xref: /linux/drivers/net/ethernet/marvell/mvneta.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/platform_device.h>
32 #include <linux/skbuff.h>
33 #include <net/hwbm.h>
34 #include "mvneta_bm.h"
35 #include <net/ip.h>
36 #include <net/ipv6.h>
37 #include <net/tso.h>
38 
39 /* Registers */
40 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
41 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
42 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
43 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
44 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
45 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
46 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
47 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
48 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
49 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
50 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
51 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
52 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
53 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
54 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
55 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
56 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
57 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
58 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
59 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
60 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
61 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
62 #define MVNETA_PORT_RX_RESET                    0x1cc0
63 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
64 #define MVNETA_PHY_ADDR                         0x2000
65 #define      MVNETA_PHY_ADDR_MASK               0x1f
66 #define MVNETA_MBUS_RETRY                       0x2010
67 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
68 #define MVNETA_UNIT_CONTROL                     0x20B0
69 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
70 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
71 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
72 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
73 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
74 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
75 #define MVNETA_PORT_CONFIG                      0x2400
76 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
77 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
78 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
79 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
80 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
81 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
82 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
83 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
84 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
85 						 MVNETA_DEF_RXQ_ARP(q)	 | \
86 						 MVNETA_DEF_RXQ_TCP(q)	 | \
87 						 MVNETA_DEF_RXQ_UDP(q)	 | \
88 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
89 						 MVNETA_TX_UNSET_ERR_SUM | \
90 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
91 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
92 #define MVNETA_MAC_ADDR_LOW                      0x2414
93 #define MVNETA_MAC_ADDR_HIGH                     0x2418
94 #define MVNETA_SDMA_CONFIG                       0x241c
95 #define      MVNETA_SDMA_BRST_SIZE_16            4
96 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
97 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
98 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
99 #define      MVNETA_DESC_SWAP                    BIT(6)
100 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
101 #define MVNETA_PORT_STATUS                       0x2444
102 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
103 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
104 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
105 #define MVNETA_SERDES_CFG			 0x24A0
106 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
107 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
108 #define MVNETA_TYPE_PRIO                         0x24bc
109 #define      MVNETA_FORCE_UNI                    BIT(21)
110 #define MVNETA_TXQ_CMD_1                         0x24e4
111 #define MVNETA_TXQ_CMD                           0x2448
112 #define      MVNETA_TXQ_DISABLE_SHIFT            8
113 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
114 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
115 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
116 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
117 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
118 #define MVNETA_ACC_MODE                          0x2500
119 #define MVNETA_BM_ADDRESS                        0x2504
120 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
121 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
122 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
123 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
124 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
125 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
126 
127 /* Exception Interrupt Port/Queue Cause register
128  *
129  * Their behavior depend of the mapping done using the PCPX2Q
130  * registers. For a given CPU if the bit associated to a queue is not
131  * set, then for the register a read from this CPU will always return
132  * 0 and a write won't do anything
133  */
134 
135 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
136 #define MVNETA_INTR_NEW_MASK                     0x25a4
137 
138 /* bits  0..7  = TXQ SENT, one bit per queue.
139  * bits  8..15 = RXQ OCCUP, one bit per queue.
140  * bits 16..23 = RXQ FREE, one bit per queue.
141  * bit  29 = OLD_REG_SUM, see old reg ?
142  * bit  30 = TX_ERR_SUM, one bit for 4 ports
143  * bit  31 = MISC_SUM,   one bit for 4 ports
144  */
145 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
146 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
147 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
148 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
149 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
150 
151 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
152 #define MVNETA_INTR_OLD_MASK                     0x25ac
153 
154 /* Data Path Port/Queue Cause Register */
155 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
156 #define MVNETA_INTR_MISC_MASK                    0x25b4
157 
158 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
159 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
160 #define      MVNETA_CAUSE_PTP                    BIT(4)
161 
162 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
163 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
164 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
165 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
166 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
167 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
168 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
169 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
170 
171 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
172 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
173 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
174 
175 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
176 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
177 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
178 
179 #define MVNETA_INTR_ENABLE                       0x25b8
180 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
181 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
182 
183 #define MVNETA_RXQ_CMD                           0x2680
184 #define      MVNETA_RXQ_DISABLE_SHIFT            8
185 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
186 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
187 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
188 #define MVNETA_GMAC_CTRL_0                       0x2c00
189 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
190 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
191 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
192 #define MVNETA_GMAC_CTRL_2                       0x2c08
193 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
194 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
195 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
196 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
197 #define MVNETA_GMAC_STATUS                       0x2c10
198 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
199 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
200 #define      MVNETA_GMAC_SPEED_100               BIT(2)
201 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
202 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
203 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
204 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
205 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
206 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
207 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
208 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
209 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
210 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
211 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
212 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
213 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
214 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
215 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
216 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
217 #define      MVNETA_MIB_LATE_COLLISION           0x7c
218 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
219 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
220 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
221 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
222 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
223 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
224 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
225 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
226 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
227 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
228 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
229 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
230 #define MVNETA_PORT_TX_RESET                     0x3cf0
231 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
232 #define MVNETA_TX_MTU                            0x3e0c
233 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
234 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
235 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
236 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
237 
238 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
239 
240 /* Descriptor ring Macros */
241 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
242 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
243 
244 /* Various constants */
245 
246 /* Coalescing */
247 #define MVNETA_TXDONE_COAL_PKTS		1
248 #define MVNETA_RX_COAL_PKTS		32
249 #define MVNETA_RX_COAL_USEC		100
250 
251 /* The two bytes Marvell header. Either contains a special value used
252  * by Marvell switches when a specific hardware mode is enabled (not
253  * supported by this driver) or is filled automatically by zeroes on
254  * the RX side. Those two bytes being at the front of the Ethernet
255  * header, they allow to have the IP header aligned on a 4 bytes
256  * boundary automatically: the hardware skips those two bytes on its
257  * own.
258  */
259 #define MVNETA_MH_SIZE			2
260 
261 #define MVNETA_VLAN_TAG_LEN             4
262 
263 #define MVNETA_TX_CSUM_DEF_SIZE		1600
264 #define MVNETA_TX_CSUM_MAX_SIZE		9800
265 #define MVNETA_ACC_MODE_EXT1		1
266 #define MVNETA_ACC_MODE_EXT2		2
267 
268 #define MVNETA_MAX_DECODE_WIN		6
269 
270 /* Timeout constants */
271 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
272 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
273 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
274 
275 #define MVNETA_TX_MTU_MAX		0x3ffff
276 
277 /* The RSS lookup table actually has 256 entries but we do not use
278  * them yet
279  */
280 #define MVNETA_RSS_LU_TABLE_SIZE	1
281 
282 /* TSO header size */
283 #define TSO_HEADER_SIZE 128
284 
285 /* Max number of Rx descriptors */
286 #define MVNETA_MAX_RXD 128
287 
288 /* Max number of Tx descriptors */
289 #define MVNETA_MAX_TXD 532
290 
291 /* Max number of allowed TCP segments for software TSO */
292 #define MVNETA_MAX_TSO_SEGS 100
293 
294 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
295 
296 /* descriptor aligned size */
297 #define MVNETA_DESC_ALIGNED_SIZE	32
298 
299 #define MVNETA_RX_PKT_SIZE(mtu) \
300 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
301 	      ETH_HLEN + ETH_FCS_LEN,			     \
302 	      cache_line_size())
303 
304 #define IS_TSO_HEADER(txq, addr) \
305 	((addr >= txq->tso_hdrs_phys) && \
306 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
307 
308 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
309 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
310 
311 struct mvneta_statistic {
312 	unsigned short offset;
313 	unsigned short type;
314 	const char name[ETH_GSTRING_LEN];
315 };
316 
317 #define T_REG_32	32
318 #define T_REG_64	64
319 
320 static const struct mvneta_statistic mvneta_statistics[] = {
321 	{ 0x3000, T_REG_64, "good_octets_received", },
322 	{ 0x3010, T_REG_32, "good_frames_received", },
323 	{ 0x3008, T_REG_32, "bad_octets_received", },
324 	{ 0x3014, T_REG_32, "bad_frames_received", },
325 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
326 	{ 0x301c, T_REG_32, "multicast_frames_received", },
327 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
328 	{ 0x3058, T_REG_32, "good_fc_received", },
329 	{ 0x305c, T_REG_32, "bad_fc_received", },
330 	{ 0x3060, T_REG_32, "undersize_received", },
331 	{ 0x3064, T_REG_32, "fragments_received", },
332 	{ 0x3068, T_REG_32, "oversize_received", },
333 	{ 0x306c, T_REG_32, "jabber_received", },
334 	{ 0x3070, T_REG_32, "mac_receive_error", },
335 	{ 0x3074, T_REG_32, "bad_crc_event", },
336 	{ 0x3078, T_REG_32, "collision", },
337 	{ 0x307c, T_REG_32, "late_collision", },
338 	{ 0x2484, T_REG_32, "rx_discard", },
339 	{ 0x2488, T_REG_32, "rx_overrun", },
340 	{ 0x3020, T_REG_32, "frames_64_octets", },
341 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
342 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
343 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
344 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
345 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
346 	{ 0x3038, T_REG_64, "good_octets_sent", },
347 	{ 0x3040, T_REG_32, "good_frames_sent", },
348 	{ 0x3044, T_REG_32, "excessive_collision", },
349 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
350 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
351 	{ 0x3054, T_REG_32, "fc_sent", },
352 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
353 };
354 
355 struct mvneta_pcpu_stats {
356 	struct	u64_stats_sync syncp;
357 	u64	rx_packets;
358 	u64	rx_bytes;
359 	u64	tx_packets;
360 	u64	tx_bytes;
361 };
362 
363 struct mvneta_pcpu_port {
364 	/* Pointer to the shared port */
365 	struct mvneta_port	*pp;
366 
367 	/* Pointer to the CPU-local NAPI struct */
368 	struct napi_struct	napi;
369 
370 	/* Cause of the previous interrupt */
371 	u32			cause_rx_tx;
372 };
373 
374 struct mvneta_port {
375 	u8 id;
376 	struct mvneta_pcpu_port __percpu	*ports;
377 	struct mvneta_pcpu_stats __percpu	*stats;
378 
379 	int pkt_size;
380 	unsigned int frag_size;
381 	void __iomem *base;
382 	struct mvneta_rx_queue *rxqs;
383 	struct mvneta_tx_queue *txqs;
384 	struct net_device *dev;
385 	struct notifier_block cpu_notifier;
386 	int rxq_def;
387 	/* Protect the access to the percpu interrupt registers,
388 	 * ensuring that the configuration remains coherent.
389 	 */
390 	spinlock_t lock;
391 	bool is_stopped;
392 
393 	/* Core clock */
394 	struct clk *clk;
395 	/* AXI clock */
396 	struct clk *clk_bus;
397 	u8 mcast_count[256];
398 	u16 tx_ring_size;
399 	u16 rx_ring_size;
400 
401 	struct mii_bus *mii_bus;
402 	struct phy_device *phy_dev;
403 	phy_interface_t phy_interface;
404 	struct device_node *phy_node;
405 	unsigned int link;
406 	unsigned int duplex;
407 	unsigned int speed;
408 	unsigned int tx_csum_limit;
409 	unsigned int use_inband_status:1;
410 
411 	struct mvneta_bm *bm_priv;
412 	struct mvneta_bm_pool *pool_long;
413 	struct mvneta_bm_pool *pool_short;
414 	int bm_win_id;
415 
416 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
417 
418 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
419 };
420 
421 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
422  * layout of the transmit and reception DMA descriptors, and their
423  * layout is therefore defined by the hardware design
424  */
425 
426 #define MVNETA_TX_L3_OFF_SHIFT	0
427 #define MVNETA_TX_IP_HLEN_SHIFT	8
428 #define MVNETA_TX_L4_UDP	BIT(16)
429 #define MVNETA_TX_L3_IP6	BIT(17)
430 #define MVNETA_TXD_IP_CSUM	BIT(18)
431 #define MVNETA_TXD_Z_PAD	BIT(19)
432 #define MVNETA_TXD_L_DESC	BIT(20)
433 #define MVNETA_TXD_F_DESC	BIT(21)
434 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
435 				 MVNETA_TXD_L_DESC | \
436 				 MVNETA_TXD_F_DESC)
437 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
438 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
439 
440 #define MVNETA_RXD_ERR_CRC		0x0
441 #define MVNETA_RXD_BM_POOL_SHIFT	13
442 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
443 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
444 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
445 #define MVNETA_RXD_ERR_LEN		BIT(18)
446 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
447 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
448 #define MVNETA_RXD_L3_IP4		BIT(25)
449 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
450 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
451 
452 #if defined(__LITTLE_ENDIAN)
453 struct mvneta_tx_desc {
454 	u32  command;		/* Options used by HW for packet transmitting.*/
455 	u16  reserverd1;	/* csum_l4 (for future use)		*/
456 	u16  data_size;		/* Data size of transmitted packet in bytes */
457 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
458 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
459 	u32  reserved3[4];	/* Reserved - (for future use)		*/
460 };
461 
462 struct mvneta_rx_desc {
463 	u32  status;		/* Info about received packet		*/
464 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
465 	u16  data_size;		/* Size of received packet in bytes	*/
466 
467 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
468 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
469 
470 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
471 	u16  reserved3;		/* prefetch_cmd, for future use		*/
472 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
473 
474 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
475 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
476 };
477 #else
478 struct mvneta_tx_desc {
479 	u16  data_size;		/* Data size of transmitted packet in bytes */
480 	u16  reserverd1;	/* csum_l4 (for future use)		*/
481 	u32  command;		/* Options used by HW for packet transmitting.*/
482 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
483 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
484 	u32  reserved3[4];	/* Reserved - (for future use)		*/
485 };
486 
487 struct mvneta_rx_desc {
488 	u16  data_size;		/* Size of received packet in bytes	*/
489 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
490 	u32  status;		/* Info about received packet		*/
491 
492 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
493 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
494 
495 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
496 	u16  reserved3;		/* prefetch_cmd, for future use		*/
497 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
498 
499 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
500 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
501 };
502 #endif
503 
504 struct mvneta_tx_queue {
505 	/* Number of this TX queue, in the range 0-7 */
506 	u8 id;
507 
508 	/* Number of TX DMA descriptors in the descriptor ring */
509 	int size;
510 
511 	/* Number of currently used TX DMA descriptor in the
512 	 * descriptor ring
513 	 */
514 	int count;
515 	int tx_stop_threshold;
516 	int tx_wake_threshold;
517 
518 	/* Array of transmitted skb */
519 	struct sk_buff **tx_skb;
520 
521 	/* Index of last TX DMA descriptor that was inserted */
522 	int txq_put_index;
523 
524 	/* Index of the TX DMA descriptor to be cleaned up */
525 	int txq_get_index;
526 
527 	u32 done_pkts_coal;
528 
529 	/* Virtual address of the TX DMA descriptors array */
530 	struct mvneta_tx_desc *descs;
531 
532 	/* DMA address of the TX DMA descriptors array */
533 	dma_addr_t descs_phys;
534 
535 	/* Index of the last TX DMA descriptor */
536 	int last_desc;
537 
538 	/* Index of the next TX DMA descriptor to process */
539 	int next_desc_to_proc;
540 
541 	/* DMA buffers for TSO headers */
542 	char *tso_hdrs;
543 
544 	/* DMA address of TSO headers */
545 	dma_addr_t tso_hdrs_phys;
546 
547 	/* Affinity mask for CPUs*/
548 	cpumask_t affinity_mask;
549 };
550 
551 struct mvneta_rx_queue {
552 	/* rx queue number, in the range 0-7 */
553 	u8 id;
554 
555 	/* num of rx descriptors in the rx descriptor ring */
556 	int size;
557 
558 	/* counter of times when mvneta_refill() failed */
559 	int missed;
560 
561 	u32 pkts_coal;
562 	u32 time_coal;
563 
564 	/* Virtual address of the RX DMA descriptors array */
565 	struct mvneta_rx_desc *descs;
566 
567 	/* DMA address of the RX DMA descriptors array */
568 	dma_addr_t descs_phys;
569 
570 	/* Index of the last RX DMA descriptor */
571 	int last_desc;
572 
573 	/* Index of the next RX DMA descriptor to process */
574 	int next_desc_to_proc;
575 };
576 
577 /* The hardware supports eight (8) rx queues, but we are only allowing
578  * the first one to be used. Therefore, let's just allocate one queue.
