1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2024 Intel Corporation. */ 3 4 /****************************************************************************** 5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 6 ******************************************************************************/ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/types.h> 11 #include <linux/bitops.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/in.h> 18 #include <linux/ip.h> 19 #include <linux/tcp.h> 20 #include <linux/sctp.h> 21 #include <linux/ipv6.h> 22 #include <linux/slab.h> 23 #include <net/checksum.h> 24 #include <net/ip6_checksum.h> 25 #include <linux/ethtool.h> 26 #include <linux/if.h> 27 #include <linux/if_vlan.h> 28 #include <linux/prefetch.h> 29 #include <net/mpls.h> 30 #include <linux/bpf.h> 31 #include <linux/bpf_trace.h> 32 #include <linux/atomic.h> 33 #include <net/xfrm.h> 34 35 #include "ixgbevf.h" 36 37 const char ixgbevf_driver_name[] = "ixgbevf"; 38 static const char ixgbevf_driver_string[] = 39 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 40 41 static char ixgbevf_copyright[] = 42 "Copyright (c) 2009 - 2024 Intel Corporation."; 43 44 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 45 [board_82599_vf] = &ixgbevf_82599_vf_info, 46 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 47 [board_X540_vf] = &ixgbevf_X540_vf_info, 48 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 49 [board_X550_vf] = &ixgbevf_X550_vf_info, 50 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 51 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 52 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 53 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 54 [board_e610_vf] = &ixgbevf_e610_vf_info, 55 [board_e610_vf_hv] = &ixgbevf_e610_vf_hv_info, 56 }; 57 58 /* ixgbevf_pci_tbl - PCI Device ID Table 59 * 60 * Wildcard entries (PCI_ANY_ID) should come last 61 * Last entry must be all 0s 62 * 63 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 64 * Class, Class Mask, private data (not used) } 65 */ 66 static const struct pci_device_id ixgbevf_pci_tbl[] = { 67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 74 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 75 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 76 {PCI_VDEVICE_SUB(INTEL, IXGBE_DEV_ID_E610_VF, PCI_ANY_ID, 77 IXGBE_SUBDEV_ID_E610_VF_HV), board_e610_vf_hv}, 78 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_E610_VF), board_e610_vf}, 79 /* required last entry */ 80 {0, } 81 }; 82 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 83 84 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 85 MODULE_LICENSE("GPL v2"); 86 87 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 88 static int debug = -1; 89 module_param(debug, int, 0); 90 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 91 92 static struct workqueue_struct *ixgbevf_wq; 93 94 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 95 { 96 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 97 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 98 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 99 queue_work(ixgbevf_wq, &adapter->service_task); 100 } 101 102 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 103 { 104 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 105 106 /* flush memory to make sure state is correct before next watchdog */ 107 smp_mb__before_atomic(); 108 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 109 } 110 111 /* forward decls */ 112 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 113 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 114 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 115 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer); 116 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 117 struct ixgbevf_rx_buffer *old_buff); 118 119 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 120 { 121 struct ixgbevf_adapter *adapter = hw->back; 122 123 if (!hw->hw_addr) 124 return; 125 hw->hw_addr = NULL; 126 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 127 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 128 ixgbevf_service_event_schedule(adapter); 129 } 130 131 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 132 { 133 u32 value; 134 135 /* The following check not only optimizes a bit by not 136 * performing a read on the status register when the 137 * register just read was a status register read that 138 * returned IXGBE_FAILED_READ_REG. It also blocks any 139 * potential recursion. 140 */ 141 if (reg == IXGBE_VFSTATUS) { 142 ixgbevf_remove_adapter(hw); 143 return; 144 } 145 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 146 if (value == IXGBE_FAILED_READ_REG) 147 ixgbevf_remove_adapter(hw); 148 } 149 150 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 151 { 152 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 153 u32 value; 154 155 if (IXGBE_REMOVED(reg_addr)) 156 return IXGBE_FAILED_READ_REG; 157 value = readl(reg_addr + reg); 158 if (unlikely(value == IXGBE_FAILED_READ_REG)) 159 ixgbevf_check_remove(hw, reg); 160 return value; 161 } 162 163 /** 164 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 165 * @adapter: pointer to adapter struct 166 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 167 * @queue: queue to map the corresponding interrupt to 168 * @msix_vector: the vector to map to the corresponding queue 169 **/ 170 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 171 u8 queue, u8 msix_vector) 172 { 173 u32 ivar, index; 174 struct ixgbe_hw *hw = &adapter->hw; 175 176 if (direction == -1) { 177 /* other causes */ 178 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 179 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 180 ivar &= ~0xFF; 181 ivar |= msix_vector; 182 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 183 } else { 184 /* Tx or Rx causes */ 185 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 186 index = ((16 * (queue & 1)) + (8 * direction)); 187 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 188 ivar &= ~(0xFF << index); 189 ivar |= (msix_vector << index); 190 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 191 } 192 } 193 194 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 195 { 196 return ring->stats.packets; 197 } 198 199 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 200 { 201 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 202 struct ixgbe_hw *hw = &adapter->hw; 203 204 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 205 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 206 207 if (head != tail) 208 return (head < tail) ? 209 tail - head : (tail + ring->count - head); 210 211 return 0; 212 } 213 214 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 215 { 216 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 217 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 218 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 219 220 clear_check_for_tx_hang(tx_ring); 221 222 /* Check for a hung queue, but be thorough. This verifies 223 * that a transmit has been completed since the previous 224 * check AND there is at least one packet pending. The 225 * ARMED bit is set to indicate a potential hang. 226 */ 227 if ((tx_done_old == tx_done) && tx_pending) { 228 /* make sure it is true for two checks in a row */ 229 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 230 &tx_ring->state); 231 } 232 /* reset the countdown */ 233 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 234 235 /* update completed stats and continue */ 236 tx_ring->tx_stats.tx_done_old = tx_done; 237 238 return false; 239 } 240 241 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 242 { 243 /* Do the reset outside of interrupt context */ 244 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 245 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 246 ixgbevf_service_event_schedule(adapter); 247 } 248 } 249 250 /** 251 * ixgbevf_tx_timeout - Respond to a Tx Hang 252 * @netdev: network interface device structure 253 * @txqueue: transmit queue hanging (unused) 254 **/ 255 static void ixgbevf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) 256 { 257 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 258 259 ixgbevf_tx_timeout_reset(adapter); 260 } 261 262 /** 263 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 264 * @q_vector: board private structure 265 * @tx_ring: tx ring to clean 266 * @napi_budget: Used to determine if we are in netpoll 267 **/ 268 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 269 struct ixgbevf_ring *tx_ring, int napi_budget) 270 { 271 struct ixgbevf_adapter *adapter = q_vector->adapter; 272 struct ixgbevf_tx_buffer *tx_buffer; 273 union ixgbe_adv_tx_desc *tx_desc; 274 unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0; 275 unsigned int budget = tx_ring->count / 2; 276 unsigned int i = tx_ring->next_to_clean; 277 278 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 279 return true; 280 281 tx_buffer = &tx_ring->tx_buffer_info[i]; 282 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 283 i -= tx_ring->count; 284 285 do { 286 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 287 288 /* if next_to_watch is not set then there is no work pending */ 289 if (!eop_desc) 290 break; 291 292 /* prevent any other reads prior to eop_desc */ 293 smp_rmb(); 294 295 /* if DD is not set pending work has not been completed */ 296 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 297 break; 298 299 /* clear next_to_watch to prevent false hangs */ 300 tx_buffer->next_to_watch = NULL; 301 302 /* update the statistics for this packet */ 303 total_bytes += tx_buffer->bytecount; 304 total_packets += tx_buffer->gso_segs; 305 if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC) 306 total_ipsec++; 307 308 /* free the skb */ 309 if (ring_is_xdp(tx_ring)) 310 page_frag_free(tx_buffer->data); 311 else 312 napi_consume_skb(tx_buffer->skb, napi_budget); 313 314 /* unmap skb header data */ 315 dma_unmap_single(tx_ring->dev, 316 dma_unmap_addr(tx_buffer, dma), 317 dma_unmap_len(tx_buffer, len), 318 DMA_TO_DEVICE); 319 320 /* clear tx_buffer data */ 321 dma_unmap_len_set(tx_buffer, len, 0); 322 323 /* unmap remaining buffers */ 324 while (tx_desc != eop_desc) { 325 tx_buffer++; 326 tx_desc++; 327 i++; 328 if (unlikely(!i)) { 329 i -= tx_ring->count; 330 tx_buffer = tx_ring->tx_buffer_info; 331 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 332 } 333 334 /* unmap any remaining paged data */ 335 if (dma_unmap_len(tx_buffer, len)) { 336 dma_unmap_page(tx_ring->dev, 337 dma_unmap_addr(tx_buffer, dma), 338 dma_unmap_len(tx_buffer, len), 339 DMA_TO_DEVICE); 340 dma_unmap_len_set(tx_buffer, len, 0); 341 } 342 } 343 344 /* move us one more past the eop_desc for start of next pkt */ 345 tx_buffer++; 346 tx_desc++; 347 i++; 348 if (unlikely(!i)) { 349 i -= tx_ring->count; 350 tx_buffer = tx_ring->tx_buffer_info; 351 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 352 } 353 354 /* issue prefetch for next Tx descriptor */ 355 prefetch(tx_desc); 356 357 /* update budget accounting */ 358 budget--; 359 } while (likely(budget)); 360 361 i += tx_ring->count; 362 tx_ring->next_to_clean = i; 363 u64_stats_update_begin(&tx_ring->syncp); 364 tx_ring->stats.bytes += total_bytes; 365 tx_ring->stats.packets += total_packets; 366 u64_stats_update_end(&tx_ring->syncp); 367 q_vector->tx.total_bytes += total_bytes; 368 q_vector->tx.total_packets += total_packets; 369 adapter->tx_ipsec += total_ipsec; 370 371 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 372 struct ixgbe_hw *hw = &adapter->hw; 373 union ixgbe_adv_tx_desc *eop_desc; 374 375 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 376 377 pr_err("Detected Tx Unit Hang%s\n" 378 " Tx Queue <%d>\n" 379 " TDH, TDT <%x>, <%x>\n" 380 " next_to_use <%x>\n" 381 " next_to_clean <%x>\n" 382 "tx_buffer_info[next_to_clean]\n" 383 " next_to_watch <%p>\n" 384 " eop_desc->wb.status <%x>\n" 385 " time_stamp <%lx>\n" 386 " jiffies <%lx>\n", 387 ring_is_xdp(tx_ring) ? " XDP" : "", 388 tx_ring->queue_index, 389 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 390 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 391 tx_ring->next_to_use, i, 392 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 393 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 394 395 if (!ring_is_xdp(tx_ring)) 396 netif_stop_subqueue(tx_ring->netdev, 397 tx_ring->queue_index); 398 399 /* schedule immediate reset if we believe we hung */ 400 ixgbevf_tx_timeout_reset(adapter); 401 402 return true; 403 } 404 405 if (ring_is_xdp(tx_ring)) 406 return !!budget; 407 408 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 409 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 410 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 411 /* Make sure that anybody stopping the queue after this 412 * sees the new next_to_clean. 413 */ 414 smp_mb(); 415 416 if (__netif_subqueue_stopped(tx_ring->netdev, 417 tx_ring->queue_index) && 418 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 419 netif_wake_subqueue(tx_ring->netdev, 420 tx_ring->queue_index); 421 ++tx_ring->tx_stats.restart_queue; 422 } 423 } 424 425 return !!budget; 426 } 427 428 /** 429 * ixgbevf_rx_skb - Helper function to determine proper Rx method 430 * @q_vector: structure containing interrupt and ring information 431 * @skb: packet to send up 432 **/ 433 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 434 struct sk_buff *skb) 435 { 436 napi_gro_receive(&q_vector->napi, skb); 437 } 438 439 #define IXGBE_RSS_L4_TYPES_MASK \ 440 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 441 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 442 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 443 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 444 445 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 446 union ixgbe_adv_rx_desc *rx_desc, 447 struct sk_buff *skb) 448 { 449 u16 rss_type; 450 451 if (!(ring->netdev->features & NETIF_F_RXHASH)) 452 return; 453 454 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 455 IXGBE_RXDADV_RSSTYPE_MASK; 456 457 if (!rss_type) 458 return; 459 460 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 461 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 462 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 463 } 464 465 /** 466 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 467 * @ring: structure containig ring specific data 468 * @rx_desc: current Rx descriptor being processed 469 * @skb: skb currently being received and modified 470 **/ 471 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 472 union ixgbe_adv_rx_desc *rx_desc, 473 struct sk_buff *skb) 474 { 475 skb_checksum_none_assert(skb); 476 477 /* Rx csum disabled */ 478 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 479 return; 480 481 /* if IP and error */ 482 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 483 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 484 ring->rx_stats.csum_err++; 485 return; 486 } 487 488 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 489 return; 490 491 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 492 ring->rx_stats.csum_err++; 493 return; 494 } 495 496 /* It must be a TCP or UDP packet with a valid checksum */ 497 skb->ip_summed = CHECKSUM_UNNECESSARY; 498 } 499 500 /** 501 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 502 * @rx_ring: rx descriptor ring packet is being transacted on 503 * @rx_desc: pointer to the EOP Rx descriptor 504 * @skb: pointer to current skb being populated 505 * 506 * This function checks the ring, descriptor, and packet information in 507 * order to populate the checksum, VLAN, protocol, and other fields within 508 * the skb. 509 **/ 510 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 511 union ixgbe_adv_rx_desc *rx_desc, 512 struct sk_buff *skb) 513 { 514 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 515 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 516 517 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 518 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 519 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 520 521 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 522 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 523 } 524 525 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP)) 526 ixgbevf_ipsec_rx(rx_ring, rx_desc, skb); 527 528 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 529 } 530 531 static 532 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring, 533 const unsigned int size) 534 { 535 struct ixgbevf_rx_buffer *rx_buffer; 536 537 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 538 prefetchw(rx_buffer->page); 539 540 /* we are reusing so sync this buffer for CPU use */ 541 dma_sync_single_range_for_cpu(rx_ring->dev, 542 rx_buffer->dma, 543 rx_buffer->page_offset, 544 size, 545 DMA_FROM_DEVICE); 546 547 rx_buffer->pagecnt_bias--; 548 549 return rx_buffer; 550 } 551 552 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring, 553 struct ixgbevf_rx_buffer *rx_buffer, 554 struct sk_buff *skb) 555 { 556 if (ixgbevf_can_reuse_rx_page(rx_buffer)) { 557 /* hand second half of page back to the ring */ 558 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 559 } else { 560 if (IS_ERR(skb)) 561 /* We are not reusing the buffer so unmap it and free 562 * any references we are holding to it 563 */ 564 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 565 ixgbevf_rx_pg_size(rx_ring), 566 DMA_FROM_DEVICE, 567 IXGBEVF_RX_DMA_ATTR); 568 __page_frag_cache_drain(rx_buffer->page, 569 rx_buffer->pagecnt_bias); 570 } 571 572 /* clear contents of rx_buffer */ 573 rx_buffer->page = NULL; 574 } 575 576 /** 577 * ixgbevf_is_non_eop - process handling of non-EOP buffers 578 * @rx_ring: Rx ring being processed 579 * @rx_desc: Rx descriptor for current buffer 580 * 581 * This function updates next to clean. If the buffer is an EOP buffer 582 * this function exits returning false, otherwise it will place the 583 * sk_buff in the next buffer to be chained and return true indicating 584 * that this is in fact a non-EOP buffer. 