xref: /linux/drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c (revision e0fcfb086fbbb6233de1062d4b2f05e9afedab3b)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /******************************************************************************
5  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
6 ******************************************************************************/
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/types.h>
11 #include <linux/bitops.h>
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/netdevice.h>
15 #include <linux/vmalloc.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/tcp.h>
20 #include <linux/sctp.h>
21 #include <linux/ipv6.h>
22 #include <linux/slab.h>
23 #include <net/checksum.h>
24 #include <net/ip6_checksum.h>
25 #include <linux/ethtool.h>
26 #include <linux/if.h>
27 #include <linux/if_vlan.h>
28 #include <linux/prefetch.h>
29 #include <net/mpls.h>
30 #include <linux/bpf.h>
31 #include <linux/bpf_trace.h>
32 #include <linux/atomic.h>
33 #include <net/xfrm.h>
34 
35 #include "ixgbevf.h"
36 
37 const char ixgbevf_driver_name[] = "ixgbevf";
38 static const char ixgbevf_driver_string[] =
39 	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
40 
41 #define DRV_VERSION "4.1.0-k"
42 const char ixgbevf_driver_version[] = DRV_VERSION;
43 static char ixgbevf_copyright[] =
44 	"Copyright (c) 2009 - 2018 Intel Corporation.";
45 
46 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
47 	[board_82599_vf]	= &ixgbevf_82599_vf_info,
48 	[board_82599_vf_hv]	= &ixgbevf_82599_vf_hv_info,
49 	[board_X540_vf]		= &ixgbevf_X540_vf_info,
50 	[board_X540_vf_hv]	= &ixgbevf_X540_vf_hv_info,
51 	[board_X550_vf]		= &ixgbevf_X550_vf_info,
52 	[board_X550_vf_hv]	= &ixgbevf_X550_vf_hv_info,
53 	[board_X550EM_x_vf]	= &ixgbevf_X550EM_x_vf_info,
54 	[board_X550EM_x_vf_hv]	= &ixgbevf_X550EM_x_vf_hv_info,
55 	[board_x550em_a_vf]	= &ixgbevf_x550em_a_vf_info,
56 };
57 
58 /* ixgbevf_pci_tbl - PCI Device ID Table
59  *
60  * Wildcard entries (PCI_ANY_ID) should come last
61  * Last entry must be all 0s
62  *
63  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
64  *   Class, Class Mask, private data (not used) }
65  */
66 static const struct pci_device_id ixgbevf_pci_tbl[] = {
67 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
68 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv },
69 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
70 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv },
71 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
72 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv },
73 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
74 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv},
75 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf },
76 	/* required last entry */
77 	{0, }
78 };
79 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
80 
81 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
82 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
83 MODULE_LICENSE("GPL v2");
84 MODULE_VERSION(DRV_VERSION);
85 
86 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
87 static int debug = -1;
88 module_param(debug, int, 0);
89 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
90 
91 static struct workqueue_struct *ixgbevf_wq;
92 
93 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
94 {
95 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
96 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
97 	    !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
98 		queue_work(ixgbevf_wq, &adapter->service_task);
99 }
100 
101 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
102 {
103 	BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
104 
105 	/* flush memory to make sure state is correct before next watchdog */
106 	smp_mb__before_atomic();
107 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
108 }
109 
110 /* forward decls */
111 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
112 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
113 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
114 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer);
115 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
116 				  struct ixgbevf_rx_buffer *old_buff);
117 
118 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
119 {
120 	struct ixgbevf_adapter *adapter = hw->back;
121 
122 	if (!hw->hw_addr)
123 		return;
124 	hw->hw_addr = NULL;
125 	dev_err(&adapter->pdev->dev, "Adapter removed\n");
126 	if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
127 		ixgbevf_service_event_schedule(adapter);
128 }
129 
130 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
131 {
132 	u32 value;
133 
134 	/* The following check not only optimizes a bit by not
135 	 * performing a read on the status register when the
136 	 * register just read was a status register read that
137 	 * returned IXGBE_FAILED_READ_REG. It also blocks any
138 	 * potential recursion.
139 	 */
140 	if (reg == IXGBE_VFSTATUS) {
141 		ixgbevf_remove_adapter(hw);
142 		return;
143 	}
144 	value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
145 	if (value == IXGBE_FAILED_READ_REG)
146 		ixgbevf_remove_adapter(hw);
147 }
148 
149 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
150 {
151 	u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr);
152 	u32 value;
153 
154 	if (IXGBE_REMOVED(reg_addr))
155 		return IXGBE_FAILED_READ_REG;
156 	value = readl(reg_addr + reg);
157 	if (unlikely(value == IXGBE_FAILED_READ_REG))
158 		ixgbevf_check_remove(hw, reg);
159 	return value;
160 }
161 
162 /**
163  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
164  * @adapter: pointer to adapter struct
165  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
166  * @queue: queue to map the corresponding interrupt to
167  * @msix_vector: the vector to map to the corresponding queue
168  **/
169 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
170 			     u8 queue, u8 msix_vector)
171 {
172 	u32 ivar, index;
173 	struct ixgbe_hw *hw = &adapter->hw;
174 
175 	if (direction == -1) {
176 		/* other causes */
177 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
178 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
179 		ivar &= ~0xFF;
180 		ivar |= msix_vector;
181 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
182 	} else {
183 		/* Tx or Rx causes */
184 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
185 		index = ((16 * (queue & 1)) + (8 * direction));
186 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
187 		ivar &= ~(0xFF << index);
188 		ivar |= (msix_vector << index);
189 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
190 	}
191 }
192 
193 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
194 {
195 	return ring->stats.packets;
196 }
197 
198 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
199 {
200 	struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
201 	struct ixgbe_hw *hw = &adapter->hw;
202 
203 	u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
204 	u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
205 
206 	if (head != tail)
207 		return (head < tail) ?
208 			tail - head : (tail + ring->count - head);
209 
210 	return 0;
211 }
212 
213 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
214 {
215 	u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
216 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
217 	u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
218 
219 	clear_check_for_tx_hang(tx_ring);
220 
221 	/* Check for a hung queue, but be thorough. This verifies
222 	 * that a transmit has been completed since the previous
223 	 * check AND there is at least one packet pending. The
224 	 * ARMED bit is set to indicate a potential hang.
225 	 */
226 	if ((tx_done_old == tx_done) && tx_pending) {
227 		/* make sure it is true for two checks in a row */
228 		return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
229 					&tx_ring->state);
230 	}
231 	/* reset the countdown */
232 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
233 
234 	/* update completed stats and continue */
235 	tx_ring->tx_stats.tx_done_old = tx_done;
236 
237 	return false;
238 }
239 
240 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
241 {
242 	/* Do the reset outside of interrupt context */
243 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
244 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
245 		ixgbevf_service_event_schedule(adapter);
246 	}
247 }
248 
249 /**
250  * ixgbevf_tx_timeout - Respond to a Tx Hang
251  * @netdev: network interface device structure
252  **/
253 static void ixgbevf_tx_timeout(struct net_device *netdev)
254 {
255 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
256 
257 	ixgbevf_tx_timeout_reset(adapter);
258 }
259 
260 /**
261  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
262  * @q_vector: board private structure
263  * @tx_ring: tx ring to clean
264  * @napi_budget: Used to determine if we are in netpoll
265  **/
266 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
267 				 struct ixgbevf_ring *tx_ring, int napi_budget)
268 {
269 	struct ixgbevf_adapter *adapter = q_vector->adapter;
270 	struct ixgbevf_tx_buffer *tx_buffer;
271 	union ixgbe_adv_tx_desc *tx_desc;
272 	unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0;
273 	unsigned int budget = tx_ring->count / 2;
274 	unsigned int i = tx_ring->next_to_clean;
275 
276 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
277 		return true;
278 
279 	tx_buffer = &tx_ring->tx_buffer_info[i];
280 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
281 	i -= tx_ring->count;
282 
283 	do {
284 		union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
285 
286 		/* if next_to_watch is not set then there is no work pending */
287 		if (!eop_desc)
288 			break;
289 
290 		/* prevent any other reads prior to eop_desc */
291 		smp_rmb();
292 
293 		/* if DD is not set pending work has not been completed */
294 		if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
295 			break;
296 
297 		/* clear next_to_watch to prevent false hangs */
298 		tx_buffer->next_to_watch = NULL;
299 
300 		/* update the statistics for this packet */
301 		total_bytes += tx_buffer->bytecount;
302 		total_packets += tx_buffer->gso_segs;
303 		if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC)
304 			total_ipsec++;
305 
306 		/* free the skb */
307 		if (ring_is_xdp(tx_ring))
308 			page_frag_free(tx_buffer->data);
309 		else
310 			napi_consume_skb(tx_buffer->skb, napi_budget);
311 
312 		/* unmap skb header data */
313 		dma_unmap_single(tx_ring->dev,
314 				 dma_unmap_addr(tx_buffer, dma),
315 				 dma_unmap_len(tx_buffer, len),
316 				 DMA_TO_DEVICE);
317 
318 		/* clear tx_buffer data */
319 		dma_unmap_len_set(tx_buffer, len, 0);
320 
321 		/* unmap remaining buffers */
322 		while (tx_desc != eop_desc) {
323 			tx_buffer++;
324 			tx_desc++;
325 			i++;
326 			if (unlikely(!i)) {
327 				i -= tx_ring->count;
328 				tx_buffer = tx_ring->tx_buffer_info;
329 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
330 			}
331 
332 			/* unmap any remaining paged data */
333 			if (dma_unmap_len(tx_buffer, len)) {
334 				dma_unmap_page(tx_ring->dev,
335 					       dma_unmap_addr(tx_buffer, dma),
336 					       dma_unmap_len(tx_buffer, len),
337 					       DMA_TO_DEVICE);
338 				dma_unmap_len_set(tx_buffer, len, 0);
339 			}
340 		}
341 
342 		/* move us one more past the eop_desc for start of next pkt */
343 		tx_buffer++;
344 		tx_desc++;
345 		i++;
346 		if (unlikely(!i)) {
347 			i -= tx_ring->count;
348 			tx_buffer = tx_ring->tx_buffer_info;
349 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
350 		}
351 
352 		/* issue prefetch for next Tx descriptor */
353 		prefetch(tx_desc);
354 
355 		/* update budget accounting */
356 		budget--;
357 	} while (likely(budget));
358 
359 	i += tx_ring->count;
360 	tx_ring->next_to_clean = i;
361 	u64_stats_update_begin(&tx_ring->syncp);
362 	tx_ring->stats.bytes += total_bytes;
363 	tx_ring->stats.packets += total_packets;
364 	u64_stats_update_end(&tx_ring->syncp);
365 	q_vector->tx.total_bytes += total_bytes;
366 	q_vector->tx.total_packets += total_packets;
367 	adapter->tx_ipsec += total_ipsec;
368 
369 	if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
370 		struct ixgbe_hw *hw = &adapter->hw;
371 		union ixgbe_adv_tx_desc *eop_desc;
372 
373 		eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
374 
375 		pr_err("Detected Tx Unit Hang%s\n"
376 		       "  Tx Queue             <%d>\n"
377 		       "  TDH, TDT             <%x>, <%x>\n"
378 		       "  next_to_use          <%x>\n"
379 		       "  next_to_clean        <%x>\n"
380 		       "tx_buffer_info[next_to_clean]\n"
381 		       "  next_to_watch        <%p>\n"
382 		       "  eop_desc->wb.status  <%x>\n"
383 		       "  time_stamp           <%lx>\n"
384 		       "  jiffies              <%lx>\n",
385 		       ring_is_xdp(tx_ring) ? " XDP" : "",
386 		       tx_ring->queue_index,
387 		       IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
388 		       IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
389 		       tx_ring->next_to_use, i,
390 		       eop_desc, (eop_desc ? eop_desc->wb.status : 0),
391 		       tx_ring->tx_buffer_info[i].time_stamp, jiffies);
392 
393 		if (!ring_is_xdp(tx_ring))
394 			netif_stop_subqueue(tx_ring->netdev,
395 					    tx_ring->queue_index);
396 
397 		/* schedule immediate reset if we believe we hung */
398 		ixgbevf_tx_timeout_reset(adapter);
399 
400 		return true;
401 	}
402 
403 	if (ring_is_xdp(tx_ring))
404 		return !!budget;
405 
406 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
407 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
408 		     (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
409 		/* Make sure that anybody stopping the queue after this
410 		 * sees the new next_to_clean.
411 		 */
412 		smp_mb();
413 
414 		if (__netif_subqueue_stopped(tx_ring->netdev,
415 					     tx_ring->queue_index) &&
416 		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
417 			netif_wake_subqueue(tx_ring->netdev,
418 					    tx_ring->queue_index);
419 			++tx_ring->tx_stats.restart_queue;
420 		}
421 	}
422 
423 	return !!budget;
424 }
425 
426 /**
427  * ixgbevf_rx_skb - Helper function to determine proper Rx method
428  * @q_vector: structure containing interrupt and ring information
429  * @skb: packet to send up
430  **/
431 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
432 			   struct sk_buff *skb)
433 {
434 	napi_gro_receive(&q_vector->napi, skb);
435 }
436 
437 #define IXGBE_RSS_L4_TYPES_MASK \
438 	((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
439 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
440 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
441 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
442 
443 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
444 				   union ixgbe_adv_rx_desc *rx_desc,
445 				   struct sk_buff *skb)
446 {
447 	u16 rss_type;
448 
449 	if (!(ring->netdev->features & NETIF_F_RXHASH))
450 		return;
451 
452 	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
453 		   IXGBE_RXDADV_RSSTYPE_MASK;
454 
455 	if (!rss_type)
456 		return;
457 
458 	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
459 		     (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
460 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
461 }
462 
463 /**
464  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
465  * @ring: structure containig ring specific data
466  * @rx_desc: current Rx descriptor being processed
467  * @skb: skb currently being received and modified
468  **/
469 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
470 				       union ixgbe_adv_rx_desc *rx_desc,
471 				       struct sk_buff *skb)
472 {
473 	skb_checksum_none_assert(skb);
474 
475 	/* Rx csum disabled */
476 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
477 		return;
478 
479 	/* if IP and error */
480 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
481 	    ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
482 		ring->rx_stats.csum_err++;
483 		return;
484 	}
485 
486 	if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
487 		return;
488 
489 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
490 		ring->rx_stats.csum_err++;
491 		return;
492 	}
493 
494 	/* It must be a TCP or UDP packet with a valid checksum */
495 	skb->ip_summed = CHECKSUM_UNNECESSARY;
496 }
497 
498 /**
499  * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
500  * @rx_ring: rx descriptor ring packet is being transacted on
501  * @rx_desc: pointer to the EOP Rx descriptor
502  * @skb: pointer to current skb being populated
503  *
504  * This function checks the ring, descriptor, and packet information in
505  * order to populate the checksum, VLAN, protocol, and other fields within
506  * the skb.
507  **/
508 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
509 				       union ixgbe_adv_rx_desc *rx_desc,
510 				       struct sk_buff *skb)
511 {
512 	ixgbevf_rx_hash(rx_ring, rx_desc, skb);
513 	ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
514 
515 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
516 		u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
517 		unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
518 
519 		if (test_bit(vid & VLAN_VID_MASK, active_vlans))
520 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
521 	}
522 
523 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP))
524 		ixgbevf_ipsec_rx(rx_ring, rx_desc, skb);
525 
526 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
527 }
528 
529 static
530 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring,
531 						const unsigned int size)
532 {
533 	struct ixgbevf_rx_buffer *rx_buffer;
534 
535 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
536 	prefetchw(rx_buffer->page);
537 
538 	/* we are reusing so sync this buffer for CPU use */
539 	dma_sync_single_range_for_cpu(rx_ring->dev,
540 				      rx_buffer->dma,
541 				      rx_buffer->page_offset,
542 				      size,
543 				      DMA_FROM_DEVICE);
544 
545 	rx_buffer->pagecnt_bias--;
546 
547 	return rx_buffer;
548 }
549 
550 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring,
551 				  struct ixgbevf_rx_buffer *rx_buffer,
552 				  struct sk_buff *skb)
553 {
554 	if (ixgbevf_can_reuse_rx_page(rx_buffer)) {
555 		/* hand second half of page back to the ring */
556 		ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
557 	} else {
558 		if (IS_ERR(skb))
559 			/* We are not reusing the buffer so unmap it and free
560 			 * any references we are holding to it
561 			 */
562 			dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
563 					     ixgbevf_rx_pg_size(rx_ring),
564 					     DMA_FROM_DEVICE,
565 					     IXGBEVF_RX_DMA_ATTR);
566 		__page_frag_cache_drain(rx_buffer->page,
567 					rx_buffer->pagecnt_bias);
568 	}
569 
570 	/* clear contents of rx_buffer */
571 	rx_buffer->page = NULL;
572 }
573 
574 /**
575  * ixgbevf_is_non_eop - process handling of non-EOP buffers
576  * @rx_ring: Rx ring being processed
577  * @rx_desc: Rx descriptor for current buffer
578  *
579  * This function updates next to clean.  If the buffer is an EOP buffer
580  * this function exits returning false, otherwise it will place the
581  * sk_buff in the next buffer to be chained and return true indicating
582  * that this is in fact a non-EOP buffer.
583  **/
584 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
585 			       union ixgbe_adv_rx_desc *rx_desc)
586 {
587 	u32 ntc = rx_ring->next_to_clean + 1;
588 
589 	/* fetch, update, and store next to clean */
590 	ntc = (ntc < rx_ring->count) ? ntc : 0;
591 	rx_ring->next_to_clean = ntc;
592 
593 	prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
594 
595 	if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
596 		return false;
597 
598 	return true;
599 }
600 
601 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring)
602 {
603 	return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0;
604 }
605 
606 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
607 				      struct ixgbevf_rx_buffer *bi)
608 {
609 	struct page *page = bi->page;
610 	dma_addr_t dma;
611 
612 	/* since we are recycling buffers we should seldom need to alloc */
613 	if (likely(page))
614 		return true;
615 
616 	/* alloc new page for storage */
617 	page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring));
618 	if (unlikely(!page)) {
619 		rx_ring->rx_stats.alloc_rx_page_failed++;
620 		return false;
621 	}
622 
623 	/* map page for use */
624 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
625 				 ixgbevf_rx_pg_size(rx_ring),
626 				 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR);
627 
628 	/* if mapping failed free memory back to system since
629 	 * there isn't much point in holding memory we can't use
630 	 */
631 	if (dma_mapping_error(rx_ring->dev, dma)) {
632 		__free_pages(page, ixgbevf_rx_pg_order(rx_ring));
633 
634 		rx_ring->rx_stats.alloc_rx_page_failed++;
635 		return false;
636 	}
637 
638 	bi->dma = dma;
639 	bi->page = page;
640 	bi->page_offset = ixgbevf_rx_offset(rx_ring);
641 	bi->pagecnt_bias = 1;
642 	rx_ring->rx_stats.alloc_rx_page++;
643 
644 	return true;
645 }
646 
647 /**
648  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
649  * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
650  * @cleaned_count: number of buffers to replace
651  **/
652 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
653 				     u16 cleaned_count)
654 {
655 	union ixgbe_adv_rx_desc *rx_desc;
656 	struct ixgbevf_rx_buffer *bi;
657 	unsigned int i = rx_ring->next_to_use;
658 
659 	/* nothing to do or no valid netdev defined */
660 	if (!cleaned_count || !rx_ring->netdev)
661 		return;
662 
663 	rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
664 	bi = &rx_ring->rx_buffer_info[i];
665 	i -= rx_ring->count;
666 
667 	do {
668 		if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
669 			break;
670 
671 		/* sync the buffer for use by the device */
672 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
673 						 bi->page_offset,
674 						 ixgbevf_rx_bufsz(rx_ring),
675 						 DMA_FROM_DEVICE);
676 
677 		/* Refresh the desc even if pkt_addr didn't change
678 		 * because each write-back erases this info.
