1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /****************************************************************************** 5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 6 ******************************************************************************/ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/types.h> 11 #include <linux/bitops.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/in.h> 18 #include <linux/ip.h> 19 #include <linux/tcp.h> 20 #include <linux/sctp.h> 21 #include <linux/ipv6.h> 22 #include <linux/slab.h> 23 #include <net/checksum.h> 24 #include <net/ip6_checksum.h> 25 #include <linux/ethtool.h> 26 #include <linux/if.h> 27 #include <linux/if_vlan.h> 28 #include <linux/prefetch.h> 29 #include <net/mpls.h> 30 #include <linux/bpf.h> 31 #include <linux/bpf_trace.h> 32 #include <linux/atomic.h> 33 #include <net/xfrm.h> 34 35 #include "ixgbevf.h" 36 37 const char ixgbevf_driver_name[] = "ixgbevf"; 38 static const char ixgbevf_driver_string[] = 39 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 40 41 #define DRV_VERSION "4.1.0-k" 42 const char ixgbevf_driver_version[] = DRV_VERSION; 43 static char ixgbevf_copyright[] = 44 "Copyright (c) 2009 - 2018 Intel Corporation."; 45 46 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 47 [board_82599_vf] = &ixgbevf_82599_vf_info, 48 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 49 [board_X540_vf] = &ixgbevf_X540_vf_info, 50 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 51 [board_X550_vf] = &ixgbevf_X550_vf_info, 52 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 53 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 54 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 55 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 56 }; 57 58 /* ixgbevf_pci_tbl - PCI Device ID Table 59 * 60 * Wildcard entries (PCI_ANY_ID) should come last 61 * Last entry must be all 0s 62 * 63 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 64 * Class, Class Mask, private data (not used) } 65 */ 66 static const struct pci_device_id ixgbevf_pci_tbl[] = { 67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 74 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 75 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 76 /* required last entry */ 77 {0, } 78 }; 79 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 80 81 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 82 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 83 MODULE_LICENSE("GPL v2"); 84 MODULE_VERSION(DRV_VERSION); 85 86 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 87 static int debug = -1; 88 module_param(debug, int, 0); 89 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 90 91 static struct workqueue_struct *ixgbevf_wq; 92 93 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 94 { 95 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 96 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 97 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 98 queue_work(ixgbevf_wq, &adapter->service_task); 99 } 100 101 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 102 { 103 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 104 105 /* flush memory to make sure state is correct before next watchdog */ 106 smp_mb__before_atomic(); 107 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 108 } 109 110 /* forward decls */ 111 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 112 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 113 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 114 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer); 115 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 116 struct ixgbevf_rx_buffer *old_buff); 117 118 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 119 { 120 struct ixgbevf_adapter *adapter = hw->back; 121 122 if (!hw->hw_addr) 123 return; 124 hw->hw_addr = NULL; 125 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 126 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 127 ixgbevf_service_event_schedule(adapter); 128 } 129 130 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 131 { 132 u32 value; 133 134 /* The following check not only optimizes a bit by not 135 * performing a read on the status register when the 136 * register just read was a status register read that 137 * returned IXGBE_FAILED_READ_REG. It also blocks any 138 * potential recursion. 139 */ 140 if (reg == IXGBE_VFSTATUS) { 141 ixgbevf_remove_adapter(hw); 142 return; 143 } 144 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 145 if (value == IXGBE_FAILED_READ_REG) 146 ixgbevf_remove_adapter(hw); 147 } 148 149 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 150 { 151 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 152 u32 value; 153 154 if (IXGBE_REMOVED(reg_addr)) 155 return IXGBE_FAILED_READ_REG; 156 value = readl(reg_addr + reg); 157 if (unlikely(value == IXGBE_FAILED_READ_REG)) 158 ixgbevf_check_remove(hw, reg); 159 return value; 160 } 161 162 /** 163 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 164 * @adapter: pointer to adapter struct 165 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 166 * @queue: queue to map the corresponding