xref: /linux/drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*******************************************************************************
2 
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 
29 /******************************************************************************
30  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/bitops.h>
34 #include <linux/module.h>
35 #include <linux/pci.h>
36 #include <linux/netdevice.h>
37 #include <linux/vmalloc.h>
38 #include <linux/string.h>
39 #include <linux/in.h>
40 #include <linux/ip.h>
41 #include <linux/tcp.h>
42 #include <linux/ipv6.h>
43 #include <linux/slab.h>
44 #include <net/checksum.h>
45 #include <net/ip6_checksum.h>
46 #include <linux/ethtool.h>
47 #include <linux/if.h>
48 #include <linux/if_vlan.h>
49 #include <linux/prefetch.h>
50 
51 #include "ixgbevf.h"
52 
53 char ixgbevf_driver_name[] = "ixgbevf";
54 static const char ixgbevf_driver_string[] =
55 	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
56 
57 #define DRV_VERSION "2.2.0-k"
58 const char ixgbevf_driver_version[] = DRV_VERSION;
59 static char ixgbevf_copyright[] =
60 	"Copyright (c) 2009 - 2010 Intel Corporation.";
61 
62 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
63 	[board_82599_vf] = &ixgbevf_82599_vf_info,
64 	[board_X540_vf]  = &ixgbevf_X540_vf_info,
65 };
66 
67 /* ixgbevf_pci_tbl - PCI Device ID Table
68  *
69  * Wildcard entries (PCI_ANY_ID) should come last
70  * Last entry must be all 0s
71  *
72  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
73  *   Class, Class Mask, private data (not used) }
74  */
75 static struct pci_device_id ixgbevf_pci_tbl[] = {
76 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
77 	board_82599_vf},
78 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF),
79 	board_X540_vf},
80 
81 	/* required last entry */
82 	{0, }
83 };
84 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
85 
86 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
87 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
88 MODULE_LICENSE("GPL");
89 MODULE_VERSION(DRV_VERSION);
90 
91 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
92 
93 /* forward decls */
94 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
95 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
96 			       u32 itr_reg);
97 
98 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
99 					   struct ixgbevf_ring *rx_ring,
100 					   u32 val)
101 {
102 	/*
103 	 * Force memory writes to complete before letting h/w
104 	 * know there are new descriptors to fetch.  (Only
105 	 * applicable for weak-ordered memory model archs,
106 	 * such as IA-64).
107 	 */
108 	wmb();
109 	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
110 }
111 
112 /*
113  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
114  * @adapter: pointer to adapter struct
115  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
116  * @queue: queue to map the corresponding interrupt to
117  * @msix_vector: the vector to map to the corresponding queue
118  *
119  */
120 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
121 			     u8 queue, u8 msix_vector)
122 {
123 	u32 ivar, index;
124 	struct ixgbe_hw *hw = &adapter->hw;
125 	if (direction == -1) {
126 		/* other causes */
127 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
128 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
129 		ivar &= ~0xFF;
130 		ivar |= msix_vector;
131 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
132 	} else {
133 		/* tx or rx causes */
134 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
135 		index = ((16 * (queue & 1)) + (8 * direction));
136 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
137 		ivar &= ~(0xFF << index);
138 		ivar |= (msix_vector << index);
139 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
140 	}
141 }
142 
143 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
144 					       struct ixgbevf_tx_buffer
145 					       *tx_buffer_info)
146 {
147 	if (tx_buffer_info->dma) {
148 		if (tx_buffer_info->mapped_as_page)
149 			dma_unmap_page(&adapter->pdev->dev,
150 				       tx_buffer_info->dma,
151 				       tx_buffer_info->length,
152 				       DMA_TO_DEVICE);
153 		else
154 			dma_unmap_single(&adapter->pdev->dev,
155 					 tx_buffer_info->dma,
156 					 tx_buffer_info->length,
157 					 DMA_TO_DEVICE);
158 		tx_buffer_info->dma = 0;
159 	}
160 	if (tx_buffer_info->skb) {
161 		dev_kfree_skb_any(tx_buffer_info->skb);
162 		tx_buffer_info->skb = NULL;
163 	}
164 	tx_buffer_info->time_stamp = 0;
165 	/* tx_buffer_info must be completely set up in the transmit path */
166 }
167 
168 #define IXGBE_MAX_TXD_PWR	14
169 #define IXGBE_MAX_DATA_PER_TXD	(1 << IXGBE_MAX_TXD_PWR)
170 
171 /* Tx Descriptors needed, worst case */
172 #define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
173 			 (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
174 #ifdef MAX_SKB_FRAGS
175 #define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
176 	MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1)      /* for context */
177 #else
178 #define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
179 #endif
180 
181 static void ixgbevf_tx_timeout(struct net_device *netdev);
182 
183 /**
184  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
185  * @adapter: board private structure
186  * @tx_ring: tx ring to clean
187  **/
188 static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
189 				 struct ixgbevf_ring *tx_ring)
190 {
191 	struct net_device *netdev = adapter->netdev;
192 	struct ixgbe_hw *hw = &adapter->hw;
193 	union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
194 	struct ixgbevf_tx_buffer *tx_buffer_info;
195 	unsigned int i, eop, count = 0;
196 	unsigned int total_bytes = 0, total_packets = 0;
197 
198 	i = tx_ring->next_to_clean;
199 	eop = tx_ring->tx_buffer_info[i].next_to_watch;
200 	eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
201 
202 	while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
203 	       (count < tx_ring->work_limit)) {
204 		bool cleaned = false;
205 		rmb(); /* read buffer_info after eop_desc */
206 		/* eop could change between read and DD-check */
207 		if (unlikely(eop != tx_ring->tx_buffer_info[i].next_to_watch))
208 			goto cont_loop;
209 		for ( ; !cleaned; count++) {
210 			struct sk_buff *skb;
211 			tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
212 			tx_buffer_info = &tx_ring->tx_buffer_info[i];
213 			cleaned = (i == eop);
214 			skb = tx_buffer_info->skb;
215 
216 			if (cleaned && skb) {
217 				unsigned int segs, bytecount;
218 
219 				/* gso_segs is currently only valid for tcp */
220 				segs = skb_shinfo(skb)->gso_segs ?: 1;
221 				/* multiply data chunks by size of headers */
222 				bytecount = ((segs - 1) * skb_headlen(skb)) +
223 					    skb->len;
224 				total_packets += segs;
225 				total_bytes += bytecount;
226 			}
227 
228 			ixgbevf_unmap_and_free_tx_resource(adapter,
229 							   tx_buffer_info);
230 
231 			tx_desc->wb.status = 0;
232 
233 			i++;
234 			if (i == tx_ring->count)
235 				i = 0;
236 		}
237 
238 cont_loop:
239 		eop = tx_ring->tx_buffer_info[i].next_to_watch;
240 		eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
241 	}
242 
243 	tx_ring->next_to_clean = i;
244 
245 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
246 	if (unlikely(count && netif_carrier_ok(netdev) &&
247 		     (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
248 		/* Make sure that anybody stopping the queue after this
249 		 * sees the new next_to_clean.
250 		 */
251 		smp_mb();
252 #ifdef HAVE_TX_MQ
253 		if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
254 		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
255 			netif_wake_subqueue(netdev, tx_ring->queue_index);
256 			++adapter->restart_queue;
257 		}
258 #else
259 		if (netif_queue_stopped(netdev) &&
260 		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
261 			netif_wake_queue(netdev);
262 			++adapter->restart_queue;
263 		}
264 #endif
265 	}
266 
267 	/* re-arm the interrupt */
268 	if ((count >= tx_ring->work_limit) &&
269 	    (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
270 		IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
271 	}
272 
273 	u64_stats_update_begin(&tx_ring->syncp);
274 	tx_ring->total_bytes += total_bytes;
275 	tx_ring->total_packets += total_packets;
276 	u64_stats_update_end(&tx_ring->syncp);
277 
278 	return count < tx_ring->work_limit;
279 }
280 
281 /**
282  * ixgbevf_receive_skb - Send a completed packet up the stack
283  * @q_vector: structure containing interrupt and ring information
284  * @skb: packet to send up
285  * @status: hardware indication of status of receive
286  * @rx_ring: rx descriptor ring (for a specific queue) to setup
287  * @rx_desc: rx descriptor
288  **/
289 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
290 				struct sk_buff *skb, u8 status,
291 				struct ixgbevf_ring *ring,
292 				union ixgbe_adv_rx_desc *rx_desc)
293 {
294 	struct ixgbevf_adapter *adapter = q_vector->adapter;
295 	bool is_vlan = (status & IXGBE_RXD_STAT_VP);
296 	u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
297 
298 	if (is_vlan && test_bit(tag, adapter->active_vlans))
299 		__vlan_hwaccel_put_tag(skb, tag);
300 
301 	if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL))
302 			napi_gro_receive(&q_vector->napi, skb);
303 	else
304 			netif_rx(skb);
305 }
306 
307 /**
308  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
309  * @adapter: address of board private structure
310  * @status_err: hardware indication of status of receive
311  * @skb: skb currently being received and modified
312  **/
313 static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
314 				       u32 status_err, struct sk_buff *skb)
315 {
316 	skb_checksum_none_assert(skb);
317 
318 	/* Rx csum disabled */
319 	if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
320 		return;
321 
322 	/* if IP and error */
323 	if ((status_err & IXGBE_RXD_STAT_IPCS) &&
324 	    (status_err & IXGBE_RXDADV_ERR_IPE)) {
325 		adapter->hw_csum_rx_error++;
326 		return;
327 	}
328 
329 	if (!(status_err & IXGBE_RXD_STAT_L4CS))
330 		return;
331 
332 	if (status_err & IXGBE_RXDADV_ERR_TCPE) {
333 		adapter->hw_csum_rx_error++;
334 		return;
335 	}
336 
337 	/* It must be a TCP or UDP packet with a valid checksum */
338 	skb->ip_summed = CHECKSUM_UNNECESSARY;
339 	adapter->hw_csum_rx_good++;
340 }
341 
342 /**
343  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
344  * @adapter: address of board private structure
345  **/
346 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
347 				     struct ixgbevf_ring *rx_ring,
348 				     int cleaned_count)
349 {
350 	struct pci_dev *pdev = adapter->pdev;
351 	union ixgbe_adv_rx_desc *rx_desc;
352 	struct ixgbevf_rx_buffer *bi;
353 	struct sk_buff *skb;
354 	unsigned int i;
355 	unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
356 
357 	i = rx_ring->next_to_use;
358 	bi = &rx_ring->rx_buffer_info[i];
359 
360 	while (cleaned_count--) {
361 		rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
362 
363 		if (!bi->page_dma &&
364 		    (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
365 			if (!bi->page) {
366 				bi->page = netdev_alloc_page(adapter->netdev);
367 				if (!bi->page) {
368 					adapter->alloc_rx_page_failed++;
369 					goto no_buffers;
370 				}
371 				bi->page_offset = 0;
372 			} else {
373 				/* use a half page if we're re-using */
374 				bi->page_offset ^= (PAGE_SIZE / 2);
375 			}
376 
377 			bi->page_dma = dma_map_page(&pdev->dev, bi->page,
378 						    bi->page_offset,
379 						    (PAGE_SIZE / 2),
380 						    DMA_FROM_DEVICE);
381 		}
382 
383 		skb = bi->skb;
384 		if (!skb) {
385 			skb = netdev_alloc_skb(adapter->netdev,
386 							       bufsz);
387 
388 			if (!skb) {
389 				adapter->alloc_rx_buff_failed++;
390 				goto no_buffers;
391 			}
392 
393 			/*
394 			 * Make buffer alignment 2 beyond a 16 byte boundary
395 			 * this will result in a 16 byte aligned IP header after
396 			 * the 14 byte MAC header is removed
397 			 */
398 			skb_reserve(skb, NET_IP_ALIGN);
399 
400 			bi->skb = skb;
401 		}
402 		if (!bi->dma) {
403 			bi->dma = dma_map_single(&pdev->dev, skb->data,
404 						 rx_ring->rx_buf_len,
405 						 DMA_FROM_DEVICE);
406 		}
407 		/* Refresh the desc even if buffer_addrs didn't change because
408 		 * each write-back erases this info. */
409 		if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
410 			rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
411 			rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
412 		} else {
413 			rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
414 		}
415 
416 		i++;
417 		if (i == rx_ring->count)
418 			i = 0;
419 		bi = &rx_ring->rx_buffer_info[i];
420 	}
421 
422 no_buffers:
423 	if (rx_ring->next_to_use != i) {
424 		rx_ring->next_to_use = i;
425 		if (i-- == 0)
426 			i = (rx_ring->count - 1);
427 
428 		ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
429 	}
430 }
431 
432 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
433 					     u64 qmask)
434 {
435 	u32 mask;
436 	struct ixgbe_hw *hw = &adapter->hw;
437 
438 	mask = (qmask & 0xFFFFFFFF);
439 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
440 }
441 
442 static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
443 {
444 	return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
445 }
446 
447 static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
448 {
449 	return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
450 }
451 
452 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
453 				 struct ixgbevf_ring *rx_ring,
454 				 int *work_done, int work_to_do)
455 {
456 	struct ixgbevf_adapter *adapter = q_vector->adapter;
457 	struct pci_dev *pdev = adapter->pdev;
458 	union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
459 	struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
460 	struct sk_buff *skb;
461 	unsigned int i;
462 	u32 len, staterr;
463 	u16 hdr_info;
464 	bool cleaned = false;
465 	int cleaned_count = 0;
466 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
467 
468 	i = rx_ring->next_to_clean;
469 	rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
470 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
471 	rx_buffer_info = &rx_ring->rx_buffer_info[i];
472 
473 	while (staterr & IXGBE_RXD_STAT_DD) {
474 		u32 upper_len = 0;
475 		if (*work_done >= work_to_do)
476 			break;
477 		(*work_done)++;
478 
479 		rmb(); /* read descriptor and rx_buffer_info after status DD */
480 		if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
481 			hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
482 			len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
483 			       IXGBE_RXDADV_HDRBUFLEN_SHIFT;
484 			if (hdr_info & IXGBE_RXDADV_SPH)
485 				adapter->rx_hdr_split++;
486 			if (len > IXGBEVF_RX_HDR_SIZE)
487 				len = IXGBEVF_RX_HDR_SIZE;
488 			upper_len = le16_to_cpu(rx_desc->wb.upper.length);
489 		} else {
490 			len = le16_to_cpu(rx_desc->wb.upper.length);
491 		}
492 		cleaned = true;
493 		skb = rx_buffer_info->skb;
494 		prefetch(skb->data - NET_IP_ALIGN);
495 		rx_buffer_info->skb = NULL;
496 
497 		if (rx_buffer_info->dma) {
498 			dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
499 					 rx_ring->rx_buf_len,
500 					 DMA_FROM_DEVICE);
501 			rx_buffer_info->dma = 0;
502 			skb_put(skb, len);
503 		}
504 
505 		if (upper_len) {
506 			dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
507 				       PAGE_SIZE / 2, DMA_FROM_DEVICE);
508 			rx_buffer_info->page_dma = 0;
509 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
510 					   rx_buffer_info->page,
511 					   rx_buffer_info->page_offset,
512 					   upper_len);
513 
514 			if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
515 			    (page_count(rx_buffer_info->page) != 1))
516 				rx_buffer_info->page = NULL;
517 			else
518 				get_page(rx_buffer_info->page);
519 
520 			skb->len += upper_len;
521 			skb->data_len += upper_len;
522 			skb->truesize += upper_len;
523 		}
524 
525 		i++;
526 		if (i == rx_ring->count)
527 			i = 0;
528 
529 		next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
530 		prefetch(next_rxd);
531 		cleaned_count++;
532 
533 		next_buffer = &rx_ring->rx_buffer_info[i];
534 
535 		if (!(staterr & IXGBE_RXD_STAT_EOP)) {
536 			if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
537 				rx_buffer_info->skb = next_buffer->skb;
538 				rx_buffer_info->dma = next_buffer->dma;
539 				next_buffer->skb = skb;
540 				next_buffer->dma = 0;
541 			} else {
542 				skb->next = next_buffer->skb;
543 				skb->next->prev = skb;
544 			}
545 			adapter->non_eop_descs++;
546 			goto next_desc;
547 		}
548 
549 		/* ERR_MASK will only have valid bits if EOP set */
550 		if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
551 			dev_kfree_skb_irq(skb);
552 			goto next_desc;
553 		}
554 
555 		ixgbevf_rx_checksum(adapter, staterr, skb);
556 
557 		/* probably a little skewed due to removing CRC */
558 		total_rx_bytes += skb->len;
559 		total_rx_packets++;
560 
561 		/*
562 		 * Work around issue of some types of VM to VM loop back
563 		 * packets not getting split correctly
564 		 */
565 		if (staterr & IXGBE_RXD_STAT_LB) {
566 			u32 header_fixup_len = skb_headlen(skb);
567 			if (header_fixup_len < 14)
568 				skb_push(skb, header_fixup_len);
569 		}
570 		skb->protocol = eth_type_trans(skb, adapter->netdev);
571 
572 		ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
573 
574 next_desc:
575 		rx_desc->wb.upper.status_error = 0;
576 
577 		/* return some buffers to hardware, one at a time is too slow */
578 		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
579 			ixgbevf_alloc_rx_buffers(adapter, rx_ring,
580 						 cleaned_count);
581 			cleaned_count = 0;
582 		}
583 
584 		/* use prefetched values */
585 		rx_desc = next_rxd;
586 		rx_buffer_info = &rx_ring->rx_buffer_info[i];
587 
588 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
589 	}
590 
591 	rx_ring->next_to_clean = i;
592 	cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
593 
594 	if (cleaned_count)
595 		ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
596 
597 	u64_stats_update_begin(&rx_ring->syncp);
598 	rx_ring->total_packets += total_rx_packets;
599 	rx_ring->total_bytes += total_rx_bytes;
600 	u64_stats_update_end(&rx_ring->syncp);
601 
602 	return cleaned;
603 }
604 
605 /**
606  * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
607  * @napi: napi struct with our devices info in it
608  * @budget: amount of work driver is allowed to do this pass, in packets
609  *
610  * This function is optimized for cleaning one queue only on a single
611  * q_vector!!!
