1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy/phy.h> 31 #include <linux/phy.h> 32 #include <linux/phylink.h> 33 #include <linux/platform_device.h> 34 #include <linux/skbuff.h> 35 #include <net/hwbm.h> 36 #include "mvneta_bm.h" 37 #include <net/ip.h> 38 #include <net/ipv6.h> 39 #include <net/tso.h> 40 #include <net/page_pool.h> 41 #include <linux/bpf_trace.h> 42 43 /* Registers */ 44 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 45 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 46 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 47 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 48 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 49 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 50 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 51 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 52 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 53 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 54 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 55 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 56 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 57 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 58 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 59 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 61 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 62 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 64 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 65 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 66 #define MVNETA_PORT_RX_RESET 0x1cc0 67 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 68 #define MVNETA_PHY_ADDR 0x2000 69 #define MVNETA_PHY_ADDR_MASK 0x1f 70 #define MVNETA_MBUS_RETRY 0x2010 71 #define MVNETA_UNIT_INTR_CAUSE 0x2080 72 #define MVNETA_UNIT_CONTROL 0x20B0 73 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 74 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 75 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 76 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 77 #define MVNETA_BASE_ADDR_ENABLE 0x2290 78 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 79 #define MVNETA_PORT_CONFIG 0x2400 80 #define MVNETA_UNI_PROMISC_MODE BIT(0) 81 #define MVNETA_DEF_RXQ(q) ((q) << 1) 82 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 83 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 84 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 85 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 86 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 87 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 88 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 89 MVNETA_DEF_RXQ_ARP(q) | \ 90 MVNETA_DEF_RXQ_TCP(q) | \ 91 MVNETA_DEF_RXQ_UDP(q) | \ 92 MVNETA_DEF_RXQ_BPDU(q) | \ 93 MVNETA_TX_UNSET_ERR_SUM | \ 94 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 95 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 96 #define MVNETA_MAC_ADDR_LOW 0x2414 97 #define MVNETA_MAC_ADDR_HIGH 0x2418 98 #define MVNETA_SDMA_CONFIG 0x241c 99 #define MVNETA_SDMA_BRST_SIZE_16 4 100 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 101 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 102 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 103 #define MVNETA_DESC_SWAP BIT(6) 104 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 105 #define MVNETA_PORT_STATUS 0x2444 106 #define MVNETA_TX_IN_PRGRS BIT(1) 107 #define MVNETA_TX_FIFO_EMPTY BIT(8) 108 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 109 #define MVNETA_SERDES_CFG 0x24A0 110 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 111 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 112 #define MVNETA_TYPE_PRIO 0x24bc 113 #define MVNETA_FORCE_UNI BIT(21) 114 #define MVNETA_TXQ_CMD_1 0x24e4 115 #define MVNETA_TXQ_CMD 0x2448 116 #define MVNETA_TXQ_DISABLE_SHIFT 8 117 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 118 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 119 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 120 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 121 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 122 #define MVNETA_ACC_MODE 0x2500 123 #define MVNETA_BM_ADDRESS 0x2504 124 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 125 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 126 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 127 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 128 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 129 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 130 131 /* Exception Interrupt Port/Queue Cause register 132 * 133 * Their behavior depend of the mapping done using the PCPX2Q 134 * registers. For a given CPU if the bit associated to a queue is not 135 * set, then for the register a read from this CPU will always return 136 * 0 and a write won't do anything 137 */ 138 139 #define MVNETA_INTR_NEW_CAUSE 0x25a0 140 #define MVNETA_INTR_NEW_MASK 0x25a4 141 142 /* bits 0..7 = TXQ SENT, one bit per queue. 143 * bits 8..15 = RXQ OCCUP, one bit per queue. 144 * bits 16..23 = RXQ FREE, one bit per queue. 145 * bit 29 = OLD_REG_SUM, see old reg ? 146 * bit 30 = TX_ERR_SUM, one bit for 4 ports 147 * bit 31 = MISC_SUM, one bit for 4 ports 148 */ 149 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 150 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 151 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 152 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 153 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 154 155 #define MVNETA_INTR_OLD_CAUSE 0x25a8 156 #define MVNETA_INTR_OLD_MASK 0x25ac 157 158 /* Data Path Port/Queue Cause Register */ 159 #define MVNETA_INTR_MISC_CAUSE 0x25b0 160 #define MVNETA_INTR_MISC_MASK 0x25b4 161 162 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 163 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 164 #define MVNETA_CAUSE_PTP BIT(4) 165 166 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 167 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 168 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 169 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 170 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 171 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 172 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 173 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 174 175 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 176 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 177 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 178 179 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 180 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 181 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 182 183 #define MVNETA_INTR_ENABLE 0x25b8 184 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 185 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 186 187 #define MVNETA_RXQ_CMD 0x2680 188 #define MVNETA_RXQ_DISABLE_SHIFT 8 189 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 190 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 191 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 192 #define MVNETA_GMAC_CTRL_0 0x2c00 193 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 194 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 195 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1) 196 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 197 #define MVNETA_GMAC_CTRL_2 0x2c08 198 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 199 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 200 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 201 #define MVNETA_GMAC2_PORT_RESET BIT(6) 202 #define MVNETA_GMAC_STATUS 0x2c10 203 #define MVNETA_GMAC_LINK_UP BIT(0) 204 #define MVNETA_GMAC_SPEED_1000 BIT(1) 205 #define MVNETA_GMAC_SPEED_100 BIT(2) 206 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 207 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 208 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 209 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 210 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 211 #define MVNETA_GMAC_AN_COMPLETE BIT(11) 212 #define MVNETA_GMAC_SYNC_OK BIT(14) 213 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 214 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 215 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 216 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 217 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3) 218 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4) 219 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 220 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 221 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 222 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8) 223 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9) 224 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 225 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 226 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 227 #define MVNETA_GMAC_CTRL_4 0x2c90 228 #define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1) 229 #define MVNETA_MIB_COUNTERS_BASE 0x3000 230 #define MVNETA_MIB_LATE_COLLISION 0x7c 231 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 232 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 233 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 234 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 235 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 236 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 237 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 238 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 239 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 240 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 241 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 242 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 243 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 244 #define MVNETA_PORT_TX_RESET 0x3cf0 245 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 246 #define MVNETA_TX_MTU 0x3e0c 247 #define MVNETA_TX_TOKEN_SIZE 0x3e14 248 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 249 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 250 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 251 252 #define MVNETA_LPI_CTRL_0 0x2cc0 253 #define MVNETA_LPI_CTRL_1 0x2cc4 254 #define MVNETA_LPI_REQUEST_ENABLE BIT(0) 255 #define MVNETA_LPI_CTRL_2 0x2cc8 256 #define MVNETA_LPI_STATUS 0x2ccc 257 258 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 259 260 /* Descriptor ring Macros */ 261 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 262 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 263 264 /* Various constants */ 265 266 /* Coalescing */ 267 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 268 #define MVNETA_RX_COAL_PKTS 32 269 #define MVNETA_RX_COAL_USEC 100 270 271 /* The two bytes Marvell header. Either contains a special value used 272 * by Marvell switches when a specific hardware mode is enabled (not 273 * supported by this driver) or is filled automatically by zeroes on 274 * the RX side. Those two bytes being at the front of the Ethernet 275 * header, they allow to have the IP header aligned on a 4 bytes 276 * boundary automatically: the hardware skips those two bytes on its 277 * own. 278 */ 279 #define MVNETA_MH_SIZE 2 280 281 #define MVNETA_VLAN_TAG_LEN 4 282 283 #define MVNETA_TX_CSUM_DEF_SIZE 1600 284 #define MVNETA_TX_CSUM_MAX_SIZE 9800 285 #define MVNETA_ACC_MODE_EXT1 1 286 #define MVNETA_ACC_MODE_EXT2 2 287 288 #define MVNETA_MAX_DECODE_WIN 6 289 290 /* Timeout constants */ 291 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 292 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 293 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 294 295 #define MVNETA_TX_MTU_MAX 0x3ffff 296 297 /* The RSS lookup table actually has 256 entries but we do not use 298 * them yet 299 */ 300 #define MVNETA_RSS_LU_TABLE_SIZE 1 301 302 /* Max number of Rx descriptors */ 303 #define MVNETA_MAX_RXD 512 304 305 /* Max number of Tx descriptors */ 306 #define MVNETA_MAX_TXD 1024 307 308 /* Max number of allowed TCP segments for software TSO */ 309 #define MVNETA_MAX_TSO_SEGS 100 310 311 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 312 313 /* descriptor aligned size */ 314 #define MVNETA_DESC_ALIGNED_SIZE 32 315 316 /* Number of bytes to be taken into account by HW when putting incoming data 317 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 318 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 319 */ 320 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 321 322 #define MVNETA_RX_PKT_SIZE(mtu) \ 323 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 324 ETH_HLEN + ETH_FCS_LEN, \ 325 cache_line_size()) 326 327 #define MVNETA_SKB_HEADROOM max(XDP_PACKET_HEADROOM, NET_SKB_PAD) 328 #define MVNETA_SKB_PAD (SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \ 329 MVNETA_SKB_HEADROOM)) 330 #define MVNETA_SKB_SIZE(len) (SKB_DATA_ALIGN(len) + MVNETA_SKB_PAD) 331 #define MVNETA_MAX_RX_BUF_SIZE (PAGE_SIZE - MVNETA_SKB_PAD) 332 333 #define IS_TSO_HEADER(txq, addr) \ 334 ((addr >= txq->tso_hdrs_phys) && \ 335 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 336 337 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 338 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 339 340 enum { 341 ETHTOOL_STAT_EEE_WAKEUP, 342 ETHTOOL_STAT_SKB_ALLOC_ERR, 343 ETHTOOL_STAT_REFILL_ERR, 344 ETHTOOL_XDP_REDIRECT, 345 ETHTOOL_XDP_PASS, 346 ETHTOOL_XDP_DROP, 347 ETHTOOL_XDP_TX, 348 ETHTOOL_XDP_TX_ERR, 349 ETHTOOL_XDP_XMIT, 350 ETHTOOL_XDP_XMIT_ERR, 351 ETHTOOL_MAX_STATS, 352 }; 353 354 struct mvneta_statistic { 355 unsigned short offset; 356 unsigned short type; 357 const char name[ETH_GSTRING_LEN]; 358 }; 359 360 #define T_REG_32 32 361 #define T_REG_64 64 362 #define T_SW 1 363 364 #define MVNETA_XDP_PASS 0 365 #define MVNETA_XDP_DROPPED BIT(0) 366 #define MVNETA_XDP_TX BIT(1) 367 #define MVNETA_XDP_REDIR BIT(2) 368 369 static const struct mvneta_statistic mvneta_statistics[] = { 370 { 0x3000, T_REG_64, "good_octets_received", }, 371 { 0x3010, T_REG_32, "good_frames_received", }, 372 { 0x3008, T_REG_32, "bad_octets_received", }, 373 { 0x3014, T_REG_32, "bad_frames_received", }, 374 { 0x3018, T_REG_32, "broadcast_frames_received", }, 375 { 0x301c, T_REG_32, "multicast_frames_received", }, 376 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 377 { 0x3058, T_REG_32, "good_fc_received", }, 378 { 0x305c, T_REG_32, "bad_fc_received", }, 379 { 0x3060, T_REG_32, "undersize_received", }, 380 { 0x3064, T_REG_32, "fragments_received", }, 381 { 0x3068, T_REG_32, "oversize_received", }, 382 { 0x306c, T_REG_32, "jabber_received", }, 383 { 0x3070, T_REG_32, "mac_receive_error", }, 384 { 0x3074, T_REG_32, "bad_crc_event", }, 385 { 0x3078, T_REG_32, "collision", }, 386 { 0x307c, T_REG_32, "late_collision", }, 387 { 0x2484, T_REG_32, "rx_discard", }, 388 { 0x2488, T_REG_32, "rx_overrun", }, 389 { 0x3020, T_REG_32, "frames_64_octets", }, 390 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 391 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 392 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 393 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 394 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 395 { 0x3038, T_REG_64, "good_octets_sent", }, 396 { 0x3040, T_REG_32, "good_frames_sent", }, 397 { 0x3044, T_REG_32, "excessive_collision", }, 398 { 0x3048, T_REG_32, "multicast_frames_sent", }, 399 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 400 { 0x3054, T_REG_32, "fc_sent", }, 401 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 402 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", }, 403 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", }, 404 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", }, 405 { ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", }, 406 { ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", }, 407 { ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", }, 408 { ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", }, 409 { ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", }, 410 { ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", }, 411 { ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", }, 412 }; 413 414 struct mvneta_stats { 415 u64 rx_packets; 416 u64 rx_bytes; 417 u64 tx_packets; 418 u64 tx_bytes; 419 /* xdp */ 420 u64 xdp_redirect; 421 u64 xdp_pass; 422 u64 xdp_drop; 423 u64 xdp_xmit; 424 u64 xdp_xmit_err; 425 u64 xdp_tx; 426 u64 xdp_tx_err; 427 }; 428 429 struct mvneta_ethtool_stats { 430 struct mvneta_stats ps; 431 u64 skb_alloc_error; 432 u64 refill_error; 433 }; 434 435 struct mvneta_pcpu_stats { 436 struct u64_stats_sync syncp; 437 438 struct mvneta_ethtool_stats es; 439 u64 rx_dropped; 440 u64 rx_errors; 441 }; 442 443 struct mvneta_pcpu_port { 444 /* Pointer to the shared port */ 445 struct mvneta_port *pp; 446 447 /* Pointer to the CPU-local NAPI struct */ 448 struct napi_struct napi; 449 450 /* Cause of the previous interrupt */ 451 u32 cause_rx_tx; 452 }; 453 454 struct mvneta_port { 455 u8 id; 456 struct mvneta_pcpu_port __percpu *ports; 457 struct mvneta_pcpu_stats __percpu *stats; 458 459 int pkt_size; 460 void __iomem *base; 461 struct mvneta_rx_queue *rxqs; 462 struct mvneta_tx_queue *txqs; 463 struct net_device *dev; 464 struct hlist_node node_online; 465 struct hlist_node node_dead; 466 int rxq_def; 467 /* Protect the access to the percpu interrupt registers, 468 * ensuring that the configuration remains coherent. 469 */ 470 spinlock_t lock; 471 bool is_stopped; 472 473 u32 cause_rx_tx; 474 struct napi_struct napi; 475 476 struct bpf_prog *xdp_prog; 477 478 /* Core clock */ 479 struct clk *clk; 480 /* AXI clock */ 481 struct clk *clk_bus; 482 u8 mcast_count[256]; 483 u16 tx_ring_size; 484 u16 rx_ring_size; 485 486 phy_interface_t phy_interface; 487 struct device_node *dn; 488 unsigned int tx_csum_limit; 489 struct phylink *phylink; 490 struct phylink_config phylink_config; 491 struct phy *comphy; 492 493 struct mvneta_bm *bm_priv; 494 struct mvneta_bm_pool *pool_long; 495 struct mvneta_bm_pool *pool_short; 496 int bm_win_id; 497 498 bool eee_enabled; 499 bool eee_active; 500 bool tx_lpi_enabled; 501 502 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 503 504 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 505 506 /* Flags for special SoC configurations */ 507 bool neta_armada3700; 508 u16 rx_offset_correction; 509 const struct mbus_dram_target_info *dram_target_info; 510 }; 511 512 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 513 * layout of the transmit and reception DMA descriptors, and their 514 * layout is therefore defined by the hardware design 515 */ 516 517 #define MVNETA_TX_L3_OFF_SHIFT 0 518 #define MVNETA_TX_IP_HLEN_SHIFT 8 519 #define MVNETA_TX_L4_UDP BIT(16) 520 #define MVNETA_TX_L3_IP6 BIT(17) 521 #define MVNETA_TXD_IP_CSUM BIT(18) 522 #define MVNETA_TXD_Z_PAD BIT(19) 523 #define MVNETA_TXD_L_DESC BIT(20) 524 #define MVNETA_TXD_F_DESC BIT(21) 525 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 526 MVNETA_TXD_L_DESC | \ 527 MVNETA_TXD_F_DESC) 528 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 529 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 530 531 #define MVNETA_RXD_ERR_CRC 0x0 532 #define MVNETA_RXD_BM_POOL_SHIFT 13 533 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 534 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 535 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 536 #define MVNETA_RXD_ERR_LEN BIT(18) 537 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 538 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 539 #define MVNETA_RXD_L3_IP4 BIT(25) 540 #define MVNETA_RXD_LAST_DESC BIT(26) 541 #define MVNETA_RXD_FIRST_DESC BIT(27) 542 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \ 543 MVNETA_RXD_LAST_DESC) 544 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 545 546 #if defined(__LITTLE_ENDIAN) 547 struct mvneta_tx_desc { 548 u32 command; /* Options used by HW for packet transmitting.