585 **/ 586 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 587 union ixgbe_adv_rx_desc *rx_desc) 588 { 589 u32 ntc = rx_ring->next_to_clean + 1; 590 591 /* fetch, update, and store next to clean */ 592 ntc = (ntc < rx_ring->count) ? ntc : 0; 593 rx_ring->next_to_clean = ntc; 594 595 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 596 597 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 598 return false; 599 600 return true; 601 } 602 603 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring) 604 { 605 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0; 606 } 607 608 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 609 struct ixgbevf_rx_buffer *bi) 610 { 611 struct page *page = bi->page; 612 dma_addr_t dma; 613 614 /* since we are recycling buffers we should seldom need to alloc */ 615 if (likely(page)) 616 return true; 617 618 /* alloc new page for storage */ 619 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring)); 620 if (unlikely(!page)) { 621 rx_ring->rx_stats.alloc_rx_page_failed++; 622 return false; 623 } 624 625 /* map page for use */ 626 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 627 ixgbevf_rx_pg_size(rx_ring), 628 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); 629 630 /* if mapping failed free memory back to system since 631 * there isn't much point in holding memory we can't use 632 */ 633 if (dma_mapping_error(rx_ring->dev, dma)) { 634 __free_pages(page, ixgbevf_rx_pg_order(rx_ring)); 635 636 rx_ring->rx_stats.alloc_rx_page_failed++; 637 return false; 638 } 639 640 bi->dma = dma; 641 bi->page = page; 642 bi->page_offset = ixgbevf_rx_offset(rx_ring); 643 bi->pagecnt_bias = 1; 644 rx_ring->rx_stats.alloc_rx_page++; 645 646 return true; 647 } 648 649 /** 650 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 651 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 652 * @cleaned_count: number of buffers to replace 653 **/ 654 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 655 u16 cleaned_count) 656 { 657 union ixgbe_adv_rx_desc *rx_desc; 658 struct ixgbevf_rx_buffer *bi; 659 unsigned int i = rx_ring->next_to_use; 660 661 /* nothing to do or no valid netdev defined */ 662 if (!cleaned_count || !rx_ring->netdev) 663 return; 664 665 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 666 bi = &rx_ring->rx_buffer_info[i]; 667 i -= rx_ring->count; 668 669 do { 670 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 671 break; 672 673 /* sync the buffer for use by the device */ 674 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 675 bi->page_offset, 676 ixgbevf_rx_bufsz(rx_ring), 677 DMA_FROM_DEVICE); 678 679 /* Refresh the desc even if pkt_addr didn't change 680 * because each write-back erases this info. 681 */ 682 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 683 684 rx_desc++; 685 bi++; 686 i++; 687 if (unlikely(!i)) { 688 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 689 bi = rx_ring->rx_buffer_info; 690 i -= rx_ring->count; 691 } 692 693 /* clear the length for the next_to_use descriptor */ 694 rx_desc->wb.upper.length = 0; 695 696 cleaned_count--; 697 } while (cleaned_count); 698 699 i += rx_ring->count; 700 701 if (rx_ring->next_to_use != i) { 702 /* record the next descriptor to use */ 703 rx_ring->next_to_use = i; 704 705 /* update next to alloc since we have filled the ring */ 706 rx_ring->next_to_alloc = i; 707 708 /* Force memory writes to complete before letting h/w 709 * know there are new descriptors to fetch. (Only 710 * applicable for weak-ordered memory model archs, 711 * such as IA-64). 712 */ 713 wmb(); 714 ixgbevf_write_tail(rx_ring, i); 715 } 716 } 717 718 /** 719 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 720 * @rx_ring: rx descriptor ring packet is being transacted on 721 * @rx_desc: pointer to the EOP Rx descriptor 722 * @skb: pointer to current skb being fixed 723 * 724 * Check for corrupted packet headers caused by senders on the local L2 725 * embedded NIC switch not setting up their Tx Descriptors right. These 726 * should be very rare. 727 * 728 * Also address the case where we are pulling data in on pages only 729 * and as such no data is present in the skb header. 730 * 731 * In addition if skb is not at least 60 bytes we need to pad it so that 732 * it is large enough to qualify as a valid Ethernet frame. 733 * 734 * Returns true if an error was encountered and skb was freed. 735 **/ 736 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 737 union ixgbe_adv_rx_desc *rx_desc, 738 struct sk_buff *skb) 739 { 740 /* verify that the packet does not have any known errors */ 741 if (unlikely(ixgbevf_test_staterr(rx_desc, 742 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 743 struct net_device *netdev = rx_ring->netdev; 744 745 if (!(netdev->features & NETIF_F_RXALL)) { 746 dev_kfree_skb_any(skb); 747 return true; 748 } 749 } 750 751 /* if eth_skb_pad returns an error the skb was freed */ 752 if (eth_skb_pad(skb)) 753 return true; 754 755 return false; 756 } 757 758 /** 759 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 760 * @rx_ring: rx descriptor ring to store buffers on 761 * @old_buff: donor buffer to have page reused 762 * 763 * Synchronizes page for reuse by the adapter 764 **/ 765 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 766 struct ixgbevf_rx_buffer *old_buff) 767 { 768 struct ixgbevf_rx_buffer *new_buff; 769 u16 nta = rx_ring->next_to_alloc; 770 771 new_buff = &rx_ring->rx_buffer_info[nta]; 772 773 /* update, and store next to alloc */ 774 nta++; 775 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 776 777 /* transfer page from old buffer to new buffer */ 778 new_buff->page = old_buff->page; 779 new_buff->dma = old_buff->dma; 780 new_buff->page_offset = old_buff->page_offset; 781 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 782 } 783 784 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer) 785 { 786 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 787 struct page *page = rx_buffer->page; 788 789 /* avoid re-using remote and pfmemalloc pages */ 790 if (!dev_page_is_reusable(page)) 791 return false; 792 793 #if (PAGE_SIZE < 8192) 794 /* if we are only owner of page we can reuse it */ 795 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 796 return false; 797 #else 798 #define IXGBEVF_LAST_OFFSET \ 799 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048) 800 801 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET) 802 return false; 803 804 #endif 805 806 /* If we have drained the page fragment pool we need to update 807 * the pagecnt_bias and page count so that we fully restock the 808 * number of references the driver holds. 809 */ 810 if (unlikely(!pagecnt_bias)) { 811 page_ref_add(page, USHRT_MAX); 812 rx_buffer->pagecnt_bias = USHRT_MAX; 813 } 814 815 return true; 816 } 817 818 /** 819 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 820 * @rx_ring: rx descriptor ring to transact packets on 821 * @rx_buffer: buffer containing page to add 822 * @skb: sk_buff to place the data into 823 * @size: size of buffer to be added 824 * 825 * This function will add the data contained in rx_buffer->page to the skb. 826 **/ 827 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 828 struct ixgbevf_rx_buffer *rx_buffer, 829 struct sk_buff *skb, 830 unsigned int size) 831 { 832 #if (PAGE_SIZE < 8192) 833 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 834 #else 835 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 836 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 837 SKB_DATA_ALIGN(size); 838 #endif 839 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 840 rx_buffer->page_offset, size, truesize); 841 #if (PAGE_SIZE < 8192) 842 rx_buffer->page_offset ^= truesize; 843 #else 844 rx_buffer->page_offset += truesize; 845 #endif 846 } 847 848 static 849 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring, 850 struct ixgbevf_rx_buffer *rx_buffer, 851 struct xdp_buff *xdp, 852 union ixgbe_adv_rx_desc *rx_desc) 853 { 854 unsigned int size = xdp->data_end - xdp->data; 855 #if (PAGE_SIZE < 8192) 856 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 857 #else 858 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 859 xdp->data_hard_start); 860 #endif 861 unsigned int headlen; 862 struct sk_buff *skb; 863 864 /* prefetch first cache line of first page */ 865 net_prefetch(xdp->data); 866 867 /* Note, we get here by enabling legacy-rx via: 868 * 869 * ethtool --set-priv-flags <dev> legacy-rx on 870 * 871 * In this mode, we currently get 0 extra XDP headroom as 872 * opposed to having legacy-rx off, where we process XDP 873 * packets going to stack via ixgbevf_build_skb(). 874 * 875 * For ixgbevf_construct_skb() mode it means that the 876 * xdp->data_meta will always point to xdp->data, since 877 * the helper cannot expand the head. Should this ever 878 * changed in future for legacy-rx mode on, then lets also 879 * add xdp->data_meta handling here. 880 */ 881 882 /* allocate a skb to store the frags */ 883 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE); 884 if (unlikely(!skb)) 885 return NULL; 886 887 /* Determine available headroom for copy */ 888 headlen = size; 889 if (headlen > IXGBEVF_RX_HDR_SIZE) 890 headlen = eth_get_headlen(skb->dev, xdp->data, 891 IXGBEVF_RX_HDR_SIZE); 892 893 /* align pull length to size of long to optimize memcpy performance */ 894 memcpy(__skb_put(skb, headlen), xdp->data, 895 ALIGN(headlen, sizeof(long))); 896 897 /* update all of the pointers */ 898 size -= headlen; 899 if (size) { 900 skb_add_rx_frag(skb, 0, rx_buffer->page, 901 (xdp->data + headlen) - 902 page_address(rx_buffer->page), 903 size, truesize); 904 #if (PAGE_SIZE < 8192) 905 rx_buffer->page_offset ^= truesize; 906 #else 907 rx_buffer->page_offset += truesize; 908 #endif 909 } else { 910 rx_buffer->pagecnt_bias++; 911 } 912 913 return skb; 914 } 915 916 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 917 u32 qmask) 918 { 919 struct ixgbe_hw *hw = &adapter->hw; 920 921 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 922 } 923 924 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring, 925 struct ixgbevf_rx_buffer *rx_buffer, 926 struct xdp_buff *xdp, 927 union ixgbe_adv_rx_desc *rx_desc) 928 { 929 unsigned int metasize = xdp->data - xdp->data_meta; 930 #if (PAGE_SIZE < 8192) 931 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 932 #else 933 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 934 SKB_DATA_ALIGN(xdp->data_end - 935 xdp->data_hard_start); 936 #endif 937 struct sk_buff *skb; 938 939 /* Prefetch first cache line of first page. If xdp->data_meta 940 * is unused, this points to xdp->data, otherwise, we likely 941 * have a consumer accessing first few bytes of meta data, 942 * and then actual data. 943 */ 944 net_prefetch(xdp->data_meta); 945 946 /* build an skb around the page buffer */ 947 skb = napi_build_skb(xdp->data_hard_start, truesize); 948 if (unlikely(!skb)) 949 return NULL; 950 951 /* update pointers within the skb to store the data */ 952 skb_reserve(skb, xdp->data - xdp->data_hard_start); 953 __skb_put(skb, xdp->data_end - xdp->data); 954 if (metasize) 955 skb_metadata_set(skb, metasize); 956 957 /* update buffer offset */ 958 #if (PAGE_SIZE < 8192) 959 rx_buffer->page_offset ^= truesize; 960 #else 961 rx_buffer->page_offset += truesize; 962 #endif 963 964 return skb; 965 } 966 967 #define IXGBEVF_XDP_PASS 0 968 #define IXGBEVF_XDP_CONSUMED 1 969 #define IXGBEVF_XDP_TX 2 970 971 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring, 972 struct xdp_buff *xdp) 973 { 974 struct ixgbevf_tx_buffer *tx_buffer; 975 union ixgbe_adv_tx_desc *tx_desc; 976 u32 len, cmd_type; 977 dma_addr_t dma; 978 u16 i; 979 980 len = xdp->data_end - xdp->data; 981 982 if (unlikely(!ixgbevf_desc_unused(ring))) 983 return IXGBEVF_XDP_CONSUMED; 984 985 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE); 986 if (dma_mapping_error(ring->dev, dma)) 987 return IXGBEVF_XDP_CONSUMED; 988 989 /* record the location of the first descriptor for this packet */ 990 i = ring->next_to_use; 991 tx_buffer = &ring->tx_buffer_info[i]; 992 993 dma_unmap_len_set(tx_buffer, len, len); 994 dma_unmap_addr_set(tx_buffer, dma, dma); 995 tx_buffer->data = xdp->data; 996 tx_buffer->bytecount = len; 997 tx_buffer->gso_segs = 1; 998 tx_buffer->protocol = 0; 999 1000 /* Populate minimal context descriptor that will provide for the 1001 * fact that we are expected to process Ethernet frames. 1002 */ 1003 if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) { 1004 struct ixgbe_adv_tx_context_desc *context_desc; 1005 1006 set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1007 1008 context_desc = IXGBEVF_TX_CTXTDESC(ring, 0); 1009 context_desc->vlan_macip_lens = 1010 cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT); 1011 context_desc->fceof_saidx = 0; 1012 context_desc->type_tucmd_mlhl = 1013 cpu_to_le32(IXGBE_TXD_CMD_DEXT | 1014 IXGBE_ADVTXD_DTYP_CTXT); 1015 context_desc->mss_l4len_idx = 0; 1016 1017 i = 1; 1018 } 1019 1020 /* put descriptor type bits */ 1021 cmd_type = IXGBE_ADVTXD_DTYP_DATA | 1022 IXGBE_ADVTXD_DCMD_DEXT | 1023 IXGBE_ADVTXD_DCMD_IFCS; 1024 cmd_type |= len | IXGBE_TXD_CMD; 1025 1026 tx_desc = IXGBEVF_TX_DESC(ring, i); 1027 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1028 1029 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1030 tx_desc->read.olinfo_status = 1031 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) | 1032 IXGBE_ADVTXD_CC); 1033 1034 /* Avoid any potential race with cleanup */ 1035 smp_wmb(); 1036 1037 /* set next_to_watch value indicating a packet is present */ 1038 i++; 1039 if (i == ring->count) 1040 i = 0; 1041 1042 tx_buffer->next_to_watch = tx_desc; 1043 ring->next_to_use = i; 1044 1045 return IXGBEVF_XDP_TX; 1046 } 1047 1048 static int ixgbevf_run_xdp(struct ixgbevf_adapter *adapter, 1049 struct ixgbevf_ring *rx_ring, 1050 struct xdp_buff *xdp) 1051 { 1052 int result = IXGBEVF_XDP_PASS; 1053 struct ixgbevf_ring *xdp_ring; 1054 struct bpf_prog *xdp_prog; 1055 u32 act; 1056 1057 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1058 1059 if (!xdp_prog) 1060 goto xdp_out; 1061 1062 act = bpf_prog_run_xdp(xdp_prog, xdp); 1063 switch (act) { 1064 case XDP_PASS: 1065 break; 1066 case XDP_TX: 1067 xdp_ring = adapter->xdp_ring[rx_ring->queue_index]; 1068 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp); 1069 if (result == IXGBEVF_XDP_CONSUMED) 1070 goto out_failure; 1071 break; 1072 default: 1073 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 1074 fallthrough; 1075 case XDP_ABORTED: 1076 out_failure: 1077 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 1078 fallthrough; /* handle aborts by dropping packet */ 1079 case XDP_DROP: 1080 result = IXGBEVF_XDP_CONSUMED; 1081 break; 1082 } 1083 xdp_out: 1084 return result; 1085 } 1086 1087 static unsigned int ixgbevf_rx_frame_truesize(struct ixgbevf_ring *rx_ring, 1088 unsigned int size) 1089 { 1090 unsigned int truesize; 1091 1092 #if (PAGE_SIZE < 8192) 1093 truesize = ixgbevf_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 1094 #else 1095 truesize = ring_uses_build_skb(rx_ring) ? 1096 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) + 1097 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 1098 SKB_DATA_ALIGN(size); 1099 #endif 1100 return truesize; 1101 } 1102 1103 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring, 1104 struct ixgbevf_rx_buffer *rx_buffer, 1105 unsigned int size) 1106 { 1107 unsigned int truesize = ixgbevf_rx_frame_truesize(rx_ring, size); 1108 1109 #if (PAGE_SIZE < 8192) 1110 rx_buffer->page_offset ^= truesize; 1111 #else 1112 rx_buffer->page_offset += truesize; 1113 #endif 1114 } 1115 1116 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 1117 struct ixgbevf_ring *rx_ring, 1118 int budget) 1119 { 1120 unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0; 1121 struct ixgbevf_adapter *adapter = q_vector->adapter; 1122 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 1123 struct sk_buff *skb = rx_ring->skb; 1124 bool xdp_xmit = false; 1125 struct xdp_buff xdp; 1126 int xdp_res = 0; 1127 1128 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1129 #if (PAGE_SIZE < 8192) 1130 frame_sz = ixgbevf_rx_frame_truesize(rx_ring, 0); 1131 #endif 1132 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 1133 1134 while (likely(total_rx_packets < budget)) { 1135 struct ixgbevf_rx_buffer *rx_buffer; 1136 union ixgbe_adv_rx_desc *rx_desc; 1137 unsigned int size; 1138 1139 /* return some buffers to hardware, one at a time is too slow */ 1140 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 1141 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 1142 cleaned_count = 0; 1143 } 1144 1145 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1146 size = le16_to_cpu(rx_desc->wb.upper.length); 1147 if (!size) 1148 break; 1149 1150 /* This memory barrier is needed to keep us from reading 1151 * any other fields out of the rx_desc until we know the 1152 * RXD_STAT_DD bit is set 1153 */ 1154 rmb(); 1155 1156 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size); 1157 1158 /* retrieve a buffer from the ring */ 1159 if (!skb) { 1160 unsigned int offset = ixgbevf_rx_offset(rx_ring); 1161 unsigned char *hard_start; 1162 1163 hard_start = page_address(rx_buffer->page) + 1164 rx_buffer->page_offset - offset; 1165 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 1166 #if (PAGE_SIZE > 4096) 1167 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1168 xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, size); 1169 #endif 1170 xdp_res = ixgbevf_run_xdp(adapter, rx_ring, &xdp); 1171 } 1172 1173 if (xdp_res) { 1174 if (xdp_res == IXGBEVF_XDP_TX) { 1175 xdp_xmit = true; 1176 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer, 1177 size); 1178 } else { 1179 rx_buffer->pagecnt_bias++; 1180 } 1181 total_rx_packets++; 1182 total_rx_bytes += size; 1183 } else if (skb) { 1184 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1185 } else if (ring_uses_build_skb(rx_ring)) { 1186 skb = ixgbevf_build_skb(rx_ring, rx_buffer, 1187 &xdp, rx_desc); 1188 } else { 1189 skb = ixgbevf_construct_skb(rx_ring, rx_buffer, 1190 &xdp, rx_desc); 1191 } 1192 1193 /* exit if we failed to retrieve a buffer */ 1194 if (!xdp_res && !skb) { 1195 rx_ring->rx_stats.alloc_rx_buff_failed++; 1196 rx_buffer->pagecnt_bias++; 1197 break; 1198 } 1199 1200 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb); 1201 cleaned_count++; 1202 1203 /* fetch next buffer in frame if non-eop */ 1204 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 1205 continue; 1206 1207 /* verify the packet layout is correct */ 1208 if (xdp_res || ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 1209 skb = NULL; 1210 continue; 1211 } 1212 1213 /* probably a little skewed due to removing CRC */ 1214 total_rx_bytes += skb->len; 1215 1216 /* Workaround hardware that can't do proper VEPA multicast 1217 * source pruning. 