interrupt to 167 * @msix_vector: the vector to map to the corresponding queue 168 **/ 169 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 170 u8 queue, u8 msix_vector) 171 { 172 u32 ivar, index; 173 struct ixgbe_hw *hw = &adapter->hw; 174 175 if (direction == -1) { 176 /* other causes */ 177 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 178 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 179 ivar &= ~0xFF; 180 ivar |= msix_vector; 181 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 182 } else { 183 /* Tx or Rx causes */ 184 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 185 index = ((16 * (queue & 1)) + (8 * direction)); 186 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 187 ivar &= ~(0xFF << index); 188 ivar |= (msix_vector << index); 189 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 190 } 191 } 192 193 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 194 { 195 return ring->stats.packets; 196 } 197 198 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 199 { 200 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 201 struct ixgbe_hw *hw = &adapter->hw; 202 203 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 204 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 205 206 if (head != tail) 207 return (head < tail) ? 208 tail - head : (tail + ring->count - head); 209 210 return 0; 211 } 212 213 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 214 { 215 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 216 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 217 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 218 219 clear_check_for_tx_hang(tx_ring); 220 221 /* Check for a hung queue, but be thorough. This verifies 222 * that a transmit has been completed since the previous 223 * check AND there is at least one packet pending. The 224 * ARMED bit is set to indicate a potential hang. 225 */ 226 if ((tx_done_old == tx_done) && tx_pending) { 227 /* make sure it is true for two checks in a row */ 228 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 229 &tx_ring->state); 230 } 231 /* reset the countdown */ 232 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 233 234 /* update completed stats and continue */ 235 tx_ring->tx_stats.tx_done_old = tx_done; 236 237 return false; 238 } 239 240 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 241 { 242 /* Do the reset outside of interrupt context */ 243 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 244 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 245 ixgbevf_service_event_schedule(adapter); 246 } 247 } 248 249 /** 250 * ixgbevf_tx_timeout - Respond to a Tx Hang 251 * @netdev: network interface device structure 252 **/ 253 static void ixgbevf_tx_timeout(struct net_device *netdev) 254 { 255 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 256 257 ixgbevf_tx_timeout_reset(adapter); 258 } 259 260 /** 261 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 262 * @q_vector: board private structure 263 * @tx_ring: tx ring to clean 264 * @napi_budget: Used to determine if we are in netpoll 265 **/ 266 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 267 struct ixgbevf_ring *tx_ring, int napi_budget) 268 { 269 struct ixgbevf_adapter *adapter = q_vector->adapter; 270 struct ixgbevf_tx_buffer *tx_buffer; 271 union ixgbe_adv_tx_desc *tx_desc; 272 unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0; 273 unsigned int budget = tx_ring->count / 2; 274 unsigned int i = tx_ring->next_to_clean; 275 276 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 277 return true; 278 279 tx_buffer = &tx_ring->tx_buffer_info[i]; 280 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 281 i -= tx_ring->count; 282 283 do { 284 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 285 286 /* if next_to_watch is not set then there is no work pending */ 287 if (!eop_desc) 288 break; 289 290 /* prevent any other reads prior to eop_desc */ 291 smp_rmb(); 292 293 /* if DD is not set pending work has not been completed */ 294 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 295 break; 296 297 /* clear next_to_watch to prevent false hangs */ 298 tx_buffer->next_to_watch = NULL; 299 300 /* update the statistics for this packet */ 301 total_bytes += tx_buffer->bytecount; 302 total_packets += tx_buffer->gso_segs; 303 if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC) 304 total_ipsec++; 305 306 /* free the skb */ 307 if (ring_is_xdp(tx_ring)) 308 page_frag_free(tx_buffer->data); 309 else 310 napi_consume_skb(tx_buffer->skb, napi_budget); 311 312 /* unmap skb header data */ 313 dma_unmap_single(tx_ring->dev, 314 dma_unmap_addr(tx_buffer, dma), 315 dma_unmap_len(tx_buffer, len), 316 DMA_TO_DEVICE); 317 318 /* clear tx_buffer data */ 319 dma_unmap_len_set(tx_buffer, len, 0); 320 321 /* unmap remaining buffers */ 322 while (tx_desc != eop_desc) { 323 tx_buffer++; 324 tx_desc++; 325 i++; 326 if (unlikely(!i)) { 327 i -= tx_ring->count; 328 tx_buffer = tx_ring->tx_buffer_info; 329 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 330 } 331 332 /* unmap any remaining paged data */ 333 if (dma_unmap_len(tx_buffer, len)) { 334 dma_unmap_page(tx_ring->dev, 335 