579  */
580 static int rxq_number = 8;
581 static int txq_number = 8;
582 
583 static int rxq_def;
584 
585 static int rx_copybreak __read_mostly = 256;
586 
587 /* HW BM need that each port be identify by a unique ID */
588 static int global_port_id;
589 
590 #define MVNETA_DRIVER_NAME "mvneta"
591 #define MVNETA_DRIVER_VERSION "1.0"
592 
593 /* Utility/helper methods */
594 
595 /* Write helper method */
596 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
597 {
598 	writel(data, pp->base + offset);
599 }
600 
601 /* Read helper method */
602 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
603 {
604 	return readl(pp->base + offset);
605 }
606 
607 /* Increment txq get counter */
608 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
609 {
610 	txq->txq_get_index++;
611 	if (txq->txq_get_index == txq->size)
612 		txq->txq_get_index = 0;
613 }
614 
615 /* Increment txq put counter */
616 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
617 {
618 	txq->txq_put_index++;
619 	if (txq->txq_put_index == txq->size)
620 		txq->txq_put_index = 0;
621 }
622 
623 
624 /* Clear all MIB counters */
625 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
626 {
627 	int i;
628 	u32 dummy;
629 
630 	/* Perform dummy reads from MIB counters */
631 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
632 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
633 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
634 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
635 }
636 
637 /* Get System Network Statistics */
638 struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
639 					     struct rtnl_link_stats64 *stats)
640 {
641 	struct mvneta_port *pp = netdev_priv(dev);
642 	unsigned int start;
643 	int cpu;
644 
645 	for_each_possible_cpu(cpu) {
646 		struct mvneta_pcpu_stats *cpu_stats;
647 		u64 rx_packets;
648 		u64 rx_bytes;
649 		u64 tx_packets;
650 		u64 tx_bytes;
651 
652 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
653 		do {
654 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
655 			rx_packets = cpu_stats->rx_packets;
656 			rx_bytes   = cpu_stats->rx_bytes;
657 			tx_packets = cpu_stats->tx_packets;
658 			tx_bytes   = cpu_stats->tx_bytes;
659 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
660 
661 		stats->rx_packets += rx_packets;
662 		stats->rx_bytes   += rx_bytes;
663 		stats->tx_packets += tx_packets;
664 		stats->tx_bytes   += tx_bytes;
665 	}
666 
667 	stats->rx_errors	= dev->stats.rx_errors;
668 	stats->rx_dropped	= dev->stats.rx_dropped;
669 
670 	stats->tx_dropped	= dev->stats.tx_dropped;
671 
672 	return stats;
673 }
674 
675 /* Rx descriptors helper methods */
676 
677 /* Checks whether the RX descriptor having this status is both the first
678  * and the last descriptor for the RX packet. Each RX packet is currently
679  * received through a single RX descriptor, so not having each RX
680  * descriptor with its first and last bits set is an error
681  */
682 static int mvneta_rxq_desc_is_first_last(u32 status)
683 {
684 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
685 		MVNETA_RXD_FIRST_LAST_DESC;
686 }
687 
688 /* Add number of descriptors ready to receive new packets */
689 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
690 					  struct mvneta_rx_queue *rxq,
691 					  int ndescs)
692 {
693 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
694 	 * be added at once
695 	 */
696 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
697 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
698 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
699 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
700 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
701 	}
702 
703 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
704 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
705 }
706 
707 /* Get number of RX descriptors occupied by received packets */
708 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
709 					struct mvneta_rx_queue *rxq)
710 {
711 	u32 val;
712 
713 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
714 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
715 }
716 
717 /* Update num of rx desc called upon return from rx path or
718  * from mvneta_rxq_drop_pkts().
719  */
720 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
721 				       struct mvneta_rx_queue *rxq,
722 				       int rx_done, int rx_filled)
723 {
724 	u32 val;
725 
726 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
727 		val = rx_done |
728 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
729 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
730 		return;
731 	}
732 
733 	/* Only 255 descriptors can be added at once */
734 	while ((rx_done > 0) || (rx_filled > 0)) {
735 		if (rx_done <= 0xff) {
736 			val = rx_done;
737 			rx_done = 0;
738 		} else {
739 			val = 0xff;
740 			rx_done -= 0xff;
741 		}
742 		if (rx_filled <= 0xff) {
743 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
744 			rx_filled = 0;
745 		} else {
746 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
747 			rx_filled -= 0xff;
748 		}
749 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
750 	}
751 }
752 
753 /* Get pointer to next RX descriptor to be processed by SW */
754 static struct mvneta_rx_desc *
755 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
756 {
757 	int rx_desc = rxq->next_desc_to_proc;
758 
759 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
760 	prefetch(rxq->descs + rxq->next_desc_to_proc);
761 	return rxq->descs + rx_desc;
762 }
763 
764 /* Change maximum receive size of the port. */
765 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
766 {
767 	u32 val;
768 
769 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
770 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
771 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
772 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
773 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
774 }
775 
776 
777 /* Set rx queue offset */
778 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
779 				  struct mvneta_rx_queue *rxq,
780 				  int offset)
781 {
782 	u32 val;
783 
784 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
785 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
786 
787 	/* Offset is in */
788 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
789 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
790 }
791 
792 
793 /* Tx descriptors helper methods */
794 
795 /* Update HW with number of TX descriptors to be sent */
796 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
797 				     struct mvneta_tx_queue *txq,
798 				     int pend_desc)
799 {
800 	u32 val;
801 
802 	/* Only 255 descriptors can be added at once ; Assume caller
803 	 * process TX desriptors in quanta less than 256
804 	 */
805 	val = pend_desc;
806 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
807 }
808 
809 /* Get pointer to next TX descriptor to be processed (send) by HW */
810 static struct mvneta_tx_desc *
811 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
812 {
813 	int tx_desc = txq->next_desc_to_proc;
814 
815 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
816 	return txq->descs + tx_desc;
817 }
818 
819 /* Release the last allocated TX descriptor. Useful to handle DMA
820  * mapping failures in the TX path.
821  */
822 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
823 {
824 	if (txq->next_desc_to_proc == 0)
825 		txq->next_desc_to_proc = txq->last_desc - 1;
826 	else
827 		txq->next_desc_to_proc--;
828 }
829 
830 /* Set rxq buf size */
831 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
832 				    struct mvneta_rx_queue *rxq,
833 				    int buf_size)
834 {
835 	u32 val;
836 
837 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
838 
839 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
840 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
841 
842 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
843 }
844 
845 /* Disable buffer management (BM) */
846 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
847 				  struct mvneta_rx_queue *rxq)
848 {
849 	u32 val;
850 
851 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
852 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
853 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
854 }
855 
856 /* Enable buffer management (BM) */
857 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
858 				 struct mvneta_rx_queue *rxq)
859 {
860 	u32 val;
861 
862 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
863 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
864 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
865 }
866 
867 /* Notify HW about port's assignment of pool for bigger packets */
868 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
869 				     struct mvneta_rx_queue *rxq)
870 {
871 	u32 val;
872 
873 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
874 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
875 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
876 
877 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
878 }
879 
880 /* Notify HW about port's assignment of pool for smaller packets */
881 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
882 				      struct mvneta_rx_queue *rxq)
883 {
884 	u32 val;
885 
886 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
887 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
888 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
889 
890 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
891 }
892 
893 /* Set port's receive buffer size for assigned BM pool */
894 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
895 					      int buf_size,
896 					      u8 pool_id)
897 {
898 	u32 val;
899 
900 	if (!IS_ALIGNED(buf_size, 8)) {
901 		dev_warn(pp->dev->dev.parent,
902 			 "illegal buf_size value %d, round to %d\n",
903 			 buf_size, ALIGN(buf_size, 8));
904 		buf_size = ALIGN(buf_size, 8);
905 	}
906 
907 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
908 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
909 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
910 }
911 
912 /* Configure MBUS window in order to enable access BM internal SRAM */
913 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
914 				  u8 target, u8 attr)
915 {
916 	u32 win_enable, win_protect;
917 	int i;
918 
919 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
920 
921 	if (pp->bm_win_id < 0) {
922 		/* Find first not occupied window */
923 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
924 			if (win_enable & (1 << i)) {
925 				pp->bm_win_id = i;
926 				break;
927 			}
928 		}
929 		if (i == MVNETA_MAX_DECODE_WIN)
930 			return -ENOMEM;
931 	} else {
932 		i = pp->bm_win_id;
933 	}
934 
935 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
936 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
937 
938 	if (i < 4)
939 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
940 
941 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
942 		    (attr << 8) | target);
943 
944 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
945 
946 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
947 	win_protect |= 3 << (2 * i);
948 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
949 
950 	win_enable &= ~(1 << i);
951 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
952 
953 	return 0;
954 }
955 
956 /* Assign and initialize pools for port. In case of fail
957  * buffer manager will remain disabled for current port.
958  */
959 static int mvneta_bm_port_init(struct platform_device *pdev,
960 			       struct mvneta_port *pp)
961 {
962 	struct device_node *dn = pdev->dev.of_node;
963 	u32 long_pool_id, short_pool_id, wsize;
964 	u8 target, attr;
965 	int err;
966 
967 	/* Get BM window information */
968 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
969 					 &target, &attr);
970 	if (err < 0)
971 		return err;
972 
973 	pp->bm_win_id = -1;
974 
975 	/* Open NETA -> BM window */
976 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
977 				     target, attr);
978 	if (err < 0) {
979 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
980 		return err;
981 	}
982 
983 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
984 		netdev_info(pp->dev, "missing long pool id\n");
985 		return -EINVAL;
986 	}
987 
988 	/* Create port's long pool depending on mtu */
989 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
990 					   MVNETA_BM_LONG, pp->id,
991 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
992 	if (!pp->pool_long) {
993 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
994 		return -ENOMEM;
995 	}
996 
997 	pp->pool_long->port_map |= 1 << pp->id;
998 
999 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1000 				   pp->pool_long->id);
1001 
1002 	/* If short pool id is not defined, assume using single pool */
1003 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1004 		short_pool_id = long_pool_id;
1005 
1006 	/* Create port's short pool */
1007 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1008 					    MVNETA_BM_SHORT, pp->id,
1009 					    MVNETA_BM_SHORT_PKT_SIZE);
1010 	if (!pp->pool_short) {
1011 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1012 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1013 		return -ENOMEM;
1014 	}
1015 
1016 	if (short_pool_id != long_pool_id) {
1017 		pp->pool_short->port_map |= 1 << pp->id;
1018 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1019 					   pp->pool_short->id);
1020 	}
1021 
1022 	return 0;
1023 }
1024 
1025 /* Update settings of a pool for bigger packets */
1026 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1027 {
1028 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1029 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1030 	int num;
1031 
1032 	/* Release all buffers from long pool */
1033 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1034 	if (hwbm_pool->buf_num) {
1035 		WARN(1, "cannot free all buffers in pool %d\n",
1036 		     bm_pool->id);
1037 		goto bm_mtu_err;
1038 	}
1039 
1040 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1041 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1042 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1043 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1044 
1045 	/* Fill entire long pool */
1046 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1047 	if (num != hwbm_pool->size) {
1048 		WARN(1, "pool %d: %d of %d allocated\n",
1049 		     bm_pool->id, num, hwbm_pool->size);
1050 		goto bm_mtu_err;
1051 	}
1052 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1053 
1054 	return;
1055 
1056 bm_mtu_err:
1057 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1058 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1059 
1060 	pp->bm_priv = NULL;
1061 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1062 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1063 }
1064 
1065 /* Start the Ethernet port RX and TX activity */
1066 static void mvneta_port_up(struct mvneta_port *pp)
1067 {
1068 	int queue;
1069 	u32 q_map;
1070 
1071 	/* Enable all initialized TXs. */
1072 	q_map = 0;
1073 	for (queue = 0; queue < txq_number; queue++) {
1074 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1075 		if (txq->descs != NULL)
1076 			q_map |= (1 << queue);
1077 	}
1078 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1079 
1080 	/* Enable all initialized RXQs. */
1081 	for (queue = 0; queue < rxq_number; queue++) {
1082 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1083 
1084 		if (rxq->descs != NULL)
1085 			q_map |= (1 << queue);
1086 	}
1087 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1088 }
1089 
1090 /* Stop the Ethernet port activity */
1091 static void mvneta_port_down(struct mvneta_port *pp)
1092 {
1093 	u32 val;
1094 	int count;
1095 
1096 	/* Stop Rx port activity. Check port Rx activity. */
1097 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1098 
1099 	/* Issue stop command for active channels only */
1100 	if (val != 0)
1101 		mvreg_write(pp, MVNETA_RXQ_CMD,
1102 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1103 
1104 	/* Wait for all Rx activity to terminate. */
1105 	count = 0;
1106 	do {
1107 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1108 			netdev_warn(pp->dev,
1109 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1110 				    val);
1111 			break;
1112 		}
1113 		mdelay(1);
1114 
1115 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1116 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1117 
1118 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1119 	 * command for active channels only
1120 	 */
1121 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1122 
1123 	if (val != 0)
1124 		mvreg_write(pp, MVNETA_TXQ_CMD,
1125 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1126 
1127 	/* Wait for all Tx activity to terminate. */
1128 	count = 0;
1129 	do {
1130 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1131 			netdev_warn(pp->dev,
1132 				    "TIMEOUT for TX stopped status=0x%08x\n",
1133 				    val);
1134 			break;
1135 		}
1136 		mdelay(1);
1137 
1138 		/* Check TX Command reg that all Txqs are stopped */
1139 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1140 
1141 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1142 
1143 	/* Double check to verify that TX FIFO is empty */
1144 	count = 0;
1145 	do {
1146 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1147 			netdev_warn(pp->dev,
1148 				    "TX FIFO empty timeout status=0x%08x\n",
1149 				    val);
1150 			break;
1151 		}
1152 		mdelay(1);
1153 
1154 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1155 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1156 		 (val & MVNETA_TX_IN_PRGRS));
1157 
1158 	udelay(200);
1159 }
1160 
1161 /* Enable the port by setting the port enable bit of the MAC control register */
1162 static void mvneta_port_enable(struct mvneta_port *pp)
1163 {
1164 	u32 val;
1165 
1166 	/* Enable port */
1167 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1168 	val |= MVNETA_GMAC0_PORT_ENABLE;
1169 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1170 }
1171 
1172 /* Disable the port and wait for about 200 usec before retuning */
1173 static void mvneta_port_disable(struct mvneta_port *pp)
1174 {
1175 	u32 val;
1176 
1177 	/* Reset the Enable bit in the Serial Control Register */
1178 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1179 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1180 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1181 
1182 	udelay(200);
1183 }
1184 
1185 /* Multicast tables methods */
1186 
1187 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1188 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1189 {
1190 	int offset;
1191 	u32 val;
1192 
1193 	if (queue == -1) {
1194 		val = 0;
1195 	} else {
1196 		val = 0x1 | (queue << 1);
1197 		val |= (val << 24) | (val << 16) | (val << 8);
1198 	}
1199 
1200 	for (offset = 0; offset <= 0xc; offset += 4)
1201 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1202 }
1203 
1204 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1205 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1206 {
1207 	int offset;
1208 	u32 val;
1209 
1210 	if (queue == -1) {
1211 		val = 0;
1212 	} else {
1213 		val = 0x1 | (queue << 1);
1214 		val |= (val << 24) | (val << 16) | (val << 8);
1215 	}
1216 
1217 	for (offset = 0; offset <= 0xfc; offset += 4)
1218 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1219 
1220 }
1221 
1222 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1223 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1224 {
1225 	int offset;
1226 	u32 val;
1227 
1228 	if (queue == -1) {
1229 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1230 		val = 0;
1231 	} else {
1232 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1233 		val = 0x1 | (queue << 1);
1234 		val |= (val << 24) | (val << 16) | (val << 8);
1235 	}
1236 
1237 	for (offset = 0; offset <= 0xfc; offset += 4)
1238 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1239 }
1240 
1241 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
1242 {
1243 	u32 val;
1244 
1245 	if (enable) {
1246 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1247 		val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1248 			 MVNETA_GMAC_FORCE_LINK_DOWN |
1249 			 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1250 		val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1251 		       MVNETA_GMAC_AN_SPEED_EN |
1252 		       MVNETA_GMAC_AN_DUPLEX_EN;
1253 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1254 
1255 		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1256 		val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1257 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1258 
1259 		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1260 		val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
1261 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1262 	} else {
1263 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1264 		val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1265 		       MVNETA_GMAC_AN_SPEED_EN |
1266 		       MVNETA_GMAC_AN_DUPLEX_EN);
1267 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1268 
1269 		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1270 		val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
1271 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1272 
1273 		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1274 		val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
1275 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1276 	}
1277 }
1278 
1279 static void mvneta_percpu_unmask_interrupt(void *arg)
1280 {
1281 	struct mvneta_port *pp = arg;
1282 
1283 	/* All the queue are unmasked, but actually only the ones
1284 	 * mapped to this CPU will be unmasked
1285 	 */
1286 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1287 		    MVNETA_RX_INTR_MASK_ALL |
1288 		    MVNETA_TX_INTR_MASK_ALL |
1289 		    MVNETA_MISCINTR_INTR_MASK);
1290 }
1291 
1292 static void mvneta_percpu_mask_interrupt(void *arg)
1293 {
1294 	struct mvneta_port *pp = arg;
1295 
1296 	/* All the queue are masked, but actually only the ones
1297 	 * mapped to this CPU will be masked
1298 	 */
1299 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1300 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1301 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1302 }
1303 
1304 static void mvneta_percpu_clear_intr_cause(void *arg)
1305 {
1306 	struct mvneta_port *pp = arg;
1307 
1308 	/* All the queue are cleared, but actually only the ones
1309 	 * mapped to this CPU will be cleared
1310 	 */
1311 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1312 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1313 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1314 }
1315 
1316 /* This method sets defaults to the NETA port:
1317  *	Clears interrupt Cause and Mask registers.