679 		 */
680 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
681 
682 		rx_desc++;
683 		bi++;
684 		i++;
685 		if (unlikely(!i)) {
686 			rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
687 			bi = rx_ring->rx_buffer_info;
688 			i -= rx_ring->count;
689 		}
690 
691 		/* clear the length for the next_to_use descriptor */
692 		rx_desc->wb.upper.length = 0;
693 
694 		cleaned_count--;
695 	} while (cleaned_count);
696 
697 	i += rx_ring->count;
698 
699 	if (rx_ring->next_to_use != i) {
700 		/* record the next descriptor to use */
701 		rx_ring->next_to_use = i;
702 
703 		/* update next to alloc since we have filled the ring */
704 		rx_ring->next_to_alloc = i;
705 
706 		/* Force memory writes to complete before letting h/w
707 		 * know there are new descriptors to fetch.  (Only
708 		 * applicable for weak-ordered memory model archs,
709 		 * such as IA-64).
710 		 */
711 		wmb();
712 		ixgbevf_write_tail(rx_ring, i);
713 	}
714 }
715 
716 /**
717  * ixgbevf_cleanup_headers - Correct corrupted or empty headers
718  * @rx_ring: rx descriptor ring packet is being transacted on
719  * @rx_desc: pointer to the EOP Rx descriptor
720  * @skb: pointer to current skb being fixed
721  *
722  * Check for corrupted packet headers caused by senders on the local L2
723  * embedded NIC switch not setting up their Tx Descriptors right.  These
724  * should be very rare.
725  *
726  * Also address the case where we are pulling data in on pages only
727  * and as such no data is present in the skb header.
728  *
729  * In addition if skb is not at least 60 bytes we need to pad it so that
730  * it is large enough to qualify as a valid Ethernet frame.
731  *
732  * Returns true if an error was encountered and skb was freed.
733  **/
734 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
735 				    union ixgbe_adv_rx_desc *rx_desc,
736 				    struct sk_buff *skb)
737 {
738 	/* XDP packets use error pointer so abort at this point */
739 	if (IS_ERR(skb))
740 		return true;
741 
742 	/* verify that the packet does not have any known errors */
743 	if (unlikely(ixgbevf_test_staterr(rx_desc,
744 					  IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
745 		struct net_device *netdev = rx_ring->netdev;
746 
747 		if (!(netdev->features & NETIF_F_RXALL)) {
748 			dev_kfree_skb_any(skb);
749 			return true;
750 		}
751 	}
752 
753 	/* if eth_skb_pad returns an error the skb was freed */
754 	if (eth_skb_pad(skb))
755 		return true;
756 
757 	return false;
758 }
759 
760 /**
761  * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
762  * @rx_ring: rx descriptor ring to store buffers on
763  * @old_buff: donor buffer to have page reused
764  *
765  * Synchronizes page for reuse by the adapter
766  **/
767 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
768 				  struct ixgbevf_rx_buffer *old_buff)
769 {
770 	struct ixgbevf_rx_buffer *new_buff;
771 	u16 nta = rx_ring->next_to_alloc;
772 
773 	new_buff = &rx_ring->rx_buffer_info[nta];
774 
775 	/* update, and store next to alloc */
776 	nta++;
777 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
778 
779 	/* transfer page from old buffer to new buffer */
780 	new_buff->page = old_buff->page;
781 	new_buff->dma = old_buff->dma;
782 	new_buff->page_offset = old_buff->page_offset;
783 	new_buff->pagecnt_bias = old_buff->pagecnt_bias;
784 }
785 
786 static inline bool ixgbevf_page_is_reserved(struct page *page)
787 {
788 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
789 }
790 
791 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer)
792 {
793 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
794 	struct page *page = rx_buffer->page;
795 
796 	/* avoid re-using remote pages */
797 	if (unlikely(ixgbevf_page_is_reserved(page)))
798 		return false;
799 
800 #if (PAGE_SIZE < 8192)
801 	/* if we are only owner of page we can reuse it */
802 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
803 		return false;
804 #else
805 #define IXGBEVF_LAST_OFFSET \
806 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048)
807 
808 	if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET)
809 		return false;
810 
811 #endif
812 
813 	/* If we have drained the page fragment pool we need to update
814 	 * the pagecnt_bias and page count so that we fully restock the
815 	 * number of references the driver holds.
816 	 */
817 	if (unlikely(!pagecnt_bias)) {
818 		page_ref_add(page, USHRT_MAX);
819 		rx_buffer->pagecnt_bias = USHRT_MAX;
820 	}
821 
822 	return true;
823 }
824 
825 /**
826  * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
827  * @rx_ring: rx descriptor ring to transact packets on
828  * @rx_buffer: buffer containing page to add
829  * @skb: sk_buff to place the data into
830  * @size: size of buffer to be added
831  *
832  * This function will add the data contained in rx_buffer->page to the skb.
833  **/
834 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
835 				struct ixgbevf_rx_buffer *rx_buffer,
836 				struct sk_buff *skb,
837 				unsigned int size)
838 {
839 #if (PAGE_SIZE < 8192)
840 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
841 #else
842 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
843 				SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) :
844 				SKB_DATA_ALIGN(size);
845 #endif
846 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
847 			rx_buffer->page_offset, size, truesize);
848 #if (PAGE_SIZE < 8192)
849 	rx_buffer->page_offset ^= truesize;
850 #else
851 	rx_buffer->page_offset += truesize;
852 #endif
853 }
854 
855 static
856 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring,
857 				      struct ixgbevf_rx_buffer *rx_buffer,
858 				      struct xdp_buff *xdp,
859 				      union ixgbe_adv_rx_desc *rx_desc)
860 {
861 	unsigned int size = xdp->data_end - xdp->data;
862 #if (PAGE_SIZE < 8192)
863 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
864 #else
865 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
866 					       xdp->data_hard_start);
867 #endif
868 	unsigned int headlen;
869 	struct sk_buff *skb;
870 
871 	/* prefetch first cache line of first page */
872 	prefetch(xdp->data);
873 #if L1_CACHE_BYTES < 128
874 	prefetch(xdp->data + L1_CACHE_BYTES);
875 #endif
876 	/* Note, we get here by enabling legacy-rx via:
877 	 *
878 	 *    ethtool --set-priv-flags <dev> legacy-rx on
879 	 *
880 	 * In this mode, we currently get 0 extra XDP headroom as
881 	 * opposed to having legacy-rx off, where we process XDP
882 	 * packets going to stack via ixgbevf_build_skb().
883 	 *
884 	 * For ixgbevf_construct_skb() mode it means that the
885 	 * xdp->data_meta will always point to xdp->data, since
886 	 * the helper cannot expand the head. Should this ever
887 	 * changed in future for legacy-rx mode on, then lets also
888 	 * add xdp->data_meta handling here.
889 	 */
890 
891 	/* allocate a skb to store the frags */
892 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE);
893 	if (unlikely(!skb))
894 		return NULL;
895 
896 	/* Determine available headroom for copy */
897 	headlen = size;
898 	if (headlen > IXGBEVF_RX_HDR_SIZE)
899 		headlen = eth_get_headlen(skb->dev, xdp->data,
900 					  IXGBEVF_RX_HDR_SIZE);
901 
902 	/* align pull length to size of long to optimize memcpy performance */
903 	memcpy(__skb_put(skb, headlen), xdp->data,
904 	       ALIGN(headlen, sizeof(long)));
905 
906 	/* update all of the pointers */
907 	size -= headlen;
908 	if (size) {
909 		skb_add_rx_frag(skb, 0, rx_buffer->page,
910 				(xdp->data + headlen) -
911 					page_address(rx_buffer->page),
912 				size, truesize);
913 #if (PAGE_SIZE < 8192)
914 		rx_buffer->page_offset ^= truesize;
915 #else
916 		rx_buffer->page_offset += truesize;
917 #endif
918 	} else {
919 		rx_buffer->pagecnt_bias++;
920 	}
921 
922 	return skb;
923 }
924 
925 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
926 					     u32 qmask)
927 {
928 	struct ixgbe_hw *hw = &adapter->hw;
929 
930 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
931 }
932 
933 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring,
934 					 struct ixgbevf_rx_buffer *rx_buffer,
935 					 struct xdp_buff *xdp,
936 					 union ixgbe_adv_rx_desc *rx_desc)
937 {
938 	unsigned int metasize = xdp->data - xdp->data_meta;
939 #if (PAGE_SIZE < 8192)
940 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
941 #else
942 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
943 				SKB_DATA_ALIGN(xdp->data_end -
944 					       xdp->data_hard_start);
945 #endif
946 	struct sk_buff *skb;
947 
948 	/* Prefetch first cache line of first page. If xdp->data_meta
949 	 * is unused, this points to xdp->data, otherwise, we likely
950 	 * have a consumer accessing first few bytes of meta data,
951 	 * and then actual data.
952 	 */
953 	prefetch(xdp->data_meta);
954 #if L1_CACHE_BYTES < 128
955 	prefetch(xdp->data_meta + L1_CACHE_BYTES);
956 #endif
957 
958 	/* build an skb around the page buffer */
959 	skb = build_skb(xdp->data_hard_start, truesize);
960 	if (unlikely(!skb))
961 		return NULL;
962 
963 	/* update pointers within the skb to store the data */
964 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
965 	__skb_put(skb, xdp->data_end - xdp->data);
966 	if (metasize)
967 		skb_metadata_set(skb, metasize);
968 
969 	/* update buffer offset */
970 #if (PAGE_SIZE < 8192)
971 	rx_buffer->page_offset ^= truesize;
972 #else
973 	rx_buffer->page_offset += truesize;
974 #endif
975 
976 	return skb;
977 }
978 
979 #define IXGBEVF_XDP_PASS 0
980 #define IXGBEVF_XDP_CONSUMED 1
981 #define IXGBEVF_XDP_TX 2
982 
983 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring,
984 				 struct xdp_buff *xdp)
985 {
986 	struct ixgbevf_tx_buffer *tx_buffer;
987 	union ixgbe_adv_tx_desc *tx_desc;
988 	u32 len, cmd_type;
989 	dma_addr_t dma;
990 	u16 i;
991 
992 	len = xdp->data_end - xdp->data;
993 
994 	if (unlikely(!ixgbevf_desc_unused(ring)))
995 		return IXGBEVF_XDP_CONSUMED;
996 
997 	dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE);
998 	if (dma_mapping_error(ring->dev, dma))
999 		return IXGBEVF_XDP_CONSUMED;
1000 
1001 	/* record the location of the first descriptor for this packet */
1002 	i = ring->next_to_use;
1003 	tx_buffer = &ring->tx_buffer_info[i];
1004 
1005 	dma_unmap_len_set(tx_buffer, len, len);
1006 	dma_unmap_addr_set(tx_buffer, dma, dma);
1007 	tx_buffer->data = xdp->data;
1008 	tx_buffer->bytecount = len;
1009 	tx_buffer->gso_segs = 1;
1010 	tx_buffer->protocol = 0;
1011 
1012 	/* Populate minimal context descriptor that will provide for the
1013 	 * fact that we are expected to process Ethernet frames.
1014 	 */
1015 	if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) {
1016 		struct ixgbe_adv_tx_context_desc *context_desc;
1017 
1018 		set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
1019 
1020 		context_desc = IXGBEVF_TX_CTXTDESC(ring, 0);
1021 		context_desc->vlan_macip_lens	=
1022 			cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT);
1023 		context_desc->fceof_saidx	= 0;
1024 		context_desc->type_tucmd_mlhl	=
1025 			cpu_to_le32(IXGBE_TXD_CMD_DEXT |
1026 				    IXGBE_ADVTXD_DTYP_CTXT);
1027 		context_desc->mss_l4len_idx	= 0;
1028 
1029 		i = 1;
1030 	}
1031 
1032 	/* put descriptor type bits */
1033 	cmd_type = IXGBE_ADVTXD_DTYP_DATA |
1034 		   IXGBE_ADVTXD_DCMD_DEXT |
1035 		   IXGBE_ADVTXD_DCMD_IFCS;
1036 	cmd_type |= len | IXGBE_TXD_CMD;
1037 
1038 	tx_desc = IXGBEVF_TX_DESC(ring, i);
1039 	tx_desc->read.buffer_addr = cpu_to_le64(dma);
1040 
1041 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1042 	tx_desc->read.olinfo_status =
1043 			cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) |
1044 				    IXGBE_ADVTXD_CC);
1045 
1046 	/* Avoid any potential race with cleanup */
1047 	smp_wmb();
1048 
1049 	/* set next_to_watch value indicating a packet is present */
1050 	i++;
1051 	if (i == ring->count)
1052 		i = 0;
1053 
1054 	tx_buffer->next_to_watch = tx_desc;
1055 	ring->next_to_use = i;
1056 
1057 	return IXGBEVF_XDP_TX;
1058 }
1059 
1060 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter,
1061 				       struct ixgbevf_ring  *rx_ring,
1062 				       struct xdp_buff *xdp)
1063 {
1064 	int result = IXGBEVF_XDP_PASS;
1065 	struct ixgbevf_ring *xdp_ring;
1066 	struct bpf_prog *xdp_prog;
1067 	u32 act;
1068 
1069 	rcu_read_lock();
1070 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1071 
1072 	if (!xdp_prog)
1073 		goto xdp_out;
1074 
1075 	act = bpf_prog_run_xdp(xdp_prog, xdp);
1076 	switch (act) {
1077 	case XDP_PASS:
1078 		break;
1079 	case XDP_TX:
1080 		xdp_ring = adapter->xdp_ring[rx_ring->queue_index];
1081 		result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp);
1082 		break;
1083 	default:
1084 		bpf_warn_invalid_xdp_action(act);
1085 		/* fallthrough */
1086 	case XDP_ABORTED:
1087 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
1088 		/* fallthrough -- handle aborts by dropping packet */
1089 	case XDP_DROP:
1090 		result = IXGBEVF_XDP_CONSUMED;
1091 		break;
1092 	}
1093 xdp_out:
1094 	rcu_read_unlock();
1095 	return ERR_PTR(-result);
1096 }
1097 
1098 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring,
1099 				   struct ixgbevf_rx_buffer *rx_buffer,
1100 				   unsigned int size)
1101 {
1102 #if (PAGE_SIZE < 8192)
1103 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
1104 
1105 	rx_buffer->page_offset ^= truesize;
1106 #else
1107 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1108 				SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) :
1109 				SKB_DATA_ALIGN(size);
1110 
1111 	rx_buffer->page_offset += truesize;
1112 #endif
1113 }
1114 
1115 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
1116 				struct ixgbevf_ring *rx_ring,
1117 				int budget)
1118 {
1119 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1120 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1121 	u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
1122 	struct sk_buff *skb = rx_ring->skb;
1123 	bool xdp_xmit = false;
1124 	struct xdp_buff xdp;
1125 
1126 	xdp.rxq = &rx_ring->xdp_rxq;
1127 
1128 	while (likely(total_rx_packets < budget)) {
1129 		struct ixgbevf_rx_buffer *rx_buffer;
1130 		union ixgbe_adv_rx_desc *rx_desc;
1131 		unsigned int size;
1132 
1133 		/* return some buffers to hardware, one at a time is too slow */
1134 		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
1135 			ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
1136 			cleaned_count = 0;
1137 		}
1138 
1139 		rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1140 		size = le16_to_cpu(rx_desc->wb.upper.length);
1141 		if (!size)
1142 			break;
1143 
1144 		/* This memory barrier is needed to keep us from reading
1145 		 * any other fields out of the rx_desc until we know the
1146 		 * RXD_STAT_DD bit is set
1147 		 */
1148 		rmb();
1149 
1150 		rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size);
1151 
1152 		/* retrieve a buffer from the ring */
1153 		if (!skb) {
1154 			xdp.data = page_address(rx_buffer->page) +
1155 				   rx_buffer->page_offset;
1156 			xdp.data_meta = xdp.data;
1157 			xdp.data_hard_start = xdp.data -
1158 					      ixgbevf_rx_offset(rx_ring);
1159 			xdp.data_end = xdp.data + size;
1160 
1161 			skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp);
1162 		}
1163 
1164 		if (IS_ERR(skb)) {
1165 			if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) {
1166 				xdp_xmit = true;
1167 				ixgbevf_rx_buffer_flip(rx_ring, rx_buffer,
1168 						       size);
1169 			} else {
1170 				rx_buffer->pagecnt_bias++;
1171 			}
1172 			total_rx_packets++;
1173 			total_rx_bytes += size;
1174 		} else if (skb) {
1175 			ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1176 		} else if (ring_uses_build_skb(rx_ring)) {
1177 			skb = ixgbevf_build_skb(rx_ring, rx_buffer,
1178 						&xdp, rx_desc);
1179 		} else {
1180 			skb = ixgbevf_construct_skb(rx_ring, rx_buffer,
1181 						    &xdp, rx_desc);
1182 		}
1183 
1184 		/* exit if we failed to retrieve a buffer */
1185 		if (!skb) {
1186 			rx_ring->rx_stats.alloc_rx_buff_failed++;
1187 			rx_buffer->pagecnt_bias++;
1188 			break;
1189 		}
1190 
1191 		ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb);
1192 		cleaned_count++;
1193 
1194 		/* fetch next buffer in frame if non-eop */
1195 		if (ixgbevf_is_non_eop(rx_ring, rx_desc))
1196 			continue;
1197 
1198 		/* verify the packet layout is correct */
1199 		if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
1200 			skb = NULL;
1201 			continue;
1202 		}
1203 
1204 		/* probably a little skewed due to removing CRC */
1205 		total_rx_bytes += skb->len;
1206 
1207 		/* Workaround hardware that can't do proper VEPA multicast
1208 		 * source pruning.
1209 		 */
1210 		if ((skb->pkt_type == PACKET_BROADCAST ||
1211 		     skb->pkt_type == PACKET_MULTICAST) &&
1212 		    ether_addr_equal(rx_ring->netdev->dev_addr,
1213 				     eth_hdr(skb)->h_source)) {
1214 			dev_kfree_skb_irq(skb);
1215 			continue;
1216 		}
1217 
1218 		/* populate checksum, VLAN, and protocol */
1219 		ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
1220 
1221 		ixgbevf_rx_skb(q_vector, skb);
1222 
1223 		/* reset skb pointer */
1224 		skb = NULL;
1225 
1226 		/* update budget accounting */
1227 		total_rx_packets++;
1228 	}
1229 
1230 	/* place incomplete frames back on ring for completion */
1231 	rx_ring->skb = skb;
1232 
1233 	if (xdp_xmit) {
1234 		struct ixgbevf_ring *xdp_ring =
1235 			adapter->xdp_ring[rx_ring->queue_index];
1236 
1237 		/* Force memory writes to complete before letting h/w
1238 		 * know there are new descriptors to fetch.
1239 		 */
1240 		wmb();
1241 		ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use);
1242 	}
1243 
1244 	u64_stats_update_begin(&rx_ring->syncp);
1245 	rx_ring->stats.packets += total_rx_packets;
1246 	rx_ring->stats.bytes += total_rx_bytes;
1247 	u64_stats_update_end(&rx_ring->syncp);
1248 	q_vector->rx.total_packets += total_rx_packets;
1249 	q_vector->rx.total_bytes += total_rx_bytes;
1250 
1251 	return total_rx_packets;
1252 }
1253 
1254 /**
1255  * ixgbevf_poll - NAPI polling calback
1256  * @napi: napi struct with our devices info in it
1257  * @budget: amount of work driver is allowed to do this pass, in packets
1258  *
1259  * This function will clean more than one or more rings associated with a
1260  * q_vector.