612  **/
613 static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
614 {
615 	struct ixgbevf_q_vector *q_vector =
616 		container_of(napi, struct ixgbevf_q_vector, napi);
617 	struct ixgbevf_adapter *adapter = q_vector->adapter;
618 	struct ixgbevf_ring *rx_ring = NULL;
619 	int work_done = 0;
620 	long r_idx;
621 
622 	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
623 	rx_ring = &(adapter->rx_ring[r_idx]);
624 
625 	ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
626 
627 	/* If all Rx work done, exit the polling mode */
628 	if (work_done < budget) {
629 		napi_complete(napi);
630 		if (adapter->itr_setting & 1)
631 			ixgbevf_set_itr_msix(q_vector);
632 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
633 			ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
634 	}
635 
636 	return work_done;
637 }
638 
639 /**
640  * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
641  * @napi: napi struct with our devices info in it
642  * @budget: amount of work driver is allowed to do this pass, in packets
643  *
644  * This function will clean more than one rx queue associated with a
645  * q_vector.
646  **/
647 static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
648 {
649 	struct ixgbevf_q_vector *q_vector =
650 		container_of(napi, struct ixgbevf_q_vector, napi);
651 	struct ixgbevf_adapter *adapter = q_vector->adapter;
652 	struct ixgbevf_ring *rx_ring = NULL;
653 	int work_done = 0, i;
654 	long r_idx;
655 	u64 enable_mask = 0;
656 
657 	/* attempt to distribute budget to each queue fairly, but don't allow
658 	 * the budget to go below 1 because we'll exit polling */
659 	budget /= (q_vector->rxr_count ?: 1);
660 	budget = max(budget, 1);
661 	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
662 	for (i = 0; i < q_vector->rxr_count; i++) {
663 		rx_ring = &(adapter->rx_ring[r_idx]);
664 		ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
665 		enable_mask |= rx_ring->v_idx;
666 		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
667 				      r_idx + 1);
668 	}
669 
670 #ifndef HAVE_NETDEV_NAPI_LIST
671 	if (!netif_running(adapter->netdev))
672 		work_done = 0;
673 
674 #endif
675 	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
676 	rx_ring = &(adapter->rx_ring[r_idx]);
677 
678 	/* If all Rx work done, exit the polling mode */
679 	if (work_done < budget) {
680 		napi_complete(napi);
681 		if (adapter->itr_setting & 1)
682 			ixgbevf_set_itr_msix(q_vector);
683 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
684 			ixgbevf_irq_enable_queues(adapter, enable_mask);
685 	}
686 
687 	return work_done;
688 }
689 
690 
691 /**
692  * ixgbevf_configure_msix - Configure MSI-X hardware
693  * @adapter: board private structure
694  *
695  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
696  * interrupts.
697  **/
698 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
699 {
700 	struct ixgbevf_q_vector *q_vector;
701 	struct ixgbe_hw *hw = &adapter->hw;
702 	int i, j, q_vectors, v_idx, r_idx;
703 	u32 mask;
704 
705 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
706 
707 	/*
708 	 * Populate the IVAR table and set the ITR values to the
709 	 * corresponding register.
710 	 */
711 	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
712 		q_vector = adapter->q_vector[v_idx];
713 		/* XXX for_each_set_bit(...) */
714 		r_idx = find_first_bit(q_vector->rxr_idx,
715 				       adapter->num_rx_queues);
716 
717 		for (i = 0; i < q_vector->rxr_count; i++) {
718 			j = adapter->rx_ring[r_idx].reg_idx;
719 			ixgbevf_set_ivar(adapter, 0, j, v_idx);
720 			r_idx = find_next_bit(q_vector->rxr_idx,
721 					      adapter->num_rx_queues,
722 					      r_idx + 1);
723 		}
724 		r_idx = find_first_bit(q_vector->txr_idx,
725 				       adapter->num_tx_queues);
726 
727 		for (i = 0; i < q_vector->txr_count; i++) {
728 			j = adapter->tx_ring[r_idx].reg_idx;
729 			ixgbevf_set_ivar(adapter, 1, j, v_idx);
730 			r_idx = find_next_bit(q_vector->txr_idx,
731 					      adapter->num_tx_queues,
732 					      r_idx + 1);
733 		}
734 
735 		/* if this is a tx only vector halve the interrupt rate */
736 		if (q_vector->txr_count && !q_vector->rxr_count)
737 			q_vector->eitr = (adapter->eitr_param >> 1);
738 		else if (q_vector->rxr_count)
739 			/* rx only */
740 			q_vector->eitr = adapter->eitr_param;
741 
742 		ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
743 	}
744 
745 	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
746 
747 	/* set up to autoclear timer, and the vectors */
748 	mask = IXGBE_EIMS_ENABLE_MASK;
749 	mask &= ~IXGBE_EIMS_OTHER;
750 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
751 }
752 
753 enum latency_range {
754 	lowest_latency = 0,
755 	low_latency = 1,
756 	bulk_latency = 2,
757 	latency_invalid = 255
758 };
759 
760 /**
761  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
762  * @adapter: pointer to adapter
763  * @eitr: eitr setting (ints per sec) to give last timeslice
764  * @itr_setting: current throttle rate in ints/second
765  * @packets: the number of packets during this measurement interval
766  * @bytes: the number of bytes during this measurement interval
767  *
768  *      Stores a new ITR value based on packets and byte
769  *      counts during the last interrupt.  The advantage of per interrupt
770  *      computation is faster updates and more accurate ITR for the current
771  *      traffic pattern.  Constants in this function were computed
772  *      based on theoretical maximum wire speed and thresholds were set based
773  *      on testing data as well as attempting to minimize response time
774  *      while increasing bulk throughput.
775  **/
776 static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
777 			     u32 eitr, u8 itr_setting,
778 			     int packets, int bytes)
779 {
780 	unsigned int retval = itr_setting;
781 	u32 timepassed_us;
782 	u64 bytes_perint;
783 
784 	if (packets == 0)
785 		goto update_itr_done;
786 
787 
788 	/* simple throttlerate management
789 	 *    0-20MB/s lowest (100000 ints/s)
790 	 *   20-100MB/s low   (20000 ints/s)
791 	 *  100-1249MB/s bulk (8000 ints/s)
792 	 */
793 	/* what was last interrupt timeslice? */
794 	timepassed_us = 1000000/eitr;
795 	bytes_perint = bytes / timepassed_us; /* bytes/usec */
796 
797 	switch (itr_setting) {
798 	case lowest_latency:
799 		if (bytes_perint > adapter->eitr_low)
800 			retval = low_latency;
801 		break;
802 	case low_latency:
803 		if (bytes_perint > adapter->eitr_high)
804 			retval = bulk_latency;
805 		else if (bytes_perint <= adapter->eitr_low)
806 			retval = lowest_latency;
807 		break;
808 	case bulk_latency:
809 		if (bytes_perint <= adapter->eitr_high)
810 			retval = low_latency;
811 		break;
812 	}
813 
814 update_itr_done:
815 	return retval;
816 }
817 
818 /**
819  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
820  * @adapter: pointer to adapter struct
821  * @v_idx: vector index into q_vector array
822  * @itr_reg: new value to be written in *register* format, not ints/s
823  *
824  * This function is made to be called by ethtool and by the driver
825  * when it needs to update VTEITR registers at runtime.  Hardware
826  * specific quirks/differences are taken care of here.
827  */
828 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
829 			       u32 itr_reg)
830 {
831 	struct ixgbe_hw *hw = &adapter->hw;
832 
833 	itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
834 
835 	/*
836 	 * set the WDIS bit to not clear the timer bits and cause an
837 	 * immediate assertion of the interrupt
838 	 */
839 	itr_reg |= IXGBE_EITR_CNT_WDIS;
840 
841 	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
842 }
843 
844 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
845 {
846 	struct ixgbevf_adapter *adapter = q_vector->adapter;
847 	u32 new_itr;
848 	u8 current_itr, ret_itr;
849 	int i, r_idx, v_idx = q_vector->v_idx;
850 	struct ixgbevf_ring *rx_ring, *tx_ring;
851 
852 	r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
853 	for (i = 0; i < q_vector->txr_count; i++) {
854 		tx_ring = &(adapter->tx_ring[r_idx]);
855 		ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
856 					     q_vector->tx_itr,
857 					     tx_ring->total_packets,
858 					     tx_ring->total_bytes);
859 		/* if the result for this queue would decrease interrupt
860 		 * rate for this vector then use that result */
861 		q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
862 				    q_vector->tx_itr - 1 : ret_itr);
863 		r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
864 				      r_idx + 1);
865 	}
866 
867 	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
868 	for (i = 0; i < q_vector->rxr_count; i++) {
869 		rx_ring = &(adapter->rx_ring[r_idx]);
870 		ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
871 					     q_vector->rx_itr,
872 					     rx_ring->total_packets,
873 					     rx_ring->total_bytes);
874 		/* if the result for this queue would decrease interrupt
875 		 * rate for this vector then use that result */
876 		q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
877 				    q_vector->rx_itr - 1 : ret_itr);
878 		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
879 				      r_idx + 1);
880 	}
881 
882 	current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
883 
884 	switch (current_itr) {
885 	/* counts and packets in update_itr are dependent on these numbers */
886 	case lowest_latency:
887 		new_itr = 100000;
888 		break;
889 	case low_latency:
890 		new_itr = 20000; /* aka hwitr = ~200 */
891 		break;
892 	case bulk_latency:
893 	default:
894 		new_itr = 8000;
895 		break;
896 	}
897 
898 	if (new_itr != q_vector->eitr) {
899 		u32 itr_reg;
900 
901 		/* save the algorithm value here, not the smoothed one */
902 		q_vector->eitr = new_itr;
903 		/* do an exponential smoothing */
904 		new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
905 		itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
906 		ixgbevf_write_eitr(adapter, v_idx, itr_reg);
907 	}
908 }
909 
910 static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
911 {
912 	struct net_device *netdev = data;
913 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
914 	struct ixgbe_hw *hw = &adapter->hw;
915 	u32 eicr;
916 	u32 msg;
917 
918 	eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
919 	IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
920 
921 	if (!hw->mbx.ops.check_for_ack(hw)) {
922 		/*
923 		 * checking for the ack clears the PFACK bit.  Place
924 		 * it back in the v2p_mailbox cache so that anyone
925 		 * polling for an ack will not miss it.  Also
926 		 * avoid the read below because the code to read
927 		 * the mailbox will also clear the ack bit.  This was
928 		 * causing lost acks.  Just cache the bit and exit
929 		 * the IRQ handler.