1218 */ 1219 if ((skb->pkt_type == PACKET_BROADCAST || 1220 skb->pkt_type == PACKET_MULTICAST) && 1221 ether_addr_equal(rx_ring->netdev->dev_addr, 1222 eth_hdr(skb)->h_source)) { 1223 dev_kfree_skb_irq(skb); 1224 continue; 1225 } 1226 1227 /* populate checksum, VLAN, and protocol */ 1228 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 1229 1230 ixgbevf_rx_skb(q_vector, skb); 1231 1232 /* reset skb pointer */ 1233 skb = NULL; 1234 1235 /* update budget accounting */ 1236 total_rx_packets++; 1237 } 1238 1239 /* place incomplete frames back on ring for completion */ 1240 rx_ring->skb = skb; 1241 1242 if (xdp_xmit) { 1243 struct ixgbevf_ring *xdp_ring = 1244 adapter->xdp_ring[rx_ring->queue_index]; 1245 1246 /* Force memory writes to complete before letting h/w 1247 * know there are new descriptors to fetch. 1248 */ 1249 wmb(); 1250 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use); 1251 } 1252 1253 u64_stats_update_begin(&rx_ring->syncp); 1254 rx_ring->stats.packets += total_rx_packets; 1255 rx_ring->stats.bytes += total_rx_bytes; 1256 u64_stats_update_end(&rx_ring->syncp); 1257 q_vector->rx.total_packets += total_rx_packets; 1258 q_vector->rx.total_bytes += total_rx_bytes; 1259 1260 return total_rx_packets; 1261 } 1262 1263 /** 1264 * ixgbevf_poll - NAPI polling calback 1265 * @napi: napi struct with our devices info in it 1266 * @budget: amount of work driver is allowed to do this pass, in packets 1267 * 1268 * This function will clean more than one or more rings associated with a 1269 * q_vector. 1270 **/ 1271 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1272 { 1273 struct ixgbevf_q_vector *q_vector = 1274 container_of(napi, struct ixgbevf_q_vector, napi); 1275 struct ixgbevf_adapter *adapter = q_vector->adapter; 1276 struct ixgbevf_ring *ring; 1277 int per_ring_budget, work_done = 0; 1278 bool clean_complete = true; 1279 1280 ixgbevf_for_each_ring(ring, q_vector->tx) { 1281 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1282 clean_complete = false; 1283 } 1284 1285 if (budget <= 0) 1286 return budget; 1287 1288 /* attempt to distribute budget to each queue fairly, but don't allow 1289 * the budget to go below 1 because we'll exit polling 1290 */ 1291 if (q_vector->rx.count > 1) 1292 per_ring_budget = max(budget/q_vector->rx.count, 1); 1293 else 1294 per_ring_budget = budget; 1295 1296 ixgbevf_for_each_ring(ring, q_vector->rx) { 1297 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1298 per_ring_budget); 1299 work_done += cleaned; 1300 if (cleaned >= per_ring_budget) 1301 clean_complete = false; 1302 } 1303 1304 /* If all work not completed, return budget and keep polling */ 1305 if (!clean_complete) 1306 return budget; 1307 1308 /* Exit the polling mode, but don't re-enable interrupts if stack might 1309 * poll us due to busy-polling 1310 */ 1311 if (likely(napi_complete_done(napi, work_done))) { 1312 if (adapter->rx_itr_setting == 1) 1313 ixgbevf_set_itr(q_vector); 1314 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1315 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1316 ixgbevf_irq_enable_queues(adapter, 1317 BIT(q_vector->v_idx)); 1318 } 1319 1320 return min(work_done, budget - 1); 1321 } 1322 1323 /** 1324 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1325 * @q_vector: structure containing interrupt and ring information 1326 **/ 1327 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1328 { 1329 struct ixgbevf_adapter *adapter = q_vector->adapter; 1330 struct ixgbe_hw *hw = &adapter->hw; 1331 int v_idx = q_vector->v_idx; 1332 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1333 1334 /* set the WDIS bit to not clear the timer bits and cause an 1335 * immediate assertion of the interrupt 1336 */ 1337 itr_reg |= IXGBE_EITR_CNT_WDIS; 1338 1339 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1340 } 1341 1342 /** 1343 * ixgbevf_configure_msix - Configure MSI-X hardware 1344 * @adapter: board private structure 1345 * 1346 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1347 * interrupts. 1348 **/ 1349 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1350 { 1351 struct ixgbevf_q_vector *q_vector; 1352 int q_vectors, v_idx; 1353 1354 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1355 adapter->eims_enable_mask = 0; 1356 1357 /* Populate the IVAR table and set the ITR values to the 1358 * corresponding register. 1359 */ 1360 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1361 struct ixgbevf_ring *ring; 1362 1363 q_vector = adapter->q_vector[v_idx]; 1364 1365 ixgbevf_for_each_ring(ring, q_vector->rx) 1366 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1367 1368 ixgbevf_for_each_ring(ring, q_vector->tx) 1369 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1370 1371 if (q_vector->tx.ring && !q_vector->rx.ring) { 1372 /* Tx only vector */ 1373 if (adapter->tx_itr_setting == 1) 1374 q_vector->itr = IXGBE_12K_ITR; 1375 else 1376 q_vector->itr = adapter->tx_itr_setting; 1377 } else { 1378 /* Rx or Rx/Tx vector */ 1379 if (adapter->rx_itr_setting == 1) 1380 q_vector->itr = IXGBE_20K_ITR; 1381 else 1382 q_vector->itr = adapter->rx_itr_setting; 1383 } 1384 1385 /* add q_vector eims value to global eims_enable_mask */ 1386 adapter->eims_enable_mask |= BIT(v_idx); 1387 1388 ixgbevf_write_eitr(q_vector); 1389 } 1390 1391 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1392 /* setup eims_other and add value to global eims_enable_mask */ 1393 adapter->eims_other = BIT(v_idx); 1394 adapter->eims_enable_mask |= adapter->eims_other; 1395 } 1396 1397 enum latency_range { 1398 lowest_latency = 0, 1399 low_latency = 1, 1400 bulk_latency = 2, 1401 latency_invalid = 255 1402 }; 1403 1404 /** 1405 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1406 * @q_vector: structure containing interrupt and ring information 1407 * @ring_container: structure containing ring performance data 1408 * 1409 * Stores a new ITR value based on packets and byte 1410 * counts during the last interrupt. The advantage of per interrupt 1411 * computation is faster updates and more accurate ITR for the current 1412 * traffic pattern. Constants in this function were computed 1413 * based on theoretical maximum wire speed and thresholds were set based 1414 * on testing data as well as attempting to minimize response time 1415 * while increasing bulk throughput. 1416 **/ 1417 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1418 struct ixgbevf_ring_container *ring_container) 1419 { 1420 int bytes = ring_container->total_bytes; 1421 int packets = ring_container->total_packets; 1422 u32 timepassed_us; 1423 u64 bytes_perint; 1424 u8 itr_setting = ring_container->itr; 1425 1426 if (packets == 0) 1427 return; 1428 1429 /* simple throttle rate management 1430 * 0-20MB/s lowest (100000 ints/s) 1431 * 20-100MB/s low (20000 ints/s) 1432 * 100-1249MB/s bulk (12000 ints/s) 1433 */ 1434 /* what was last interrupt timeslice? */ 1435 timepassed_us = q_vector->itr >> 2; 1436 if (timepassed_us == 0) 1437 return; 1438 1439 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1440 1441 switch (itr_setting) { 1442 case lowest_latency: 1443 if (bytes_perint > 10) 1444 itr_setting = low_latency; 1445 break; 1446 case low_latency: 1447 if (bytes_perint > 20) 1448 itr_setting = bulk_latency; 1449 else if (bytes_perint <= 10) 1450 itr_setting = lowest_latency; 1451 break; 1452 case bulk_latency: 1453 if (bytes_perint <= 20) 1454 itr_setting = low_latency; 1455 break; 1456 } 1457 1458 /* clear work counters since we have the values we need */ 1459 ring_container->total_bytes = 0; 1460 ring_container->total_packets = 0; 1461 1462 /* write updated itr to ring container */ 1463 ring_container->itr = itr_setting; 1464 } 1465 1466 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1467 { 1468 u32 new_itr = q_vector->itr; 1469 u8 current_itr; 1470 1471 ixgbevf_update_itr(q_vector, &q_vector->tx); 1472 ixgbevf_update_itr(q_vector, &q_vector->rx); 1473 1474 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1475 1476 switch (current_itr) { 1477 /* counts and packets in update_itr are dependent on these numbers */ 1478 case lowest_latency: 1479 new_itr = IXGBE_100K_ITR; 1480 break; 1481 case low_latency: 1482 new_itr = IXGBE_20K_ITR; 1483 break; 1484 case bulk_latency: 1485 new_itr = IXGBE_12K_ITR; 1486 break; 1487 default: 1488 break; 1489 } 1490 1491 if (new_itr != q_vector->itr) { 1492 /* do an exponential smoothing */ 1493 new_itr = (10 * new_itr * q_vector->itr) / 1494 ((9 * new_itr) + q_vector->itr); 1495 1496 /* save the algorithm value here */ 1497 q_vector->itr = new_itr; 1498 1499 ixgbevf_write_eitr(q_vector); 1500 } 1501 } 1502 1503 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1504 { 1505 struct ixgbevf_adapter *adapter = data; 1506 struct ixgbe_hw *hw = &adapter->hw; 1507 1508 hw->mac.get_link_status = 1; 1509 1510 ixgbevf_service_event_schedule(adapter); 1511 1512 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1513 1514 return IRQ_HANDLED; 1515 } 1516 1517 /** 1518 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1519 * @irq: unused 1520 * @data: pointer to our q_vector struct for this interrupt vector 1521 **/ 1522 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1523 { 1524 struct ixgbevf_q_vector *q_vector = data; 1525 1526 /* EIAM disabled interrupts (on this vector) for us */ 1527 if (q_vector->rx.ring || q_vector->tx.ring) 1528 napi_schedule_irqoff(&q_vector->napi); 1529 1530 return IRQ_HANDLED; 1531 } 1532 1533 /** 1534 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1535 * @adapter: board private structure 1536 * 1537 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1538 * interrupts from the kernel. 1539 **/ 1540 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1541 { 1542 struct net_device *netdev = adapter->netdev; 1543 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1544 unsigned int ri = 0, ti = 0; 1545 int vector, err; 1546 1547 for (vector = 0; vector < q_vectors; vector++) { 1548 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1549 struct msix_entry *entry = &adapter->msix_entries[vector]; 1550 1551 if (q_vector->tx.ring && q_vector->rx.ring) { 1552 snprintf(q_vector->name, sizeof(q_vector->name), 1553 "%s-TxRx-%u", netdev->name, ri++); 1554 ti++; 1555 } else if (q_vector->rx.ring) { 1556 snprintf(q_vector->name, sizeof(q_vector->name), 1557 "%s-rx-%u", netdev->name, ri++); 1558 } else if (q_vector->tx.ring) { 1559 snprintf(q_vector->name, sizeof(q_vector->name), 1560 "%s-tx-%u", netdev->name, ti++); 1561 } else { 1562 /* skip this unused q_vector */ 1563 continue; 1564 } 1565 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1566 q_vector->name, q_vector); 1567 if (err) { 1568 hw_dbg(&adapter->hw, 1569 "request_irq failed for MSIX interrupt Error: %d\n", 1570 err); 1571 goto free_queue_irqs; 1572 } 1573 } 1574 1575 err = request_irq(adapter->msix_entries[vector].vector, 1576 &ixgbevf_msix_other, 0, netdev->name, adapter); 1577 if (err) { 1578 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1579 err); 1580 goto free_queue_irqs; 1581 } 1582 1583 return 0; 1584 1585 free_queue_irqs: 1586 while (vector) { 1587 vector--; 1588 free_irq(adapter->msix_entries[vector].vector, 1589 adapter->q_vector[vector]); 1590 } 1591 /* This failure is non-recoverable - it indicates the system is 1592 * out of MSIX vector resources and the VF driver cannot run 1593 * without them. Set the number of msix vectors to zero 1594 * indicating that not enough can be allocated. The error 1595 * will be returned to the user indicating device open failed. 1596 * Any further attempts to force the driver to open will also 1597 * fail. The only way to recover is to unload the driver and 1598 * reload it again. If the system has recovered some MSIX 1599 * vectors then it may succeed. 1600 */ 1601 adapter->num_msix_vectors = 0; 1602 return err; 1603 } 1604 1605 /** 1606 * ixgbevf_request_irq - initialize interrupts 1607 * @adapter: board private structure 1608 * 1609 * Attempts to configure interrupts using the best available 1610 * capabilities of the hardware and kernel. 1611 **/ 1612 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1613 { 1614 int err = ixgbevf_request_msix_irqs(adapter); 1615 1616 if (err) 1617 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1618 1619 return err; 1620 } 1621 1622 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1623 { 1624 int i, q_vectors; 1625 1626 if (!adapter->msix_entries) 1627 return; 1628 1629 q_vectors = adapter->num_msix_vectors; 1630 i = q_vectors - 1; 1631 1632 free_irq(adapter->msix_entries[i].vector, adapter); 1633 i--; 1634 1635 for (; i >= 0; i--) { 1636 /* free only the irqs that were actually requested */ 1637 if (!adapter->q_vector[i]->rx.ring && 1638 !adapter->q_vector[i]->tx.ring) 1639 continue; 1640 1641 free_irq(adapter->msix_entries[i].vector, 1642 adapter->q_vector[i]); 1643 } 1644 } 1645 1646 /** 1647 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1648 * @adapter: board private structure 1649 **/ 1650 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1651 { 1652 struct ixgbe_hw *hw = &adapter->hw; 1653 int i; 1654 1655 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1656 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1657 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1658 1659 IXGBE_WRITE_FLUSH(hw); 1660 1661 for (i = 0; i < adapter->num_msix_vectors; i++) 1662 synchronize_irq(adapter->msix_entries[i].vector); 1663 } 1664 1665 /** 1666 * ixgbevf_irq_enable - Enable default interrupt generation settings 1667 * @adapter: board private structure 1668 **/ 1669 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1670 { 1671 struct ixgbe_hw *hw = &adapter->hw; 1672 1673 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1674 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1675 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1676 } 1677 1678 /** 1679 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1680 * @adapter: board private structure 1681 * @ring: structure containing ring specific data 1682 * 1683 * Configure the Tx descriptor ring after a reset. 1684 **/ 1685 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1686 struct ixgbevf_ring *ring) 1687 { 1688 struct ixgbe_hw *hw = &adapter->hw; 1689 u64 tdba = ring->dma; 1690 int wait_loop = 10; 1691 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1692 u8 reg_idx = ring->reg_idx; 1693 1694 /* disable queue to avoid issues while updating state */ 1695 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1696 IXGBE_WRITE_FLUSH(hw); 1697 1698 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1699 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1700 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1701 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1702 1703 /* disable head writeback */ 1704 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1705 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1706 1707 /* enable relaxed ordering */ 1708 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1709 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1710 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1711 1712 /* reset head and tail pointers */ 1713 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1714 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1715 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1716 1717 /* reset ntu and ntc to place SW in sync with hardwdare */ 1718 ring->next_to_clean = 0; 1719 ring->next_to_use = 0; 1720 1721 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1722 * to or less than the number of on chip descriptors, which is 1723 * currently 40. 1724 */ 1725 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1726 1727 /* Setting PTHRESH to 32 both improves performance */ 1728 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1729 32; /* PTHRESH = 32 */ 1730 1731 /* reinitialize tx_buffer_info */ 1732 memset(ring->tx_buffer_info, 0, 1733 sizeof(struct ixgbevf_tx_buffer) * ring->count); 1734 1735 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1736 clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1737 1738 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1739 1740 /* poll to verify queue is enabled */ 1741 do { 1742 usleep_range(1000, 2000); 1743 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1744 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1745 if (!wait_loop) 1746 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1747 } 1748 1749 /** 1750 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1751 * @adapter: board private structure 1752 * 1753 * Configure the Tx unit of the MAC after a reset. 1754 **/ 1755 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1756 { 1757 u32 i; 1758 1759 /* Setup the HW Tx Head and Tail descriptor pointers */ 1760 for (i = 0; i < adapter->num_tx_queues; i++) 1761 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1762 for (i = 0; i < adapter->num_xdp_queues; i++) 1763 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]); 1764 } 1765 1766 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1767 1768 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, 1769 struct ixgbevf_ring *ring, int index) 1770 { 1771 struct ixgbe_hw *hw = &adapter->hw; 1772 u32 srrctl; 1773 1774 srrctl = IXGBE_SRRCTL_DROP_EN; 1775 1776 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1777 if (ring_uses_large_buffer(ring)) 1778 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1779 else 1780 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1781 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1782 1783 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1784 } 1785 1786 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1787 { 1788 struct ixgbe_hw *hw = &adapter->hw; 1789 1790 /* PSRTYPE must be initialized in 82599 */ 1791 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1792 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1793 IXGBE_PSRTYPE_L2HDR; 1794 1795 if (adapter->num_rx_queues > 1) 1796 psrtype |= BIT(29); 1797 1798 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1799 } 1800 1801 #define IXGBEVF_MAX_RX_DESC_POLL 10 1802 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1803 struct ixgbevf_ring *ring) 1804 { 1805 struct ixgbe_hw *hw = &adapter->hw; 1806 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1807 u32 rxdctl; 1808 u8 reg_idx = ring->reg_idx; 1809 1810 if (IXGBE_REMOVED(hw->hw_addr)) 1811 return; 1812 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1813 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1814 1815 /* write value back with RXDCTL.ENABLE bit cleared */ 1816 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1817 1818 /* the hardware may take up to 100us to really disable the Rx queue */ 1819 do { 1820 udelay(10); 1821 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1822 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1823 1824 if (!wait_loop) 1825 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1826 reg_idx); 1827 } 1828 1829 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1830 struct ixgbevf_ring *ring) 1831 { 1832 struct ixgbe_hw *hw = &adapter->hw; 1833 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1834 u32 rxdctl; 1835 u8 reg_idx = ring->reg_idx; 1836 1837 if (IXGBE_REMOVED(hw->hw_addr)) 1838 return; 1839 do { 1840 usleep_range(1000, 2000); 1841 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1842 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1843 1844 if (!wait_loop) 1845 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1846 reg_idx); 1847 } 1848 1849 /** 1850 * ixgbevf_init_rss_key - Initialize adapter RSS key 1851 * @adapter: device handle 1852 * 1853 * Allocates and initializes the RSS key if it is not allocated. 