*/ 549 u16 reserved1; /* csum_l4 (for future use) */ 550 u16 data_size; /* Data size of transmitted packet in bytes */ 551 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 552 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 553 u32 reserved3[4]; /* Reserved - (for future use) */ 554 }; 555 556 struct mvneta_rx_desc { 557 u32 status; /* Info about received packet */ 558 u16 reserved1; /* pnc_info - (for future use, PnC) */ 559 u16 data_size; /* Size of received packet in bytes */ 560 561 u32 buf_phys_addr; /* Physical address of the buffer */ 562 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 563 564 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 565 u16 reserved3; /* prefetch_cmd, for future use */ 566 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 567 568 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 569 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 570 }; 571 #else 572 struct mvneta_tx_desc { 573 u16 data_size; /* Data size of transmitted packet in bytes */ 574 u16 reserved1; /* csum_l4 (for future use) */ 575 u32 command; /* Options used by HW for packet transmitting.*/ 576 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 577 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 578 u32 reserved3[4]; /* Reserved - (for future use) */ 579 }; 580 581 struct mvneta_rx_desc { 582 u16 data_size; /* Size of received packet in bytes */ 583 u16 reserved1; /* pnc_info - (for future use, PnC) */ 584 u32 status; /* Info about received packet */ 585 586 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 587 u32 buf_phys_addr; /* Physical address of the buffer */ 588 589 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 590 u16 reserved3; /* prefetch_cmd, for future use */ 591 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 592 593 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 594 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 595 }; 596 #endif 597 598 enum mvneta_tx_buf_type { 599 MVNETA_TYPE_SKB, 600 MVNETA_TYPE_XDP_TX, 601 MVNETA_TYPE_XDP_NDO, 602 }; 603 604 struct mvneta_tx_buf { 605 enum mvneta_tx_buf_type type; 606 union { 607 struct xdp_frame *xdpf; 608 struct sk_buff *skb; 609 }; 610 }; 611 612 struct mvneta_tx_queue { 613 /* Number of this TX queue, in the range 0-7 */ 614 u8 id; 615 616 /* Number of TX DMA descriptors in the descriptor ring */ 617 int size; 618 619 /* Number of currently used TX DMA descriptor in the 620 * descriptor ring 621 */ 622 int count; 623 int pending; 624 int tx_stop_threshold; 625 int tx_wake_threshold; 626 627 /* Array of transmitted buffers */ 628 struct mvneta_tx_buf *buf; 629 630 /* Index of last TX DMA descriptor that was inserted */ 631 int txq_put_index; 632 633 /* Index of the TX DMA descriptor to be cleaned up */ 634 int txq_get_index; 635 636 u32 done_pkts_coal; 637 638 /* Virtual address of the TX DMA descriptors array */ 639 struct mvneta_tx_desc *descs; 640 641 /* DMA address of the TX DMA descriptors array */ 642 dma_addr_t descs_phys; 643 644 /* Index of the last TX DMA descriptor */ 645 int last_desc; 646 647 /* Index of the next TX DMA descriptor to process */ 648 int next_desc_to_proc; 649 650 /* DMA buffers for TSO headers */ 651 char *tso_hdrs; 652 653 /* DMA address of TSO headers */ 654 dma_addr_t tso_hdrs_phys; 655 656 /* Affinity mask for CPUs*/ 657 cpumask_t affinity_mask; 658 }; 659 660 struct mvneta_rx_queue { 661 /* rx queue number, in the range 0-7 */ 662 u8 id; 663 664 /* num of rx descriptors in the rx descriptor ring */ 665 int size; 666 667 u32 pkts_coal; 668 u32 time_coal; 669 670 /* page_pool */ 671 struct page_pool *page_pool; 672 struct xdp_rxq_info xdp_rxq; 673 674 /* Virtual address of the RX buffer */ 675 void **buf_virt_addr; 676 677 /* Virtual address of the RX DMA descriptors array */ 678 struct mvneta_rx_desc *descs; 679 680 /* DMA address of the RX DMA descriptors array */ 681 dma_addr_t descs_phys; 682 683 /* Index of the last RX DMA descriptor */ 684 int last_desc; 685 686 /* Index of the next RX DMA descriptor to process */ 687 int next_desc_to_proc; 688 689 /* Index of first RX DMA descriptor to refill */ 690 int first_to_refill; 691 u32 refill_num; 692 693 /* pointer to uncomplete skb buffer */ 694 struct sk_buff *skb; 695 int left_size; 696 }; 697 698 static enum cpuhp_state online_hpstate; 699 /* The hardware supports eight (8) rx queues, but we are only allowing 700 * the first one to be used. Therefore, let's just allocate one queue. 701 */ 702 static int rxq_number = 8; 703 static int txq_number = 8; 704 705 static int rxq_def; 706 707 static int rx_copybreak __read_mostly = 256; 708 709 /* HW BM need that each port be identify by a unique ID */ 710 static int global_port_id; 711 712 #define MVNETA_DRIVER_NAME "mvneta" 713 #define MVNETA_DRIVER_VERSION "1.0" 714 715 /* Utility/helper methods */ 716 717 /* Write helper method */ 718 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 719 { 720 writel(data, pp->base + offset); 721 } 722 723 /* Read helper method */ 724 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 725 { 726 return readl(pp->base + offset); 727 } 728 729 /* Increment txq get counter */ 730 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 731 { 732 txq->txq_get_index++; 733 if (txq->txq_get_index == txq->size) 734 txq->txq_get_index = 0; 735 } 736 737 /* Increment txq put counter */ 738 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 739 { 740 txq->txq_put_index++; 741 if (txq->txq_put_index == txq->size) 742 txq->txq_put_index = 0; 743 } 744 745 746 /* Clear all MIB counters */ 747 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 748 { 749 int i; 750 u32 dummy; 751 752 /* Perform dummy reads from MIB counters */ 753 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 754 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 755 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 756 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 757 } 758 759 /* Get System Network Statistics */ 760 static void 761 mvneta_get_stats64(struct net_device *dev, 762 struct rtnl_link_stats64 *stats) 763 { 764 struct mvneta_port *pp = netdev_priv(dev); 765 unsigned int start; 766 int cpu; 767 768 for_each_possible_cpu(cpu) { 769 struct mvneta_pcpu_stats *cpu_stats; 770 u64 rx_packets; 771 u64 rx_bytes; 772 u64 rx_dropped; 773 u64 rx_errors; 774 u64 tx_packets; 775 u64 tx_bytes; 776 777 cpu_stats = per_cpu_ptr(pp->stats, cpu); 778 do { 779 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 780 rx_packets = cpu_stats->es.ps.rx_packets; 781 rx_bytes = cpu_stats->es.ps.rx_bytes; 782 rx_dropped = cpu_stats->rx_dropped; 783 rx_errors = cpu_stats->rx_errors; 784 tx_packets = cpu_stats->es.ps.tx_packets; 785 tx_bytes = cpu_stats->es.ps.tx_bytes; 786 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 787 788 stats->rx_packets += rx_packets; 789 stats->rx_bytes += rx_bytes; 790 stats->rx_dropped += rx_dropped; 791 stats->rx_errors += rx_errors; 792 stats->tx_packets += tx_packets; 793 stats->tx_bytes += tx_bytes; 794 } 795 796 stats->tx_dropped = dev->stats.tx_dropped; 797 } 798 799 /* Rx descriptors helper methods */ 800 801 /* Checks whether the RX descriptor having this status is both the first 802 * and the last descriptor for the RX packet. Each RX packet is currently 803 * received through a single RX descriptor, so not having each RX 804 * descriptor with its first and last bits set is an error 805 */ 806 static int mvneta_rxq_desc_is_first_last(u32 status) 807 { 808 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 809 MVNETA_RXD_FIRST_LAST_DESC; 810 } 811 812 /* Add number of descriptors ready to receive new packets */ 813 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 814 struct mvneta_rx_queue *rxq, 815 int ndescs) 816 { 817 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 818 * be added at once 819 */ 820 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 821 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 822 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 823 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 824 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 825 } 826 827 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 828 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 829 } 830 831 /* Get number of RX descriptors occupied by received packets */ 832 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 833 struct mvneta_rx_queue *rxq) 834 { 835 u32 val; 836 837 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 838 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 839 } 840 841 /* Update num of rx desc called upon return from rx path or 842 * from mvneta_rxq_drop_pkts(). 843 */ 844 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 845 struct mvneta_rx_queue *rxq, 846 int rx_done, int rx_filled) 847 { 848 u32 val; 849 850 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 851 val = rx_done | 852 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 853 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 854 return; 855 } 856 857 /* Only 255 descriptors can be added at once */ 858 while ((rx_done > 0) || (rx_filled > 0)) { 859 if (rx_done <= 0xff) { 860 val = rx_done; 861 rx_done = 0; 862 } else { 863 val = 0xff; 864 rx_done -= 0xff; 865 } 866 if (rx_filled <= 0xff) { 867 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 868 rx_filled = 0; 869 } else { 870 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 871 rx_filled -= 0xff; 872 } 873 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 874 } 875 } 876 877 /* Get pointer to next RX descriptor to be processed by SW */ 878 static struct mvneta_rx_desc * 879 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 880 { 881 int rx_desc = rxq->next_desc_to_proc; 882 883 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 884 prefetch(rxq->descs + rxq->next_desc_to_proc); 885 return rxq->descs + rx_desc; 886 } 887 888 /* Change maximum receive size of the port. */ 889 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 890 { 891 u32 val; 892 893 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 894 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 895 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 896 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 897 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 898 } 899 900 901 /* Set rx queue offset */ 902 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 903 struct mvneta_rx_queue *rxq, 904 int offset) 905 { 906 u32 val; 907 908 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 909 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 910 911 /* Offset is in */ 912 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 913 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 914 } 915 916 917 /* Tx descriptors helper methods */ 918 919 /* Update HW with number of TX descriptors to be sent */ 920 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 921 struct mvneta_tx_queue *txq, 922 int pend_desc) 923 { 924 u32 val; 925 926 pend_desc += txq->pending; 927 928 /* Only 255 Tx descriptors can be added at once */ 929 do { 930 val = min(pend_desc, 255); 931 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 932 pend_desc -= val; 933 } while (pend_desc > 0); 934 txq->pending = 0; 935 } 936 937 /* Get pointer to next TX descriptor to be processed (send) by HW */ 938 static struct mvneta_tx_desc * 939 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 940 { 941 int tx_desc = txq->next_desc_to_proc; 942 943 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 944 return txq->descs + tx_desc; 945 } 946 947 /* Release the last allocated TX descriptor. Useful to handle DMA 948 * mapping failures in the TX path. 949 */ 950 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 951 { 952 if (txq->next_desc_to_proc == 0) 953 txq->next_desc_to_proc = txq->last_desc - 1; 954 else 955 txq->next_desc_to_proc--; 956 } 957 958 /* Set rxq buf size */ 959 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 960 struct mvneta_rx_queue *rxq, 961 int buf_size) 962 { 963 u32 val; 964 965 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 966 967 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 968 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 969 970 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 971 } 972 973 /* Disable buffer management (BM) */ 974 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 975 struct mvneta_rx_queue *rxq) 976 { 977 u32 val; 978 979 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 980 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 981 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 982 } 983 984 /* Enable buffer management (BM) */ 985 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 986 struct mvneta_rx_queue *rxq) 987 { 988 u32 val; 989 990 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 991 val |= MVNETA_RXQ_HW_BUF_ALLOC; 992 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 993 } 994 995 /* Notify HW about port's assignment of pool for bigger packets */ 996 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 997 struct mvneta_rx_queue *rxq) 998 { 999 u32 val; 1000 1001 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1002 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 1003 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 1004 1005 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1006 } 1007 1008 /* Notify HW about port's assignment of pool for smaller packets */ 1009 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 1010 struct mvneta_rx_queue *rxq) 1011 { 1012 u32 val; 1013 1014 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1015 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 1016 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 1017 1018 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1019 } 1020 1021 /* Set port's receive buffer size for assigned BM pool */ 1022 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 1023 int buf_size, 1024 u8 pool_id) 1025 { 1026 u32 val; 1027 1028 if (!IS_ALIGNED(buf_size, 8)) { 1029 dev_warn(pp->dev->dev.parent, 1030 "illegal buf_size value %d, round to %d\n", 1031 buf_size, ALIGN(buf_size, 8)); 1032 buf_size = ALIGN(buf_size, 8); 1033 } 1034 1035 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 1036 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 1037 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 1038 } 1039 1040 /* Configure MBUS window in order to enable access BM internal SRAM */ 1041 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 1042 u8 target, u8 attr) 1043 { 1044 u32 win_enable, win_protect; 1045 int i; 1046 1047 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 1048 1049 if (pp->bm_win_id < 0) { 1050 /* Find first not occupied window */ 1051 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 1052 if (win_enable & (1 << i)) { 1053 pp->bm_win_id = i; 1054 break; 1055 } 1056 } 1057 if (i == MVNETA_MAX_DECODE_WIN) 1058 return -ENOMEM; 1059 } else { 1060 i = pp->bm_win_id; 1061 } 1062 1063 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 1064 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 1065 1066 if (i < 4) 1067 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 1068 1069 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 1070 (attr << 8) | target); 1071 1072 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 1073 1074 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 1075 win_protect |= 3 << (2 * i); 1076 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 1077 1078 win_enable &= ~(1 << i); 1079 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 1080 1081 return 0; 1082 } 1083 1084 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 1085 { 1086 u32 wsize; 1087 u8 target, attr; 1088 int err; 1089 1090 /* Get BM window information */ 1091 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 1092 &target, &attr); 1093 if (err < 0) 1094 return err; 1095 1096 pp->bm_win_id = -1; 1097 1098 /* Open NETA -> BM window */ 1099 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 1100 target, attr); 1101 if (err < 0) { 1102 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 1103 return err; 1104 } 1105 return 0; 1106 } 1107 1108 /* Assign and initialize pools for port. In case of fail 1109 * buffer manager will remain disabled for current port. 1110 */ 1111 static int mvneta_bm_port_init(struct platform_device *pdev, 1112 struct mvneta_port *pp) 1113 { 1114 struct device_node *dn = pdev->dev.of_node; 1115 u32 long_pool_id, short_pool_id; 1116 1117 if (!pp->neta_armada3700) { 1118 int ret; 1119 1120 ret = mvneta_bm_port_mbus_init(pp); 1121 if (ret) 1122 return ret; 1123 } 1124 1125 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1126 netdev_info(pp->dev, "missing long pool id\n"); 1127 return -EINVAL; 1128 } 1129 1130 /* Create port's long pool depending on mtu */ 1131 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1132 MVNETA_BM_LONG, pp->id, 1133 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1134 if (!pp->pool_long) { 1135 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1136 return -ENOMEM; 1137 } 1138 1139 pp->pool_long->port_map |= 1 << pp->id; 1140 1141 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1142 pp->pool_long->id); 1143 1144 /* If short pool id is not defined, assume using single pool */ 1145 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1146 short_pool_id = long_pool_id; 1147 1148 /* Create port's short pool */ 1149 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1150 MVNETA_BM_SHORT, pp->id, 1151 MVNETA_BM_SHORT_PKT_SIZE); 1152 if (!pp->pool_short) { 1153 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1154 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1155 return -ENOMEM; 1156 } 1157 1158 if (short_pool_id != long_pool_id) { 1159 pp->pool_short->port_map |= 1 << pp->id; 1160 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1161 pp->pool_short->id); 1162 } 1163 1164 return 0; 1165 } 1166 1167 /* Update settings of a pool for bigger packets */ 1168 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1169 { 1170 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1171 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1172 int num; 1173 1174 /* Release all buffers from long pool */ 1175 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1176 if (hwbm_pool->buf_num) { 1177 WARN(1, "cannot free all buffers in pool %d\n", 1178 bm_pool->id); 1179 goto bm_mtu_err; 1180 } 1181 1182 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1183 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1184 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1185 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1186 1187 /* Fill entire long pool */ 1188 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size); 1189 if (num != hwbm_pool->size) { 1190 WARN(1, "pool %d: %d of %d allocated\n", 1191 bm_pool->id, num, hwbm_pool->size); 1192 goto bm_mtu_err; 1193 } 1194 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1195 1196 return; 1197 1198 bm_mtu_err: 1199 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1200 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1201 1202 pp->bm_priv = NULL; 1203 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 1204 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1205 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1206 } 1207 1208 /* Start the Ethernet port RX and TX activity */ 1209 static void mvneta_port_up(struct mvneta_port *pp) 1210 { 1211 int queue; 1212 u32 q_map; 1213 1214 /* Enable all initialized TXs. */ 1215 q_map = 0; 1216 for (queue = 0; queue < txq_number; queue++) { 1217 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1218 if (txq->descs) 1219 q_map |= (1 << queue); 1220 } 1221 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1222 1223 q_map = 0; 1224 /* Enable all initialized RXQs. */ 1225 for (queue = 0; queue < rxq_number; queue++) { 1226 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1227 1228 if (rxq->descs) 1229 q_map |= (1 << queue); 1230 } 1231 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1232 } 1233 1234 /* Stop the Ethernet port activity */ 1235 static void mvneta_port_down(struct mvneta_port *pp) 1236 { 1237 u32 val; 1238 int count; 1239 1240 /* Stop Rx port activity. Check port Rx activity. */ 1241 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1242 1243 /* Issue stop command for active channels only */ 1244 if (val != 0) 1245 mvreg_write(pp, MVNETA_RXQ_CMD, 1246 val << MVNETA_RXQ_DISABLE_SHIFT); 1247 1248 /* Wait for all Rx activity to terminate. */ 1249 count = 0; 1250 do { 1251 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1252 netdev_warn(pp->dev, 1253 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1254 val); 1255 break; 1256 } 1257 mdelay(1); 1258 1259 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1260 } while (val & MVNETA_RXQ_ENABLE_MASK); 1261 1262 /* Stop Tx port activity. Check port Tx activity. Issue stop 1263 * command for active channels only 1264 */ 1265 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1266 1267 if (val != 0) 1268 mvreg_write(pp, MVNETA_TXQ_CMD, 1269 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1270 1271 /* Wait for all Tx activity to terminate. */ 1272 count = 0; 1273 do { 1274 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1275 netdev_warn(pp->dev, 1276 "TIMEOUT for TX stopped status=0x%08x\n", 1277 val); 1278 break; 1279 } 1280 mdelay(1); 1281 1282 /* Check TX Command reg that all Txqs are stopped */ 1283 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1284 1285 } while (val & MVNETA_TXQ_ENABLE_MASK); 1286 1287 /* Double check to verify that TX FIFO is empty */ 1288 count = 0; 1289 do { 1290 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1291 netdev_warn(pp->dev, 1292 "TX FIFO empty timeout status=0x%08x\n", 1293 val); 1294 break; 1295 } 1296 mdelay(1); 1297 1298 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1299 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1300 (val & MVNETA_TX_IN_PRGRS)); 1301 1302 udelay(200); 1303 } 1304 1305 /* Enable the port by setting the port enable bit of the MAC control register */ 1306 static void mvneta_port_enable(struct mvneta_port *pp) 1307 { 1308 u32 val; 1309 1310 /* Enable port */ 1311 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1312 val |= MVNETA_GMAC0_PORT_ENABLE; 1313 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1314 } 1315 1316 /* Disable the port and wait for about 200 usec before retuning */ 1317 static void mvneta_port_disable(struct mvneta_port *pp) 1318 { 1319 u32 val; 1320 1321 /* Reset the Enable bit in the Serial Control Register */ 1322 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1323 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1324 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1325 1326 udelay(200); 1327 } 1328 1329 /* Multicast tables methods */ 1330 1331 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1332 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1333 { 1334 int offset; 1335 u32 val; 1336 1337 if (queue == -1) { 1338 val = 0; 1339 } else { 1340 val = 0x1 | (queue << 1); 1341 val |= (val << 24) | (val << 16) | (val << 8); 1342 } 1343 1344 for (offset = 0; offset <= 0xc; offset += 4) 1345 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1346 } 1347 1348 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1349 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1350 { 1351 int offset; 1352 u32 val; 1353 1354 if (queue == -1) { 1355 val = 0; 1356 } else { 1357 val = 0x1 | (queue << 1); 1358 val |= (val << 24) | (val << 16) | (val << 8); 1359 } 1360 1361 for (offset = 0; offset <= 0xfc; offset += 4) 1362 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1363 1364 } 1365 1366 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1367 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1368 { 1369 int offset; 1370 u32 val; 1371 1372 if (queue == -1) { 1373 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1374 val = 0; 1375 } else { 1376 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1377 val = 0x1 | (queue << 1); 1378 val |= (val << 24) | (val << 16) | (val << 8); 1379 } 1380 1381 for (offset = 0; offset <= 0xfc; offset += 4) 1382 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1383 } 1384 1385 static void mvneta_percpu_unmask_interrupt(void *arg) 1386 { 1387 struct mvneta_port *pp = arg; 1388 1389 /* All the queue are unmasked, but actually only the ones 1390 * mapped to this CPU will be unmasked 1391 */ 1392 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1393 MVNETA_RX_INTR_MASK_ALL | 1394 MVNETA_TX_INTR_MASK_ALL | 1395 MVNETA_MISCINTR_INTR_MASK); 1396 } 1397 1398 static void mvneta_percpu_mask_interrupt(void *arg) 1399 { 1400 struct mvneta_port *pp = arg; 1401 1402 /* All the queue are masked, but actually only the ones 1403 * mapped to this CPU will be masked 1404 */ 1405 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1406 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1407 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1408 } 1409 1410 static void mvneta_percpu_clear_intr_cause(void *arg) 1411 { 1412 struct mvneta_port *pp = arg; 1413 1414 /* All the queue are cleared, but actually only the ones 1415 * mapped to this CPU will be cleared 1416 */ 1417 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1418 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1419 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1420 } 1421 1422 /* This method sets defaults to the NETA port: 1423 * Clears interrupt Cause and Mask registers. 1424 * Clears all MAC tables. 1425 * Sets defaults to all registers. 1426 * Resets RX and TX descriptor rings. 1427 * Resets PHY. 1428 * This method can be called after mvneta_port_down() to return the port 1429 * settings to defaults. 1430 */ 1431 static void mvneta_defaults_set(struct mvneta_port *pp) 1432 { 1433 int cpu; 1434 int queue; 1435 u32 val; 1436 int max_cpu = num_present_cpus(); 1437 1438 /* Clear all Cause registers */ 1439 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1440 1441 /* Mask all interrupts */ 1442 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1443 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1444 1445 /* Enable MBUS Retry bit16 */ 1446 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1447 1448 /* Set CPU queue access map. CPUs are assigned to the RX and 1449 * TX queues modulo their number. If there is only one TX 1450 * queue then it is assigned to the CPU associated to the 1451 * default RX queue. 1452 */ 1453 for_each_present_cpu(cpu) { 1454 int rxq_map = 0, txq_map = 0; 1455 int rxq, txq; 1456 if (!pp->neta_armada3700) { 1457 for (rxq = 0; rxq < rxq_number; rxq++) 1458 if ((rxq % max_cpu) == cpu) 1459 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1460 1461 for (txq = 0; txq < txq_number; txq++) 1462 if ((txq % max_cpu) == cpu) 1463 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1464 1465 /* With only one TX queue we configure a special case 1466 * which will allow to get all the irq on a single 1467 * CPU 1468 */ 1469 if (txq_number == 1) 1470 txq_map = (cpu == pp->rxq_def) ? 1471 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1472 1473 } else { 1474 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1475 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1476 } 1477 1478 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1479 } 1480 1481 /* Reset RX and TX DMAs */ 1482 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1483 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1484 1485 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1486 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1487 for (queue = 0; queue < txq_number; queue++) { 1488 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1489 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1490 } 1491 1492 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1493 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1494 1495 /* Set Port Acceleration Mode */ 1496 if (pp->bm_priv) 1497 /* HW buffer management + legacy parser */ 1498 val = MVNETA_ACC_MODE_EXT2; 1499 else 1500 /* SW buffer management + legacy parser */ 1501 val = MVNETA_ACC_MODE_EXT1; 1502 mvreg_write(pp, MVNETA_ACC_MODE, val); 1503 1504 if (pp->bm_priv) 1505 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1506 1507 /* Update val of portCfg register accordingly with all RxQueue types */ 1508 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1509 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1510 1511 val = 0; 1512 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1513 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1514 1515 /* Build PORT_SDMA_CONFIG_REG */ 1516 val = 0; 1517 1518 /* Default burst size */ 1519 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1520 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1521 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1522 1523 #if defined(__BIG_ENDIAN) 1524 val |= MVNETA_DESC_SWAP; 1525 #endif 1526 1527 /* Assign port SDMA configuration */ 1528 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1529 1530 /* Disable PHY polling in hardware, since we're using the 1531 * kernel phylib to do this. 1532 */ 1533 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1534 val &= ~MVNETA_PHY_POLLING_ENABLE; 1535 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1536 1537 mvneta_set_ucast_table(pp, -1); 1538 mvneta_set_special_mcast_table(pp, -1); 1539 mvneta_set_other_mcast_table(pp, -1); 1540 1541 /* Set port interrupt enable register - default enable all */ 1542 mvreg_write(pp, MVNETA_INTR_ENABLE, 1543 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1544 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1545 1546 mvneta_mib_counters_clear(pp); 1547 } 1548 1549 /* Set max sizes for tx queues */ 1550 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1551 1552 { 1553 u32 val, size, mtu; 1554 int queue; 1555 1556 mtu = max_tx_size * 8; 1557 if (mtu > MVNETA_TX_MTU_MAX) 1558 mtu = MVNETA_TX_MTU_MAX; 1559 1560 /* Set MTU */ 1561 val = mvreg_read(pp, MVNETA_TX_MTU); 1562 val &= ~MVNETA_TX_MTU_MAX; 1563 val |= mtu; 1564 mvreg_write(pp, MVNETA_TX_MTU, val); 1565 1566 /* TX token size and all TXQs token size must be larger that MTU */ 1567 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1568 1569 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1570 if (size < mtu) { 1571 size = mtu; 1572 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1573 val |= size; 1574 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1575 } 1576 for (queue = 0; queue < txq_number; queue++) { 1577 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1578 1579 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1580 if (size < mtu) { 1581 size = mtu; 1582 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1583 val |= size; 1584 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1585 } 1586 } 1587 } 1588 1589 /* Set unicast address */ 1590 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1591 int queue) 1592 { 1593 unsigned int unicast_reg; 1594 unsigned int tbl_offset; 1595 unsigned int reg_offset; 1596 1597 /* Locate the Unicast table entry */ 1598 last_nibble = (0xf & last_nibble); 1599 1600 /* offset from unicast tbl base */ 1601 tbl_offset = (last_nibble / 4) * 4; 1602 1603 /* offset within the above reg */ 1604 reg_offset = last_nibble % 4; 1605 1606 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1607 1608 if (queue == -1) { 1609 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1610 unicast_reg &= ~(0xff << (8 * reg_offset)); 1611 } else { 1612 unicast_reg &= ~(0xff << (8 * reg_offset)); 1613 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1614 } 1615 1616 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1617 } 1618 1619 /* Set mac address */ 1620 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1621 int queue) 1622 { 1623 unsigned int mac_h; 1624 unsigned int mac_l; 1625 1626 if (queue != -1) { 1627 mac_l = (addr[4] << 8) | (addr[5]); 1628 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1629 (addr[2] << 8) | (addr[3] << 0); 1630 1631 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1632 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1633 } 1634 1635 /* Accept frames of this address */ 1636 mvneta_set_ucast_addr(pp, addr[5], queue); 1637 } 1638 1639 /* Set the number of packets that will be received before RX interrupt 1640 * will be generated by HW. 1641 */ 1642 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1643 struct mvneta_rx_queue *rxq, u32 value) 1644 { 1645 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1646 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1647 } 1648 1649 /* Set the time delay in usec before RX interrupt will be generated by 1650 * HW. 1651 */ 1652 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1653 struct mvneta_rx_queue *rxq, u32 value) 1654 { 1655 u32 val; 1656 unsigned long clk_rate; 1657 1658 clk_rate = clk_get_rate(pp->clk); 1659 val = (clk_rate / 1000000) * value; 1660 1661 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1662 } 1663 1664 /* Set threshold for TX_DONE pkts coalescing */ 1665 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1666 struct mvneta_tx_queue *txq, u32 value) 1667 { 1668 u32 val; 1669 1670 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1671 1672 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1673 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1674 1675 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1676 } 1677 1678 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1679 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1680 u32 phys_addr, void *virt_addr, 1681 struct mvneta_rx_queue *rxq) 1682 { 1683 int i; 1684 1685 rx_desc->buf_phys_addr = phys_addr; 1686 i = rx_desc - rxq->descs; 1687 rxq->buf_virt_addr[i] = virt_addr; 1688 } 1689 1690 /* Decrement sent descriptors counter */ 1691 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1692 struct mvneta_tx_queue *txq, 1693 int sent_desc) 1694 { 1695 u32 val; 1696 1697 /* Only 255 TX descriptors can be updated at once */ 1698 while (sent_desc > 0xff) { 1699 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1700 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1701 sent_desc = sent_desc - 0xff; 1702 } 1703 1704 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1705 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1706 } 1707 1708 /* Get number of TX descriptors already sent by HW */ 1709 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1710 struct mvneta_tx_queue *txq) 1711 { 1712 u32 val; 1713 int sent_desc; 1714 1715 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1716 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1717 MVNETA_TXQ_SENT_DESC_SHIFT; 1718 1719 return sent_desc; 1720 } 1721 1722 /* Get number of sent descriptors and decrement counter. 1723 * The number of sent descriptors is returned. 1724 */ 1725 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1726 struct mvneta_tx_queue *txq) 1727 { 1728 int sent_desc; 1729 1730 /* Get number of sent descriptors */ 1731 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1732 1733 /* Decrement sent descriptors counter */ 1734 if (sent_desc) 1735 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1736 1737 return sent_desc; 1738 } 1739 1740 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1741 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1742 int ip_hdr_len, int l4_proto) 1743 { 1744 u32 command; 1745 1746 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1747 * G_L4_chk, L4_type; required only for checksum 1748 * calculation 1749 */ 1750 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1751 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1752 1753 if (l3_proto == htons(ETH_P_IP)) 1754 command |= MVNETA_TXD_IP_CSUM; 1755 else 1756 command |= MVNETA_TX_L3_IP6; 1757 1758 if (l4_proto == IPPROTO_TCP) 1759 command |= MVNETA_TX_L4_CSUM_FULL; 1760 else if (l4_proto == IPPROTO_UDP) 1761 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1762 else 1763 command |= MVNETA_TX_L4_CSUM_NOT; 1764 1765 return command; 1766 } 1767 1768 1769 /* Display more error info */ 1770 static void mvneta_rx_error(struct mvneta_port *pp, 1771 struct mvneta_rx_desc *rx_desc) 1772 { 1773 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1774 u32 status = rx_desc->status; 1775 1776 /* update per-cpu counter */ 1777 u64_stats_update_begin(&stats->syncp); 1778 stats->rx_errors++; 1779 u64_stats_update_end(&stats->syncp); 1780 1781 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1782 case MVNETA_RXD_ERR_CRC: 1783 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1784 status, rx_desc->data_size); 1785 break; 1786 case MVNETA_RXD_ERR_OVERRUN: 1787 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1788 status, rx_desc->data_size); 1789 break; 1790 case MVNETA_RXD_ERR_LEN: 1791 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1792 status, rx_desc->data_size); 1793 break; 1794 case MVNETA_RXD_ERR_RESOURCE: 1795 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1796 status, rx_desc->data_size); 1797 break; 1798 } 1799 } 1800 1801 /* Handle RX checksum offload based on the descriptor's status */ 1802 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1803 struct sk_buff *skb) 1804 { 1805 if ((pp->dev->features & NETIF_F_RXCSUM) && 1806 (status & MVNETA_RXD_L3_IP4) && 1807 (status & MVNETA_RXD_L4_CSUM_OK)) { 1808 skb->csum = 0; 1809 skb->ip_summed = CHECKSUM_UNNECESSARY; 1810 return; 1811 } 1812 1813 skb->ip_summed = CHECKSUM_NONE; 1814 } 1815 1816 /* Return tx queue pointer (find last set bit) according to <cause> returned 1817 * form tx_done reg. <cause> must not be null. The return value is always a 1818 * valid queue for matching the first one found in <cause>. 1819 */ 1820 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1821 u32 cause) 1822 { 1823 int queue = fls(cause) - 1; 1824 1825 return &pp->txqs[queue]; 1826 } 1827 1828 /* Free tx queue skbuffs */ 1829 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1830 struct mvneta_tx_queue *txq, int num, 1831 struct netdev_queue *nq) 1832 { 1833 unsigned int bytes_compl = 0, pkts_compl = 0; 1834 int i; 1835 1836 for (i = 0; i < num; i++) { 1837 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index]; 1838 struct mvneta_tx_desc *tx_desc = txq->descs + 1839 txq->txq_get_index; 1840 1841 mvneta_txq_inc_get(txq); 1842 1843 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) && 1844 buf->type != MVNETA_TYPE_XDP_TX) 1845 dma_unmap_single(pp->dev->dev.parent, 1846 tx_desc->buf_phys_addr, 1847 tx_desc->data_size, DMA_TO_DEVICE); 1848 if (buf->type == MVNETA_TYPE_SKB && buf->skb) { 1849 bytes_compl += buf->skb->len; 1850 pkts_compl++; 1851 dev_kfree_skb_any(buf->skb); 1852 } else if (buf->type == MVNETA_TYPE_XDP_TX || 1853 buf->type == MVNETA_TYPE_XDP_NDO) { 1854 xdp_return_frame(buf->xdpf); 1855 } 1856 } 1857 1858 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1859 } 1860 1861 /* Handle end of transmission */ 1862 static void mvneta_txq_done(struct mvneta_port *pp, 1863 struct mvneta_tx_queue *txq) 1864 { 1865 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1866 int tx_done; 1867 1868 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1869 if (!tx_done) 1870 return; 1871 1872 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 1873 1874 txq->count -= tx_done; 1875 1876 if (netif_tx_queue_stopped(nq)) { 1877 if (txq->count <= txq->tx_wake_threshold) 1878 netif_tx_wake_queue(nq); 1879 } 1880 } 1881 1882 /* Refill processing for SW buffer management */ 1883 /* Allocate page per descriptor */ 1884 static int mvneta_rx_refill(struct mvneta_port *pp, 1885 struct mvneta_rx_desc *rx_desc, 1886 struct mvneta_rx_queue *rxq, 1887 gfp_t gfp_mask) 1888 { 1889 dma_addr_t phys_addr; 1890 struct page *page; 1891 1892 page = page_pool_alloc_pages(rxq->page_pool, 1893 gfp_mask | __GFP_NOWARN); 1894 if (!page) 1895 return -ENOMEM; 1896 1897 phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction; 1898 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq); 1899 1900 return 0; 1901 } 1902 1903 /* Handle tx checksum */ 1904 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1905 { 1906 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1907 int ip_hdr_len = 0; 1908 __be16 l3_proto = vlan_get_protocol(skb); 1909 u8 l4_proto; 1910 1911 if (l3_proto == htons(ETH_P_IP)) { 1912 struct iphdr *ip4h = ip_hdr(skb); 1913 1914 /* Calculate IPv4 checksum and L4 checksum */ 1915 ip_hdr_len = ip4h->ihl; 1916 l4_proto = ip4h->protocol; 1917 } else if (l3_proto == htons(ETH_P_IPV6)) { 1918 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1919 1920 /* Read l4_protocol from one of IPv6 extra headers */ 1921 if (skb_network_header_len(skb) > 0) 1922 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1923 l4_proto = ip6h->nexthdr; 1924 } else 1925 return MVNETA_TX_L4_CSUM_NOT; 1926 1927 return mvneta_txq_desc_csum(skb_network_offset(skb), 1928 l3_proto, ip_hdr_len, l4_proto); 1929 } 1930 1931 return MVNETA_TX_L4_CSUM_NOT; 1932 } 1933 1934 /* Drop packets received by the RXQ and free buffers */ 1935 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1936 struct mvneta_rx_queue *rxq) 1937 { 1938 int rx_done, i; 1939 1940 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1941 if (rx_done) 1942 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1943 1944 if (pp->bm_priv) { 1945 for (i = 0; i < rx_done; i++) { 1946 struct mvneta_rx_desc *rx_desc = 1947 mvneta_rxq_next_desc_get(rxq); 1948 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1949 struct mvneta_bm_pool *bm_pool; 1950 1951 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1952 /* Return dropped buffer to the pool */ 1953 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1954 rx_desc->buf_phys_addr); 1955 } 1956 return; 1957 } 1958 1959 for (i = 0; i < rxq->size; i++) { 1960 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1961 void *data = rxq->buf_virt_addr[i]; 1962 if (!data || !