1318  *	Clears all MAC tables.
1319  *	Sets defaults to all registers.
1320  *	Resets RX and TX descriptor rings.
1321  *	Resets PHY.
1322  * This method can be called after mvneta_port_down() to return the port
1323  *	settings to defaults.
1324  */
1325 static void mvneta_defaults_set(struct mvneta_port *pp)
1326 {
1327 	int cpu;
1328 	int queue;
1329 	u32 val;
1330 	int max_cpu = num_present_cpus();
1331 
1332 	/* Clear all Cause registers */
1333 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1334 
1335 	/* Mask all interrupts */
1336 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1337 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1338 
1339 	/* Enable MBUS Retry bit16 */
1340 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1341 
1342 	/* Set CPU queue access map. CPUs are assigned to the RX and
1343 	 * TX queues modulo their number. If there is only one TX
1344 	 * queue then it is assigned to the CPU associated to the
1345 	 * default RX queue.
1346 	 */
1347 	for_each_present_cpu(cpu) {
1348 		int rxq_map = 0, txq_map = 0;
1349 		int rxq, txq;
1350 
1351 		for (rxq = 0; rxq < rxq_number; rxq++)
1352 			if ((rxq % max_cpu) == cpu)
1353 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1354 
1355 		for (txq = 0; txq < txq_number; txq++)
1356 			if ((txq % max_cpu) == cpu)
1357 				txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1358 
1359 		/* With only one TX queue we configure a special case
1360 		 * which will allow to get all the irq on a single
1361 		 * CPU
1362 		 */
1363 		if (txq_number == 1)
1364 			txq_map = (cpu == pp->rxq_def) ?
1365 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
1366 
1367 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1368 	}
1369 
1370 	/* Reset RX and TX DMAs */
1371 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1372 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1373 
1374 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1375 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1376 	for (queue = 0; queue < txq_number; queue++) {
1377 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1378 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1379 	}
1380 
1381 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1382 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1383 
1384 	/* Set Port Acceleration Mode */
1385 	if (pp->bm_priv)
1386 		/* HW buffer management + legacy parser */
1387 		val = MVNETA_ACC_MODE_EXT2;
1388 	else
1389 		/* SW buffer management + legacy parser */
1390 		val = MVNETA_ACC_MODE_EXT1;
1391 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1392 
1393 	if (pp->bm_priv)
1394 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1395 
1396 	/* Update val of portCfg register accordingly with all RxQueue types */
1397 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1398 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1399 
1400 	val = 0;
1401 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1402 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1403 
1404 	/* Build PORT_SDMA_CONFIG_REG */
1405 	val = 0;
1406 
1407 	/* Default burst size */
1408 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1409 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1410 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1411 
1412 #if defined(__BIG_ENDIAN)
1413 	val |= MVNETA_DESC_SWAP;
1414 #endif
1415 
1416 	/* Assign port SDMA configuration */
1417 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1418 
1419 	/* Disable PHY polling in hardware, since we're using the
1420 	 * kernel phylib to do this.
1421 	 */
1422 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1423 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1424 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1425 
1426 	mvneta_set_autoneg(pp, pp->use_inband_status);
1427 	mvneta_set_ucast_table(pp, -1);
1428 	mvneta_set_special_mcast_table(pp, -1);
1429 	mvneta_set_other_mcast_table(pp, -1);
1430 
1431 	/* Set port interrupt enable register - default enable all */
1432 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1433 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1434 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1435 
1436 	mvneta_mib_counters_clear(pp);
1437 }
1438 
1439 /* Set max sizes for tx queues */
1440 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1441 
1442 {
1443 	u32 val, size, mtu;
1444 	int queue;
1445 
1446 	mtu = max_tx_size * 8;
1447 	if (mtu > MVNETA_TX_MTU_MAX)
1448 		mtu = MVNETA_TX_MTU_MAX;
1449 
1450 	/* Set MTU */
1451 	val = mvreg_read(pp, MVNETA_TX_MTU);
1452 	val &= ~MVNETA_TX_MTU_MAX;
1453 	val |= mtu;
1454 	mvreg_write(pp, MVNETA_TX_MTU, val);
1455 
1456 	/* TX token size and all TXQs token size must be larger that MTU */
1457 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1458 
1459 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1460 	if (size < mtu) {
1461 		size = mtu;
1462 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1463 		val |= size;
1464 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1465 	}
1466 	for (queue = 0; queue < txq_number; queue++) {
1467 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1468 
1469 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1470 		if (size < mtu) {
1471 			size = mtu;
1472 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1473 			val |= size;
1474 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1475 		}
1476 	}
1477 }
1478 
1479 /* Set unicast address */
1480 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1481 				  int queue)
1482 {
1483 	unsigned int unicast_reg;
1484 	unsigned int tbl_offset;
1485 	unsigned int reg_offset;
1486 
1487 	/* Locate the Unicast table entry */
1488 	last_nibble = (0xf & last_nibble);
1489 
1490 	/* offset from unicast tbl base */
1491 	tbl_offset = (last_nibble / 4) * 4;
1492 
1493 	/* offset within the above reg  */
1494 	reg_offset = last_nibble % 4;
1495 
1496 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1497 
1498 	if (queue == -1) {
1499 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1500 		unicast_reg &= ~(0xff << (8 * reg_offset));
1501 	} else {
1502 		unicast_reg &= ~(0xff << (8 * reg_offset));
1503 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1504 	}
1505 
1506 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1507 }
1508 
1509 /* Set mac address */
1510 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1511 				int queue)
1512 {
1513 	unsigned int mac_h;
1514 	unsigned int mac_l;
1515 
1516 	if (queue != -1) {
1517 		mac_l = (addr[4] << 8) | (addr[5]);
1518 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1519 			(addr[2] << 8) | (addr[3] << 0);
1520 
1521 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1522 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1523 	}
1524 
1525 	/* Accept frames of this address */
1526 	mvneta_set_ucast_addr(pp, addr[5], queue);
1527 }
1528 
1529 /* Set the number of packets that will be received before RX interrupt
1530  * will be generated by HW.
1531  */
1532 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1533 				    struct mvneta_rx_queue *rxq, u32 value)
1534 {
1535 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1536 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1537 	rxq->pkts_coal = value;
1538 }
1539 
1540 /* Set the time delay in usec before RX interrupt will be generated by
1541  * HW.
1542  */
1543 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1544 				    struct mvneta_rx_queue *rxq, u32 value)
1545 {
1546 	u32 val;
1547 	unsigned long clk_rate;
1548 
1549 	clk_rate = clk_get_rate(pp->clk);
1550 	val = (clk_rate / 1000000) * value;
1551 
1552 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1553 	rxq->time_coal = value;
1554 }
1555 
1556 /* Set threshold for TX_DONE pkts coalescing */
1557 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1558 					 struct mvneta_tx_queue *txq, u32 value)
1559 {
1560 	u32 val;
1561 
1562 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1563 
1564 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1565 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1566 
1567 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1568 
1569 	txq->done_pkts_coal = value;
1570 }
1571 
1572 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1573 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1574 				u32 phys_addr, u32 cookie)
1575 {
1576 	rx_desc->buf_cookie = cookie;
1577 	rx_desc->buf_phys_addr = phys_addr;
1578 }
1579 
1580 /* Decrement sent descriptors counter */
1581 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1582 				     struct mvneta_tx_queue *txq,
1583 				     int sent_desc)
1584 {
1585 	u32 val;
1586 
1587 	/* Only 255 TX descriptors can be updated at once */
1588 	while (sent_desc > 0xff) {
1589 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1590 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1591 		sent_desc = sent_desc - 0xff;
1592 	}
1593 
1594 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1595 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1596 }
1597 
1598 /* Get number of TX descriptors already sent by HW */
1599 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1600 					struct mvneta_tx_queue *txq)
1601 {
1602 	u32 val;
1603 	int sent_desc;
1604 
1605 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1606 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1607 		MVNETA_TXQ_SENT_DESC_SHIFT;
1608 
1609 	return sent_desc;
1610 }
1611 
1612 /* Get number of sent descriptors and decrement counter.
1613  *  The number of sent descriptors is returned.
1614  */
1615 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1616 				     struct mvneta_tx_queue *txq)
1617 {
1618 	int sent_desc;
1619 
1620 	/* Get number of sent descriptors */
1621 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1622 
1623 	/* Decrement sent descriptors counter */
1624 	if (sent_desc)
1625 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1626 
1627 	return sent_desc;
1628 }
1629 
1630 /* Set TXQ descriptors fields relevant for CSUM calculation */
1631 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1632 				int ip_hdr_len, int l4_proto)
1633 {
1634 	u32 command;
1635 
1636 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1637 	 * G_L4_chk, L4_type; required only for checksum
1638 	 * calculation
1639 	 */
1640 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1641 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1642 
1643 	if (l3_proto == htons(ETH_P_IP))
1644 		command |= MVNETA_TXD_IP_CSUM;
1645 	else
1646 		command |= MVNETA_TX_L3_IP6;
1647 
1648 	if (l4_proto == IPPROTO_TCP)
1649 		command |=  MVNETA_TX_L4_CSUM_FULL;
1650 	else if (l4_proto == IPPROTO_UDP)
1651 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1652 	else
1653 		command |= MVNETA_TX_L4_CSUM_NOT;
1654 
1655 	return command;
1656 }
1657 
1658 
1659 /* Display more error info */
1660 static void mvneta_rx_error(struct mvneta_port *pp,
1661 			    struct mvneta_rx_desc *rx_desc)
1662 {
1663 	u32 status = rx_desc->status;
1664 
1665 	if (!mvneta_rxq_desc_is_first_last(status)) {
1666 		netdev_err(pp->dev,
1667 			   "bad rx status %08x (buffer oversize), size=%d\n",
1668 			   status, rx_desc->data_size);
1669 		return;
1670 	}
1671 
1672 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1673 	case MVNETA_RXD_ERR_CRC:
1674 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1675 			   status, rx_desc->data_size);
1676 		break;
1677 	case MVNETA_RXD_ERR_OVERRUN:
1678 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1679 			   status, rx_desc->data_size);
1680 		break;
1681 	case MVNETA_RXD_ERR_LEN:
1682 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1683 			   status, rx_desc->data_size);
1684 		break;
1685 	case MVNETA_RXD_ERR_RESOURCE:
1686 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1687 			   status, rx_desc->data_size);
1688 		break;
1689 	}
1690 }
1691 
1692 /* Handle RX checksum offload based on the descriptor's status */
1693 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1694 			   struct sk_buff *skb)
1695 {
1696 	if ((status & MVNETA_RXD_L3_IP4) &&
1697 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1698 		skb->csum = 0;
1699 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1700 		return;
1701 	}
1702 
1703 	skb->ip_summed = CHECKSUM_NONE;
1704 }
1705 
1706 /* Return tx queue pointer (find last set bit) according to <cause> returned
1707  * form tx_done reg. <cause> must not be null. The return value is always a
1708  * valid queue for matching the first one found in <cause>.