930 		 */
931 		hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
932 		goto out;
933 	}
934 
935 	/* Not an ack interrupt, go ahead and read the message */
936 	hw->mbx.ops.read(hw, &msg, 1);
937 
938 	if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
939 		mod_timer(&adapter->watchdog_timer,
940 			  round_jiffies(jiffies + 1));
941 
942 out:
943 	return IRQ_HANDLED;
944 }
945 
946 static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
947 {
948 	struct ixgbevf_q_vector *q_vector = data;
949 	struct ixgbevf_adapter  *adapter = q_vector->adapter;
950 	struct ixgbevf_ring     *tx_ring;
951 	int i, r_idx;
952 
953 	if (!q_vector->txr_count)
954 		return IRQ_HANDLED;
955 
956 	r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
957 	for (i = 0; i < q_vector->txr_count; i++) {
958 		tx_ring = &(adapter->tx_ring[r_idx]);
959 		tx_ring->total_bytes = 0;
960 		tx_ring->total_packets = 0;
961 		ixgbevf_clean_tx_irq(adapter, tx_ring);
962 		r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
963 				      r_idx + 1);
964 	}
965 
966 	if (adapter->itr_setting & 1)
967 		ixgbevf_set_itr_msix(q_vector);
968 
969 	return IRQ_HANDLED;
970 }
971 
972 /**
973  * ixgbevf_msix_clean_rx - single unshared vector rx clean (all queues)
974  * @irq: unused
975  * @data: pointer to our q_vector struct for this interrupt vector
976  **/
977 static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
978 {
979 	struct ixgbevf_q_vector *q_vector = data;
980 	struct ixgbevf_adapter  *adapter = q_vector->adapter;
981 	struct ixgbe_hw *hw = &adapter->hw;
982 	struct ixgbevf_ring  *rx_ring;
983 	int r_idx;
984 	int i;
985 
986 	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
987 	for (i = 0; i < q_vector->rxr_count; i++) {
988 		rx_ring = &(adapter->rx_ring[r_idx]);
989 		rx_ring->total_bytes = 0;
990 		rx_ring->total_packets = 0;
991 		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
992 				      r_idx + 1);
993 	}
994 
995 	if (!q_vector->rxr_count)
996 		return IRQ_HANDLED;
997 
998 	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
999 	rx_ring = &(adapter->rx_ring[r_idx]);
1000 	/* disable interrupts on this vector only */
1001 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1002 	napi_schedule(&q_vector->napi);
1003 
1004 
1005 	return IRQ_HANDLED;
1006 }
1007 
1008 static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1009 {
1010 	ixgbevf_msix_clean_rx(irq, data);
1011 	ixgbevf_msix_clean_tx(irq, data);
1012 
1013 	return IRQ_HANDLED;
1014 }
1015 
1016 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1017 				     int r_idx)
1018 {
1019 	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1020 
1021 	set_bit(r_idx, q_vector->rxr_idx);
1022 	q_vector->rxr_count++;
1023 	a->rx_ring[r_idx].v_idx = 1 << v_idx;
1024 }
1025 
1026 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1027 				     int t_idx)
1028 {
1029 	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1030 
1031 	set_bit(t_idx, q_vector->txr_idx);
1032 	q_vector->txr_count++;
1033 	a->tx_ring[t_idx].v_idx = 1 << v_idx;
1034 }
1035 
1036 /**
1037  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1038  * @adapter: board private structure to initialize
1039  *
1040  * This function maps descriptor rings to the queue-specific vectors
1041  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1042  * one vector per ring/queue, but on a constrained vector budget, we
1043  * group the rings as "efficiently" as possible.  You would add new
1044  * mapping configurations in here.
1045  **/
1046 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1047 {
1048 	int q_vectors;
1049 	int v_start = 0;
1050 	int rxr_idx = 0, txr_idx = 0;
1051 	int rxr_remaining = adapter->num_rx_queues;
1052 	int txr_remaining = adapter->num_tx_queues;
1053 	int i, j;
1054 	int rqpv, tqpv;
1055 	int err = 0;
1056 
1057 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1058 
1059 	/*
1060 	 * The ideal configuration...
1061 	 * We have enough vectors to map one per queue.
1062 	 */
1063 	if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1064 		for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1065 			map_vector_to_rxq(adapter, v_start, rxr_idx);
1066 
1067 		for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1068 			map_vector_to_txq(adapter, v_start, txr_idx);
1069 		goto out;
1070 	}
1071 
1072 	/*
1073 	 * If we don't have enough vectors for a 1-to-1
1074 	 * mapping, we'll have to group them so there are
1075 	 * multiple queues per vector.
1076 	 */
1077 	/* Re-adjusting *qpv takes care of the remainder. */
1078 	for (i = v_start; i < q_vectors; i++) {
1079 		rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1080 		for (j = 0; j < rqpv; j++) {
1081 			map_vector_to_rxq(adapter, i, rxr_idx);
1082 			rxr_idx++;
1083 			rxr_remaining--;
1084 		}
1085 	}
1086 	for (i = v_start; i < q_vectors; i++) {
1087 		tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1088 		for (j = 0; j < tqpv; j++) {
1089 			map_vector_to_txq(adapter, i, txr_idx);
1090 			txr_idx++;
1091 			txr_remaining--;
1092 		}
1093 	}
1094 
1095 out:
1096 	return err;
1097 }
1098 
1099 /**
1100  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1101  * @adapter: board private structure
1102  *
1103  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1104  * interrupts from the kernel.
1105  **/
1106 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1107 {
1108 	struct net_device *netdev = adapter->netdev;
1109 	irqreturn_t (*handler)(int, void *);
1110 	int i, vector, q_vectors, err;
1111 	int ri = 0, ti = 0;
1112 
1113 	/* Decrement for Other and TCP Timer vectors */
1114 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1115 
1116 #define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count)          \
1117 					  ? &ixgbevf_msix_clean_many : \
1118 			  (_v)->rxr_count ? &ixgbevf_msix_clean_rx   : \
1119 			  (_v)->txr_count ? &ixgbevf_msix_clean_tx   : \
1120 			  NULL)
1121 	for (vector = 0; vector < q_vectors; vector++) {
1122 		handler = SET_HANDLER(adapter->q_vector[vector]);
1123 
1124 		if (handler == &ixgbevf_msix_clean_rx) {
1125 			sprintf(adapter->name[vector], "%s-%s-%d",
1126 				netdev->name, "rx", ri++);
1127 		} else if (handler == &ixgbevf_msix_clean_tx) {
1128 			sprintf(adapter->name[vector], "%s-%s-%d",
1129 				netdev->name, "tx", ti++);
1130 		} else if (handler == &ixgbevf_msix_clean_many) {
1131 			sprintf(adapter->name[vector], "%s-%s-%d",
1132 				netdev->name, "TxRx", vector);
1133 		} else {
1134 			/* skip this unused q_vector */
1135 			continue;
1136 		}
1137 		err = request_irq(adapter->msix_entries[vector].vector,
1138 				  handler, 0, adapter->name[vector],
1139 				  adapter->q_vector[vector]);
1140 		if (err) {
1141 			hw_dbg(&adapter->hw,
1142 			       "request_irq failed for MSIX interrupt "
1143 			       "Error: %d\n", err);
1144 			goto free_queue_irqs;
1145 		}
1146 	}
1147 
1148 	sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1149 	err = request_irq(adapter->msix_entries[vector].vector,
1150 			  &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1151 	if (err) {
1152 		hw_dbg(&adapter->hw,
1153 		       "request_irq for msix_mbx failed: %d\n", err);
1154 		goto free_queue_irqs;
1155 	}
1156 
1157 	return 0;
1158 
1159 free_queue_irqs:
1160 	for (i = vector - 1; i >= 0; i--)
1161 		free_irq(adapter->msix_entries[--vector].vector,
1162 			 &(adapter->q_vector[i]));
1163 	pci_disable_msix(adapter->pdev);
1164 	kfree(adapter->msix_entries);
1165 	adapter->msix_entries = NULL;
1166 	return err;
1167 }
1168 
1169 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1170 {
1171 	int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1172 
1173 	for (i = 0; i < q_vectors; i++) {
1174 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1175 		bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1176 		bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1177 		q_vector->rxr_count = 0;
1178 		q_vector->txr_count = 0;
1179 		q_vector->eitr = adapter->eitr_param;
1180 	}
1181 }
1182 
1183 /**
1184  * ixgbevf_request_irq - initialize interrupts
1185  * @adapter: board private structure
1186  *
1187  * Attempts to configure interrupts using the best available
1188  * capabilities of the hardware and kernel.
1189  **/
1190 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1191 {
1192 	int err = 0;
1193 
1194 	err = ixgbevf_request_msix_irqs(adapter);
1195 
1196 	if (err)
1197 		hw_dbg(&adapter->hw,
1198 		       "request_irq failed, Error %d\n", err);
1199 
1200 	return err;
1201 }
1202 
1203 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1204 {
1205 	struct net_device *netdev = adapter->netdev;
1206 	int i, q_vectors;
1207 
1208 	q_vectors = adapter->num_msix_vectors;
1209 
1210 	i = q_vectors - 1;
1211 
1212 	free_irq(adapter->msix_entries[i].vector, netdev);
1213 	i--;
1214 
1215 	for (; i >= 0; i--) {
1216 		free_irq(adapter->msix_entries[i].vector,
1217 			 adapter->q_vector[i]);
1218 	}
1219 
1220 	ixgbevf_reset_q_vectors(adapter);
1221 }
1222 
1223 /**
1224  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1225  * @adapter: board private structure
1226  **/
1227 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1228 {
1229 	int i;
1230 	struct ixgbe_hw *hw = &adapter->hw;
1231 
1232 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1233 
1234 	IXGBE_WRITE_FLUSH(hw);
1235 
1236 	for (i = 0; i < adapter->num_msix_vectors; i++)
1237 		synchronize_irq(adapter->msix_entries[i].vector);
1238 }
1239 
1240 /**
1241  * ixgbevf_irq_enable - Enable default interrupt generation settings
1242  * @adapter: board private structure
1243  **/
1244 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1245 				      bool queues, bool flush)
1246 {
1247 	struct ixgbe_hw *hw = &adapter->hw;
1248 	u32 mask;
1249 	u64 qmask;
1250 
1251 	mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1252 	qmask = ~0;
1253 
1254 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1255 
1256 	if (queues)
1257 		ixgbevf_irq_enable_queues(adapter, qmask);
1258 
1259 	if (flush)
1260 		IXGBE_WRITE_FLUSH(hw);
1261 }
1262 
1263 /**
1264  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1265  * @adapter: board private structure
1266  *
1267  * Configure the Tx unit of the MAC after a reset.
1268  **/
1269 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1270 {
1271 	u64 tdba;
1272 	struct ixgbe_hw *hw = &adapter->hw;
1273 	u32 i, j, tdlen, txctrl;
1274 
1275 	/* Setup the HW Tx Head and Tail descriptor pointers */
1276 	for (i = 0; i < adapter->num_tx_queues; i++) {
1277 		struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1278 		j = ring->reg_idx;
1279 		tdba = ring->dma;
1280 		tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1281 		IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1282 				(tdba & DMA_BIT_MASK(32)));
1283 		IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1284 		IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1285 		IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1286 		IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1287 		adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1288 		adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1289 		/* Disable Tx Head Writeback RO bit, since this hoses
1290 		 * bookkeeping if things aren't delivered in order.
1291 		 */
1292 		txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1293 		txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1294 		IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1295 	}
1296 }
1297 
1298 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1299 
1300 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1301 {
1302 	struct ixgbevf_ring *rx_ring;
1303 	struct ixgbe_hw *hw = &adapter->hw;
1304 	u32 srrctl;
1305 
1306 	rx_ring = &adapter->rx_ring[index];
1307 
1308 	srrctl = IXGBE_SRRCTL_DROP_EN;
1309 
1310 	if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1311 		u16 bufsz = IXGBEVF_RXBUFFER_2048;
1312 		/* grow the amount we can receive on large page machines */
1313 		if (bufsz < (PAGE_SIZE / 2))
1314 			bufsz = (PAGE_SIZE / 2);
1315 		/* cap the bufsz at our largest descriptor size */
1316 		bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1317 
1318 		srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1319 		srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1320 		srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1321 			   IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1322 			   IXGBE_SRRCTL_BSIZEHDR_MASK);
1323 	} else {
1324 		srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1325 
1326 		if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1327 			srrctl |= IXGBEVF_RXBUFFER_2048 >>
1328 				IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1329 		else
1330 			srrctl |= rx_ring->rx_buf_len >>
1331 				IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1332 	}
1333 	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1334 }
1335 
1336 /**
1337  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1338  * @adapter: board private structure
1339  *
1340  * Configure the Rx unit of the MAC after a reset.