1261  **/
1262 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1263 {
1264 	struct ixgbevf_q_vector *q_vector =
1265 		container_of(napi, struct ixgbevf_q_vector, napi);
1266 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1267 	struct ixgbevf_ring *ring;
1268 	int per_ring_budget, work_done = 0;
1269 	bool clean_complete = true;
1270 
1271 	ixgbevf_for_each_ring(ring, q_vector->tx) {
1272 		if (!ixgbevf_clean_tx_irq(q_vector, ring, budget))
1273 			clean_complete = false;
1274 	}
1275 
1276 	if (budget <= 0)
1277 		return budget;
1278 
1279 	/* attempt to distribute budget to each queue fairly, but don't allow
1280 	 * the budget to go below 1 because we'll exit polling
1281 	 */
1282 	if (q_vector->rx.count > 1)
1283 		per_ring_budget = max(budget/q_vector->rx.count, 1);
1284 	else
1285 		per_ring_budget = budget;
1286 
1287 	ixgbevf_for_each_ring(ring, q_vector->rx) {
1288 		int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1289 						   per_ring_budget);
1290 		work_done += cleaned;
1291 		if (cleaned >= per_ring_budget)
1292 			clean_complete = false;
1293 	}
1294 
1295 	/* If all work not completed, return budget and keep polling */
1296 	if (!clean_complete)
1297 		return budget;
1298 
1299 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1300 	 * poll us due to busy-polling
1301 	 */
1302 	if (likely(napi_complete_done(napi, work_done))) {
1303 		if (adapter->rx_itr_setting == 1)
1304 			ixgbevf_set_itr(q_vector);
1305 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1306 		    !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1307 			ixgbevf_irq_enable_queues(adapter,
1308 						  BIT(q_vector->v_idx));
1309 	}
1310 
1311 	return min(work_done, budget - 1);
1312 }
1313 
1314 /**
1315  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1316  * @q_vector: structure containing interrupt and ring information
1317  **/
1318 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1319 {
1320 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1321 	struct ixgbe_hw *hw = &adapter->hw;
1322 	int v_idx = q_vector->v_idx;
1323 	u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1324 
1325 	/* set the WDIS bit to not clear the timer bits and cause an
1326 	 * immediate assertion of the interrupt
1327 	 */
1328 	itr_reg |= IXGBE_EITR_CNT_WDIS;
1329 
1330 	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1331 }
1332 
1333 /**
1334  * ixgbevf_configure_msix - Configure MSI-X hardware
1335  * @adapter: board private structure
1336  *
1337  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1338  * interrupts.
1339  **/
1340 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1341 {
1342 	struct ixgbevf_q_vector *q_vector;
1343 	int q_vectors, v_idx;
1344 
1345 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1346 	adapter->eims_enable_mask = 0;
1347 
1348 	/* Populate the IVAR table and set the ITR values to the
1349 	 * corresponding register.
1350 	 */
1351 	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1352 		struct ixgbevf_ring *ring;
1353 
1354 		q_vector = adapter->q_vector[v_idx];
1355 
1356 		ixgbevf_for_each_ring(ring, q_vector->rx)
1357 			ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1358 
1359 		ixgbevf_for_each_ring(ring, q_vector->tx)
1360 			ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1361 
1362 		if (q_vector->tx.ring && !q_vector->rx.ring) {
1363 			/* Tx only vector */
1364 			if (adapter->tx_itr_setting == 1)
1365 				q_vector->itr = IXGBE_12K_ITR;
1366 			else
1367 				q_vector->itr = adapter->tx_itr_setting;
1368 		} else {
1369 			/* Rx or Rx/Tx vector */
1370 			if (adapter->rx_itr_setting == 1)
1371 				q_vector->itr = IXGBE_20K_ITR;
1372 			else
1373 				q_vector->itr = adapter->rx_itr_setting;
1374 		}
1375 
1376 		/* add q_vector eims value to global eims_enable_mask */
1377 		adapter->eims_enable_mask |= BIT(v_idx);
1378 
1379 		ixgbevf_write_eitr(q_vector);
1380 	}
1381 
1382 	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1383 	/* setup eims_other and add value to global eims_enable_mask */
1384 	adapter->eims_other = BIT(v_idx);
1385 	adapter->eims_enable_mask |= adapter->eims_other;
1386 }
1387 
1388 enum latency_range {
1389 	lowest_latency = 0,
1390 	low_latency = 1,
1391 	bulk_latency = 2,
1392 	latency_invalid = 255
1393 };
1394 
1395 /**
1396  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1397  * @q_vector: structure containing interrupt and ring information
1398  * @ring_container: structure containing ring performance data
1399  *
1400  * Stores a new ITR value based on packets and byte
1401  * counts during the last interrupt.  The advantage of per interrupt
1402  * computation is faster updates and more accurate ITR for the current
1403  * traffic pattern.  Constants in this function were computed
1404  * based on theoretical maximum wire speed and thresholds were set based
1405  * on testing data as well as attempting to minimize response time
1406  * while increasing bulk throughput.
1407  **/
1408 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1409 			       struct ixgbevf_ring_container *ring_container)
1410 {
1411 	int bytes = ring_container->total_bytes;
1412 	int packets = ring_container->total_packets;
1413 	u32 timepassed_us;
1414 	u64 bytes_perint;
1415 	u8 itr_setting = ring_container->itr;
1416 
1417 	if (packets == 0)
1418 		return;
1419 
1420 	/* simple throttle rate management
1421 	 *    0-20MB/s lowest (100000 ints/s)
1422 	 *   20-100MB/s low   (20000 ints/s)
1423 	 *  100-1249MB/s bulk (12000 ints/s)
1424 	 */
1425 	/* what was last interrupt timeslice? */
1426 	timepassed_us = q_vector->itr >> 2;
1427 	if (timepassed_us == 0)
1428 		return;
1429 
1430 	bytes_perint = bytes / timepassed_us; /* bytes/usec */
1431 
1432 	switch (itr_setting) {
1433 	case lowest_latency:
1434 		if (bytes_perint > 10)
1435 			itr_setting = low_latency;
1436 		break;
1437 	case low_latency:
1438 		if (bytes_perint > 20)
1439 			itr_setting = bulk_latency;
1440 		else if (bytes_perint <= 10)
1441 			itr_setting = lowest_latency;
1442 		break;
1443 	case bulk_latency:
1444 		if (bytes_perint <= 20)
1445 			itr_setting = low_latency;
1446 		break;
1447 	}
1448 
1449 	/* clear work counters since we have the values we need */
1450 	ring_container->total_bytes = 0;
1451 	ring_container->total_packets = 0;
1452 
1453 	/* write updated itr to ring container */
1454 	ring_container->itr = itr_setting;
1455 }
1456 
1457 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1458 {
1459 	u32 new_itr = q_vector->itr;
1460 	u8 current_itr;
1461 
1462 	ixgbevf_update_itr(q_vector, &q_vector->tx);
1463 	ixgbevf_update_itr(q_vector, &q_vector->rx);
1464 
1465 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1466 
1467 	switch (current_itr) {
1468 	/* counts and packets in update_itr are dependent on these numbers */
1469 	case lowest_latency:
1470 		new_itr = IXGBE_100K_ITR;
1471 		break;
1472 	case low_latency:
1473 		new_itr = IXGBE_20K_ITR;
1474 		break;
1475 	case bulk_latency:
1476 		new_itr = IXGBE_12K_ITR;
1477 		break;
1478 	default:
1479 		break;
1480 	}
1481 
1482 	if (new_itr != q_vector->itr) {
1483 		/* do an exponential smoothing */
1484 		new_itr = (10 * new_itr * q_vector->itr) /
1485 			  ((9 * new_itr) + q_vector->itr);
1486 
1487 		/* save the algorithm value here */
1488 		q_vector->itr = new_itr;
1489 
1490 		ixgbevf_write_eitr(q_vector);
1491 	}
1492 }
1493 
1494 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1495 {
1496 	struct ixgbevf_adapter *adapter = data;
1497 	struct ixgbe_hw *hw = &adapter->hw;
1498 
1499 	hw->mac.get_link_status = 1;
1500 
1501 	ixgbevf_service_event_schedule(adapter);
1502 
1503 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1504 
1505 	return IRQ_HANDLED;
1506 }
1507 
1508 /**
1509  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1510  * @irq: unused
1511  * @data: pointer to our q_vector struct for this interrupt vector
1512  **/
1513 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1514 {
1515 	struct ixgbevf_q_vector *q_vector = data;
1516 
1517 	/* EIAM disabled interrupts (on this vector) for us */
1518 	if (q_vector->rx.ring || q_vector->tx.ring)
1519 		napi_schedule_irqoff(&q_vector->napi);
1520 
1521 	return IRQ_HANDLED;
1522 }
1523 
1524 /**
1525  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1526  * @adapter: board private structure
1527  *
1528  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1529  * interrupts from the kernel.
1530  **/
1531 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1532 {
1533 	struct net_device *netdev = adapter->netdev;
1534 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1535 	unsigned int ri = 0, ti = 0;
1536 	int vector, err;
1537 
1538 	for (vector = 0; vector < q_vectors; vector++) {
1539 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1540 		struct msix_entry *entry = &adapter->msix_entries[vector];
1541 
1542 		if (q_vector->tx.ring && q_vector->rx.ring) {
1543 			snprintf(q_vector->name, sizeof(q_vector->name),
1544 				 "%s-TxRx-%u", netdev->name, ri++);
1545 			ti++;
1546 		} else if (q_vector->rx.ring) {
1547 			snprintf(q_vector->name, sizeof(q_vector->name),
1548 				 "%s-rx-%u", netdev->name, ri++);
1549 		} else if (q_vector->tx.ring) {
1550 			snprintf(q_vector->name, sizeof(q_vector->name),
1551 				 "%s-tx-%u", netdev->name, ti++);
1552 		} else {
1553 			/* skip this unused q_vector */
1554 			continue;
1555 		}
1556 		err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1557 				  q_vector->name, q_vector);
1558 		if (err) {
1559 			hw_dbg(&adapter->hw,
1560 			       "request_irq failed for MSIX interrupt Error: %d\n",
1561 			       err);
1562 			goto free_queue_irqs;
1563 		}
1564 	}
1565 
1566 	err = request_irq(adapter->msix_entries[vector].vector,
1567 			  &ixgbevf_msix_other, 0, netdev->name, adapter);
1568 	if (err) {
1569 		hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1570 		       err);
1571 		goto free_queue_irqs;
1572 	}
1573 
1574 	return 0;
1575 
1576 free_queue_irqs:
1577 	while (vector) {
1578 		vector--;
1579 		free_irq(adapter->msix_entries[vector].vector,
1580 			 adapter->q_vector[vector]);
1581 	}
1582 	/* This failure is non-recoverable - it indicates the system is
1583 	 * out of MSIX vector resources and the VF driver cannot run
1584 	 * without them.  Set the number of msix vectors to zero
1585 	 * indicating that not enough can be allocated.  The error
1586 	 * will be returned to the user indicating device open failed.
1587 	 * Any further attempts to force the driver to open will also
1588 	 * fail.  The only way to recover is to unload the driver and
1589 	 * reload it again.  If the system has recovered some MSIX
1590 	 * vectors then it may succeed.
1591 	 */
1592 	adapter->num_msix_vectors = 0;
1593 	return err;
1594 }
1595 
1596 /**
1597  * ixgbevf_request_irq - initialize interrupts
1598  * @adapter: board private structure
1599  *
1600  * Attempts to configure interrupts using the best available
1601  * capabilities of the hardware and kernel.
1602  **/
1603 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1604 {
1605 	int err = ixgbevf_request_msix_irqs(adapter);
1606 
1607 	if (err)
1608 		hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1609 
1610 	return err;
1611 }
1612 
1613 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1614 {
1615 	int i, q_vectors;
1616 
1617 	if (!adapter->msix_entries)
1618 		return;
1619 
1620 	q_vectors = adapter->num_msix_vectors;
1621 	i = q_vectors - 1;
1622 
1623 	free_irq(adapter->msix_entries[i].vector, adapter);
1624 	i--;
1625 
1626 	for (; i >= 0; i--) {
1627 		/* free only the irqs that were actually requested */
1628 		if (!adapter->q_vector[i]->rx.ring &&
1629 		    !adapter->q_vector[i]->tx.ring)
1630 			continue;
1631 
1632 		free_irq(adapter->msix_entries[i].vector,
1633 			 adapter->q_vector[i]);
1634 	}
1635 }
1636 
1637 /**
1638  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1639  * @adapter: board private structure
1640  **/
1641 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1642 {
1643 	struct ixgbe_hw *hw = &adapter->hw;
1644 	int i;
1645 
1646 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1647 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1648 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1649 
1650 	IXGBE_WRITE_FLUSH(hw);
1651 
1652 	for (i = 0; i < adapter->num_msix_vectors; i++)
1653 		synchronize_irq(adapter->msix_entries[i].vector);
1654 }
1655 
1656 /**
1657  * ixgbevf_irq_enable - Enable default interrupt generation settings
1658  * @adapter: board private structure
1659  **/
1660 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1661 {
1662 	struct ixgbe_hw *hw = &adapter->hw;
1663 
1664 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1665 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1666 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1667 }
1668 
1669 /**
1670  * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1671  * @adapter: board private structure
1672  * @ring: structure containing ring specific data
1673  *
1674  * Configure the Tx descriptor ring after a reset.
1675  **/
1676 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1677 				      struct ixgbevf_ring *ring)
1678 {
1679 	struct ixgbe_hw *hw = &adapter->hw;
1680 	u64 tdba = ring->dma;
1681 	int wait_loop = 10;
1682 	u32 txdctl = IXGBE_TXDCTL_ENABLE;
1683 	u8 reg_idx = ring->reg_idx;
1684 
1685 	/* disable queue to avoid issues while updating state */
1686 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1687 	IXGBE_WRITE_FLUSH(hw);
1688 
1689 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1690 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1691 	IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1692 			ring->count * sizeof(union ixgbe_adv_tx_desc));
1693 
1694 	/* disable head writeback */
1695 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1696 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1697 
1698 	/* enable relaxed ordering */
1699 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1700 			(IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1701 			 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1702 
1703 	/* reset head and tail pointers */
1704 	IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1705 	IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1706 	ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1707 
1708 	/* reset ntu and ntc to place SW in sync with hardwdare */
1709 	ring->next_to_clean = 0;
1710 	ring->next_to_use = 0;
1711 
1712 	/* In order to avoid issues WTHRESH + PTHRESH should always be equal
1713 	 * to or less than the number of on chip descriptors, which is
1714 	 * currently 40.
1715 	 */
1716 	txdctl |= (8 << 16);    /* WTHRESH = 8 */
1717 
1718 	/* Setting PTHRESH to 32 both improves performance */
1719 	txdctl |= (1u << 8) |    /* HTHRESH = 1 */
1720 		   32;           /* PTHRESH = 32 */
1721 
1722 	/* reinitialize tx_buffer_info */
1723 	memset(ring->tx_buffer_info, 0,
1724 	       sizeof(struct ixgbevf_tx_buffer) * ring->count);
1725 
1726 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1727 	clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
1728 
1729 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1730 
1731 	/* poll to verify queue is enabled */
1732 	do {
1733 		usleep_range(1000, 2000);
1734 		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1735 	}  while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1736 	if (!wait_loop)
1737 		hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx);
1738 }
1739 
1740 /**
1741  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1742  * @adapter: board private structure
1743  *
1744  * Configure the Tx unit of the MAC after a reset.
1745  **/
1746 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1747 {
1748 	u32 i;
1749 
1750 	/* Setup the HW Tx Head and Tail descriptor pointers */
1751 	for (i = 0; i < adapter->num_tx_queues; i++)
1752 		ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1753 	for (i = 0; i < adapter->num_xdp_queues; i++)
1754 		ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]);
1755 }
1756 
1757 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1758 
1759 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter,
1760 				     struct ixgbevf_ring *ring, int index)
1761 {
1762 	struct ixgbe_hw *hw = &adapter->hw;
1763 	u32 srrctl;
1764 
1765 	srrctl = IXGBE_SRRCTL_DROP_EN;
1766 
1767 	srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1768 	if (ring_uses_large_buffer(ring))
1769 		srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1770 	else
1771 		srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1772 	srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1773 
1774 	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1775 }
1776 
1777 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1778 {
1779 	struct ixgbe_hw *hw = &adapter->hw;
1780 
1781 	/* PSRTYPE must be initialized in 82599 */
1782 	u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1783 		      IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1784 		      IXGBE_PSRTYPE_L2HDR;
1785 
1786 	if (adapter->num_rx_queues > 1)
1787 		psrtype |= BIT(29);
1788 
1789 	IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1790 }
1791 
1792 #define IXGBEVF_MAX_RX_DESC_POLL 10
1793 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1794 				     struct ixgbevf_ring *ring)
1795 {
1796 	struct ixgbe_hw *hw = &adapter->hw;
1797 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1798 	u32 rxdctl;
1799 	u8 reg_idx = ring->reg_idx;
1800 
1801 	if (IXGBE_REMOVED(hw->hw_addr))
1802 		return;
1803 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1804 	rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1805 
1806 	/* write value back with RXDCTL.ENABLE bit cleared */
1807 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1808 
1809 	/* the hardware may take up to 100us to really disable the Rx queue */
1810 	do {
1811 		udelay(10);
1812 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1813 	} while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1814 
1815 	if (!wait_loop)
1816 		pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1817 		       reg_idx);
1818 }
1819 
1820 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1821 					 struct ixgbevf_ring *ring)
1822 {
1823 	struct ixgbe_hw *hw = &adapter->hw;
1824 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1825 	u32 rxdctl;
1826 	u8 reg_idx = ring->reg_idx;
1827 
1828 	if (IXGBE_REMOVED(hw->hw_addr))
1829 		return;
1830 	do {
1831 		usleep_range(1000, 2000);
1832 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1833 	} while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1834 
1835 	if (!wait_loop)
1836 		pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1837 		       reg_idx);
1838 }
1839 
1840 /**
1841  * ixgbevf_init_rss_key - Initialize adapter RSS key
1842  * @adapter: device handle
1843  *
1844  * Allocates and initializes the RSS key if it is not allocated.