(rx_desc->buf_phys_addr)) 1963 continue; 1964 1965 page_pool_put_full_page(rxq->page_pool, data, false); 1966 } 1967 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 1968 xdp_rxq_info_unreg(&rxq->xdp_rxq); 1969 page_pool_destroy(rxq->page_pool); 1970 rxq->page_pool = NULL; 1971 } 1972 1973 static void 1974 mvneta_update_stats(struct mvneta_port *pp, 1975 struct mvneta_stats *ps) 1976 { 1977 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1978 1979 u64_stats_update_begin(&stats->syncp); 1980 stats->es.ps.rx_packets += ps->rx_packets; 1981 stats->es.ps.rx_bytes += ps->rx_bytes; 1982 /* xdp */ 1983 stats->es.ps.xdp_redirect += ps->xdp_redirect; 1984 stats->es.ps.xdp_pass += ps->xdp_pass; 1985 stats->es.ps.xdp_drop += ps->xdp_drop; 1986 u64_stats_update_end(&stats->syncp); 1987 } 1988 1989 static inline 1990 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) 1991 { 1992 struct mvneta_rx_desc *rx_desc; 1993 int curr_desc = rxq->first_to_refill; 1994 int i; 1995 1996 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) { 1997 rx_desc = rxq->descs + curr_desc; 1998 if (!(rx_desc->buf_phys_addr)) { 1999 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) { 2000 struct mvneta_pcpu_stats *stats; 2001 2002 pr_err("Can't refill queue %d. Done %d from %d\n", 2003 rxq->id, i, rxq->refill_num); 2004 2005 stats = this_cpu_ptr(pp->stats); 2006 u64_stats_update_begin(&stats->syncp); 2007 stats->es.refill_error++; 2008 u64_stats_update_end(&stats->syncp); 2009 break; 2010 } 2011 } 2012 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc); 2013 } 2014 rxq->refill_num -= i; 2015 rxq->first_to_refill = curr_desc; 2016 2017 return i; 2018 } 2019 2020 static int 2021 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq, 2022 struct xdp_frame *xdpf, bool dma_map) 2023 { 2024 struct mvneta_tx_desc *tx_desc; 2025 struct mvneta_tx_buf *buf; 2026 dma_addr_t dma_addr; 2027 2028 if (txq->count >= txq->tx_stop_threshold) 2029 return MVNETA_XDP_DROPPED; 2030 2031 tx_desc = mvneta_txq_next_desc_get(txq); 2032 2033 buf = &txq->buf[txq->txq_put_index]; 2034 if (dma_map) { 2035 /* ndo_xdp_xmit */ 2036 dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data, 2037 xdpf->len, DMA_TO_DEVICE); 2038 if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) { 2039 mvneta_txq_desc_put(txq); 2040 return MVNETA_XDP_DROPPED; 2041 } 2042 buf->type = MVNETA_TYPE_XDP_NDO; 2043 } else { 2044 struct page *page = virt_to_page(xdpf->data); 2045 2046 dma_addr = page_pool_get_dma_addr(page) + 2047 sizeof(*xdpf) + xdpf->headroom; 2048 dma_sync_single_for_device(pp->dev->dev.parent, dma_addr, 2049 xdpf->len, DMA_BIDIRECTIONAL); 2050 buf->type = MVNETA_TYPE_XDP_TX; 2051 } 2052 buf->xdpf = xdpf; 2053 2054 tx_desc->command = MVNETA_TXD_FLZ_DESC; 2055 tx_desc->buf_phys_addr = dma_addr; 2056 tx_desc->data_size = xdpf->len; 2057 2058 mvneta_txq_inc_put(txq); 2059 txq->pending++; 2060 txq->count++; 2061 2062 return MVNETA_XDP_TX; 2063 } 2064 2065 static int 2066 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp) 2067 { 2068 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2069 struct mvneta_tx_queue *txq; 2070 struct netdev_queue *nq; 2071 struct xdp_frame *xdpf; 2072 int cpu; 2073 u32 ret; 2074 2075 xdpf = convert_to_xdp_frame(xdp); 2076 if (unlikely(!xdpf)) 2077 return MVNETA_XDP_DROPPED; 2078 2079 cpu = smp_processor_id(); 2080 txq = &pp->txqs[cpu % txq_number]; 2081 nq = netdev_get_tx_queue(pp->dev, txq->id); 2082 2083 __netif_tx_lock(nq, cpu); 2084 ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false); 2085 if (ret == MVNETA_XDP_TX) { 2086 u64_stats_update_begin(&stats->syncp); 2087 stats->es.ps.tx_bytes += xdpf->len; 2088 stats->es.ps.tx_packets++; 2089 stats->es.ps.xdp_tx++; 2090 u64_stats_update_end(&stats->syncp); 2091 2092 mvneta_txq_pend_desc_add(pp, txq, 0); 2093 } else { 2094 u64_stats_update_begin(&stats->syncp); 2095 stats->es.ps.xdp_tx_err++; 2096 u64_stats_update_end(&stats->syncp); 2097 } 2098 __netif_tx_unlock(nq); 2099 2100 return ret; 2101 } 2102 2103 static int 2104 mvneta_xdp_xmit(struct net_device *dev, int num_frame, 2105 struct xdp_frame **frames, u32 flags) 2106 { 2107 struct mvneta_port *pp = netdev_priv(dev); 2108 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2109 int i, nxmit_byte = 0, nxmit = num_frame; 2110 int cpu = smp_processor_id(); 2111 struct mvneta_tx_queue *txq; 2112 struct netdev_queue *nq; 2113 u32 ret; 2114 2115 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2116 return -EINVAL; 2117 2118 txq = &pp->txqs[cpu % txq_number]; 2119 nq = netdev_get_tx_queue(pp->dev, txq->id); 2120 2121 __netif_tx_lock(nq, cpu); 2122 for (i = 0; i < num_frame; i++) { 2123 ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true); 2124 if (ret == MVNETA_XDP_TX) { 2125 nxmit_byte += frames[i]->len; 2126 } else { 2127 xdp_return_frame_rx_napi(frames[i]); 2128 nxmit--; 2129 } 2130 } 2131 2132 if (unlikely(flags & XDP_XMIT_FLUSH)) 2133 mvneta_txq_pend_desc_add(pp, txq, 0); 2134 __netif_tx_unlock(nq); 2135 2136 u64_stats_update_begin(&stats->syncp); 2137 stats->es.ps.tx_bytes += nxmit_byte; 2138 stats->es.ps.tx_packets += nxmit; 2139 stats->es.ps.xdp_xmit += nxmit; 2140 stats->es.ps.xdp_xmit_err += num_frame - nxmit; 2141 u64_stats_update_end(&stats->syncp); 2142 2143 return nxmit; 2144 } 2145 2146 static int 2147 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2148 struct bpf_prog *prog, struct xdp_buff *xdp, 2149 struct mvneta_stats *stats) 2150 { 2151 unsigned int len, sync; 2152 struct page *page; 2153 u32 ret, act; 2154 2155 len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2156 act = bpf_prog_run_xdp(prog, xdp); 2157 2158 /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */ 2159 sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2160 sync = max(sync, len); 2161 2162 switch (act) { 2163 case XDP_PASS: 2164 stats->xdp_pass++; 2165 return MVNETA_XDP_PASS; 2166 case XDP_REDIRECT: { 2167 int err; 2168 2169 err = xdp_do_redirect(pp->dev, xdp, prog); 2170 if (unlikely(err)) { 2171 ret = MVNETA_XDP_DROPPED; 2172 page = virt_to_head_page(xdp->data); 2173 page_pool_put_page(rxq->page_pool, page, sync, true); 2174 } else { 2175 ret = MVNETA_XDP_REDIR; 2176 stats->xdp_redirect++; 2177 } 2178 break; 2179 } 2180 case XDP_TX: 2181 ret = mvneta_xdp_xmit_back(pp, xdp); 2182 if (ret != MVNETA_XDP_TX) { 2183 page = virt_to_head_page(xdp->data); 2184 page_pool_put_page(rxq->page_pool, page, sync, true); 2185 } 2186 break; 2187 default: 2188 bpf_warn_invalid_xdp_action(act); 2189 /* fall through */ 2190 case XDP_ABORTED: 2191 trace_xdp_exception(pp->dev, prog, act); 2192 /* fall through */ 2193 case XDP_DROP: 2194 page = virt_to_head_page(xdp->data); 2195 page_pool_put_page(rxq->page_pool, page, sync, true); 2196 ret = MVNETA_XDP_DROPPED; 2197 stats->xdp_drop++; 2198 break; 2199 } 2200 2201 stats->rx_bytes += xdp->data_end - xdp->data; 2202 stats->rx_packets++; 2203 2204 return ret; 2205 } 2206 2207 static int 2208 mvneta_swbm_rx_frame(struct mvneta_port *pp, 2209 struct mvneta_rx_desc *rx_desc, 2210 struct mvneta_rx_queue *rxq, 2211 struct xdp_buff *xdp, 2212 struct bpf_prog *xdp_prog, 2213 struct page *page, 2214 struct mvneta_stats *stats) 2215 { 2216 unsigned char *data = page_address(page); 2217 int data_len = -MVNETA_MH_SIZE, len; 2218 struct net_device *dev = pp->dev; 2219 enum dma_data_direction dma_dir; 2220 int ret = 0; 2221 2222 if (MVNETA_SKB_SIZE(rx_desc->data_size) > PAGE_SIZE) { 2223 len = MVNETA_MAX_RX_BUF_SIZE; 2224 data_len += len; 2225 } else { 2226 len = rx_desc->data_size; 2227 data_len += len - ETH_FCS_LEN; 2228 } 2229 2230 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2231 dma_sync_single_for_cpu(dev->dev.parent, 2232 rx_desc->buf_phys_addr, 2233 len, dma_dir); 2234 2235 /* Prefetch header */ 2236 prefetch(data); 2237 2238 xdp->data_hard_start = data; 2239 xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE; 2240 xdp->data_end = xdp->data + data_len; 2241 xdp_set_data_meta_invalid(xdp); 2242 2243 if (xdp_prog) { 2244 ret = mvneta_run_xdp(pp, rxq, xdp_prog, xdp, stats); 2245 if (ret) 2246 goto out; 2247 } 2248 2249 rxq->skb = build_skb(xdp->data_hard_start, PAGE_SIZE); 2250 if (unlikely(!rxq->skb)) { 2251 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2252 2253 netdev_err(dev, "Can't allocate skb on queue %d\n", rxq->id); 2254 2255 u64_stats_update_begin(&stats->syncp); 2256 stats->es.skb_alloc_error++; 2257 stats->rx_dropped++; 2258 u64_stats_update_end(&stats->syncp); 2259 2260 return -ENOMEM; 2261 } 2262 page_pool_release_page(rxq->page_pool, page); 2263 2264 skb_reserve(rxq->skb, 2265 xdp->data - xdp->data_hard_start); 2266 skb_put(rxq->skb, xdp->data_end - xdp->data); 2267 mvneta_rx_csum(pp, rx_desc->status, rxq->skb); 2268 2269 rxq->left_size = rx_desc->data_size - len; 2270 2271 out: 2272 rx_desc->buf_phys_addr = 0; 2273 2274 return ret; 2275 } 2276 2277 static void 2278 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp, 2279 struct mvneta_rx_desc *rx_desc, 2280 struct mvneta_rx_queue *rxq, 2281 struct page *page) 2282 { 2283 struct net_device *dev = pp->dev; 2284 enum dma_data_direction dma_dir; 2285 int data_len, len; 2286 2287 if (rxq->left_size > MVNETA_MAX_RX_BUF_SIZE) { 2288 len = MVNETA_MAX_RX_BUF_SIZE; 2289 data_len = len; 2290 } else { 2291 len = rxq->left_size; 2292 data_len = len - ETH_FCS_LEN; 2293 } 2294 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2295 dma_sync_single_for_cpu(dev->dev.parent, 2296 rx_desc->buf_phys_addr, 2297 len, dma_dir); 2298 if (data_len > 0) { 2299 /* refill descriptor with new buffer later */ 2300 skb_add_rx_frag(rxq->skb, 2301 skb_shinfo(rxq->skb)->nr_frags, 2302 page, pp->rx_offset_correction, data_len, 2303 PAGE_SIZE); 2304 } 2305 page_pool_release_page(rxq->page_pool, page); 2306 rx_desc->buf_phys_addr = 0; 2307 rxq->left_size -= len; 2308 } 2309 2310 /* Main rx processing when using software buffer management */ 2311 static int mvneta_rx_swbm(struct napi_struct *napi, 2312 struct mvneta_port *pp, int budget, 2313 struct mvneta_rx_queue *rxq) 2314 { 2315 int rx_proc = 0, rx_todo, refill; 2316 struct net_device *dev = pp->dev; 2317 struct mvneta_stats ps = {}; 2318 struct bpf_prog *xdp_prog; 2319 struct xdp_buff xdp_buf; 2320 2321 /* Get number of received packets */ 2322 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq); 2323 2324 rcu_read_lock(); 2325 xdp_prog = READ_ONCE(pp->xdp_prog); 2326 xdp_buf.rxq = &rxq->xdp_rxq; 2327 xdp_buf.frame_sz = PAGE_SIZE; 2328 2329 /* Fairness NAPI loop */ 2330 while (rx_proc < budget && rx_proc < rx_todo) { 2331 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2332 u32 rx_status, index; 2333 struct page *page; 2334 2335 index = rx_desc - rxq->descs; 2336 page = (struct page *)rxq->buf_virt_addr[index]; 2337 2338 rx_status = rx_desc->status; 2339 rx_proc++; 2340 rxq->refill_num++; 2341 2342 if (rx_status & MVNETA_RXD_FIRST_DESC) { 2343 int err; 2344 2345 /* Check errors only for FIRST descriptor */ 2346 if (rx_status & MVNETA_RXD_ERR_SUMMARY) { 2347 mvneta_rx_error(pp, rx_desc); 2348 /* leave the descriptor untouched */ 2349 continue; 2350 } 2351 2352 err = mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf, 2353 xdp_prog, page, &ps); 2354 if (err) 2355 continue; 2356 } else { 2357 if (unlikely(!rxq->skb)) { 2358 pr_debug("no skb for rx_status 0x%x\n", 2359 rx_status); 2360 continue; 2361 } 2362 mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, page); 2363 } /* Middle or Last descriptor */ 2364 2365 if (!(rx_status & MVNETA_RXD_LAST_DESC)) 2366 /* no last descriptor this time */ 2367 continue; 2368 2369 if (rxq->left_size) { 2370 pr_err("get last desc, but left_size (%d) != 0\n", 2371 rxq->left_size); 2372 dev_kfree_skb_any(rxq->skb); 2373 rxq->left_size = 0; 2374 rxq->skb = NULL; 2375 continue; 2376 } 2377 2378 ps.rx_bytes += rxq->skb->len; 2379 ps.rx_packets++; 2380 2381 /* Linux processing */ 2382 rxq->skb->protocol = eth_type_trans(rxq->skb, dev); 2383 2384 napi_gro_receive(napi, rxq->skb); 2385 2386 /* clean uncomplete skb pointer in queue */ 2387 rxq->skb = NULL; 2388 } 2389 rcu_read_unlock(); 2390 2391 if (ps.xdp_redirect) 2392 xdp_do_flush_map(); 2393 2394 if (ps.rx_packets) 2395 mvneta_update_stats(pp, &ps); 2396 2397 /* return some buffers to hardware queue, one at a time is too slow */ 2398 refill = mvneta_rx_refill_queue(pp, rxq); 2399 2400 /* Update rxq management counters */ 2401 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill); 2402 2403 return ps.rx_packets; 2404 } 2405 2406 /* Main rx processing when using hardware buffer management */ 2407 static int mvneta_rx_hwbm(struct napi_struct *napi, 2408 struct mvneta_port *pp, int rx_todo, 2409 struct mvneta_rx_queue *rxq) 2410 { 2411 struct net_device *dev = pp->dev; 2412 int rx_done; 2413 u32 rcvd_pkts = 0; 2414 u32 rcvd_bytes = 0; 2415 2416 /* Get number of received packets */ 2417 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2418 2419 if (rx_todo > rx_done) 2420 rx_todo = rx_done; 2421 2422 rx_done = 0; 2423 2424 /* Fairness NAPI loop */ 2425 while (rx_done < rx_todo) { 2426 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2427 struct mvneta_bm_pool *bm_pool = NULL; 2428 struct sk_buff *skb; 2429 unsigned char *data; 2430 dma_addr_t phys_addr; 2431 u32 rx_status, frag_size; 2432 int rx_bytes, err; 2433 u8 pool_id; 2434 2435 rx_done++; 2436 rx_status = rx_desc->status; 2437 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2438 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2439 phys_addr = rx_desc->buf_phys_addr; 2440 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2441 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2442 2443 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2444 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2445 err_drop_frame_ret_pool: 2446 /* Return the buffer to the pool */ 2447 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2448 rx_desc->buf_phys_addr); 2449 err_drop_frame: 2450 mvneta_rx_error(pp, rx_desc); 2451 /* leave the descriptor untouched */ 2452 continue; 2453 } 2454 2455 if (rx_bytes <= rx_copybreak) { 2456 /* better copy a small frame and not unmap the DMA region */ 2457 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2458 if (unlikely(!skb)) 2459 goto err_drop_frame_ret_pool; 2460 2461 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev, 2462 rx_desc->buf_phys_addr, 2463 MVNETA_MH_SIZE + NET_SKB_PAD, 2464 rx_bytes, 2465 DMA_FROM_DEVICE); 2466 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 2467 rx_bytes); 2468 2469 skb->protocol = eth_type_trans(skb, dev); 2470 mvneta_rx_csum(pp, rx_status, skb); 2471 napi_gro_receive(napi, skb); 2472 2473 rcvd_pkts++; 2474 rcvd_bytes += rx_bytes; 2475 2476 /* Return the buffer to the pool */ 2477 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2478 rx_desc->buf_phys_addr); 2479 2480 /* leave the descriptor and buffer untouched */ 2481 continue; 2482 } 2483 2484 /* Refill processing */ 2485 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2486 if (err) { 2487 struct mvneta_pcpu_stats *stats; 2488 2489 netdev_err(dev, "Linux processing - Can't refill\n"); 2490 2491 stats = this_cpu_ptr(pp->stats); 2492 u64_stats_update_begin(&stats->syncp); 2493 stats->es.refill_error++; 2494 u64_stats_update_end(&stats->syncp); 2495 2496 goto err_drop_frame_ret_pool; 2497 } 2498 2499 frag_size = bm_pool->hwbm_pool.frag_size; 2500 2501 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2502 2503 /* After refill old buffer has to be unmapped regardless 2504 * the skb is successfully built or not. 2505 */ 2506 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2507 bm_pool->buf_size, DMA_FROM_DEVICE); 2508 if (!skb) 2509 goto err_drop_frame; 2510 2511 rcvd_pkts++; 2512 rcvd_bytes += rx_bytes; 2513 2514 /* Linux processing */ 2515 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2516 skb_put(skb, rx_bytes); 2517 2518 skb->protocol = eth_type_trans(skb, dev); 2519 2520 mvneta_rx_csum(pp, rx_status, skb); 2521 2522 napi_gro_receive(napi, skb); 2523 } 2524 2525 if (rcvd_pkts) { 2526 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2527 2528 u64_stats_update_begin(&stats->syncp); 2529 stats->es.ps.rx_packets += rcvd_pkts; 2530 stats->es.ps.rx_bytes += rcvd_bytes; 2531 u64_stats_update_end(&stats->syncp); 2532 } 2533 2534 /* Update rxq management counters */ 2535 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2536 2537 return rx_done; 2538 } 2539 2540 static inline void 2541 mvneta_tso_put_hdr(struct sk_buff *skb, 2542 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 2543 { 2544 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2545 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2546 struct mvneta_tx_desc *tx_desc; 2547 2548 tx_desc = mvneta_txq_next_desc_get(txq); 2549 tx_desc->data_size = hdr_len; 2550 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 2551 tx_desc->command |= MVNETA_TXD_F_DESC; 2552 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2553 txq->txq_put_index * TSO_HEADER_SIZE; 2554 buf->type = MVNETA_TYPE_SKB; 2555 buf->skb = NULL; 2556 2557 mvneta_txq_inc_put(txq); 2558 } 2559 2560 static inline int 2561 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2562 struct sk_buff *skb, char *data, int size, 2563 bool last_tcp, bool is_last) 2564 { 2565 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2566 struct mvneta_tx_desc *tx_desc; 2567 2568 tx_desc = mvneta_txq_next_desc_get(txq); 2569 tx_desc->data_size = size; 2570 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2571 size, DMA_TO_DEVICE); 2572 if (unlikely(dma_mapping_error(dev->dev.parent, 2573 tx_desc->buf_phys_addr))) { 2574 mvneta_txq_desc_put(txq); 2575 return -ENOMEM; 2576 } 2577 2578 tx_desc->command = 0; 2579 buf->type = MVNETA_TYPE_SKB; 2580 buf->skb = NULL; 2581 2582 if (last_tcp) { 2583 /* last descriptor in the TCP packet */ 2584 tx_desc->command = MVNETA_TXD_L_DESC; 2585 2586 /* last descriptor in SKB */ 2587 if (is_last) 2588 buf->skb = skb; 2589 } 2590 mvneta_txq_inc_put(txq); 2591 return 0; 2592 } 2593 2594 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2595 struct mvneta_tx_queue *txq) 2596 { 2597 int total_len, data_left; 2598 int desc_count = 0; 2599 struct mvneta_port *pp = netdev_priv(dev); 2600 struct tso_t tso; 2601 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2602 int i; 2603 2604 /* Count needed descriptors */ 2605 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2606 return 0; 2607 2608 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2609 pr_info("*** Is this even possible???!?!?\n"); 2610 return 0; 2611 } 2612 2613 /* Initialize the TSO handler, and prepare the first payload */ 2614 tso_start(skb, &tso); 2615 2616 total_len = skb->len - hdr_len; 2617 while (total_len > 0) { 2618 char *hdr; 2619 2620 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2621 total_len -= data_left; 2622 desc_count++; 2623 2624 /* prepare packet headers: MAC + IP + TCP */ 2625 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2626 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2627 2628 mvneta_tso_put_hdr(skb, pp, txq); 2629 2630 while (data_left > 0) { 2631 int size; 2632 desc_count++; 2633 2634 size = min_t(int, tso.size, data_left); 2635 2636 if (mvneta_tso_put_data(dev, txq, skb, 2637 tso.data, size, 2638 size == data_left, 2639 total_len == 0)) 2640 goto err_release; 2641 data_left -= size; 2642 2643 tso_build_data(skb, &tso, size); 2644 } 2645 } 2646 2647 return desc_count; 2648 2649 err_release: 2650 /* Release all used data descriptors; header descriptors must not 2651 * be DMA-unmapped. 