1341  **/
1342 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1343 {
1344 	u64 rdba;
1345 	struct ixgbe_hw *hw = &adapter->hw;
1346 	struct net_device *netdev = adapter->netdev;
1347 	int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1348 	int i, j;
1349 	u32 rdlen;
1350 	int rx_buf_len;
1351 
1352 	/* Decide whether to use packet split mode or not */
1353 	if (netdev->mtu > ETH_DATA_LEN) {
1354 		if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1355 			adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1356 		else
1357 			adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1358 	} else {
1359 		if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1360 			adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1361 		else
1362 			adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1363 	}
1364 
1365 	/* Set the RX buffer length according to the mode */
1366 	if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1367 		/* PSRTYPE must be initialized in 82599 */
1368 		u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1369 			IXGBE_PSRTYPE_UDPHDR |
1370 			IXGBE_PSRTYPE_IPV4HDR |
1371 			IXGBE_PSRTYPE_IPV6HDR |
1372 			IXGBE_PSRTYPE_L2HDR;
1373 		IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1374 		rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1375 	} else {
1376 		IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1377 		if (netdev->mtu <= ETH_DATA_LEN)
1378 			rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1379 		else
1380 			rx_buf_len = ALIGN(max_frame, 1024);
1381 	}
1382 
1383 	rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1384 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1385 	 * the Base and Length of the Rx Descriptor Ring */
1386 	for (i = 0; i < adapter->num_rx_queues; i++) {
1387 		rdba = adapter->rx_ring[i].dma;
1388 		j = adapter->rx_ring[i].reg_idx;
1389 		IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1390 				(rdba & DMA_BIT_MASK(32)));
1391 		IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1392 		IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1393 		IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1394 		IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1395 		adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1396 		adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1397 		adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1398 
1399 		ixgbevf_configure_srrctl(adapter, j);
1400 	}
1401 }
1402 
1403 static void ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1404 {
1405 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1406 	struct ixgbe_hw *hw = &adapter->hw;
1407 
1408 	/* add VID to filter table */
1409 	if (hw->mac.ops.set_vfta)
1410 		hw->mac.ops.set_vfta(hw, vid, 0, true);
1411 	set_bit(vid, adapter->active_vlans);
1412 }
1413 
1414 static void ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1415 {
1416 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1417 	struct ixgbe_hw *hw = &adapter->hw;
1418 
1419 	/* remove VID from filter table */
1420 	if (hw->mac.ops.set_vfta)
1421 		hw->mac.ops.set_vfta(hw, vid, 0, false);
1422 	clear_bit(vid, adapter->active_vlans);
1423 }
1424 
1425 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1426 {
1427 	u16 vid;
1428 
1429 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1430 		ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1431 }
1432 
1433 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1434 {
1435 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1436 	struct ixgbe_hw *hw = &adapter->hw;
1437 	int count = 0;
1438 
1439 	if ((netdev_uc_count(netdev)) > 10) {
1440 		printk(KERN_ERR "Too many unicast filters - No Space\n");
1441 		return -ENOSPC;
1442 	}
1443 
1444 	if (!netdev_uc_empty(netdev)) {
1445 		struct netdev_hw_addr *ha;
1446 		netdev_for_each_uc_addr(ha, netdev) {
1447 			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1448 			udelay(200);
1449 		}
1450 	} else {
1451 		/*
1452 		 * If the list is empty then send message to PF driver to
1453 		 * clear all macvlans on this VF.
1454 		 */
1455 		hw->mac.ops.set_uc_addr(hw, 0, NULL);
1456 	}
1457 
1458 	return count;
1459 }
1460 
1461 /**
1462  * ixgbevf_set_rx_mode - Multicast set
1463  * @netdev: network interface device structure
1464  *
1465  * The set_rx_method entry point is called whenever the multicast address
1466  * list or the network interface flags are updated.  This routine is
1467  * responsible for configuring the hardware for proper multicast mode.
1468  **/
1469 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1470 {
1471 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1472 	struct ixgbe_hw *hw = &adapter->hw;
1473 
1474 	/* reprogram multicast list */
1475 	if (hw->mac.ops.update_mc_addr_list)
1476 		hw->mac.ops.update_mc_addr_list(hw, netdev);
1477 
1478 	ixgbevf_write_uc_addr_list(netdev);
1479 }
1480 
1481 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1482 {
1483 	int q_idx;
1484 	struct ixgbevf_q_vector *q_vector;
1485 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1486 
1487 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1488 		struct napi_struct *napi;
1489 		q_vector = adapter->q_vector[q_idx];
1490 		if (!q_vector->rxr_count)
1491 			continue;
1492 		napi = &q_vector->napi;
1493 		if (q_vector->rxr_count > 1)
1494 			napi->poll = &ixgbevf_clean_rxonly_many;
1495 
1496 		napi_enable(napi);
1497 	}
1498 }
1499 
1500 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1501 {
1502 	int q_idx;
1503 	struct ixgbevf_q_vector *q_vector;
1504 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1505 
1506 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1507 		q_vector = adapter->q_vector[q_idx];
1508 		if (!q_vector->rxr_count)
1509 			continue;
1510 		napi_disable(&q_vector->napi);
1511 	}
1512 }
1513 
1514 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1515 {
1516 	struct net_device *netdev = adapter->netdev;
1517 	int i;
1518 
1519 	ixgbevf_set_rx_mode(netdev);
1520 
1521 	ixgbevf_restore_vlan(adapter);
1522 
1523 	ixgbevf_configure_tx(adapter);
1524 	ixgbevf_configure_rx(adapter);
1525 	for (i = 0; i < adapter->num_rx_queues; i++) {
1526 		struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1527 		ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1528 		ring->next_to_use = ring->count - 1;
1529 		writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1530 	}
1531 }
1532 
1533 #define IXGBE_MAX_RX_DESC_POLL 10
1534 static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1535 						int rxr)
1536 {
1537 	struct ixgbe_hw *hw = &adapter->hw;
1538 	int j = adapter->rx_ring[rxr].reg_idx;
1539 	int k;
1540 
1541 	for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1542 		if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1543 			break;
1544 		else
1545 			msleep(1);
1546 	}
1547 	if (k >= IXGBE_MAX_RX_DESC_POLL) {
1548 		hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1549 		       "not set within the polling period\n", rxr);
1550 	}
1551 
1552 	ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1553 				(adapter->rx_ring[rxr].count - 1));
1554 }
1555 
1556 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1557 {
1558 	/* Only save pre-reset stats if there are some */
1559 	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1560 		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1561 			adapter->stats.base_vfgprc;
1562 		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1563 			adapter->stats.base_vfgptc;
1564 		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1565 			adapter->stats.base_vfgorc;
1566 		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1567 			adapter->stats.base_vfgotc;
1568 		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1569 			adapter->stats.base_vfmprc;
1570 	}
1571 }
1572 
1573 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1574 {
1575 	struct ixgbe_hw *hw = &adapter->hw;
1576 
1577 	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1578 	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1579 	adapter->stats.last_vfgorc |=
1580 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1581 	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1582 	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1583 	adapter->stats.last_vfgotc |=
1584 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1585 	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1586 
1587 	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1588 	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1589 	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1590 	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1591 	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1592 }
1593 
1594 static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1595 {
1596 	struct net_device *netdev = adapter->netdev;
1597 	struct ixgbe_hw *hw = &adapter->hw;
1598 	int i, j = 0;
1599 	int num_rx_rings = adapter->num_rx_queues;
1600 	u32 txdctl, rxdctl;
1601 
1602 	for (i = 0; i < adapter->num_tx_queues; i++) {
1603 		j = adapter->tx_ring[i].reg_idx;
1604 		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1605 		/* enable WTHRESH=8 descriptors, to encourage burst writeback */
1606 		txdctl |= (8 << 16);
1607 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1608 	}
1609 
1610 	for (i = 0; i < adapter->num_tx_queues; i++) {
1611 		j = adapter->tx_ring[i].reg_idx;
1612 		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1613 		txdctl |= IXGBE_TXDCTL_ENABLE;
1614 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1615 	}
1616 
1617 	for (i = 0; i < num_rx_rings; i++) {
1618 		j = adapter->rx_ring[i].reg_idx;
1619 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1620 		rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1621 		if (hw->mac.type == ixgbe_mac_X540_vf) {
1622 			rxdctl &= ~IXGBE_RXDCTL_RLPMLMASK;
1623 			rxdctl |= ((netdev->mtu + ETH_HLEN + ETH_FCS_LEN) |
1624 				   IXGBE_RXDCTL_RLPML_EN);
1625 		}
1626 		IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1627 		ixgbevf_rx_desc_queue_enable(adapter, i);
1628 	}
1629 
1630 	ixgbevf_configure_msix(adapter);
1631 
1632 	if (hw->mac.ops.set_rar) {
1633 		if (is_valid_ether_addr(hw->mac.addr))
1634 			hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1635 		else
1636 			hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1637 	}
1638 
1639 	clear_bit(__IXGBEVF_DOWN, &adapter->state);
1640 	ixgbevf_napi_enable_all(adapter);
1641 
1642 	/* enable transmits */
1643 	netif_tx_start_all_queues(netdev);
1644 
1645 	ixgbevf_save_reset_stats(adapter);
1646 	ixgbevf_init_last_counter_stats(adapter);
1647 
1648 	/* bring the link up in the watchdog, this could race with our first
1649 	 * link up interrupt but shouldn't be a problem */
1650 	adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1651 	adapter->link_check_timeout = jiffies;
1652 	mod_timer(&adapter->watchdog_timer, jiffies);
1653 	return 0;
1654 }
1655 
1656 int ixgbevf_up(struct ixgbevf_adapter *adapter)
1657 {
1658 	int err;
1659 	struct ixgbe_hw *hw = &adapter->hw;
1660 
1661 	ixgbevf_configure(adapter);
1662 
1663 	err = ixgbevf_up_complete(adapter);
1664 
1665 	/* clear any pending interrupts, may auto mask */
1666 	IXGBE_READ_REG(hw, IXGBE_VTEICR);
1667 
1668 	ixgbevf_irq_enable(adapter, true, true);
1669 
1670 	return err;
1671 }
1672 
1673 /**
1674  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1675  * @adapter: board private structure
1676  * @rx_ring: ring to free buffers from
1677  **/
1678 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1679 				  struct ixgbevf_ring *rx_ring)
1680 {
1681 	struct pci_dev *pdev = adapter->pdev;
1682 	unsigned long size;
1683 	unsigned int i;
1684 
1685 	if (!rx_ring->rx_buffer_info)
1686 		return;
1687 
1688 	/* Free all the Rx ring sk_buffs */
1689 	for (i = 0; i < rx_ring->count; i++) {
1690 		struct ixgbevf_rx_buffer *rx_buffer_info;
1691 
1692 		rx_buffer_info = &rx_ring->rx_buffer_info[i];
1693 		if (rx_buffer_info->dma) {
1694 			dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1695 					 rx_ring->rx_buf_len,
1696 					 DMA_FROM_DEVICE);
1697 			rx_buffer_info->dma = 0;
1698 		}
1699 		if (rx_buffer_info->skb) {
1700 			struct sk_buff *skb = rx_buffer_info->skb;
1701 			rx_buffer_info->skb = NULL;
1702 			do {
1703 				struct sk_buff *this = skb;
1704 				skb = skb->prev;
1705 				dev_kfree_skb(this);
1706 			} while (skb);
1707 		}
1708 		if (!rx_buffer_info->page)
1709 			continue;
1710 		dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
1711 			       PAGE_SIZE / 2, DMA_FROM_DEVICE);
1712 		rx_buffer_info->page_dma = 0;
1713 		put_page(rx_buffer_info->page);
1714 		rx_buffer_info->page = NULL;
1715 		rx_buffer_info->page_offset = 0;
1716 	}
1717 
1718 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1719 	memset(rx_ring->rx_buffer_info, 0, size);
1720 
1721 	/* Zero out the descriptor ring */
1722 	memset(rx_ring->desc, 0, rx_ring->size);
1723 
1724 	rx_ring->next_to_clean = 0;
1725 	rx_ring->next_to_use = 0;
1726 
1727 	if (rx_ring->head)
1728 		writel(0, adapter->hw.hw_addr + rx_ring->head);
1729 	if (rx_ring->tail)
1730 		writel(0, adapter->hw.hw_addr + rx_ring->tail);
1731 }
1732 
1733 /**
1734  * ixgbevf_clean_tx_ring - Free Tx Buffers
1735  * @adapter: board private structure
1736  * @tx_ring: ring to be cleaned
1737  **/
1738 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1739 				  struct ixgbevf_ring *tx_ring)
1740 {
1741 	struct ixgbevf_tx_buffer *tx_buffer_info;
1742 	unsigned long size;
1743 	unsigned int i;
1744 
1745 	if (!tx_ring->tx_buffer_info)
1746 		return;
1747 
1748 	/* Free all the Tx ring sk_buffs */
1749 
1750 	for (i = 0; i < tx_ring->count; i++) {
1751 		tx_buffer_info = &tx_ring->tx_buffer_info[i];
1752 		ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1753 	}
1754 
1755 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1756 	memset(tx_ring->tx_buffer_info, 0, size);
1757 
1758 	memset(tx_ring->desc, 0, tx_ring->size);
1759 
1760 	tx_ring->next_to_use = 0;
1761 	tx_ring->next_to_clean = 0;
1762 
1763 	if (tx_ring->head)
1764 		writel(0, adapter->hw.hw_addr + tx_ring->head);
1765 	if (tx_ring->tail)
1766 		writel(0, adapter->hw.hw_addr + tx_ring->tail);
1767 }
1768 
1769 /**
1770  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1771  * @adapter: board private structure
1772  **/
1773 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1774 {
1775 	int i;
1776 
1777 	for (i = 0; i < adapter->num_rx_queues; i++)
1778 		ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1779 }
1780 
1781 /**
1782  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1783  * @adapter: board private structure
1784  **/
1785 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1786 {
1787 	int i;
1788 
1789 	for (i = 0; i < adapter->num_tx_queues; i++)
1790 		ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1791 }
1792 
1793 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1794 {
1795 	struct net_device *netdev = adapter->netdev;
1796 	struct ixgbe_hw *hw = &adapter->hw;
1797 	u32 txdctl;
1798 	int i, j;
1799 
1800 	/* signal that we are down to the interrupt handler */
1801 	set_bit(__IXGBEVF_DOWN, &adapter->state);
1802 	/* disable receives */
1803 
1804 	netif_tx_disable(netdev);
1805 
1806 	msleep(10);
1807 
1808 	netif_tx_stop_all_queues(netdev);
1809 
1810 	ixgbevf_irq_disable(adapter);
1811 
1812 	ixgbevf_napi_disable_all(adapter);
1813 
1814 	del_timer_sync(&adapter->watchdog_timer);
1815 	/* can't call flush scheduled work here because it can deadlock
1816 	 * if linkwatch_event tries to acquire the rtnl_lock which we are
1817 	 * holding */
1818 	while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1819 		msleep(1);
1820 
1821 	/* disable transmits in the hardware now that interrupts are off */
1822 	for (i = 0; i < adapter->num_tx_queues; i++) {
1823 		j = adapter->tx_ring[i].reg_idx;
1824 		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1825 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1826 				(txdctl & ~IXGBE_TXDCTL_ENABLE));
1827 	}
1828 
1829 	netif_carrier_off(netdev);
1830 
1831 	if (!pci_channel_offline(adapter->pdev))
1832 		ixgbevf_reset(adapter);
1833 
1834 	ixgbevf_clean_all_tx_rings(adapter);
1835 	ixgbevf_clean_all_rx_rings(adapter);
1836 }
1837 
1838 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1839 {
1840 	struct ixgbe_hw *hw = &adapter->hw;
1841 
1842 	WARN_ON(in_interrupt());
1843 
1844 	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1845 		msleep(1);
1846 
1847 	/*
1848 	 * Check if PF is up before re-init.  If not then skip until
1849 	 * later when the PF is up and ready to service requests from
1850 	 * the VF via mailbox.  If the VF is up and running then the
1851 	 * watchdog task will continue to schedule reset tasks until
1852 	 * the PF is up and running.
