1 /* 2 * Driver for the IDT RC32434 (Korina) on-chip ethernet controller. 3 * 4 * Copyright 2004 IDT Inc. (rischelp@idt.com) 5 * Copyright 2006 Felix Fietkau <nbd@openwrt.org> 6 * Copyright 2008 Florian Fainelli <florian@openwrt.org> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the 10 * Free Software Foundation; either version 2 of the License, or (at your 11 * option) any later version. 12 * 13 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 14 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 16 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 19 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 20 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 23 * 24 * You should have received a copy of the GNU General Public License along 25 * with this program; if not, write to the Free Software Foundation, Inc., 26 * 675 Mass Ave, Cambridge, MA 02139, USA. 27 * 28 * Writing to a DMA status register: 29 * 30 * When writing to the status register, you should mask the bit you have 31 * been testing the status register with. Both Tx and Rx DMA registers 32 * should stick to this procedure. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/kernel.h> 37 #include <linux/moduleparam.h> 38 #include <linux/sched.h> 39 #include <linux/ctype.h> 40 #include <linux/types.h> 41 #include <linux/interrupt.h> 42 #include <linux/ioport.h> 43 #include <linux/in.h> 44 #include <linux/slab.h> 45 #include <linux/string.h> 46 #include <linux/delay.h> 47 #include <linux/netdevice.h> 48 #include <linux/etherdevice.h> 49 #include <linux/skbuff.h> 50 #include <linux/errno.h> 51 #include <linux/platform_device.h> 52 #include <linux/mii.h> 53 #include <linux/ethtool.h> 54 #include <linux/crc32.h> 55 56 #include <asm/bootinfo.h> 57 #include <asm/bitops.h> 58 #include <asm/pgtable.h> 59 #include <asm/io.h> 60 #include <asm/dma.h> 61 62 #include <asm/mach-rc32434/rb.h> 63 #include <asm/mach-rc32434/rc32434.h> 64 #include <asm/mach-rc32434/eth.h> 65 #include <asm/mach-rc32434/dma_v.h> 66 67 #define DRV_NAME "korina" 68 #define DRV_VERSION "0.10" 69 #define DRV_RELDATE "04Mar2008" 70 71 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \ 72 ((dev)->dev_addr[1])) 73 #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \ 74 ((dev)->dev_addr[3] << 16) | \ 75 ((dev)->dev_addr[4] << 8) | \ 76 ((dev)->dev_addr[5])) 77 78 #define MII_CLOCK 1250000 /* no more than 2.5MHz */ 79 80 /* the following must be powers of two */ 81 #define KORINA_NUM_RDS 64 /* number of receive descriptors */ 82 #define KORINA_NUM_TDS 64 /* number of transmit descriptors */ 83 84 /* KORINA_RBSIZE is the hardware's default maximum receive 85 * frame size in bytes. Having this hardcoded means that there 86 * is no support for MTU sizes greater than 1500. */ 87 #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */ 88 #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1) 89 #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1) 90 #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc)) 91 #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc)) 92 93 #define TX_TIMEOUT (6000 * HZ / 1000) 94 95 enum chain_status { desc_filled, desc_empty }; 96 #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0) 97 #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0) 98 #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT) 99 100 /* Information that need to be kept for each board. */ 101 struct korina_private { 102 struct eth_regs *eth_regs; 103 struct dma_reg *rx_dma_regs; 104 struct dma_reg *tx_dma_regs; 105 struct dma_desc *td_ring; /* transmit descriptor ring */ 106 struct dma_desc *rd_ring; /* receive descriptor ring */ 107 108 struct sk_buff *tx_skb[KORINA_NUM_TDS]; 109 struct sk_buff *rx_skb[KORINA_NUM_RDS]; 110 111 int rx_next_done; 112 int rx_chain_head; 113 int rx_chain_tail; 114 enum chain_status rx_chain_status; 115 116 int tx_next_done; 117 int tx_chain_head; 118 int tx_chain_tail; 119 enum chain_status tx_chain_status; 120 int tx_count; 121 int tx_full; 122 123 int rx_irq; 124 int tx_irq; 125 int ovr_irq; 126 int und_irq; 127 128 spinlock_t lock; /* NIC xmit lock */ 129 130 int dma_halt_cnt; 131 int dma_run_cnt; 132 struct napi_struct napi; 133 struct timer_list media_check_timer; 134 struct mii_if_info mii_if; 135 struct work_struct restart_task; 136 struct net_device *dev; 137 int phy_addr; 138 }; 139 140 extern unsigned int idt_cpu_freq; 141 142 static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr) 143 { 144 writel(0, &ch->dmandptr); 145 writel(dma_addr, &ch->dmadptr); 146 } 147 148 static inline void korina_abort_dma(struct net_device *dev, 149 struct dma_reg *ch) 150 { 151 if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) { 152 writel(0x10, &ch->dmac); 153 154 while (!