1709  */
1710 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1711 						     u32 cause)
1712 {
1713 	int queue = fls(cause) - 1;
1714 
1715 	return &pp->txqs[queue];
1716 }
1717 
1718 /* Free tx queue skbuffs */
1719 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1720 				 struct mvneta_tx_queue *txq, int num)
1721 {
1722 	int i;
1723 
1724 	for (i = 0; i < num; i++) {
1725 		struct mvneta_tx_desc *tx_desc = txq->descs +
1726 			txq->txq_get_index;
1727 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1728 
1729 		mvneta_txq_inc_get(txq);
1730 
1731 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1732 			dma_unmap_single(pp->dev->dev.parent,
1733 					 tx_desc->buf_phys_addr,
1734 					 tx_desc->data_size, DMA_TO_DEVICE);
1735 		if (!skb)
1736 			continue;
1737 		dev_kfree_skb_any(skb);
1738 	}
1739 }
1740 
1741 /* Handle end of transmission */
1742 static void mvneta_txq_done(struct mvneta_port *pp,
1743 			   struct mvneta_tx_queue *txq)
1744 {
1745 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1746 	int tx_done;
1747 
1748 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1749 	if (!tx_done)
1750 		return;
1751 
1752 	mvneta_txq_bufs_free(pp, txq, tx_done);
1753 
1754 	txq->count -= tx_done;
1755 
1756 	if (netif_tx_queue_stopped(nq)) {
1757 		if (txq->count <= txq->tx_wake_threshold)
1758 			netif_tx_wake_queue(nq);
1759 	}
1760 }
1761 
1762 void *mvneta_frag_alloc(unsigned int frag_size)
1763 {
1764 	if (likely(frag_size <= PAGE_SIZE))
1765 		return netdev_alloc_frag(frag_size);
1766 	else
1767 		return kmalloc(frag_size, GFP_ATOMIC);
1768 }
1769 EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1770 
1771 void mvneta_frag_free(unsigned int frag_size, void *data)
1772 {
1773 	if (likely(frag_size <= PAGE_SIZE))
1774 		skb_free_frag(data);
1775 	else
1776 		kfree(data);
1777 }
1778 EXPORT_SYMBOL_GPL(mvneta_frag_free);
1779 
1780 /* Refill processing for SW buffer management */
1781 static int mvneta_rx_refill(struct mvneta_port *pp,
1782 			    struct mvneta_rx_desc *rx_desc)
1783 
1784 {
1785 	dma_addr_t phys_addr;
1786 	void *data;
1787 
1788 	data = mvneta_frag_alloc(pp->frag_size);
1789 	if (!data)
1790 		return -ENOMEM;
1791 
1792 	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1793 				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1794 				   DMA_FROM_DEVICE);
1795 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1796 		mvneta_frag_free(pp->frag_size, data);
1797 		return -ENOMEM;
1798 	}
1799 
1800 	mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
1801 	return 0;
1802 }
1803 
1804 /* Handle tx checksum */
1805 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1806 {
1807 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1808 		int ip_hdr_len = 0;
1809 		__be16 l3_proto = vlan_get_protocol(skb);
1810 		u8 l4_proto;
1811 
1812 		if (l3_proto == htons(ETH_P_IP)) {
1813 			struct iphdr *ip4h = ip_hdr(skb);
1814 
1815 			/* Calculate IPv4 checksum and L4 checksum */
1816 			ip_hdr_len = ip4h->ihl;
1817 			l4_proto = ip4h->protocol;
1818 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1819 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1820 
1821 			/* Read l4_protocol from one of IPv6 extra headers */
1822 			if (skb_network_header_len(skb) > 0)
1823 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1824 			l4_proto = ip6h->nexthdr;
1825 		} else
1826 			return MVNETA_TX_L4_CSUM_NOT;
1827 
1828 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1829 					    l3_proto, ip_hdr_len, l4_proto);
1830 	}
1831 
1832 	return MVNETA_TX_L4_CSUM_NOT;
1833 }
1834 
1835 /* Drop packets received by the RXQ and free buffers */
1836 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1837 				 struct mvneta_rx_queue *rxq)
1838 {
1839 	int rx_done, i;
1840 
1841 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1842 	if (rx_done)
1843 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1844 
1845 	if (pp->bm_priv) {
1846 		for (i = 0; i < rx_done; i++) {
1847 			struct mvneta_rx_desc *rx_desc =
1848 						  mvneta_rxq_next_desc_get(rxq);
1849 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1850 			struct mvneta_bm_pool *bm_pool;
1851 
1852 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1853 			/* Return dropped buffer to the pool */
1854 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1855 					      rx_desc->buf_phys_addr);
1856 		}
1857 		return;
1858 	}
1859 
1860 	for (i = 0; i < rxq->size; i++) {
1861 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1862 		void *data = (void *)rx_desc->buf_cookie;
1863 
1864 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1865 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1866 		mvneta_frag_free(pp->frag_size, data);
1867 	}
1868 }
1869 
1870 /* Main rx processing when using software buffer management */
1871 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
1872 			  struct mvneta_rx_queue *rxq)
1873 {
1874 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1875 	struct net_device *dev = pp->dev;
1876 	int rx_done;
1877 	u32 rcvd_pkts = 0;
1878 	u32 rcvd_bytes = 0;
1879 
1880 	/* Get number of received packets */
1881 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1882 
1883 	if (rx_todo > rx_done)
1884 		rx_todo = rx_done;
1885 
1886 	rx_done = 0;
1887 
1888 	/* Fairness NAPI loop */
1889 	while (rx_done < rx_todo) {
1890 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1891 		struct sk_buff *skb;
1892 		unsigned char *data;
1893 		dma_addr_t phys_addr;
1894 		u32 rx_status, frag_size;
1895 		int rx_bytes, err;
1896 
1897 		rx_done++;
1898 		rx_status = rx_desc->status;
1899 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1900 		data = (unsigned char *)rx_desc->buf_cookie;
1901 		phys_addr = rx_desc->buf_phys_addr;
1902 
1903 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1904 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1905 err_drop_frame:
1906 			dev->stats.rx_errors++;
1907 			mvneta_rx_error(pp, rx_desc);
1908 			/* leave the descriptor untouched */
1909 			continue;
1910 		}
1911 
1912 		if (rx_bytes <= rx_copybreak) {
1913 		/* better copy a small frame and not unmap the DMA region */
1914 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1915 			if (unlikely(!skb))
1916 				goto err_drop_frame;
1917 
1918 			dma_sync_single_range_for_cpu(dev->dev.parent,
1919 						      rx_desc->buf_phys_addr,
1920 						      MVNETA_MH_SIZE + NET_SKB_PAD,
1921 						      rx_bytes,
1922 						      DMA_FROM_DEVICE);
1923 			memcpy(skb_put(skb, rx_bytes),
1924 			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
1925 			       rx_bytes);
1926 
1927 			skb->protocol = eth_type_trans(skb, dev);
1928 			mvneta_rx_csum(pp, rx_status, skb);
1929 			napi_gro_receive(&port->napi, skb);
1930 
1931 			rcvd_pkts++;
1932 			rcvd_bytes += rx_bytes;
1933 
1934 			/* leave the descriptor and buffer untouched */
1935 			continue;
1936 		}
1937 
1938 		/* Refill processing */
1939 		err = mvneta_rx_refill(pp, rx_desc);
1940 		if (err) {
1941 			netdev_err(dev, "Linux processing - Can't refill\n");
1942 			rxq->missed++;
1943 			goto err_drop_frame;
1944 		}
1945 
1946 		frag_size = pp->frag_size;
1947 
1948 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
1949 
1950 		/* After refill old buffer has to be unmapped regardless
1951 		 * the skb is successfully built or not.
1952 		 */
1953 		dma_unmap_single(dev->dev.parent, phys_addr,
1954 				 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1955 				 DMA_FROM_DEVICE);
1956 
1957 		if (!skb)
1958 			goto err_drop_frame;
1959 
1960 		rcvd_pkts++;
1961 		rcvd_bytes += rx_bytes;
1962 
1963 		/* Linux processing */
1964 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
1965 		skb_put(skb, rx_bytes);
1966 
1967 		skb->protocol = eth_type_trans(skb, dev);
1968 
1969 		mvneta_rx_csum(pp, rx_status, skb);
1970 
1971 		napi_gro_receive(&port->napi, skb);
1972 	}
1973 
1974 	if (rcvd_pkts) {
1975 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1976 
1977 		u64_stats_update_begin(&stats->syncp);
1978 		stats->rx_packets += rcvd_pkts;
1979 		stats->rx_bytes   += rcvd_bytes;
1980 		u64_stats_update_end(&stats->syncp);
1981 	}
1982 
1983 	/* Update rxq management counters */
1984 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1985 
1986 	return rx_done;
1987 }
1988 
1989 /* Main rx processing when using hardware buffer management */
1990 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
1991 			  struct mvneta_rx_queue *rxq)
1992 {
1993 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1994 	struct net_device *dev = pp->dev;
1995 	int rx_done;
1996 	u32 rcvd_pkts = 0;
1997 	u32 rcvd_bytes = 0;
1998 
1999 	/* Get number of received packets */
2000 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2001 
2002 	if (rx_todo > rx_done)
2003 		rx_todo = rx_done;
2004 
2005 	rx_done = 0;
2006 
2007 	/* Fairness NAPI loop */
2008 	while (rx_done < rx_todo) {
2009 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2010 		struct mvneta_bm_pool *bm_pool = NULL;
2011 		struct sk_buff *skb;
2012 		unsigned char *data;
2013 		dma_addr_t phys_addr;
2014 		u32 rx_status, frag_size;
2015 		int rx_bytes, err;
2016 		u8 pool_id;
2017 
2018 		rx_done++;
2019 		rx_status = rx_desc->status;
2020 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2021 		data = (unsigned char *)rx_desc->buf_cookie;
2022 		phys_addr = rx_desc->buf_phys_addr;
2023 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2024 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2025 
2026 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2027 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2028 err_drop_frame_ret_pool:
2029 			/* Return the buffer to the pool */
2030 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2031 					      rx_desc->buf_phys_addr);
2032 err_drop_frame:
2033 			dev->stats.rx_errors++;
2034 			mvneta_rx_error(pp, rx_desc);
2035 			/* leave the descriptor untouched */
2036 			continue;
2037 		}
2038 
2039 		if (rx_bytes <= rx_copybreak) {
2040 			/* better copy a small frame and not unmap the DMA region */
2041 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2042 			if (unlikely(!skb))
2043 				goto err_drop_frame_ret_pool;
2044 
2045 			dma_sync_single_range_for_cpu(dev->dev.parent,
2046 			                              rx_desc->buf_phys_addr,
2047 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2048 			                              rx_bytes,
2049 			                              DMA_FROM_DEVICE);
2050 			memcpy(skb_put(skb, rx_bytes),
2051 			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
2052 			       rx_bytes);
2053 
2054 			skb->protocol = eth_type_trans(skb, dev);
2055 			mvneta_rx_csum(pp, rx_status, skb);
2056 			napi_gro_receive(&port->napi, skb);
2057 
2058 			rcvd_pkts++;
2059 			rcvd_bytes += rx_bytes;
2060 
2061 			/* Return the buffer to the pool */
2062 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2063 					      rx_desc->buf_phys_addr);
2064 
2065 			/* leave the descriptor and buffer untouched */
2066 			continue;
2067 		}
2068 
2069 		/* Refill processing */
2070 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2071 		if (err) {
2072 			netdev_err(dev, "Linux processing - Can't refill\n");
2073 			rxq->missed++;
2074 			goto err_drop_frame_ret_pool;
2075 		}
2076 
2077 		frag_size = bm_pool->hwbm_pool.frag_size;
2078 
2079 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2080 
2081 		/* After refill old buffer has to be unmapped regardless
2082 		 * the skb is successfully built or not.
2083 		 */
2084 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2085 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2086 		if (!skb)
2087 			goto err_drop_frame;
2088 
2089 		rcvd_pkts++;
2090 		rcvd_bytes += rx_bytes;
2091 
2092 		/* Linux processing */
2093 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2094 		skb_put(skb, rx_bytes);
2095 
2096 		skb->protocol = eth_type_trans(skb, dev);
2097 
2098 		mvneta_rx_csum(pp, rx_status, skb);
2099 
2100 		napi_gro_receive(&port->napi, skb);
2101 	}
2102 
2103 	if (rcvd_pkts) {
2104 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2105 
2106 		u64_stats_update_begin(&stats->syncp);
2107 		stats->rx_packets += rcvd_pkts;
2108 		stats->rx_bytes   += rcvd_bytes;
2109 		u64_stats_update_end(&stats->syncp);
2110 	}
2111 
2112 	/* Update rxq management counters */
2113 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2114 
2115 	return rx_done;
2116 }
2117 
2118 static inline void
2119 mvneta_tso_put_hdr(struct sk_buff *skb,
2120 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2121 {
2122 	struct mvneta_tx_desc *tx_desc;
2123 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2124 
2125 	txq->tx_skb[txq->txq_put_index] = NULL;
2126 	tx_desc = mvneta_txq_next_desc_get(txq);
2127 	tx_desc->data_size = hdr_len;
2128 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2129 	tx_desc->command |= MVNETA_TXD_F_DESC;
2130 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2131 				 txq->txq_put_index * TSO_HEADER_SIZE;
2132 	mvneta_txq_inc_put(txq);
2133 }
2134 
2135 static inline int
2136 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2137 		    struct sk_buff *skb, char *data, int size,
2138 		    bool last_tcp, bool is_last)
2139 {
2140 	struct mvneta_tx_desc *tx_desc;
2141 
2142 	tx_desc = mvneta_txq_next_desc_get(txq);
2143 	tx_desc->data_size = size;
2144 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2145 						size, DMA_TO_DEVICE);
2146 	if (unlikely(dma_mapping_error(dev->dev.parent,
2147 		     tx_desc->buf_phys_addr))) {
2148 		mvneta_txq_desc_put(txq);
2149 		return -ENOMEM;
2150 	}
2151 
2152 	tx_desc->command = 0;
2153 	txq->tx_skb[txq->txq_put_index] = NULL;
2154 
2155 	if (last_tcp) {
2156 		/* last descriptor in the TCP packet */
2157 		tx_desc->command = MVNETA_TXD_L_DESC;
2158 
2159 		/* last descriptor in SKB */
2160 		if (is_last)
2161 			txq->tx_skb[txq->txq_put_index] = skb;
2162 	}
2163 	mvneta_txq_inc_put(txq);
2164 	return 0;
2165 }
2166 
2167 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2168 			 struct mvneta_tx_queue *txq)
2169 {
2170 	int total_len, data_left;
2171 	int desc_count = 0;
2172 	struct mvneta_port *pp = netdev_priv(dev);
2173 	struct tso_t tso;
2174 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2175 	int i;
2176 
2177 	/* Count needed descriptors */
2178 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2179 		return 0;
2180 
2181 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2182 		pr_info("*** Is this even  possible???!?!?\n");
2183 		return 0;
2184 	}
2185 
2186 	/* Initialize the TSO handler, and prepare the first payload */
2187 	tso_start(skb, &tso);
2188 
2189 	total_len = skb->len - hdr_len;
2190 	while (total_len > 0) {
2191 		char *hdr;
2192 
2193 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2194 		total_len -= data_left;
2195 		desc_count++;
2196 
2197 		/* prepare packet headers: MAC + IP + TCP */
2198 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2199 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2200 
2201 		mvneta_tso_put_hdr(skb, pp, txq);
2202 
2203 		while (data_left > 0) {
2204 			int size;
2205 			desc_count++;
2206 
2207 			size = min_t(int, tso.size, data_left);
2208 
2209 			if (mvneta_tso_put_data(dev, txq, skb,
2210 						 tso.data, size,
2211 						 size == data_left,
2212 						 total_len == 0))
2213 				goto err_release;
2214 			data_left -= size;
2215 
2216 			tso_build_data(skb, &tso, size);
2217 		}
2218 	}
2219 
2220 	return desc_count;
2221 
2222 err_release:
2223 	/* Release all used data descriptors; header descriptors must not
2224 	 * be DMA-unmapped.