1853 	 */
1854 	if (!hw->mac.ops.reset_hw(hw)) {
1855 		ixgbevf_down(adapter);
1856 		ixgbevf_up(adapter);
1857 	}
1858 
1859 	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1860 }
1861 
1862 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1863 {
1864 	struct ixgbe_hw *hw = &adapter->hw;
1865 	struct net_device *netdev = adapter->netdev;
1866 
1867 	if (hw->mac.ops.reset_hw(hw))
1868 		hw_dbg(hw, "PF still resetting\n");
1869 	else
1870 		hw->mac.ops.init_hw(hw);
1871 
1872 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1873 		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1874 		       netdev->addr_len);
1875 		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1876 		       netdev->addr_len);
1877 	}
1878 }
1879 
1880 static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1881 					 int vectors)
1882 {
1883 	int err, vector_threshold;
1884 
1885 	/* We'll want at least 3 (vector_threshold):
1886 	 * 1) TxQ[0] Cleanup
1887 	 * 2) RxQ[0] Cleanup
1888 	 * 3) Other (Link Status Change, etc.)
1889 	 */
1890 	vector_threshold = MIN_MSIX_COUNT;
1891 
1892 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1893 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1894 	 * Right now, we simply care about how many we'll get; we'll
1895 	 * set them up later while requesting irq's.
1896 	 */
1897 	while (vectors >= vector_threshold) {
1898 		err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1899 				      vectors);
1900 		if (!err) /* Success in acquiring all requested vectors. */
1901 			break;
1902 		else if (err < 0)
1903 			vectors = 0; /* Nasty failure, quit now */
1904 		else /* err == number of vectors we should try again with */
1905 			vectors = err;
1906 	}
1907 
1908 	if (vectors < vector_threshold) {
1909 		/* Can't allocate enough MSI-X interrupts?  Oh well.
1910 		 * This just means we'll go with either a single MSI
1911 		 * vector or fall back to legacy interrupts.
1912 		 */
1913 		hw_dbg(&adapter->hw,
1914 		       "Unable to allocate MSI-X interrupts\n");
1915 		kfree(adapter->msix_entries);
1916 		adapter->msix_entries = NULL;
1917 	} else {
1918 		/*
1919 		 * Adjust for only the vectors we'll use, which is minimum
1920 		 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1921 		 * vectors we were allocated.
1922 		 */
1923 		adapter->num_msix_vectors = vectors;
1924 	}
1925 }
1926 
1927 /*
1928  * ixgbevf_set_num_queues: Allocate queues for device, feature dependent
1929  * @adapter: board private structure to initialize
1930  *
1931  * This is the top level queue allocation routine.  The order here is very
1932  * important, starting with the "most" number of features turned on at once,
1933  * and ending with the smallest set of features.  This way large combinations
1934  * can be allocated if they're turned on, and smaller combinations are the
1935  * fallthrough conditions.
1936  *
1937  **/
1938 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1939 {
1940 	/* Start with base case */
1941 	adapter->num_rx_queues = 1;
1942 	adapter->num_tx_queues = 1;
1943 	adapter->num_rx_pools = adapter->num_rx_queues;
1944 	adapter->num_rx_queues_per_pool = 1;
1945 }
1946 
1947 /**
1948  * ixgbevf_alloc_queues - Allocate memory for all rings
1949  * @adapter: board private structure to initialize
1950  *
1951  * We allocate one ring per queue at run-time since we don't know the
1952  * number of queues at compile-time.  The polling_netdev array is
1953  * intended for Multiqueue, but should work fine with a single queue.
1954  **/
1955 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1956 {
1957 	int i;
1958 
1959 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1960 				   sizeof(struct ixgbevf_ring), GFP_KERNEL);
1961 	if (!adapter->tx_ring)
1962 		goto err_tx_ring_allocation;
1963 
1964 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1965 				   sizeof(struct ixgbevf_ring), GFP_KERNEL);
1966 	if (!adapter->rx_ring)
1967 		goto err_rx_ring_allocation;
1968 
1969 	for (i = 0; i < adapter->num_tx_queues; i++) {
1970 		adapter->tx_ring[i].count = adapter->tx_ring_count;
1971 		adapter->tx_ring[i].queue_index = i;
1972 		adapter->tx_ring[i].reg_idx = i;
1973 	}
1974 
1975 	for (i = 0; i < adapter->num_rx_queues; i++) {
1976 		adapter->rx_ring[i].count = adapter->rx_ring_count;
1977 		adapter->rx_ring[i].queue_index = i;
1978 		adapter->rx_ring[i].reg_idx = i;
1979 	}
1980 
1981 	return 0;
1982 
1983 err_rx_ring_allocation:
1984 	kfree(adapter->tx_ring);
1985 err_tx_ring_allocation:
1986 	return -ENOMEM;
1987 }
1988 
1989 /**
1990  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
1991  * @adapter: board private structure to initialize
1992  *
1993  * Attempt to configure the interrupts using the best available
1994  * capabilities of the hardware and the kernel.
1995  **/
1996 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
1997 {
1998 	int err = 0;
1999 	int vector, v_budget;
2000 
2001 	/*
2002 	 * It's easy to be greedy for MSI-X vectors, but it really
2003 	 * doesn't do us much good if we have a lot more vectors
2004 	 * than CPU's.  So let's be conservative and only ask for
2005 	 * (roughly) twice the number of vectors as there are CPU's.
2006 	 */
2007 	v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2008 		       (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2009 
2010 	/* A failure in MSI-X entry allocation isn't fatal, but it does
2011 	 * mean we disable MSI-X capabilities of the adapter. */
2012 	adapter->msix_entries = kcalloc(v_budget,
2013 					sizeof(struct msix_entry), GFP_KERNEL);
2014 	if (!adapter->msix_entries) {
2015 		err = -ENOMEM;
2016 		goto out;
2017 	}
2018 
2019 	for (vector = 0; vector < v_budget; vector++)
2020 		adapter->msix_entries[vector].entry = vector;
2021 
2022 	ixgbevf_acquire_msix_vectors(adapter, v_budget);
2023 
2024 out:
2025 	return err;
2026 }
2027 
2028 /**
2029  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2030  * @adapter: board private structure to initialize
2031  *
2032  * We allocate one q_vector per queue interrupt.  If allocation fails we
2033  * return -ENOMEM.
2034  **/
2035 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2036 {
2037 	int q_idx, num_q_vectors;
2038 	struct ixgbevf_q_vector *q_vector;
2039 	int napi_vectors;
2040 	int (*poll)(struct napi_struct *, int);
2041 
2042 	num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2043 	napi_vectors = adapter->num_rx_queues;
2044 	poll = &ixgbevf_clean_rxonly;
2045 
2046 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2047 		q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2048 		if (!q_vector)
2049 			goto err_out;
2050 		q_vector->adapter = adapter;
2051 		q_vector->v_idx = q_idx;
2052 		q_vector->eitr = adapter->eitr_param;
2053 		if (q_idx < napi_vectors)
2054 			netif_napi_add(adapter->netdev, &q_vector->napi,
2055 				       (*poll), 64);
2056 		adapter->q_vector[q_idx] = q_vector;
2057 	}
2058 
2059 	return 0;
2060 
2061 err_out:
2062 	while (q_idx) {
2063 		q_idx--;
2064 		q_vector = adapter->q_vector[q_idx];
2065 		netif_napi_del(&q_vector->napi);
2066 		kfree(q_vector);
2067 		adapter->q_vector[q_idx] = NULL;
2068 	}
2069 	return -ENOMEM;
2070 }
2071 
2072 /**
2073  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2074  * @adapter: board private structure to initialize
2075  *
2076  * This function frees the memory allocated to the q_vectors.  In addition if
2077  * NAPI is enabled it will delete any references to the NAPI struct prior
2078  * to freeing the q_vector.
2079  **/
2080 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2081 {
2082 	int q_idx, num_q_vectors;
2083 	int napi_vectors;
2084 
2085 	num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2086 	napi_vectors = adapter->num_rx_queues;
2087 
2088 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2089 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2090 
2091 		adapter->q_vector[q_idx] = NULL;
2092 		if (q_idx < napi_vectors)
2093 			netif_napi_del(&q_vector->napi);
2094 		kfree(q_vector);
2095 	}
2096 }
2097 
2098 /**
2099  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2100  * @adapter: board private structure
2101  *
2102  **/
2103 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2104 {
2105 	pci_disable_msix(adapter->pdev);
2106 	kfree(adapter->msix_entries);
2107 	adapter->msix_entries = NULL;
2108 }
2109 
2110 /**
2111  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2112  * @adapter: board private structure to initialize
2113  *
2114  **/
2115 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2116 {
2117 	int err;
2118 
2119 	/* Number of supported queues */
2120 	ixgbevf_set_num_queues(adapter);
2121 
2122 	err = ixgbevf_set_interrupt_capability(adapter);
2123 	if (err) {
2124 		hw_dbg(&adapter->hw,
2125 		       "Unable to setup interrupt capabilities\n");
2126 		goto err_set_interrupt;
2127 	}
2128 
2129 	err = ixgbevf_alloc_q_vectors(adapter);
2130 	if (err) {
2131 		hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2132 		       "vectors\n");
2133 		goto err_alloc_q_vectors;
2134 	}
2135 
2136 	err = ixgbevf_alloc_queues(adapter);
2137 	if (err) {
2138 		printk(KERN_ERR "Unable to allocate memory for queues\n");
2139 		goto err_alloc_queues;
2140 	}
2141 
2142 	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2143 	       "Tx Queue count = %u\n",
2144 	       (adapter->num_rx_queues > 1) ? "Enabled" :
2145 	       "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2146 
2147 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2148 
2149 	return 0;
2150 err_alloc_queues:
2151 	ixgbevf_free_q_vectors(adapter);
2152 err_alloc_q_vectors:
2153 	ixgbevf_reset_interrupt_capability(adapter);
2154 err_set_interrupt:
2155 	return err;
2156 }
2157 
2158 /**
2159  * ixgbevf_sw_init - Initialize general software structures
2160  * (struct ixgbevf_adapter)
2161  * @adapter: board private structure to initialize
2162  *
2163  * ixgbevf_sw_init initializes the Adapter private data structure.
2164  * Fields are initialized based on PCI device information and
2165  * OS network device settings (MTU size).
2166  **/
2167 static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2168 {
2169 	struct ixgbe_hw *hw = &adapter->hw;
2170 	struct pci_dev *pdev = adapter->pdev;
2171 	int err;
2172 
2173 	/* PCI config space info */
2174 
2175 	hw->vendor_id = pdev->vendor;
2176 	hw->device_id = pdev->device;
2177 	hw->revision_id = pdev->revision;
2178 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2179 	hw->subsystem_device_id = pdev->subsystem_device;
2180 
2181 	hw->mbx.ops.init_params(hw);
2182 	hw->mac.max_tx_queues = MAX_TX_QUEUES;
2183 	hw->mac.max_rx_queues = MAX_RX_QUEUES;
2184 	err = hw->mac.ops.reset_hw(hw);
2185 	if (err) {
2186 		dev_info(&pdev->dev,
2187 		         "PF still in reset state, assigning new address\n");
2188 		dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2189 	} else {
2190 		err = hw->mac.ops.init_hw(hw);
2191 		if (err) {
2192 			printk(KERN_ERR "init_shared_code failed: %d\n", err);
2193 			goto out;
2194 		}
2195 	}
2196 
2197 	/* Enable dynamic interrupt throttling rates */
2198 	adapter->eitr_param = 20000;
2199 	adapter->itr_setting = 1;
2200 
2201 	/* set defaults for eitr in MegaBytes */
2202 	adapter->eitr_low = 10;
2203 	adapter->eitr_high = 20;
2204 
2205 	/* set default ring sizes */
2206 	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2207 	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2208 
2209 	/* enable rx csum by default */
2210 	adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2211 
2212 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2213 
2214 out:
2215 	return err;
2216 }
2217 
2218 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
2219 	{							\
2220 		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
2221 		if (current_counter < last_counter)		\
2222 			counter += 0x100000000LL;		\
2223 		last_counter = current_counter;			\
2224 		counter &= 0xFFFFFFFF00000000LL;		\
2225 		counter |= current_counter;			\
2226 	}
2227 
2228 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2229 	{								 \
2230 		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
2231 		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
2232 		u64 current_counter = (current_counter_msb << 32) |      \
2233 			current_counter_lsb;                             \
2234 		if (current_counter < last_counter)			 \
2235 			counter += 0x1000000000LL;			 \
2236 		last_counter = current_counter;				 \
2237 		counter &= 0xFFFFFFF000000000LL;			 \
2238 		counter |= current_counter;				 \
2239 	}
2240 /**
2241  * ixgbevf_update_stats - Update the board statistics counters.