2652 */ 2653 for (i = desc_count - 1; i >= 0; i--) { 2654 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2655 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2656 dma_unmap_single(pp->dev->dev.parent, 2657 tx_desc->buf_phys_addr, 2658 tx_desc->data_size, 2659 DMA_TO_DEVICE); 2660 mvneta_txq_desc_put(txq); 2661 } 2662 return 0; 2663 } 2664 2665 /* Handle tx fragmentation processing */ 2666 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2667 struct mvneta_tx_queue *txq) 2668 { 2669 struct mvneta_tx_desc *tx_desc; 2670 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2671 2672 for (i = 0; i < nr_frags; i++) { 2673 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2674 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2675 void *addr = skb_frag_address(frag); 2676 2677 tx_desc = mvneta_txq_next_desc_get(txq); 2678 tx_desc->data_size = skb_frag_size(frag); 2679 2680 tx_desc->buf_phys_addr = 2681 dma_map_single(pp->dev->dev.parent, addr, 2682 tx_desc->data_size, DMA_TO_DEVICE); 2683 2684 if (dma_mapping_error(pp->dev->dev.parent, 2685 tx_desc->buf_phys_addr)) { 2686 mvneta_txq_desc_put(txq); 2687 goto error; 2688 } 2689 2690 if (i == nr_frags - 1) { 2691 /* Last descriptor */ 2692 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2693 buf->skb = skb; 2694 } else { 2695 /* Descriptor in the middle: Not First, Not Last */ 2696 tx_desc->command = 0; 2697 buf->skb = NULL; 2698 } 2699 buf->type = MVNETA_TYPE_SKB; 2700 mvneta_txq_inc_put(txq); 2701 } 2702 2703 return 0; 2704 2705 error: 2706 /* Release all descriptors that were used to map fragments of 2707 * this packet, as well as the corresponding DMA mappings 2708 */ 2709 for (i = i - 1; i >= 0; i--) { 2710 tx_desc = txq->descs + i; 2711 dma_unmap_single(pp->dev->dev.parent, 2712 tx_desc->buf_phys_addr, 2713 tx_desc->data_size, 2714 DMA_TO_DEVICE); 2715 mvneta_txq_desc_put(txq); 2716 } 2717 2718 return -ENOMEM; 2719 } 2720 2721 /* Main tx processing */ 2722 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2723 { 2724 struct mvneta_port *pp = netdev_priv(dev); 2725 u16 txq_id = skb_get_queue_mapping(skb); 2726 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2727 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2728 struct mvneta_tx_desc *tx_desc; 2729 int len = skb->len; 2730 int frags = 0; 2731 u32 tx_cmd; 2732 2733 if (!netif_running(dev)) 2734 goto out; 2735 2736 if (skb_is_gso(skb)) { 2737 frags = mvneta_tx_tso(skb, dev, txq); 2738 goto out; 2739 } 2740 2741 frags = skb_shinfo(skb)->nr_frags + 1; 2742 2743 /* Get a descriptor for the first part of the packet */ 2744 tx_desc = mvneta_txq_next_desc_get(txq); 2745 2746 tx_cmd = mvneta_skb_tx_csum(pp, skb); 2747 2748 tx_desc->data_size = skb_headlen(skb); 2749 2750 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2751 tx_desc->data_size, 2752 DMA_TO_DEVICE); 2753 if (unlikely(dma_mapping_error(dev->dev.parent, 2754 tx_desc->buf_phys_addr))) { 2755 mvneta_txq_desc_put(txq); 2756 frags = 0; 2757 goto out; 2758 } 2759 2760 buf->type = MVNETA_TYPE_SKB; 2761 if (frags == 1) { 2762 /* First and Last descriptor */ 2763 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2764 tx_desc->command = tx_cmd; 2765 buf->skb = skb; 2766 mvneta_txq_inc_put(txq); 2767 } else { 2768 /* First but not Last */ 2769 tx_cmd |= MVNETA_TXD_F_DESC; 2770 buf->skb = NULL; 2771 mvneta_txq_inc_put(txq); 2772 tx_desc->command = tx_cmd; 2773 /* Continue with other skb fragments */ 2774 if (mvneta_tx_frag_process(pp, skb, txq)) { 2775 dma_unmap_single(dev->dev.parent, 2776 tx_desc->buf_phys_addr, 2777 tx_desc->data_size, 2778 DMA_TO_DEVICE); 2779 mvneta_txq_desc_put(txq); 2780 frags = 0; 2781 goto out; 2782 } 2783 } 2784 2785 out: 2786 if (frags > 0) { 2787 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2788 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2789 2790 netdev_tx_sent_queue(nq, len); 2791 2792 txq->count += frags; 2793 if (txq->count >= txq->tx_stop_threshold) 2794 netif_tx_stop_queue(nq); 2795 2796 if (!netdev_xmit_more() || netif_xmit_stopped(nq) || 2797 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2798 mvneta_txq_pend_desc_add(pp, txq, frags); 2799 else 2800 txq->pending += frags; 2801 2802 u64_stats_update_begin(&stats->syncp); 2803 stats->es.ps.tx_bytes += len; 2804 stats->es.ps.tx_packets++; 2805 u64_stats_update_end(&stats->syncp); 2806 } else { 2807 dev->stats.tx_dropped++; 2808 dev_kfree_skb_any(skb); 2809 } 2810 2811 return NETDEV_TX_OK; 2812 } 2813 2814 2815 /* Free tx resources, when resetting a port */ 2816 static void mvneta_txq_done_force(struct mvneta_port *pp, 2817 struct mvneta_tx_queue *txq) 2818 2819 { 2820 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2821 int tx_done = txq->count; 2822 2823 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 2824 2825 /* reset txq */ 2826 txq->count = 0; 2827 txq->txq_put_index = 0; 2828 txq->txq_get_index = 0; 2829 } 2830 2831 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2832 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2833 */ 2834 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2835 { 2836 struct mvneta_tx_queue *txq; 2837 struct netdev_queue *nq; 2838 int cpu = smp_processor_id(); 2839 2840 while (cause_tx_done) { 2841 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2842 2843 nq = netdev_get_tx_queue(pp->dev, txq->id); 2844 __netif_tx_lock(nq, cpu); 2845 2846 if (txq->count) 2847 mvneta_txq_done(pp, txq); 2848 2849 __netif_tx_unlock(nq); 2850 cause_tx_done &= ~((1 << txq->id)); 2851 } 2852 } 2853 2854 /* Compute crc8 of the specified address, using a unique algorithm , 2855 * according to hw spec, different than generic crc8 algorithm 2856 */ 2857 static int mvneta_addr_crc(unsigned char *addr) 2858 { 2859 int crc = 0; 2860 int i; 2861 2862 for (i = 0; i < ETH_ALEN; i++) { 2863 int j; 2864 2865 crc = (crc ^ addr[i]) << 8; 2866 for (j = 7; j >= 0; j--) { 2867 if (crc & (0x100 << j)) 2868 crc ^= 0x107 << j; 2869 } 2870 } 2871 2872 return crc; 2873 } 2874 2875 /* This method controls the net device special MAC multicast support. 2876 * The Special Multicast Table for MAC addresses supports MAC of the form 2877 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2878 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2879 * Table entries in the DA-Filter table. This method set the Special 2880 * Multicast Table appropriate entry. 2881 */ 2882 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2883 unsigned char last_byte, 2884 int queue) 2885 { 2886 unsigned int smc_table_reg; 2887 unsigned int tbl_offset; 2888 unsigned int reg_offset; 2889 2890 /* Register offset from SMC table base */ 2891 tbl_offset = (last_byte / 4); 2892 /* Entry offset within the above reg */ 2893 reg_offset = last_byte % 4; 2894 2895 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2896 + tbl_offset * 4)); 2897 2898 if (queue == -1) 2899 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2900 else { 2901 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2902 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2903 } 2904 2905 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2906 smc_table_reg); 2907 } 2908 2909 /* This method controls the network device Other MAC multicast support. 2910 * The Other Multicast Table is used for multicast of another type. 2911 * A CRC-8 is used as an index to the Other Multicast Table entries 2912 * in the DA-Filter table. 2913 * The method gets the CRC-8 value from the calling routine and 2914 * sets the Other Multicast Table appropriate entry according to the 2915 * specified CRC-8 . 2916 */ 2917 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2918 unsigned char crc8, 2919 int queue) 2920 { 2921 unsigned int omc_table_reg; 2922 unsigned int tbl_offset; 2923 unsigned int reg_offset; 2924 2925 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2926 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2927 2928 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2929 2930 if (queue == -1) { 2931 /* Clear accepts frame bit at specified Other DA table entry */ 2932 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2933 } else { 2934 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2935 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2936 } 2937 2938 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2939 } 2940 2941 /* The network device supports multicast using two tables: 2942 * 1) Special Multicast Table for MAC addresses of the form 2943 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2944 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2945 * Table entries in the DA-Filter table. 2946 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2947 * is used as an index to the Other Multicast Table entries in the 2948 * DA-Filter table. 2949 */ 2950 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2951 int queue) 2952 { 2953 unsigned char crc_result = 0; 2954 2955 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2956 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2957 return 0; 2958 } 2959 2960 crc_result = mvneta_addr_crc(p_addr); 2961 if (queue == -1) { 2962 if (pp->mcast_count[crc_result] == 0) { 2963 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2964 crc_result); 2965 return -EINVAL; 2966 } 2967 2968 pp->mcast_count[crc_result]--; 2969 if (pp->mcast_count[crc_result] != 0) { 2970 netdev_info(pp->dev, 2971 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2972 pp->mcast_count[crc_result], crc_result); 2973 return -EINVAL; 2974 } 2975 } else 2976 pp->mcast_count[crc_result]++; 2977 2978 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2979 2980 return 0; 2981 } 2982 2983 /* Configure Fitering mode of Ethernet port */ 2984 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2985 int is_promisc) 2986 { 2987 u32 port_cfg_reg, val; 2988 2989 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2990 2991 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2992 2993 /* Set / Clear UPM bit in port configuration register */ 2994 if (is_promisc) { 2995 /* Accept all Unicast addresses */ 2996 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2997 val |= MVNETA_FORCE_UNI; 2998 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2999 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 3000 } else { 3001 /* Reject all Unicast addresses */ 3002 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 3003 val &= ~MVNETA_FORCE_UNI; 3004 } 3005 3006 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 3007 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 3008 } 3009 3010 /* register unicast and multicast addresses */ 3011 static void mvneta_set_rx_mode(struct net_device *dev) 3012 { 3013 struct mvneta_port *pp = netdev_priv(dev); 3014 struct netdev_hw_addr *ha; 3015 3016 if (dev->flags & IFF_PROMISC) { 3017 /* Accept all: Multicast + Unicast */ 3018 mvneta_rx_unicast_promisc_set(pp, 1); 3019 mvneta_set_ucast_table(pp, pp->rxq_def); 3020 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3021 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3022 } else { 3023 /* Accept single Unicast */ 3024 mvneta_rx_unicast_promisc_set(pp, 0); 3025 mvneta_set_ucast_table(pp, -1); 3026 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 3027 3028 if (dev->flags & IFF_ALLMULTI) { 3029 /* Accept all multicast */ 3030 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3031 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3032 } else { 3033 /* Accept only initialized multicast */ 3034 mvneta_set_special_mcast_table(pp, -1); 3035 mvneta_set_other_mcast_table(pp, -1); 3036 3037 if (!netdev_mc_empty(dev)) { 3038 netdev_for_each_mc_addr(ha, dev) { 3039 mvneta_mcast_addr_set(pp, ha->addr, 3040 pp->rxq_def); 3041 } 3042 } 3043 } 3044 } 3045 } 3046 3047 /* Interrupt handling - the callback for request_irq() */ 3048 static irqreturn_t mvneta_isr(int irq, void *dev_id) 3049 { 3050 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 3051 3052 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 3053 napi_schedule(&pp->napi); 3054 3055 return IRQ_HANDLED; 3056 } 3057 3058 /* Interrupt handling - the callback for request_percpu_irq() */ 3059 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 3060 { 3061 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 3062 3063 disable_percpu_irq(port->pp->dev->irq); 3064 napi_schedule(&port->napi); 3065 3066 return IRQ_HANDLED; 3067 } 3068 3069 static void mvneta_link_change(struct mvneta_port *pp) 3070 { 3071 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3072 3073 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP)); 3074 } 3075 3076 /* NAPI handler 3077 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 3078 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 3079 * Bits 8 -15 of the cause Rx Tx register indicate that are received 3080 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 3081 * Each CPU has its own causeRxTx register 3082 */ 3083 static int mvneta_poll(struct napi_struct *napi, int budget) 3084 { 3085 int rx_done = 0; 3086 u32 cause_rx_tx; 3087 int rx_queue; 3088 struct mvneta_port *pp = netdev_priv(napi->dev); 3089 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 3090 3091 if (!netif_running(pp->dev)) { 3092 napi_complete(napi); 3093 return rx_done; 3094 } 3095 3096 /* Read cause register */ 3097 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 3098 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 3099 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 3100 3101 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 3102 3103 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE | 3104 MVNETA_CAUSE_LINK_CHANGE)) 3105 mvneta_link_change(pp); 3106 } 3107 3108 /* Release Tx descriptors */ 3109 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 3110 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 3111 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 3112 } 3113 3114 /* For the case where the last mvneta_poll did not process all 3115 * RX packets 3116 */ 3117 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 3118 port->cause_rx_tx; 3119 3120 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 3121 if (rx_queue) { 3122 rx_queue = rx_queue - 1; 3123 if (pp->bm_priv) 3124 rx_done = mvneta_rx_hwbm(napi, pp, budget, 3125 &pp->rxqs[rx_queue]); 3126 else 3127 rx_done = mvneta_rx_swbm(napi, pp, budget, 3128 &pp->rxqs[rx_queue]); 3129 } 3130 3131 if (rx_done < budget) { 3132 cause_rx_tx = 0; 3133 napi_complete_done(napi, rx_done); 3134 3135 if (pp->neta_armada3700) { 3136 unsigned long flags; 3137 3138 local_irq_save(flags); 3139 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 3140 MVNETA_RX_INTR_MASK(rxq_number) | 3141 MVNETA_TX_INTR_MASK(txq_number) | 3142 MVNETA_MISCINTR_INTR_MASK); 3143 local_irq_restore(flags); 3144 } else { 3145 enable_percpu_irq(pp->dev->irq, 0); 3146 } 3147 } 3148 3149 if (pp->neta_armada3700) 3150 pp->cause_rx_tx = cause_rx_tx; 3151 else 3152 port->cause_rx_tx = cause_rx_tx; 3153 3154 return rx_done; 3155 } 3156 3157 static int mvneta_create_page_pool(struct mvneta_port *pp, 3158 struct mvneta_rx_queue *rxq, int size) 3159 { 3160 struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog); 3161 struct page_pool_params pp_params = { 3162 .order = 0, 3163 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 3164 .pool_size = size, 3165 .nid = NUMA_NO_NODE, 3166 .dev = pp->dev->dev.parent, 3167 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 3168 .offset = pp->rx_offset_correction, 3169 .max_len = MVNETA_MAX_RX_BUF_SIZE, 3170 }; 3171 int err; 3172 3173 rxq->page_pool = page_pool_create(&pp_params); 3174 if (IS_ERR(rxq->page_pool)) { 3175 err = PTR_ERR(rxq->page_pool); 3176 rxq->page_pool = NULL; 3177 return err; 3178 } 3179 3180 err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id); 3181 if (err < 0) 3182 goto err_free_pp; 3183 3184 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 3185 rxq->page_pool); 3186 if (err) 3187 goto err_unregister_rxq; 3188 3189 return 0; 3190 3191 err_unregister_rxq: 3192 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3193 err_free_pp: 3194 page_pool_destroy(rxq->page_pool); 3195 rxq->page_pool = NULL; 3196 return err; 3197 } 3198 3199 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 3200 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 3201 int num) 3202 { 3203 int i, err; 3204 3205 err = mvneta_create_page_pool(pp, rxq, num); 3206 if (err < 0) 3207 return err; 3208 3209 for (i = 0; i < num; i++) { 3210 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 3211 if (mvneta_rx_refill(pp, rxq->descs + i, rxq, 3212 GFP_KERNEL) != 0) { 3213 netdev_err(pp->dev, 3214 "%s:rxq %d, %d of %d buffs filled\n", 3215 __func__, rxq->id, i, num); 3216 break; 3217 } 3218 } 3219 3220 /* Add this number of RX descriptors as non occupied (ready to 3221 * get packets) 3222 */ 3223 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 3224 3225 return i; 3226 } 3227 3228 /* Free all packets pending transmit from all TXQs and reset TX port */ 3229 static void mvneta_tx_reset(struct mvneta_port *pp) 3230 { 3231 int queue; 3232 3233 /* free the skb's in the tx ring */ 3234 for (queue = 0; queue < txq_number; queue++) 3235 mvneta_txq_done_force(pp, &pp->txqs[queue]); 3236 3237 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 3238 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 3239 } 3240 3241 static void mvneta_rx_reset(struct mvneta_port *pp) 3242 { 3243 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 3244 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 3245 } 3246 3247 /* Rx/Tx queue initialization/cleanup methods */ 3248 3249 static int mvneta_rxq_sw_init(struct mvneta_port *pp, 3250 struct mvneta_rx_queue *rxq) 3251 { 3252 rxq->size = pp->rx_ring_size; 3253 3254 /* Allocate memory for RX descriptors */ 3255 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3256 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3257 &rxq->descs_phys, GFP_KERNEL); 3258 if (!rxq->descs) 3259 return -ENOMEM; 3260 3261 rxq->last_desc = rxq->size - 1; 3262 3263 return 0; 3264 } 3265 3266 static void mvneta_rxq_hw_init(struct mvneta_port *pp, 3267 struct mvneta_rx_queue *rxq) 3268 { 3269 /* Set Rx descriptors queue starting address */ 3270 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 3271 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 3272 3273 /* Set coalescing pkts and time */ 3274 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3275 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3276 3277 if (!pp->bm_priv) { 3278 /* Set Offset */ 3279 mvneta_rxq_offset_set(pp, rxq, 0); 3280 mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ? 