1845  **/
1846 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter)
1847 {
1848 	u32 *rss_key;
1849 
1850 	if (!adapter->rss_key) {
1851 		rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL);
1852 		if (unlikely(!rss_key))
1853 			return -ENOMEM;
1854 
1855 		netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE);
1856 		adapter->rss_key = rss_key;
1857 	}
1858 
1859 	return 0;
1860 }
1861 
1862 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1863 {
1864 	struct ixgbe_hw *hw = &adapter->hw;
1865 	u32 vfmrqc = 0, vfreta = 0;
1866 	u16 rss_i = adapter->num_rx_queues;
1867 	u8 i, j;
1868 
1869 	/* Fill out hash function seeds */
1870 	for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1871 		IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i));
1872 
1873 	for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1874 		if (j == rss_i)
1875 			j = 0;
1876 
1877 		adapter->rss_indir_tbl[i] = j;
1878 
1879 		vfreta |= j << (i & 0x3) * 8;
1880 		if ((i & 3) == 3) {
1881 			IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1882 			vfreta = 0;
1883 		}
1884 	}
1885 
1886 	/* Perform hash on these packet types */
1887 	vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1888 		IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1889 		IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1890 		IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1891 
1892 	vfmrqc |= IXGBE_VFMRQC_RSSEN;
1893 
1894 	IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1895 }
1896 
1897 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1898 				      struct ixgbevf_ring *ring)
1899 {
1900 	struct ixgbe_hw *hw = &adapter->hw;
1901 	union ixgbe_adv_rx_desc *rx_desc;
1902 	u64 rdba = ring->dma;
1903 	u32 rxdctl;
1904 	u8 reg_idx = ring->reg_idx;
1905 
1906 	/* disable queue to avoid issues while updating state */
1907 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1908 	ixgbevf_disable_rx_queue(adapter, ring);
1909 
1910 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1911 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1912 	IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1913 			ring->count * sizeof(union ixgbe_adv_rx_desc));
1914 
1915 #ifndef CONFIG_SPARC
1916 	/* enable relaxed ordering */
1917 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1918 			IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1919 #else
1920 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1921 			IXGBE_DCA_RXCTRL_DESC_RRO_EN |
1922 			IXGBE_DCA_RXCTRL_DATA_WRO_EN);
1923 #endif
1924 
1925 	/* reset head and tail pointers */
1926 	IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1927 	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1928 	ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1929 
1930 	/* initialize rx_buffer_info */
1931 	memset(ring->rx_buffer_info, 0,
1932 	       sizeof(struct ixgbevf_rx_buffer) * ring->count);
1933 
1934 	/* initialize Rx descriptor 0 */
1935 	rx_desc = IXGBEVF_RX_DESC(ring, 0);
1936 	rx_desc->wb.upper.length = 0;
1937 
1938 	/* reset ntu and ntc to place SW in sync with hardwdare */
1939 	ring->next_to_clean = 0;
1940 	ring->next_to_use = 0;
1941 	ring->next_to_alloc = 0;
1942 
1943 	ixgbevf_configure_srrctl(adapter, ring, reg_idx);
1944 
1945 	/* RXDCTL.RLPML does not work on 82599 */
1946 	if (adapter->hw.mac.type != ixgbe_mac_82599_vf) {
1947 		rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK |
1948 			    IXGBE_RXDCTL_RLPML_EN);
1949 
1950 #if (PAGE_SIZE < 8192)
1951 		/* Limit the maximum frame size so we don't overrun the skb */
1952 		if (ring_uses_build_skb(ring) &&
1953 		    !ring_uses_large_buffer(ring))
1954 			rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB |
1955 				  IXGBE_RXDCTL_RLPML_EN;
1956 #endif
1957 	}
1958 
1959 	rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1960 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1961 
1962 	ixgbevf_rx_desc_queue_enable(adapter, ring);
1963 	ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1964 }
1965 
1966 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter,
1967 				      struct ixgbevf_ring *rx_ring)
1968 {
1969 	struct net_device *netdev = adapter->netdev;
1970 	unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1971 
1972 	/* set build_skb and buffer size flags */
1973 	clear_ring_build_skb_enabled(rx_ring);
1974 	clear_ring_uses_large_buffer(rx_ring);
1975 
1976 	if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX)
1977 		return;
1978 
1979 	set_ring_build_skb_enabled(rx_ring);
1980 
1981 	if (PAGE_SIZE < 8192) {
1982 		if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB)
1983 			return;
1984 
1985 		set_ring_uses_large_buffer(rx_ring);
1986 	}
1987 }
1988 
1989 /**
1990  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1991  * @adapter: board private structure
1992  *
1993  * Configure the Rx unit of the MAC after a reset.
1994  **/
1995 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1996 {
1997 	struct ixgbe_hw *hw = &adapter->hw;
1998 	struct net_device *netdev = adapter->netdev;
1999 	int i, ret;
2000 
2001 	ixgbevf_setup_psrtype(adapter);
2002 	if (hw->mac.type >= ixgbe_mac_X550_vf)
2003 		ixgbevf_setup_vfmrqc(adapter);
2004 
2005 	spin_lock_bh(&adapter->mbx_lock);
2006 	/* notify the PF of our intent to use this size of frame */
2007 	ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
2008 	spin_unlock_bh(&adapter->mbx_lock);
2009 	if (ret)
2010 		dev_err(&adapter->pdev->dev,
2011 			"Failed to set MTU at %d\n", netdev->mtu);
2012 
2013 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
2014 	 * the Base and Length of the Rx Descriptor Ring
2015 	 */
2016 	for (i = 0; i < adapter->num_rx_queues; i++) {
2017 		struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
2018 
2019 		ixgbevf_set_rx_buffer_len(adapter, rx_ring);
2020 		ixgbevf_configure_rx_ring(adapter, rx_ring);
2021 	}
2022 }
2023 
2024 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
2025 				   __be16 proto, u16 vid)
2026 {
2027 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2028 	struct ixgbe_hw *hw = &adapter->hw;
2029 	int err;
2030 
2031 	spin_lock_bh(&adapter->mbx_lock);
2032 
2033 	/* add VID to filter table */
2034 	err = hw->mac.ops.set_vfta(hw, vid, 0, true);
2035 
2036 	spin_unlock_bh(&adapter->mbx_lock);
2037 
2038 	/* translate error return types so error makes sense */
2039 	if (err == IXGBE_ERR_MBX)
2040 		return -EIO;
2041 
2042 	if (err == IXGBE_ERR_INVALID_ARGUMENT)
2043 		return -EACCES;
2044 
2045 	set_bit(vid, adapter->active_vlans);
2046 
2047 	return err;
2048 }
2049 
2050 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
2051 				    __be16 proto, u16 vid)
2052 {
2053 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2054 	struct ixgbe_hw *hw = &adapter->hw;
2055 	int err;
2056 
2057 	spin_lock_bh(&adapter->mbx_lock);
2058 
2059 	/* remove VID from filter table */
2060 	err = hw->mac.ops.set_vfta(hw, vid, 0, false);
2061 
2062 	spin_unlock_bh(&adapter->mbx_lock);
2063 
2064 	clear_bit(vid, adapter->active_vlans);
2065 
2066 	return err;
2067 }
2068 
2069 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
2070 {
2071 	u16 vid;
2072 
2073 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2074 		ixgbevf_vlan_rx_add_vid(adapter->netdev,
2075 					htons(ETH_P_8021Q), vid);
2076 }
2077 
2078 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
2079 {
2080 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2081 	struct ixgbe_hw *hw = &adapter->hw;
2082 	int count = 0;
2083 
2084 	if ((netdev_uc_count(netdev)) > 10) {
2085 		pr_err("Too many unicast filters - No Space\n");
2086 		return -ENOSPC;
2087 	}
2088 
2089 	if (!netdev_uc_empty(netdev)) {
2090 		struct netdev_hw_addr *ha;
2091 
2092 		netdev_for_each_uc_addr(ha, netdev) {
2093 			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
2094 			udelay(200);
2095 		}
2096 	} else {
2097 		/* If the list is empty then send message to PF driver to
2098 		 * clear all MAC VLANs on this VF.
2099 		 */
2100 		hw->mac.ops.set_uc_addr(hw, 0, NULL);
2101 	}
2102 
2103 	return count;
2104 }
2105 
2106 /**
2107  * ixgbevf_set_rx_mode - Multicast and unicast set
2108  * @netdev: network interface device structure
2109  *
2110  * The set_rx_method entry point is called whenever the multicast address
2111  * list, unicast address list or the network interface flags are updated.
2112  * This routine is responsible for configuring the hardware for proper
2113  * multicast mode and configuring requested unicast filters.
2114  **/
2115 static void ixgbevf_set_rx_mode(struct net_device *netdev)
2116 {
2117 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2118 	struct ixgbe_hw *hw = &adapter->hw;
2119 	unsigned int flags = netdev->flags;
2120 	int xcast_mode;
2121 
2122 	/* request the most inclusive mode we need */
2123 	if (flags & IFF_PROMISC)
2124 		xcast_mode = IXGBEVF_XCAST_MODE_PROMISC;
2125 	else if (flags & IFF_ALLMULTI)
2126 		xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI;
2127 	else if (flags & (IFF_BROADCAST | IFF_MULTICAST))
2128 		xcast_mode = IXGBEVF_XCAST_MODE_MULTI;
2129 	else
2130 		xcast_mode = IXGBEVF_XCAST_MODE_NONE;
2131 
2132 	spin_lock_bh(&adapter->mbx_lock);
2133 
2134 	hw->mac.ops.update_xcast_mode(hw, xcast_mode);
2135 
2136 	/* reprogram multicast list */
2137 	hw->mac.ops.update_mc_addr_list(hw, netdev);
2138 
2139 	ixgbevf_write_uc_addr_list(netdev);
2140 
2141 	spin_unlock_bh(&adapter->mbx_lock);
2142 }
2143 
2144 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
2145 {
2146 	int q_idx;
2147 	struct ixgbevf_q_vector *q_vector;
2148 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2149 
2150 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2151 		q_vector = adapter->q_vector[q_idx];
2152 		napi_enable(&q_vector->napi);
2153 	}
2154 }
2155 
2156 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
2157 {
2158 	int q_idx;
2159 	struct ixgbevf_q_vector *q_vector;
2160 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2161 
2162 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2163 		q_vector = adapter->q_vector[q_idx];
2164 		napi_disable(&q_vector->napi);
2165 	}
2166 }
2167 
2168 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
2169 {
2170 	struct ixgbe_hw *hw = &adapter->hw;
2171 	unsigned int def_q = 0;
2172 	unsigned int num_tcs = 0;
2173 	unsigned int num_rx_queues = adapter->num_rx_queues;
2174 	unsigned int num_tx_queues = adapter->num_tx_queues;
2175 	int err;
2176 
2177 	spin_lock_bh(&adapter->mbx_lock);
2178 
2179 	/* fetch queue configuration from the PF */
2180 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2181 
2182 	spin_unlock_bh(&adapter->mbx_lock);
2183 
2184 	if (err)
2185 		return err;
2186 
2187 	if (num_tcs > 1) {
2188 		/* we need only one Tx queue */
2189 		num_tx_queues = 1;
2190 
2191 		/* update default Tx ring register index */
2192 		adapter->tx_ring[0]->reg_idx = def_q;
2193 
2194 		/* we need as many queues as traffic classes */
2195 		num_rx_queues = num_tcs;
2196 	}
2197 
2198 	/* if we have a bad config abort request queue reset */
2199 	if ((adapter->num_rx_queues != num_rx_queues) ||
2200 	    (adapter->num_tx_queues != num_tx_queues)) {
2201 		/* force mailbox timeout to prevent further messages */
2202 		hw->mbx.timeout = 0;
2203 
2204 		/* wait for watchdog to come around and bail us out */
2205 		set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state);
2206 	}
2207 
2208 	return 0;
2209 }
2210 
2211 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
2212 {
2213 	ixgbevf_configure_dcb(adapter);
2214 
2215 	ixgbevf_set_rx_mode(adapter->netdev);
2216 
2217 	ixgbevf_restore_vlan(adapter);
2218 	ixgbevf_ipsec_restore(adapter);
2219 
2220 	ixgbevf_configure_tx(adapter);
2221 	ixgbevf_configure_rx(adapter);
2222 }
2223 
2224 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2225 {
2226 	/* Only save pre-reset stats if there are some */
2227 	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2228 		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2229 			adapter->stats.base_vfgprc;
2230 		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2231 			adapter->stats.base_vfgptc;
2232 		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2233 			adapter->stats.base_vfgorc;
2234 		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2235 			adapter->stats.base_vfgotc;
2236 		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2237 			adapter->stats.base_vfmprc;
2238 	}
2239 }
2240 
2241 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2242 {
2243 	struct ixgbe_hw *hw = &adapter->hw;
2244 
2245 	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2246 	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2247 	adapter->stats.last_vfgorc |=
2248 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2249 	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2250 	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2251 	adapter->stats.last_vfgotc |=
2252 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2253 	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2254 
2255 	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2256 	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2257 	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2258 	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2259 	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2260 }
2261 
2262 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2263 {
2264 	struct ixgbe_hw *hw = &adapter->hw;
2265 	int api[] = { ixgbe_mbox_api_14,
2266 		      ixgbe_mbox_api_13,
2267 		      ixgbe_mbox_api_12,
2268 		      ixgbe_mbox_api_11,
2269 		      ixgbe_mbox_api_10,
2270 		      ixgbe_mbox_api_unknown };
2271 	int err, idx = 0;
2272 
2273 	spin_lock_bh(&adapter->mbx_lock);
2274 
2275 	while (api[idx] != ixgbe_mbox_api_unknown) {
2276 		err = hw->mac.ops.negotiate_api_version(hw, api[idx]);
2277 		if (!err)
2278 			break;
2279 		idx++;
2280 	}
2281 
2282 	spin_unlock_bh(&adapter->mbx_lock);
2283 }
2284 
2285 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2286 {
2287 	struct net_device *netdev = adapter->netdev;
2288 	struct ixgbe_hw *hw = &adapter->hw;
2289 
2290 	ixgbevf_configure_msix(adapter);
2291 
2292 	spin_lock_bh(&adapter->mbx_lock);
2293 
2294 	if (is_valid_ether_addr(hw->mac.addr))
2295 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2296 	else
2297 		hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2298 
2299 	spin_unlock_bh(&adapter->mbx_lock);
2300 
2301 	smp_mb__before_atomic();
2302 	clear_bit(__IXGBEVF_DOWN, &adapter->state);
2303 	ixgbevf_napi_enable_all(adapter);
2304 
2305 	/* clear any pending interrupts, may auto mask */
2306 	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2307 	ixgbevf_irq_enable(adapter);
2308 
2309 	/* enable transmits */
2310 	netif_tx_start_all_queues(netdev);
2311 
2312 	ixgbevf_save_reset_stats(adapter);
2313 	ixgbevf_init_last_counter_stats(adapter);
2314 
2315 	hw->mac.get_link_status = 1;
2316 	mod_timer(&adapter->service_timer, jiffies);
2317 }
2318 
2319 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2320 {
2321 	ixgbevf_configure(adapter);
2322 
2323 	ixgbevf_up_complete(adapter);
2324 }
2325 
2326 /**
2327  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2328  * @rx_ring: ring to free buffers from
2329  **/
2330 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2331 {
2332 	u16 i = rx_ring->next_to_clean;
2333 
2334 	/* Free Rx ring sk_buff */
2335 	if (rx_ring->skb) {
2336 		dev_kfree_skb(rx_ring->skb);
2337 		rx_ring->skb = NULL;
2338 	}
2339 
2340 	/* Free all the Rx ring pages */
2341 	while (i != rx_ring->next_to_alloc) {
2342 		struct ixgbevf_rx_buffer *rx_buffer;
2343 
2344 		rx_buffer = &rx_ring->rx_buffer_info[i];
2345 
2346 		/* Invalidate cache lines that may have been written to by
2347 		 * device so that we avoid corrupting memory.
2348 		 */
2349 		dma_sync_single_range_for_cpu(rx_ring->dev,
2350 					      rx_buffer->dma,
2351 					      rx_buffer->page_offset,
2352 					      ixgbevf_rx_bufsz(rx_ring),
2353 					      DMA_FROM_DEVICE);
2354 
2355 		/* free resources associated with mapping */
2356 		dma_unmap_page_attrs(rx_ring->dev,
2357 				     rx_buffer->dma,
2358 				     ixgbevf_rx_pg_size(rx_ring),
2359 				     DMA_FROM_DEVICE,
2360 				     IXGBEVF_RX_DMA_ATTR);
2361 
2362 		__page_frag_cache_drain(rx_buffer->page,
2363 					rx_buffer->pagecnt_bias);
2364 
2365 		i++;
2366 		if (i == rx_ring->count)
2367 			i = 0;
2368 	}
2369 
2370 	rx_ring->next_to_alloc = 0;
2371 	rx_ring->next_to_clean = 0;
2372 	rx_ring->next_to_use = 0;
2373 }
2374 
2375 /**
2376  * ixgbevf_clean_tx_ring - Free Tx Buffers
2377  * @tx_ring: ring to be cleaned
2378  **/
2379 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2380 {
2381 	u16 i = tx_ring->next_to_clean;
2382 	struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
2383 
2384 	while (i != tx_ring->next_to_use) {
2385 		union ixgbe_adv_tx_desc *eop_desc, *tx_desc;
2386 
2387 		/* Free all the Tx ring sk_buffs */
2388 		if (ring_is_xdp(tx_ring))
2389 			page_frag_free(tx_buffer->data);
2390 		else
2391 			dev_kfree_skb_any(tx_buffer->skb);
2392 
2393 		/* unmap skb header data */
2394 		dma_unmap_single(tx_ring->dev,
2395 				 dma_unmap_addr(tx_buffer, dma),
2396 				 dma_unmap_len(tx_buffer, len),
2397 				 DMA_TO_DEVICE);
2398 
2399 		/* check for eop_desc to determine the end of the packet */
2400 		eop_desc = tx_buffer->next_to_watch;
2401 		tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
2402 
2403 		/* unmap remaining buffers */
2404 		while (tx_desc != eop_desc) {
2405 			tx_buffer++;
2406 			tx_desc++;
2407 			i++;
2408 			if (unlikely(i == tx_ring->count)) {
2409 				i = 0;
2410 				tx_buffer = tx_ring->tx_buffer_info;
2411 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
2412 			}
2413 
2414 			/* unmap any remaining paged data */
2415 			if (dma_unmap_len(tx_buffer, len))
2416 				dma_unmap_page(tx_ring->dev,
2417 					       dma_unmap_addr(tx_buffer, dma),
2418 					       dma_unmap_len(tx_buffer, len),
2419 					       DMA_TO_DEVICE);
2420 		}
2421 
2422 		/* move us one more past the eop_desc for start of next pkt */
2423 		tx_buffer++;
2424 		i++;
2425 		if (unlikely(i == tx_ring->count)) {
2426 			i = 0;
2427 			tx_buffer = tx_ring->tx_buffer_info;
2428 		}
2429 	}
2430 
2431 	/* reset next_to_use and next_to_clean */
2432 	tx_ring->next_to_use = 0;
2433 	tx_ring->next_to_clean = 0;
2434 
2435 }
2436 
2437 /**
2438  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2439  * @adapter: board private structure
2440  **/
2441 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2442 {
2443 	int i;
2444 
2445 	for (i = 0; i < adapter->num_rx_queues; i++)
2446 		ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2447 }
2448 
2449 /**
2450  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2451  * @adapter: board private structure
2452  **/
2453 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2454 {
2455 	int i;
2456 
2457 	for (i = 0; i < adapter->num_tx_queues; i++)
2458 		ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2459 	for (i = 0; i < adapter->num_xdp_queues; i++)
2460 		ixgbevf_clean_tx_ring(adapter->xdp_ring[i]);
2461 }
2462 
2463 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2464 {
2465 	struct net_device *netdev = adapter->netdev;
2466 	struct ixgbe_hw *hw = &adapter->hw;
2467 	int i;
2468 
2469 	/* signal that we are down to the interrupt handler */
2470 	if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2471 		return; /* do nothing if already down */
2472 
2473 	/* disable all enabled Rx queues */
2474 	for (i = 0; i < adapter->num_rx_queues; i++)
2475 		ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2476 
2477 	usleep_range(10000, 20000);
2478 
2479 	netif_tx_stop_all_queues(netdev);
2480 
2481 	/* call carrier off first to avoid false dev_watchdog timeouts */
2482 	netif_carrier_off(netdev);
2483 	netif_tx_disable(netdev);
2484 
2485 	ixgbevf_irq_disable(adapter);
2486 
2487 	ixgbevf_napi_disable_all(adapter);
2488 
2489 	del_timer_sync(&adapter->service_timer);
2490 
2491 	/* disable transmits in the hardware now that interrupts are off */
2492 	for (i = 0; i < adapter->num_tx_queues; i++) {
2493 		u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2494 
2495 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2496 				IXGBE_TXDCTL_SWFLSH);
2497 	}
2498 
2499 	for (i = 0; i < adapter->num_xdp_queues; i++) {
2500 		u8 reg_idx = adapter->xdp_ring[i]->reg_idx;
2501 
2502 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2503 				IXGBE_TXDCTL_SWFLSH);
2504 	}
2505 
2506 	if (!pci_channel_offline(adapter->pdev))
2507 		ixgbevf_reset(adapter);
2508 
2509 	ixgbevf_clean_all_tx_rings(adapter);
2510 	ixgbevf_clean_all_rx_rings(adapter);
2511 }
2512 
2513 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2514 {
2515 	WARN_ON(in_interrupt());
2516 
2517 	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2518 		msleep(1);
2519 
2520 	ixgbevf_down(adapter);
2521 	ixgbevf_up(adapter);
2522 
2523 	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2524 }
2525 
2526 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2527 {
2528 	struct ixgbe_hw *hw = &adapter->hw;
2529 	struct net_device *netdev = adapter->netdev;
2530 
2531 	if (hw->mac.ops.reset_hw(hw)) {
2532 		hw_dbg(hw, "PF still resetting\n");
2533 	} else {
2534 		hw->mac.ops.init_hw(hw);
2535 		ixgbevf_negotiate_api(adapter);
2536 	}
2537 
2538 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2539 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
2540 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2541 	}
2542 
2543 	adapter->last_reset = jiffies;
2544 }
2545 
2546 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2547 					int vectors)
2548 {
2549 	int vector_threshold;
2550 
2551 	/* We'll want at least 2 (vector_threshold):
2552 	 * 1) TxQ[0] + RxQ[0] handler
2553 	 * 2) Other (Link Status Change, etc.)