dma_unmap_addr(tx_buffer, dma), 336 dma_unmap_len(tx_buffer, len), 337 DMA_TO_DEVICE); 338 dma_unmap_len_set(tx_buffer, len, 0); 339 } 340 } 341 342 /* move us one more past the eop_desc for start of next pkt */ 343 tx_buffer++; 344 tx_desc++; 345 i++; 346 if (unlikely(!i)) { 347 i -= tx_ring->count; 348 tx_buffer = tx_ring->tx_buffer_info; 349 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 350 } 351 352 /* issue prefetch for next Tx descriptor */ 353 prefetch(tx_desc); 354 355 /* update budget accounting */ 356 budget--; 357 } while (likely(budget)); 358 359 i += tx_ring->count; 360 tx_ring->next_to_clean = i; 361 u64_stats_update_begin(&tx_ring->syncp); 362 tx_ring->stats.bytes += total_bytes; 363 tx_ring->stats.packets += total_packets; 364 u64_stats_update_end(&tx_ring->syncp); 365 q_vector->tx.total_bytes += total_bytes; 366 q_vector->tx.total_packets += total_packets; 367 adapter->tx_ipsec += total_ipsec; 368 369 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 370 struct ixgbe_hw *hw = &adapter->hw; 371 union ixgbe_adv_tx_desc *eop_desc; 372 373 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 374 375 pr_err("Detected Tx Unit Hang%s\n" 376 " Tx Queue <%d>\n" 377 " TDH, TDT <%x>, <%x>\n" 378 " next_to_use <%x>\n" 379 " next_to_clean <%x>\n" 380 "tx_buffer_info[next_to_clean]\n" 381 " next_to_watch <%p>\n" 382 " eop_desc->wb.status <%x>\n" 383 " time_stamp <%lx>\n" 384 " jiffies <%lx>\n", 385 ring_is_xdp(tx_ring) ? " XDP" : "", 386 tx_ring->queue_index, 387 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 388 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 389 tx_ring->next_to_use, i, 390 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 391 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 392 393 if (!ring_is_xdp(tx_ring)) 394 netif_stop_subqueue(tx_ring->netdev, 395 tx_ring->queue_index); 396 397 /* schedule immediate reset if we believe we hung */ 398 ixgbevf_tx_timeout_reset(adapter); 399 400 return true; 401 } 402 403 if (ring_is_xdp(tx_ring)) 404 return !!budget; 405 406 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 407 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 408 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 409 /* Make sure that anybody stopping the queue after this 410 * sees the new next_to_clean. 411 */ 412 smp_mb(); 413 414 if (__netif_subqueue_stopped(tx_ring->netdev, 415 tx_ring->queue_index) && 416 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 417 netif_wake_subqueue(tx_ring->netdev, 418 tx_ring->queue_index); 419 ++tx_ring->tx_stats.restart_queue; 420 } 421 } 422 423 return !!budget; 424 } 425 426 /** 427 * ixgbevf_rx_skb - Helper function to determine proper Rx method 428 * @q_vector: structure containing interrupt and ring information 429 * @skb: packet to send up 430 **/ 431 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 432 struct sk_buff *skb) 433 { 434 napi_gro_receive(&q_vector->napi, skb); 435 } 436 437 #define IXGBE_RSS_L4_TYPES_MASK \ 438 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 439 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 440 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 441 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 442 443 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 444 union ixgbe_adv_rx_desc *rx_desc, 445 struct sk_buff *skb) 446 { 447 u16 rss_type; 448 449 if (!(ring->netdev->features & NETIF_F_RXHASH)) 450 return; 451 452 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 453 IXGBE_RXDADV_RSSTYPE_MASK; 454 455 if (!rss_type) 456 return; 457 458 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 459 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 460 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 461 } 462 463 /** 464 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 465 * @ring: structure containig ring specific data 466 * @rx_desc: current Rx descriptor being processed 467 * @skb: skb currently being received and modified 468 **/ 469 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 470 union ixgbe_adv_rx_desc *rx_desc, 471 struct sk_buff *skb) 472 { 473 skb_checksum_none_assert(skb); 474 475 /* Rx csum disabled */ 476 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 477 return; 478 479 /* if IP and error */ 480 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 481 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 482 ring->rx_stats.csum_err++; 483 return; 484 } 485 486 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 487 return; 488 489 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 490 ring->rx_stats.csum_err++; 491 return; 492 } 493 494 /* It must be a TCP or UDP packet with a valid checksum */ 495 skb->ip_summed = CHECKSUM_UNNECESSARY; 496 } 497 498 /** 499 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 500 * @rx_ring: rx descriptor ring packet is being transacted on 501 * @rx_desc: pointer to the EOP Rx descriptor 502 * @skb: pointer to current skb being populated 503 * 504 * This function checks the ring, descriptor, and packet information in 505 * order to populate the checksum, VLAN, protocol, and other fields within 506 * the skb. 507 **/ 508 