(readl(&ch->dmas) & DMA_STAT_HALT)) 155 netif_trans_update(dev); 156 157 writel(0, &ch->dmas); 158 } 159 160 writel(0, &ch->dmadptr); 161 writel(0, &ch->dmandptr); 162 } 163 164 static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr) 165 { 166 writel(dma_addr, &ch->dmandptr); 167 } 168 169 static void korina_abort_tx(struct net_device *dev) 170 { 171 struct korina_private *lp = netdev_priv(dev); 172 173 korina_abort_dma(dev, lp->tx_dma_regs); 174 } 175 176 static void korina_abort_rx(struct net_device *dev) 177 { 178 struct korina_private *lp = netdev_priv(dev); 179 180 korina_abort_dma(dev, lp->rx_dma_regs); 181 } 182 183 static void korina_start_rx(struct korina_private *lp, 184 struct dma_desc *rd) 185 { 186 korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd)); 187 } 188 189 static void korina_chain_rx(struct korina_private *lp, 190 struct dma_desc *rd) 191 { 192 korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd)); 193 } 194 195 /* transmit packet */ 196 static int korina_send_packet(struct sk_buff *skb, struct net_device *dev) 197 { 198 struct korina_private *lp = netdev_priv(dev); 199 unsigned long flags; 200 u32 length; 201 u32 chain_prev, chain_next; 202 struct dma_desc *td; 203 204 spin_lock_irqsave(&lp->lock, flags); 205 206 td = &lp->td_ring[lp->tx_chain_tail]; 207 208 /* stop queue when full, drop pkts if queue already full */ 209 if (lp->tx_count >= (KORINA_NUM_TDS - 2)) { 210 lp->tx_full = 1; 211 212 if (lp->tx_count == (KORINA_NUM_TDS - 2)) 213 netif_stop_queue(dev); 214 else { 215 dev->stats.tx_dropped++; 216 dev_kfree_skb_any(skb); 217 spin_unlock_irqrestore(&lp->lock, flags); 218 219 return NETDEV_TX_BUSY; 220 } 221 } 222 223 lp->tx_count++; 224 225 lp->tx_skb[lp->tx_chain_tail] = skb; 226 227 length = skb->len; 228 dma_cache_wback((u32)skb->data, skb->len); 229 230 /* Setup the transmit descriptor. */ 231 dma_cache_inv((u32) td, sizeof(*td)); 232 td->ca = CPHYSADDR(skb->data); 233 chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK; 234 chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK; 235 236 if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) { 237 if (lp->tx_chain_status == desc_empty) { 238 /* Update tail */ 239 td->control = DMA_COUNT(length) | 240 DMA_DESC_COF | DMA_DESC_IOF; 241 /* Move tail */ 242 lp->tx_chain_tail = chain_next; 243 /* Write to NDPTR */ 244 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]), 245 &lp->tx_dma_regs->dmandptr); 246 /* Move head to tail */ 247 lp->tx_chain_head = lp->tx_chain_tail; 248 } else { 249 /* Update tail */ 250 td->control = DMA_COUNT(length) | 251 DMA_DESC_COF | DMA_DESC_IOF; 252 /* Link to prev */ 253 lp->td_ring[chain_prev].control &= 254 ~DMA_DESC_COF; 255 /* Link to prev */ 256 lp->td_ring[chain_prev].link = CPHYSADDR(td); 257 /* Move tail */ 258 lp->tx_chain_tail = chain_next; 259 /* Write to NDPTR */ 260 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]), 261 &(lp->tx_dma_regs->dmandptr)); 262 /* Move head to tail */ 263 lp->tx_chain_head = lp->tx_chain_tail; 264 lp->tx_chain_status = desc_empty; 265 } 266 } else { 267 if (lp->tx_chain_status == desc_empty) { 268 /* Update tail */ 269 td->control = DMA_COUNT(length) | 270 DMA_DESC_COF | DMA_DESC_IOF; 271 /* Move tail */ 272 lp->tx_chain_tail = chain_next; 273 lp->tx_chain_status = desc_filled; 274 } else { 275 /* Update tail */ 276 td->control = DMA_COUNT(length) | 277 DMA_DESC_COF | DMA_DESC_IOF; 278 lp->td_ring[chain_prev].control &= 279 ~DMA_DESC_COF; 280 lp->td_ring[chain_prev].link = CPHYSADDR(td); 281 lp->tx_chain_tail = chain_next; 282 } 283 } 284 dma_cache_wback((u32) td, sizeof(*td)); 285 286 netif_trans_update(dev); 287 spin_unlock_irqrestore(&lp->lock, flags); 288 289 return NETDEV_TX_OK; 290 } 291 292 static int mdio_read(struct net_device *dev, int mii_id, int reg) 293 { 294 struct korina_private *lp = netdev_priv(dev); 295 int ret; 296 297 mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8); 298 299 writel(0, &lp->eth_regs->miimcfg); 300 writel(0, &lp->eth_regs->miimcmd); 301 writel(mii_id | reg, &lp->eth_regs->miimaddr); 302 writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd); 303 304 ret = (int)(readl(&lp->eth_regs->miimrdd)); 305 return ret; 306 } 307 308 static void mdio_write(struct net_device *dev, int mii_id, int reg, int val) 309 { 310 struct korina_private *lp = netdev_priv(dev); 311 312 mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8); 313 314 writel(0, &lp->eth_regs->miimcfg); 315 writel(1, &lp->eth_regs->miimcmd); 316 writel(mii_id | reg, &lp->eth_regs->miimaddr); 317 writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd); 318 writel(val, &lp->eth_regs->miimwtd); 319 } 320 321 /* Ethernet Rx DMA interrupt */ 322 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id) 323 { 324 struct net_device *dev = dev_id; 325 struct korina_private *lp = netdev_priv(dev); 326 u32 dmas, dmasm; 327 irqreturn_t retval; 328 329 dmas = readl(&lp->rx_dma_regs->dmas); 330 if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) { 331 dmasm = readl(&lp->rx_dma_regs->dmasm); 332 writel(dmasm | (DMA_STAT_DONE | 333 DMA_STAT_HALT | DMA_STAT_ERR), 334 &lp->rx_dma_regs->dmasm); 335 336 napi_schedule(&lp->napi); 337 338 if (dmas & DMA_STAT_ERR) 339 printk(KERN_ERR "%s: DMA error\n", dev->name); 340 341 retval = IRQ_HANDLED; 342 } else 343 retval = IRQ_NONE; 344 345 return retval; 346 } 347 348 static int korina_rx(struct net_device *dev, int limit) 349 { 350 struct korina_private *lp = netdev_priv(dev); 351 struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done]; 352 struct sk_buff *skb, *skb_new; 353 u8 *pkt_buf; 354 u32 devcs, pkt_len, dmas; 355 int count; 356 357 dma_cache_inv((u32)rd, sizeof(*rd)); 358 359 for (count = 0; count < limit; count++) { 360 skb = lp->rx_skb[lp->rx_next_done]; 361 skb_new = NULL; 362 363 devcs = rd->devcs; 364 365 if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0) 366 break; 367 368 /* Update statistics counters */ 369 if (devcs & ETH_RX_CRC) 370 dev->stats.rx_crc_errors++; 371 if (devcs & ETH_RX_LOR) 372 dev->stats.rx_length_errors++; 373 if (devcs & ETH_RX_LE) 374 dev->stats.rx_length_errors++; 375 if (devcs & ETH_RX_OVR) 376 dev->stats.rx_fifo_errors++; 377 if (devcs & ETH_RX_CV) 378 dev->stats.rx_frame_errors++; 379 if (devcs & ETH_RX_CES) 380 dev->stats.rx_length_errors++; 381 if (devcs & ETH_RX_MP) 382 dev->stats.multicast++; 383 384 if ((devcs & ETH_RX_LD) != ETH_RX_LD) { 385 /* check that this is a whole packet 386 * WARNING: DMA_FD bit incorrectly set 387 * in Rc32434 (errata ref #077) */ 388 dev->stats.rx_errors++; 389 dev->stats.rx_dropped++; 390 } else if ((devcs & ETH_RX_ROK)) { 391 pkt_len = RCVPKT_LENGTH(devcs); 392 393 /* must be the (first and) last 394 * descriptor then */ 395 pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data; 396 397 /* invalidate the cache */ 398 dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4); 399 400 /* Malloc up new buffer. */ 401 skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE); 402 403 if (!skb_new) 404 break; 405 /* Do not count the CRC */ 406 skb_put(skb, pkt_len - 4); 407 skb->protocol = eth_type_trans(skb, dev); 408 409 /* Pass the packet to upper layers */ 410 netif_receive_skb(skb); 411 dev->stats.rx_packets++; 412 dev->stats.rx_bytes += pkt_len; 413 414 /* Update the mcast stats */ 415 if (devcs & ETH_RX_MP) 416 dev->stats.multicast++; 417 418 lp->rx_skb[lp->rx_next_done] = skb_new; 419 } 420 421 rd->devcs = 0; 422 423 /* Restore descriptor's curr_addr */ 424 if (skb_new) 425 rd->ca = CPHYSADDR(skb_new->data); 426 else 427 rd->ca = CPHYSADDR(skb->data); 428 429 rd->control = DMA_COUNT(KORINA_RBSIZE) | 430 DMA_DESC_COD | DMA_DESC_IOD; 431 lp->rd_ring[(lp->rx_next_done - 1) & 432 KORINA_RDS_MASK].control &= 433 ~DMA_DESC_COD; 434 435 lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK; 436 dma_cache_wback((u32)rd, sizeof(*rd)); 437 rd = &lp->rd_ring[lp->rx_next_done]; 438 writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas); 439 } 440 441 dmas = readl(&lp->rx_dma_regs->dmas); 442 443 if (dmas & DMA_STAT_HALT) { 444 writel(~(DMA_STAT_HALT | DMA_STAT_ERR), 445 &lp->rx_dma_regs->dmas); 446 447 lp->dma_halt_cnt++; 448 rd->devcs = 0; 449 skb = lp->rx_skb[lp->rx_next_done]; 450 rd->ca = CPHYSADDR(skb->data); 451 dma_cache_wback((u32)rd, sizeof(*rd)); 452 korina_chain_rx(lp, rd); 453 } 454 455 return count; 456 } 457 458 static int korina_poll(struct napi_struct *napi, int budget) 459 { 460 struct korina_private *lp = 461 container_of(napi, struct korina_private, napi); 462 struct net_device *dev = lp->dev; 463 int work_done; 464 465 work_done = korina_rx(dev, budget); 466 if (work_done < budget) { 467 napi_complete(napi); 468 469 writel(readl(&lp->rx_dma_regs->dmasm) & 470 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR), 471 &lp->rx_dma_regs->dmasm); 472 } 473 return work_done; 474 } 475 476 /* 477 * Set or clear the multicast filter for this adaptor. 