2554 	 */
2555 	vector_threshold = MIN_MSIX_COUNT;
2556 
2557 	/* The more we get, the more we will assign to Tx/Rx Cleanup
2558 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2559 	 * Right now, we simply care about how many we'll get; we'll
2560 	 * set them up later while requesting irq's.
2561 	 */
2562 	vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2563 					vector_threshold, vectors);
2564 
2565 	if (vectors < 0) {
2566 		dev_err(&adapter->pdev->dev,
2567 			"Unable to allocate MSI-X interrupts\n");
2568 		kfree(adapter->msix_entries);
2569 		adapter->msix_entries = NULL;
2570 		return vectors;
2571 	}
2572 
2573 	/* Adjust for only the vectors we'll use, which is minimum
2574 	 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2575 	 * vectors we were allocated.
2576 	 */
2577 	adapter->num_msix_vectors = vectors;
2578 
2579 	return 0;
2580 }
2581 
2582 /**
2583  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2584  * @adapter: board private structure to initialize
2585  *
2586  * This is the top level queue allocation routine.  The order here is very
2587  * important, starting with the "most" number of features turned on at once,
2588  * and ending with the smallest set of features.  This way large combinations
2589  * can be allocated if they're turned on, and smaller combinations are the
2590  * fallthrough conditions.
2591  *
2592  **/
2593 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2594 {
2595 	struct ixgbe_hw *hw = &adapter->hw;
2596 	unsigned int def_q = 0;
2597 	unsigned int num_tcs = 0;
2598 	int err;
2599 
2600 	/* Start with base case */
2601 	adapter->num_rx_queues = 1;
2602 	adapter->num_tx_queues = 1;
2603 	adapter->num_xdp_queues = 0;
2604 
2605 	spin_lock_bh(&adapter->mbx_lock);
2606 
2607 	/* fetch queue configuration from the PF */
2608 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2609 
2610 	spin_unlock_bh(&adapter->mbx_lock);
2611 
2612 	if (err)
2613 		return;
2614 
2615 	/* we need as many queues as traffic classes */
2616 	if (num_tcs > 1) {
2617 		adapter->num_rx_queues = num_tcs;
2618 	} else {
2619 		u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2620 
2621 		switch (hw->api_version) {
2622 		case ixgbe_mbox_api_11:
2623 		case ixgbe_mbox_api_12:
2624 		case ixgbe_mbox_api_13:
2625 		case ixgbe_mbox_api_14:
2626 			if (adapter->xdp_prog &&
2627 			    hw->mac.max_tx_queues == rss)
2628 				rss = rss > 3 ? 2 : 1;
2629 
2630 			adapter->num_rx_queues = rss;
2631 			adapter->num_tx_queues = rss;
2632 			adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0;
2633 		default:
2634 			break;
2635 		}
2636 	}
2637 }
2638 
2639 /**
2640  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2641  * @adapter: board private structure to initialize
2642  *
2643  * Attempt to configure the interrupts using the best available
2644  * capabilities of the hardware and the kernel.
2645  **/
2646 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2647 {
2648 	int vector, v_budget;
2649 
2650 	/* It's easy to be greedy for MSI-X vectors, but it really
2651 	 * doesn't do us much good if we have a lot more vectors
2652 	 * than CPU's.  So let's be conservative and only ask for
2653 	 * (roughly) the same number of vectors as there are CPU's.
2654 	 * The default is to use pairs of vectors.
2655 	 */
2656 	v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2657 	v_budget = min_t(int, v_budget, num_online_cpus());
2658 	v_budget += NON_Q_VECTORS;
2659 
2660 	adapter->msix_entries = kcalloc(v_budget,
2661 					sizeof(struct msix_entry), GFP_KERNEL);
2662 	if (!adapter->msix_entries)
2663 		return -ENOMEM;
2664 
2665 	for (vector = 0; vector < v_budget; vector++)
2666 		adapter->msix_entries[vector].entry = vector;
2667 
2668 	/* A failure in MSI-X entry allocation isn't fatal, but the VF driver
2669 	 * does not support any other modes, so we will simply fail here. Note
2670 	 * that we clean up the msix_entries pointer else-where.
2671 	 */
2672 	return ixgbevf_acquire_msix_vectors(adapter, v_budget);
2673 }
2674 
2675 static void ixgbevf_add_ring(struct ixgbevf_ring *ring,
2676 			     struct ixgbevf_ring_container *head)
2677 {
2678 	ring->next = head->ring;
2679 	head->ring = ring;
2680 	head->count++;
2681 }
2682 
2683 /**
2684  * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector
2685  * @adapter: board private structure to initialize
2686  * @v_idx: index of vector in adapter struct
2687  * @txr_count: number of Tx rings for q vector
2688  * @txr_idx: index of first Tx ring to assign
2689  * @xdp_count: total number of XDP rings to allocate
2690  * @xdp_idx: index of first XDP ring to allocate
2691  * @rxr_count: number of Rx rings for q vector
2692  * @rxr_idx: index of first Rx ring to assign
2693  *
2694  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
2695  **/
2696 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx,
2697 				  int txr_count, int txr_idx,
2698 				  int xdp_count, int xdp_idx,
2699 				  int rxr_count, int rxr_idx)
2700 {
2701 	struct ixgbevf_q_vector *q_vector;
2702 	int reg_idx = txr_idx + xdp_idx;
2703 	struct ixgbevf_ring *ring;
2704 	int ring_count, size;
2705 
2706 	ring_count = txr_count + xdp_count + rxr_count;
2707 	size = sizeof(*q_vector) + (sizeof(*ring) * ring_count);
2708 
2709 	/* allocate q_vector and rings */
2710 	q_vector = kzalloc(size, GFP_KERNEL);
2711 	if (!q_vector)
2712 		return -ENOMEM;
2713 
2714 	/* initialize NAPI */
2715 	netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64);
2716 
2717 	/* tie q_vector and adapter together */
2718 	adapter->q_vector[v_idx] = q_vector;
2719 	q_vector->adapter = adapter;
2720 	q_vector->v_idx = v_idx;
2721 
2722 	/* initialize pointer to rings */
2723 	ring = q_vector->ring;
2724 
2725 	while (txr_count) {
2726 		/* assign generic ring traits */
2727 		ring->dev = &adapter->pdev->dev;
2728 		ring->netdev = adapter->netdev;
2729 
2730 		/* configure backlink on ring */
2731 		ring->q_vector = q_vector;
2732 
2733 		/* update q_vector Tx values */
2734 		ixgbevf_add_ring(ring, &q_vector->tx);
2735 
2736 		/* apply Tx specific ring traits */
2737 		ring->count = adapter->tx_ring_count;
2738 		ring->queue_index = txr_idx;
2739 		ring->reg_idx = reg_idx;
2740 
2741 		/* assign ring to adapter */
2742 		 adapter->tx_ring[txr_idx] = ring;
2743 
2744 		/* update count and index */
2745 		txr_count--;
2746 		txr_idx++;
2747 		reg_idx++;
2748 
2749 		/* push pointer to next ring */
2750 		ring++;
2751 	}
2752 
2753 	while (xdp_count) {
2754 		/* assign generic ring traits */
2755 		ring->dev = &adapter->pdev->dev;
2756 		ring->netdev = adapter->netdev;
2757 
2758 		/* configure backlink on ring */
2759 		ring->q_vector = q_vector;
2760 
2761 		/* update q_vector Tx values */
2762 		ixgbevf_add_ring(ring, &q_vector->tx);
2763 
2764 		/* apply Tx specific ring traits */
2765 		ring->count = adapter->tx_ring_count;
2766 		ring->queue_index = xdp_idx;
2767 		ring->reg_idx = reg_idx;
2768 		set_ring_xdp(ring);
2769 
2770 		/* assign ring to adapter */
2771 		adapter->xdp_ring[xdp_idx] = ring;
2772 
2773 		/* update count and index */
2774 		xdp_count--;
2775 		xdp_idx++;
2776 		reg_idx++;
2777 
2778 		/* push pointer to next ring */
2779 		ring++;
2780 	}
2781 
2782 	while (rxr_count) {
2783 		/* assign generic ring traits */
2784 		ring->dev = &adapter->pdev->dev;
2785 		ring->netdev = adapter->netdev;
2786 
2787 		/* configure backlink on ring */
2788 		ring->q_vector = q_vector;
2789 
2790 		/* update q_vector Rx values */
2791 		ixgbevf_add_ring(ring, &q_vector->rx);
2792 
2793 		/* apply Rx specific ring traits */
2794 		ring->count = adapter->rx_ring_count;
2795 		ring->queue_index = rxr_idx;
2796 		ring->reg_idx = rxr_idx;
2797 
2798 		/* assign ring to adapter */
2799 		adapter->rx_ring[rxr_idx] = ring;
2800 
2801 		/* update count and index */
2802 		rxr_count--;
2803 		rxr_idx++;
2804 
2805 		/* push pointer to next ring */
2806 		ring++;
2807 	}
2808 
2809 	return 0;
2810 }
2811 
2812 /**
2813  * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector
2814  * @adapter: board private structure to initialize
2815  * @v_idx: index of vector in adapter struct
2816  *
2817  * This function frees the memory allocated to the q_vector.  In addition if
2818  * NAPI is enabled it will delete any references to the NAPI struct prior
2819  * to freeing the q_vector.
2820  **/
2821 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx)
2822 {
2823 	struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx];
2824 	struct ixgbevf_ring *ring;
2825 
2826 	ixgbevf_for_each_ring(ring, q_vector->tx) {
2827 		if (ring_is_xdp(ring))
2828 			adapter->xdp_ring[ring->queue_index] = NULL;
2829 		else
2830 			adapter->tx_ring[ring->queue_index] = NULL;
2831 	}
2832 
2833 	ixgbevf_for_each_ring(ring, q_vector->rx)
2834 		adapter->rx_ring[ring->queue_index] = NULL;
2835 
2836 	adapter->q_vector[v_idx] = NULL;
2837 	netif_napi_del(&q_vector->napi);
2838 
2839 	/* ixgbevf_get_stats() might access the rings on this vector,
2840 	 * we must wait a grace period before freeing it.
2841 	 */
2842 	kfree_rcu(q_vector, rcu);
2843 }
2844 
2845 /**
2846  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2847  * @adapter: board private structure to initialize
2848  *
2849  * We allocate one q_vector per queue interrupt.  If allocation fails we
2850  * return -ENOMEM.
2851  **/
2852 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2853 {
2854 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2855 	int rxr_remaining = adapter->num_rx_queues;
2856 	int txr_remaining = adapter->num_tx_queues;
2857 	int xdp_remaining = adapter->num_xdp_queues;
2858 	int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0;
2859 	int err;
2860 
2861 	if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) {
2862 		for (; rxr_remaining; v_idx++, q_vectors--) {
2863 			int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2864 
2865 			err = ixgbevf_alloc_q_vector(adapter, v_idx,
2866 						     0, 0, 0, 0, rqpv, rxr_idx);
2867 			if (err)
2868 				goto err_out;
2869 
2870 			/* update counts and index */
2871 			rxr_remaining -= rqpv;
2872 			rxr_idx += rqpv;
2873 		}
2874 	}
2875 
2876 	for (; q_vectors; v_idx++, q_vectors--) {
2877 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2878 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors);
2879 		int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors);
2880 
2881 		err = ixgbevf_alloc_q_vector(adapter, v_idx,
2882 					     tqpv, txr_idx,
2883 					     xqpv, xdp_idx,
2884 					     rqpv, rxr_idx);
2885 
2886 		if (err)
2887 			goto err_out;
2888 
2889 		/* update counts and index */
2890 		rxr_remaining -= rqpv;
2891 		rxr_idx += rqpv;
2892 		txr_remaining -= tqpv;
2893 		txr_idx += tqpv;
2894 		xdp_remaining -= xqpv;
2895 		xdp_idx += xqpv;
2896 	}
2897 
2898 	return 0;
2899 
2900 err_out:
2901 	while (v_idx) {
2902 		v_idx--;
2903 		ixgbevf_free_q_vector(adapter, v_idx);
2904 	}
2905 
2906 	return -ENOMEM;
2907 }
2908 
2909 /**
2910  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2911  * @adapter: board private structure to initialize
2912  *
2913  * This function frees the memory allocated to the q_vectors.  In addition if
2914  * NAPI is enabled it will delete any references to the NAPI struct prior
2915  * to freeing the q_vector.
2916  **/
2917 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2918 {
2919 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2920 
2921 	while (q_vectors) {
2922 		q_vectors--;
2923 		ixgbevf_free_q_vector(adapter, q_vectors);
2924 	}
2925 }
2926 
2927 /**
2928  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2929  * @adapter: board private structure
2930  *
2931  **/
2932 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2933 {
2934 	if (!adapter->msix_entries)
2935 		return;
2936 
2937 	pci_disable_msix(adapter->pdev);
2938 	kfree(adapter->msix_entries);
2939 	adapter->msix_entries = NULL;
2940 }
2941 
2942 /**
2943  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2944  * @adapter: board private structure to initialize
2945  *
2946  **/
2947 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2948 {
2949 	int err;
2950 
2951 	/* Number of supported queues */
2952 	ixgbevf_set_num_queues(adapter);
2953 
2954 	err = ixgbevf_set_interrupt_capability(adapter);
2955 	if (err) {
2956 		hw_dbg(&adapter->hw,
2957 		       "Unable to setup interrupt capabilities\n");
2958 		goto err_set_interrupt;
2959 	}
2960 
2961 	err = ixgbevf_alloc_q_vectors(adapter);
2962 	if (err) {
2963 		hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2964 		goto err_alloc_q_vectors;
2965 	}
2966 
2967 	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n",
2968 	       (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled",
2969 	       adapter->num_rx_queues, adapter->num_tx_queues,
2970 	       adapter->num_xdp_queues);
2971 
2972 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2973 
2974 	return 0;
2975 err_alloc_q_vectors:
2976 	ixgbevf_reset_interrupt_capability(adapter);
2977 err_set_interrupt:
2978 	return err;
2979 }
2980 
2981 /**
2982  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2983  * @adapter: board private structure to clear interrupt scheme on
2984  *
2985  * We go through and clear interrupt specific resources and reset the structure
2986  * to pre-load conditions
2987  **/
2988 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2989 {
2990 	adapter->num_tx_queues = 0;
2991 	adapter->num_xdp_queues = 0;
2992 	adapter->num_rx_queues = 0;
2993 
2994 	ixgbevf_free_q_vectors(adapter);
2995 	ixgbevf_reset_interrupt_capability(adapter);
2996 }
2997 
2998 /**
2999  * ixgbevf_sw_init - Initialize general software structures
3000  * @adapter: board private structure to initialize
3001  *
3002  * ixgbevf_sw_init initializes the Adapter private data structure.
3003  * Fields are initialized based on PCI device information and
3004  * OS network device settings (MTU size).
3005  **/
3006 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
3007 {
3008 	struct ixgbe_hw *hw = &adapter->hw;
3009 	struct pci_dev *pdev = adapter->pdev;
3010 	struct net_device *netdev = adapter->netdev;
3011 	int err;
3012 
3013 	/* PCI config space info */
3014 	hw->vendor_id = pdev->vendor;
3015 	hw->device_id = pdev->device;
3016 	hw->revision_id = pdev->revision;
3017 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3018 	hw->subsystem_device_id = pdev->subsystem_device;
3019 
3020 	hw->mbx.ops.init_params(hw);
3021 
3022 	if (hw->mac.type >= ixgbe_mac_X550_vf) {
3023 		err = ixgbevf_init_rss_key(adapter);
3024 		if (err)
3025 			goto out;
3026 	}
3027 
3028 	/* assume legacy case in which PF would only give VF 2 queues */
3029 	hw->mac.max_tx_queues = 2;
3030 	hw->mac.max_rx_queues = 2;
3031 
3032 	/* lock to protect mailbox accesses */
3033 	spin_lock_init(&adapter->mbx_lock);
3034 
3035 	err = hw->mac.ops.reset_hw(hw);
3036 	if (err) {
3037 		dev_info(&pdev->dev,
3038 			 "PF still in reset state.  Is the PF interface up?\n");
3039 	} else {
3040 		err = hw->mac.ops.init_hw(hw);
3041 		if (err) {
3042 			pr_err("init_shared_code failed: %d\n", err);
3043 			goto out;
3044 		}
3045 		ixgbevf_negotiate_api(adapter);
3046 		err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
3047 		if (err)
3048 			dev_info(&pdev->dev, "Error reading MAC address\n");
3049 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
3050 			dev_info(&pdev->dev,
3051 				 "MAC address not assigned by administrator.\n");
3052 		ether_addr_copy(netdev->dev_addr, hw->mac.addr);
3053 	}
3054 
3055 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3056 		dev_info(&pdev->dev, "Assigning random MAC address\n");
3057 		eth_hw_addr_random(netdev);
3058 		ether_addr_copy(hw->mac.addr, netdev->dev_addr);
3059 		ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
3060 	}
3061 
3062 	/* Enable dynamic interrupt throttling rates */
3063 	adapter->rx_itr_setting = 1;
3064 	adapter->tx_itr_setting = 1;
3065 
3066 	/* set default ring sizes */
3067 	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
3068 	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
3069 
3070 	set_bit(__IXGBEVF_DOWN, &adapter->state);
3071 	return 0;
3072 
3073 out:
3074 	return err;
3075 }
3076 
3077 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
3078 	{							\
3079 		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
3080 		if (current_counter < last_counter)		\
3081 			counter += 0x100000000LL;		\
3082 		last_counter = current_counter;			\
3083 		counter &= 0xFFFFFFFF00000000LL;		\
3084 		counter |= current_counter;			\
3085 	}
3086 
3087 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
3088 	{								 \
3089 		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
3090 		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
3091 		u64 current_counter = (current_counter_msb << 32) |	 \
3092 			current_counter_lsb;				 \
3093 		if (current_counter < last_counter)			 \
3094 			counter += 0x1000000000LL;			 \
3095 		last_counter = current_counter;				 \
3096 		counter &= 0xFFFFFFF000000000LL;			 \
3097 		counter |= current_counter;				 \
3098 	}
3099 /**
3100  * ixgbevf_update_stats - Update the board statistics counters.