3281 MVNETA_MAX_RX_BUF_SIZE : 3282 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 3283 mvneta_rxq_bm_disable(pp, rxq); 3284 mvneta_rxq_fill(pp, rxq, rxq->size); 3285 } else { 3286 /* Set Offset */ 3287 mvneta_rxq_offset_set(pp, rxq, 3288 NET_SKB_PAD - pp->rx_offset_correction); 3289 3290 mvneta_rxq_bm_enable(pp, rxq); 3291 /* Fill RXQ with buffers from RX pool */ 3292 mvneta_rxq_long_pool_set(pp, rxq); 3293 mvneta_rxq_short_pool_set(pp, rxq); 3294 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 3295 } 3296 } 3297 3298 /* Create a specified RX queue */ 3299 static int mvneta_rxq_init(struct mvneta_port *pp, 3300 struct mvneta_rx_queue *rxq) 3301 3302 { 3303 int ret; 3304 3305 ret = mvneta_rxq_sw_init(pp, rxq); 3306 if (ret < 0) 3307 return ret; 3308 3309 mvneta_rxq_hw_init(pp, rxq); 3310 3311 return 0; 3312 } 3313 3314 /* Cleanup Rx queue */ 3315 static void mvneta_rxq_deinit(struct mvneta_port *pp, 3316 struct mvneta_rx_queue *rxq) 3317 { 3318 mvneta_rxq_drop_pkts(pp, rxq); 3319 3320 if (rxq->skb) 3321 dev_kfree_skb_any(rxq->skb); 3322 3323 if (rxq->descs) 3324 dma_free_coherent(pp->dev->dev.parent, 3325 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3326 rxq->descs, 3327 rxq->descs_phys); 3328 3329 rxq->descs = NULL; 3330 rxq->last_desc = 0; 3331 rxq->next_desc_to_proc = 0; 3332 rxq->descs_phys = 0; 3333 rxq->first_to_refill = 0; 3334 rxq->refill_num = 0; 3335 rxq->skb = NULL; 3336 rxq->left_size = 0; 3337 } 3338 3339 static int mvneta_txq_sw_init(struct mvneta_port *pp, 3340 struct mvneta_tx_queue *txq) 3341 { 3342 int cpu; 3343 3344 txq->size = pp->tx_ring_size; 3345 3346 /* A queue must always have room for at least one skb. 3347 * Therefore, stop the queue when the free entries reaches 3348 * the maximum number of descriptors per skb. 3349 */ 3350 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 3351 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 3352 3353 /* Allocate memory for TX descriptors */ 3354 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3355 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3356 &txq->descs_phys, GFP_KERNEL); 3357 if (!txq->descs) 3358 return -ENOMEM; 3359 3360 txq->last_desc = txq->size - 1; 3361 3362 txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL); 3363 if (!txq->buf) { 3364 dma_free_coherent(pp->dev->dev.parent, 3365 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3366 txq->descs, txq->descs_phys); 3367 return -ENOMEM; 3368 } 3369 3370 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 3371 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 3372 txq->size * TSO_HEADER_SIZE, 3373 &txq->tso_hdrs_phys, GFP_KERNEL); 3374 if (!txq->tso_hdrs) { 3375 kfree(txq->buf); 3376 dma_free_coherent(pp->dev->dev.parent, 3377 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3378 txq->descs, txq->descs_phys); 3379 return -ENOMEM; 3380 } 3381 3382 /* Setup XPS mapping */ 3383 if (txq_number > 1) 3384 cpu = txq->id % num_present_cpus(); 3385 else 3386 cpu = pp->rxq_def % num_present_cpus(); 3387 cpumask_set_cpu(cpu, &txq->affinity_mask); 3388 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 3389 3390 return 0; 3391 } 3392 3393 static void mvneta_txq_hw_init(struct mvneta_port *pp, 3394 struct mvneta_tx_queue *txq) 3395 { 3396 /* Set maximum bandwidth for enabled TXQs */ 3397 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 3398 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 3399 3400 /* Set Tx descriptors queue starting address */ 3401 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 3402 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 3403 3404 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3405 } 3406 3407 /* Create and initialize a tx queue */ 3408 static int mvneta_txq_init(struct mvneta_port *pp, 3409 struct mvneta_tx_queue *txq) 3410 { 3411 int ret; 3412 3413 ret = mvneta_txq_sw_init(pp, txq); 3414 if (ret < 0) 3415 return ret; 3416 3417 mvneta_txq_hw_init(pp, txq); 3418 3419 return 0; 3420 } 3421 3422 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 3423 static void mvneta_txq_sw_deinit(struct mvneta_port *pp, 3424 struct mvneta_tx_queue *txq) 3425 { 3426 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 3427 3428 kfree(txq->buf); 3429 3430 if (txq->tso_hdrs) 3431 dma_free_coherent(pp->dev->dev.parent, 3432 txq->size * TSO_HEADER_SIZE, 3433 txq->tso_hdrs, txq->tso_hdrs_phys); 3434 if (txq->descs) 3435 dma_free_coherent(pp->dev->dev.parent, 3436 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3437 txq->descs, txq->descs_phys); 3438 3439 netdev_tx_reset_queue(nq); 3440 3441 txq->descs = NULL; 3442 txq->last_desc = 0; 3443 txq->next_desc_to_proc = 0; 3444 txq->descs_phys = 0; 3445 } 3446 3447 static void mvneta_txq_hw_deinit(struct mvneta_port *pp, 3448 struct mvneta_tx_queue *txq) 3449 { 3450 /* Set minimum bandwidth for disabled TXQs */ 3451 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 3452 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 3453 3454 /* Set Tx descriptors queue starting address and size */ 3455 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 3456 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 3457 } 3458 3459 static void mvneta_txq_deinit(struct mvneta_port *pp, 3460 struct mvneta_tx_queue *txq) 3461 { 3462 mvneta_txq_sw_deinit(pp, txq); 3463 mvneta_txq_hw_deinit(pp, txq); 3464 } 3465 3466 /* Cleanup all Tx queues */ 3467 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 3468 { 3469 int queue; 3470 3471 for (queue = 0; queue < txq_number; queue++) 3472 mvneta_txq_deinit(pp, &pp->txqs[queue]); 3473 } 3474 3475 /* Cleanup all Rx queues */ 3476 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 3477 { 3478 int queue; 3479 3480 for (queue = 0; queue < rxq_number; queue++) 3481 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 3482 } 3483 3484 3485 /* Init all Rx queues */ 3486 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3487 { 3488 int queue; 3489 3490 for (queue = 0; queue < rxq_number; queue++) { 3491 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3492 3493 if (err) { 3494 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3495 __func__, queue); 3496 mvneta_cleanup_rxqs(pp); 3497 return err; 3498 } 3499 } 3500 3501 return 0; 3502 } 3503 3504 /* Init all tx queues */ 3505 static int mvneta_setup_txqs(struct mvneta_port *pp) 3506 { 3507 int queue; 3508 3509 for (queue = 0; queue < txq_number; queue++) { 3510 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3511 if (err) { 3512 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3513 __func__, queue); 3514 mvneta_cleanup_txqs(pp); 3515 return err; 3516 } 3517 } 3518 3519 return 0; 3520 } 3521 3522 static int mvneta_comphy_init(struct mvneta_port *pp) 3523 { 3524 int ret; 3525 3526 if (!pp->comphy) 3527 return 0; 3528 3529 ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, 3530 pp->phy_interface); 3531 if (ret) 3532 return ret; 3533 3534 return phy_power_on(pp->comphy); 3535 } 3536 3537 static void mvneta_start_dev(struct mvneta_port *pp) 3538 { 3539 int cpu; 3540 3541 WARN_ON(mvneta_comphy_init(pp)); 3542 3543 mvneta_max_rx_size_set(pp, pp->pkt_size); 3544 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3545 3546 /* start the Rx/Tx activity */ 3547 mvneta_port_enable(pp); 3548 3549 if (!pp->neta_armada3700) { 3550 /* Enable polling on the port */ 3551 for_each_online_cpu(cpu) { 3552 struct mvneta_pcpu_port *port = 3553 per_cpu_ptr(pp->ports, cpu); 3554 3555 napi_enable(&port->napi); 3556 } 3557 } else { 3558 napi_enable(&pp->napi); 3559 } 3560 3561 /* Unmask interrupts. It has to be done from each CPU */ 3562 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3563 3564 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3565 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3566 MVNETA_CAUSE_LINK_CHANGE); 3567 3568 phylink_start(pp->phylink); 3569 3570 /* We may have called phy_speed_down before */ 3571 phy_speed_up(pp->dev->phydev); 3572 3573 netif_tx_start_all_queues(pp->dev); 3574 } 3575 3576 static void mvneta_stop_dev(struct mvneta_port *pp) 3577 { 3578 unsigned int cpu; 3579 3580 if (device_may_wakeup(&pp->dev->dev)) 3581 phy_speed_down(pp->dev->phydev, false); 3582 3583 phylink_stop(pp->phylink); 3584 3585 if (!pp->neta_armada3700) { 3586 for_each_online_cpu(cpu) { 3587 struct mvneta_pcpu_port *port = 3588 per_cpu_ptr(pp->ports, cpu); 3589 3590 napi_disable(&port->napi); 3591 } 3592 } else { 3593 napi_disable(&pp->napi); 3594 } 3595 3596 netif_carrier_off(pp->dev); 3597 3598 mvneta_port_down(pp); 3599 netif_tx_stop_all_queues(pp->dev); 3600 3601 /* Stop the port activity */ 3602 mvneta_port_disable(pp); 3603 3604 /* Clear all ethernet port interrupts */ 3605 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3606 3607 /* Mask all ethernet port interrupts */ 3608 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3609 3610 mvneta_tx_reset(pp); 3611 mvneta_rx_reset(pp); 3612 3613 WARN_ON(phy_power_off(pp->comphy)); 3614 } 3615 3616 static void mvneta_percpu_enable(void *arg) 3617 { 3618 struct mvneta_port *pp = arg; 3619 3620 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3621 } 3622 3623 static void mvneta_percpu_disable(void *arg) 3624 { 3625 struct mvneta_port *pp = arg; 3626 3627 disable_percpu_irq(pp->dev->irq); 3628 } 3629 3630 /* Change the device mtu */ 3631 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3632 { 3633 struct mvneta_port *pp = netdev_priv(dev); 3634 int ret; 3635 3636 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3637 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3638 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3639 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3640 } 3641 3642 if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) { 3643 netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu); 3644 return -EINVAL; 3645 } 3646 3647 dev->mtu = mtu; 3648 3649 if (!netif_running(dev)) { 3650 if (pp->bm_priv) 3651 mvneta_bm_update_mtu(pp, mtu); 3652 3653 netdev_update_features(dev); 3654 return 0; 3655 } 3656 3657 /* The interface is running, so we have to force a 3658 * reallocation of the queues 3659 */ 3660 mvneta_stop_dev(pp); 3661 on_each_cpu(mvneta_percpu_disable, pp, true); 3662 3663 mvneta_cleanup_txqs(pp); 3664 mvneta_cleanup_rxqs(pp); 3665 3666 if (pp->bm_priv) 3667 mvneta_bm_update_mtu(pp, mtu); 3668 3669 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3670 3671 ret = mvneta_setup_rxqs(pp); 3672 if (ret) { 3673 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3674 return ret; 3675 } 3676 3677 ret = mvneta_setup_txqs(pp); 3678 if (ret) { 3679 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3680 return ret; 3681 } 3682 3683 on_each_cpu(mvneta_percpu_enable, pp, true); 3684 mvneta_start_dev(pp); 3685 3686 netdev_update_features(dev); 3687 3688 return 0; 3689 } 3690 3691 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3692 netdev_features_t features) 3693 { 3694 struct mvneta_port *pp = netdev_priv(dev); 3695 3696 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3697 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3698 netdev_info(dev, 3699 "Disable IP checksum for MTU greater than %dB\n", 3700 pp->tx_csum_limit); 3701 } 3702 3703 return features; 3704 } 3705 3706 /* Get mac address */ 3707 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3708 { 3709 u32 mac_addr_l, mac_addr_h; 3710 3711 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3712 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3713 addr[0] = (mac_addr_h >> 24) & 0xFF; 3714 addr[1] = (mac_addr_h >> 16) & 0xFF; 3715 addr[2] = (mac_addr_h >> 8) & 0xFF; 3716 addr[3] = mac_addr_h & 0xFF; 3717 addr[4] = (mac_addr_l >> 8) & 0xFF; 3718 addr[5] = mac_addr_l & 0xFF; 3719 } 3720 3721 /* Handle setting mac address */ 3722 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3723 { 3724 struct mvneta_port *pp = netdev_priv(dev); 3725 struct sockaddr *sockaddr = addr; 3726 int ret; 3727 3728 ret = eth_prepare_mac_addr_change(dev, addr); 3729 if (ret < 0) 3730 return ret; 3731 /* Remove previous address table entry */ 3732 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3733 3734 /* Set new addr in hw */ 3735 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3736 3737 eth_commit_mac_addr_change(dev, addr); 3738 return 0; 3739 } 3740 3741 static void mvneta_validate(struct phylink_config *config, 3742 unsigned long *supported, 3743 struct phylink_link_state *state) 3744 { 3745 struct net_device *ndev = to_net_dev(config->dev); 3746 struct mvneta_port *pp = netdev_priv(ndev); 3747 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 3748 3749 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */ 3750 if (state->interface != PHY_INTERFACE_MODE_NA && 3751 state->interface != PHY_INTERFACE_MODE_QSGMII && 3752 state->interface != PHY_INTERFACE_MODE_SGMII && 3753 !phy_interface_mode_is_8023z(state->interface) && 3754 !phy_interface_mode_is_rgmii(state->interface)) { 3755 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); 3756 return; 3757 } 3758 3759 /* Allow all the expected bits */ 3760 phylink_set(mask, Autoneg); 3761 phylink_set_port_modes(mask); 3762 3763 /* Asymmetric pause is unsupported */ 3764 phylink_set(mask, Pause); 3765 3766 /* Half-duplex at speeds higher than 100Mbit is unsupported */ 3767 if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) { 3768 phylink_set(mask, 1000baseT_Full); 3769 phylink_set(mask, 1000baseX_Full); 3770 } 3771 if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) { 3772 phylink_set(mask, 2500baseT_Full); 3773 phylink_set(mask, 2500baseX_Full); 3774 } 3775 3776 if (!phy_interface_mode_is_8023z(state->interface)) { 3777 /* 10M and 100M are only supported in non-802.3z mode */ 3778 phylink_set(mask, 10baseT_Half); 3779 phylink_set(mask, 10baseT_Full); 3780 phylink_set(mask, 100baseT_Half); 3781 phylink_set(mask, 100baseT_Full); 3782 } 3783 3784 bitmap_and(supported, supported, mask, 3785 __ETHTOOL_LINK_MODE_MASK_NBITS); 3786 bitmap_and(state->advertising, state->advertising, mask, 3787 __ETHTOOL_LINK_MODE_MASK_NBITS); 3788 3789 /* We can only operate at 2500BaseX or 1000BaseX. If requested 3790 * to advertise both, only report advertising at 2500BaseX. 3791 */ 3792 phylink_helper_basex_speed(state); 3793 } 3794 3795 static void mvneta_mac_pcs_get_state(struct phylink_config *config, 3796 struct phylink_link_state *state) 3797 { 3798 struct net_device *ndev = to_net_dev(config->dev); 3799 struct mvneta_port *pp = netdev_priv(ndev); 3800 u32 gmac_stat; 3801 3802 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3803 3804 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 3805 state->speed = 3806 state->interface == PHY_INTERFACE_MODE_2500BASEX ? 3807 SPEED_2500 : SPEED_1000; 3808 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 3809 state->speed = SPEED_100; 3810 else 3811 state->speed = SPEED_10; 3812 3813 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE); 3814 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 3815 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 3816 3817 state->pause = 0; 3818 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE) 3819 state->pause |= MLO_PAUSE_RX; 3820 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE) 3821 state->pause |= MLO_PAUSE_TX; 3822 } 3823 3824 static void mvneta_mac_an_restart(struct phylink_config *config) 3825 { 3826 struct net_device *ndev = to_net_dev(config->dev); 3827 struct mvneta_port *pp = netdev_priv(ndev); 3828 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3829 3830 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3831 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN); 3832 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3833 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN); 3834 } 3835 3836 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode, 3837 const struct phylink_link_state *state) 3838 { 3839 struct net_device *ndev = to_net_dev(config->dev); 3840 struct mvneta_port *pp = netdev_priv(ndev); 3841 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 3842 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3843 u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4); 3844 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 3845 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3846 3847 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X; 3848 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE | 3849 MVNETA_GMAC2_PORT_RESET); 3850 new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE); 3851 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 3852 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE | 3853 MVNETA_GMAC_INBAND_RESTART_AN | 3854 MVNETA_GMAC_AN_SPEED_EN | 3855 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL | 3856 MVNETA_GMAC_AN_FLOW_CTRL_EN | 3857 MVNETA_GMAC_AN_DUPLEX_EN); 3858 3859 /* Even though it might look weird, when we're configured in 3860 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3861 */ 3862 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII; 3863 3864 if (state->interface == PHY_INTERFACE_MODE_QSGMII || 3865 state->interface == PHY_INTERFACE_MODE_SGMII || 3866 phy_interface_mode_is_8023z(state->interface)) 3867 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE; 3868 3869 if (phylink_test(state->advertising, Pause)) 3870 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; 3871 3872 if (!phylink_autoneg_inband(mode)) { 3873 /* Phy or fixed speed - nothing to do, leave the 3874 * configured speed, duplex and flow control as-is. 3875 */ 3876 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { 3877 /* SGMII mode receives the state from the PHY */ 3878 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE; 3879 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3880 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3881 MVNETA_GMAC_FORCE_LINK_PASS | 3882 MVNETA_GMAC_CONFIG_MII_SPEED | 3883 MVNETA_GMAC_CONFIG_GMII_SPEED | 3884 MVNETA_GMAC_CONFIG_FULL_DUPLEX)) | 3885 MVNETA_GMAC_INBAND_AN_ENABLE | 3886 MVNETA_GMAC_AN_SPEED_EN | 3887 MVNETA_GMAC_AN_DUPLEX_EN; 3888 } else { 3889 /* 802.3z negotiation - only 1000base-X */ 3890 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X; 3891 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3892 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3893 MVNETA_GMAC_FORCE_LINK_PASS | 3894 MVNETA_GMAC_CONFIG_MII_SPEED)) | 3895 MVNETA_GMAC_INBAND_AN_ENABLE | 3896 MVNETA_GMAC_CONFIG_GMII_SPEED | 3897 /* The MAC only supports FD mode */ 3898 MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3899 3900 if (state->pause & MLO_PAUSE_AN && state->an_enabled) 3901 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN; 3902 } 3903 3904 /* Armada 370 documentation says we can only change the port mode 3905 * and in-band enable when the link is down, so force it down 3906 * while making these changes. We also do this for GMAC_CTRL2 */ 3907 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X || 3908 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE || 3909 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) { 3910 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3911 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) | 3912 MVNETA_GMAC_FORCE_LINK_DOWN); 3913 } 3914 3915 3916 /* When at 2.5G, the link partner can send frames with shortened 3917 * preambles. 3918 */ 3919 if (state->speed == SPEED_2500) 3920 new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE; 3921 3922 if (pp->comphy && pp->phy_interface != state->interface && 3923 (state->interface == PHY_INTERFACE_MODE_SGMII || 3924 state->interface == PHY_INTERFACE_MODE_1000BASEX || 3925 state->interface == PHY_INTERFACE_MODE_2500BASEX)) { 3926 pp->phy_interface = state->interface; 3927 3928 WARN_ON(phy_power_off(pp->comphy)); 3929 WARN_ON(mvneta_comphy_init(pp)); 3930 } 3931 3932 if (new_ctrl0 != gmac_ctrl0) 3933 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0); 3934 if (new_ctrl2 != gmac_ctrl2) 3935 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2); 3936 if (new_ctrl4 != gmac_ctrl4) 3937 mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4); 3938 if (new_clk != gmac_clk) 3939 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk); 3940 if (new_an != gmac_an) 3941 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an); 3942 3943 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) { 3944 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 3945 MVNETA_GMAC2_PORT_RESET) != 0) 3946 continue; 3947 } 3948 } 3949 3950 static void mvneta_set_eee(struct mvneta_port *pp, bool enable) 3951 { 3952 u32 lpi_ctl1; 3953 3954 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1); 3955 if (enable) 3956 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE; 3957 else 3958 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE; 3959 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1); 3960 } 3961 3962 static void mvneta_mac_link_down(struct phylink_config *config, 3963 unsigned int mode, phy_interface_t interface) 3964 { 3965 struct net_device *ndev = to_net_dev(config->dev); 3966 struct mvneta_port *pp = netdev_priv(ndev); 3967 u32 val; 3968 3969 mvneta_port_down(pp); 3970 3971 if (!phylink_autoneg_inband(mode)) { 3972 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3973 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 3974 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 3975 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3976 } 3977 3978 pp->eee_active = false; 3979 mvneta_set_eee(pp, false); 3980 } 3981 3982 static void mvneta_mac_link_up(struct phylink_config *config, 3983 struct phy_device *phy, 3984 unsigned int mode, phy_interface_t interface, 3985 int speed, int duplex, 3986 bool tx_pause, bool rx_pause) 3987 { 3988 struct net_device *ndev = to_net_dev(config->dev); 3989 struct mvneta_port *pp = netdev_priv(ndev); 3990 u32 val; 3991 3992 if (!phylink_autoneg_inband(mode)) { 3993 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3994 val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3995 MVNETA_GMAC_CONFIG_MII_SPEED | 3996 MVNETA_GMAC_CONFIG_GMII_SPEED | 3997 MVNETA_GMAC_CONFIG_FLOW_CTRL | 3998 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3999 val |= MVNETA_GMAC_FORCE_LINK_PASS; 4000 4001 if (speed == SPEED_1000 || speed == SPEED_2500) 4002 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 4003 else if (speed == SPEED_100) 4004 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 4005 4006 if (duplex == DUPLEX_FULL) 4007 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 4008 4009 if (tx_pause || rx_pause) 4010 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4011 4012 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4013 } else { 4014 /* When inband doesn't cover flow control or flow control is 4015 * disabled, we need to manually configure it. This bit will 4016 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset. 4017 */ 4018 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4019 val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL; 4020 4021 if (tx_pause || rx_pause) 4022 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4023 4024 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4025 } 4026 4027 mvneta_port_up(pp); 4028 4029 if (phy && pp->eee_enabled) { 4030 pp->eee_active = phy_init_eee(phy, 0) >= 0; 4031 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled); 4032 } 4033 } 4034 4035 static const struct phylink_mac_ops mvneta_phylink_ops = { 4036 .validate = mvneta_validate, 4037 .mac_pcs_get_state = mvneta_mac_pcs_get_state, 4038 .mac_an_restart = mvneta_mac_an_restart, 4039 .mac_config = mvneta_mac_config, 4040 .mac_link_down = mvneta_mac_link_down, 4041 .mac_link_up = mvneta_mac_link_up, 4042 }; 4043 4044 static int mvneta_mdio_probe(struct mvneta_port *pp) 4045 { 4046 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 4047 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0); 4048 4049 if (err) 4050 netdev_err(pp->dev, "could not attach PHY: %d\n", err); 4051 4052 phylink_ethtool_get_wol(pp->phylink, &wol); 4053 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); 4054 4055 /* PHY WoL may be enabled but device wakeup disabled */ 4056 if (wol.supported) 4057 device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts); 4058 4059 return err; 4060 } 4061 4062 static void mvneta_mdio_remove(struct mvneta_port *pp) 4063 { 4064 phylink_disconnect_phy(pp->phylink); 4065 } 4066 4067 /* Electing a CPU must be done in an atomic way: it should be done 4068 * after or before the removal/insertion of a CPU and this function is 4069 * not reentrant. 