2242  * @adapter: board private structure
2243  **/
2244 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2245 {
2246 	struct ixgbe_hw *hw = &adapter->hw;
2247 
2248 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2249 				adapter->stats.vfgprc);
2250 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2251 				adapter->stats.vfgptc);
2252 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2253 				adapter->stats.last_vfgorc,
2254 				adapter->stats.vfgorc);
2255 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2256 				adapter->stats.last_vfgotc,
2257 				adapter->stats.vfgotc);
2258 	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2259 				adapter->stats.vfmprc);
2260 }
2261 
2262 /**
2263  * ixgbevf_watchdog - Timer Call-back
2264  * @data: pointer to adapter cast into an unsigned long
2265  **/
2266 static void ixgbevf_watchdog(unsigned long data)
2267 {
2268 	struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2269 	struct ixgbe_hw *hw = &adapter->hw;
2270 	u64 eics = 0;
2271 	int i;
2272 
2273 	/*
2274 	 * Do the watchdog outside of interrupt context due to the lovely
2275 	 * delays that some of the newer hardware requires
2276 	 */
2277 
2278 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2279 		goto watchdog_short_circuit;
2280 
2281 	/* get one bit for every active tx/rx interrupt vector */
2282 	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2283 		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2284 		if (qv->rxr_count || qv->txr_count)
2285 			eics |= (1 << i);
2286 	}
2287 
2288 	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2289 
2290 watchdog_short_circuit:
2291 	schedule_work(&adapter->watchdog_task);
2292 }
2293 
2294 /**
2295  * ixgbevf_tx_timeout - Respond to a Tx Hang
2296  * @netdev: network interface device structure
2297  **/
2298 static void ixgbevf_tx_timeout(struct net_device *netdev)
2299 {
2300 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2301 
2302 	/* Do the reset outside of interrupt context */
2303 	schedule_work(&adapter->reset_task);
2304 }
2305 
2306 static void ixgbevf_reset_task(struct work_struct *work)
2307 {
2308 	struct ixgbevf_adapter *adapter;
2309 	adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2310 
2311 	/* If we're already down or resetting, just bail */
2312 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2313 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2314 		return;
2315 
2316 	adapter->tx_timeout_count++;
2317 
2318 	ixgbevf_reinit_locked(adapter);
2319 }
2320 
2321 /**
2322  * ixgbevf_watchdog_task - worker thread to bring link up
2323  * @work: pointer to work_struct containing our data
2324  **/
2325 static void ixgbevf_watchdog_task(struct work_struct *work)
2326 {
2327 	struct ixgbevf_adapter *adapter = container_of(work,
2328 						       struct ixgbevf_adapter,
2329 						       watchdog_task);
2330 	struct net_device *netdev = adapter->netdev;
2331 	struct ixgbe_hw *hw = &adapter->hw;
2332 	u32 link_speed = adapter->link_speed;
2333 	bool link_up = adapter->link_up;
2334 
2335 	adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2336 
2337 	/*
2338 	 * Always check the link on the watchdog because we have
2339 	 * no LSC interrupt
2340 	 */
2341 	if (hw->mac.ops.check_link) {
2342 		if ((hw->mac.ops.check_link(hw, &link_speed,
2343 					    &link_up, false)) != 0) {
2344 			adapter->link_up = link_up;
2345 			adapter->link_speed = link_speed;
2346 			netif_carrier_off(netdev);
2347 			netif_tx_stop_all_queues(netdev);
2348 			schedule_work(&adapter->reset_task);
2349 			goto pf_has_reset;
2350 		}
2351 	} else {
2352 		/* always assume link is up, if no check link
2353 		 * function */
2354 		link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2355 		link_up = true;
2356 	}
2357 	adapter->link_up = link_up;
2358 	adapter->link_speed = link_speed;
2359 
2360 	if (link_up) {
2361 		if (!netif_carrier_ok(netdev)) {
2362 			hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2363 			       (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2364 			       10 : 1);
2365 			netif_carrier_on(netdev);
2366 			netif_tx_wake_all_queues(netdev);
2367 		}
2368 	} else {
2369 		adapter->link_up = false;
2370 		adapter->link_speed = 0;
2371 		if (netif_carrier_ok(netdev)) {
2372 			hw_dbg(&adapter->hw, "NIC Link is Down\n");
2373 			netif_carrier_off(netdev);
2374 			netif_tx_stop_all_queues(netdev);
2375 		}
2376 	}
2377 
2378 	ixgbevf_update_stats(adapter);
2379 
2380 pf_has_reset:
2381 	/* Reset the timer */
2382 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2383 		mod_timer(&adapter->watchdog_timer,
2384 			  round_jiffies(jiffies + (2 * HZ)));
2385 
2386 	adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2387 }
2388 
2389 /**
2390  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2391  * @adapter: board private structure
2392  * @tx_ring: Tx descriptor ring for a specific queue
2393  *
2394  * Free all transmit software resources
2395  **/
2396 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2397 			       struct ixgbevf_ring *tx_ring)
2398 {
2399 	struct pci_dev *pdev = adapter->pdev;
2400 
2401 	ixgbevf_clean_tx_ring(adapter, tx_ring);
2402 
2403 	vfree(tx_ring->tx_buffer_info);
2404 	tx_ring->tx_buffer_info = NULL;
2405 
2406 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2407 			  tx_ring->dma);
2408 
2409 	tx_ring->desc = NULL;
2410 }
2411 
2412 /**
2413  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2414  * @adapter: board private structure
2415  *
2416  * Free all transmit software resources
2417  **/
2418 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2419 {
2420 	int i;
2421 
2422 	for (i = 0; i < adapter->num_tx_queues; i++)
2423 		if (adapter->tx_ring[i].desc)
2424 			ixgbevf_free_tx_resources(adapter,
2425 						  &adapter->tx_ring[i]);
2426 
2427 }
2428 
2429 /**
2430  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2431  * @adapter: board private structure
2432  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2433  *
2434  * Return 0 on success, negative on failure
2435  **/
2436 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2437 			       struct ixgbevf_ring *tx_ring)
2438 {
2439 	struct pci_dev *pdev = adapter->pdev;
2440 	int size;
2441 
2442 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2443 	tx_ring->tx_buffer_info = vzalloc(size);
2444 	if (!tx_ring->tx_buffer_info)
2445 		goto err;
2446 
2447 	/* round up to nearest 4K */
2448 	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2449 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2450 
2451 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2452 					   &tx_ring->dma, GFP_KERNEL);
2453 	if (!tx_ring->desc)
2454 		goto err;
2455 
2456 	tx_ring->next_to_use = 0;
2457 	tx_ring->next_to_clean = 0;
2458 	tx_ring->work_limit = tx_ring->count;
2459 	return 0;
2460 
2461 err:
2462 	vfree(tx_ring->tx_buffer_info);
2463 	tx_ring->tx_buffer_info = NULL;
2464 	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2465 	       "descriptor ring\n");
2466 	return -ENOMEM;
2467 }
2468 
2469 /**
2470  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2471  * @adapter: board private structure
2472  *
2473  * If this function returns with an error, then it's possible one or
2474  * more of the rings is populated (while the rest are not).  It is the
2475  * callers duty to clean those orphaned rings.
2476  *
2477  * Return 0 on success, negative on failure
2478  **/
2479 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2480 {
2481 	int i, err = 0;
2482 
2483 	for (i = 0; i < adapter->num_tx_queues; i++) {
2484 		err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2485 		if (!err)
2486 			continue;
2487 		hw_dbg(&adapter->hw,
2488 		       "Allocation for Tx Queue %u failed\n", i);
2489 		break;
2490 	}
2491 
2492 	return err;
2493 }
2494 
2495 /**
2496  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2497  * @adapter: board private structure
2498  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2499  *
2500  * Returns 0 on success, negative on failure
2501  **/
2502 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2503 			       struct ixgbevf_ring *rx_ring)
2504 {
2505 	struct pci_dev *pdev = adapter->pdev;
2506 	int size;
2507 
2508 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2509 	rx_ring->rx_buffer_info = vzalloc(size);
2510 	if (!rx_ring->rx_buffer_info) {
2511 		hw_dbg(&adapter->hw,
2512 		       "Unable to vmalloc buffer memory for "
2513 		       "the receive descriptor ring\n");
2514 		goto alloc_failed;
2515 	}
2516 
2517 	/* Round up to nearest 4K */
2518 	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2519 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2520 
2521 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2522 					   &rx_ring->dma, GFP_KERNEL);
2523 
2524 	if (!rx_ring->desc) {
2525 		hw_dbg(&adapter->hw,
2526 		       "Unable to allocate memory for "
2527 		       "the receive descriptor ring\n");
2528 		vfree(rx_ring->rx_buffer_info);
2529 		rx_ring->rx_buffer_info = NULL;
2530 		goto alloc_failed;
2531 	}
2532 
2533 	rx_ring->next_to_clean = 0;
2534 	rx_ring->next_to_use = 0;
2535 
2536 	return 0;
2537 alloc_failed:
2538 	return -ENOMEM;
2539 }
2540 
2541 /**
2542  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2543  * @adapter: board private structure
2544  *
2545  * If this function returns with an error, then it's possible one or
2546  * more of the rings is populated (while the rest are not).  It is the
2547  * callers duty to clean those orphaned rings.
2548  *
2549  * Return 0 on success, negative on failure
2550  **/
2551 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2552 {
2553 	int i, err = 0;
2554 
2555 	for (i = 0; i < adapter->num_rx_queues; i++) {
2556 		err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2557 		if (!err)
2558 			continue;
2559 		hw_dbg(&adapter->hw,
2560 		       "Allocation for Rx Queue %u failed\n", i);
2561 		break;
2562 	}
2563 	return err;
2564 }
2565 
2566 /**
2567  * ixgbevf_free_rx_resources - Free Rx Resources
2568  * @adapter: board private structure
2569  * @rx_ring: ring to clean the resources from
2570  *
2571  * Free all receive software resources
2572  **/
2573 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2574 			       struct ixgbevf_ring *rx_ring)
2575 {
2576 	struct pci_dev *pdev = adapter->pdev;
2577 
2578 	ixgbevf_clean_rx_ring(adapter, rx_ring);
2579 
2580 	vfree(rx_ring->rx_buffer_info);
2581 	rx_ring->rx_buffer_info = NULL;
2582 
2583 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2584 			  rx_ring->dma);
2585 
2586 	rx_ring->desc = NULL;
2587 }
2588 
2589 /**
2590  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2591  * @adapter: board private structure
2592  *
2593  * Free all receive software resources
2594  **/
2595 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2596 {
2597 	int i;
2598 
2599 	for (i = 0; i < adapter->num_rx_queues; i++)
2600 		if (adapter->rx_ring[i].desc)
2601 			ixgbevf_free_rx_resources(adapter,
2602 						  &adapter->rx_ring[i]);
2603 }
2604 
2605 /**
2606  * ixgbevf_open - Called when a network interface is made active
2607  * @netdev: network interface device structure
2608  *
2609  * Returns 0 on success, negative value on failure
2610  *
2611  * The open entry point is called when a network interface is made
2612  * active by the system (IFF_UP).  At this point all resources needed
2613  * for transmit and receive operations are allocated, the interrupt
2614  * handler is registered with the OS, the watchdog timer is started,
2615  * and the stack is notified that the interface is ready.
2616  **/
2617 static int ixgbevf_open(struct net_device *netdev)
2618 {
2619 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2620 	struct ixgbe_hw *hw = &adapter->hw;
2621 	int err;
2622 
2623 	/* disallow open during test */
2624 	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2625 		return -EBUSY;
2626 
2627 	if (hw->adapter_stopped) {
2628 		ixgbevf_reset(adapter);
2629 		/* if adapter is still stopped then PF isn't up and
2630 		 * the vf can't start. */
2631 		if (hw->adapter_stopped) {
2632 			err = IXGBE_ERR_MBX;
2633 			printk(KERN_ERR "Unable to start - perhaps the PF"
2634 			       " Driver isn't up yet\n");
2635 			goto err_setup_reset;
2636 		}
2637 	}
2638 
2639 	/* allocate transmit descriptors */
2640 	err = ixgbevf_setup_all_tx_resources(adapter);
2641 	if (err)
2642 		goto err_setup_tx;
2643 
2644 	/* allocate receive descriptors */
2645 	err = ixgbevf_setup_all_rx_resources(adapter);
2646 	if (err)
2647 		goto err_setup_rx;
2648 
2649 	ixgbevf_configure(adapter);
2650 
2651 	/*
2652 	 * Map the Tx/Rx rings to the vectors we were allotted.
2653 	 * if request_irq will be called in this function map_rings
2654 	 * must be called *before* up_complete
2655 	 */
2656 	ixgbevf_map_rings_to_vectors(adapter);
2657 
2658 	err = ixgbevf_up_complete(adapter);
2659 	if (err)
2660 		goto err_up;
2661 
2662 	/* clear any pending interrupts, may auto mask */
2663 	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2664 	err = ixgbevf_request_irq(adapter);
2665 	if (err)
2666 		goto err_req_irq;
2667 
2668 	ixgbevf_irq_enable(adapter, true, true);
2669 
2670 	return 0;
2671 
2672 err_req_irq:
2673 	ixgbevf_down(adapter);
2674 err_up:
2675 	ixgbevf_free_irq(adapter);
2676 err_setup_rx:
2677 	ixgbevf_free_all_rx_resources(adapter);
2678 err_setup_tx:
2679 	ixgbevf_free_all_tx_resources(adapter);
2680 	ixgbevf_reset(adapter);
2681 
2682 err_setup_reset:
2683 
2684 	return err;
2685 }
2686 
2687 /**
2688  * ixgbevf_close - Disables a network interface
2689  * @netdev: network interface device structure
2690  *
2691  * Returns 0, this is not allowed to fail
2692  *
2693  * The close entry point is called when an interface is de-activated
2694  * by the OS.  The hardware is still under the drivers control, but
2695  * needs to be disabled.  A global MAC reset is issued to stop the
2696  * hardware, and all transmit and receive resources are freed.