2225 	 */
2226 	for (i = desc_count - 1; i >= 0; i--) {
2227 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2228 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2229 			dma_unmap_single(pp->dev->dev.parent,
2230 					 tx_desc->buf_phys_addr,
2231 					 tx_desc->data_size,
2232 					 DMA_TO_DEVICE);
2233 		mvneta_txq_desc_put(txq);
2234 	}
2235 	return 0;
2236 }
2237 
2238 /* Handle tx fragmentation processing */
2239 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2240 				  struct mvneta_tx_queue *txq)
2241 {
2242 	struct mvneta_tx_desc *tx_desc;
2243 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2244 
2245 	for (i = 0; i < nr_frags; i++) {
2246 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2247 		void *addr = page_address(frag->page.p) + frag->page_offset;
2248 
2249 		tx_desc = mvneta_txq_next_desc_get(txq);
2250 		tx_desc->data_size = frag->size;
2251 
2252 		tx_desc->buf_phys_addr =
2253 			dma_map_single(pp->dev->dev.parent, addr,
2254 				       tx_desc->data_size, DMA_TO_DEVICE);
2255 
2256 		if (dma_mapping_error(pp->dev->dev.parent,
2257 				      tx_desc->buf_phys_addr)) {
2258 			mvneta_txq_desc_put(txq);
2259 			goto error;
2260 		}
2261 
2262 		if (i == nr_frags - 1) {
2263 			/* Last descriptor */
2264 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2265 			txq->tx_skb[txq->txq_put_index] = skb;
2266 		} else {
2267 			/* Descriptor in the middle: Not First, Not Last */
2268 			tx_desc->command = 0;
2269 			txq->tx_skb[txq->txq_put_index] = NULL;
2270 		}
2271 		mvneta_txq_inc_put(txq);
2272 	}
2273 
2274 	return 0;
2275 
2276 error:
2277 	/* Release all descriptors that were used to map fragments of
2278 	 * this packet, as well as the corresponding DMA mappings
2279 	 */
2280 	for (i = i - 1; i >= 0; i--) {
2281 		tx_desc = txq->descs + i;
2282 		dma_unmap_single(pp->dev->dev.parent,
2283 				 tx_desc->buf_phys_addr,
2284 				 tx_desc->data_size,
2285 				 DMA_TO_DEVICE);
2286 		mvneta_txq_desc_put(txq);
2287 	}
2288 
2289 	return -ENOMEM;
2290 }
2291 
2292 /* Main tx processing */
2293 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2294 {
2295 	struct mvneta_port *pp = netdev_priv(dev);
2296 	u16 txq_id = skb_get_queue_mapping(skb);
2297 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2298 	struct mvneta_tx_desc *tx_desc;
2299 	int len = skb->len;
2300 	int frags = 0;
2301 	u32 tx_cmd;
2302 
2303 	if (!netif_running(dev))
2304 		goto out;
2305 
2306 	if (skb_is_gso(skb)) {
2307 		frags = mvneta_tx_tso(skb, dev, txq);
2308 		goto out;
2309 	}
2310 
2311 	frags = skb_shinfo(skb)->nr_frags + 1;
2312 
2313 	/* Get a descriptor for the first part of the packet */
2314 	tx_desc = mvneta_txq_next_desc_get(txq);
2315 
2316 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2317 
2318 	tx_desc->data_size = skb_headlen(skb);
2319 
2320 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2321 						tx_desc->data_size,
2322 						DMA_TO_DEVICE);
2323 	if (unlikely(dma_mapping_error(dev->dev.parent,
2324 				       tx_desc->buf_phys_addr))) {
2325 		mvneta_txq_desc_put(txq);
2326 		frags = 0;
2327 		goto out;
2328 	}
2329 
2330 	if (frags == 1) {
2331 		/* First and Last descriptor */
2332 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2333 		tx_desc->command = tx_cmd;
2334 		txq->tx_skb[txq->txq_put_index] = skb;
2335 		mvneta_txq_inc_put(txq);
2336 	} else {
2337 		/* First but not Last */
2338 		tx_cmd |= MVNETA_TXD_F_DESC;
2339 		txq->tx_skb[txq->txq_put_index] = NULL;
2340 		mvneta_txq_inc_put(txq);
2341 		tx_desc->command = tx_cmd;
2342 		/* Continue with other skb fragments */
2343 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2344 			dma_unmap_single(dev->dev.parent,
2345 					 tx_desc->buf_phys_addr,
2346 					 tx_desc->data_size,
2347 					 DMA_TO_DEVICE);
2348 			mvneta_txq_desc_put(txq);
2349 			frags = 0;
2350 			goto out;
2351 		}
2352 	}
2353 
2354 out:
2355 	if (frags > 0) {
2356 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2357 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2358 
2359 		txq->count += frags;
2360 		mvneta_txq_pend_desc_add(pp, txq, frags);
2361 
2362 		if (txq->count >= txq->tx_stop_threshold)
2363 			netif_tx_stop_queue(nq);
2364 
2365 		u64_stats_update_begin(&stats->syncp);
2366 		stats->tx_packets++;
2367 		stats->tx_bytes  += len;
2368 		u64_stats_update_end(&stats->syncp);
2369 	} else {
2370 		dev->stats.tx_dropped++;
2371 		dev_kfree_skb_any(skb);
2372 	}
2373 
2374 	return NETDEV_TX_OK;
2375 }
2376 
2377 
2378 /* Free tx resources, when resetting a port */
2379 static void mvneta_txq_done_force(struct mvneta_port *pp,
2380 				  struct mvneta_tx_queue *txq)
2381 
2382 {
2383 	int tx_done = txq->count;
2384 
2385 	mvneta_txq_bufs_free(pp, txq, tx_done);
2386 
2387 	/* reset txq */
2388 	txq->count = 0;
2389 	txq->txq_put_index = 0;
2390 	txq->txq_get_index = 0;
2391 }
2392 
2393 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2394  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2395  */
2396 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2397 {
2398 	struct mvneta_tx_queue *txq;
2399 	struct netdev_queue *nq;
2400 
2401 	while (cause_tx_done) {
2402 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2403 
2404 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2405 		__netif_tx_lock(nq, smp_processor_id());
2406 
2407 		if (txq->count)
2408 			mvneta_txq_done(pp, txq);
2409 
2410 		__netif_tx_unlock(nq);
2411 		cause_tx_done &= ~((1 << txq->id));
2412 	}
2413 }
2414 
2415 /* Compute crc8 of the specified address, using a unique algorithm ,
2416  * according to hw spec, different than generic crc8 algorithm
2417  */
2418 static int mvneta_addr_crc(unsigned char *addr)
2419 {
2420 	int crc = 0;
2421 	int i;
2422 
2423 	for (i = 0; i < ETH_ALEN; i++) {
2424 		int j;
2425 
2426 		crc = (crc ^ addr[i]) << 8;
2427 		for (j = 7; j >= 0; j--) {
2428 			if (crc & (0x100 << j))
2429 				crc ^= 0x107 << j;
2430 		}
2431 	}
2432 
2433 	return crc;
2434 }
2435 
2436 /* This method controls the net device special MAC multicast support.
2437  * The Special Multicast Table for MAC addresses supports MAC of the form
2438  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2439  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2440  * Table entries in the DA-Filter table. This method set the Special
2441  * Multicast Table appropriate entry.
2442  */
2443 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2444 					  unsigned char last_byte,
2445 					  int queue)
2446 {
2447 	unsigned int smc_table_reg;
2448 	unsigned int tbl_offset;
2449 	unsigned int reg_offset;
2450 
2451 	/* Register offset from SMC table base    */
2452 	tbl_offset = (last_byte / 4);
2453 	/* Entry offset within the above reg */
2454 	reg_offset = last_byte % 4;
2455 
2456 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2457 					+ tbl_offset * 4));
2458 
2459 	if (queue == -1)
2460 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2461 	else {
2462 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2463 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2464 	}
2465 
2466 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2467 		    smc_table_reg);
2468 }
2469 
2470 /* This method controls the network device Other MAC multicast support.
2471  * The Other Multicast Table is used for multicast of another type.
2472  * A CRC-8 is used as an index to the Other Multicast Table entries
2473  * in the DA-Filter table.
2474  * The method gets the CRC-8 value from the calling routine and
2475  * sets the Other Multicast Table appropriate entry according to the
2476  * specified CRC-8 .
2477  */
2478 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2479 					unsigned char crc8,
2480 					int queue)
2481 {
2482 	unsigned int omc_table_reg;
2483 	unsigned int tbl_offset;
2484 	unsigned int reg_offset;
2485 
2486 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2487 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2488 
2489 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2490 
2491 	if (queue == -1) {
2492 		/* Clear accepts frame bit at specified Other DA table entry */
2493 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2494 	} else {
2495 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2496 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2497 	}
2498 
2499 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2500 }
2501 
2502 /* The network device supports multicast using two tables:
2503  *    1) Special Multicast Table for MAC addresses of the form
2504  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2505  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2506  *       Table entries in the DA-Filter table.
2507  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2508  *       is used as an index to the Other Multicast Table entries in the
2509  *       DA-Filter table.
2510  */
2511 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2512 				 int queue)
2513 {
2514 	unsigned char crc_result = 0;
2515 
2516 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2517 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2518 		return 0;
2519 	}
2520 
2521 	crc_result = mvneta_addr_crc(p_addr);
2522 	if (queue == -1) {
2523 		if (pp->mcast_count[crc_result] == 0) {
2524 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2525 				    crc_result);
2526 			return -EINVAL;
2527 		}
2528 
2529 		pp->mcast_count[crc_result]--;
2530 		if (pp->mcast_count[crc_result] != 0) {
2531 			netdev_info(pp->dev,
2532 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2533 				    pp->mcast_count[crc_result], crc_result);
2534 			return -EINVAL;
2535 		}
2536 	} else
2537 		pp->mcast_count[crc_result]++;
2538 
2539 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2540 
2541 	return 0;
2542 }
2543 
2544 /* Configure Fitering mode of Ethernet port */
2545 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2546 					  int is_promisc)
2547 {
2548 	u32 port_cfg_reg, val;
2549 
2550 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2551 
2552 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2553 
2554 	/* Set / Clear UPM bit in port configuration register */
2555 	if (is_promisc) {
2556 		/* Accept all Unicast addresses */
2557 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2558 		val |= MVNETA_FORCE_UNI;
2559 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2560 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2561 	} else {
2562 		/* Reject all Unicast addresses */
2563 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2564 		val &= ~MVNETA_FORCE_UNI;
2565 	}
2566 
2567 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2568 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2569 }
2570 
2571 /* register unicast and multicast addresses */
2572 static void mvneta_set_rx_mode(struct net_device *dev)
2573 {
2574 	struct mvneta_port *pp = netdev_priv(dev);
2575 	struct netdev_hw_addr *ha;
2576 
2577 	if (dev->flags & IFF_PROMISC) {
2578 		/* Accept all: Multicast + Unicast */
2579 		mvneta_rx_unicast_promisc_set(pp, 1);
2580 		mvneta_set_ucast_table(pp, pp->rxq_def);
2581 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
2582 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
2583 	} else {
2584 		/* Accept single Unicast */
2585 		mvneta_rx_unicast_promisc_set(pp, 0);
2586 		mvneta_set_ucast_table(pp, -1);
2587 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2588 
2589 		if (dev->flags & IFF_ALLMULTI) {
2590 			/* Accept all multicast */
2591 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
2592 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
2593 		} else {
2594 			/* Accept only initialized multicast */
2595 			mvneta_set_special_mcast_table(pp, -1);
2596 			mvneta_set_other_mcast_table(pp, -1);
2597 
2598 			if (!netdev_mc_empty(dev)) {
2599 				netdev_for_each_mc_addr(ha, dev) {
2600 					mvneta_mcast_addr_set(pp, ha->addr,
2601 							      pp->rxq_def);
2602 				}
2603 			}
2604 		}
2605 	}
2606 }
2607 
2608 /* Interrupt handling - the callback for request_irq() */
2609 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2610 {
2611 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2612 
2613 	disable_percpu_irq(port->pp->dev->irq);
2614 	napi_schedule(&port->napi);
2615 
2616 	return IRQ_HANDLED;
2617 }
2618 
2619 static int mvneta_fixed_link_update(struct mvneta_port *pp,
2620 				    struct phy_device *phy)
2621 {
2622 	struct fixed_phy_status status;
2623 	struct fixed_phy_status changed = {};
2624 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2625 
2626 	status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2627 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2628 		status.speed = SPEED_1000;
2629 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2630 		status.speed = SPEED_100;
2631 	else
2632 		status.speed = SPEED_10;
2633 	status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2634 	changed.link = 1;
2635 	changed.speed = 1;
2636 	changed.duplex = 1;
2637 	fixed_phy_update_state(phy, &status, &changed);
2638 	return 0;
2639 }
2640 
2641 /* NAPI handler
2642  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2643  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2644  * Bits 8 -15 of the cause Rx Tx register indicate that are received
2645  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2646  * Each CPU has its own causeRxTx register
2647  */
2648 static int mvneta_poll(struct napi_struct *napi, int budget)
2649 {
2650 	int rx_done = 0;
2651 	u32 cause_rx_tx;
2652 	int rx_queue;
2653 	struct mvneta_port *pp = netdev_priv(napi->dev);
2654 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2655 
2656 	if (!netif_running(pp->dev)) {
2657 		napi_complete(&port->napi);
2658 		return rx_done;
2659 	}
2660 
2661 	/* Read cause register */
2662 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2663 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2664 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2665 
2666 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2667 		if (pp->use_inband_status && (cause_misc &
2668 				(MVNETA_CAUSE_PHY_STATUS_CHANGE |
2669 				 MVNETA_CAUSE_LINK_CHANGE |
2670 				 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2671 			mvneta_fixed_link_update(pp, pp->phy_dev);
2672 		}
2673 	}
2674 
2675 	/* Release Tx descriptors */
2676 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2677 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2678 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2679 	}
2680 
2681 	/* For the case where the last mvneta_poll did not process all
2682 	 * RX packets
2683 	 */
2684 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2685 
2686 	cause_rx_tx |= port->cause_rx_tx;
2687 
2688 	if (rx_queue) {
2689 		rx_queue = rx_queue - 1;
2690 		if (pp->bm_priv)
2691 			rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
2692 		else
2693 			rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2694 	}
2695 
2696 	budget -= rx_done;
2697 
2698 	if (budget > 0) {
2699 		cause_rx_tx = 0;
2700 		napi_complete(&port->napi);
2701 		enable_percpu_irq(pp->dev->irq, 0);
2702 	}
2703 
2704 	port->cause_rx_tx = cause_rx_tx;
2705 	return rx_done;
2706 }
2707 
2708 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2709 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2710 			   int num)
2711 {
2712 	int i;
2713 
2714 	for (i = 0; i < num; i++) {
2715 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2716 		if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
2717 			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2718 				__func__, rxq->id, i, num);
2719 			break;
2720 		}
2721 	}
2722 
2723 	/* Add this number of RX descriptors as non occupied (ready to
2724 	 * get packets)
2725 	 */
2726 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2727 
2728 	return i;
2729 }
2730 
2731 /* Free all packets pending transmit from all TXQs and reset TX port */
2732 static void mvneta_tx_reset(struct mvneta_port *pp)
2733 {
2734 	int queue;
2735 
2736 	/* free the skb's in the tx ring */
2737 	for (queue = 0; queue < txq_number; queue++)
2738 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2739 
2740 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2741 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2742 }
2743 
2744 static void mvneta_rx_reset(struct mvneta_port *pp)
2745 {
2746 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2747 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2748 }
2749 
2750 /* Rx/Tx queue initialization/cleanup methods */
2751 
2752 /* Create a specified RX queue */
2753 static int mvneta_rxq_init(struct mvneta_port *pp,
2754 			   struct mvneta_rx_queue *rxq)
2755 
2756 {
2757 	rxq->size = pp->rx_ring_size;
2758 
2759 	/* Allocate memory for RX descriptors */
2760 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2761 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2762 					&rxq->descs_phys, GFP_KERNEL);
2763 	if (rxq->descs == NULL)
2764 		return -ENOMEM;
2765 
2766 	rxq->last_desc = rxq->size - 1;
2767 
2768 	/* Set Rx descriptors queue starting address */
2769 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2770 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2771 
2772 	/* Set Offset */
2773 	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
2774 
2775 	/* Set coalescing pkts and time */
2776 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2777 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2778 
2779 	if (!pp->bm_priv) {
2780 		/* Fill RXQ with buffers from RX pool */
2781 		mvneta_rxq_buf_size_set(pp, rxq,
2782 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
2783 		mvneta_rxq_bm_disable(pp, rxq);
2784 	} else {
2785 		mvneta_rxq_bm_enable(pp, rxq);
2786 		mvneta_rxq_long_pool_set(pp, rxq);
2787 		mvneta_rxq_short_pool_set(pp, rxq);
2788 	}
2789 
2790 	mvneta_rxq_fill(pp, rxq, rxq->size);
2791 
2792 	return 0;
2793 }
2794 
2795 /* Cleanup Rx queue */
2796 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2797 			      struct mvneta_rx_queue *rxq)
2798 {
2799 	mvneta_rxq_drop_pkts(pp, rxq);
2800 
2801 	if (rxq->descs)
2802 		dma_free_coherent(pp->dev->dev.parent,
2803 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2804 				  rxq->descs,
2805 				  rxq->descs_phys);
2806 
2807 	rxq->descs             = NULL;
2808 	rxq->last_desc         = 0;
2809 	rxq->next_desc_to_proc = 0;
2810 	rxq->descs_phys        = 0;
2811 }
2812 
2813 /* Create and initialize a tx queue */
2814 static int mvneta_txq_init(struct mvneta_port *pp,
2815 			   struct mvneta_tx_queue *txq)
2816 {
2817 	int cpu;
2818 
2819 	txq->size = pp->tx_ring_size;
2820 
2821 	/* A queue must always have room for at least one skb.