4070 */ 4071 static void mvneta_percpu_elect(struct mvneta_port *pp) 4072 { 4073 int elected_cpu = 0, max_cpu, cpu, i = 0; 4074 4075 /* Use the cpu associated to the rxq when it is online, in all 4076 * the other cases, use the cpu 0 which can't be offline. 4077 */ 4078 if (cpu_online(pp->rxq_def)) 4079 elected_cpu = pp->rxq_def; 4080 4081 max_cpu = num_present_cpus(); 4082 4083 for_each_online_cpu(cpu) { 4084 int rxq_map = 0, txq_map = 0; 4085 int rxq; 4086 4087 for (rxq = 0; rxq < rxq_number; rxq++) 4088 if ((rxq % max_cpu) == cpu) 4089 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 4090 4091 if (cpu == elected_cpu) 4092 /* Map the default receive queue queue to the 4093 * elected CPU 4094 */ 4095 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 4096 4097 /* We update the TX queue map only if we have one 4098 * queue. In this case we associate the TX queue to 4099 * the CPU bound to the default RX queue 4100 */ 4101 if (txq_number == 1) 4102 txq_map = (cpu == elected_cpu) ? 4103 MVNETA_CPU_TXQ_ACCESS(1) : 0; 4104 else 4105 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 4106 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 4107 4108 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 4109 4110 /* Update the interrupt mask on each CPU according the 4111 * new mapping 4112 */ 4113 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 4114 pp, true); 4115 i++; 4116 4117 } 4118 }; 4119 4120 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 4121 { 4122 int other_cpu; 4123 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4124 node_online); 4125 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4126 4127 4128 spin_lock(&pp->lock); 4129 /* 4130 * Configuring the driver for a new CPU while the driver is 4131 * stopping is racy, so just avoid it. 4132 */ 4133 if (pp->is_stopped) { 4134 spin_unlock(&pp->lock); 4135 return 0; 4136 } 4137 netif_tx_stop_all_queues(pp->dev); 4138 4139 /* 4140 * We have to synchronise on tha napi of each CPU except the one 4141 * just being woken up 4142 */ 4143 for_each_online_cpu(other_cpu) { 4144 if (other_cpu != cpu) { 4145 struct mvneta_pcpu_port *other_port = 4146 per_cpu_ptr(pp->ports, other_cpu); 4147 4148 napi_synchronize(&other_port->napi); 4149 } 4150 } 4151 4152 /* Mask all ethernet port interrupts */ 4153 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4154 napi_enable(&port->napi); 4155 4156 /* 4157 * Enable per-CPU interrupts on the CPU that is 4158 * brought up. 4159 */ 4160 mvneta_percpu_enable(pp); 4161 4162 /* 4163 * Enable per-CPU interrupt on the one CPU we care 4164 * about. 4165 */ 4166 mvneta_percpu_elect(pp); 4167 4168 /* Unmask all ethernet port interrupts */ 4169 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4170 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4171 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4172 MVNETA_CAUSE_LINK_CHANGE); 4173 netif_tx_start_all_queues(pp->dev); 4174 spin_unlock(&pp->lock); 4175 return 0; 4176 } 4177 4178 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 4179 { 4180 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4181 node_online); 4182 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4183 4184 /* 4185 * Thanks to this lock we are sure that any pending cpu election is 4186 * done. 4187 */ 4188 spin_lock(&pp->lock); 4189 /* Mask all ethernet port interrupts */ 4190 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4191 spin_unlock(&pp->lock); 4192 4193 napi_synchronize(&port->napi); 4194 napi_disable(&port->napi); 4195 /* Disable per-CPU interrupts on the CPU that is brought down. */ 4196 mvneta_percpu_disable(pp); 4197 return 0; 4198 } 4199 4200 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 4201 { 4202 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4203 node_dead); 4204 4205 /* Check if a new CPU must be elected now this on is down */ 4206 spin_lock(&pp->lock); 4207 mvneta_percpu_elect(pp); 4208 spin_unlock(&pp->lock); 4209 /* Unmask all ethernet port interrupts */ 4210 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4211 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4212 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4213 MVNETA_CAUSE_LINK_CHANGE); 4214 netif_tx_start_all_queues(pp->dev); 4215 return 0; 4216 } 4217 4218 static int mvneta_open(struct net_device *dev) 4219 { 4220 struct mvneta_port *pp = netdev_priv(dev); 4221 int ret; 4222 4223 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 4224 4225 ret = mvneta_setup_rxqs(pp); 4226 if (ret) 4227 return ret; 4228 4229 ret = mvneta_setup_txqs(pp); 4230 if (ret) 4231 goto err_cleanup_rxqs; 4232 4233 /* Connect to port interrupt line */ 4234 if (pp->neta_armada3700) 4235 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 4236 dev->name, pp); 4237 else 4238 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 4239 dev->name, pp->ports); 4240 if (ret) { 4241 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 4242 goto err_cleanup_txqs; 4243 } 4244 4245 if (!pp->neta_armada3700) { 4246 /* Enable per-CPU interrupt on all the CPU to handle our RX 4247 * queue interrupts 4248 */ 4249 on_each_cpu(mvneta_percpu_enable, pp, true); 4250 4251 pp->is_stopped = false; 4252 /* Register a CPU notifier to handle the case where our CPU 4253 * might be taken offline. 4254 */ 4255 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 4256 &pp->node_online); 4257 if (ret) 4258 goto err_free_irq; 4259 4260 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4261 &pp->node_dead); 4262 if (ret) 4263 goto err_free_online_hp; 4264 } 4265 4266 ret = mvneta_mdio_probe(pp); 4267 if (ret < 0) { 4268 netdev_err(dev, "cannot probe MDIO bus\n"); 4269 goto err_free_dead_hp; 4270 } 4271 4272 mvneta_start_dev(pp); 4273 4274 return 0; 4275 4276 err_free_dead_hp: 4277 if (!pp->neta_armada3700) 4278 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4279 &pp->node_dead); 4280 err_free_online_hp: 4281 if (!pp->neta_armada3700) 4282 cpuhp_state_remove_instance_nocalls(online_hpstate, 4283 &pp->node_online); 4284 err_free_irq: 4285 if (pp->neta_armada3700) { 4286 free_irq(pp->dev->irq, pp); 4287 } else { 4288 on_each_cpu(mvneta_percpu_disable, pp, true); 4289 free_percpu_irq(pp->dev->irq, pp->ports); 4290 } 4291 err_cleanup_txqs: 4292 mvneta_cleanup_txqs(pp); 4293 err_cleanup_rxqs: 4294 mvneta_cleanup_rxqs(pp); 4295 return ret; 4296 } 4297 4298 /* Stop the port, free port interrupt line */ 4299 static int mvneta_stop(struct net_device *dev) 4300 { 4301 struct mvneta_port *pp = netdev_priv(dev); 4302 4303 if (!pp->neta_armada3700) { 4304 /* Inform that we are stopping so we don't want to setup the 4305 * driver for new CPUs in the notifiers. The code of the 4306 * notifier for CPU online is protected by the same spinlock, 4307 * so when we get the lock, the notifer work is done. 4308 */ 4309 spin_lock(&pp->lock); 4310 pp->is_stopped = true; 4311 spin_unlock(&pp->lock); 4312 4313 mvneta_stop_dev(pp); 4314 mvneta_mdio_remove(pp); 4315 4316 cpuhp_state_remove_instance_nocalls(online_hpstate, 4317 &pp->node_online); 4318 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4319 &pp->node_dead); 4320 on_each_cpu(mvneta_percpu_disable, pp, true); 4321 free_percpu_irq(dev->irq, pp->ports); 4322 } else { 4323 mvneta_stop_dev(pp); 4324 mvneta_mdio_remove(pp); 4325 free_irq(dev->irq, pp); 4326 } 4327 4328 mvneta_cleanup_rxqs(pp); 4329 mvneta_cleanup_txqs(pp); 4330 4331 return 0; 4332 } 4333 4334 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4335 { 4336 struct mvneta_port *pp = netdev_priv(dev); 4337 4338 return phylink_mii_ioctl(pp->phylink, ifr, cmd); 4339 } 4340 4341 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog, 4342 struct netlink_ext_ack *extack) 4343 { 4344 bool need_update, running = netif_running(dev); 4345 struct mvneta_port *pp = netdev_priv(dev); 4346 struct bpf_prog *old_prog; 4347 4348 if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) { 4349 NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP"); 4350 return -EOPNOTSUPP; 4351 } 4352 4353 if (pp->bm_priv) { 4354 NL_SET_ERR_MSG_MOD(extack, 4355 "Hardware Buffer Management not supported on XDP"); 4356 return -EOPNOTSUPP; 4357 } 4358 4359 need_update = !!pp->xdp_prog != !!prog; 4360 if (running && need_update) 4361 mvneta_stop(dev); 4362 4363 old_prog = xchg(&pp->xdp_prog, prog); 4364 if (old_prog) 4365 bpf_prog_put(old_prog); 4366 4367 if (running && need_update) 4368 return mvneta_open(dev); 4369 4370 return 0; 4371 } 4372 4373 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4374 { 4375 struct mvneta_port *pp = netdev_priv(dev); 4376 4377 switch (xdp->command) { 4378 case XDP_SETUP_PROG: 4379 return mvneta_xdp_setup(dev, xdp->prog, xdp->extack); 4380 case XDP_QUERY_PROG: 4381 xdp->prog_id = pp->xdp_prog ? pp->xdp_prog->aux->id : 0; 4382 return 0; 4383 default: 4384 return -EINVAL; 4385 } 4386 } 4387 4388 /* Ethtool methods */ 4389 4390 /* Set link ksettings (phy address, speed) for ethtools */ 4391 static int 4392 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 4393 const struct ethtool_link_ksettings *cmd) 4394 { 4395 struct mvneta_port *pp = netdev_priv(ndev); 4396 4397 return phylink_ethtool_ksettings_set(pp->phylink, cmd); 4398 } 4399 4400 /* Get link ksettings for ethtools */ 4401 static int 4402 mvneta_ethtool_get_link_ksettings(struct net_device *ndev, 4403 struct ethtool_link_ksettings *cmd) 4404 { 4405 struct mvneta_port *pp = netdev_priv(ndev); 4406 4407 return phylink_ethtool_ksettings_get(pp->phylink, cmd); 4408 } 4409 4410 static int mvneta_ethtool_nway_reset(struct net_device *dev) 4411 { 4412 struct mvneta_port *pp = netdev_priv(dev); 4413 4414 return phylink_ethtool_nway_reset(pp->phylink); 4415 } 4416 4417 /* Set interrupt coalescing for ethtools */ 4418 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 4419 struct ethtool_coalesce *c) 4420 { 4421 struct mvneta_port *pp = netdev_priv(dev); 4422 int queue; 4423 4424 for (queue = 0; queue < rxq_number; queue++) { 4425 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4426 rxq->time_coal = c->rx_coalesce_usecs; 4427 rxq->pkts_coal = c->rx_max_coalesced_frames; 4428 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 4429 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 4430 } 4431 4432 for (queue = 0; queue < txq_number; queue++) { 4433 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4434 txq->done_pkts_coal = c->tx_max_coalesced_frames; 4435 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 4436 } 4437 4438 return 0; 4439 } 4440 4441 /* get coalescing for ethtools */ 4442 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 4443 struct ethtool_coalesce *c) 4444 { 4445 struct mvneta_port *pp = netdev_priv(dev); 4446 4447 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 4448 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 4449 4450 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 4451 return 0; 4452 } 4453 4454 4455 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 4456 struct ethtool_drvinfo *drvinfo) 4457 { 4458 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 4459 sizeof(drvinfo->driver)); 4460 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 4461 sizeof(drvinfo->version)); 4462 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 4463 sizeof(drvinfo->bus_info)); 4464 } 4465 4466 4467 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 4468 struct ethtool_ringparam *ring) 4469 { 4470 struct mvneta_port *pp = netdev_priv(netdev); 4471 4472 ring->rx_max_pending = MVNETA_MAX_RXD; 4473 ring->tx_max_pending = MVNETA_MAX_TXD; 4474 ring->rx_pending = pp->rx_ring_size; 4475 ring->tx_pending = pp->tx_ring_size; 4476 } 4477 4478 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 4479 struct ethtool_ringparam *ring) 4480 { 4481 struct mvneta_port *pp = netdev_priv(dev); 4482 4483 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 4484 return -EINVAL; 4485 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 4486 ring->rx_pending : MVNETA_MAX_RXD; 4487 4488 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 4489 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 4490 if (pp->tx_ring_size != ring->tx_pending) 4491 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 4492 pp->tx_ring_size, ring->tx_pending); 4493 4494 if (netif_running(dev)) { 4495 mvneta_stop(dev); 4496 if (mvneta_open(dev)) { 4497 netdev_err(dev, 4498 "error on opening device after ring param change\n"); 4499 return -ENOMEM; 4500 } 4501 } 4502 4503 return 0; 4504 } 4505 4506 static void mvneta_ethtool_get_pauseparam(struct net_device *dev, 4507 struct ethtool_pauseparam *pause) 4508 { 4509 struct mvneta_port *pp = netdev_priv(dev); 4510 4511 phylink_ethtool_get_pauseparam(pp->phylink, pause); 4512 } 4513 4514 static int mvneta_ethtool_set_pauseparam(struct net_device *dev, 4515 struct ethtool_pauseparam *pause) 4516 { 4517 struct mvneta_port *pp = netdev_priv(dev); 4518 4519 return phylink_ethtool_set_pauseparam(pp->phylink, pause); 4520 } 4521 4522 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 4523 u8 *data) 4524 { 4525 if (sset == ETH_SS_STATS) { 4526 int i; 4527 4528 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4529 memcpy(data + i * ETH_GSTRING_LEN, 4530 mvneta_statistics[i].name, ETH_GSTRING_LEN); 4531 } 4532 } 4533 4534 static void 4535 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp, 4536 struct mvneta_ethtool_stats *es) 4537 { 4538 unsigned int start; 4539 int cpu; 4540 4541 for_each_possible_cpu(cpu) { 4542 struct mvneta_pcpu_stats *stats; 4543 u64 skb_alloc_error; 4544 u64 refill_error; 4545 u64 xdp_redirect; 4546 u64 xdp_xmit_err; 4547 u64 xdp_tx_err; 4548 u64 xdp_pass; 4549 u64 xdp_drop; 4550 u64 xdp_xmit; 4551 u64 xdp_tx; 4552 4553 stats = per_cpu_ptr(pp->stats, cpu); 4554 do { 4555 start = u64_stats_fetch_begin_irq(&stats->syncp); 4556 skb_alloc_error = stats->es.skb_alloc_error; 4557 refill_error = stats->es.refill_error; 4558 xdp_redirect = stats->es.ps.xdp_redirect; 4559 xdp_pass = stats->es.ps.xdp_pass; 4560 xdp_drop = stats->es.ps.xdp_drop; 4561 xdp_xmit = stats->es.ps.xdp_xmit; 4562 xdp_xmit_err = stats->es.ps.xdp_xmit_err; 4563 xdp_tx = stats->es.ps.xdp_tx; 4564 xdp_tx_err = stats->es.ps.xdp_tx_err; 4565 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 4566 4567 es->skb_alloc_error += skb_alloc_error; 4568 es->refill_error += refill_error; 4569 es->ps.xdp_redirect += xdp_redirect; 4570 es->ps.xdp_pass += xdp_pass; 4571 es->ps.xdp_drop += xdp_drop; 4572 es->ps.xdp_xmit += xdp_xmit; 4573 es->ps.xdp_xmit_err += xdp_xmit_err; 4574 es->ps.xdp_tx += xdp_tx; 4575 es->ps.xdp_tx_err += xdp_tx_err; 4576 } 4577 } 4578 4579 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 4580 { 4581 struct mvneta_ethtool_stats stats = {}; 4582 const struct mvneta_statistic *s; 4583 void __iomem *base = pp->base; 4584 u32 high, low; 4585 u64 val; 4586 int i; 4587 4588 mvneta_ethtool_update_pcpu_stats(pp, &stats); 4589 for (i = 0, s = mvneta_statistics; 4590 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 4591 s++, i++) { 4592 switch (s->type) { 4593 case T_REG_32: 4594 val = readl_relaxed(base + s->offset); 4595 pp->ethtool_stats[i] += val; 4596 break; 4597 case T_REG_64: 4598 /* Docs say to read low 32-bit then high */ 4599 low = readl_relaxed(base + s->offset); 4600 high = readl_relaxed(base + s->offset + 4); 4601 val = (u64)high << 32 | low; 4602 pp->ethtool_stats[i] += val; 4603 break; 4604 case T_SW: 4605 switch (s->offset) { 4606 case ETHTOOL_STAT_EEE_WAKEUP: 4607 val = phylink_get_eee_err(pp->phylink); 4608 pp->ethtool_stats[i] += val; 4609 break; 4610 case ETHTOOL_STAT_SKB_ALLOC_ERR: 4611 pp->ethtool_stats[i] = stats.skb_alloc_error; 4612 break; 4613 case ETHTOOL_STAT_REFILL_ERR: 4614 pp->ethtool_stats[i] = stats.refill_error; 4615 break; 4616 case ETHTOOL_XDP_REDIRECT: 4617 pp->ethtool_stats[i] = stats.ps.xdp_redirect; 4618 break; 4619 case ETHTOOL_XDP_PASS: 4620 pp->ethtool_stats[i] = stats.ps.xdp_pass; 4621 break; 4622 case ETHTOOL_XDP_DROP: 4623 pp->ethtool_stats[i] = stats.ps.xdp_drop; 4624 break; 4625 case ETHTOOL_XDP_TX: 4626 pp->ethtool_stats[i] = stats.ps.xdp_tx; 4627 break; 4628 case ETHTOOL_XDP_TX_ERR: 4629 pp->ethtool_stats[i] = stats.ps.xdp_tx_err; 4630 break; 4631 case ETHTOOL_XDP_XMIT: 4632 pp->ethtool_stats[i] = stats.ps.xdp_xmit; 4633 break; 4634 case ETHTOOL_XDP_XMIT_ERR: 4635 pp->ethtool_stats[i] = stats.ps.xdp_xmit_err; 4636 break; 4637 } 4638 break; 4639 } 4640 } 4641 } 4642 4643 static void mvneta_ethtool_get_stats(struct net_device *dev, 4644 struct ethtool_stats *stats, u64 *data) 4645 { 4646 struct mvneta_port *pp = netdev_priv(dev); 4647 int i; 4648 4649 mvneta_ethtool_update_stats(pp); 4650 4651 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4652 *data++ = pp->ethtool_stats[i]; 4653 } 4654 4655 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 4656 { 4657 if (sset == ETH_SS_STATS) 4658 return ARRAY_SIZE(mvneta_statistics); 4659 return -EOPNOTSUPP; 4660 } 4661 4662 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 4663 { 4664 return MVNETA_RSS_LU_TABLE_SIZE; 4665 } 4666 4667 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 4668 struct ethtool_rxnfc *info, 4669 u32 *rules __always_unused) 4670 { 4671 switch (info->cmd) { 4672 case ETHTOOL_GRXRINGS: 4673 info->data = rxq_number; 4674 return 0; 4675 case ETHTOOL_GRXFH: 4676 return -EOPNOTSUPP; 4677 default: 4678 return -EOPNOTSUPP; 4679 } 4680 } 4681 4682 static int mvneta_config_rss(struct mvneta_port *pp) 4683 { 4684 int cpu; 4685 u32 val; 4686 4687 netif_tx_stop_all_queues(pp->dev); 4688 4689 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4690 4691 if (!pp->neta_armada3700) { 4692 /* We have to synchronise on the napi of each CPU */ 4693 for_each_online_cpu(cpu) { 4694 struct mvneta_pcpu_port *pcpu_port = 4695 per_cpu_ptr(pp->ports, cpu); 4696 4697 napi_synchronize(&pcpu_port->napi); 4698 napi_disable(&pcpu_port->napi); 4699 } 4700 } else { 4701 napi_synchronize(&pp->napi); 4702 napi_disable(&pp->napi); 4703 } 4704 4705 pp->rxq_def = pp->indir[0]; 4706 4707 /* Update unicast mapping */ 4708 mvneta_set_rx_mode(pp->dev); 4709 4710 /* Update val of portCfg register accordingly with all RxQueue types */ 4711 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 4712 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 4713 4714 /* Update the elected CPU matching the new rxq_def */ 4715 spin_lock(&pp->lock); 4716 mvneta_percpu_elect(pp); 4717 spin_unlock(&pp->lock); 4718 4719 if (!pp->neta_armada3700) { 4720 /* We have to synchronise on the napi of each CPU */ 4721 for_each_online_cpu(cpu) { 4722 struct mvneta_pcpu_port *pcpu_port = 4723 per_cpu_ptr(pp->ports, cpu); 4724 4725 napi_enable(&pcpu_port->napi); 4726 } 4727 } else { 4728 napi_enable(&pp->napi); 