2697  **/
2698 static int ixgbevf_close(struct net_device *netdev)
2699 {
2700 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2701 
2702 	ixgbevf_down(adapter);
2703 	ixgbevf_free_irq(adapter);
2704 
2705 	ixgbevf_free_all_tx_resources(adapter);
2706 	ixgbevf_free_all_rx_resources(adapter);
2707 
2708 	return 0;
2709 }
2710 
2711 static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2712 		       struct ixgbevf_ring *tx_ring,
2713 		       struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2714 {
2715 	struct ixgbe_adv_tx_context_desc *context_desc;
2716 	unsigned int i;
2717 	int err;
2718 	struct ixgbevf_tx_buffer *tx_buffer_info;
2719 	u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2720 	u32 mss_l4len_idx, l4len;
2721 
2722 	if (skb_is_gso(skb)) {
2723 		if (skb_header_cloned(skb)) {
2724 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2725 			if (err)
2726 				return err;
2727 		}
2728 		l4len = tcp_hdrlen(skb);
2729 		*hdr_len += l4len;
2730 
2731 		if (skb->protocol == htons(ETH_P_IP)) {
2732 			struct iphdr *iph = ip_hdr(skb);
2733 			iph->tot_len = 0;
2734 			iph->check = 0;
2735 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2736 								 iph->daddr, 0,
2737 								 IPPROTO_TCP,
2738 								 0);
2739 			adapter->hw_tso_ctxt++;
2740 		} else if (skb_is_gso_v6(skb)) {
2741 			ipv6_hdr(skb)->payload_len = 0;
2742 			tcp_hdr(skb)->check =
2743 			    ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2744 					     &ipv6_hdr(skb)->daddr,
2745 					     0, IPPROTO_TCP, 0);
2746 			adapter->hw_tso6_ctxt++;
2747 		}
2748 
2749 		i = tx_ring->next_to_use;
2750 
2751 		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2752 		context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2753 
2754 		/* VLAN MACLEN IPLEN */
2755 		if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2756 			vlan_macip_lens |=
2757 				(tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2758 		vlan_macip_lens |= ((skb_network_offset(skb)) <<
2759 				    IXGBE_ADVTXD_MACLEN_SHIFT);
2760 		*hdr_len += skb_network_offset(skb);
2761 		vlan_macip_lens |=
2762 			(skb_transport_header(skb) - skb_network_header(skb));
2763 		*hdr_len +=
2764 			(skb_transport_header(skb) - skb_network_header(skb));
2765 		context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2766 		context_desc->seqnum_seed = 0;
2767 
2768 		/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2769 		type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2770 				    IXGBE_ADVTXD_DTYP_CTXT);
2771 
2772 		if (skb->protocol == htons(ETH_P_IP))
2773 			type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2774 		type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2775 		context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2776 
2777 		/* MSS L4LEN IDX */
2778 		mss_l4len_idx =
2779 			(skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2780 		mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2781 		/* use index 1 for TSO */
2782 		mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2783 		context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2784 
2785 		tx_buffer_info->time_stamp = jiffies;
2786 		tx_buffer_info->next_to_watch = i;
2787 
2788 		i++;
2789 		if (i == tx_ring->count)
2790 			i = 0;
2791 		tx_ring->next_to_use = i;
2792 
2793 		return true;
2794 	}
2795 
2796 	return false;
2797 }
2798 
2799 static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2800 			    struct ixgbevf_ring *tx_ring,
2801 			    struct sk_buff *skb, u32 tx_flags)
2802 {
2803 	struct ixgbe_adv_tx_context_desc *context_desc;
2804 	unsigned int i;
2805 	struct ixgbevf_tx_buffer *tx_buffer_info;
2806 	u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2807 
2808 	if (skb->ip_summed == CHECKSUM_PARTIAL ||
2809 	    (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2810 		i = tx_ring->next_to_use;
2811 		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2812 		context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2813 
2814 		if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2815 			vlan_macip_lens |= (tx_flags &
2816 					    IXGBE_TX_FLAGS_VLAN_MASK);
2817 		vlan_macip_lens |= (skb_network_offset(skb) <<
2818 				    IXGBE_ADVTXD_MACLEN_SHIFT);
2819 		if (skb->ip_summed == CHECKSUM_PARTIAL)
2820 			vlan_macip_lens |= (skb_transport_header(skb) -
2821 					    skb_network_header(skb));
2822 
2823 		context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2824 		context_desc->seqnum_seed = 0;
2825 
2826 		type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2827 				    IXGBE_ADVTXD_DTYP_CTXT);
2828 
2829 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2830 			switch (skb->protocol) {
2831 			case __constant_htons(ETH_P_IP):
2832 				type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2833 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2834 					type_tucmd_mlhl |=
2835 					    IXGBE_ADVTXD_TUCMD_L4T_TCP;
2836 				break;
2837 			case __constant_htons(ETH_P_IPV6):
2838 				/* XXX what about other V6 headers?? */
2839 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2840 					type_tucmd_mlhl |=
2841 						IXGBE_ADVTXD_TUCMD_L4T_TCP;
2842 				break;
2843 			default:
2844 				if (unlikely(net_ratelimit())) {
2845 					printk(KERN_WARNING
2846 					       "partial checksum but "
2847 					       "proto=%x!\n",
2848 					       skb->protocol);
2849 				}
2850 				break;
2851 			}
2852 		}
2853 
2854 		context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2855 		/* use index zero for tx checksum offload */
2856 		context_desc->mss_l4len_idx = 0;
2857 
2858 		tx_buffer_info->time_stamp = jiffies;
2859 		tx_buffer_info->next_to_watch = i;
2860 
2861 		adapter->hw_csum_tx_good++;
2862 		i++;
2863 		if (i == tx_ring->count)
2864 			i = 0;
2865 		tx_ring->next_to_use = i;
2866 
2867 		return true;
2868 	}
2869 
2870 	return false;
2871 }
2872 
2873 static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2874 			  struct ixgbevf_ring *tx_ring,
2875 			  struct sk_buff *skb, u32 tx_flags,
2876 			  unsigned int first)
2877 {
2878 	struct pci_dev *pdev = adapter->pdev;
2879 	struct ixgbevf_tx_buffer *tx_buffer_info;
2880 	unsigned int len;
2881 	unsigned int total = skb->len;
2882 	unsigned int offset = 0, size;
2883 	int count = 0;
2884 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2885 	unsigned int f;
2886 	int i;
2887 
2888 	i = tx_ring->next_to_use;
2889 
2890 	len = min(skb_headlen(skb), total);
2891 	while (len) {
2892 		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2893 		size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2894 
2895 		tx_buffer_info->length = size;
2896 		tx_buffer_info->mapped_as_page = false;
2897 		tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
2898 						     skb->data + offset,
2899 						     size, DMA_TO_DEVICE);
2900 		if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2901 			goto dma_error;
2902 		tx_buffer_info->time_stamp = jiffies;
2903 		tx_buffer_info->next_to_watch = i;
2904 
2905 		len -= size;
2906 		total -= size;
2907 		offset += size;
2908 		count++;
2909 		i++;
2910 		if (i == tx_ring->count)
2911 			i = 0;
2912 	}
2913 
2914 	for (f = 0; f < nr_frags; f++) {
2915 		const struct skb_frag_struct *frag;
2916 
2917 		frag = &skb_shinfo(skb)->frags[f];
2918 		len = min((unsigned int)skb_frag_size(frag), total);
2919 		offset = 0;
2920 
2921 		while (len) {
2922 			tx_buffer_info = &tx_ring->tx_buffer_info[i];
2923 			size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2924 
2925 			tx_buffer_info->length = size;
2926 			tx_buffer_info->dma =
2927 				skb_frag_dma_map(&adapter->pdev->dev, frag,
2928 						 offset, size, DMA_TO_DEVICE);
2929 			tx_buffer_info->mapped_as_page = true;
2930 			if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2931 				goto dma_error;
2932 			tx_buffer_info->time_stamp = jiffies;
2933 			tx_buffer_info->next_to_watch = i;
2934 
2935 			len -= size;
2936 			total -= size;
2937 			offset += size;
2938 			count++;
2939 			i++;
2940 			if (i == tx_ring->count)
2941 				i = 0;
2942 		}
2943 		if (total == 0)
2944 			break;
2945 	}
2946 
2947 	if (i == 0)
2948 		i = tx_ring->count - 1;
2949 	else
2950 		i = i - 1;
2951 	tx_ring->tx_buffer_info[i].skb = skb;
2952 	tx_ring->tx_buffer_info[first].next_to_watch = i;
2953 
2954 	return count;
2955 
2956 dma_error:
2957 	dev_err(&pdev->dev, "TX DMA map failed\n");
2958 
2959 	/* clear timestamp and dma mappings for failed tx_buffer_info map */
2960 	tx_buffer_info->dma = 0;
2961 	tx_buffer_info->time_stamp = 0;
2962 	tx_buffer_info->next_to_watch = 0;
2963 	count--;
2964 
2965 	/* clear timestamp and dma mappings for remaining portion of packet */
2966 	while (count >= 0) {
2967 		count--;
2968 		i--;
2969 		if (i < 0)
2970 			i += tx_ring->count;
2971 		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2972 		ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
2973 	}
2974 
2975 	return count;
2976 }
2977 
2978 static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
2979 			     struct ixgbevf_ring *tx_ring, int tx_flags,
2980 			     int count, u32 paylen, u8 hdr_len)
2981 {
2982 	union ixgbe_adv_tx_desc *tx_desc = NULL;
2983 	struct ixgbevf_tx_buffer *tx_buffer_info;
2984 	u32 olinfo_status = 0, cmd_type_len = 0;
2985 	unsigned int i;
2986 
2987 	u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
2988 
2989 	cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
2990 
2991 	cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
2992 
2993 	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2994 		cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
2995 
2996 	if (tx_flags & IXGBE_TX_FLAGS_TSO) {
2997 		cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
2998 
2999 		olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3000 			IXGBE_ADVTXD_POPTS_SHIFT;
3001 
3002 		/* use index 1 context for tso */
3003 		olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3004 		if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3005 			olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3006 				IXGBE_ADVTXD_POPTS_SHIFT;
3007 
3008 	} else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3009 		olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3010 			IXGBE_ADVTXD_POPTS_SHIFT;
3011 
3012 	olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3013 
3014 	i = tx_ring->next_to_use;
3015 	while (count--) {
3016 		tx_buffer_info = &tx_ring->tx_buffer_info[i];
3017 		tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3018 		tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3019 		tx_desc->read.cmd_type_len =
3020 			cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3021 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3022 		i++;
3023 		if (i == tx_ring->count)
3024 			i = 0;
3025 	}
3026 
3027 	tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3028 
3029 	/*
3030 	 * Force memory writes to complete before letting h/w
3031 	 * know there are new descriptors to fetch.  (Only
3032 	 * applicable for weak-ordered memory model archs,
3033 	 * such as IA-64).