3101  * @adapter: board private structure
3102  **/
3103 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
3104 {
3105 	struct ixgbe_hw *hw = &adapter->hw;
3106 	u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0;
3107 	u64 alloc_rx_page = 0, hw_csum_rx_error = 0;
3108 	int i;
3109 
3110 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3111 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3112 		return;
3113 
3114 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
3115 				adapter->stats.vfgprc);
3116 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
3117 				adapter->stats.vfgptc);
3118 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
3119 				adapter->stats.last_vfgorc,
3120 				adapter->stats.vfgorc);
3121 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
3122 				adapter->stats.last_vfgotc,
3123 				adapter->stats.vfgotc);
3124 	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
3125 				adapter->stats.vfmprc);
3126 
3127 	for (i = 0;  i  < adapter->num_rx_queues;  i++) {
3128 		struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
3129 
3130 		hw_csum_rx_error += rx_ring->rx_stats.csum_err;
3131 		alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed;
3132 		alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
3133 		alloc_rx_page += rx_ring->rx_stats.alloc_rx_page;
3134 	}
3135 
3136 	adapter->hw_csum_rx_error = hw_csum_rx_error;
3137 	adapter->alloc_rx_page_failed = alloc_rx_page_failed;
3138 	adapter->alloc_rx_buff_failed = alloc_rx_buff_failed;
3139 	adapter->alloc_rx_page = alloc_rx_page;
3140 }
3141 
3142 /**
3143  * ixgbevf_service_timer - Timer Call-back
3144  * @t: pointer to timer_list struct
3145  **/
3146 static void ixgbevf_service_timer(struct timer_list *t)
3147 {
3148 	struct ixgbevf_adapter *adapter = from_timer(adapter, t,
3149 						     service_timer);
3150 
3151 	/* Reset the timer */
3152 	mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
3153 
3154 	ixgbevf_service_event_schedule(adapter);
3155 }
3156 
3157 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
3158 {
3159 	if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state))
3160 		return;
3161 
3162 	rtnl_lock();
3163 	/* If we're already down or resetting, just bail */
3164 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3165 	    test_bit(__IXGBEVF_REMOVING, &adapter->state) ||
3166 	    test_bit(__IXGBEVF_RESETTING, &adapter->state)) {
3167 		rtnl_unlock();
3168 		return;
3169 	}
3170 
3171 	adapter->tx_timeout_count++;
3172 
3173 	ixgbevf_reinit_locked(adapter);
3174 	rtnl_unlock();
3175 }
3176 
3177 /**
3178  * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
3179  * @adapter: pointer to the device adapter structure
3180  *
3181  * This function serves two purposes.  First it strobes the interrupt lines
3182  * in order to make certain interrupts are occurring.  Secondly it sets the
3183  * bits needed to check for TX hangs.  As a result we should immediately
3184  * determine if a hang has occurred.
3185  **/
3186 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
3187 {
3188 	struct ixgbe_hw *hw = &adapter->hw;
3189 	u32 eics = 0;
3190 	int i;
3191 
3192 	/* If we're down or resetting, just bail */
3193 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3194 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3195 		return;
3196 
3197 	/* Force detection of hung controller */
3198 	if (netif_carrier_ok(adapter->netdev)) {
3199 		for (i = 0; i < adapter->num_tx_queues; i++)
3200 			set_check_for_tx_hang(adapter->tx_ring[i]);
3201 		for (i = 0; i < adapter->num_xdp_queues; i++)
3202 			set_check_for_tx_hang(adapter->xdp_ring[i]);
3203 	}
3204 
3205 	/* get one bit for every active Tx/Rx interrupt vector */
3206 	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
3207 		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
3208 
3209 		if (qv->rx.ring || qv->tx.ring)
3210 			eics |= BIT(i);
3211 	}
3212 
3213 	/* Cause software interrupt to ensure rings are cleaned */
3214 	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
3215 }
3216 
3217 /**
3218  * ixgbevf_watchdog_update_link - update the link status
3219  * @adapter: pointer to the device adapter structure
3220  **/
3221 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
3222 {
3223 	struct ixgbe_hw *hw = &adapter->hw;
3224 	u32 link_speed = adapter->link_speed;
3225 	bool link_up = adapter->link_up;
3226 	s32 err;
3227 
3228 	spin_lock_bh(&adapter->mbx_lock);
3229 
3230 	err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
3231 
3232 	spin_unlock_bh(&adapter->mbx_lock);
3233 
3234 	/* if check for link returns error we will need to reset */
3235 	if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
3236 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
3237 		link_up = false;
3238 	}
3239 
3240 	adapter->link_up = link_up;
3241 	adapter->link_speed = link_speed;
3242 }
3243 
3244 /**
3245  * ixgbevf_watchdog_link_is_up - update netif_carrier status and
3246  *				 print link up message
3247  * @adapter: pointer to the device adapter structure
3248  **/
3249 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
3250 {
3251 	struct net_device *netdev = adapter->netdev;
3252 
3253 	/* only continue if link was previously down */
3254 	if (netif_carrier_ok(netdev))
3255 		return;
3256 
3257 	dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
3258 		 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
3259 		 "10 Gbps" :
3260 		 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
3261 		 "1 Gbps" :
3262 		 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
3263 		 "100 Mbps" :
3264 		 "unknown speed");
3265 
3266 	netif_carrier_on(netdev);
3267 }
3268 
3269 /**
3270  * ixgbevf_watchdog_link_is_down - update netif_carrier status and
3271  *				   print link down message
3272  * @adapter: pointer to the adapter structure
3273  **/
3274 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
3275 {
3276 	struct net_device *netdev = adapter->netdev;
3277 
3278 	adapter->link_speed = 0;
3279 
3280 	/* only continue if link was up previously */
3281 	if (!netif_carrier_ok(netdev))
3282 		return;
3283 
3284 	dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
3285 
3286 	netif_carrier_off(netdev);
3287 }
3288 
3289 /**
3290  * ixgbevf_watchdog_subtask - worker thread to bring link up
3291  * @adapter: board private structure
3292  **/
3293 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
3294 {
3295 	/* if interface is down do nothing */
3296 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3297 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3298 		return;
3299 
3300 	ixgbevf_watchdog_update_link(adapter);
3301 
3302 	if (adapter->link_up)
3303 		ixgbevf_watchdog_link_is_up(adapter);
3304 	else
3305 		ixgbevf_watchdog_link_is_down(adapter);
3306 
3307 	ixgbevf_update_stats(adapter);
3308 }
3309 
3310 /**
3311  * ixgbevf_service_task - manages and runs subtasks
3312  * @work: pointer to work_struct containing our data
3313  **/
3314 static void ixgbevf_service_task(struct work_struct *work)
3315 {
3316 	struct ixgbevf_adapter *adapter = container_of(work,
3317 						       struct ixgbevf_adapter,
3318 						       service_task);
3319 	struct ixgbe_hw *hw = &adapter->hw;
3320 
3321 	if (IXGBE_REMOVED(hw->hw_addr)) {
3322 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
3323 			rtnl_lock();
3324 			ixgbevf_down(adapter);
3325 			rtnl_unlock();
3326 		}
3327 		return;
3328 	}
3329 
3330 	ixgbevf_queue_reset_subtask(adapter);
3331 	ixgbevf_reset_subtask(adapter);
3332 	ixgbevf_watchdog_subtask(adapter);
3333 	ixgbevf_check_hang_subtask(adapter);
3334 
3335 	ixgbevf_service_event_complete(adapter);
3336 }
3337 
3338 /**
3339  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
3340  * @tx_ring: Tx descriptor ring for a specific queue
3341  *
3342  * Free all transmit software resources
3343  **/
3344 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
3345 {
3346 	ixgbevf_clean_tx_ring(tx_ring);
3347 
3348 	vfree(tx_ring->tx_buffer_info);
3349 	tx_ring->tx_buffer_info = NULL;
3350 
3351 	/* if not set, then don't free */
3352 	if (!tx_ring->desc)
3353 		return;
3354 
3355 	dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
3356 			  tx_ring->dma);
3357 
3358 	tx_ring->desc = NULL;
3359 }
3360 
3361 /**
3362  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
3363  * @adapter: board private structure
3364  *
3365  * Free all transmit software resources
3366  **/
3367 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
3368 {
3369 	int i;
3370 
3371 	for (i = 0; i < adapter->num_tx_queues; i++)
3372 		if (adapter->tx_ring[i]->desc)
3373 			ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3374 	for (i = 0; i < adapter->num_xdp_queues; i++)
3375 		if (adapter->xdp_ring[i]->desc)
3376 			ixgbevf_free_tx_resources(adapter->xdp_ring[i]);
3377 }
3378 
3379 /**
3380  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
3381  * @tx_ring: Tx descriptor ring (for a specific queue) to setup
3382  *
3383  * Return 0 on success, negative on failure
3384  **/
3385 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
3386 {
3387 	struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
3388 	int size;
3389 
3390 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
3391 	tx_ring->tx_buffer_info = vmalloc(size);
3392 	if (!tx_ring->tx_buffer_info)
3393 		goto err;
3394 
3395 	u64_stats_init(&tx_ring->syncp);
3396 
3397 	/* round up to nearest 4K */
3398 	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
3399 	tx_ring->size = ALIGN(tx_ring->size, 4096);
3400 
3401 	tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
3402 					   &tx_ring->dma, GFP_KERNEL);
3403 	if (!tx_ring->desc)
3404 		goto err;
3405 
3406 	return 0;
3407 
3408 err:
3409 	vfree(tx_ring->tx_buffer_info);
3410 	tx_ring->tx_buffer_info = NULL;
3411 	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3412 	return -ENOMEM;
3413 }
3414 
3415 /**
3416  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3417  * @adapter: board private structure
3418  *
3419  * If this function returns with an error, then it's possible one or
3420  * more of the rings is populated (while the rest are not).  It is the
3421  * callers duty to clean those orphaned rings.
3422  *
3423  * Return 0 on success, negative on failure
3424  **/
3425 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3426 {
3427 	int i, j = 0, err = 0;
3428 
3429 	for (i = 0; i < adapter->num_tx_queues; i++) {
3430 		err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3431 		if (!err)
3432 			continue;
3433 		hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3434 		goto err_setup_tx;
3435 	}
3436 
3437 	for (j = 0; j < adapter->num_xdp_queues; j++) {
3438 		err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]);
3439 		if (!err)
3440 			continue;
3441 		hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j);
3442 		goto err_setup_tx;
3443 	}
3444 
3445 	return 0;
3446 err_setup_tx:
3447 	/* rewind the index freeing the rings as we go */
3448 	while (j--)
3449 		ixgbevf_free_tx_resources(adapter->xdp_ring[j]);
3450 	while (i--)
3451 		ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3452 
3453 	return err;
3454 }
3455 
3456 /**
3457  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3458  * @adapter: board private structure
3459  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3460  *
3461  * Returns 0 on success, negative on failure
3462  **/
3463 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
3464 			       struct ixgbevf_ring *rx_ring)
3465 {
3466 	int size;
3467 
3468 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3469 	rx_ring->rx_buffer_info = vmalloc(size);
3470 	if (!rx_ring->rx_buffer_info)
3471 		goto err;
3472 
3473 	u64_stats_init(&rx_ring->syncp);
3474 
3475 	/* Round up to nearest 4K */
3476 	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3477 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3478 
3479 	rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3480 					   &rx_ring->dma, GFP_KERNEL);
3481 
3482 	if (!rx_ring->desc)
3483 		goto err;
3484 
3485 	/* XDP RX-queue info */
3486 	if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev,
3487 			     rx_ring->queue_index) < 0)
3488 		goto err;
3489 
3490 	rx_ring->xdp_prog = adapter->xdp_prog;
3491 
3492 	return 0;
3493 err:
3494 	vfree(rx_ring->rx_buffer_info);
3495 	rx_ring->rx_buffer_info = NULL;
3496 	dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3497 	return -ENOMEM;
3498 }
3499 
3500 /**
3501  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3502  * @adapter: board private structure
3503  *
3504  * If this function returns with an error, then it's possible one or
3505  * more of the rings is populated (while the rest are not).  It is the
3506  * callers duty to clean those orphaned rings.
3507  *
3508  * Return 0 on success, negative on failure
3509  **/
3510 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3511 {
3512 	int i, err = 0;
3513 
3514 	for (i = 0; i < adapter->num_rx_queues; i++) {
3515 		err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]);
3516 		if (!err)
3517 			continue;
3518 		hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3519 		goto err_setup_rx;
3520 	}
3521 
3522 	return 0;
3523 err_setup_rx:
3524 	/* rewind the index freeing the rings as we go */
3525 	while (i--)
3526 		ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3527 	return err;
3528 }
3529 
3530 /**
3531  * ixgbevf_free_rx_resources - Free Rx Resources
3532  * @rx_ring: ring to clean the resources from
3533  *
3534  * Free all receive software resources
3535  **/
3536 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3537 {
3538 	ixgbevf_clean_rx_ring(rx_ring);
3539 
3540 	rx_ring->xdp_prog = NULL;
3541 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
3542 	vfree(rx_ring->rx_buffer_info);
3543 	rx_ring->rx_buffer_info = NULL;
3544 
3545 	dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3546 			  rx_ring->dma);
3547 
3548 	rx_ring->desc = NULL;
3549 }
3550 
3551 /**
3552  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3553  * @adapter: board private structure
3554  *
3555  * Free all receive software resources
3556  **/
3557 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3558 {
3559 	int i;
3560 
3561 	for (i = 0; i < adapter->num_rx_queues; i++)
3562 		if (adapter->rx_ring[i]->desc)
3563 			ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3564 }
3565 
3566 /**
3567  * ixgbevf_open - Called when a network interface is made active
3568  * @netdev: network interface device structure
3569  *
3570  * Returns 0 on success, negative value on failure
3571  *
3572  * The open entry point is called when a network interface is made
3573  * active by the system (IFF_UP).  At this point all resources needed
3574  * for transmit and receive operations are allocated, the interrupt
3575  * handler is registered with the OS, the watchdog timer is started,
3576  * and the stack is notified that the interface is ready.
3577  **/
3578 int ixgbevf_open(struct net_device *netdev)
3579 {
3580 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3581 	struct ixgbe_hw *hw = &adapter->hw;
3582 	int err;
3583 
3584 	/* A previous failure to open the device because of a lack of
3585 	 * available MSIX vector resources may have reset the number
3586 	 * of msix vectors variable to zero.  The only way to recover
3587 	 * is to unload/reload the driver and hope that the system has
3588 	 * been able to recover some MSIX vector resources.
3589 	 */
3590 	if (!adapter->num_msix_vectors)
3591 		return -ENOMEM;
3592 
3593 	if (hw->adapter_stopped) {
3594 		ixgbevf_reset(adapter);
3595 		/* if adapter is still stopped then PF isn't up and
3596 		 * the VF can't start.
3597 		 */
3598 		if (hw->adapter_stopped) {
3599 			err = IXGBE_ERR_MBX;
3600 			pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3601 			goto err_setup_reset;
3602 		}
3603 	}
3604 
3605 	/* disallow open during test */
3606 	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3607 		return -EBUSY;
3608 
3609 	netif_carrier_off(netdev);
3610 
3611 	/* allocate transmit descriptors */
3612 	err = ixgbevf_setup_all_tx_resources(adapter);
3613 	if (err)
3614 		goto err_setup_tx;
3615 
3616 	/* allocate receive descriptors */
3617 	err = ixgbevf_setup_all_rx_resources(adapter);
3618 	if (err)
3619 		goto err_setup_rx;
3620 
3621 	ixgbevf_configure(adapter);
3622 
3623 	err = ixgbevf_request_irq(adapter);
3624 	if (err)
3625 		goto err_req_irq;
3626 
3627 	/* Notify the stack of the actual queue counts. */
3628 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3629 	if (err)
3630 		goto err_set_queues;
3631 
3632 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3633 	if (err)
3634 		goto err_set_queues;
3635 
3636 	ixgbevf_up_complete(adapter);
3637 
3638 	return 0;
3639 
3640 err_set_queues:
3641 	ixgbevf_free_irq(adapter);
3642 err_req_irq:
3643 	ixgbevf_free_all_rx_resources(adapter);
3644 err_setup_rx:
3645 	ixgbevf_free_all_tx_resources(adapter);
3646 err_setup_tx:
3647 	ixgbevf_reset(adapter);
3648 err_setup_reset:
3649 
3650 	return err;
3651 }
3652 
3653 /**
3654  * ixgbevf_close_suspend - actions necessary to both suspend and close flows
3655  * @adapter: the private adapter struct
3656  *
3657  * This function should contain the necessary work common to both suspending
3658  * and closing of the device.
3659  */
3660 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter)
3661 {
3662 	ixgbevf_down(adapter);
3663 	ixgbevf_free_irq(adapter);
3664 	ixgbevf_free_all_tx_resources(adapter);
3665 	ixgbevf_free_all_rx_resources(adapter);
3666 }
3667 
3668 /**
3669  * ixgbevf_close - Disables a network interface
3670  * @netdev: network interface device structure
3671  *
3672  * Returns 0, this is not allowed to fail
3673  *
3674  * The close entry point is called when an interface is de-activated
3675  * by the OS.  The hardware is still under the drivers control, but
3676  * needs to be disabled.  A global MAC reset is issued to stop the
3677  * hardware, and all transmit and receive resources are freed.
3678  **/
3679 int ixgbevf_close(struct net_device *netdev)
3680 {
3681 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3682 
3683 	if (netif_device_present(netdev))
3684 		ixgbevf_close_suspend(adapter);
3685 
3686 	return 0;
3687 }
3688 
3689 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3690 {
3691 	struct net_device *dev = adapter->netdev;
3692 
3693 	if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED,
3694 				&adapter->state))
3695 		return;
3696 
3697 	/* if interface is down do nothing */
3698 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3699 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3700 		return;
3701 
3702 	/* Hardware has to reinitialize queues and interrupts to
3703 	 * match packet buffer alignment. Unfortunately, the
3704 	 * hardware is not flexible enough to do this dynamically.