1854 **/ 1855 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1856 { 1857 u32 *rss_key; 1858 1859 if (!adapter->rss_key) { 1860 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1861 if (unlikely(!rss_key)) 1862 return -ENOMEM; 1863 1864 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1865 adapter->rss_key = rss_key; 1866 } 1867 1868 return 0; 1869 } 1870 1871 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1872 { 1873 struct ixgbe_hw *hw = &adapter->hw; 1874 u32 vfmrqc = 0, vfreta = 0; 1875 u16 rss_i = adapter->num_rx_queues; 1876 u8 i, j; 1877 1878 /* Fill out hash function seeds */ 1879 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1880 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1881 1882 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1883 if (j == rss_i) 1884 j = 0; 1885 1886 adapter->rss_indir_tbl[i] = j; 1887 1888 vfreta |= j << (i & 0x3) * 8; 1889 if ((i & 3) == 3) { 1890 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1891 vfreta = 0; 1892 } 1893 } 1894 1895 /* Perform hash on these packet types */ 1896 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1897 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1898 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1899 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1900 1901 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1902 1903 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1904 } 1905 1906 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1907 struct ixgbevf_ring *ring) 1908 { 1909 struct ixgbe_hw *hw = &adapter->hw; 1910 union ixgbe_adv_rx_desc *rx_desc; 1911 u64 rdba = ring->dma; 1912 u32 rxdctl; 1913 u8 reg_idx = ring->reg_idx; 1914 1915 /* disable queue to avoid issues while updating state */ 1916 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1917 ixgbevf_disable_rx_queue(adapter, ring); 1918 1919 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1920 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1921 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1922 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1923 1924 #ifndef CONFIG_SPARC 1925 /* enable relaxed ordering */ 1926 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1927 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1928 #else 1929 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1930 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1931 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1932 #endif 1933 1934 /* reset head and tail pointers */ 1935 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1936 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1937 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1938 1939 /* initialize rx_buffer_info */ 1940 memset(ring->rx_buffer_info, 0, 1941 sizeof(struct ixgbevf_rx_buffer) * ring->count); 1942 1943 /* initialize Rx descriptor 0 */ 1944 rx_desc = IXGBEVF_RX_DESC(ring, 0); 1945 rx_desc->wb.upper.length = 0; 1946 1947 /* reset ntu and ntc to place SW in sync with hardwdare */ 1948 ring->next_to_clean = 0; 1949 ring->next_to_use = 0; 1950 ring->next_to_alloc = 0; 1951 1952 ixgbevf_configure_srrctl(adapter, ring, reg_idx); 1953 1954 /* RXDCTL.RLPML does not work on 82599 */ 1955 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) { 1956 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK | 1957 IXGBE_RXDCTL_RLPML_EN); 1958 1959 #if (PAGE_SIZE < 8192) 1960 /* Limit the maximum frame size so we don't overrun the skb */ 1961 if (ring_uses_build_skb(ring) && 1962 !ring_uses_large_buffer(ring)) 1963 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB | 1964 IXGBE_RXDCTL_RLPML_EN; 1965 #endif 1966 } 1967 1968 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1969 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1970 1971 ixgbevf_rx_desc_queue_enable(adapter, ring); 1972 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1973 } 1974 1975 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter, 1976 struct ixgbevf_ring *rx_ring) 1977 { 1978 struct net_device *netdev = adapter->netdev; 1979 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1980 1981 /* set build_skb and buffer size flags */ 1982 clear_ring_build_skb_enabled(rx_ring); 1983 clear_ring_uses_large_buffer(rx_ring); 1984 1985 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX) 1986 return; 1987 1988 if (PAGE_SIZE < 8192) 1989 if (max_frame > IXGBEVF_MAX_FRAME_BUILD_SKB) 1990 set_ring_uses_large_buffer(rx_ring); 1991 1992 /* 82599 can't rely on RXDCTL.RLPML to restrict the size of the frame */ 1993 if (adapter->hw.mac.type == ixgbe_mac_82599_vf && !ring_uses_large_buffer(rx_ring)) 1994 return; 1995 1996 set_ring_build_skb_enabled(rx_ring); 1997 } 1998 1999 /** 2000 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 2001 * @adapter: board private structure 2002 * 2003 * Configure the Rx unit of the MAC after a reset. 2004 **/ 2005 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 2006 { 2007 struct ixgbe_hw *hw = &adapter->hw; 2008 struct net_device *netdev = adapter->netdev; 2009 int i, ret; 2010 2011 ixgbevf_setup_psrtype(adapter); 2012 if (hw->mac.type >= ixgbe_mac_X550_vf) 2013 ixgbevf_setup_vfmrqc(adapter); 2014 2015 spin_lock_bh(&adapter->mbx_lock); 2016 /* notify the PF of our intent to use this size of frame */ 2017 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 2018 spin_unlock_bh(&adapter->mbx_lock); 2019 if (ret) 2020 dev_err(&adapter->pdev->dev, 2021 "Failed to set MTU at %d\n", netdev->mtu); 2022 2023 /* Setup the HW Rx Head and Tail Descriptor Pointers and 2024 * the Base and Length of the Rx Descriptor Ring 2025 */ 2026 for (i = 0; i < adapter->num_rx_queues; i++) { 2027 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 2028 2029 ixgbevf_set_rx_buffer_len(adapter, rx_ring); 2030 ixgbevf_configure_rx_ring(adapter, rx_ring); 2031 } 2032 } 2033 2034 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 2035 __be16 proto, u16 vid) 2036 { 2037 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2038 struct ixgbe_hw *hw = &adapter->hw; 2039 int err; 2040 2041 spin_lock_bh(&adapter->mbx_lock); 2042 2043 /* add VID to filter table */ 2044 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 2045 2046 spin_unlock_bh(&adapter->mbx_lock); 2047 2048 if (err) { 2049 netdev_err(netdev, "VF could not set VLAN %d\n", vid); 2050 2051 /* translate error return types so error makes sense */ 2052 if (err == IXGBE_ERR_MBX) 2053 return -EIO; 2054 2055 if (err == IXGBE_ERR_INVALID_ARGUMENT) 2056 return -EACCES; 2057 } 2058 2059 set_bit(vid, adapter->active_vlans); 2060 2061 return err; 2062 } 2063 2064 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 2065 __be16 proto, u16 vid) 2066 { 2067 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2068 struct ixgbe_hw *hw = &adapter->hw; 2069 int err; 2070 2071 spin_lock_bh(&adapter->mbx_lock); 2072 2073 /* remove VID from filter table */ 2074 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 2075 2076 spin_unlock_bh(&adapter->mbx_lock); 2077 2078 if (err) 2079 netdev_err(netdev, "Could not remove VLAN %d\n", vid); 2080 2081 clear_bit(vid, adapter->active_vlans); 2082 2083 return err; 2084 } 2085 2086 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 2087 { 2088 u16 vid; 2089 2090 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2091 ixgbevf_vlan_rx_add_vid(adapter->netdev, 2092 htons(ETH_P_8021Q), vid); 2093 } 2094 2095 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 2096 { 2097 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2098 struct ixgbe_hw *hw = &adapter->hw; 2099 int count = 0; 2100 2101 if (!netdev_uc_empty(netdev)) { 2102 struct netdev_hw_addr *ha; 2103 2104 netdev_for_each_uc_addr(ha, netdev) { 2105 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 2106 udelay(200); 2107 } 2108 } else { 2109 /* If the list is empty then send message to PF driver to 2110 * clear all MAC VLANs on this VF. 2111 */ 2112 hw->mac.ops.set_uc_addr(hw, 0, NULL); 2113 } 2114 2115 return count; 2116 } 2117 2118 /** 2119 * ixgbevf_set_rx_mode - Multicast and unicast set 2120 * @netdev: network interface device structure 2121 * 2122 * The set_rx_method entry point is called whenever the multicast address 2123 * list, unicast address list or the network interface flags are updated. 2124 * This routine is responsible for configuring the hardware for proper 2125 * multicast mode and configuring requested unicast filters. 2126 **/ 2127 static void ixgbevf_set_rx_mode(struct net_device *netdev) 2128 { 2129 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2130 struct ixgbe_hw *hw = &adapter->hw; 2131 unsigned int flags = netdev->flags; 2132 int xcast_mode; 2133 2134 /* request the most inclusive mode we need */ 2135 if (flags & IFF_PROMISC) 2136 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 2137 else if (flags & IFF_ALLMULTI) 2138 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 2139 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 2140 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 2141 else 2142 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 2143 2144 spin_lock_bh(&adapter->mbx_lock); 2145 2146 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 2147 2148 /* reprogram multicast list */ 2149 hw->mac.ops.update_mc_addr_list(hw, netdev); 2150 2151 ixgbevf_write_uc_addr_list(netdev); 2152 2153 spin_unlock_bh(&adapter->mbx_lock); 2154 } 2155 2156 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 2157 { 2158 int q_idx; 2159 struct ixgbevf_q_vector *q_vector; 2160 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2161 2162 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2163 q_vector = adapter->q_vector[q_idx]; 2164 napi_enable(&q_vector->napi); 2165 } 2166 } 2167 2168 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 2169 { 2170 int q_idx; 2171 struct ixgbevf_q_vector *q_vector; 2172 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2173 2174 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2175 q_vector = adapter->q_vector[q_idx]; 2176 napi_disable(&q_vector->napi); 2177 } 2178 } 2179 2180 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 2181 { 2182 struct ixgbe_hw *hw = &adapter->hw; 2183 unsigned int def_q = 0; 2184 unsigned int num_tcs = 0; 2185 unsigned int num_rx_queues = adapter->num_rx_queues; 2186 unsigned int num_tx_queues = adapter->num_tx_queues; 2187 int err; 2188 2189 spin_lock_bh(&adapter->mbx_lock); 2190 2191 /* fetch queue configuration from the PF */ 2192 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2193 2194 spin_unlock_bh(&adapter->mbx_lock); 2195 2196 if (err) 2197 return err; 2198 2199 if (num_tcs > 1) { 2200 /* we need only one Tx queue */ 2201 num_tx_queues = 1; 2202 2203 /* update default Tx ring register index */ 2204 adapter->tx_ring[0]->reg_idx = def_q; 2205 2206 /* we need as many queues as traffic classes */ 2207 num_rx_queues = num_tcs; 2208 } 2209 2210 /* if we have a bad config abort request queue reset */ 2211 if ((adapter->num_rx_queues != num_rx_queues) || 2212 (adapter->num_tx_queues != num_tx_queues)) { 2213 /* force mailbox timeout to prevent further messages */ 2214 hw->mbx.timeout = 0; 2215 2216 /* wait for watchdog to come around and bail us out */ 2217 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2218 } 2219 2220 return 0; 2221 } 2222 2223 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2224 { 2225 ixgbevf_configure_dcb(adapter); 2226 2227 ixgbevf_set_rx_mode(adapter->netdev); 2228 2229 ixgbevf_restore_vlan(adapter); 2230 ixgbevf_ipsec_restore(adapter); 2231 2232 ixgbevf_configure_tx(adapter); 2233 ixgbevf_configure_rx(adapter); 2234 } 2235 2236 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2237 { 2238 /* Only save pre-reset stats if there are some */ 2239 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2240 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2241 adapter->stats.base_vfgprc; 2242 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2243 adapter->stats.base_vfgptc; 2244 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2245 adapter->stats.base_vfgorc; 2246 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2247 adapter->stats.base_vfgotc; 2248 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2249 adapter->stats.base_vfmprc; 2250 } 2251 } 2252 2253 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2254 { 2255 struct ixgbe_hw *hw = &adapter->hw; 2256 2257 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2258 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2259 adapter->stats.last_vfgorc |= 2260 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2261 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2262 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2263 adapter->stats.last_vfgotc |= 2264 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2265 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2266 2267 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2268 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2269 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2270 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2271 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2272 } 2273 2274 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2275 { 2276 struct ixgbe_hw *hw = &adapter->hw; 2277 static const int api[] = { 2278 ixgbe_mbox_api_15, 2279 ixgbe_mbox_api_14, 2280 ixgbe_mbox_api_13, 2281 ixgbe_mbox_api_12, 2282 ixgbe_mbox_api_11, 2283 ixgbe_mbox_api_10, 2284 ixgbe_mbox_api_unknown 2285 }; 2286 int err, idx = 0; 2287 2288 spin_lock_bh(&adapter->mbx_lock); 2289 2290 while (api[idx] != ixgbe_mbox_api_unknown) { 2291 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2292 if (!err) 2293 break; 2294 idx++; 2295 } 2296 2297 if (hw->api_version >= ixgbe_mbox_api_15) { 2298 hw->mbx.ops.init_params(hw); 2299 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 2300 sizeof(struct ixgbe_mbx_operations)); 2301 } 2302 2303 spin_unlock_bh(&adapter->mbx_lock); 2304 } 2305 2306 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2307 { 2308 struct net_device *netdev = adapter->netdev; 2309 struct pci_dev *pdev = adapter->pdev; 2310 struct ixgbe_hw *hw = &adapter->hw; 2311 bool state; 2312 2313 ixgbevf_configure_msix(adapter); 2314 2315 spin_lock_bh(&adapter->mbx_lock); 2316 2317 if (is_valid_ether_addr(hw->mac.addr)) 2318 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2319 else 2320 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2321 2322 spin_unlock_bh(&adapter->mbx_lock); 2323 2324 state = adapter->link_state; 2325 hw->mac.ops.get_link_state(hw, &adapter->link_state); 2326 if (state && state != adapter->link_state) 2327 dev_info(&pdev->dev, "VF is administratively disabled\n"); 2328 2329 smp_mb__before_atomic(); 2330 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2331 ixgbevf_napi_enable_all(adapter); 2332 2333 /* clear any pending interrupts, may auto mask */ 2334 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2335 ixgbevf_irq_enable(adapter); 2336 2337 /* enable transmits */ 2338 netif_tx_start_all_queues(netdev); 2339 2340 ixgbevf_save_reset_stats(adapter); 2341 ixgbevf_init_last_counter_stats(adapter); 2342 2343 hw->mac.get_link_status = 1; 2344 mod_timer(&adapter->service_timer, jiffies); 2345 } 2346 2347 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2348 { 2349 ixgbevf_configure(adapter); 2350 2351 ixgbevf_up_complete(adapter); 2352 } 2353 2354 /** 2355 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2356 * @rx_ring: ring to free buffers from 2357 **/ 2358 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2359 { 2360 u16 i = rx_ring->next_to_clean; 2361 2362 /* Free Rx ring sk_buff */ 2363 if (rx_ring->skb) { 2364 dev_kfree_skb(rx_ring->skb); 2365 rx_ring->skb = NULL; 2366 } 2367 2368 /* Free all the Rx ring pages */ 2369 while (i != rx_ring->next_to_alloc) { 2370 struct ixgbevf_rx_buffer *rx_buffer; 2371 2372 rx_buffer = &rx_ring->rx_buffer_info[i]; 2373 2374 /* Invalidate cache lines that may have been written to by 2375 * device so that we avoid corrupting memory. 