3034 	 */
3035 	wmb();
3036 
3037 	tx_ring->next_to_use = i;
3038 	writel(i, adapter->hw.hw_addr + tx_ring->tail);
3039 }
3040 
3041 static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3042 				   struct ixgbevf_ring *tx_ring, int size)
3043 {
3044 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3045 
3046 	netif_stop_subqueue(netdev, tx_ring->queue_index);
3047 	/* Herbert's original patch had:
3048 	 *  smp_mb__after_netif_stop_queue();
3049 	 * but since that doesn't exist yet, just open code it. */
3050 	smp_mb();
3051 
3052 	/* We need to check again in a case another CPU has just
3053 	 * made room available. */
3054 	if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3055 		return -EBUSY;
3056 
3057 	/* A reprieve! - use start_queue because it doesn't call schedule */
3058 	netif_start_subqueue(netdev, tx_ring->queue_index);
3059 	++adapter->restart_queue;
3060 	return 0;
3061 }
3062 
3063 static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3064 				 struct ixgbevf_ring *tx_ring, int size)
3065 {
3066 	if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3067 		return 0;
3068 	return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3069 }
3070 
3071 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3072 {
3073 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3074 	struct ixgbevf_ring *tx_ring;
3075 	unsigned int first;
3076 	unsigned int tx_flags = 0;
3077 	u8 hdr_len = 0;
3078 	int r_idx = 0, tso;
3079 	int count = 0;
3080 
3081 	unsigned int f;
3082 
3083 	tx_ring = &adapter->tx_ring[r_idx];
3084 
3085 	if (vlan_tx_tag_present(skb)) {
3086 		tx_flags |= vlan_tx_tag_get(skb);
3087 		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3088 		tx_flags |= IXGBE_TX_FLAGS_VLAN;
3089 	}
3090 
3091 	/* four things can cause us to need a context descriptor */
3092 	if (skb_is_gso(skb) ||
3093 	    (skb->ip_summed == CHECKSUM_PARTIAL) ||
3094 	    (tx_flags & IXGBE_TX_FLAGS_VLAN))
3095 		count++;
3096 
3097 	count += TXD_USE_COUNT(skb_headlen(skb));
3098 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3099 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]));
3100 
3101 	if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3102 		adapter->tx_busy++;
3103 		return NETDEV_TX_BUSY;
3104 	}
3105 
3106 	first = tx_ring->next_to_use;
3107 
3108 	if (skb->protocol == htons(ETH_P_IP))
3109 		tx_flags |= IXGBE_TX_FLAGS_IPV4;
3110 	tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3111 	if (tso < 0) {
3112 		dev_kfree_skb_any(skb);
3113 		return NETDEV_TX_OK;
3114 	}
3115 
3116 	if (tso)
3117 		tx_flags |= IXGBE_TX_FLAGS_TSO;
3118 	else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3119 		 (skb->ip_summed == CHECKSUM_PARTIAL))
3120 		tx_flags |= IXGBE_TX_FLAGS_CSUM;
3121 
3122 	ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3123 			 ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3124 			 skb->len, hdr_len);
3125 
3126 	ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3127 
3128 	return NETDEV_TX_OK;
3129 }
3130 
3131 /**
3132  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3133  * @netdev: network interface device structure
3134  * @p: pointer to an address structure
3135  *
3136  * Returns 0 on success, negative on failure
3137  **/
3138 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3139 {
3140 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3141 	struct ixgbe_hw *hw = &adapter->hw;
3142 	struct sockaddr *addr = p;
3143 
3144 	if (!is_valid_ether_addr(addr->sa_data))
3145 		return -EADDRNOTAVAIL;
3146 
3147 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3148 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3149 
3150 	if (hw->mac.ops.set_rar)
3151 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3152 
3153 	return 0;
3154 }
3155 
3156 /**
3157  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3158  * @netdev: network interface device structure
3159  * @new_mtu: new value for maximum frame size
3160  *
3161  * Returns 0 on success, negative on failure
3162  **/
3163 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3164 {
3165 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3166 	struct ixgbe_hw *hw = &adapter->hw;
3167 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3168 	int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3169 	u32 msg[2];
3170 
3171 	if (adapter->hw.mac.type == ixgbe_mac_X540_vf)
3172 		max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3173 
3174 	/* MTU < 68 is an error and causes problems on some kernels */
3175 	if ((new_mtu < 68) || (max_frame > max_possible_frame))
3176 		return -EINVAL;
3177 
3178 	hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3179 	       netdev->mtu, new_mtu);
3180 	/* must set new MTU before calling down or up */
3181 	netdev->mtu = new_mtu;
3182 
3183 	msg[0] = IXGBE_VF_SET_LPE;
3184 	msg[1] = max_frame;
3185 	hw->mbx.ops.write_posted(hw, msg, 2);
3186 
3187 	if (netif_running(netdev))
3188 		ixgbevf_reinit_locked(adapter);
3189 
3190 	return 0;
3191 }
3192 
3193 static void ixgbevf_shutdown(struct pci_dev *pdev)
3194 {
3195 	struct net_device *netdev = pci_get_drvdata(pdev);
3196 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3197 
3198 	netif_device_detach(netdev);
3199 
3200 	if (netif_running(netdev)) {
3201 		ixgbevf_down(adapter);
3202 		ixgbevf_free_irq(adapter);
3203 		ixgbevf_free_all_tx_resources(adapter);
3204 		ixgbevf_free_all_rx_resources(adapter);
3205 	}
3206 
3207 #ifdef CONFIG_PM
3208 	pci_save_state(pdev);
3209 #endif
3210 
3211 	pci_disable_device(pdev);
3212 }
3213 
3214 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3215 						struct rtnl_link_stats64 *stats)
3216 {
3217 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3218 	unsigned int start;
3219 	u64 bytes, packets;
3220 	const struct ixgbevf_ring *ring;
3221 	int i;
3222 
3223 	ixgbevf_update_stats(adapter);
3224 
3225 	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3226 
3227 	for (i = 0; i < adapter->num_rx_queues; i++) {
3228 		ring = &adapter->rx_ring[i];
3229 		do {
3230 			start = u64_stats_fetch_begin_bh(&ring->syncp);
3231 			bytes = ring->total_bytes;
3232 			packets = ring->total_packets;
3233 		} while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3234 		stats->rx_bytes += bytes;
3235 		stats->rx_packets += packets;
3236 	}
3237 
3238 	for (i = 0; i < adapter->num_tx_queues; i++) {
3239 		ring = &adapter->tx_ring[i];
3240 		do {
3241 			start = u64_stats_fetch_begin_bh(&ring->syncp);
3242 			bytes = ring->total_bytes;
3243 			packets = ring->total_packets;
3244 		} while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3245 		stats->tx_bytes += bytes;
3246 		stats->tx_packets += packets;
3247 	}
3248 
3249 	return stats;
3250 }
3251 
3252 static int ixgbevf_set_features(struct net_device *netdev, u32 features)
3253 {
3254 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3255 
3256 	if (features & NETIF_F_RXCSUM)
3257 		adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
3258 	else
3259 		adapter->flags &= ~IXGBE_FLAG_RX_CSUM_ENABLED;
3260 
3261 	return 0;
3262 }
3263 
3264 static const struct net_device_ops ixgbe_netdev_ops = {
3265 	.ndo_open		= ixgbevf_open,
3266 	.ndo_stop		= ixgbevf_close,
3267 	.ndo_start_xmit		= ixgbevf_xmit_frame,
3268 	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
3269 	.ndo_get_stats64	= ixgbevf_get_stats,
3270 	.ndo_validate_addr	= eth_validate_addr,
3271 	.ndo_set_mac_address	= ixgbevf_set_mac,
3272 	.ndo_change_mtu		= ixgbevf_change_mtu,
3273 	.ndo_tx_timeout		= ixgbevf_tx_timeout,
3274 	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
3275 	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
3276 	.ndo_set_features	= ixgbevf_set_features,
3277 };
3278 
3279 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3280 {
3281 	dev->netdev_ops = &ixgbe_netdev_ops;
3282 	ixgbevf_set_ethtool_ops(dev);
3283 	dev->watchdog_timeo = 5 * HZ;
3284 }
3285 
3286 /**
3287  * ixgbevf_probe - Device Initialization Routine
3288  * @pdev: PCI device information struct
3289  * @ent: entry in ixgbevf_pci_tbl
3290  *
3291  * Returns 0 on success, negative on failure
3292  *
3293  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3294  * The OS initialization, configuring of the adapter private structure,
3295  * and a hardware reset occur.
3296  **/
3297 static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3298 				   const struct pci_device_id *ent)
3299 {
3300 	struct net_device *netdev;
3301 	struct ixgbevf_adapter *adapter = NULL;
3302 	struct ixgbe_hw *hw = NULL;
3303 	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3304 	static int cards_found;
3305 	int err, pci_using_dac;
3306 
3307 	err = pci_enable_device(pdev);
3308 	if (err)
3309 		return err;
3310 
3311 	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3312 	    !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3313 		pci_using_dac = 1;
3314 	} else {
3315 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3316 		if (err) {
3317 			err = dma_set_coherent_mask(&pdev->dev,
3318 						    DMA_BIT_MASK(32));
3319 			if (err) {
3320 				dev_err(&pdev->dev, "No usable DMA "
3321 					"configuration, aborting\n");
3322 				goto err_dma;
3323 			}
3324 		}
3325 		pci_using_dac = 0;
3326 	}
3327 
3328 	err = pci_request_regions(pdev, ixgbevf_driver_name);
3329 	if (err) {
3330 		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3331 		goto err_pci_reg;
3332 	}
3333 
3334 	pci_set_master(pdev);
3335 
3336 #ifdef HAVE_TX_MQ
3337 	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3338 				   MAX_TX_QUEUES);
3339 #else
3340 	netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3341 #endif
3342 	if (!netdev) {
3343 		err = -ENOMEM;
3344 		goto err_alloc_etherdev;
3345 	}
3346 
3347 	SET_NETDEV_DEV(netdev, &pdev->dev);
3348 
3349 	pci_set_drvdata(pdev, netdev);
3350 	adapter = netdev_priv(netdev);
3351 
3352 	adapter->netdev = netdev;
3353 	adapter->pdev = pdev;
3354 	hw = &adapter->hw;
3355 	hw->back = adapter;
3356 	adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3357 
3358 	/*
3359 	 * call save state here in standalone driver because it relies on
3360 	 * adapter struct to exist, and needs to call netdev_priv
3361 	 */
3362 	pci_save_state(pdev);
3363 
3364 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3365 			      pci_resource_len(pdev, 0));
3366 	if (!hw->hw_addr) {
3367 		err = -EIO;
3368 		goto err_ioremap;
3369 	}
3370 
3371 	ixgbevf_assign_netdev_ops(netdev);
3372 
3373 	adapter->bd_number = cards_found;
3374 
3375 	/* Setup hw api */
3376 	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3377 	hw->mac.type  = ii->mac;
3378 
3379 	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3380 	       sizeof(struct ixgbe_mbx_operations));
3381 
3382 	adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3383 	adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3384 	adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3385 
3386 	/* setup the private structure */
3387 	err = ixgbevf_sw_init(adapter);
3388 
3389 	netdev->hw_features = NETIF_F_SG |
3390 			   NETIF_F_IP_CSUM |
3391 			   NETIF_F_IPV6_CSUM |
3392 			   NETIF_F_TSO |
3393 			   NETIF_F_TSO6 |
3394 			   NETIF_F_RXCSUM;
3395 
3396 	netdev->features = netdev->hw_features |
3397 			   NETIF_F_HW_VLAN_TX |
3398 			   NETIF_F_HW_VLAN_RX |
3399 			   NETIF_F_HW_VLAN_FILTER;
3400 
3401 	netdev->vlan_features |= NETIF_F_TSO;
3402 	netdev->vlan_features |= NETIF_F_TSO6;
3403 	netdev->vlan_features |= NETIF_F_IP_CSUM;
3404 	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3405 	netdev->vlan_features |= NETIF_F_SG;
3406 
3407 	if (pci_using_dac)
3408 		netdev->features |= NETIF_F_HIGHDMA;
3409 
3410 	netdev->priv_flags |= IFF_UNICAST_FLT;
3411 
3412 	/* The HW MAC address was set and/or determined in sw_init */
3413 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3414 	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3415 
3416 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3417 		printk(KERN_ERR "invalid MAC address\n");
3418 		err = -EIO;
3419 		goto err_sw_init;
3420 	}
3421 
3422 	init_timer(&adapter->watchdog_timer);
3423 	adapter->watchdog_timer.function = ixgbevf_watchdog;
3424 	adapter->watchdog_timer.data = (unsigned long)adapter;
3425 
3426 	INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3427 	INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3428 
3429 	err = ixgbevf_init_interrupt_scheme(adapter);
3430 	if (err)
3431 		goto err_sw_init;
3432 
3433 	/* pick up the PCI bus settings for reporting later */
3434 	if (hw->mac.ops.get_bus_info)
3435 		hw->mac.ops.get_bus_info(hw);
3436 
3437 	strcpy(netdev->name, "eth%d");
3438 
3439 	err = register_netdev(netdev);
3440 	if (err)
3441 		goto err_register;
3442 
3443 	adapter->netdev_registered = true;
3444 
3445 	netif_carrier_off(netdev);
3446 
3447 	ixgbevf_init_last_counter_stats(adapter);
3448 
3449 	/* print the MAC address */
3450 	hw_dbg(hw, "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
3451 	       netdev->dev_addr[0],
3452 	       netdev->dev_addr[1],
3453 	       netdev->dev_addr[2],
3454 	       netdev->dev_addr[3],
3455 	       netdev->dev_addr[4],
3456 	       netdev->dev_addr[5]);
3457 
3458 	hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3459 
3460 	hw_dbg(hw, "LRO is disabled\n");
3461 
3462 	hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3463 	cards_found++;
3464 	return 0;
3465 
3466 err_register:
3467 err_sw_init:
3468 	ixgbevf_reset_interrupt_capability(adapter);
3469 	iounmap(hw->hw_addr);
3470 err_ioremap:
3471 	free_netdev(netdev);
3472 err_alloc_etherdev:
3473 	pci_release_regions(pdev);
3474 err_pci_reg:
3475 err_dma:
3476 	pci_disable_device(pdev);
3477 	return err;
3478 }
3479 
3480 /**
3481  * ixgbevf_remove - Device Removal Routine
3482  * @pdev: PCI device information struct
3483  *
3484  * ixgbevf_remove is called by the PCI subsystem to alert the driver
3485  * that it should release a PCI device.  The could be caused by a
3486  * Hot-Plug event, or because the driver is going to be removed from
3487  * memory.
3488  **/
3489 static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3490 {
3491 	struct net_device *netdev = pci_get_drvdata(pdev);
3492 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3493 
3494 	set_bit(__IXGBEVF_DOWN, &adapter->state);
3495 
3496 	del_timer_sync(&adapter->watchdog_timer);
3497 
3498 	cancel_work_sync(&adapter->reset_task);
3499 	cancel_work_sync(&adapter->watchdog_task);
3500 
3501 	if (adapter->netdev_registered) {
3502 		unregister_netdev(netdev);
3503 		adapter->netdev_registered = false;
3504 	}
3505 
3506 	ixgbevf_reset_interrupt_capability(adapter);
3507 
3508 	iounmap(adapter->hw.hw_addr);
3509 	pci_release_regions(pdev);
3510 
3511 	hw_dbg(&adapter->hw, "Remove complete\n");
3512 
3513 	kfree(adapter->tx_ring);
3514 	kfree(adapter->rx_ring);
3515 
3516 	free_netdev(netdev);
3517 
3518 	pci_disable_device(pdev);
3519 }
3520 
3521 static struct pci_driver ixgbevf_driver = {
3522 	.name     = ixgbevf_driver_name,
3523 	.id_table = ixgbevf_pci_tbl,
3524 	.probe    = ixgbevf_probe,
3525 	.remove   = __devexit_p(ixgbevf_remove),
3526 	.shutdown = ixgbevf_shutdown,
3527 };
3528 
3529 /**
3530  * ixgbevf_init_module - Driver Registration Routine
3531  *
3532  * ixgbevf_init_module is the first routine called when the driver is
3533  * loaded. All it does is register with the PCI subsystem.
3534  **/
3535 static int __init ixgbevf_init_module(void)
3536 {
3537 	int ret;
3538 	printk(KERN_INFO "ixgbevf: %s - version %s\n", ixgbevf_driver_string,
3539 	       ixgbevf_driver_version);
3540 
3541 	printk(KERN_INFO "%s\n", ixgbevf_copyright);
3542 
3543 	ret = pci_register_driver(&ixgbevf_driver);
3544 	return ret;
3545 }
3546 
3547 module_init(ixgbevf_init_module);
3548 
3549 /**
3550  * ixgbevf_exit_module - Driver Exit Cleanup Routine
3551  *
3552  * ixgbevf_exit_module is called just before the driver is removed
3553  * from memory.
3554  **/
3555 static void __exit ixgbevf_exit_module(void)
3556 {
3557 	pci_unregister_driver(&ixgbevf_driver);
3558 }
3559 
3560 #ifdef DEBUG
3561 /**
3562  * ixgbevf_get_hw_dev_name - return device name string
3563  * used by hardware layer to print debugging information
3564  **/
3565 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3566 {
3567 	struct ixgbevf_adapter *adapter = hw->back;
3568 	return adapter->netdev->name;
3569 }
3570 
3571 #endif
3572 module_exit(ixgbevf_exit_module);
3573 
3574 /* ixgbevf_main.c */
3575