5128 				per_cpu_ptr(pp->ports, cpu);
5129 
5130 			netif_napi_add(dev, &port->napi, mvneta_poll,
5131 				       NAPI_POLL_WEIGHT);
5132 			port->pp = pp;
5133 		}
5134 	}
5135 
5136 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5137 			NETIF_F_TSO | NETIF_F_RXCSUM;
5138 	dev->hw_features |= dev->features;
5139 	dev->vlan_features |= dev->features;
5140 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5141 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
5142 
5143 	/* MTU range: 68 - 9676 */
5144 	dev->min_mtu = ETH_MIN_MTU;
5145 	/* 9676 == 9700 - 20 and rounding to 8 */
5146 	dev->max_mtu = 9676;
5147 
5148 	err = register_netdev(dev);
5149 	if (err < 0) {
5150 		dev_err(&pdev->dev, "failed to register\n");
5151 		goto err_netdev;
5152 	}
5153 
5154 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5155 		    dev->dev_addr);
5156 
5157 	platform_set_drvdata(pdev, pp->dev);
5158 
5159 	return 0;
5160 
5161 err_netdev:
5162 	if (pp->bm_priv) {
5163 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5164 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5165 				       1 << pp->id);
5166 		mvneta_bm_put(pp->bm_priv);
5167 	}
5168 	free_percpu(pp->stats);
5169 err_free_ports:
5170 	free_percpu(pp->ports);
5171 err_clk:
5172 	clk_disable_unprepare(pp->clk_bus);
5173 	clk_disable_unprepare(pp->clk);
5174 err_free_phylink:
5175 	if (pp->phylink)
5176 		phylink_destroy(pp->phylink);
5177 err_free_irq:
5178 	irq_dispose_mapping(dev->irq);
5179 	return err;
5180 }
5181 
5182 /* Device removal routine */
5183 static int mvneta_remove(struct platform_device *pdev)
5184 {
5185 	struct net_device  *dev = platform_get_drvdata(pdev);
5186 	struct mvneta_port *pp = netdev_priv(dev);
5187 
5188 	unregister_netdev(dev);
5189 	clk_disable_unprepare(pp->clk_bus);
5190 	clk_disable_unprepare(pp->clk);
5191 	free_percpu(pp->ports);
5192 	free_percpu(pp->stats);
5193 	irq_dispose_mapping(dev->irq);
5194 	phylink_destroy(pp->phylink);
5195 
5196 	if (pp->bm_priv) {
5197 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5198 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5199 				       1 << pp->id);
5200 		mvneta_bm_put(pp->bm_priv);
5201 	}
5202 
5203 	return 0;
5204 }
5205 
5206 #ifdef CONFIG_PM_SLEEP
5207 static int mvneta_suspend(struct device *device)
5208 {
5209 	int queue;
5210 	struct net_device *dev = dev_get_drvdata(device);
5211 	struct mvneta_port *pp = netdev_priv(dev);
5212 
5213 	if (!netif_running(dev))
5214 		goto clean_exit;
5215 
5216 	if (!pp->neta_armada3700) {
5217 		spin_lock(&pp->lock);
5218 		pp->is_stopped = true;
5219 		spin_unlock(&pp->lock);
5220 
5221 		cpuhp_state_remove_instance_nocalls(online_hpstate,
5222 						    &pp->node_online);
5223 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5224 						    &pp->node_dead);
5225 	}
5226 
5227 	rtnl_lock();
5228 	mvneta_stop_dev(pp);
5229 	rtnl_unlock();
5230 
5231 	for (queue = 0; queue < rxq_number; queue++) {
5232 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5233 
5234 		mvneta_rxq_drop_pkts(pp, rxq);
5235 	}
5236 
5237 	for (queue = 0; queue < txq_number; queue++) {
5238 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5239 
5240 		mvneta_txq_hw_deinit(pp, txq);
5241 	}
5242 
5243 clean_exit:
5244 	netif_device_detach(dev);
5245 	clk_disable_unprepare(pp->clk_bus);
5246 	clk_disable_unprepare(pp->clk);
5247 
5248 	return 0;
5249 }
5250 
5251 static int mvneta_resume(struct device *device)
5252 {
5253 	struct platform_device *pdev = to_platform_device(device);
5254 	struct net_device *dev = dev_get_drvdata(device);