478 */ 479 static void korina_multicast_list(struct net_device *dev) 480 { 481 struct korina_private *lp = netdev_priv(dev); 482 unsigned long flags; 483 struct netdev_hw_addr *ha; 484 u32 recognise = ETH_ARC_AB; /* always accept broadcasts */ 485 486 /* Set promiscuous mode */ 487 if (dev->flags & IFF_PROMISC) 488 recognise |= ETH_ARC_PRO; 489 490 else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4)) 491 /* All multicast and broadcast */ 492 recognise |= ETH_ARC_AM; 493 494 /* Build the hash table */ 495 if (netdev_mc_count(dev) > 4) { 496 u16 hash_table[4] = { 0 }; 497 u32 crc; 498 499 netdev_for_each_mc_addr(ha, dev) { 500 crc = ether_crc_le(6, ha->addr); 501 crc >>= 26; 502 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); 503 } 504 /* Accept filtered multicast */ 505 recognise |= ETH_ARC_AFM; 506 507 /* Fill the MAC hash tables with their values */ 508 writel((u32)(hash_table[1] << 16 | hash_table[0]), 509 &lp->eth_regs->ethhash0); 510 writel((u32)(hash_table[3] << 16 | hash_table[2]), 511 &lp->eth_regs->ethhash1); 512 } 513 514 spin_lock_irqsave(&lp->lock, flags); 515 writel(recognise, &lp->eth_regs->etharc); 516 spin_unlock_irqrestore(&lp->lock, flags); 517 } 518 519 static void korina_tx(struct net_device *dev) 520 { 521 struct korina_private *lp = netdev_priv(dev); 522 struct dma_desc *td = &lp->td_ring[lp->tx_next_done]; 523 u32 devcs; 524 u32 dmas; 525 526 spin_lock(&lp->lock); 527 528 /* Process all desc that are done */ 529 while (IS_DMA_FINISHED(td->control)) { 530 if (lp->tx_full == 1) { 531 netif_wake_queue(dev); 532 lp->tx_full = 0; 533 } 534 535 devcs = lp->td_ring[lp->tx_next_done].devcs; 536 if ((devcs & (ETH_TX_FD | ETH_TX_LD)) != 537 (ETH_TX_FD | ETH_TX_LD)) { 538 dev->stats.tx_errors++; 539 dev->stats.tx_dropped++; 540 541 /* Should never happen */ 542 printk(KERN_ERR "%s: split tx ignored\n", 543 dev->name); 544 } else if (devcs & ETH_TX_TOK) { 545 dev->stats.tx_packets++; 546 dev->stats.tx_bytes += 547 lp->tx_skb[lp->tx_next_done]->len; 548 } else { 549 dev->stats.tx_errors++; 550 dev->stats.tx_dropped++; 551 552 /* Underflow */ 553 if (devcs & ETH_TX_UND) 554 dev->stats.tx_fifo_errors++; 555 556 /* Oversized frame */ 557 if (devcs & ETH_TX_OF) 558 dev->stats.tx_aborted_errors++; 559 560 /* Excessive deferrals */ 561 if (devcs & ETH_TX_ED) 562 dev->stats.tx_carrier_errors++; 563 564 /* Collisions: medium busy */ 565 if (devcs & ETH_TX_EC) 566 dev->stats.collisions++; 567 568 /* Late collision */ 569 if (devcs & ETH_TX_LC) 570 dev->stats.tx_window_errors++; 571 } 572 573 /* We must always free the original skb */ 574 if (lp->tx_skb[lp->tx_next_done]) { 575 dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]); 576 lp->tx_skb[lp->tx_next_done] = NULL; 577 } 578 579 lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF; 580 lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD; 581 lp->td_ring[lp->tx_next_done].link = 0; 582 lp->td_ring[lp->tx_next_done].ca = 0; 583 lp->tx_count--; 584 585 /* Go on to next transmission */ 586 lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK; 587 td = &lp->td_ring[lp->tx_next_done]; 588 589 } 590 591 /* Clear the DMA status register */ 592 dmas = readl(&lp->tx_dma_regs->dmas); 593 writel(~dmas, &lp->tx_dma_regs->dmas); 594 595 writel(readl(&lp->tx_dma_regs->dmasm) & 596 ~(DMA_STAT_FINI | DMA_STAT_ERR), 597 &lp->tx_dma_regs->dmasm); 598 599 spin_unlock(&lp->lock); 600 } 601 602 static irqreturn_t 603 korina_tx_dma_interrupt(int irq, void *dev_id) 604 { 605 struct net_device *dev = dev_id; 606 struct korina_private *lp = netdev_priv(dev); 607 u32 dmas, dmasm; 608 irqreturn_t retval; 609 610 dmas = readl(&lp->tx_dma_regs->dmas); 611 612 if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) { 613 dmasm = readl(&lp->tx_dma_regs->dmasm); 614 writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR), 615 &lp->tx_dma_regs->dmasm); 616 617 korina_tx(dev); 618 619 if (lp->tx_chain_status == desc_filled && 620 (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) { 621 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]), 622 &(lp->tx_dma_regs->dmandptr)); 623 lp->tx_chain_status = desc_empty; 624 lp->tx_chain_head = lp->tx_chain_tail; 625 netif_trans_update(dev); 626 } 627 if (dmas & DMA_STAT_ERR) 628 printk(KERN_ERR "%s: DMA error\n", dev->name); 629 630 retval = IRQ_HANDLED; 631 } else 632 retval = IRQ_NONE; 633 634 return retval; 635 } 636 637 638 static void korina_check_media(struct net_device *dev, unsigned int init_media) 639 { 640 struct korina_private *lp = netdev_priv(dev); 641 642 mii_check_media(&lp->mii_if, 0, init_media); 643 644 if (lp->mii_if.full_duplex) 645 writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD, 646 &lp->eth_regs->ethmac2); 647 else 648 writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD, 649 &lp->eth_regs->ethmac2); 650 } 651 652 static void korina_poll_media(unsigned long data) 653 { 654 struct net_device *dev = (struct net_device *) data; 655 struct korina_private *lp = netdev_priv(dev); 656 657 korina_check_media(dev, 0); 658 mod_timer(&lp->media_check_timer, jiffies + HZ); 659 } 660 661 static void korina_set_carrier(struct mii_if_info *mii) 662 { 663 if (mii->force_media) { 664 /* autoneg is off: Link is always assumed to be up */ 665 if (!netif_carrier_ok(mii->dev)) 666 netif_carrier_on(mii->dev); 667 } else /* Let MMI library update carrier status */ 668 korina_check_media(mii->dev, 0); 669 } 670 671 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 672 { 673 struct korina_private *lp = netdev_priv(dev); 674 struct mii_ioctl_data *data = if_mii(rq); 675 int rc; 676 677 if (!netif_running(dev)) 678 return -EINVAL; 679 spin_lock_irq(&lp->lock); 680 rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL); 681 spin_unlock_irq(&lp->lock); 682 korina_set_carrier(&lp->mii_if); 683 684 return rc; 685 } 686 687 /* ethtool helpers */ 688 static void netdev_get_drvinfo(struct net_device *dev, 689 struct ethtool_drvinfo *info) 690 { 691 struct korina_private *lp = netdev_priv(dev); 692 693 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 694 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 695 strlcpy(info->bus_info, lp->dev->name, sizeof(info->bus_info)); 696 } 697 698 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 699 { 700 struct korina_private *lp = netdev_priv(dev); 701 int rc; 702 703 spin_lock_irq(&lp->lock); 704 rc = mii_ethtool_gset(&lp->mii_if, cmd); 705 spin_unlock_irq(&lp->lock); 706 707 return rc; 708 } 709 710 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 711 { 712 struct korina_private *lp = netdev_priv(dev); 713 int rc; 714 715 spin_lock_irq(&lp->lock); 716 rc = mii_ethtool_sset(&lp->mii_if, cmd); 717 spin_unlock_irq(&lp->lock); 718 korina_set_carrier(&lp->mii_if); 719 720 return rc; 721 } 722 723 static u32 netdev_get_link(struct net_device *dev) 724 { 725 struct korina_private *lp = netdev_priv(dev); 726 727 return mii_link_ok(&lp->mii_if); 728 } 729 730 static const struct ethtool_ops netdev_ethtool_ops = { 731 .get_drvinfo = netdev_get_drvinfo, 732 .get_settings = netdev_get_settings, 733 .set_settings = netdev_set_settings, 734 .get_link = netdev_get_link, 735 }; 736 737 static int korina_alloc_ring(struct net_device *dev) 738 { 739 struct korina_private *lp = netdev_priv(dev); 740 struct sk_buff *skb; 741 int i; 742 743 /* Initialize the transmit descriptors */ 744 for (i = 0; i < KORINA_NUM_TDS; i++) { 745 lp->td_ring[i].control = DMA_DESC_IOF; 746 lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD; 747 lp->td_ring[i].ca = 0; 748 lp->td_ring[i].link = 0; 749 } 750 lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail = 751 lp->tx_full = lp->tx_count = 0; 752 lp->tx_chain_status = desc_empty; 753 754 /* Initialize the receive descriptors */ 755 for (i = 0; i < KORINA_NUM_RDS; i++) { 756 skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE); 757 if (!skb) 758 return -ENOMEM; 759 lp->rx_skb[i] = skb; 760 lp->rd_ring[i].control = DMA_DESC_IOD | 761 DMA_COUNT(KORINA_RBSIZE); 762 lp->rd_ring[i].devcs = 0; 763 lp->rd_ring[i].ca = CPHYSADDR(skb->data); 764 lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]); 765 } 766 767 /* loop back receive descriptors, so the last 768 * descriptor points to the first one */ 769 lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]); 770 lp->rd_ring[i - 1].control |= DMA_DESC_COD; 771 772 lp->rx_next_done = 0; 773 lp->rx_chain_head = 0; 774 lp->rx_chain_tail = 0; 775 lp->rx_chain_status = desc_empty; 776 777 return 0; 778 } 779 780 static void korina_free_ring(struct net_device *dev) 781 { 782 struct korina_private *lp = netdev_priv(dev); 783 int i; 784 785 for (i = 0; i < KORINA_NUM_RDS; i++) { 786 lp->rd_ring[i].control = 0; 787 if (lp->rx_skb[i]) 788 dev_kfree_skb_any(lp->rx_skb[i]); 789 lp->rx_skb[i] = NULL; 790 } 791 792 for (i = 0; i < KORINA_NUM_TDS; i++) { 793 lp->td_ring[i].control = 0; 794 if (lp->tx_skb[i]) 795 dev_kfree_skb_any(lp->tx_skb[i]); 796 lp->tx_skb[i] = NULL; 797 } 798 } 799 800 /* 801 * Initialize the RC32434 ethernet controller. 802 */ 803 static int korina_init(struct net_device *dev) 804 { 805 struct korina_private *lp = netdev_priv(dev); 806 807 /* Disable DMA */ 808 korina_abort_tx(dev); 809 korina_abort_rx(dev); 810 811 /* reset ethernet logic */ 812 writel(0, &lp->eth_regs->ethintfc); 813 while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP)) 814 netif_trans_update(dev); 815 816 /* Enable Ethernet Interface */ 817 writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc); 818 819 /* Allocate rings */ 820 if (korina_alloc_ring(dev)) { 821 printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name); 822 korina_free_ring(dev); 823 return -ENOMEM; 824 } 825 826 writel(0, &lp->rx_dma_regs->dmas); 827 /* Start Rx DMA */ 828 korina_start_rx(lp, &lp->rd_ring[0]); 829 830 writel(readl(&lp->tx_dma_regs->dmasm) & 831 ~(DMA_STAT_FINI | DMA_STAT_ERR), 832 &lp->tx_dma_regs->dmasm); 833 writel(readl(&lp->rx_dma_regs->dmasm) & 834 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR), 835 &lp->rx_dma_regs->dmasm); 836 837 /* Accept only packets destined for this Ethernet device address */ 838 writel(ETH_ARC_AB, &lp->eth_regs->etharc); 839 840 /* Set all Ether station address registers to their initial values */ 841 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0); 842 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0); 843 844 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1); 845 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1); 846 847 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2); 848 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2); 849 850 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3); 851 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3); 852 853 854 /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */ 855 writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD, 856 &lp->eth_regs->ethmac2); 857 858 /* Back to back inter-packet-gap */ 859 writel(0x15, &lp->eth_regs->ethipgt); 860 /* Non - Back to back inter-packet-gap */ 861 writel(0x12, &lp->eth_regs->ethipgr); 862 863 /* Management Clock Prescaler Divisor 864 * Clock independent setting */ 865 writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1, 866 &lp->eth_regs->ethmcp); 867 868 /* don't transmit until fifo contains 48b */ 869 writel(48, &lp->eth_regs->ethfifott); 870 871 writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1); 872 873 napi_enable(&lp->napi); 874 netif_start_queue(dev); 875 876 return 0; 877 } 878 879 /* 880 * Restart the RC32434 ethernet controller. 881 */ 882 static void korina_restart_task(struct work_struct *work) 883 { 884 struct korina_private *lp = container_of(work, 885 struct korina_private, restart_task); 886 struct net_device *dev = lp->dev; 887 888 /* 889 * Disable interrupts 890 */ 891 disable_irq(lp->rx_irq); 892 disable_irq(lp->tx_irq); 893 disable_irq(lp->ovr_irq); 894 disable_irq(lp->und_irq); 895 896 writel(readl(&lp->tx_dma_regs->dmasm) | 897 DMA_STAT_FINI | DMA_STAT_ERR, 898 &lp->tx_dma_regs->dmasm); 899 writel(readl(&lp->rx_dma_regs->dmasm) | 900 DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR, 901 &lp->rx_dma_regs->dmasm); 902 903 korina_free_ring(dev); 904 905 napi_disable(&lp->napi); 906 907 if (korina_init(dev) < 0) { 908 printk(KERN_ERR "%s: cannot restart device\n", dev->name); 909 return; 910 } 911 korina_multicast_list(dev); 912 913 enable_irq(lp->und_irq); 914 enable_irq(lp->ovr_irq); 915 enable_irq(lp->tx_irq); 916 enable_irq(lp->rx_irq); 917 } 918 919 static void korina_clear_and_restart(struct net_device *dev, u32 value) 920 { 921 struct korina_private *lp = netdev_priv(dev); 922 923 netif_stop_queue(dev); 924 writel(value, &lp->eth_regs->ethintfc); 925 