2822 	 * Therefore, stop the queue when the free entries reaches
2823 	 * the maximum number of descriptors per skb.
2824 	 */
2825 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2826 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2827 
2828 
2829 	/* Allocate memory for TX descriptors */
2830 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2831 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2832 					&txq->descs_phys, GFP_KERNEL);
2833 	if (txq->descs == NULL)
2834 		return -ENOMEM;
2835 
2836 	txq->last_desc = txq->size - 1;
2837 
2838 	/* Set maximum bandwidth for enabled TXQs */
2839 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2840 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2841 
2842 	/* Set Tx descriptors queue starting address */
2843 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2844 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2845 
2846 	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2847 	if (txq->tx_skb == NULL) {
2848 		dma_free_coherent(pp->dev->dev.parent,
2849 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2850 				  txq->descs, txq->descs_phys);
2851 		return -ENOMEM;
2852 	}
2853 
2854 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2855 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2856 					   txq->size * TSO_HEADER_SIZE,
2857 					   &txq->tso_hdrs_phys, GFP_KERNEL);
2858 	if (txq->tso_hdrs == NULL) {
2859 		kfree(txq->tx_skb);
2860 		dma_free_coherent(pp->dev->dev.parent,
2861 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2862 				  txq->descs, txq->descs_phys);
2863 		return -ENOMEM;
2864 	}
2865 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2866 
2867 	/* Setup XPS mapping */
2868 	if (txq_number > 1)
2869 		cpu = txq->id % num_present_cpus();
2870 	else
2871 		cpu = pp->rxq_def % num_present_cpus();
2872 	cpumask_set_cpu(cpu, &txq->affinity_mask);
2873 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2874 
2875 	return 0;
2876 }
2877 
2878 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2879 static void mvneta_txq_deinit(struct mvneta_port *pp,
2880 			      struct mvneta_tx_queue *txq)
2881 {
2882 	kfree(txq->tx_skb);
2883 
2884 	if (txq->tso_hdrs)
2885 		dma_free_coherent(pp->dev->dev.parent,
2886 				  txq->size * TSO_HEADER_SIZE,
2887 				  txq->tso_hdrs, txq->tso_hdrs_phys);
2888 	if (txq->descs)
2889 		dma_free_coherent(pp->dev->dev.parent,
2890 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2891 				  txq->descs, txq->descs_phys);
2892 
2893 	txq->descs             = NULL;
2894 	txq->last_desc         = 0;
2895 	txq->next_desc_to_proc = 0;
2896 	txq->descs_phys        = 0;
2897 
2898 	/* Set minimum bandwidth for disabled TXQs */
2899 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2900 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2901 
2902 	/* Set Tx descriptors queue starting address and size */
2903 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2904 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2905 }
2906 
2907 /* Cleanup all Tx queues */
2908 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2909 {
2910 	int queue;
2911 
2912 	for (queue = 0; queue < txq_number; queue++)
2913 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
2914 }
2915 
2916 /* Cleanup all Rx queues */
2917 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2918 {
2919 	int queue;
2920 
2921 	for (queue = 0; queue < txq_number; queue++)
2922 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2923 }
2924 
2925 
2926 /* Init all Rx queues */
2927 static int mvneta_setup_rxqs(struct mvneta_port *pp)
2928 {
2929 	int queue;
2930 
2931 	for (queue = 0; queue < rxq_number; queue++) {
2932 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
2933 
2934 		if (err) {
2935 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
2936 				   __func__, queue);
2937 			mvneta_cleanup_rxqs(pp);
2938 			return err;
2939 		}
2940 	}
2941 
2942 	return 0;
2943 }
2944 
2945 /* Init all tx queues */
2946 static int mvneta_setup_txqs(struct mvneta_port *pp)
2947 {
2948 	int queue;
2949 
2950 	for (queue = 0; queue < txq_number; queue++) {
2951 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
2952 		if (err) {
2953 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
2954 				   __func__, queue);
2955 			mvneta_cleanup_txqs(pp);
2956 			return err;
2957 		}
2958 	}
2959 
2960 	return 0;
2961 }
2962 
2963 static void mvneta_start_dev(struct mvneta_port *pp)
2964 {
2965 	int cpu;
2966 
2967 	mvneta_max_rx_size_set(pp, pp->pkt_size);
2968 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
2969 
2970 	/* start the Rx/Tx activity */
2971 	mvneta_port_enable(pp);
2972 
2973 	/* Enable polling on the port */
2974 	for_each_online_cpu(cpu) {
2975 		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
2976 
2977 		napi_enable(&port->napi);
2978 	}
2979 
2980 	/* Unmask interrupts. It has to be done from each CPU */
2981 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
2982 
2983 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
2984 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
2985 		    MVNETA_CAUSE_LINK_CHANGE |
2986 		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
2987 
2988 	phy_start(pp->phy_dev);
2989 	netif_tx_start_all_queues(pp->dev);
2990 }
2991 
2992 static void mvneta_stop_dev(struct mvneta_port *pp)
2993 {
2994 	unsigned int cpu;
2995 
2996 	phy_stop(pp->phy_dev);
2997 
2998 	for_each_online_cpu(cpu) {
2999 		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3000 
3001 		napi_disable(&port->napi);
3002 	}
3003 
3004 	netif_carrier_off(pp->dev);
3005 
3006 	mvneta_port_down(pp);
3007 	netif_tx_stop_all_queues(pp->dev);
3008 
3009 	/* Stop the port activity */
3010 	mvneta_port_disable(pp);
3011 
3012 	/* Clear all ethernet port interrupts */
3013 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3014 
3015 	/* Mask all ethernet port interrupts */
3016 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3017 
3018 	mvneta_tx_reset(pp);
3019 	mvneta_rx_reset(pp);
3020 }
3021 
3022 /* Return positive if MTU is valid */
3023 static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
3024 {
3025 	if (mtu < 68) {
3026 		netdev_err(dev, "cannot change mtu to less than 68\n");
3027 		return -EINVAL;
3028 	}
3029 
3030 	/* 9676 == 9700 - 20 and rounding to 8 */
3031 	if (mtu > 9676) {
3032 		netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
3033 		mtu = 9676;
3034 	}
3035 
3036 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3037 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3038 			mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3039 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3040 	}
3041 
3042 	return mtu;
3043 }
3044 
3045 static void mvneta_percpu_enable(void *arg)
3046 {
3047 	struct mvneta_port *pp = arg;
3048 
3049 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3050 }
3051 
3052 static void mvneta_percpu_disable(void *arg)
3053 {
3054 	struct mvneta_port *pp = arg;
3055 
3056 	disable_percpu_irq(pp->dev->irq);
3057 }
3058 
3059 /* Change the device mtu */
3060 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3061 {
3062 	struct mvneta_port *pp = netdev_priv(dev);
3063 	int ret;
3064 
3065 	mtu = mvneta_check_mtu_valid(dev, mtu);
3066 	if (mtu < 0)
3067 		return -EINVAL;
3068 
3069 	dev->mtu = mtu;
3070 
3071 	if (!netif_running(dev)) {
3072 		if (pp->bm_priv)
3073 			mvneta_bm_update_mtu(pp, mtu);
3074 
3075 		netdev_update_features(dev);
3076 		return 0;
3077 	}
3078 
3079 	/* The interface is running, so we have to force a
3080 	 * reallocation of the queues
3081 	 */
3082 	mvneta_stop_dev(pp);
3083 	on_each_cpu(mvneta_percpu_disable, pp, true);
3084 
3085 	mvneta_cleanup_txqs(pp);
3086 	mvneta_cleanup_rxqs(pp);
3087 
3088 	if (pp->bm_priv)
3089 		mvneta_bm_update_mtu(pp, mtu);
3090 
3091 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3092 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3093 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3094 
3095 	ret = mvneta_setup_rxqs(pp);
3096 	if (ret) {
3097 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3098 		return ret;
3099 	}
3100 
3101 	ret = mvneta_setup_txqs(pp);
3102 	if (ret) {
3103 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3104 		return ret;
3105 	}
3106 
3107 	on_each_cpu(mvneta_percpu_enable, pp, true);
3108 	mvneta_start_dev(pp);
3109 	mvneta_port_up(pp);
3110 
3111 	netdev_update_features(dev);
3112 
3113 	return 0;
3114 }
3115 
3116 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3117 					     netdev_features_t features)
3118 {
3119 	struct mvneta_port *pp = netdev_priv(dev);
3120 
3121 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3122 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3123 		netdev_info(dev,
3124 			    "Disable IP checksum for MTU greater than %dB\n",
3125 			    pp->tx_csum_limit);
3126 	}
3127 
3128 	return features;
3129 }
3130 
3131 /* Get mac address */
3132 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3133 {
3134 	u32 mac_addr_l, mac_addr_h;
3135 
3136 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3137 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3138 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3139 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3140 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3141 	addr[3] = mac_addr_h & 0xFF;
3142 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3143 	addr[5] = mac_addr_l & 0xFF;
3144 }
3145 
3146 /* Handle setting mac address */
3147 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3148 {
3149 	struct mvneta_port *pp = netdev_priv(dev);
3150 	struct sockaddr *sockaddr = addr;
3151 	int ret;
3152 
3153 	ret = eth_prepare_mac_addr_change(dev, addr);
3154 	if (ret < 0)
3155 		return ret;
3156 	/* Remove previous address table entry */
3157 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3158 
3159 	/* Set new addr in hw */
3160 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3161 
3162 	eth_commit_mac_addr_change(dev, addr);
3163 	return 0;
3164 }
3165 
3166 static void mvneta_adjust_link(struct net_device *ndev)
3167 {
3168 	struct mvneta_port *pp = netdev_priv(ndev);
3169 	struct phy_device *phydev = pp->phy_dev;
3170 	int status_change = 0;
3171 
3172 	if (phydev->link) {
3173 		if ((pp->speed != phydev->speed) ||
3174 		    (pp->duplex != phydev->duplex)) {
3175 			u32 val;
3176 
3177 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3178 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3179 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
3180 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3181 
3182 			if (phydev->duplex)
3183 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3184 
3185 			if (phydev->speed == SPEED_1000)
3186 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3187 			else if (phydev->speed == SPEED_100)
3188 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3189 
3190 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3191 
3192 			pp->duplex = phydev->duplex;
3193 			pp->speed  = phydev->speed;
3194 		}
3195 	}
3196 
3197 	if (phydev->link != pp->link) {
3198 		if (!phydev->link) {
3199 			pp->duplex = -1;
3200 			pp->speed = 0;
3201 		}
3202 
3203 		pp->link = phydev->link;
3204 		status_change = 1;
3205 	}
3206 
3207 	if (status_change) {
3208 		if (phydev->link) {
3209 			if (!pp->use_inband_status) {
3210 				u32 val = mvreg_read(pp,
3211 						  MVNETA_GMAC_AUTONEG_CONFIG);
3212 				val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3213 				val |= MVNETA_GMAC_FORCE_LINK_PASS;
3214 				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3215 					    val);
3216 			}
3217 			mvneta_port_up(pp);
3218 		} else {
3219 			if (!pp->use_inband_status) {
3220 				u32 val = mvreg_read(pp,
3221 						  MVNETA_GMAC_AUTONEG_CONFIG);
3222 				val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3223 				val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3224 				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3225 					    val);
3226 			}
3227 			mvneta_port_down(pp);
3228 		}
3229 		phy_print_status(phydev);
3230 	}
3231 }
3232 
3233 static int mvneta_mdio_probe(struct mvneta_port *pp)
3234 {
3235 	struct phy_device *phy_dev;
3236 
3237 	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
3238 				 pp->phy_interface);
3239 	if (!phy_dev) {
3240 		netdev_err(pp->dev, "could not find the PHY\n");
3241 		return -ENODEV;
3242 	}
3243 
3244 	phy_dev->supported &= PHY_GBIT_FEATURES;
3245 	phy_dev->advertising = phy_dev->supported;
3246 
3247 	pp->phy_dev = phy_dev;
3248 	pp->link    = 0;
3249 	pp->duplex  = 0;
3250 	pp->speed   = 0;
3251 
3252 	return 0;
3253 }
3254 
3255 static void mvneta_mdio_remove(struct mvneta_port *pp)
3256 {
3257 	phy_disconnect(pp->phy_dev);
3258 	pp->phy_dev = NULL;
3259 }
3260 
3261 /* Electing a CPU must be done in an atomic way: it should be done
3262  * after or before the removal/insertion of a CPU and this function is
3263  * not reentrant.
3264  */
3265 static void mvneta_percpu_elect(struct mvneta_port *pp)
3266 {
3267 	int elected_cpu = 0, max_cpu, cpu, i = 0;
3268 
3269 	/* Use the cpu associated to the rxq when it is online, in all
3270 	 * the other cases, use the cpu 0 which can't be offline.
3271 	 */
3272 	if (cpu_online(pp->rxq_def))
3273 		elected_cpu = pp->rxq_def;
3274 
3275 	max_cpu = num_present_cpus();
3276 
3277 	for_each_online_cpu(cpu) {
3278 		int rxq_map = 0, txq_map = 0;
3279 		int rxq;
3280 
3281 		for (rxq = 0; rxq < rxq_number; rxq++)
3282 			if ((rxq % max_cpu) == cpu)
3283 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3284 
3285 		if (cpu == elected_cpu)
3286 			/* Map the default receive queue queue to the
3287 			 * elected CPU
3288 			 */
3289 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3290 
3291 		/* We update the TX queue map only if we have one
3292 		 * queue. In this case we associate the TX queue to
3293 		 * the CPU bound to the default RX queue
3294 		 */
3295 		if (txq_number == 1)
3296 			txq_map = (cpu == elected_cpu) ?