2376 */ 2377 dma_sync_single_range_for_cpu(rx_ring->dev, 2378 rx_buffer->dma, 2379 rx_buffer->page_offset, 2380 ixgbevf_rx_bufsz(rx_ring), 2381 DMA_FROM_DEVICE); 2382 2383 /* free resources associated with mapping */ 2384 dma_unmap_page_attrs(rx_ring->dev, 2385 rx_buffer->dma, 2386 ixgbevf_rx_pg_size(rx_ring), 2387 DMA_FROM_DEVICE, 2388 IXGBEVF_RX_DMA_ATTR); 2389 2390 __page_frag_cache_drain(rx_buffer->page, 2391 rx_buffer->pagecnt_bias); 2392 2393 i++; 2394 if (i == rx_ring->count) 2395 i = 0; 2396 } 2397 2398 rx_ring->next_to_alloc = 0; 2399 rx_ring->next_to_clean = 0; 2400 rx_ring->next_to_use = 0; 2401 } 2402 2403 /** 2404 * ixgbevf_clean_tx_ring - Free Tx Buffers 2405 * @tx_ring: ring to be cleaned 2406 **/ 2407 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2408 { 2409 u16 i = tx_ring->next_to_clean; 2410 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 2411 2412 while (i != tx_ring->next_to_use) { 2413 union ixgbe_adv_tx_desc *eop_desc, *tx_desc; 2414 2415 /* Free all the Tx ring sk_buffs */ 2416 if (ring_is_xdp(tx_ring)) 2417 page_frag_free(tx_buffer->data); 2418 else 2419 dev_kfree_skb_any(tx_buffer->skb); 2420 2421 /* unmap skb header data */ 2422 dma_unmap_single(tx_ring->dev, 2423 dma_unmap_addr(tx_buffer, dma), 2424 dma_unmap_len(tx_buffer, len), 2425 DMA_TO_DEVICE); 2426 2427 /* check for eop_desc to determine the end of the packet */ 2428 eop_desc = tx_buffer->next_to_watch; 2429 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 2430 2431 /* unmap remaining buffers */ 2432 while (tx_desc != eop_desc) { 2433 tx_buffer++; 2434 tx_desc++; 2435 i++; 2436 if (unlikely(i == tx_ring->count)) { 2437 i = 0; 2438 tx_buffer = tx_ring->tx_buffer_info; 2439 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 2440 } 2441 2442 /* unmap any remaining paged data */ 2443 if (dma_unmap_len(tx_buffer, len)) 2444 dma_unmap_page(tx_ring->dev, 2445 dma_unmap_addr(tx_buffer, dma), 2446 dma_unmap_len(tx_buffer, len), 2447 DMA_TO_DEVICE); 2448 } 2449 2450 /* move us one more past the eop_desc for start of next pkt */ 2451 tx_buffer++; 2452 i++; 2453 if (unlikely(i == tx_ring->count)) { 2454 i = 0; 2455 tx_buffer = tx_ring->tx_buffer_info; 2456 } 2457 } 2458 2459 /* reset next_to_use and next_to_clean */ 2460 tx_ring->next_to_use = 0; 2461 tx_ring->next_to_clean = 0; 2462 2463 } 2464 2465 /** 2466 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2467 * @adapter: board private structure 2468 **/ 2469 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2470 { 2471 int i; 2472 2473 for (i = 0; i < adapter->num_rx_queues; i++) 2474 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2475 } 2476 2477 /** 2478 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2479 * @adapter: board private structure 2480 **/ 2481 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2482 { 2483 int i; 2484 2485 for (i = 0; i < adapter->num_tx_queues; i++) 2486 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2487 for (i = 0; i < adapter->num_xdp_queues; i++) 2488 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]); 2489 } 2490 2491 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2492 { 2493 struct net_device *netdev = adapter->netdev; 2494 struct ixgbe_hw *hw = &adapter->hw; 2495 int i; 2496 2497 /* signal that we are down to the interrupt handler */ 2498 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2499 return; /* do nothing if already down */ 2500 2501 /* disable all enabled Rx queues */ 2502 for (i = 0; i < adapter->num_rx_queues; i++) 2503 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2504 2505 usleep_range(10000, 20000); 2506 2507 netif_tx_stop_all_queues(netdev); 2508 2509 /* call carrier off first to avoid false dev_watchdog timeouts */ 2510 netif_carrier_off(netdev); 2511 netif_tx_disable(netdev); 2512 2513 ixgbevf_irq_disable(adapter); 2514 2515 ixgbevf_napi_disable_all(adapter); 2516 2517 del_timer_sync(&adapter->service_timer); 2518 2519 /* disable transmits in the hardware now that interrupts are off */ 2520 for (i = 0; i < adapter->num_tx_queues; i++) { 2521 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2522 2523 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2524 IXGBE_TXDCTL_SWFLSH); 2525 } 2526 2527 for (i = 0; i < adapter->num_xdp_queues; i++) { 2528 u8 reg_idx = adapter->xdp_ring[i]->reg_idx; 2529 2530 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2531 IXGBE_TXDCTL_SWFLSH); 2532 } 2533 2534 if (!pci_channel_offline(adapter->pdev)) 2535 ixgbevf_reset(adapter); 2536 2537 ixgbevf_clean_all_tx_rings(adapter); 2538 ixgbevf_clean_all_rx_rings(adapter); 2539 } 2540 2541 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2542 { 2543 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2544 msleep(1); 2545 2546 ixgbevf_down(adapter); 2547 pci_set_master(adapter->pdev); 2548 ixgbevf_up(adapter); 2549 2550 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2551 } 2552 2553 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2554 { 2555 struct ixgbe_hw *hw = &adapter->hw; 2556 struct net_device *netdev = adapter->netdev; 2557 2558 if (hw->mac.ops.reset_hw(hw)) { 2559 hw_dbg(hw, "PF still resetting\n"); 2560 } else { 2561 hw->mac.ops.init_hw(hw); 2562 ixgbevf_negotiate_api(adapter); 2563 } 2564 2565 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2566 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2567 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2568 } 2569 2570 adapter->last_reset = jiffies; 2571 } 2572 2573 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2574 int vectors) 2575 { 2576 int vector_threshold; 2577 2578 /* We'll want at least 2 (vector_threshold): 2579 * 1) TxQ[0] + RxQ[0] handler 2580 * 2) Other (Link Status Change, etc.) 2581 */ 2582 vector_threshold = MIN_MSIX_COUNT; 2583 2584 /* The more we get, the more we will assign to Tx/Rx Cleanup 2585 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2586 * Right now, we simply care about how many we'll get; we'll 2587 * set them up later while requesting irq's. 2588 */ 2589 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2590 vector_threshold, vectors); 2591 2592 if (vectors < 0) { 2593 dev_err(&adapter->pdev->dev, 2594 "Unable to allocate MSI-X interrupts\n"); 2595 kfree(adapter->msix_entries); 2596 adapter->msix_entries = NULL; 2597 return vectors; 2598 } 2599 2600 /* Adjust for only the vectors we'll use, which is minimum 2601 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2602 * vectors we were allocated. 2603 */ 2604 adapter->num_msix_vectors = vectors; 2605 2606 return 0; 2607 } 2608 2609 /** 2610 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2611 * @adapter: board private structure to initialize 2612 * 2613 * This is the top level queue allocation routine. The order here is very 2614 * important, starting with the "most" number of features turned on at once, 2615 * and ending with the smallest set of features. This way large combinations 2616 * can be allocated if they're turned on, and smaller combinations are the 2617 * fall through conditions. 2618 * 2619 **/ 2620 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2621 { 2622 struct ixgbe_hw *hw = &adapter->hw; 2623 unsigned int def_q = 0; 2624 unsigned int num_tcs = 0; 2625 int err; 2626 2627 /* Start with base case */ 2628 adapter->num_rx_queues = 1; 2629 adapter->num_tx_queues = 1; 2630 adapter->num_xdp_queues = 0; 2631 2632 spin_lock_bh(&adapter->mbx_lock); 2633 2634 /* fetch queue configuration from the PF */ 2635 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2636 2637 spin_unlock_bh(&adapter->mbx_lock); 2638 2639 if (err) 2640 return; 2641 2642 /* we need as many queues as traffic classes */ 2643 if (num_tcs > 1) { 2644 adapter->num_rx_queues = num_tcs; 2645 } else { 2646 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2647 2648 switch (hw->api_version) { 2649 case ixgbe_mbox_api_11: 2650 case ixgbe_mbox_api_12: 2651 case ixgbe_mbox_api_13: 2652 case ixgbe_mbox_api_14: 2653 case ixgbe_mbox_api_15: 2654 if (adapter->xdp_prog && 2655 hw->mac.max_tx_queues == rss) 2656 rss = rss > 3 ? 2 : 1; 2657 2658 adapter->num_rx_queues = rss; 2659 adapter->num_tx_queues = rss; 2660 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0; 2661 break; 2662 default: 2663 break; 2664 } 2665 } 2666 } 2667 2668 /** 2669 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2670 * @adapter: board private structure to initialize 2671 * 2672 * Attempt to configure the interrupts using the best available 2673 * capabilities of the hardware and the kernel. 2674 **/ 2675 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2676 { 2677 int vector, v_budget; 2678 2679 /* It's easy to be greedy for MSI-X vectors, but it really 2680 * doesn't do us much good if we have a lot more vectors 2681 * than CPU's. So let's be conservative and only ask for 2682 * (roughly) the same number of vectors as there are CPU's. 2683 * The default is to use pairs of vectors. 2684 */ 2685 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2686 v_budget = min_t(int, v_budget, num_online_cpus()); 2687 v_budget += NON_Q_VECTORS; 2688 2689 adapter->msix_entries = kcalloc(v_budget, 2690 sizeof(struct msix_entry), GFP_KERNEL); 2691 if (!adapter->msix_entries) 2692 return -ENOMEM; 2693 2694 for (vector = 0; vector < v_budget; vector++) 2695 adapter->msix_entries[vector].entry = vector; 2696 2697 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver 2698 * does not support any other modes, so we will simply fail here. Note 2699 * that we clean up the msix_entries pointer else-where. 2700 */ 2701 return ixgbevf_acquire_msix_vectors(adapter, v_budget); 2702 } 2703 2704 static void ixgbevf_add_ring(struct ixgbevf_ring *ring, 2705 struct ixgbevf_ring_container *head) 2706 { 2707 ring->next = head->ring; 2708 head->ring = ring; 2709 head->count++; 2710 } 2711 2712 /** 2713 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector 2714 * @adapter: board private structure to initialize 2715 * @v_idx: index of vector in adapter struct 2716 * @txr_count: number of Tx rings for q vector 2717 * @txr_idx: index of first Tx ring to assign 2718 * @xdp_count: total number of XDP rings to allocate 2719 * @xdp_idx: index of first XDP ring to allocate 2720 * @rxr_count: number of Rx rings for q vector 2721 * @rxr_idx: index of first Rx ring to assign 2722 * 2723 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2724 **/ 2725 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx, 2726 int txr_count, int txr_idx, 2727 int xdp_count, int xdp_idx, 2728 int rxr_count, int rxr_idx) 2729 { 2730 struct ixgbevf_q_vector *q_vector; 2731 int reg_idx = txr_idx + xdp_idx; 2732 struct ixgbevf_ring *ring; 2733 int ring_count, size; 2734 2735 ring_count = txr_count + xdp_count + rxr_count; 2736 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count); 2737 2738 /* allocate q_vector and rings */ 2739 q_vector = kzalloc(size, GFP_KERNEL); 2740 if (!q_vector) 2741 return -ENOMEM; 2742 2743 /* initialize NAPI */ 2744 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll); 2745 2746 /* tie q_vector and adapter together */ 2747 adapter->q_vector[v_idx] = q_vector; 2748 q_vector->adapter = adapter; 2749 q_vector->v_idx = v_idx; 2750 2751 /* initialize pointer to rings */ 2752 ring = q_vector->ring; 2753 2754 while (txr_count) { 2755 /* assign generic ring traits */ 2756 ring->dev = &adapter->pdev->dev; 2757 ring->netdev = adapter->netdev; 2758 2759 /* configure backlink on ring */ 2760 ring->q_vector = q_vector; 2761 2762 /* update q_vector Tx values */ 2763 ixgbevf_add_ring(ring, &q_vector->tx); 2764 2765 /* apply Tx specific ring traits */ 2766 ring->count = adapter->tx_ring_count; 2767 ring->queue_index = txr_idx; 2768 ring->reg_idx = reg_idx; 2769 2770 /* assign ring to adapter */ 2771 adapter->tx_ring[txr_idx] = ring; 2772 2773 /* update count and index */ 2774 txr_count--; 2775 txr_idx++; 2776 reg_idx++; 2777 2778 /* push pointer to next ring */ 2779 ring++; 2780 } 2781 2782 while (xdp_count) { 2783 /* assign generic ring traits */ 2784 ring->dev = &adapter->pdev->dev; 2785 ring->netdev = adapter->netdev; 2786 2787 /* configure backlink on ring */ 2788 ring->q_vector = q_vector; 2789 2790 /* update q_vector Tx values */ 2791 ixgbevf_add_ring(ring, &q_vector->tx); 2792 2793 /* apply Tx specific ring traits */ 2794 ring->count = adapter->tx_ring_count; 2795 ring->queue_index = xdp_idx; 2796 ring->reg_idx = reg_idx; 2797 set_ring_xdp(ring); 2798 2799 /* assign ring to adapter */ 2800 adapter->xdp_ring[xdp_idx] = ring; 2801 2802 /* update count and index */ 2803 xdp_count--; 2804 xdp_idx++; 2805 reg_idx++; 2806 2807 /* push pointer to next ring */ 2808 ring++; 2809 } 2810 2811 while (rxr_count) { 2812 /* assign generic ring traits */ 2813 ring->dev = &adapter->pdev->dev; 2814 ring->netdev = adapter->netdev; 2815 2816 /* configure backlink on ring */ 2817 ring->q_vector = q_vector; 2818 2819 /* update q_vector Rx values */ 2820 ixgbevf_add_ring(ring, &q_vector->rx); 2821 2822 /* apply Rx specific ring traits */ 2823 ring->count = adapter->rx_ring_count; 2824 ring->queue_index = rxr_idx; 2825 ring->reg_idx = rxr_idx; 2826 2827 /* assign ring to adapter */ 2828 adapter->rx_ring[rxr_idx] = ring; 2829 2830 /* update count and index */ 2831 rxr_count--; 2832 rxr_idx++; 2833 2834 /* push pointer to next ring */ 2835 ring++; 2836 } 2837 2838 return 0; 2839 } 2840 2841 /** 2842 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector 2843 * @adapter: board private structure to initialize 2844 * @v_idx: index of vector in adapter struct 2845 * 2846 * This function frees the memory allocated to the q_vector. In addition if 2847 * NAPI is enabled it will delete any references to the NAPI struct prior 2848 * to freeing the q_vector. 2849 **/ 2850 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx) 2851 { 2852 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx]; 2853 struct ixgbevf_ring *ring; 2854 2855 ixgbevf_for_each_ring(ring, q_vector->tx) { 2856 if (ring_is_xdp(ring)) 2857 adapter->xdp_ring[ring->queue_index] = NULL; 2858 else 2859 adapter->tx_ring[ring->queue_index] = NULL; 2860 } 2861 2862 ixgbevf_for_each_ring(ring, q_vector->rx) 2863 adapter->rx_ring[ring->queue_index] = NULL; 2864 2865 adapter->q_vector[v_idx] = NULL; 2866 netif_napi_del(&q_vector->napi); 2867 2868 /* ixgbevf_get_stats() might access the rings on this vector, 2869 * we must wait a grace period before freeing it. 2870 */ 2871 kfree_rcu(q_vector, rcu); 2872 } 2873 2874 /** 2875 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2876 * @adapter: board private structure to initialize 2877 * 2878 * We allocate one q_vector per queue interrupt. If allocation fails we 2879 * return -ENOMEM. 2880 **/ 2881 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2882 { 2883 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2884 int rxr_remaining = adapter->num_rx_queues; 2885 int txr_remaining = adapter->num_tx_queues; 2886 int xdp_remaining = adapter->num_xdp_queues; 2887 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0; 2888 int err; 2889 2890 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) { 2891 for (; rxr_remaining; v_idx++, q_vectors--) { 2892 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2893 2894 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2895 0, 0, 0, 0, rqpv, rxr_idx); 2896 if (err) 2897 goto err_out; 2898 2899 /* update counts and index */ 2900 rxr_remaining -= rqpv; 2901 rxr_idx += rqpv; 2902 } 2903 } 2904 2905 for (; q_vectors; v_idx++, q_vectors--) { 2906 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2907 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors); 2908 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors); 2909 2910 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2911 tqpv, txr_idx, 2912 xqpv, xdp_idx, 2913 rqpv, rxr_idx); 2914 2915 if (err) 2916 goto err_out; 2917 2918 /* update counts and index */ 2919 rxr_remaining -= rqpv; 2920 rxr_idx += rqpv; 2921 txr_remaining -= tqpv; 2922 txr_idx += tqpv; 2923 xdp_remaining -= xqpv; 2924 xdp_idx += xqpv; 2925 } 2926 2927 return 0; 2928 2929 err_out: 2930 while (v_idx) { 2931 v_idx--; 2932 ixgbevf_free_q_vector(adapter, v_idx); 2933 } 2934 2935 return -ENOMEM; 2936 } 2937 2938 /** 2939 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2940 * @adapter: board private structure to initialize 2941 * 2942 * This function frees the memory allocated to the q_vectors. In addition if 2943 * NAPI is enabled it will delete any references to the NAPI struct prior 2944 * to freeing the q_vector. 2945 **/ 2946 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2947 { 2948 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2949 2950 while (q_vectors) { 2951 q_vectors--; 2952 ixgbevf_free_q_vector(adapter, q_vectors); 2953 } 2954 } 2955 2956 /** 2957 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2958 * @adapter: board private structure 2959 * 2960 **/ 2961 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2962 { 2963 if (!adapter->msix_entries) 2964 return; 2965 2966 pci_disable_msix(adapter->pdev); 2967 kfree(adapter->msix_entries); 2968 adapter->msix_entries = NULL; 2969 } 2970 2971 /** 2972 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2973 * @adapter: board private structure to initialize 2974 * 2975 **/ 2976 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2977 { 2978 int err; 2979 2980 /* Number of supported queues */ 2981 ixgbevf_set_num_queues(adapter); 2982 2983 err = ixgbevf_set_interrupt_capability(adapter); 2984 if (err) { 2985 hw_dbg(&adapter->hw, 2986 "Unable to setup interrupt capabilities\n"); 2987 goto err_set_interrupt; 2988 } 2989 2990 err = ixgbevf_alloc_q_vectors(adapter); 2991 if (err) { 2992 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2993 goto err_alloc_q_vectors; 2994 } 2995 2996 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n", 2997 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled", 2998 adapter->num_rx_queues, adapter->num_tx_queues, 2999 adapter->num_xdp_queues); 3000 3001 set_bit(__IXGBEVF_DOWN, &adapter->state); 3002 3003 return 0; 3004 err_alloc_q_vectors: 3005 ixgbevf_reset_interrupt_capability(adapter); 3006 err_set_interrupt: 3007 return err; 3008 } 3009 3010 /** 3011 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 3012 * @adapter: board private structure to clear interrupt scheme on 3013 * 3014 * We go through and clear interrupt specific resources and reset the structure 3015 * to pre-load conditions 3016 **/ 3017 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 3018 { 3019 adapter->num_tx_queues = 0; 3020 adapter->num_xdp_queues = 0; 3021 adapter->num_rx_queues = 0; 3022 3023 ixgbevf_free_q_vectors(adapter); 3024 ixgbevf_reset_interrupt_capability(adapter); 3025 } 3026 3027 /** 3028 * ixgbevf_sw_init - Initialize general software structures 3029 * @adapter: board private structure to initialize 3030 * 3031 * ixgbevf_sw_init initializes the Adapter private data structure. 3032 * Fields are initialized based on PCI device information and 3033 * OS network device settings (MTU size). 3034 **/ 3035 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 3036 { 3037 struct ixgbe_hw *hw = &adapter->hw; 3038 struct pci_dev *pdev = adapter->pdev; 3039 struct net_device *netdev = adapter->netdev; 3040 int err; 3041 3042 /* PCI config space info */ 3043 hw->vendor_id = pdev->vendor; 3044 hw->device_id = pdev->device; 3045 hw->revision_id = pdev->revision; 3046 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3047 hw->subsystem_device_id = pdev->subsystem_device; 3048 3049 hw->mbx.ops.init_params(hw); 3050 3051 if (hw->mac.type >= ixgbe_mac_X550_vf) { 3052 err = ixgbevf_init_rss_key(adapter); 3053 if (err) 3054 goto out; 3055 } 3056 3057 /* assume legacy case in which PF would only give VF 2 queues */ 3058 hw->mac.max_tx_queues = 2; 3059 hw->mac.max_rx_queues = 2; 3060 3061 /* lock to protect mailbox accesses */ 3062 spin_lock_init(&adapter->mbx_lock); 3063 3064 err = hw->mac.ops.reset_hw(hw); 3065 if (err) { 3066 dev_info(&pdev->dev, 3067 "PF still in reset state. Is the PF interface up?