schedule_work(&lp->restart_task); 926 } 927 928 /* Ethernet Tx Underflow interrupt */ 929 static irqreturn_t korina_und_interrupt(int irq, void *dev_id) 930 { 931 struct net_device *dev = dev_id; 932 struct korina_private *lp = netdev_priv(dev); 933 unsigned int und; 934 935 spin_lock(&lp->lock); 936 937 und = readl(&lp->eth_regs->ethintfc); 938 939 if (und & ETH_INT_FC_UND) 940 korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND); 941 942 spin_unlock(&lp->lock); 943 944 return IRQ_HANDLED; 945 } 946 947 static void korina_tx_timeout(struct net_device *dev) 948 { 949 struct korina_private *lp = netdev_priv(dev); 950 951 schedule_work(&lp->restart_task); 952 } 953 954 /* Ethernet Rx Overflow interrupt */ 955 static irqreturn_t 956 korina_ovr_interrupt(int irq, void *dev_id) 957 { 958 struct net_device *dev = dev_id; 959 struct korina_private *lp = netdev_priv(dev); 960 unsigned int ovr; 961 962 spin_lock(&lp->lock); 963 ovr = readl(&lp->eth_regs->ethintfc); 964 965 if (ovr & ETH_INT_FC_OVR) 966 korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR); 967 968 spin_unlock(&lp->lock); 969 970 return IRQ_HANDLED; 971 } 972 973 #ifdef CONFIG_NET_POLL_CONTROLLER 974 static void korina_poll_controller(struct net_device *dev) 975 { 976 disable_irq(dev->irq); 977 korina_tx_dma_interrupt(dev->irq, dev); 978 enable_irq(dev->irq); 979 } 980 #endif 981 982 static int korina_open(struct net_device *dev) 983 { 984 struct korina_private *lp = netdev_priv(dev); 985 int ret; 986 987 /* Initialize */ 988 ret = korina_init(dev); 989 if (ret < 0) { 990 printk(KERN_ERR "%s: cannot open device\n", dev->name); 991 goto out; 992 } 993 994 /* Install the interrupt handler 995 * that handles the Done Finished 996 * Ovr and Und Events */ 997 ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt, 998 0, "Korina ethernet Rx", dev); 999 if (ret < 0) { 1000 printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n", 1001 dev->name, lp->rx_irq); 1002 goto err_release; 1003 } 1004 ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt, 1005 0, "Korina ethernet Tx", dev); 1006 if (ret < 0) { 1007 printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n", 1008 dev->name, lp->tx_irq); 1009 goto err_free_rx_irq; 1010 } 1011 1012 /* Install handler for overrun error. */ 1013 ret = request_irq(lp->ovr_irq, korina_ovr_interrupt, 1014 0, "Ethernet Overflow", dev); 1015 if (ret < 0) { 1016 printk(KERN_ERR "%s: unable to get OVR IRQ %d\n", 1017 dev->name, lp->ovr_irq); 1018 goto err_free_tx_irq; 1019 } 1020 1021 /* Install handler for underflow error. */ 1022 ret = request_irq(lp->und_irq, korina_und_interrupt, 1023 0, "Ethernet Underflow", dev); 1024 if (ret < 0) { 1025 printk(KERN_ERR "%s: unable to get UND IRQ %d\n", 1026 dev->name, lp->und_irq); 1027 goto err_free_ovr_irq; 1028 } 1029 mod_timer(&lp->media_check_timer, jiffies + 1); 1030 out: 1031 return ret; 1032 1033 err_free_ovr_irq: 1034 free_irq(lp->ovr_irq, dev); 1035 err_free_tx_irq: 1036 free_irq(lp->tx_irq, dev); 1037 err_free_rx_irq: 1038 free_irq(lp->rx_irq, dev); 1039 err_release: 1040 korina_free_ring(dev); 1041 goto out; 1042 } 1043 1044 static int korina_close(struct net_device *dev) 1045 { 1046 struct korina_private *lp = netdev_priv(dev); 1047 u32 tmp; 1048 1049 del_timer(&lp->media_check_timer); 1050 1051 /* Disable interrupts */ 1052 disable_irq(lp->rx_irq); 1053 disable_irq(lp->tx_irq); 1054 disable_irq(lp->ovr_irq); 1055 disable_irq(lp->und_irq); 1056 1057 korina_abort_tx(dev); 1058 tmp = readl(&lp->tx_dma_regs->dmasm); 1059 tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR; 1060 writel(tmp, &lp->tx_dma_regs->dmasm); 1061 1062 korina_abort_rx(dev); 1063 tmp = readl(&lp->rx_dma_regs->dmasm); 1064 tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR; 1065 writel(tmp, &lp->rx_dma_regs->dmasm); 1066 1067 korina_free_ring(dev); 1068 1069 napi_disable(&lp->napi); 1070 1071 cancel_work_sync(&lp->restart_task); 1072 1073 free_irq(lp->rx_irq, dev); 1074 free_irq(lp->tx_irq, dev); 1075 free_irq(lp->ovr_irq, dev); 1076 free_irq(lp->und_irq, dev); 1077 1078 return 0; 1079 } 1080 1081 static const struct net_device_ops korina_netdev_ops = { 1082 .ndo_open = korina_open, 1083 .ndo_stop = korina_close, 1084 .ndo_start_xmit = korina_send_packet, 1085 .ndo_set_rx_mode = korina_multicast_list, 1086 .ndo_tx_timeout = korina_tx_timeout, 1087 .ndo_do_ioctl = korina_ioctl, 1088 .ndo_change_mtu = eth_change_mtu, 