5255 	struct mvneta_port *pp = netdev_priv(dev);
5256 	int err, queue;
5257 
5258 	clk_prepare_enable(pp->clk);
5259 	if (!IS_ERR(pp->clk_bus))
5260 		clk_prepare_enable(pp->clk_bus);
5261 	if (pp->dram_target_info || pp->neta_armada3700)
5262 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5263 	if (pp->bm_priv) {
5264 		err = mvneta_bm_port_init(pdev, pp);
5265 		if (err < 0) {
5266 			dev_info(&pdev->dev, "use SW buffer management\n");
5267 			pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5268 			pp->bm_priv = NULL;
5269 		}
5270 	}
5271 	mvneta_defaults_set(pp);
5272 	err = mvneta_port_power_up(pp, pp->phy_interface);
5273 	if (err < 0) {
5274 		dev_err(device, "can't power up port\n");
5275 		return err;
5276 	}
5277 
5278 	netif_device_attach(dev);
5279 
5280 	if (!netif_running(dev))
5281 		return 0;
5282 
5283 	for (queue = 0; queue < rxq_number; queue++) {
5284 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5285 
5286 		rxq->next_desc_to_proc = 0;
5287 		mvneta_rxq_hw_init(pp, rxq);
5288 	}
5289 
5290 	for (queue = 0; queue < txq_number; queue++) {
5291 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
5292 
5293 		txq->next_desc_to_proc = 0;
5294 		mvneta_txq_hw_init(pp, txq);
5295 	}
5296 
5297 	if (!pp->neta_armada3700) {
5298 		spin_lock(&pp->lock);
5299 		pp->is_stopped = false;
5300 		spin_unlock(&pp->lock);
5301 		cpuhp_state_add_instance_nocalls(online_hpstate,
5302 						 &pp->node_online);
5303 		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5304 						 &pp->node_dead);
5305 	}
5306 
5307 	rtnl_lock();
5308 	mvneta_start_dev(pp);
5309 	rtnl_unlock();
5310 	mvneta_set_rx_mode(dev);
5311 
5312 	return 0;
5313 }
5314 #endif
5315 
5316 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5317 
5318 static const struct of_device_id mvneta_match[] = {
5319 	{ .compatible = "marvell,armada-370-neta" },
5320 	{ .compatible = "marvell,armada-xp-neta" },
5321 	{ .compatible = "marvell,armada-3700-neta" },
5322 	{ }
5323 };
5324 MODULE_DEVICE_TABLE(of, mvneta_match);
5325 
5326 static struct platform_driver mvneta_driver = {
5327 	.probe = mvneta_probe,
5328 	.remove = mvneta_remove,
5329 	.driver = {
5330 		.name = MVNETA_DRIVER_NAME,
5331 		.of_match_table = mvneta_match,
5332 		.pm = &mvneta_pm_ops,
5333 	},
5334 };
5335 
5336 static int __init mvneta_driver_init(void)
5337 {
5338 	int ret;
5339 
5340 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
5341 				      mvneta_cpu_online,
5342 				      mvneta_cpu_down_prepare);
5343 	if (ret < 0)
5344 		goto out;
5345 	online_hpstate = ret;
5346 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5347 				      NULL, mvneta_cpu_dead);
5348 	if (ret)
5349 		goto err_dead;
5350 
5351 	ret = platform_driver_register(&mvneta_driver);
5352 	if (ret)
5353 		goto err;
5354 	return 0;
5355 
5356 err:
5357 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5358 err_dead:
5359 	cpuhp_remove_multi_state(online_hpstate);
5360 out:
5361 	return ret;
5362 }
5363 module_init(mvneta_driver_init);
5364 
5365 static void __exit mvneta_driver_exit(void)
5366 {
5367 	platform_driver_unregister(&mvneta_driver);
5368 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5369 	cpuhp_remove_multi_state(online_hpstate);
5370 }
5371 module_exit(mvneta_driver_exit);
5372 
5373 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5374 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5375 MODULE_LICENSE("GPL");
5376 
5377 module_param(rxq_number, int, 0444);
5378 module_param(txq_number, int, 0444);
5379 
5380 module_param(rxq_def, int, 0444);
5381 module_param(rx_copybreak, int, 0644);
5382