\n"); 3068 } else { 3069 err = hw->mac.ops.init_hw(hw); 3070 if (err) { 3071 pr_err("init_shared_code failed: %d\n", err); 3072 goto out; 3073 } 3074 ixgbevf_negotiate_api(adapter); 3075 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 3076 if (err) 3077 dev_info(&pdev->dev, "Error reading MAC address\n"); 3078 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 3079 dev_info(&pdev->dev, 3080 "MAC address not assigned by administrator.\n"); 3081 eth_hw_addr_set(netdev, hw->mac.addr); 3082 } 3083 3084 if (!is_valid_ether_addr(netdev->dev_addr)) { 3085 dev_info(&pdev->dev, "Assigning random MAC address\n"); 3086 eth_hw_addr_random(netdev); 3087 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 3088 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 3089 } 3090 3091 /* Enable dynamic interrupt throttling rates */ 3092 adapter->rx_itr_setting = 1; 3093 adapter->tx_itr_setting = 1; 3094 3095 /* set default ring sizes */ 3096 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 3097 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 3098 3099 adapter->link_state = true; 3100 3101 set_bit(__IXGBEVF_DOWN, &adapter->state); 3102 return 0; 3103 3104 out: 3105 return err; 3106 } 3107 3108 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 3109 { \ 3110 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 3111 if (current_counter < last_counter) \ 3112 counter += 0x100000000LL; \ 3113 last_counter = current_counter; \ 3114 counter &= 0xFFFFFFFF00000000LL; \ 3115 counter |= current_counter; \ 3116 } 3117 3118 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 3119 { \ 3120 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 3121 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 3122 u64 current_counter = (current_counter_msb << 32) | \ 3123 current_counter_lsb; \ 3124 if (current_counter < last_counter) \ 3125 counter += 0x1000000000LL; \ 3126 last_counter = current_counter; \ 3127 counter &= 0xFFFFFFF000000000LL; \ 3128 counter |= current_counter; \ 3129 } 3130 /** 3131 * ixgbevf_update_stats - Update the board statistics counters. 3132 * @adapter: board private structure 3133 **/ 3134 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 3135 { 3136 struct ixgbe_hw *hw = &adapter->hw; 3137 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; 3138 u64 alloc_rx_page = 0, hw_csum_rx_error = 0; 3139 int i; 3140 3141 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3142 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3143 return; 3144 3145 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 3146 adapter->stats.vfgprc); 3147 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 3148 adapter->stats.vfgptc); 3149 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 3150 adapter->stats.last_vfgorc, 3151 adapter->stats.vfgorc); 3152 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 3153 adapter->stats.last_vfgotc, 3154 adapter->stats.vfgotc); 3155 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 3156 adapter->stats.vfmprc); 3157 3158 for (i = 0; i < adapter->num_rx_queues; i++) { 3159 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 3160 3161 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 3162 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; 3163 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 3164 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; 3165 } 3166 3167 adapter->hw_csum_rx_error = hw_csum_rx_error; 3168 adapter->alloc_rx_page_failed = alloc_rx_page_failed; 3169 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; 3170 adapter->alloc_rx_page = alloc_rx_page; 3171 } 3172 3173 /** 3174 * ixgbevf_service_timer - Timer Call-back 3175 * @t: pointer to timer_list struct 3176 **/ 3177 static void ixgbevf_service_timer(struct timer_list *t) 3178 { 3179 struct ixgbevf_adapter *adapter = from_timer(adapter, t, 3180 service_timer); 3181 3182 /* Reset the timer */ 3183 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 3184 3185 ixgbevf_service_event_schedule(adapter); 3186 } 3187 3188 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 3189 { 3190 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 3191 return; 3192 3193 rtnl_lock(); 3194 /* If we're already down or resetting, just bail */ 3195 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3196 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 3197 test_bit(__IXGBEVF_RESETTING, &adapter->state)) { 3198 rtnl_unlock(); 3199 return; 3200 } 3201 3202 adapter->tx_timeout_count++; 3203 3204 ixgbevf_reinit_locked(adapter); 3205 rtnl_unlock(); 3206 } 3207 3208 /** 3209 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 3210 * @adapter: pointer to the device adapter structure 3211 * 3212 * This function serves two purposes. First it strobes the interrupt lines 3213 * in order to make certain interrupts are occurring. Secondly it sets the 3214 * bits needed to check for TX hangs. As a result we should immediately 3215 * determine if a hang has occurred. 3216 **/ 3217 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 3218 { 3219 struct ixgbe_hw *hw = &adapter->hw; 3220 u32 eics = 0; 3221 int i; 3222 3223 /* If we're down or resetting, just bail */ 3224 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3225 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3226 return; 3227 3228 /* Force detection of hung controller */ 3229 if (netif_carrier_ok(adapter->netdev)) { 3230 for (i = 0; i < adapter->num_tx_queues; i++) 3231 set_check_for_tx_hang(adapter->tx_ring[i]); 3232 for (i = 0; i < adapter->num_xdp_queues; i++) 3233 set_check_for_tx_hang(adapter->xdp_ring[i]); 3234 } 3235 3236 /* get one bit for every active Tx/Rx interrupt vector */ 3237 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 3238 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 3239 3240 if (qv->rx.ring || qv->tx.ring) 3241 eics |= BIT(i); 3242 } 3243 3244 /* Cause software interrupt to ensure rings are cleaned */ 3245 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 3246 } 3247 3248 /** 3249 * ixgbevf_watchdog_update_link - update the link status 3250 * @adapter: pointer to the device adapter structure 3251 **/ 3252 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 3253 { 3254 struct ixgbe_hw *hw = &adapter->hw; 3255 u32 link_speed = adapter->link_speed; 3256 bool link_up = adapter->link_up; 3257 s32 err; 3258 3259 spin_lock_bh(&adapter->mbx_lock); 3260 3261 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 3262 3263 spin_unlock_bh(&adapter->mbx_lock); 3264 3265 /* if check for link returns error we will need to reset */ 3266 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 3267 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 3268 link_up = false; 3269 } 3270 3271 adapter->link_up = link_up; 3272 adapter->link_speed = link_speed; 3273 } 3274 3275 /** 3276 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 3277 * print link up message 3278 * @adapter: pointer to the device adapter structure 3279 **/ 3280 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 3281 { 3282 struct net_device *netdev = adapter->netdev; 3283 3284 /* only continue if link was previously down */ 3285 if (netif_carrier_ok(netdev)) 3286 return; 3287 3288 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 3289 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 3290 "10 Gbps" : 3291 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 3292 "1 Gbps" : 3293 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 3294 "100 Mbps" : 3295 "unknown speed"); 3296 3297 netif_carrier_on(netdev); 3298 } 3299 3300 /** 3301 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 3302 * print link down message 3303 * @adapter: pointer to the adapter structure 3304 **/ 3305 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 3306 { 3307 struct net_device *netdev = adapter->netdev; 3308 3309 adapter->link_speed = 0; 3310 3311 /* only continue if link was up previously */ 3312 if (!netif_carrier_ok(netdev)) 3313 return; 3314 3315 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 3316 3317 netif_carrier_off(netdev); 3318 } 3319 3320 /** 3321 * ixgbevf_watchdog_subtask - worker thread to bring link up 3322 * @adapter: board private structure 3323 **/ 3324 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 3325 { 3326 /* if interface is down do nothing */ 3327 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3328 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3329 return; 3330 3331 ixgbevf_watchdog_update_link(adapter); 3332 3333 if (adapter->link_up && adapter->link_state) 3334 ixgbevf_watchdog_link_is_up(adapter); 3335 else 3336 ixgbevf_watchdog_link_is_down(adapter); 3337 3338 ixgbevf_update_stats(adapter); 3339 } 3340 3341 /** 3342 * ixgbevf_service_task - manages and runs subtasks 3343 * @work: pointer to work_struct containing our data 3344 **/ 3345 static void ixgbevf_service_task(struct work_struct *work) 3346 { 3347 struct ixgbevf_adapter *adapter = container_of(work, 3348 struct ixgbevf_adapter, 3349 service_task); 3350 struct ixgbe_hw *hw = &adapter->hw; 3351 3352 if (IXGBE_REMOVED(hw->hw_addr)) { 3353 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 3354 rtnl_lock(); 3355 ixgbevf_down(adapter); 3356 rtnl_unlock(); 3357 } 3358 return; 3359 } 3360 3361 ixgbevf_queue_reset_subtask(adapter); 3362 ixgbevf_reset_subtask(adapter); 3363 ixgbevf_watchdog_subtask(adapter); 3364 ixgbevf_check_hang_subtask(adapter); 3365 3366 ixgbevf_service_event_complete(adapter); 3367 } 3368 3369 /** 3370 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 3371 * @tx_ring: Tx descriptor ring for a specific queue 3372 * 3373 * Free all transmit software resources 3374 **/ 3375 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 3376 { 3377 ixgbevf_clean_tx_ring(tx_ring); 3378 3379 vfree(tx_ring->tx_buffer_info); 3380 tx_ring->tx_buffer_info = NULL; 3381 3382 /* if not set, then don't free */ 3383 if (!tx_ring->desc) 3384 return; 3385 3386 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 3387 tx_ring->dma); 3388 3389 tx_ring->desc = NULL; 3390 } 3391 3392 /** 3393 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 3394 * @adapter: board private structure 3395 * 3396 * Free all transmit software resources 3397 **/ 3398 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 3399 { 3400 int i; 3401 3402 for (i = 0; i < adapter->num_tx_queues; i++) 3403 if (adapter->tx_ring[i]->desc) 3404 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3405 for (i = 0; i < adapter->num_xdp_queues; i++) 3406 if (adapter->xdp_ring[i]->desc) 3407 ixgbevf_free_tx_resources(adapter->xdp_ring[i]); 3408 } 3409 3410 /** 3411 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 3412 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 3413 * 3414 * Return 0 on success, negative on failure 3415 **/ 3416 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3417 { 3418 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3419 int size; 3420 3421 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3422 tx_ring->tx_buffer_info = vmalloc(size); 3423 if (!tx_ring->tx_buffer_info) 3424 goto err; 3425 3426 u64_stats_init(&tx_ring->syncp); 3427 3428 /* round up to nearest 4K */ 3429 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3430 tx_ring->size = ALIGN(tx_ring->size, 4096); 3431 3432 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3433 &tx_ring->dma, GFP_KERNEL); 3434 if (!tx_ring->desc) 3435 goto err; 3436 3437 return 0; 3438 3439 err: 3440 vfree(tx_ring->tx_buffer_info); 3441 tx_ring->tx_buffer_info = NULL; 3442 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3443 return -ENOMEM; 3444 } 3445 3446 /** 3447 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3448 * @adapter: board private structure 3449 * 3450 * If this function returns with an error, then it's possible one or 3451 * more of the rings is populated (while the rest are not). It is the 3452 * callers duty to clean those orphaned rings. 3453 * 3454 * Return 0 on success, negative on failure 3455 **/ 3456 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3457 { 3458 int i, j = 0, err = 0; 3459 3460 for (i = 0; i < adapter->num_tx_queues; i++) { 3461 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3462 if (!err) 3463 continue; 3464 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3465 goto err_setup_tx; 3466 } 3467 3468 for (j = 0; j < adapter->num_xdp_queues; j++) { 3469 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]); 3470 if (!err) 3471 continue; 3472 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j); 3473 goto err_setup_tx; 3474 } 3475 3476 return 0; 3477 err_setup_tx: 3478 /* rewind the index freeing the rings as we go */ 3479 while (j--) 3480 ixgbevf_free_tx_resources(adapter->xdp_ring[j]); 3481 while (i--) 3482 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3483 3484 return err; 3485 } 3486 3487 /** 3488 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3489 * @adapter: board private structure 3490 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3491 * 3492 * Returns 0 on success, negative on failure 3493 **/ 3494 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter, 3495 struct ixgbevf_ring *rx_ring) 3496 { 3497 int size; 3498 3499 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3500 rx_ring->rx_buffer_info = vmalloc(size); 3501 if (!rx_ring->rx_buffer_info) 3502 goto err; 3503 3504 u64_stats_init(&rx_ring->syncp); 3505 3506 /* Round up to nearest 4K */ 3507 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3508 rx_ring->size = ALIGN(rx_ring->size, 4096); 3509 3510 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3511 &rx_ring->dma, GFP_KERNEL); 3512 3513 if (!rx_ring->desc) 3514 goto err; 3515 3516 /* XDP RX-queue info */ 3517 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev, 3518 rx_ring->queue_index, 0) < 0) 3519 goto err; 3520 3521 rx_ring->xdp_prog = adapter->xdp_prog; 3522 3523 return 0; 3524 err: 3525 vfree(rx_ring->rx_buffer_info); 3526 rx_ring->rx_buffer_info = NULL; 3527 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3528 return -ENOMEM; 3529 } 3530 3531 /** 3532 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3533 * @adapter: board private structure 3534 * 3535 * If this function returns with an error, then it's possible one or 3536 * more of the rings is populated (while the rest are not). It is the 3537 * callers duty to clean those orphaned rings. 3538 * 3539 * Return 0 on success, negative on failure 3540 **/ 3541 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3542 { 3543 int i, err = 0; 3544 3545 for (i = 0; i < adapter->num_rx_queues; i++) { 3546 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]); 3547 if (!err) 3548 continue; 3549 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3550 goto err_setup_rx; 3551 } 3552 3553 return 0; 3554 err_setup_rx: 3555 /* rewind the index freeing the rings as we go */ 3556 while (i--) 3557 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3558 return err; 3559 } 3560 3561 /** 3562 * ixgbevf_free_rx_resources - Free Rx Resources 3563 * @rx_ring: ring to clean the resources from 3564 * 3565 * Free all receive software resources 3566 **/ 3567 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3568 { 3569 ixgbevf_clean_rx_ring(rx_ring); 3570 3571 rx_ring->xdp_prog = NULL; 3572 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 3573 vfree(rx_ring->rx_buffer_info); 3574 rx_ring->rx_buffer_info = NULL; 3575 3576 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3577 rx_ring->dma); 3578 3579 rx_ring->desc = NULL; 3580 } 3581 3582 /** 3583 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3584 * @adapter: board private structure 3585 * 3586 * Free all receive software resources 3587 **/ 3588 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3589 { 3590 int i; 3591 3592 for (i = 0; i < adapter->num_rx_queues; i++) 3593 if (adapter->rx_ring[i]->desc) 3594 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3595 } 3596 3597 /** 3598 * ixgbevf_open - Called when a network interface is made active 3599 * @netdev: network interface device structure 3600 * 3601 * Returns 0 on success, negative value on failure 3602 * 3603 * The open entry point is called when a network interface is made 3604 * active by the system (IFF_UP). At this point all resources needed 3605 * for transmit and receive operations are allocated, the interrupt 3606 * handler is registered with the OS, the watchdog timer is started, 3607 * and the stack is notified that the interface is ready. 3608 **/ 3609 int ixgbevf_open(struct net_device *netdev) 3610 { 3611 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3612 struct ixgbe_hw *hw = &adapter->hw; 3613 int err; 3614 3615 /* A previous failure to open the device because of a lack of 3616 * available MSIX vector resources may have reset the number 3617 * of msix vectors variable to zero. The only way to recover 3618 * is to unload/reload the driver and hope that the system has 3619 * been able to recover some MSIX vector resources. 3620 */ 3621 if (!adapter->num_msix_vectors) 3622 return -ENOMEM; 3623 3624 if (hw->adapter_stopped) { 3625 ixgbevf_reset(adapter); 3626 /* if adapter is still stopped then PF isn't up and 3627 * the VF can't start. 3628 */ 3629 if (hw->adapter_stopped) { 3630 err = IXGBE_ERR_MBX; 3631 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3632 goto err_setup_reset; 3633 } 3634 } 3635 3636 /* disallow open during test */ 3637 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3638 return -EBUSY; 3639 3640 netif_carrier_off(netdev); 3641 3642 /* allocate transmit descriptors */ 3643 err = ixgbevf_setup_all_tx_resources(adapter); 3644 if (err) 3645 goto err_setup_tx; 3646 3647 /* allocate receive descriptors */ 3648 err = ixgbevf_setup_all_rx_resources(adapter); 3649 if (err) 3650 goto err_setup_rx; 3651 3652 ixgbevf_configure(adapter); 3653 3654 err = ixgbevf_request_irq(adapter); 3655 if (err) 3656 goto err_req_irq; 3657 3658 /* Notify the stack of the actual queue counts. */ 3659 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3660 if (err) 3661 goto err_set_queues; 3662 3663 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3664 if (err) 3665 goto err_set_queues; 3666 3667 ixgbevf_up_complete(adapter); 3668 3669 return 0; 3670 3671 err_set_queues: 3672 ixgbevf_free_irq(adapter); 3673 err_req_irq: 3674 ixgbevf_free_all_rx_resources(adapter); 3675 err_setup_rx: 3676 ixgbevf_free_all_tx_resources(adapter); 3677 err_setup_tx: 3678 ixgbevf_reset(adapter); 3679 err_setup_reset: 3680 3681 return err; 3682 } 3683 3684 /** 3685 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3686 * @adapter: the private adapter struct 3687 * 3688 * This function should contain the necessary work common to both suspending 3689 * and closing of the device. 