3705 	 */
3706 	rtnl_lock();
3707 
3708 	if (netif_running(dev))
3709 		ixgbevf_close(dev);
3710 
3711 	ixgbevf_clear_interrupt_scheme(adapter);
3712 	ixgbevf_init_interrupt_scheme(adapter);
3713 
3714 	if (netif_running(dev))
3715 		ixgbevf_open(dev);
3716 
3717 	rtnl_unlock();
3718 }
3719 
3720 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3721 				u32 vlan_macip_lens, u32 fceof_saidx,
3722 				u32 type_tucmd, u32 mss_l4len_idx)
3723 {
3724 	struct ixgbe_adv_tx_context_desc *context_desc;
3725 	u16 i = tx_ring->next_to_use;
3726 
3727 	context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3728 
3729 	i++;
3730 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3731 
3732 	/* set bits to identify this as an advanced context descriptor */
3733 	type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3734 
3735 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
3736 	context_desc->fceof_saidx	= cpu_to_le32(fceof_saidx);
3737 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
3738 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
3739 }
3740 
3741 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3742 		       struct ixgbevf_tx_buffer *first,
3743 		       u8 *hdr_len,
3744 		       struct ixgbevf_ipsec_tx_data *itd)
3745 {
3746 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
3747 	struct sk_buff *skb = first->skb;
3748 	union {
3749 		struct iphdr *v4;
3750 		struct ipv6hdr *v6;
3751 		unsigned char *hdr;
3752 	} ip;
3753 	union {
3754 		struct tcphdr *tcp;
3755 		unsigned char *hdr;
3756 	} l4;
3757 	u32 paylen, l4_offset;
3758 	u32 fceof_saidx = 0;
3759 	int err;
3760 
3761 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3762 		return 0;
3763 
3764 	if (!skb_is_gso(skb))
3765 		return 0;
3766 
3767 	err = skb_cow_head(skb, 0);
3768 	if (err < 0)
3769 		return err;
3770 
3771 	if (eth_p_mpls(first->protocol))
3772 		ip.hdr = skb_inner_network_header(skb);
3773 	else
3774 		ip.hdr = skb_network_header(skb);
3775 	l4.hdr = skb_checksum_start(skb);
3776 
3777 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3778 	type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3779 
3780 	/* initialize outer IP header fields */
3781 	if (ip.v4->version == 4) {
3782 		unsigned char *csum_start = skb_checksum_start(skb);
3783 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
3784 		int len = csum_start - trans_start;
3785 
3786 		/* IP header will have to cancel out any data that
3787 		 * is not a part of the outer IP header, so set to
3788 		 * a reverse csum if needed, else init check to 0.
3789 		 */
3790 		ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ?
3791 					   csum_fold(csum_partial(trans_start,
3792 								  len, 0)) : 0;
3793 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3794 
3795 		ip.v4->tot_len = 0;
3796 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3797 				   IXGBE_TX_FLAGS_CSUM |
3798 				   IXGBE_TX_FLAGS_IPV4;
3799 	} else {
3800 		ip.v6->payload_len = 0;
3801 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3802 				   IXGBE_TX_FLAGS_CSUM;
3803 	}
3804 
3805 	/* determine offset of inner transport header */
3806 	l4_offset = l4.hdr - skb->data;
3807 
3808 	/* compute length of segmentation header */
3809 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3810 
3811 	/* remove payload length from inner checksum */
3812 	paylen = skb->len - l4_offset;
3813 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
3814 
3815 	/* update gso size and bytecount with header size */
3816 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3817 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3818 
3819 	/* mss_l4len_id: use 1 as index for TSO */
3820 	mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT;
3821 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3822 	mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT);
3823 
3824 	fceof_saidx |= itd->pfsa;
3825 	type_tucmd |= itd->flags | itd->trailer_len;
3826 
3827 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3828 	vlan_macip_lens = l4.hdr - ip.hdr;
3829 	vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT;
3830 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3831 
3832 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd,
3833 			    mss_l4len_idx);
3834 
3835 	return 1;
3836 }
3837 
3838 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb)
3839 {
3840 	unsigned int offset = 0;
3841 
3842 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
3843 
3844 	return offset == skb_checksum_start_offset(skb);
3845 }
3846 
3847 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3848 			    struct ixgbevf_tx_buffer *first,
3849 			    struct ixgbevf_ipsec_tx_data *itd)
3850 {
3851 	struct sk_buff *skb = first->skb;
3852 	u32 vlan_macip_lens = 0;
3853 	u32 fceof_saidx = 0;
3854 	u32 type_tucmd = 0;
3855 
3856 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3857 		goto no_csum;
3858 
3859 	switch (skb->csum_offset) {
3860 	case offsetof(struct tcphdr, check):
3861 		type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3862 		/* fall through */
3863 	case offsetof(struct udphdr, check):
3864 		break;
3865 	case offsetof(struct sctphdr, checksum):
3866 		/* validate that this is actually an SCTP request */
3867 		if (((first->protocol == htons(ETH_P_IP)) &&
3868 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
3869 		    ((first->protocol == htons(ETH_P_IPV6)) &&
3870 		     ixgbevf_ipv6_csum_is_sctp(skb))) {
3871 			type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3872 			break;
3873 		}
3874 		/* fall through */
3875 	default:
3876 		skb_checksum_help(skb);
3877 		goto no_csum;
3878 	}
3879 
3880 	if (first->protocol == htons(ETH_P_IP))
3881 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3882 
3883 	/* update TX checksum flag */
3884 	first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3885 	vlan_macip_lens = skb_checksum_start_offset(skb) -
3886 			  skb_network_offset(skb);
3887 no_csum:
3888 	/* vlan_macip_lens: MACLEN, VLAN tag */
3889 	vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3890 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3891 
3892 	fceof_saidx |= itd->pfsa;
3893 	type_tucmd |= itd->flags | itd->trailer_len;
3894 
3895 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3896 			    fceof_saidx, type_tucmd, 0);
3897 }
3898 
3899 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3900 {
3901 	/* set type for advanced descriptor with frame checksum insertion */
3902 	__le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3903 				      IXGBE_ADVTXD_DCMD_IFCS |
3904 				      IXGBE_ADVTXD_DCMD_DEXT);
3905 
3906 	/* set HW VLAN bit if VLAN is present */
3907 	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3908 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3909 
3910 	/* set segmentation enable bits for TSO/FSO */
3911 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3912 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3913 
3914 	return cmd_type;
3915 }
3916 
3917 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3918 				     u32 tx_flags, unsigned int paylen)
3919 {
3920 	__le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3921 
3922 	/* enable L4 checksum for TSO and TX checksum offload */
3923 	if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3924 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3925 
3926 	/* enble IPv4 checksum for TSO */
3927 	if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3928 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3929 
3930 	/* enable IPsec */
3931 	if (tx_flags & IXGBE_TX_FLAGS_IPSEC)
3932 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC);
3933 
3934 	/* use index 1 context for TSO/FSO/FCOE/IPSEC */
3935 	if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC))
3936 		olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT);
3937 
3938 	/* Check Context must be set if Tx switch is enabled, which it
3939 	 * always is for case where virtual functions are running
3940 	 */
3941 	olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3942 
3943 	tx_desc->read.olinfo_status = olinfo_status;
3944 }
3945 
3946 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3947 			   struct ixgbevf_tx_buffer *first,
3948 			   const u8 hdr_len)
3949 {
3950 	struct sk_buff *skb = first->skb;
3951 	struct ixgbevf_tx_buffer *tx_buffer;
3952 	union ixgbe_adv_tx_desc *tx_desc;
3953 	struct skb_frag_struct *frag;
3954 	dma_addr_t dma;
3955 	unsigned int data_len, size;
3956 	u32 tx_flags = first->tx_flags;
3957 	__le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3958 	u16 i = tx_ring->next_to_use;
3959 
3960 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3961 
3962 	ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
3963 
3964 	size = skb_headlen(skb);
3965 	data_len = skb->data_len;
3966 
3967 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3968 
3969 	tx_buffer = first;
3970 
3971 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3972 		if (dma_mapping_error(tx_ring->dev, dma))
3973 			goto dma_error;
3974 
3975 		/* record length, and DMA address */
3976 		dma_unmap_len_set(tx_buffer, len, size);
3977 		dma_unmap_addr_set(tx_buffer, dma, dma);
3978 
3979 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3980 
3981 		while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3982 			tx_desc->read.cmd_type_len =
3983 				cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3984 
3985 			i++;
3986 			tx_desc++;
3987 			if (i == tx_ring->count) {
3988 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3989 				i = 0;
3990 			}
3991 			tx_desc->read.olinfo_status = 0;
3992 
3993 			dma += IXGBE_MAX_DATA_PER_TXD;
3994 			size -= IXGBE_MAX_DATA_PER_TXD;
3995 
3996 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
3997 		}
3998 
3999 		if (likely(!data_len))
4000 			break;
4001 
4002 		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4003 
4004 		i++;
4005 		tx_desc++;
4006 		if (i == tx_ring->count) {
4007 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
4008 			i = 0;
4009 		}
4010 		tx_desc->read.olinfo_status = 0;
4011 
4012 		size = skb_frag_size(frag);
4013 		data_len -= size;
4014 
4015 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
4016 				       DMA_TO_DEVICE);
4017 
4018 		tx_buffer = &tx_ring->tx_buffer_info[i];
4019 	}
4020 
4021 	/* write last descriptor with RS and EOP bits */
4022 	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
4023 	tx_desc->read.cmd_type_len = cmd_type;
4024 
4025 	/* set the timestamp */
4026 	first->time_stamp = jiffies;
4027 
4028 	skb_tx_timestamp(skb);
4029 
4030 	/* Force memory writes to complete before letting h/w know there
4031 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4032 	 * memory model archs, such as IA-64).
4033 	 *
4034 	 * We also need this memory barrier (wmb) to make certain all of the
4035 	 * status bits have been updated before next_to_watch is written.
4036 	 */
4037 	wmb();
4038 
4039 	/* set next_to_watch value indicating a packet is present */
4040 	first->next_to_watch = tx_desc;
4041 
4042 	i++;
4043 	if (i == tx_ring->count)
4044 		i = 0;
4045 
4046 	tx_ring->next_to_use = i;
4047 
4048 	/* notify HW of packet */
4049 	ixgbevf_write_tail(tx_ring, i);
4050 
4051 	return;
4052 dma_error:
4053 	dev_err(tx_ring->dev, "TX DMA map failed\n");
4054 	tx_buffer = &tx_ring->tx_buffer_info[i];
4055 
4056 	/* clear dma mappings for failed tx_buffer_info map */
4057 	while (tx_buffer != first) {
4058 		if (dma_unmap_len(tx_buffer, len))
4059 			dma_unmap_page(tx_ring->dev,
4060 				       dma_unmap_addr(tx_buffer, dma),
4061 				       dma_unmap_len(tx_buffer, len),
4062 				       DMA_TO_DEVICE);
4063 		dma_unmap_len_set(tx_buffer, len, 0);
4064 
4065 		if (i-- == 0)
4066 			i += tx_ring->count;
4067 		tx_buffer = &tx_ring->tx_buffer_info[i];
4068 	}
4069 
4070 	if (dma_unmap_len(tx_buffer, len))
4071 		dma_unmap_single(tx_ring->dev,
4072 				 dma_unmap_addr(tx_buffer, dma),
4073 				 dma_unmap_len(tx_buffer, len),
4074 				 DMA_TO_DEVICE);
4075 	dma_unmap_len_set(tx_buffer, len, 0);
4076 
4077 	dev_kfree_skb_any(tx_buffer->skb);
4078 	tx_buffer->skb = NULL;
4079 
4080 	tx_ring->next_to_use = i;
4081 }
4082 
4083 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4084 {
4085 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
4086 	/* Herbert's original patch had:
4087 	 *  smp_mb__after_netif_stop_queue();
4088 	 * but since that doesn't exist yet, just open code it.
4089 	 */
4090 	smp_mb();
4091 
4092 	/* We need to check again in a case another CPU has just
4093 	 * made room available.
4094 	 */
4095 	if (likely(ixgbevf_desc_unused(tx_ring) < size))
4096 		return -EBUSY;
4097 
4098 	/* A reprieve! - use start_queue because it doesn't call schedule */
4099 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
4100 	++tx_ring->tx_stats.restart_queue;
4101 
4102 	return 0;
4103 }
4104 
4105 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4106 {
4107 	if (likely(ixgbevf_desc_unused(tx_ring) >= size))
4108 		return 0;
4109 	return __ixgbevf_maybe_stop_tx(tx_ring, size);
4110 }
4111 
4112 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb,
4113 				   struct ixgbevf_ring *tx_ring)
4114 {
4115 	struct ixgbevf_tx_buffer *first;
4116 	int tso;
4117 	u32 tx_flags = 0;
4118 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4119 	struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 };
4120 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4121 	unsigned short f;
4122 #endif
4123 	u8 hdr_len = 0;
4124 	u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
4125 
4126 	if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
4127 		dev_kfree_skb_any(skb);
4128 		return NETDEV_TX_OK;
4129 	}
4130 
4131 	/* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
4132 	 *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
4133 	 *       + 2 desc gap to keep tail from touching head,
4134 	 *       + 1 desc for context descriptor,
4135 	 * otherwise try next time
4136 	 */
4137 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4138 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4139 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4140 #else
4141 	count += skb_shinfo(skb)->nr_frags;
4142 #endif
4143 	if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
4144 		tx_ring->tx_stats.tx_busy++;
4145 		return NETDEV_TX_BUSY;
4146 	}
4147 
4148 	/* record the location of the first descriptor for this packet */
4149 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4150 	first->skb = skb;
4151 	first->bytecount = skb->len;
4152 	first->gso_segs = 1;
4153 
4154 	if (skb_vlan_tag_present(skb)) {
4155 		tx_flags |= skb_vlan_tag_get(skb);
4156 		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
4157 		tx_flags |= IXGBE_TX_FLAGS_VLAN;
4158 	}
4159 
4160 	/* record initial flags and protocol */
4161 	first->tx_flags = tx_flags;
4162 	first->protocol = vlan_get_protocol(skb);
4163 
4164 #ifdef CONFIG_IXGBEVF_IPSEC
4165 	if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx))
4166 		goto out_drop;
4167 #endif
4168 	tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx);
4169 	if (tso < 0)
4170 		goto out_drop;
4171 	else if (!tso)
4172 		ixgbevf_tx_csum(tx_ring, first, &ipsec_tx);
4173 
4174 	ixgbevf_tx_map(tx_ring, first, hdr_len);
4175 
4176 	ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
4177 
4178 	return NETDEV_TX_OK;
4179 
4180 out_drop:
4181 	dev_kfree_skb_any(first->skb);
4182 	first->skb = NULL;
4183 
4184 	return NETDEV_TX_OK;
4185 }
4186 
4187 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4188 {
4189 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4190 	struct ixgbevf_ring *tx_ring;
4191 
4192 	if (skb->len <= 0) {
4193 		dev_kfree_skb_any(skb);
4194 		return NETDEV_TX_OK;
4195 	}
4196 
4197 	/* The minimum packet size for olinfo paylen is 17 so pad the skb
4198 	 * in order to meet this minimum size requirement.
4199 	 */
4200 	if (skb->len < 17) {
4201 		if (skb_padto(skb, 17))
4202 			return NETDEV_TX_OK;
4203 		skb->len = 17;
4204 	}
4205 
4206 	tx_ring = adapter->tx_ring[skb->queue_mapping];
4207 	return ixgbevf_xmit_frame_ring(skb, tx_ring);
4208 }
4209 
4210 /**
4211  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
4212  * @netdev: network interface device structure
4213  * @p: pointer to an address structure
4214  *
4215  * Returns 0 on success, negative on failure
4216  **/
4217 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
4218 {
4219 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4220 	struct ixgbe_hw *hw = &adapter->hw;
4221 	struct sockaddr *addr = p;
4222 	int err;
4223 
4224 	if (!is_valid_ether_addr(addr->sa_data))
4225 		return -EADDRNOTAVAIL;
4226 
4227 	spin_lock_bh(&adapter->mbx_lock);
4228 
4229 	err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0);
4230 
4231 	spin_unlock_bh(&adapter->mbx_lock);
4232 
4233 	if (err)
4234 		return -EPERM;
4235 
4236 	ether_addr_copy(hw->mac.addr, addr->sa_data);
4237 	ether_addr_copy(hw->mac.perm_addr, addr->sa_data);
4238 	ether_addr_copy(netdev->dev_addr, addr->sa_data);
4239 
4240 	return 0;
4241 }
4242 
4243 /**
4244  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
4245  * @netdev: network interface device structure
4246  * @new_mtu: new value for maximum frame size
4247  *
4248  * Returns 0 on success, negative on failure
4249  **/
4250 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
4251 {
4252 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4253 	struct ixgbe_hw *hw = &adapter->hw;
4254 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4255 	int ret;
4256 
4257 	/* prevent MTU being changed to a size unsupported by XDP */
4258 	if (adapter->xdp_prog) {
4259 		dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n");
4260 		return -EPERM;
4261 	}
4262 
4263 	spin_lock_bh(&adapter->mbx_lock);
4264 	/* notify the PF of our intent to use this size of frame */
4265 	ret = hw->mac.ops.set_rlpml(hw, max_frame);
4266 	spin_unlock_bh(&adapter->mbx_lock);
4267 	if (ret)
4268 		return -EINVAL;
4269 
4270 	hw_dbg(hw, "changing MTU from %d to %d\n",
4271 	       netdev->mtu, new_mtu);
4272 
4273 	/* must set new MTU before calling down or up */
4274 	netdev->mtu = new_mtu;
4275 
4276 	if (netif_running(netdev))
4277 		ixgbevf_reinit_locked(adapter);
4278 
4279 	return 0;
4280 }
4281 
4282 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
4283 {
4284 	struct net_device *netdev = pci_get_drvdata(pdev);
4285 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4286 #ifdef CONFIG_PM
4287 	int retval = 0;
4288 #endif
4289 
4290 	rtnl_lock();
4291 	netif_device_detach(netdev);
4292 
4293 	if (netif_running(netdev))
4294 		ixgbevf_close_suspend(adapter);
4295 
4296 	ixgbevf_clear_interrupt_scheme(adapter);
4297 	rtnl_unlock();
4298 
4299 #ifdef CONFIG_PM
4300 	retval = pci_save_state(pdev);
4301 	if (retval)
4302 		return retval;
4303 
4304 #endif
4305 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4306 		pci_disable_device(pdev);
4307 
4308 	return 0;
4309 }
4310 
4311 #ifdef CONFIG_PM
4312 static int ixgbevf_resume(struct pci_dev *pdev)
4313 {
4314 	struct net_device *netdev = pci_get_drvdata(pdev);
4315 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4316 	u32 err;
4317 
4318 	pci_restore_state(pdev);
4319 	/* pci_restore_state clears dev->state_saved so call
4320 	 * pci_save_state to restore it.