3297 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
3298 		else
3299 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3300 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3301 
3302 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3303 
3304 		/* Update the interrupt mask on each CPU according the
3305 		 * new mapping
3306 		 */
3307 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3308 					 pp, true);
3309 		i++;
3310 
3311 	}
3312 };
3313 
3314 static int mvneta_percpu_notifier(struct notifier_block *nfb,
3315 				  unsigned long action, void *hcpu)
3316 {
3317 	struct mvneta_port *pp = container_of(nfb, struct mvneta_port,
3318 					      cpu_notifier);
3319 	int cpu = (unsigned long)hcpu, other_cpu;
3320 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3321 
3322 	switch (action) {
3323 	case CPU_ONLINE:
3324 	case CPU_ONLINE_FROZEN:
3325 	case CPU_DOWN_FAILED:
3326 	case CPU_DOWN_FAILED_FROZEN:
3327 		spin_lock(&pp->lock);
3328 		/* Configuring the driver for a new CPU while the
3329 		 * driver is stopping is racy, so just avoid it.
3330 		 */
3331 		if (pp->is_stopped) {
3332 			spin_unlock(&pp->lock);
3333 			break;
3334 		}
3335 		netif_tx_stop_all_queues(pp->dev);
3336 
3337 		/* We have to synchronise on tha napi of each CPU
3338 		 * except the one just being waked up
3339 		 */
3340 		for_each_online_cpu(other_cpu) {
3341 			if (other_cpu != cpu) {
3342 				struct mvneta_pcpu_port *other_port =
3343 					per_cpu_ptr(pp->ports, other_cpu);
3344 
3345 				napi_synchronize(&other_port->napi);
3346 			}
3347 		}
3348 
3349 		/* Mask all ethernet port interrupts */
3350 		on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3351 		napi_enable(&port->napi);
3352 
3353 
3354 		/* Enable per-CPU interrupts on the CPU that is
3355 		 * brought up.
3356 		 */
3357 		mvneta_percpu_enable(pp);
3358 
3359 		/* Enable per-CPU interrupt on the one CPU we care
3360 		 * about.
3361 		 */
3362 		mvneta_percpu_elect(pp);
3363 
3364 		/* Unmask all ethernet port interrupts */
3365 		on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3366 		mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3367 			MVNETA_CAUSE_PHY_STATUS_CHANGE |
3368 			MVNETA_CAUSE_LINK_CHANGE |
3369 			MVNETA_CAUSE_PSC_SYNC_CHANGE);
3370 		netif_tx_start_all_queues(pp->dev);
3371 		spin_unlock(&pp->lock);
3372 		break;
3373 	case CPU_DOWN_PREPARE:
3374 	case CPU_DOWN_PREPARE_FROZEN:
3375 		netif_tx_stop_all_queues(pp->dev);
3376 		/* Thanks to this lock we are sure that any pending
3377 		 * cpu election is done
3378 		 */
3379 		spin_lock(&pp->lock);
3380 		/* Mask all ethernet port interrupts */
3381 		on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3382 		spin_unlock(&pp->lock);
3383 
3384 		napi_synchronize(&port->napi);
3385 		napi_disable(&port->napi);
3386 		/* Disable per-CPU interrupts on the CPU that is
3387 		 * brought down.
3388 		 */
3389 		mvneta_percpu_disable(pp);
3390 
3391 		break;
3392 	case CPU_DEAD:
3393 	case CPU_DEAD_FROZEN:
3394 		/* Check if a new CPU must be elected now this on is down */
3395 		spin_lock(&pp->lock);
3396 		mvneta_percpu_elect(pp);
3397 		spin_unlock(&pp->lock);
3398 		/* Unmask all ethernet port interrupts */
3399 		on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3400 		mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3401 			MVNETA_CAUSE_PHY_STATUS_CHANGE |
3402 			MVNETA_CAUSE_LINK_CHANGE |
3403 			MVNETA_CAUSE_PSC_SYNC_CHANGE);
3404 		netif_tx_start_all_queues(pp->dev);
3405 		break;
3406 	}
3407 
3408 	return NOTIFY_OK;
3409 }
3410 
3411 static int mvneta_open(struct net_device *dev)
3412 {
3413 	struct mvneta_port *pp = netdev_priv(dev);
3414 	int ret;
3415 
3416 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3417 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3418 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3419 
3420 	ret = mvneta_setup_rxqs(pp);
3421 	if (ret)
3422 		return ret;
3423 
3424 	ret = mvneta_setup_txqs(pp);
3425 	if (ret)
3426 		goto err_cleanup_rxqs;
3427 
3428 	/* Connect to port interrupt line */
3429 	ret = request_percpu_irq(pp->dev->irq, mvneta_isr,
3430 				 MVNETA_DRIVER_NAME, pp->ports);
3431 	if (ret) {
3432 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3433 		goto err_cleanup_txqs;
3434 	}
3435 
3436 	/* Enable per-CPU interrupt on all the CPU to handle our RX
3437 	 * queue interrupts
3438 	 */
3439 	on_each_cpu(mvneta_percpu_enable, pp, true);
3440 
3441 	pp->is_stopped = false;
3442 	/* Register a CPU notifier to handle the case where our CPU
3443 	 * might be taken offline.
3444 	 */
3445 	register_cpu_notifier(&pp->cpu_notifier);
3446 
3447 	/* In default link is down */
3448 	netif_carrier_off(pp->dev);
3449 
3450 	ret = mvneta_mdio_probe(pp);
3451 	if (ret < 0) {
3452 		netdev_err(dev, "cannot probe MDIO bus\n");
3453 		goto err_free_irq;
3454 	}
3455 
3456 	mvneta_start_dev(pp);
3457 
3458 	return 0;
3459 
3460 err_free_irq:
3461 	free_percpu_irq(pp->dev->irq, pp->ports);
3462 err_cleanup_txqs:
3463 	mvneta_cleanup_txqs(pp);
3464 err_cleanup_rxqs:
3465 	mvneta_cleanup_rxqs(pp);
3466 	return ret;
3467 }
3468 
3469 /* Stop the port, free port interrupt line */
3470 static int mvneta_stop(struct net_device *dev)
3471 {
3472 	struct mvneta_port *pp = netdev_priv(dev);
3473 
3474 	/* Inform that we are stopping so we don't want to setup the
3475 	 * driver for new CPUs in the notifiers. The code of the
3476 	 * notifier for CPU online is protected by the same spinlock,
3477 	 * so when we get the lock, the notifer work is done.
3478 	 */
3479 	spin_lock(&pp->lock);
3480 	pp->is_stopped = true;
3481 	spin_unlock(&pp->lock);
3482 
3483 	mvneta_stop_dev(pp);
3484 	mvneta_mdio_remove(pp);
3485 	unregister_cpu_notifier(&pp->cpu_notifier);
3486 	on_each_cpu(mvneta_percpu_disable, pp, true);
3487 	free_percpu_irq(dev->irq, pp->ports);
3488 	mvneta_cleanup_rxqs(pp);
3489 	mvneta_cleanup_txqs(pp);
3490 
3491 	return 0;
3492 }
3493 
3494 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3495 {
3496 	struct mvneta_port *pp = netdev_priv(dev);
3497 
3498 	if (!pp->phy_dev)
3499 		return -ENOTSUPP;
3500 
3501 	return phy_mii_ioctl(pp->phy_dev, ifr, cmd);
3502 }
3503 
3504 /* Ethtool methods */
3505 
3506 /* Get settings (phy address, speed) for ethtools */
3507 int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3508 {
3509 	struct mvneta_port *pp = netdev_priv(dev);
3510 
3511 	if (!pp->phy_dev)
3512 		return -ENODEV;
3513 
3514 	return phy_ethtool_gset(pp->phy_dev, cmd);
3515 }
3516 
3517 /* Set settings (phy address, speed) for ethtools */
3518 int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3519 {
3520 	struct mvneta_port *pp = netdev_priv(dev);
3521 	struct phy_device *phydev = pp->phy_dev;
3522 
3523 	if (!phydev)
3524 		return -ENODEV;
3525 
3526 	if ((cmd->autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3527 		u32 val;
3528 
3529 		mvneta_set_autoneg(pp, cmd->autoneg == AUTONEG_ENABLE);
3530 
3531 		if (cmd->autoneg == AUTONEG_DISABLE) {
3532 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3533 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3534 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
3535 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3536 
3537 			if (phydev->duplex)
3538 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3539 
3540 			if (phydev->speed == SPEED_1000)
3541 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3542 			else if (phydev->speed == SPEED_100)
3543 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3544 
3545 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3546 		}
3547 
3548 		pp->use_inband_status = (cmd->autoneg == AUTONEG_ENABLE);
3549 		netdev_info(pp->dev, "autoneg status set to %i\n",
3550 			    pp->use_inband_status);
3551 
3552 		if (netif_running(dev)) {
3553 			mvneta_port_down(pp);
3554 			mvneta_port_up(pp);
3555 		}
3556 	}
3557 
3558 	return phy_ethtool_sset(pp->phy_dev, cmd);
3559 }
3560 
3561 /* Set interrupt coalescing for ethtools */
3562 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3563 				       struct ethtool_coalesce *c)
3564 {
3565 	struct mvneta_port *pp = netdev_priv(dev);
3566 	int queue;
3567 
3568 	for (queue = 0; queue < rxq_number; queue++) {
3569 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3570 		rxq->time_coal = c->rx_coalesce_usecs;
3571 		rxq->pkts_coal = c->rx_max_coalesced_frames;
3572 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3573 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3574 	}
3575 
3576 	for (queue = 0; queue < txq_number; queue++) {
3577 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3578 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
3579 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3580 	}
3581 
3582 	return 0;
3583 }
3584 
3585 /* get coalescing for ethtools */
3586 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3587 				       struct ethtool_coalesce *c)
3588 {
3589 	struct mvneta_port *pp = netdev_priv(dev);
3590 
3591 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
3592 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
3593 
3594 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
3595 	return 0;
3596 }
3597 
3598 
3599 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3600 				    struct ethtool_drvinfo *drvinfo)
3601 {
3602 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3603 		sizeof(drvinfo->driver));
3604 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3605 		sizeof(drvinfo->version));
3606 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3607 		sizeof(drvinfo->bus_info));
3608 }
3609 
3610 
3611 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3612 					 struct ethtool_ringparam *ring)
3613 {
3614 	struct mvneta_port *pp = netdev_priv(netdev);
3615 
3616 	ring->rx_max_pending = MVNETA_MAX_RXD;
3617 	ring->tx_max_pending = MVNETA_MAX_TXD;
3618 	ring->rx_pending = pp->rx_ring_size;
3619 	ring->tx_pending = pp->tx_ring_size;
3620 }
3621 
3622 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3623 					struct ethtool_ringparam *ring)
3624 {
3625 	struct mvneta_port *pp = netdev_priv(dev);
3626 
3627 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3628 		return -EINVAL;
3629 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3630 		ring->rx_pending : MVNETA_MAX_RXD;
3631 
3632 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3633 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3634 	if (pp->tx_ring_size != ring->tx_pending)
3635 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3636 			    pp->tx_ring_size, ring->tx_pending);
3637 
3638 	if (netif_running(dev)) {
3639 		mvneta_stop(dev);
3640 		if (mvneta_open(dev)) {
3641 			netdev_err(dev,
3642 				   "error on opening device after ring param change\n");
3643 			return -ENOMEM;
3644 		}
3645 	}
3646 
3647 	return 0;
3648 }
3649 
3650 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3651 				       u8 *data)
3652 {
3653 	if (sset == ETH_SS_STATS) {
3654 		int i;
3655 
3656 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3657 			memcpy(data + i * ETH_GSTRING_LEN,
3658 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
3659 	}
3660 }
3661 
3662 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3663 {
3664 	const struct mvneta_statistic *s;
3665 	void __iomem *base = pp->base;
3666 	u32 high, low, val;
3667 	u64 val64;
3668 	int i;
3669 
3670 	for (i = 0, s = mvneta_statistics;
3671 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3672 	     s++, i++) {
3673 		switch (s->type) {
3674 		case T_REG_32:
3675 			val = readl_relaxed(base + s->offset);
3676 			pp->ethtool_stats[i] += val;
3677 			break;
3678 		case T_REG_64:
3679 			/* Docs say to read low 32-bit then high */
3680 			low = readl_relaxed(base + s->offset);
3681 			high = readl_relaxed(base + s->offset + 4);
3682 			val64 = (u64)high << 32 | low;
3683 			pp->ethtool_stats[i] += val64;
3684 			break;
3685 		}
3686 	}
3687 }
3688 
3689 static void mvneta_ethtool_get_stats(struct net_device *dev,
3690 				     struct ethtool_stats *stats, u64 *data)
3691 {
3692 	struct mvneta_port *pp = netdev_priv(dev);
3693 	int i;
3694 
3695 	mvneta_ethtool_update_stats(pp);
3696 
3697 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3698 		*data++ = pp->ethtool_stats[i];
3699 }
3700 
3701 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3702 {
3703 	if (sset == ETH_SS_STATS)
3704 		return ARRAY_SIZE(mvneta_statistics);
3705 	return -EOPNOTSUPP;
3706 }
3707 
3708 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3709 {
3710 	return MVNETA_RSS_LU_TABLE_SIZE;
3711 }
3712 
3713 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3714 				    struct ethtool_rxnfc *info,
3715 				    u32 *rules __always_unused)
3716 {
3717 	switch (info->cmd) {
3718 	case ETHTOOL_GRXRINGS:
3719 		info->data =  rxq_number;
3720 		return 0;
3721 	case ETHTOOL_GRXFH:
3722 		return -EOPNOTSUPP;
3723 	default:
3724 		return -EOPNOTSUPP;
3725 	}
3726 }
3727 
3728 static int  mvneta_config_rss(struct mvneta_port *pp)
3729 {
3730 	int cpu;
3731 	u32 val;
3732 
3733 	netif_tx_stop_all_queues(pp->dev);
3734 
3735 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3736 
3737 	/* We have to synchronise on the napi of each CPU */
3738 	for_each_online_cpu(cpu) {
3739 		struct mvneta_pcpu_port *pcpu_port =
3740 			per_cpu_ptr(pp->ports, cpu);
3741 
3742 		napi_synchronize(&pcpu_port->napi);
3743 		napi_disable(&pcpu_port->napi);
3744 	}
3745 
3746 	pp->rxq_def = pp->indir[0];
3747 
3748 	/* Update unicast mapping */
3749 	mvneta_set_rx_mode(pp->dev);
3750 
3751 	/* Update val of portCfg register accordingly with all RxQueue types */
3752 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3753 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3754 
3755 	/* Update the elected CPU matching the new rxq_def */
3756 	spin_lock(&pp->lock);
3757 	mvneta_percpu_elect(pp);
3758 	spin_unlock(&pp->lock);
3759 
3760 	/* We have to synchronise on the napi of each CPU */
3761 	for_each_online_cpu(cpu) {
3762 		struct mvneta_pcpu_port *pcpu_port =
3763 			per_cpu_ptr(pp->ports, cpu);
3764 
3765 		napi_enable(&pcpu_port->napi);