3690 */ 3691 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3692 { 3693 ixgbevf_down(adapter); 3694 ixgbevf_free_irq(adapter); 3695 ixgbevf_free_all_tx_resources(adapter); 3696 ixgbevf_free_all_rx_resources(adapter); 3697 } 3698 3699 /** 3700 * ixgbevf_close - Disables a network interface 3701 * @netdev: network interface device structure 3702 * 3703 * Returns 0, this is not allowed to fail 3704 * 3705 * The close entry point is called when an interface is de-activated 3706 * by the OS. The hardware is still under the drivers control, but 3707 * needs to be disabled. A global MAC reset is issued to stop the 3708 * hardware, and all transmit and receive resources are freed. 3709 **/ 3710 int ixgbevf_close(struct net_device *netdev) 3711 { 3712 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3713 3714 if (netif_device_present(netdev)) 3715 ixgbevf_close_suspend(adapter); 3716 3717 return 0; 3718 } 3719 3720 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3721 { 3722 struct net_device *dev = adapter->netdev; 3723 3724 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3725 &adapter->state)) 3726 return; 3727 3728 /* if interface is down do nothing */ 3729 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3730 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3731 return; 3732 3733 /* Hardware has to reinitialize queues and interrupts to 3734 * match packet buffer alignment. Unfortunately, the 3735 * hardware is not flexible enough to do this dynamically. 3736 */ 3737 rtnl_lock(); 3738 3739 if (netif_running(dev)) 3740 ixgbevf_close(dev); 3741 3742 ixgbevf_clear_interrupt_scheme(adapter); 3743 ixgbevf_init_interrupt_scheme(adapter); 3744 3745 if (netif_running(dev)) 3746 ixgbevf_open(dev); 3747 3748 rtnl_unlock(); 3749 } 3750 3751 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3752 u32 vlan_macip_lens, u32 fceof_saidx, 3753 u32 type_tucmd, u32 mss_l4len_idx) 3754 { 3755 struct ixgbe_adv_tx_context_desc *context_desc; 3756 u16 i = tx_ring->next_to_use; 3757 3758 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3759 3760 i++; 3761 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3762 3763 /* set bits to identify this as an advanced context descriptor */ 3764 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3765 3766 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3767 context_desc->fceof_saidx = cpu_to_le32(fceof_saidx); 3768 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3769 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3770 } 3771 3772 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3773 struct ixgbevf_tx_buffer *first, 3774 u8 *hdr_len, 3775 struct ixgbevf_ipsec_tx_data *itd) 3776 { 3777 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3778 struct sk_buff *skb = first->skb; 3779 union { 3780 struct iphdr *v4; 3781 struct ipv6hdr *v6; 3782 unsigned char *hdr; 3783 } ip; 3784 union { 3785 struct tcphdr *tcp; 3786 unsigned char *hdr; 3787 } l4; 3788 u32 paylen, l4_offset; 3789 u32 fceof_saidx = 0; 3790 int err; 3791 3792 if (skb->ip_summed != CHECKSUM_PARTIAL) 3793 return 0; 3794 3795 if (!skb_is_gso(skb)) 3796 return 0; 3797 3798 err = skb_cow_head(skb, 0); 3799 if (err < 0) 3800 return err; 3801 3802 if (eth_p_mpls(first->protocol)) 3803 ip.hdr = skb_inner_network_header(skb); 3804 else 3805 ip.hdr = skb_network_header(skb); 3806 l4.hdr = skb_checksum_start(skb); 3807 3808 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3809 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3810 3811 /* initialize outer IP header fields */ 3812 if (ip.v4->version == 4) { 3813 unsigned char *csum_start = skb_checksum_start(skb); 3814 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3815 int len = csum_start - trans_start; 3816 3817 /* IP header will have to cancel out any data that 3818 * is not a part of the outer IP header, so set to 3819 * a reverse csum if needed, else init check to 0. 3820 */ 3821 ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ? 3822 csum_fold(csum_partial(trans_start, 3823 len, 0)) : 0; 3824 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3825 3826 ip.v4->tot_len = 0; 3827 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3828 IXGBE_TX_FLAGS_CSUM | 3829 IXGBE_TX_FLAGS_IPV4; 3830 } else { 3831 ip.v6->payload_len = 0; 3832 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3833 IXGBE_TX_FLAGS_CSUM; 3834 } 3835 3836 /* determine offset of inner transport header */ 3837 l4_offset = l4.hdr - skb->data; 3838 3839 /* compute length of segmentation header */ 3840 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3841 3842 /* remove payload length from inner checksum */ 3843 paylen = skb->len - l4_offset; 3844 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 3845 3846 /* update gso size and bytecount with header size */ 3847 first->gso_segs = skb_shinfo(skb)->gso_segs; 3848 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3849 3850 /* mss_l4len_id: use 1 as index for TSO */ 3851 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3852 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3853 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3854 3855 fceof_saidx |= itd->pfsa; 3856 type_tucmd |= itd->flags | itd->trailer_len; 3857 3858 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3859 vlan_macip_lens = l4.hdr - ip.hdr; 3860 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3861 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3862 3863 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd, 3864 mss_l4len_idx); 3865 3866 return 1; 3867 } 3868 3869 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3870 struct ixgbevf_tx_buffer *first, 3871 struct ixgbevf_ipsec_tx_data *itd) 3872 { 3873 struct sk_buff *skb = first->skb; 3874 u32 vlan_macip_lens = 0; 3875 u32 fceof_saidx = 0; 3876 u32 type_tucmd = 0; 3877 3878 if (skb->ip_summed != CHECKSUM_PARTIAL) 3879 goto no_csum; 3880 3881 switch (skb->csum_offset) { 3882 case offsetof(struct tcphdr, check): 3883 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3884 fallthrough; 3885 case offsetof(struct udphdr, check): 3886 break; 3887 case offsetof(struct sctphdr, checksum): 3888 /* validate that this is actually an SCTP request */ 3889 if (skb_csum_is_sctp(skb)) { 3890 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3891 break; 3892 } 3893 fallthrough; 3894 default: 3895 skb_checksum_help(skb); 3896 goto no_csum; 3897 } 3898 3899 if (first->protocol == htons(ETH_P_IP)) 3900 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3901 3902 /* update TX checksum flag */ 3903 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3904 vlan_macip_lens = skb_checksum_start_offset(skb) - 3905 skb_network_offset(skb); 3906 no_csum: 3907 /* vlan_macip_lens: MACLEN, VLAN tag */ 3908 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3909 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3910 3911 fceof_saidx |= itd->pfsa; 3912 type_tucmd |= itd->flags | itd->trailer_len; 3913 3914 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3915 fceof_saidx, type_tucmd, 0); 3916 } 3917 3918 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3919 { 3920 /* set type for advanced descriptor with frame checksum insertion */ 3921 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3922 IXGBE_ADVTXD_DCMD_IFCS | 3923 IXGBE_ADVTXD_DCMD_DEXT); 3924 3925 /* set HW VLAN bit if VLAN is present */ 3926 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3927 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3928 3929 /* set segmentation enable bits for TSO/FSO */ 3930 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3931 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3932 3933 return cmd_type; 3934 } 3935 3936 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3937 u32 tx_flags, unsigned int paylen) 3938 { 3939 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3940 3941 /* enable L4 checksum for TSO and TX checksum offload */ 3942 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3943 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3944 3945 /* enble IPv4 checksum for TSO */ 3946 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3947 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3948 3949 /* enable IPsec */ 3950 if (tx_flags & IXGBE_TX_FLAGS_IPSEC) 3951 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC); 3952 3953 /* use index 1 context for TSO/FSO/FCOE/IPSEC */ 3954 if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC)) 3955 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3956 3957 /* Check Context must be set if Tx switch is enabled, which it 3958 * always is for case where virtual functions are running 3959 */ 3960 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3961 3962 tx_desc->read.olinfo_status = olinfo_status; 3963 } 3964 3965 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3966 struct ixgbevf_tx_buffer *first, 3967 const u8 hdr_len) 3968 { 3969 struct sk_buff *skb = first->skb; 3970 struct ixgbevf_tx_buffer *tx_buffer; 3971 union ixgbe_adv_tx_desc *tx_desc; 3972 skb_frag_t *frag; 3973 dma_addr_t dma; 3974 unsigned int data_len, size; 3975 u32 tx_flags = first->tx_flags; 3976 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3977 u16 i = tx_ring->next_to_use; 3978 3979 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3980 3981 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 3982 3983 size = skb_headlen(skb); 3984 data_len = skb->data_len; 3985 3986 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3987 3988 tx_buffer = first; 3989 3990 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3991 if (dma_mapping_error(tx_ring->dev, dma)) 3992 goto dma_error; 3993 3994 /* record length, and DMA address */ 3995 dma_unmap_len_set(tx_buffer, len, size); 3996 dma_unmap_addr_set(tx_buffer, dma, dma); 3997 3998 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3999 4000 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 4001 tx_desc->read.cmd_type_len = 4002 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 4003 4004 i++; 4005 tx_desc++; 4006 if (i == tx_ring->count) { 4007 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4008 i = 0; 4009 } 4010 tx_desc->read.olinfo_status = 0; 4011 4012 dma += IXGBE_MAX_DATA_PER_TXD; 4013 size -= IXGBE_MAX_DATA_PER_TXD; 4014 4015 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4016 } 4017 4018 if (likely(!data_len)) 4019 break; 4020 4021 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 4022 4023 i++; 4024 tx_desc++; 4025 if (i == tx_ring->count) { 4026 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4027 i = 0; 4028 } 4029 tx_desc->read.olinfo_status = 0; 4030 4031 size = skb_frag_size(frag); 4032 data_len -= size; 4033 4034 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 4035 DMA_TO_DEVICE); 4036 4037 tx_buffer = &tx_ring->tx_buffer_info[i]; 4038 } 4039 4040 /* write last descriptor with RS and EOP bits */ 4041 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 4042 tx_desc->read.cmd_type_len = cmd_type; 4043 4044 /* set the timestamp */ 4045 first->time_stamp = jiffies; 4046 4047 skb_tx_timestamp(skb); 4048 4049 /* Force memory writes to complete before letting h/w know there 4050 * are new descriptors to fetch. (Only applicable for weak-ordered 4051 * memory model archs, such as IA-64). 4052 * 4053 * We also need this memory barrier (wmb) to make certain all of the 4054 * status bits have been updated before next_to_watch is written. 4055 */ 4056 wmb(); 4057 4058 /* set next_to_watch value indicating a packet is present */ 4059 first->next_to_watch = tx_desc; 4060 4061 i++; 4062 if (i == tx_ring->count) 4063 i = 0; 4064 4065 tx_ring->next_to_use = i; 4066 4067 /* notify HW of packet */ 4068 ixgbevf_write_tail(tx_ring, i); 4069 4070 return; 4071 dma_error: 4072 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4073 tx_buffer = &tx_ring->tx_buffer_info[i]; 4074 4075 /* clear dma mappings for failed tx_buffer_info map */ 4076 while (tx_buffer != first) { 4077 if (dma_unmap_len(tx_buffer, len)) 4078 dma_unmap_page(tx_ring->dev, 4079 dma_unmap_addr(tx_buffer, dma), 4080 dma_unmap_len(tx_buffer, len), 4081 DMA_TO_DEVICE); 4082 dma_unmap_len_set(tx_buffer, len, 0); 4083 4084 if (i-- == 0) 4085 i += tx_ring->count; 4086 tx_buffer = &tx_ring->tx_buffer_info[i]; 4087 } 4088 4089 if (dma_unmap_len(tx_buffer, len)) 4090 dma_unmap_single(tx_ring->dev, 4091 dma_unmap_addr(tx_buffer, dma), 4092 dma_unmap_len(tx_buffer, len), 4093 DMA_TO_DEVICE); 4094 dma_unmap_len_set(tx_buffer, len, 0); 4095 4096 dev_kfree_skb_any(tx_buffer->skb); 4097 tx_buffer->skb = NULL; 4098 4099 tx_ring->next_to_use = i; 4100 } 4101 4102 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4103 { 4104 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 4105 /* Herbert's original patch had: 4106 * smp_mb__after_netif_stop_queue(); 4107 * but since that doesn't exist yet, just open code it. 4108 */ 4109 smp_mb(); 4110 4111 /* We need to check again in a case another CPU has just 4112 * made room available. 4113 */ 4114 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 4115 return -EBUSY; 4116 4117 /* A reprieve! - use start_queue because it doesn't call schedule */ 4118 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 4119 ++tx_ring->tx_stats.restart_queue; 4120 4121 return 0; 4122 } 4123 4124 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4125 { 4126 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 4127 return 0; 4128 return __ixgbevf_maybe_stop_tx(tx_ring, size); 4129 } 4130 4131 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb, 4132 struct ixgbevf_ring *tx_ring) 4133 { 4134 struct ixgbevf_tx_buffer *first; 4135 int tso; 4136 u32 tx_flags = 0; 4137 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4138 struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 }; 4139 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4140 unsigned short f; 4141 #endif 4142 u8 hdr_len = 0; 4143 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 4144 4145 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 4146 dev_kfree_skb_any(skb); 4147 return NETDEV_TX_OK; 4148 } 4149 4150 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 4151 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 4152 * + 2 desc gap to keep tail from touching head, 4153 * + 1 desc for context descriptor, 4154 * otherwise try next time 4155 */ 4156 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4157 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 4158 skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 4159 4160 count += TXD_USE_COUNT(skb_frag_size(frag)); 4161 } 4162 #else 4163 count += skb_shinfo(skb)->nr_frags; 4164 #endif 4165 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 4166 tx_ring->tx_stats.tx_busy++; 4167 return NETDEV_TX_BUSY; 4168 } 4169 4170 /* record the location of the first descriptor for this packet */ 4171 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4172 first->skb = skb; 4173 first->bytecount = skb->len; 4174 first->gso_segs = 1; 4175 4176 if (skb_vlan_tag_present(skb)) { 4177 tx_flags |= skb_vlan_tag_get(skb); 4178 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 4179 tx_flags |= IXGBE_TX_FLAGS_VLAN; 4180 } 4181 4182 /* record initial flags and protocol */ 4183 first->tx_flags = tx_flags; 4184 first->protocol = vlan_get_protocol(skb); 4185 4186 #ifdef CONFIG_IXGBEVF_IPSEC 4187 if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx)) 4188 goto out_drop; 4189 #endif 4190 tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx); 4191 if (tso < 0) 4192 goto out_drop; 4193 else if (!tso) 4194 ixgbevf_tx_csum(tx_ring, first, &ipsec_tx); 4195 4196 ixgbevf_tx_map(tx_ring, first, hdr_len); 4197 4198 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 4199 4200 return NETDEV_TX_OK; 4201 4202 out_drop: 4203 dev_kfree_skb_any(first->skb); 4204 first->skb = NULL; 4205 4206 return NETDEV_TX_OK; 4207 } 4208 4209 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 4210 { 4211 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4212 struct ixgbevf_ring *tx_ring; 4213 4214 if (skb->len <= 0) { 4215 dev_kfree_skb_any(skb); 4216 return NETDEV_TX_OK; 4217 } 4218 4219 /* The minimum packet size for olinfo paylen is 17 so pad the skb 4220 * in order to meet this minimum size requirement. 