4729 } 4730 4731 netif_tx_start_all_queues(pp->dev); 4732 4733 return 0; 4734 } 4735 4736 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 4737 const u8 *key, const u8 hfunc) 4738 { 4739 struct mvneta_port *pp = netdev_priv(dev); 4740 4741 /* Current code for Armada 3700 doesn't support RSS features yet */ 4742 if (pp->neta_armada3700) 4743 return -EOPNOTSUPP; 4744 4745 /* We require at least one supported parameter to be changed 4746 * and no change in any of the unsupported parameters 4747 */ 4748 if (key || 4749 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 4750 return -EOPNOTSUPP; 4751 4752 if (!indir) 4753 return 0; 4754 4755 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 4756 4757 return mvneta_config_rss(pp); 4758 } 4759 4760 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 4761 u8 *hfunc) 4762 { 4763 struct mvneta_port *pp = netdev_priv(dev); 4764 4765 /* Current code for Armada 3700 doesn't support RSS features yet */ 4766 if (pp->neta_armada3700) 4767 return -EOPNOTSUPP; 4768 4769 if (hfunc) 4770 *hfunc = ETH_RSS_HASH_TOP; 4771 4772 if (!indir) 4773 return 0; 4774 4775 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 4776 4777 return 0; 4778 } 4779 4780 static void mvneta_ethtool_get_wol(struct net_device *dev, 4781 struct ethtool_wolinfo *wol) 4782 { 4783 struct mvneta_port *pp = netdev_priv(dev); 4784 4785 phylink_ethtool_get_wol(pp->phylink, wol); 4786 } 4787 4788 static int mvneta_ethtool_set_wol(struct net_device *dev, 4789 struct ethtool_wolinfo *wol) 4790 { 4791 struct mvneta_port *pp = netdev_priv(dev); 4792 int ret; 4793 4794 ret = phylink_ethtool_set_wol(pp->phylink, wol); 4795 if (!ret) 4796 device_set_wakeup_enable(&dev->dev, !!wol->wolopts); 4797 4798 return ret; 4799 } 4800 4801 static int mvneta_ethtool_get_eee(struct net_device *dev, 4802 struct ethtool_eee *eee) 4803 { 4804 struct mvneta_port *pp = netdev_priv(dev); 4805 u32 lpi_ctl0; 4806 4807 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4808 4809 eee->eee_enabled = pp->eee_enabled; 4810 eee->eee_active = pp->eee_active; 4811 eee->tx_lpi_enabled = pp->tx_lpi_enabled; 4812 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale; 4813 4814 return phylink_ethtool_get_eee(pp->phylink, eee); 4815 } 4816 4817 static int mvneta_ethtool_set_eee(struct net_device *dev, 4818 struct ethtool_eee *eee) 4819 { 4820 struct mvneta_port *pp = netdev_priv(dev); 4821 u32 lpi_ctl0; 4822 4823 /* The Armada 37x documents do not give limits for this other than 4824 * it being an 8-bit register. */ 4825 if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255) 4826 return -EINVAL; 4827 4828 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4829 lpi_ctl0 &= ~(0xff << 8); 4830 lpi_ctl0 |= eee->tx_lpi_timer << 8; 4831 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0); 4832 4833 pp->eee_enabled = eee->eee_enabled; 4834 pp->tx_lpi_enabled = eee->tx_lpi_enabled; 4835 4836 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled); 4837 4838 return phylink_ethtool_set_eee(pp->phylink, eee); 4839 } 4840 4841 static const struct net_device_ops mvneta_netdev_ops = { 4842 .ndo_open = mvneta_open, 4843 .ndo_stop = mvneta_stop, 4844 .ndo_start_xmit = mvneta_tx, 4845 .ndo_set_rx_mode = mvneta_set_rx_mode, 4846 .ndo_set_mac_address = mvneta_set_mac_addr, 4847 .ndo_change_mtu = mvneta_change_mtu, 4848 .ndo_fix_features = mvneta_fix_features, 4849 .ndo_get_stats64 = mvneta_get_stats64, 4850 .ndo_do_ioctl = mvneta_ioctl, 4851 .ndo_bpf = mvneta_xdp, 4852 .ndo_xdp_xmit = mvneta_xdp_xmit, 4853 }; 4854 4855 static const struct ethtool_ops mvneta_eth_tool_ops = { 4856 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS | 4857 ETHTOOL_COALESCE_MAX_FRAMES, 4858 .nway_reset = mvneta_ethtool_nway_reset, 4859 .get_link = ethtool_op_get_link, 4860 .set_coalesce = mvneta_ethtool_set_coalesce, 4861 .get_coalesce = mvneta_ethtool_get_coalesce, 4862 .get_drvinfo = mvneta_ethtool_get_drvinfo, 4863 .get_ringparam = mvneta_ethtool_get_ringparam, 4864 .set_ringparam = mvneta_ethtool_set_ringparam, 4865 .get_pauseparam = mvneta_ethtool_get_pauseparam, 4866 .set_pauseparam = mvneta_ethtool_set_pauseparam, 4867 .get_strings = mvneta_ethtool_get_strings, 4868 .get_ethtool_stats = mvneta_ethtool_get_stats, 4869 .get_sset_count = mvneta_ethtool_get_sset_count, 4870 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 4871 .get_rxnfc = mvneta_ethtool_get_rxnfc, 4872 .get_rxfh = mvneta_ethtool_get_rxfh, 4873 .set_rxfh = mvneta_ethtool_set_rxfh, 4874 .get_link_ksettings = mvneta_ethtool_get_link_ksettings, 4875 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 4876 .get_wol = mvneta_ethtool_get_wol, 4877 .set_wol = mvneta_ethtool_set_wol, 4878 .get_eee = mvneta_ethtool_get_eee, 4879 .set_eee = mvneta_ethtool_set_eee, 4880 }; 4881 4882 /* Initialize hw */ 4883 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 4884 { 4885 int queue; 4886 4887 /* Disable port */ 4888 mvneta_port_disable(pp); 4889 4890 /* Set port default values */ 4891 mvneta_defaults_set(pp); 4892 4893 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); 4894 if (!pp->txqs) 4895 return -ENOMEM; 4896 4897 /* Initialize TX descriptor rings */ 4898 for (queue = 0; queue < txq_number; queue++) { 4899 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4900 txq->id = queue; 4901 txq->size = pp->tx_ring_size; 4902 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 4903 } 4904 4905 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); 4906 if (!pp->rxqs) 4907 return -ENOMEM; 4908 4909 /* Create Rx descriptor rings */ 4910 for (queue = 0; queue < rxq_number; queue++) { 4911 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4912 rxq->id = queue; 4913 rxq->size = pp->rx_ring_size; 4914 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 4915 rxq->time_coal = MVNETA_RX_COAL_USEC; 4916 rxq->buf_virt_addr 4917 = devm_kmalloc_array(pp->dev->dev.parent, 4918 rxq->size, 4919 sizeof(*rxq->buf_virt_addr), 4920 GFP_KERNEL); 4921 if (!rxq->buf_virt_addr) 4922 return -ENOMEM; 4923 } 4924 4925 return 0; 4926 } 4927 4928 /* platform glue : initialize decoding windows */ 4929 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 4930 const struct mbus_dram_target_info *dram) 4931 { 4932 u32 win_enable; 4933 u32 win_protect; 4934 int i; 4935 4936 for (i = 0; i < 6; i++) { 4937 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 4938 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 4939 4940 if (i < 4) 4941 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 4942 } 4943 4944 win_enable = 0x3f; 4945 win_protect = 0; 4946 4947 if (dram) { 4948 for (i = 0; i < dram->num_cs; i++) { 4949 const struct mbus_dram_window *cs = dram->cs + i; 4950 4951 mvreg_write(pp, MVNETA_WIN_BASE(i), 4952 (cs->base & 0xffff0000) | 4953 (cs->mbus_attr << 8) | 4954 dram->mbus_dram_target_id); 4955 4956 mvreg_write(pp, MVNETA_WIN_SIZE(i), 4957 (cs->size - 1) & 0xffff0000); 4958 4959 win_enable &= ~(1 << i); 4960 win_protect |= 3 << (2 * i); 4961 } 4962 } else { 4963 /* For Armada3700 open default 4GB Mbus window, leaving 4964 * arbitration of target/attribute to a different layer 4965 * of configuration. 4966 */ 4967 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 4968 win_enable &= ~BIT(0); 4969 win_protect = 3; 4970 } 4971 4972 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 4973 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 4974 } 4975 4976 /* Power up the port */ 4977 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 4978 { 4979 /* MAC Cause register should be cleared */ 4980 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 4981 4982 if (phy_mode == PHY_INTERFACE_MODE_QSGMII) 4983 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 4984 else if (phy_mode == PHY_INTERFACE_MODE_SGMII || 4985 phy_interface_mode_is_8023z(phy_mode)) 4986 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 4987 else if (!phy_interface_mode_is_rgmii(phy_mode)) 4988 return -EINVAL; 4989 4990 return 0; 4991 } 4992 4993 /* Device initialization routine */ 4994 static int mvneta_probe(struct platform_device *pdev) 4995 { 4996 struct device_node *dn = pdev->dev.of_node; 4997 struct device_node *bm_node; 4998 struct mvneta_port *pp; 4999 struct net_device *dev; 5000 struct phylink *phylink; 5001 struct phy *comphy; 5002 const char *dt_mac_addr; 5003 char hw_mac_addr[ETH_ALEN]; 5004 phy_interface_t phy_mode; 5005 const char *mac_from; 5006 int tx_csum_limit; 5007 int err; 5008 int cpu; 5009 5010 dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port), 5011 txq_number, rxq_number); 5012 if (!dev) 5013 return -ENOMEM; 5014 5015 dev->irq = irq_of_parse_and_map(dn, 0); 5016 if (dev->irq == 0) 5017 return -EINVAL; 5018 5019 err = of_get_phy_mode(dn, &phy_mode); 5020 if (err) { 5021 dev_err(&pdev->dev, "incorrect phy-mode\n"); 5022 goto err_free_irq; 5023 } 5024 5025 comphy = devm_of_phy_get(&pdev->dev, dn, NULL); 5026 if (comphy == ERR_PTR(-EPROBE_DEFER)) { 5027 err = -EPROBE_DEFER; 5028 goto err_free_irq; 5029 } else if (IS_ERR(comphy)) { 5030 comphy = NULL; 5031 } 5032 5033 pp = netdev_priv(dev); 5034 spin_lock_init(&pp->lock); 5035 5036 pp->phylink_config.dev = &dev->dev; 5037 pp->phylink_config.type = PHYLINK_NETDEV; 5038 5039 phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode, 5040 phy_mode, &mvneta_phylink_ops); 5041 if (IS_ERR(phylink)) { 5042 err = PTR_ERR(phylink); 5043 goto err_free_irq; 5044 } 5045 5046 dev->tx_queue_len = MVNETA_MAX_TXD; 5047 dev->watchdog_timeo = 5 * HZ; 5048 dev->netdev_ops = &mvneta_netdev_ops; 5049 5050 dev->ethtool_ops = &mvneta_eth_tool_ops; 5051 5052 pp->phylink = phylink; 5053 pp->comphy = comphy; 5054 pp->phy_interface = phy_mode; 5055 pp->dn = dn; 5056 5057 pp->rxq_def = rxq_def; 5058 pp->indir[0] = rxq_def; 5059 5060 /* Get special SoC configurations */ 5061 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 5062 pp->neta_armada3700 = true; 5063 5064 pp->clk = devm_clk_get(&pdev->dev, "core"); 5065 if (IS_ERR(pp->clk)) 5066 pp->clk = devm_clk_get(&pdev->dev, NULL); 5067 if (IS_ERR(pp->clk)) { 5068 err = PTR_ERR(pp->clk); 5069 goto err_free_phylink; 5070 } 5071 5072 clk_prepare_enable(pp->clk); 5073 5074 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 5075 if (!IS_ERR(pp->clk_bus)) 5076 clk_prepare_enable(pp->clk_bus); 5077 5078 pp->base = devm_platform_ioremap_resource(pdev, 0); 5079 if (IS_ERR(pp->base)) { 5080 err = PTR_ERR(pp->base); 5081 goto err_clk; 5082 } 5083 5084 /* Alloc per-cpu port structure */ 5085 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 5086 if (!pp->ports) { 5087 err = -ENOMEM; 5088 goto err_clk; 5089 } 5090 5091 /* Alloc per-cpu stats */ 5092 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 5093 if (!pp->stats) { 5094 err = -ENOMEM; 5095 goto err_free_ports; 5096 } 5097 5098 dt_mac_addr = of_get_mac_address(dn); 5099 if (!IS_ERR(dt_mac_addr)) { 5100 mac_from = "device tree"; 5101 ether_addr_copy(dev->dev_addr, dt_mac_addr); 5102 } else { 5103 mvneta_get_mac_addr(pp, hw_mac_addr); 5104 if (is_valid_ether_addr(hw_mac_addr)) { 5105 mac_from = "hardware"; 5106 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 5107 } else { 5108 mac_from = "random"; 5109 eth_hw_addr_random(dev); 5110 } 5111 } 5112 5113 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 5114 if (tx_csum_limit < 0 || 5115 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 5116 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5117 dev_info(&pdev->dev, 5118 "Wrong TX csum limit in DT, set to %dB\n", 5119 MVNETA_TX_CSUM_DEF_SIZE); 5120 } 5121 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 5122 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5123 } else { 5124 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 5125 } 5126 5127 pp->tx_csum_limit = tx_csum_limit; 5128 5129 pp->dram_target_info = mv_mbus_dram_info(); 5130 /* Armada3700 requires setting default configuration of Mbus 5131 * windows, however without using filled mbus_dram_target_info 5132 * structure. 5133 */ 5134 if (pp->dram_target_info || pp->neta_armada3700) 5135 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5136 5137 pp->tx_ring_size = MVNETA_MAX_TXD; 5138 pp->rx_ring_size = MVNETA_MAX_RXD; 5139 5140 pp->dev = dev; 5141 SET_NETDEV_DEV(dev, &pdev->dev); 5142 5143 pp->id = global_port_id++; 5144 5145 /* Obtain access to BM resources if enabled and already initialized */ 5146 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 5147 if (bm_node) { 5148 pp->bm_priv = mvneta_bm_get(bm_node); 5149 if (pp->bm_priv) { 5150 err = mvneta_bm_port_init(pdev, pp); 5151 if (err < 0) { 5152 dev_info(&pdev->dev, 5153 "use SW buffer management\n"); 5154 mvneta_bm_put(pp->bm_priv); 5155 pp->bm_priv = NULL; 5156 } 5157 } 5158 /* Set RX packet offset correction for platforms, whose 5159 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 5160 * platforms and 0B for 32-bit ones. 5161 */ 5162 pp->rx_offset_correction = max(0, 5163 NET_SKB_PAD - 5164 MVNETA_RX_PKT_OFFSET_CORRECTION); 5165 } 5166 of_node_put(bm_node); 5167 5168 /* sw buffer management */ 5169 if (!pp->bm_priv) 5170 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5171 5172 err = mvneta_init(&pdev->dev, pp); 5173 if (err < 0) 5174 goto err_netdev; 5175 5176 err = mvneta_port_power_up(pp, phy_mode); 5177 if (err < 0) { 5178 dev_err(&pdev->dev, "can't power up port\n"); 5179 goto err_netdev; 5180 } 5181 5182 /* Armada3700 network controller does not support per-cpu 5183 * operation, so only single NAPI should be initialized. 5184 */ 5185 if (pp->neta_armada3700) { 5186 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 5187 } else { 5188 for_each_present_cpu(cpu) { 5189 struct mvneta_pcpu_port *port = 5190 per_cpu_ptr(pp->ports, cpu); 5191 5192 netif_napi_add(dev, &port->napi, mvneta_poll, 5193 NAPI_POLL_WEIGHT); 5194 port->pp = pp; 5195 } 5196 } 5197 5198 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5199 NETIF_F_TSO | NETIF_F_RXCSUM; 5200 dev->hw_features |= dev->features; 5201 dev->vlan_features |= dev->features; 5202 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 5203 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 5204 5205 /* MTU range: 68 - 9676 */ 5206 dev->min_mtu = ETH_MIN_MTU; 5207 /* 9676 == 9700 - 20 and rounding to 8 */ 5208 dev->max_mtu = 9676; 5209 5210 err = register_netdev(dev); 5211 if (err < 0) { 5212 dev_err(&pdev->dev, "failed to register\n"); 5213 goto err_netdev; 5214 } 5215 5216 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 5217 dev->dev_addr); 5218 5219 platform_set_drvdata(pdev, pp->dev); 5220 5221 return 0; 5222 5223 err_netdev: 5224 if (pp->bm_priv) { 5225 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5226 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5227 1 << pp->id); 5228 mvneta_bm_put(pp->bm_priv); 5229 } 5230 free_percpu(pp->stats); 5231 err_free_ports: 5232 free_percpu(pp->ports); 5233 err_clk: 5234 clk_disable_unprepare(pp->clk_bus); 5235 clk_disable_unprepare(pp->clk); 5236 err_free_phylink: 5237 if (pp->phylink) 5238 phylink_destroy(pp->phylink); 5239 err_free_irq: 5240 irq_dispose_mapping(dev->irq); 5241 return err; 5242 } 5243 5244 /* Device removal routine */ 5245 static int mvneta_remove(struct platform_device *pdev) 5246 { 5247 struct net_device *dev = platform_get_drvdata(pdev); 5248 struct mvneta_port *pp = netdev_priv(dev); 5249 5250 unregister_netdev(dev); 5251 clk_disable_unprepare(pp->clk_bus); 5252 clk_disable_unprepare(pp->clk); 5253 free_percpu(pp->ports); 5254 free_percpu(pp->stats); 5255 irq_dispose_mapping(dev->irq); 5256 phylink_destroy(pp->phylink); 5257 5258 if (pp->bm_priv) { 5259 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5260 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5261 1 << pp->id); 5262 mvneta_bm_put(pp->bm_priv); 5263 } 5264 5265 return 0; 5266 } 5267 5268 #ifdef CONFIG_PM_SLEEP 5269 static int mvneta_suspend(struct device *device) 5270 { 5271 int queue; 5272 struct net_device *dev = dev_get_drvdata(device); 5273 struct mvneta_port *pp = netdev_priv(dev); 5274 5275 if (!netif_running(dev)) 5276 goto clean_exit; 5277 5278 if (!pp->neta_armada3700) { 5279 spin_lock(&pp->lock); 5280 pp->is_stopped = true; 5281 spin_unlock(&pp->lock); 5282 5283 cpuhp_state_remove_instance_nocalls(online_hpstate, 5284 &pp->node_online); 5285 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5286 &pp->node_dead); 5287 } 5288 5289 rtnl_lock(); 5290 mvneta_stop_dev(pp); 5291 rtnl_unlock(); 5292 5293 for (queue = 0; queue < rxq_number; queue++) { 5294 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5295 5296 mvneta_rxq_drop_pkts(pp, rxq); 5297 } 5298 5299 for (queue = 0; queue < txq_number; queue++) { 5300 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5301 5302 mvneta_txq_hw_deinit(pp, txq); 5303 } 5304 5305 clean_exit: 5306 netif_device_detach(dev); 5307 clk_disable_unprepare(pp->clk_bus); 5308 clk_disable_unprepare(pp->clk); 5309 5310 return 0; 5311 } 5312 5313 static int mvneta_resume(struct device *device) 5314 { 5315 struct platform_device *pdev = to_platform_device(device); 5316 struct net_device *dev = dev_get_drvdata(device); 5317 struct mvneta_port *pp = netdev_priv(dev); 5318 int err, queue; 5319 5320 clk_prepare_enable(pp->clk); 5321 if (!IS_ERR(pp->clk_bus)) 5322 clk_prepare_enable(pp->clk_bus); 5323 if (pp->dram_target_info || pp->neta_armada3700) 5324 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5325 if (pp->bm_priv) { 5326 err = mvneta_bm_port_init(pdev, pp); 5327 if (err < 0) { 5328 dev_info(&pdev->dev, "use SW buffer management\n"); 5329 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5330 pp->bm_priv = NULL; 5331 } 5332 } 5333 mvneta_defaults_set(pp); 5334 err = mvneta_port_power_up(pp, pp->phy_interface); 5335 if (err < 0) { 5336 dev_err(device, "can't power up port\n"); 5337 return err; 5338 } 5339 5340 netif_device_attach(dev); 5341 5342 if (!netif_running(dev)) 5343 return 0; 5344 5345 for (queue = 0; queue < rxq_number; queue++) { 5346 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5347 5348 rxq->next_desc_to_proc = 0; 5349 mvneta_rxq_hw_init(pp, rxq); 5350 } 5351 5352 for (queue = 0; queue < txq_number; queue++) { 5353 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5354 5355 txq->next_desc_to_proc = 0; 5356 mvneta_txq_hw_init(pp, txq); 5357 } 5358 5359 if (!pp->neta_armada3700) { 5360 spin_lock(&pp->lock); 5361 pp->is_stopped = false; 5362 spin_unlock(&pp->lock); 5363 cpuhp_state_add_instance_nocalls(online_hpstate, 5364 &pp->node_online); 5365 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5366 &pp->node_dead); 5367 } 5368 5369 rtnl_lock(); 5370 mvneta_start_dev(pp); 5371 rtnl_unlock(); 5372 mvneta_set_rx_mode(dev); 5373 5374 return 0; 5375 } 5376 #endif 5377 5378 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); 5379 5380 static const struct of_device_id mvneta_match[] = { 5381 { .compatible = "marvell,armada-370-neta" }, 5382 { .compatible = "marvell,armada-xp-neta" }, 5383 { .compatible = "marvell,armada-3700-neta" }, 5384 { } 5385 }; 5386 MODULE_DEVICE_TABLE(of, mvneta_match); 5387 5388 static struct platform_driver mvneta_driver = { 5389 .probe = mvneta_probe, 5390 .remove = mvneta_remove, 5391 .driver = { 5392 .name = MVNETA_DRIVER_NAME, 5393 .of_match_table = mvneta_match, 5394 .pm = &mvneta_pm_ops, 5395 }, 5396 }; 5397 5398 static int __init mvneta_driver_init(void) 5399 { 5400 int ret; 5401 5402 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online", 5403 mvneta_cpu_online, 5404 mvneta_cpu_down_prepare); 5405 if (ret < 0) 5406 goto out; 5407 online_hpstate = ret; 5408 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 5409 NULL, mvneta_cpu_dead); 5410 if (ret) 5411 goto err_dead; 5412 5413 ret = platform_driver_register(&mvneta_driver); 5414 if (ret) 5415 goto err; 5416 return 0; 5417 5418 err: 5419 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5420 err_dead: 5421 cpuhp_remove_multi_state(online_hpstate); 5422 out: 5423 return ret; 5424 } 5425 module_init(mvneta_driver_init); 5426 5427 static void __exit mvneta_driver_exit(void) 5428 { 5429 platform_driver_unregister(&mvneta_driver); 5430 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5431 cpuhp_remove_multi_state(online_hpstate); 5432 } 5433 module_exit(mvneta_driver_exit); 5434 5435 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 5436 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 5437 MODULE_LICENSE("GPL"); 5438 5439 module_param(rxq_number, int, 0444); 5440 module_param(txq_number, int, 0444); 5441 5442 module_param(rxq_def, int, 0444); 5443 module_param(rx_copybreak, int, 0644); 5444