3766 	}
3767 
3768 	netif_tx_start_all_queues(pp->dev);
3769 
3770 	return 0;
3771 }
3772 
3773 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
3774 				   const u8 *key, const u8 hfunc)
3775 {
3776 	struct mvneta_port *pp = netdev_priv(dev);
3777 	/* We require at least one supported parameter to be changed
3778 	 * and no change in any of the unsupported parameters
3779 	 */
3780 	if (key ||
3781 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3782 		return -EOPNOTSUPP;
3783 
3784 	if (!indir)
3785 		return 0;
3786 
3787 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
3788 
3789 	return mvneta_config_rss(pp);
3790 }
3791 
3792 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
3793 				   u8 *hfunc)
3794 {
3795 	struct mvneta_port *pp = netdev_priv(dev);
3796 
3797 	if (hfunc)
3798 		*hfunc = ETH_RSS_HASH_TOP;
3799 
3800 	if (!indir)
3801 		return 0;
3802 
3803 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
3804 
3805 	return 0;
3806 }
3807 
3808 static const struct net_device_ops mvneta_netdev_ops = {
3809 	.ndo_open            = mvneta_open,
3810 	.ndo_stop            = mvneta_stop,
3811 	.ndo_start_xmit      = mvneta_tx,
3812 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
3813 	.ndo_set_mac_address = mvneta_set_mac_addr,
3814 	.ndo_change_mtu      = mvneta_change_mtu,
3815 	.ndo_fix_features    = mvneta_fix_features,
3816 	.ndo_get_stats64     = mvneta_get_stats64,
3817 	.ndo_do_ioctl        = mvneta_ioctl,
3818 };
3819 
3820 const struct ethtool_ops mvneta_eth_tool_ops = {
3821 	.get_link       = ethtool_op_get_link,
3822 	.get_settings   = mvneta_ethtool_get_settings,
3823 	.set_settings   = mvneta_ethtool_set_settings,
3824 	.set_coalesce   = mvneta_ethtool_set_coalesce,
3825 	.get_coalesce   = mvneta_ethtool_get_coalesce,
3826 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
3827 	.get_ringparam  = mvneta_ethtool_get_ringparam,
3828 	.set_ringparam	= mvneta_ethtool_set_ringparam,
3829 	.get_strings	= mvneta_ethtool_get_strings,
3830 	.get_ethtool_stats = mvneta_ethtool_get_stats,
3831 	.get_sset_count	= mvneta_ethtool_get_sset_count,
3832 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
3833 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
3834 	.get_rxfh	= mvneta_ethtool_get_rxfh,
3835 	.set_rxfh	= mvneta_ethtool_set_rxfh,
3836 };
3837 
3838 /* Initialize hw */
3839 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3840 {
3841 	int queue;
3842 
3843 	/* Disable port */
3844 	mvneta_port_disable(pp);
3845 
3846 	/* Set port default values */
3847 	mvneta_defaults_set(pp);
3848 
3849 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
3850 				GFP_KERNEL);
3851 	if (!pp->txqs)
3852 		return -ENOMEM;
3853 
3854 	/* Initialize TX descriptor rings */
3855 	for (queue = 0; queue < txq_number; queue++) {
3856 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3857 		txq->id = queue;
3858 		txq->size = pp->tx_ring_size;
3859 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
3860 	}
3861 
3862 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
3863 				GFP_KERNEL);
3864 	if (!pp->rxqs)
3865 		return -ENOMEM;
3866 
3867 	/* Create Rx descriptor rings */
3868 	for (queue = 0; queue < rxq_number; queue++) {
3869 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3870 		rxq->id = queue;
3871 		rxq->size = pp->rx_ring_size;
3872 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
3873 		rxq->time_coal = MVNETA_RX_COAL_USEC;
3874 	}
3875 
3876 	return 0;
3877 }
3878 
3879 /* platform glue : initialize decoding windows */
3880 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
3881 				     const struct mbus_dram_target_info *dram)
3882 {
3883 	u32 win_enable;
3884 	u32 win_protect;
3885 	int i;
3886 
3887 	for (i = 0; i < 6; i++) {
3888 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
3889 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
3890 
3891 		if (i < 4)
3892 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
3893 	}
3894 
3895 	win_enable = 0x3f;
3896 	win_protect = 0;
3897 
3898 	for (i = 0; i < dram->num_cs; i++) {
3899 		const struct mbus_dram_window *cs = dram->cs + i;
3900 		mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
3901 			    (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
3902 
3903 		mvreg_write(pp, MVNETA_WIN_SIZE(i),
3904 			    (cs->size - 1) & 0xffff0000);
3905 
3906 		win_enable &= ~(1 << i);
3907 		win_protect |= 3 << (2 * i);
3908 	}
3909 
3910 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
3911 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
3912 }
3913 
3914 /* Power up the port */
3915 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
3916 {
3917 	u32 ctrl;
3918 
3919 	/* MAC Cause register should be cleared */
3920 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
3921 
3922 	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3923 
3924 	/* Even though it might look weird, when we're configured in
3925 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3926 	 */
3927 	switch(phy_mode) {
3928 	case PHY_INTERFACE_MODE_QSGMII:
3929 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
3930 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3931 		break;
3932 	case PHY_INTERFACE_MODE_SGMII:
3933 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
3934 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
3935 		break;
3936 	case PHY_INTERFACE_MODE_RGMII:
3937 	case PHY_INTERFACE_MODE_RGMII_ID:
3938 		ctrl |= MVNETA_GMAC2_PORT_RGMII;
3939 		break;
3940 	default:
3941 		return -EINVAL;
3942 	}
3943 
3944 	/* Cancel Port Reset */
3945 	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
3946 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
3947 
3948 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3949 		MVNETA_GMAC2_PORT_RESET) != 0)
3950 		continue;
3951 
3952 	return 0;
3953 }
3954 
3955 /* Device initialization routine */
3956 static int mvneta_probe(struct platform_device *pdev)
3957 {
3958 	const struct mbus_dram_target_info *dram_target_info;
3959 	struct resource *res;
3960 	struct device_node *dn = pdev->dev.of_node;
3961 	struct device_node *phy_node;
3962 	struct device_node *bm_node;
3963 	struct mvneta_port *pp;
3964 	struct net_device *dev;
3965 	const char *dt_mac_addr;
3966 	char hw_mac_addr[ETH_ALEN];
3967 	const char *mac_from;
3968 	const char *managed;
3969 	int tx_csum_limit;
3970 	int phy_mode;
3971 	int err;
3972 	int cpu;
3973 
3974 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
3975 	if (!dev)
3976 		return -ENOMEM;
3977 
3978 	dev->irq = irq_of_parse_and_map(dn, 0);
3979 	if (dev->irq == 0) {
3980 		err = -EINVAL;
3981 		goto err_free_netdev;
3982 	}
3983 
3984 	phy_node = of_parse_phandle(dn, "phy", 0);
3985 	if (!phy_node) {
3986 		if (!of_phy_is_fixed_link(dn)) {
3987 			dev_err(&pdev->dev, "no PHY specified\n");
3988 			err = -ENODEV;
3989 			goto err_free_irq;
3990 		}
3991 
3992 		err = of_phy_register_fixed_link(dn);
3993 		if (err < 0) {
3994 			dev_err(&pdev->dev, "cannot register fixed PHY\n");
3995 			goto err_free_irq;
3996 		}
3997 
3998 		/* In the case of a fixed PHY, the DT node associated
3999 		 * to the PHY is the Ethernet MAC DT node.
4000 		 */
4001 		phy_node = of_node_get(dn);
4002 	}
4003 
4004 	phy_mode = of_get_phy_mode(dn);
4005 	if (phy_mode < 0) {
4006 		dev_err(&pdev->dev, "incorrect phy-mode\n");
4007 		err = -EINVAL;
4008 		goto err_put_phy_node;
4009 	}
4010 
4011 	dev->tx_queue_len = MVNETA_MAX_TXD;
4012 	dev->watchdog_timeo = 5 * HZ;
4013 	dev->netdev_ops = &mvneta_netdev_ops;
4014 
4015 	dev->ethtool_ops = &mvneta_eth_tool_ops;
4016 
4017 	pp = netdev_priv(dev);
4018 	spin_lock_init(&pp->lock);
4019 	pp->phy_node = phy_node;
4020 	pp->phy_interface = phy_mode;
4021 
4022 	err = of_property_read_string(dn, "managed", &managed);
4023 	pp->use_inband_status = (err == 0 &&
4024 				 strcmp(managed, "in-band-status") == 0);
4025 	pp->cpu_notifier.notifier_call = mvneta_percpu_notifier;
4026 
4027 	pp->rxq_def = rxq_def;
4028 
4029 	pp->indir[0] = rxq_def;
4030 
4031 	pp->clk = devm_clk_get(&pdev->dev, "core");
4032 	if (IS_ERR(pp->clk))
4033 		pp->clk = devm_clk_get(&pdev->dev, NULL);
4034 	if (IS_ERR(pp->clk)) {
4035 		err = PTR_ERR(pp->clk);
4036 		goto err_put_phy_node;
4037 	}
4038 
4039 	clk_prepare_enable(pp->clk);
4040 
4041 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4042 	if (!IS_ERR(pp->clk_bus))
4043 		clk_prepare_enable(pp->clk_bus);
4044 
4045 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4046 	pp->base = devm_ioremap_resource(&pdev->dev, res);
4047 	if (IS_ERR(pp->base)) {
4048 		err = PTR_ERR(pp->base);
4049 		goto err_clk;
4050 	}
4051 
4052 	/* Alloc per-cpu port structure */
4053 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4054 	if (!pp->ports) {
4055 		err = -ENOMEM;
4056 		goto err_clk;
4057 	}
4058 
4059 	/* Alloc per-cpu stats */
4060 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4061 	if (!pp->stats) {
4062 		err = -ENOMEM;
4063 		goto err_free_ports;
4064 	}
4065 
4066 	dt_mac_addr = of_get_mac_address(dn);
4067 	if (dt_mac_addr) {
4068 		mac_from = "device tree";
4069 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4070 	} else {
4071 		mvneta_get_mac_addr(pp, hw_mac_addr);
4072 		if (is_valid_ether_addr(hw_mac_addr)) {
4073 			mac_from = "hardware";
4074 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4075 		} else {
4076 			mac_from = "random";
4077 			eth_hw_addr_random(dev);
4078 		}
4079 	}
4080 
4081 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4082 		if (tx_csum_limit < 0 ||
4083 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4084 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4085 			dev_info(&pdev->dev,
4086 				 "Wrong TX csum limit in DT, set to %dB\n",
4087 				 MVNETA_TX_CSUM_DEF_SIZE);
4088 		}
4089 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4090 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4091 	} else {
4092 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4093 	}
4094 
4095 	pp->tx_csum_limit = tx_csum_limit;
4096 
4097 	dram_target_info = mv_mbus_dram_info();
4098 	if (dram_target_info)
4099 		mvneta_conf_mbus_windows(pp, dram_target_info);
4100 
4101 	pp->tx_ring_size = MVNETA_MAX_TXD;
4102 	pp->rx_ring_size = MVNETA_MAX_RXD;
4103 
4104 	pp->dev = dev;
4105 	SET_NETDEV_DEV(dev, &pdev->dev);
4106 
4107 	pp->id = global_port_id++;
4108 
4109 	/* Obtain access to BM resources if enabled and already initialized */
4110 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4111 	if (bm_node && bm_node->data) {
4112 		pp->bm_priv = bm_node->data;
4113 		err = mvneta_bm_port_init(pdev, pp);
4114 		if (err < 0) {
4115 			dev_info(&pdev->dev, "use SW buffer management\n");
4116 			pp->bm_priv = NULL;
4117 		}
4118 	}
4119 
4120 	err = mvneta_init(&pdev->dev, pp);
4121 	if (err < 0)
4122 		goto err_netdev;
4123 
4124 	err = mvneta_port_power_up(pp, phy_mode);
4125 	if (err < 0) {
4126 		dev_err(&pdev->dev, "can't power up port\n");
4127 		goto err_netdev;
4128 	}
4129 
4130 	for_each_present_cpu(cpu) {
4131 		struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4132 
4133 		netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4134 		port->pp = pp;
4135 	}
4136 
4137 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
4138 	dev->hw_features |= dev->features;
4139 	dev->vlan_features |= dev->features;
4140 	dev->priv_flags |= IFF_UNICAST_FLT | IFF_LIVE_ADDR_CHANGE;
4141 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4142 
4143 	err = register_netdev(dev);
4144 	if (err < 0) {
4145 		dev_err(&pdev->dev, "failed to register\n");
4146 		goto err_free_stats;
4147 	}
4148 
4149 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4150 		    dev->dev_addr);
4151 
4152 	platform_set_drvdata(pdev, pp->dev);
4153 
4154 	if (pp->use_inband_status) {
4155 		struct phy_device *phy = of_phy_find_device(dn);
4156 
4157 		mvneta_fixed_link_update(pp, phy);
4158 
4159 		put_device(&phy->mdio.dev);
4160 	}
4161 
4162 	return 0;
4163 
4164 err_netdev:
4165 	unregister_netdev(dev);
4166 	if (pp->bm_priv) {
4167 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4168 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4169 				       1 << pp->id);
4170 	}
4171 err_free_stats:
4172 	free_percpu(pp->stats);
4173 err_free_ports:
4174 	free_percpu(pp->ports);
4175 err_clk:
4176 	clk_disable_unprepare(pp->clk_bus);
4177 	clk_disable_unprepare(pp->clk);
4178 err_put_phy_node:
4179 	of_node_put(phy_node);
4180 err_free_irq:
4181 	irq_dispose_mapping(dev->irq);
4182 err_free_netdev:
4183 	free_netdev(dev);
4184 	return err;
4185 }
4186 
4187 /* Device removal routine */
4188 static int mvneta_remove(struct platform_device *pdev)
4189 {
4190 	struct net_device  *dev = platform_get_drvdata(pdev);
4191 	struct mvneta_port *pp = netdev_priv(dev);
4192 
4193 	unregister_netdev(dev);
4194 	clk_disable_unprepare(pp->clk_bus);
4195 	clk_disable_unprepare(pp->clk);
4196 	free_percpu(pp->ports);
4197 	free_percpu(pp->stats);
4198 	irq_dispose_mapping(dev->irq);
4199 	of_node_put(pp->phy_node);
4200 	free_netdev(dev);
4201 
4202 	if (pp->bm_priv) {
4203 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4204 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4205 				       1 << pp->id);
4206 	}
4207 
4208 	return 0;
4209 }
4210 
4211 static const struct of_device_id mvneta_match[] = {
4212 	{ .compatible = "marvell,armada-370-neta" },
4213 	{ .compatible = "marvell,armada-xp-neta" },
4214 	{ }
4215 };
4216 MODULE_DEVICE_TABLE(of, mvneta_match);
4217 
4218 static struct platform_driver mvneta_driver = {
4219 	.probe = mvneta_probe,
4220 	.remove = mvneta_remove,
4221 	.driver = {
4222 		.name = MVNETA_DRIVER_NAME,
4223 		.of_match_table = mvneta_match,
4224 	},
4225 };
4226 
4227 module_platform_driver(mvneta_driver);
4228 
4229 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4230 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4231 MODULE_LICENSE("GPL");
4232 
4233 module_param(rxq_number, int, S_IRUGO);
4234 module_param(txq_number, int, S_IRUGO);
4235 
4236 module_param(rxq_def, int, S_IRUGO);
4237 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
4238