4221 */ 4222 if (skb->len < 17) { 4223 if (skb_padto(skb, 17)) 4224 return NETDEV_TX_OK; 4225 skb->len = 17; 4226 } 4227 4228 tx_ring = adapter->tx_ring[skb->queue_mapping]; 4229 return ixgbevf_xmit_frame_ring(skb, tx_ring); 4230 } 4231 4232 /** 4233 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 4234 * @netdev: network interface device structure 4235 * @p: pointer to an address structure 4236 * 4237 * Returns 0 on success, negative on failure 4238 **/ 4239 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 4240 { 4241 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4242 struct ixgbe_hw *hw = &adapter->hw; 4243 struct sockaddr *addr = p; 4244 int err; 4245 4246 if (!is_valid_ether_addr(addr->sa_data)) 4247 return -EADDRNOTAVAIL; 4248 4249 spin_lock_bh(&adapter->mbx_lock); 4250 4251 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 4252 4253 spin_unlock_bh(&adapter->mbx_lock); 4254 4255 if (err) 4256 return -EPERM; 4257 4258 ether_addr_copy(hw->mac.addr, addr->sa_data); 4259 ether_addr_copy(hw->mac.perm_addr, addr->sa_data); 4260 eth_hw_addr_set(netdev, addr->sa_data); 4261 4262 return 0; 4263 } 4264 4265 /** 4266 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 4267 * @netdev: network interface device structure 4268 * @new_mtu: new value for maximum frame size 4269 * 4270 * Returns 0 on success, negative on failure 4271 **/ 4272 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 4273 { 4274 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4275 struct ixgbe_hw *hw = &adapter->hw; 4276 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 4277 int ret; 4278 4279 /* prevent MTU being changed to a size unsupported by XDP */ 4280 if (adapter->xdp_prog) { 4281 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n"); 4282 return -EPERM; 4283 } 4284 4285 spin_lock_bh(&adapter->mbx_lock); 4286 /* notify the PF of our intent to use this size of frame */ 4287 ret = hw->mac.ops.set_rlpml(hw, max_frame); 4288 spin_unlock_bh(&adapter->mbx_lock); 4289 if (ret) 4290 return -EINVAL; 4291 4292 hw_dbg(hw, "changing MTU from %d to %d\n", 4293 netdev->mtu, new_mtu); 4294 4295 /* must set new MTU before calling down or up */ 4296 WRITE_ONCE(netdev->mtu, new_mtu); 4297 4298 if (netif_running(netdev)) 4299 ixgbevf_reinit_locked(adapter); 4300 4301 return 0; 4302 } 4303 4304 static int ixgbevf_suspend(struct device *dev_d) 4305 { 4306 struct net_device *netdev = dev_get_drvdata(dev_d); 4307 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4308 4309 rtnl_lock(); 4310 netif_device_detach(netdev); 4311 4312 if (netif_running(netdev)) 4313 ixgbevf_close_suspend(adapter); 4314 4315 ixgbevf_clear_interrupt_scheme(adapter); 4316 rtnl_unlock(); 4317 4318 return 0; 4319 } 4320 4321 static int ixgbevf_resume(struct device *dev_d) 4322 { 4323 struct pci_dev *pdev = to_pci_dev(dev_d); 4324 struct net_device *netdev = pci_get_drvdata(pdev); 4325 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4326 u32 err; 4327 4328 adapter->hw.hw_addr = adapter->io_addr; 4329 smp_mb__before_atomic(); 4330 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4331 pci_set_master(pdev); 4332 4333 ixgbevf_reset(adapter); 4334 4335 rtnl_lock(); 4336 err = ixgbevf_init_interrupt_scheme(adapter); 4337 if (!err && netif_running(netdev)) 4338 err = ixgbevf_open(netdev); 4339 rtnl_unlock(); 4340 if (err) 4341 return err; 4342 4343 netif_device_attach(netdev); 4344 4345 return err; 4346 } 4347 4348 static void ixgbevf_shutdown(struct pci_dev *pdev) 4349 { 4350 ixgbevf_suspend(&pdev->dev); 4351 } 4352 4353 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats, 4354 const struct ixgbevf_ring *ring) 4355 { 4356 u64 bytes, packets; 4357 unsigned int start; 4358 4359 if (ring) { 4360 do { 4361 start = u64_stats_fetch_begin(&ring->syncp); 4362 bytes = ring->stats.bytes; 4363 packets = ring->stats.packets; 4364 } while (u64_stats_fetch_retry(&ring->syncp, start)); 4365 stats->tx_bytes += bytes; 4366 stats->tx_packets += packets; 4367 } 4368 } 4369 4370 static void ixgbevf_get_stats(struct net_device *netdev, 4371 struct rtnl_link_stats64 *stats) 4372 { 4373 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4374 unsigned int start; 4375 u64 bytes, packets; 4376 const struct ixgbevf_ring *ring; 4377 int i; 4378 4379 ixgbevf_update_stats(adapter); 4380 4381 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 4382 4383 rcu_read_lock(); 4384 for (i = 0; i < adapter->num_rx_queues; i++) { 4385 ring = adapter->rx_ring[i]; 4386 do { 4387 start = u64_stats_fetch_begin(&ring->syncp); 4388 bytes = ring->stats.bytes; 4389 packets = ring->stats.packets; 4390 } while (u64_stats_fetch_retry(&ring->syncp, start)); 4391 stats->rx_bytes += bytes; 4392 stats->rx_packets += packets; 4393 } 4394 4395 for (i = 0; i < adapter->num_tx_queues; i++) { 4396 ring = adapter->tx_ring[i]; 4397 ixgbevf_get_tx_ring_stats(stats, ring); 4398 } 4399 4400 for (i = 0; i < adapter->num_xdp_queues; i++) { 4401 ring = adapter->xdp_ring[i]; 4402 ixgbevf_get_tx_ring_stats(stats, ring); 4403 } 4404 rcu_read_unlock(); 4405 } 4406 4407 #define IXGBEVF_MAX_MAC_HDR_LEN 127 4408 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 4409 4410 static netdev_features_t 4411 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 4412 netdev_features_t features) 4413 { 4414 unsigned int network_hdr_len, mac_hdr_len; 4415 4416 /* Make certain the headers can be described by a context descriptor */ 4417 mac_hdr_len = skb_network_offset(skb); 4418 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 4419 return features & ~(NETIF_F_HW_CSUM | 4420 NETIF_F_SCTP_CRC | 4421 NETIF_F_HW_VLAN_CTAG_TX | 4422 NETIF_F_TSO | 4423 NETIF_F_TSO6); 4424 4425 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4426 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 4427 return features & ~(NETIF_F_HW_CSUM | 4428 NETIF_F_SCTP_CRC | 4429 NETIF_F_TSO | 4430 NETIF_F_TSO6); 4431 4432 /* We can only support IPV4 TSO in tunnels if we can mangle the 4433 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4434 */ 4435 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4436 features &= ~NETIF_F_TSO; 4437 4438 return features; 4439 } 4440 4441 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog) 4442 { 4443 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4444 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4445 struct bpf_prog *old_prog; 4446 4447 /* verify ixgbevf ring attributes are sufficient for XDP */ 4448 for (i = 0; i < adapter->num_rx_queues; i++) { 4449 struct ixgbevf_ring *ring = adapter->rx_ring[i]; 4450 4451 if (frame_size > ixgbevf_rx_bufsz(ring)) 4452 return -EINVAL; 4453 } 4454 4455 old_prog = xchg(&adapter->xdp_prog, prog); 4456 4457 /* If transitioning XDP modes reconfigure rings */ 4458 if (!!prog != !!old_prog) { 4459 /* Hardware has to reinitialize queues and interrupts to 4460 * match packet buffer alignment. Unfortunately, the 4461 * hardware is not flexible enough to do this dynamically. 4462 */ 4463 if (netif_running(dev)) 4464 ixgbevf_close(dev); 4465 4466 ixgbevf_clear_interrupt_scheme(adapter); 4467 ixgbevf_init_interrupt_scheme(adapter); 4468 4469 if (netif_running(dev)) 4470 ixgbevf_open(dev); 4471 } else { 4472 for (i = 0; i < adapter->num_rx_queues; i++) 4473 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog); 4474 } 4475 4476 if (old_prog) 4477 bpf_prog_put(old_prog); 4478 4479 return 0; 4480 } 4481 4482 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4483 { 4484 switch (xdp->command) { 4485 case XDP_SETUP_PROG: 4486 return ixgbevf_xdp_setup(dev, xdp->prog); 4487 default: 4488 return -EINVAL; 4489 } 4490 } 4491 4492 static const struct net_device_ops ixgbevf_netdev_ops = { 4493 .ndo_open = ixgbevf_open, 4494 .ndo_stop = ixgbevf_close, 4495 .ndo_start_xmit = ixgbevf_xmit_frame, 4496 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 4497 .ndo_get_stats64 = ixgbevf_get_stats, 4498 .ndo_validate_addr = eth_validate_addr, 4499 .ndo_set_mac_address = ixgbevf_set_mac, 4500 .ndo_change_mtu = ixgbevf_change_mtu, 4501 .ndo_tx_timeout = ixgbevf_tx_timeout, 4502 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 4503 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 4504 .ndo_features_check = ixgbevf_features_check, 4505 .ndo_bpf = ixgbevf_xdp, 4506 }; 4507 4508 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 4509 { 4510 dev->netdev_ops = &ixgbevf_netdev_ops; 4511 ixgbevf_set_ethtool_ops(dev); 4512 dev->watchdog_timeo = 5 * HZ; 4513 } 4514 4515 /** 4516 * ixgbevf_probe - Device Initialization Routine 4517 * @pdev: PCI device information struct 4518 * @ent: entry in ixgbevf_pci_tbl 4519 * 4520 * Returns 0 on success, negative on failure 4521 * 4522 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 4523 * The OS initialization, configuring of the adapter private structure, 4524 * and a hardware reset occur. 4525 **/ 4526 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4527 { 4528 struct net_device *netdev; 4529 struct ixgbevf_adapter *adapter = NULL; 4530 struct ixgbe_hw *hw = NULL; 4531 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 4532 bool disable_dev = false; 4533 int err; 4534 4535 err = pci_enable_device(pdev); 4536 if (err) 4537 return err; 4538 4539 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4540 if (err) { 4541 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4542 goto err_dma; 4543 } 4544 4545 err = pci_request_regions(pdev, ixgbevf_driver_name); 4546 if (err) { 4547 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4548 goto err_pci_reg; 4549 } 4550 4551 pci_set_master(pdev); 4552 4553 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4554 MAX_TX_QUEUES); 4555 if (!netdev) { 4556 err = -ENOMEM; 4557 goto err_alloc_etherdev; 4558 } 4559 4560 SET_NETDEV_DEV(netdev, &pdev->dev); 4561 4562 adapter = netdev_priv(netdev); 4563 4564 adapter->netdev = netdev; 4565 adapter->pdev = pdev; 4566 hw = &adapter->hw; 4567 hw->back = adapter; 4568 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4569 4570 /* call save state here in standalone driver because it relies on 4571 * adapter struct to exist, and needs to call netdev_priv 4572 */ 4573 pci_save_state(pdev); 4574 4575 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4576 pci_resource_len(pdev, 0)); 4577 adapter->io_addr = hw->hw_addr; 4578 if (!hw->hw_addr) { 4579 err = -EIO; 4580 goto err_ioremap; 4581 } 4582 4583 ixgbevf_assign_netdev_ops(netdev); 4584 4585 /* Setup HW API */ 4586 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4587 hw->mac.type = ii->mac; 4588 4589 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops_legacy, 4590 sizeof(struct ixgbe_mbx_operations)); 4591 4592 /* setup the private structure */ 4593 err = ixgbevf_sw_init(adapter); 4594 if (err) 4595 goto err_sw_init; 4596 4597 /* The HW MAC address was set and/or determined in sw_init */ 4598 if (!is_valid_ether_addr(netdev->dev_addr)) { 4599 pr_err("invalid MAC address\n"); 4600 err = -EIO; 4601 goto err_sw_init; 4602 } 4603 4604 netdev->hw_features = NETIF_F_SG | 4605 NETIF_F_TSO | 4606 NETIF_F_TSO6 | 4607 NETIF_F_RXCSUM | 4608 NETIF_F_HW_CSUM | 4609 NETIF_F_SCTP_CRC; 4610 4611 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4612 NETIF_F_GSO_GRE_CSUM | \ 4613 NETIF_F_GSO_IPXIP4 | \ 4614 NETIF_F_GSO_IPXIP6 | \ 4615 NETIF_F_GSO_UDP_TUNNEL | \ 4616 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4617 4618 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4619 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4620 IXGBEVF_GSO_PARTIAL_FEATURES; 4621 4622 netdev->features = netdev->hw_features | NETIF_F_HIGHDMA; 4623 4624 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4625 netdev->mpls_features |= NETIF_F_SG | 4626 NETIF_F_TSO | 4627 NETIF_F_TSO6 | 4628 NETIF_F_HW_CSUM; 4629 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4630 netdev->hw_enc_features |= netdev->vlan_features; 4631 4632 /* set this bit last since it cannot be part of vlan_features */ 4633 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4634 NETIF_F_HW_VLAN_CTAG_RX | 4635 NETIF_F_HW_VLAN_CTAG_TX; 4636 4637 netdev->priv_flags |= IFF_UNICAST_FLT; 4638 netdev->xdp_features = NETDEV_XDP_ACT_BASIC; 4639 4640 /* MTU range: 68 - 1504 or 9710 */ 4641 netdev->min_mtu = ETH_MIN_MTU; 4642 switch (adapter->hw.api_version) { 4643 case ixgbe_mbox_api_11: 4644 case ixgbe_mbox_api_12: 4645 case ixgbe_mbox_api_13: 4646 case ixgbe_mbox_api_14: 4647 case ixgbe_mbox_api_15: 4648 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4649 (ETH_HLEN + ETH_FCS_LEN); 4650 break; 4651 default: 4652 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4653 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4654 (ETH_HLEN + ETH_FCS_LEN); 4655 else 4656 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4657 break; 4658 } 4659 4660 if (IXGBE_REMOVED(hw->hw_addr)) { 4661 err = -EIO; 4662 goto err_sw_init; 4663 } 4664 4665 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); 4666 4667 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4668 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4669 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4670 4671 err = ixgbevf_init_interrupt_scheme(adapter); 4672 if (err) 4673 goto err_sw_init; 4674 4675 strcpy(netdev->name, "eth%d"); 4676 4677 err = register_netdev(netdev); 4678 if (err) 4679 goto err_register; 4680 4681 pci_set_drvdata(pdev, netdev); 4682 netif_carrier_off(netdev); 4683 ixgbevf_init_ipsec_offload(adapter); 4684 4685 ixgbevf_init_last_counter_stats(adapter); 4686 4687 /* print the VF info */ 4688 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4689 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4690 4691 switch (hw->mac.type) { 4692 case ixgbe_mac_X550_vf: 4693 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4694 break; 4695 case ixgbe_mac_X540_vf: 4696 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4697 break; 4698 case ixgbe_mac_e610_vf: 4699 dev_info(&pdev->dev, "Intel(R) E610 Virtual Function\n"); 4700 break; 4701 case ixgbe_mac_82599_vf: 4702 default: 4703 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4704 break; 4705 } 4706 4707 return 0; 4708 4709 err_register: 4710 ixgbevf_clear_interrupt_scheme(adapter); 4711 err_sw_init: 4712 ixgbevf_reset_interrupt_capability(adapter); 4713 iounmap(adapter->io_addr); 4714 kfree(adapter->rss_key); 4715 err_ioremap: 4716 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4717 free_netdev(netdev); 4718 err_alloc_etherdev: 4719 pci_release_regions(pdev); 4720 err_pci_reg: 4721 err_dma: 4722 if (!adapter || disable_dev) 4723 pci_disable_device(pdev); 4724 return err; 4725 } 4726 4727 /** 4728 * ixgbevf_remove - Device Removal Routine 4729 * @pdev: PCI device information struct 4730 * 4731 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4732 * that it should release a PCI device. The could be caused by a 4733 * Hot-Plug event, or because the driver is going to be removed from 4734 * memory. 4735 **/ 4736 static void ixgbevf_remove(struct pci_dev *pdev) 4737 { 4738 struct net_device *netdev = pci_get_drvdata(pdev); 4739 struct ixgbevf_adapter *adapter; 4740 bool disable_dev; 4741 4742 if (!netdev) 4743 return; 4744 4745 adapter = netdev_priv(netdev); 4746 4747 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4748 cancel_work_sync(&adapter->service_task); 4749 4750 if (netdev->reg_state == NETREG_REGISTERED) 4751 unregister_netdev(netdev); 4752 4753 ixgbevf_stop_ipsec_offload(adapter); 4754 ixgbevf_clear_interrupt_scheme(adapter); 4755 ixgbevf_reset_interrupt_capability(adapter); 4756 4757 iounmap(adapter->io_addr); 4758 pci_release_regions(pdev); 4759 4760 hw_dbg(&adapter->hw, "Remove complete\n"); 4761 4762 kfree(adapter->rss_key); 4763 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4764 free_netdev(netdev); 4765 4766 if (disable_dev) 4767 pci_disable_device(pdev); 4768 } 4769 4770 /** 4771 * ixgbevf_io_error_detected - called when PCI error is detected 4772 * @pdev: Pointer to PCI device 4773 * @state: The current pci connection state 4774 * 4775 * This function is called after a PCI bus error affecting 4776 * this device has been detected. 4777 **/ 4778 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4779 pci_channel_state_t state) 4780 { 4781 struct net_device *netdev = pci_get_drvdata(pdev); 4782 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4783 4784 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4785 return PCI_ERS_RESULT_DISCONNECT; 4786 4787 rtnl_lock(); 4788 netif_device_detach(netdev); 4789 4790 if (netif_running(netdev)) 4791 ixgbevf_close_suspend(adapter); 4792 4793 if (state == pci_channel_io_perm_failure) { 4794 rtnl_unlock(); 4795 return PCI_ERS_RESULT_DISCONNECT; 4796 } 4797 4798 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4799 pci_disable_device(pdev); 4800 rtnl_unlock(); 4801 4802 /* Request a slot reset. */ 4803 return PCI_ERS_RESULT_NEED_RESET; 4804 } 4805 4806 /** 4807 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4808 * @pdev: Pointer to PCI device 4809 * 4810 * Restart the card from scratch, as if from a cold-boot. Implementation 4811 * resembles the first-half of the ixgbevf_resume routine. 4812 **/ 4813 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4814 { 4815 struct net_device *netdev = pci_get_drvdata(pdev); 4816 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4817 4818 if (pci_enable_device_mem(pdev)) { 4819 dev_err(&pdev->dev, 4820 "Cannot re-enable PCI device after reset.\n"); 4821 return PCI_ERS_RESULT_DISCONNECT; 4822 } 4823 4824 adapter->hw.hw_addr = adapter->io_addr; 4825 smp_mb__before_atomic(); 4826 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4827 pci_set_master(pdev); 4828 4829 ixgbevf_reset(adapter); 4830 4831 return PCI_ERS_RESULT_RECOVERED; 4832 } 4833 4834 /** 4835 * ixgbevf_io_resume - called when traffic can start flowing again. 4836 * @pdev: Pointer to PCI device 4837 * 4838 * This callback is called when the error recovery driver tells us that 4839 * its OK to resume normal operation. Implementation resembles the 4840 * second-half of the ixgbevf_resume routine. 4841 **/ 4842 static void ixgbevf_io_resume(struct pci_dev *pdev) 4843 { 4844 struct net_device *netdev = pci_get_drvdata(pdev); 4845 4846 rtnl_lock(); 4847 if (netif_running(netdev)) 4848 ixgbevf_open(netdev); 4849 4850 netif_device_attach(netdev); 4851 rtnl_unlock(); 4852 } 4853 4854 /* PCI Error Recovery (ERS) */ 4855 static const struct pci_error_handlers ixgbevf_err_handler = { 4856 .error_detected = ixgbevf_io_error_detected, 4857 .slot_reset = ixgbevf_io_slot_reset, 4858 .resume = ixgbevf_io_resume, 4859 }; 4860 4861 static DEFINE_SIMPLE_DEV_PM_OPS(ixgbevf_pm_ops, ixgbevf_suspend, ixgbevf_resume); 4862 4863 static struct pci_driver ixgbevf_driver = { 4864 .name = ixgbevf_driver_name, 4865 .id_table = ixgbevf_pci_tbl, 4866 .probe = ixgbevf_probe, 4867 .remove = ixgbevf_remove, 4868 4869 /* Power Management Hooks */ 4870 .driver.pm = pm_sleep_ptr(&ixgbevf_pm_ops), 4871 4872 .shutdown = ixgbevf_shutdown, 4873 .err_handler = &ixgbevf_err_handler 4874 }; 4875 4876 /** 4877 * ixgbevf_init_module - Driver Registration Routine 4878 * 4879 * ixgbevf_init_module is the first routine called when the driver is 4880 * loaded. All it does is register with the PCI subsystem. 4881 **/ 4882 static int __init ixgbevf_init_module(void) 4883 { 4884 int err; 4885 4886 pr_info("%s\n", ixgbevf_driver_string); 4887 pr_info("%s\n", ixgbevf_copyright); 4888 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4889 if (!ixgbevf_wq) { 4890 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4891 return -ENOMEM; 4892 } 4893 4894 err = pci_register_driver(&ixgbevf_driver); 4895 if (err) { 4896 destroy_workqueue(ixgbevf_wq); 4897 return err; 4898 } 4899 4900 return 0; 4901 } 4902 4903 module_init(ixgbevf_init_module); 4904 4905 /** 4906 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4907 * 4908 * ixgbevf_exit_module is called just before the driver is removed 4909 * from memory. 4910 **/ 4911 static void __exit ixgbevf_exit_module(void) 4912 { 4913 pci_unregister_driver(&ixgbevf_driver); 4914 if (ixgbevf_wq) { 4915 destroy_workqueue(ixgbevf_wq); 4916 ixgbevf_wq = NULL; 4917 } 4918 } 4919 4920 #ifdef DEBUG 4921 /** 4922 * ixgbevf_get_hw_dev_name - return device name string 4923 * used by hardware layer to print debugging information 4924 * @hw: pointer to private hardware struct 4925 **/ 4926 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4927 { 4928 struct ixgbevf_adapter *adapter = hw->back; 4929 4930 return adapter->netdev->name; 4931 } 4932 4933 #endif 4934 module_exit(ixgbevf_exit_module); 4935 4936 /* ixgbevf_main.c */ 4937