4321 	 */
4322 	pci_save_state(pdev);
4323 
4324 	err = pci_enable_device_mem(pdev);
4325 	if (err) {
4326 		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
4327 		return err;
4328 	}
4329 
4330 	adapter->hw.hw_addr = adapter->io_addr;
4331 	smp_mb__before_atomic();
4332 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4333 	pci_set_master(pdev);
4334 
4335 	ixgbevf_reset(adapter);
4336 
4337 	rtnl_lock();
4338 	err = ixgbevf_init_interrupt_scheme(adapter);
4339 	if (!err && netif_running(netdev))
4340 		err = ixgbevf_open(netdev);
4341 	rtnl_unlock();
4342 	if (err)
4343 		return err;
4344 
4345 	netif_device_attach(netdev);
4346 
4347 	return err;
4348 }
4349 
4350 #endif /* CONFIG_PM */
4351 static void ixgbevf_shutdown(struct pci_dev *pdev)
4352 {
4353 	ixgbevf_suspend(pdev, PMSG_SUSPEND);
4354 }
4355 
4356 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats,
4357 				      const struct ixgbevf_ring *ring)
4358 {
4359 	u64 bytes, packets;
4360 	unsigned int start;
4361 
4362 	if (ring) {
4363 		do {
4364 			start = u64_stats_fetch_begin_irq(&ring->syncp);
4365 			bytes = ring->stats.bytes;
4366 			packets = ring->stats.packets;
4367 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4368 		stats->tx_bytes += bytes;
4369 		stats->tx_packets += packets;
4370 	}
4371 }
4372 
4373 static void ixgbevf_get_stats(struct net_device *netdev,
4374 			      struct rtnl_link_stats64 *stats)
4375 {
4376 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4377 	unsigned int start;
4378 	u64 bytes, packets;
4379 	const struct ixgbevf_ring *ring;
4380 	int i;
4381 
4382 	ixgbevf_update_stats(adapter);
4383 
4384 	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
4385 
4386 	rcu_read_lock();
4387 	for (i = 0; i < adapter->num_rx_queues; i++) {
4388 		ring = adapter->rx_ring[i];
4389 		do {
4390 			start = u64_stats_fetch_begin_irq(&ring->syncp);
4391 			bytes = ring->stats.bytes;
4392 			packets = ring->stats.packets;
4393 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4394 		stats->rx_bytes += bytes;
4395 		stats->rx_packets += packets;
4396 	}
4397 
4398 	for (i = 0; i < adapter->num_tx_queues; i++) {
4399 		ring = adapter->tx_ring[i];
4400 		ixgbevf_get_tx_ring_stats(stats, ring);
4401 	}
4402 
4403 	for (i = 0; i < adapter->num_xdp_queues; i++) {
4404 		ring = adapter->xdp_ring[i];
4405 		ixgbevf_get_tx_ring_stats(stats, ring);
4406 	}
4407 	rcu_read_unlock();
4408 }
4409 
4410 #define IXGBEVF_MAX_MAC_HDR_LEN		127
4411 #define IXGBEVF_MAX_NETWORK_HDR_LEN	511
4412 
4413 static netdev_features_t
4414 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev,
4415 		       netdev_features_t features)
4416 {
4417 	unsigned int network_hdr_len, mac_hdr_len;
4418 
4419 	/* Make certain the headers can be described by a context descriptor */
4420 	mac_hdr_len = skb_network_header(skb) - skb->data;
4421 	if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN))
4422 		return features & ~(NETIF_F_HW_CSUM |
4423 				    NETIF_F_SCTP_CRC |
4424 				    NETIF_F_HW_VLAN_CTAG_TX |
4425 				    NETIF_F_TSO |
4426 				    NETIF_F_TSO6);
4427 
4428 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4429 	if (unlikely(network_hdr_len >  IXGBEVF_MAX_NETWORK_HDR_LEN))
4430 		return features & ~(NETIF_F_HW_CSUM |
4431 				    NETIF_F_SCTP_CRC |
4432 				    NETIF_F_TSO |
4433 				    NETIF_F_TSO6);
4434 
4435 	/* We can only support IPV4 TSO in tunnels if we can mangle the
4436 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4437 	 */
4438 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4439 		features &= ~NETIF_F_TSO;
4440 
4441 	return features;
4442 }
4443 
4444 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog)
4445 {
4446 	int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4447 	struct ixgbevf_adapter *adapter = netdev_priv(dev);
4448 	struct bpf_prog *old_prog;
4449 
4450 	/* verify ixgbevf ring attributes are sufficient for XDP */
4451 	for (i = 0; i < adapter->num_rx_queues; i++) {
4452 		struct ixgbevf_ring *ring = adapter->rx_ring[i];
4453 
4454 		if (frame_size > ixgbevf_rx_bufsz(ring))
4455 			return -EINVAL;
4456 	}
4457 
4458 	old_prog = xchg(&adapter->xdp_prog, prog);
4459 
4460 	/* If transitioning XDP modes reconfigure rings */
4461 	if (!!prog != !!old_prog) {
4462 		/* Hardware has to reinitialize queues and interrupts to
4463 		 * match packet buffer alignment. Unfortunately, the
4464 		 * hardware is not flexible enough to do this dynamically.
4465 		 */
4466 		if (netif_running(dev))
4467 			ixgbevf_close(dev);
4468 
4469 		ixgbevf_clear_interrupt_scheme(adapter);
4470 		ixgbevf_init_interrupt_scheme(adapter);
4471 
4472 		if (netif_running(dev))
4473 			ixgbevf_open(dev);
4474 	} else {
4475 		for (i = 0; i < adapter->num_rx_queues; i++)
4476 			xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog);
4477 	}
4478 
4479 	if (old_prog)
4480 		bpf_prog_put(old_prog);
4481 
4482 	return 0;
4483 }
4484 
4485 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4486 {
4487 	struct ixgbevf_adapter *adapter = netdev_priv(dev);
4488 
4489 	switch (xdp->command) {
4490 	case XDP_SETUP_PROG:
4491 		return ixgbevf_xdp_setup(dev, xdp->prog);
4492 	case XDP_QUERY_PROG:
4493 		xdp->prog_id = adapter->xdp_prog ?
4494 			       adapter->xdp_prog->aux->id : 0;
4495 		return 0;
4496 	default:
4497 		return -EINVAL;
4498 	}
4499 }
4500 
4501 static const struct net_device_ops ixgbevf_netdev_ops = {
4502 	.ndo_open		= ixgbevf_open,
4503 	.ndo_stop		= ixgbevf_close,
4504 	.ndo_start_xmit		= ixgbevf_xmit_frame,
4505 	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
4506 	.ndo_get_stats64	= ixgbevf_get_stats,
4507 	.ndo_validate_addr	= eth_validate_addr,
4508 	.ndo_set_mac_address	= ixgbevf_set_mac,
4509 	.ndo_change_mtu		= ixgbevf_change_mtu,
4510 	.ndo_tx_timeout		= ixgbevf_tx_timeout,
4511 	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
4512 	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
4513 	.ndo_features_check	= ixgbevf_features_check,
4514 	.ndo_bpf		= ixgbevf_xdp,
4515 };
4516 
4517 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
4518 {
4519 	dev->netdev_ops = &ixgbevf_netdev_ops;
4520 	ixgbevf_set_ethtool_ops(dev);
4521 	dev->watchdog_timeo = 5 * HZ;
4522 }
4523 
4524 /**
4525  * ixgbevf_probe - Device Initialization Routine
4526  * @pdev: PCI device information struct
4527  * @ent: entry in ixgbevf_pci_tbl
4528  *
4529  * Returns 0 on success, negative on failure
4530  *
4531  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
4532  * The OS initialization, configuring of the adapter private structure,
4533  * and a hardware reset occur.
4534  **/
4535 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4536 {
4537 	struct net_device *netdev;
4538 	struct ixgbevf_adapter *adapter = NULL;
4539 	struct ixgbe_hw *hw = NULL;
4540 	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
4541 	int err, pci_using_dac;
4542 	bool disable_dev = false;
4543 
4544 	err = pci_enable_device(pdev);
4545 	if (err)
4546 		return err;
4547 
4548 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
4549 		pci_using_dac = 1;
4550 	} else {
4551 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4552 		if (err) {
4553 			dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4554 			goto err_dma;
4555 		}
4556 		pci_using_dac = 0;
4557 	}
4558 
4559 	err = pci_request_regions(pdev, ixgbevf_driver_name);
4560 	if (err) {
4561 		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
4562 		goto err_pci_reg;
4563 	}
4564 
4565 	pci_set_master(pdev);
4566 
4567 	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
4568 				   MAX_TX_QUEUES);
4569 	if (!netdev) {
4570 		err = -ENOMEM;
4571 		goto err_alloc_etherdev;
4572 	}
4573 
4574 	SET_NETDEV_DEV(netdev, &pdev->dev);
4575 
4576 	adapter = netdev_priv(netdev);
4577 
4578 	adapter->netdev = netdev;
4579 	adapter->pdev = pdev;
4580 	hw = &adapter->hw;
4581 	hw->back = adapter;
4582 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4583 
4584 	/* call save state here in standalone driver because it relies on
4585 	 * adapter struct to exist, and needs to call netdev_priv
4586 	 */
4587 	pci_save_state(pdev);
4588 
4589 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4590 			      pci_resource_len(pdev, 0));
4591 	adapter->io_addr = hw->hw_addr;
4592 	if (!hw->hw_addr) {
4593 		err = -EIO;
4594 		goto err_ioremap;
4595 	}
4596 
4597 	ixgbevf_assign_netdev_ops(netdev);
4598 
4599 	/* Setup HW API */
4600 	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
4601 	hw->mac.type  = ii->mac;
4602 
4603 	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
4604 	       sizeof(struct ixgbe_mbx_operations));
4605 
4606 	/* setup the private structure */
4607 	err = ixgbevf_sw_init(adapter);
4608 	if (err)
4609 		goto err_sw_init;
4610 
4611 	/* The HW MAC address was set and/or determined in sw_init */
4612 	if (!is_valid_ether_addr(netdev->dev_addr)) {
4613 		pr_err("invalid MAC address\n");
4614 		err = -EIO;
4615 		goto err_sw_init;
4616 	}
4617 
4618 	netdev->hw_features = NETIF_F_SG |
4619 			      NETIF_F_TSO |
4620 			      NETIF_F_TSO6 |
4621 			      NETIF_F_RXCSUM |
4622 			      NETIF_F_HW_CSUM |
4623 			      NETIF_F_SCTP_CRC;
4624 
4625 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
4626 				      NETIF_F_GSO_GRE_CSUM | \
4627 				      NETIF_F_GSO_IPXIP4 | \
4628 				      NETIF_F_GSO_IPXIP6 | \
4629 				      NETIF_F_GSO_UDP_TUNNEL | \
4630 				      NETIF_F_GSO_UDP_TUNNEL_CSUM)
4631 
4632 	netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES;
4633 	netdev->hw_features |= NETIF_F_GSO_PARTIAL |
4634 			       IXGBEVF_GSO_PARTIAL_FEATURES;
4635 
4636 	netdev->features = netdev->hw_features;
4637 
4638 	if (pci_using_dac)
4639 		netdev->features |= NETIF_F_HIGHDMA;
4640 
4641 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
4642 	netdev->mpls_features |= NETIF_F_SG |
4643 				 NETIF_F_TSO |
4644 				 NETIF_F_TSO6 |
4645 				 NETIF_F_HW_CSUM;
4646 	netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES;
4647 	netdev->hw_enc_features |= netdev->vlan_features;
4648 
4649 	/* set this bit last since it cannot be part of vlan_features */
4650 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4651 			    NETIF_F_HW_VLAN_CTAG_RX |
4652 			    NETIF_F_HW_VLAN_CTAG_TX;
4653 
4654 	netdev->priv_flags |= IFF_UNICAST_FLT;
4655 
4656 	/* MTU range: 68 - 1504 or 9710 */
4657 	netdev->min_mtu = ETH_MIN_MTU;
4658 	switch (adapter->hw.api_version) {
4659 	case ixgbe_mbox_api_11:
4660 	case ixgbe_mbox_api_12:
4661 	case ixgbe_mbox_api_13:
4662 	case ixgbe_mbox_api_14:
4663 		netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4664 				  (ETH_HLEN + ETH_FCS_LEN);
4665 		break;
4666 	default:
4667 		if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
4668 			netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4669 					  (ETH_HLEN + ETH_FCS_LEN);
4670 		else
4671 			netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN;
4672 		break;
4673 	}
4674 
4675 	if (IXGBE_REMOVED(hw->hw_addr)) {
4676 		err = -EIO;
4677 		goto err_sw_init;
4678 	}
4679 
4680 	timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0);
4681 
4682 	INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4683 	set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4684 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4685 
4686 	err = ixgbevf_init_interrupt_scheme(adapter);
4687 	if (err)
4688 		goto err_sw_init;
4689 
4690 	strcpy(netdev->name, "eth%d");
4691 
4692 	err = register_netdev(netdev);
4693 	if (err)
4694 		goto err_register;
4695 
4696 	pci_set_drvdata(pdev, netdev);
4697 	netif_carrier_off(netdev);
4698 	ixgbevf_init_ipsec_offload(adapter);
4699 
4700 	ixgbevf_init_last_counter_stats(adapter);
4701 
4702 	/* print the VF info */
4703 	dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4704 	dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4705 
4706 	switch (hw->mac.type) {
4707 	case ixgbe_mac_X550_vf:
4708 		dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4709 		break;
4710 	case ixgbe_mac_X540_vf:
4711 		dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4712 		break;
4713 	case ixgbe_mac_82599_vf:
4714 	default:
4715 		dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4716 		break;
4717 	}
4718 
4719 	return 0;
4720 
4721 err_register:
4722 	ixgbevf_clear_interrupt_scheme(adapter);
4723 err_sw_init:
4724 	ixgbevf_reset_interrupt_capability(adapter);
4725 	iounmap(adapter->io_addr);
4726 	kfree(adapter->rss_key);
4727 err_ioremap:
4728 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4729 	free_netdev(netdev);
4730 err_alloc_etherdev:
4731 	pci_release_regions(pdev);
4732 err_pci_reg:
4733 err_dma:
4734 	if (!adapter || disable_dev)
4735 		pci_disable_device(pdev);
4736 	return err;
4737 }
4738 
4739 /**
4740  * ixgbevf_remove - Device Removal Routine
4741  * @pdev: PCI device information struct
4742  *
4743  * ixgbevf_remove is called by the PCI subsystem to alert the driver
4744  * that it should release a PCI device.  The could be caused by a
4745  * Hot-Plug event, or because the driver is going to be removed from
4746  * memory.
4747  **/
4748 static void ixgbevf_remove(struct pci_dev *pdev)
4749 {
4750 	struct net_device *netdev = pci_get_drvdata(pdev);
4751 	struct ixgbevf_adapter *adapter;
4752 	bool disable_dev;
4753 
4754 	if (!netdev)
4755 		return;
4756 
4757 	adapter = netdev_priv(netdev);
4758 
4759 	set_bit(__IXGBEVF_REMOVING, &adapter->state);
4760 	cancel_work_sync(&adapter->service_task);
4761 
4762 	if (netdev->reg_state == NETREG_REGISTERED)
4763 		unregister_netdev(netdev);
4764 
4765 	ixgbevf_stop_ipsec_offload(adapter);
4766 	ixgbevf_clear_interrupt_scheme(adapter);
4767 	ixgbevf_reset_interrupt_capability(adapter);
4768 
4769 	iounmap(adapter->io_addr);
4770 	pci_release_regions(pdev);
4771 
4772 	hw_dbg(&adapter->hw, "Remove complete\n");
4773 
4774 	kfree(adapter->rss_key);
4775 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4776 	free_netdev(netdev);
4777 
4778 	if (disable_dev)
4779 		pci_disable_device(pdev);
4780 }
4781 
4782 /**
4783  * ixgbevf_io_error_detected - called when PCI error is detected
4784  * @pdev: Pointer to PCI device
4785  * @state: The current pci connection state
4786  *
4787  * This function is called after a PCI bus error affecting
4788  * this device has been detected.
4789  **/
4790 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4791 						  pci_channel_state_t state)
4792 {
4793 	struct net_device *netdev = pci_get_drvdata(pdev);
4794 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4795 
4796 	if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4797 		return PCI_ERS_RESULT_DISCONNECT;
4798 
4799 	rtnl_lock();
4800 	netif_device_detach(netdev);
4801 
4802 	if (netif_running(netdev))
4803 		ixgbevf_close_suspend(adapter);
4804 
4805 	if (state == pci_channel_io_perm_failure) {
4806 		rtnl_unlock();
4807 		return PCI_ERS_RESULT_DISCONNECT;
4808 	}
4809 
4810 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4811 		pci_disable_device(pdev);
4812 	rtnl_unlock();
4813 
4814 	/* Request a slot slot reset. */
4815 	return PCI_ERS_RESULT_NEED_RESET;
4816 }
4817 
4818 /**
4819  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4820  * @pdev: Pointer to PCI device
4821  *
4822  * Restart the card from scratch, as if from a cold-boot. Implementation
4823  * resembles the first-half of the ixgbevf_resume routine.
4824  **/
4825 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4826 {
4827 	struct net_device *netdev = pci_get_drvdata(pdev);
4828 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4829 
4830 	if (pci_enable_device_mem(pdev)) {
4831 		dev_err(&pdev->dev,
4832 			"Cannot re-enable PCI device after reset.\n");
4833 		return PCI_ERS_RESULT_DISCONNECT;
4834 	}
4835 
4836 	adapter->hw.hw_addr = adapter->io_addr;
4837 	smp_mb__before_atomic();
4838 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4839 	pci_set_master(pdev);
4840 
4841 	ixgbevf_reset(adapter);
4842 
4843 	return PCI_ERS_RESULT_RECOVERED;
4844 }
4845 
4846 /**
4847  * ixgbevf_io_resume - called when traffic can start flowing again.
4848  * @pdev: Pointer to PCI device
4849  *
4850  * This callback is called when the error recovery driver tells us that
4851  * its OK to resume normal operation. Implementation resembles the
4852  * second-half of the ixgbevf_resume routine.
4853  **/
4854 static void ixgbevf_io_resume(struct pci_dev *pdev)
4855 {
4856 	struct net_device *netdev = pci_get_drvdata(pdev);
4857 
4858 	rtnl_lock();
4859 	if (netif_running(netdev))
4860 		ixgbevf_open(netdev);
4861 
4862 	netif_device_attach(netdev);
4863 	rtnl_unlock();
4864 }
4865 
4866 /* PCI Error Recovery (ERS) */
4867 static const struct pci_error_handlers ixgbevf_err_handler = {
4868 	.error_detected = ixgbevf_io_error_detected,
4869 	.slot_reset = ixgbevf_io_slot_reset,
4870 	.resume = ixgbevf_io_resume,
4871 };
4872 
4873 static struct pci_driver ixgbevf_driver = {
4874 	.name		= ixgbevf_driver_name,
4875 	.id_table	= ixgbevf_pci_tbl,
4876 	.probe		= ixgbevf_probe,
4877 	.remove		= ixgbevf_remove,
4878 #ifdef CONFIG_PM
4879 	/* Power Management Hooks */
4880 	.suspend	= ixgbevf_suspend,
4881 	.resume		= ixgbevf_resume,
4882 #endif
4883 	.shutdown	= ixgbevf_shutdown,
4884 	.err_handler	= &ixgbevf_err_handler
4885 };
4886 
4887 /**
4888  * ixgbevf_init_module - Driver Registration Routine
4889  *
4890  * ixgbevf_init_module is the first routine called when the driver is
4891  * loaded. All it does is register with the PCI subsystem.
4892  **/
4893 static int __init ixgbevf_init_module(void)
4894 {
4895 	pr_info("%s - version %s\n", ixgbevf_driver_string,
4896 		ixgbevf_driver_version);
4897 
4898 	pr_info("%s\n", ixgbevf_copyright);
4899 	ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4900 	if (!ixgbevf_wq) {
4901 		pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4902 		return -ENOMEM;
4903 	}
4904 
4905 	return pci_register_driver(&ixgbevf_driver);
4906 }
4907 
4908 module_init(ixgbevf_init_module);
4909 
4910 /**
4911  * ixgbevf_exit_module - Driver Exit Cleanup Routine
4912  *
4913  * ixgbevf_exit_module is called just before the driver is removed
4914  * from memory.
4915  **/
4916 static void __exit ixgbevf_exit_module(void)
4917 {
4918 	pci_unregister_driver(&ixgbevf_driver);
4919 	if (ixgbevf_wq) {
4920 		destroy_workqueue(ixgbevf_wq);
4921 		ixgbevf_wq = NULL;
4922 	}
4923 }
4924 
4925 #ifdef DEBUG
4926 /**
4927  * ixgbevf_get_hw_dev_name - return device name string
4928  * used by hardware layer to print debugging information
4929  * @hw: pointer to private hardware struct
4930  **/
4931 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4932 {
4933 	struct ixgbevf_adapter *adapter = hw->back;
4934 
4935 	return adapter->netdev->name;
4936 }
4937 
4938 #endif
4939 module_exit(ixgbevf_exit_module);
4940 
4941 /* ixgbevf_main.c */
4942