1089 .ndo_validate_addr = eth_validate_addr, 1090 .ndo_set_mac_address = eth_mac_addr, 1091 #ifdef CONFIG_NET_POLL_CONTROLLER 1092 .ndo_poll_controller = korina_poll_controller, 1093 #endif 1094 }; 1095 1096 static int korina_probe(struct platform_device *pdev) 1097 { 1098 struct korina_device *bif = platform_get_drvdata(pdev); 1099 struct korina_private *lp; 1100 struct net_device *dev; 1101 struct resource *r; 1102 int rc; 1103 1104 dev = alloc_etherdev(sizeof(struct korina_private)); 1105 if (!dev) 1106 return -ENOMEM; 1107 1108 SET_NETDEV_DEV(dev, &pdev->dev); 1109 lp = netdev_priv(dev); 1110 1111 bif->dev = dev; 1112 memcpy(dev->dev_addr, bif->mac, ETH_ALEN); 1113 1114 lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx"); 1115 lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx"); 1116 lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr"); 1117 lp->und_irq = platform_get_irq_byname(pdev, "korina_und"); 1118 1119 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs"); 1120 dev->base_addr = r->start; 1121 lp->eth_regs = ioremap_nocache(r->start, resource_size(r)); 1122 if (!lp->eth_regs) { 1123 printk(KERN_ERR DRV_NAME ": cannot remap registers\n"); 1124 rc = -ENXIO; 1125 goto probe_err_out; 1126 } 1127 1128 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx"); 1129 lp->rx_dma_regs = ioremap_nocache(r->start, resource_size(r)); 1130 if (!lp->rx_dma_regs) { 1131 printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n"); 1132 rc = -ENXIO; 1133 goto probe_err_dma_rx; 1134 } 1135 1136 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx"); 1137 lp->tx_dma_regs = ioremap_nocache(r->start, resource_size(r)); 1138 if (!lp->tx_dma_regs) { 1139 printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n"); 1140 rc = -ENXIO; 1141 goto probe_err_dma_tx; 1142 } 1143 1144 lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL); 1145 if (!lp->td_ring) { 1146 rc = -ENXIO; 1147 goto probe_err_td_ring; 1148 } 1149 1150 dma_cache_inv((unsigned long)(lp->td_ring), 1151 TD_RING_SIZE + RD_RING_SIZE); 1152 1153 /* now convert TD_RING pointer to KSEG1 */ 1154 lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring); 1155 lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS]; 1156 1157 spin_lock_init(&lp->lock); 1158 /* just use the rx dma irq */ 1159 dev->irq = lp->rx_irq; 1160 lp->dev = dev; 1161 1162 dev->netdev_ops = &korina_netdev_ops; 1163 dev->ethtool_ops = &netdev_ethtool_ops; 1164 dev->watchdog_timeo = TX_TIMEOUT; 1165 netif_napi_add(dev, &lp->napi, korina_poll, 64); 1166 1167 lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05); 1168 lp->mii_if.dev = dev; 1169 lp->mii_if.mdio_read = mdio_read; 1170 lp->mii_if.mdio_write = mdio_write; 1171 lp->mii_if.phy_id = lp->phy_addr; 1172 lp->mii_if.phy_id_mask = 0x1f; 1173 lp->mii_if.reg_num_mask = 0x1f; 1174 1175 rc = register_netdev(dev); 1176 if (rc < 0) { 1177 printk(KERN_ERR DRV_NAME 1178 ": cannot register net device: %d\n", rc); 1179 goto probe_err_register; 1180 } 1181 setup_timer(&lp->media_check_timer, korina_poll_media, (unsigned long) dev); 1182 1183 INIT_WORK(&lp->restart_task, korina_restart_task); 1184 1185 printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n", 1186 dev->name); 1187 out: 1188 return rc; 1189 1190 probe_err_register: 1191 kfree(lp->td_ring); 1192 probe_err_td_ring: 1193 iounmap(lp->tx_dma_regs); 1194 probe_err_dma_tx: 1195 iounmap(lp->rx_dma_regs); 1196 probe_err_dma_rx: 1197 iounmap(lp->eth_regs); 1198 probe_err_out: 1199 free_netdev(dev); 1200 goto out; 1201 } 1202 1203 static int korina_remove(struct platform_device *pdev) 1204 { 1205 struct korina_device *bif = platform_get_drvdata(pdev); 1206 struct korina_private *lp = netdev_priv(bif->dev); 1207 1208 iounmap(lp->eth_regs); 1209 iounmap(lp->rx_dma_regs); 1210 iounmap(lp->tx_dma_regs); 1211 1212 unregister_netdev(bif->dev); 1213 free_netdev(bif->dev); 1214 1215 return 0; 1216 } 1217 1218 static struct platform_driver korina_driver = { 1219 .driver.name = "korina", 1220 .probe = korina_probe, 1221 .remove = korina_remove, 1222 }; 1223 1224 module_platform_driver(korina_driver); 1225 1226 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>"); 1227 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>"); 1228 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>"); 1229 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver"); 1230 MODULE_LICENSE("GPL"); 1231