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 509 union ixgbe_adv_rx_desc *rx_desc, 510 struct sk_buff *skb) 511 { 512 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 513 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 514 515 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 516 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 517 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 518 519 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 520 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 521 } 522 523 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP)) 524 ixgbevf_ipsec_rx(rx_ring, rx_desc, skb); 525 526 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 527 } 528 529 static 530 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring, 531 const unsigned int size) 532 { 533 struct ixgbevf_rx_buffer *rx_buffer; 534 535 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 536 prefetchw(rx_buffer->page); 537 538 /* we are reusing so sync this buffer for CPU use */ 539 dma_sync_single_range_for_cpu(rx_ring->dev, 540 rx_buffer->dma, 541 rx_buffer->page_offset, 542 size, 543 DMA_FROM_DEVICE); 544 545 rx_buffer->pagecnt_bias--; 546 547 return rx_buffer; 548 } 549 550 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring, 551 struct ixgbevf_rx_buffer *rx_buffer, 552 struct sk_buff *skb) 553 { 554 if (ixgbevf_can_reuse_rx_page(rx_buffer)) { 555 /* hand second half of page back to the ring */ 556 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 557 } else { 558 if (IS_ERR(skb)) 559 /* We are not reusing the buffer so unmap it and free 560 * any references we are holding to it 561 */ 562 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 563 ixgbevf_rx_pg_size(rx_ring), 564 DMA_FROM_DEVICE, 565 IXGBEVF_RX_DMA_ATTR); 566 __page_frag_cache_drain(rx_buffer->page, 567 rx_buffer->pagecnt_bias); 568 } 569 570 /* clear contents of rx_buffer */ 571 rx_buffer->page = NULL; 572 } 573 574 /** 575 * ixgbevf_is_non_eop - process handling of non-EOP buffers 576 * @rx_ring: Rx ring being processed 577 * @rx_desc: Rx descriptor for current buffer 578 * 579 * This function updates next to clean. If the buffer is an EOP buffer 580 * this function exits returning false, otherwise it will place the 581 * sk_buff in the next buffer to be chained and return true indicating 582 * that this is in fact a non-EOP buffer. 583 **/ 584 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 585 union ixgbe_adv_rx_desc *rx_desc) 586 { 587 u32 ntc = rx_ring->next_to_clean + 1; 588 589 /* fetch, update, and store next to clean */ 590 ntc = (ntc < rx_ring->count) ? ntc : 0; 591 rx_ring->next_to_clean = ntc; 592 593 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 594 595 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 596 return false; 597 598 return true; 599 } 600 601 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring) 602 { 603 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0; 604 } 605 606 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 607 struct ixgbevf_rx_buffer *bi) 608 { 609 struct page *page = bi->page; 610 dma_addr_t dma; 611 612 /* since we are recycling buffers we should seldom need to alloc */ 613 if (likely(page)) 614 return true; 615 616 /* alloc new page for storage */ 617 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring)); 618 if (unlikely(!page)) { 619 rx_ring->rx_stats.alloc_rx_page_failed++; 620 return false; 621 } 622 623 /* map page for use */ 624 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 625 ixgbevf_rx_pg_size(rx_ring), 626 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); 627 628 /* if mapping failed free memory back to system since 629 * there isn't much point in holding memory we can't use 630 */ 631 if (dma_mapping_error(rx_ring->dev, dma)) { 632 __free_pages(page, ixgbevf_rx_pg_order(rx_ring)); 633 634 rx_ring->rx_stats.alloc_rx_page_failed++; 635 return false; 636 } 637 638 bi->dma = dma; 639 bi->page = page; 640 bi->page_offset = ixgbevf_rx_offset(rx_ring); 641 bi->pagecnt_bias = 1; 642 rx_ring->rx_stats.alloc_rx_page++; 643 644 return true; 645 } 646 647 /** 648 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 649 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 650 * @cleaned_count: number of buffers to replace 651 **/ 652 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 653 u16 cleaned_count) 654 { 655 union ixgbe_adv_rx_desc *rx_desc; 656 struct ixgbevf_rx_buffer *bi; 657 unsigned int i = rx_ring->next_to_use; 658 659 /* nothing to do or no valid netdev defined */ 660 if (!cleaned_count || !rx_ring->netdev) 661 return; 662 663 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 664 bi = &rx_ring->rx_buffer_info[i]; 665 i -= rx_ring->count; 666 667 do { 668 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 669 break; 670 671 /* sync the buffer for use by the device */ 672 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 673 bi->page_offset, 674 ixgbevf_rx_bufsz(rx_ring), 675 DMA_FROM_DEVICE); 676 677 /* Refresh the desc even if pkt_addr didn't change 678 * because each write-back erases this info. 679 */ 680 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 681 682 rx_desc++; 683 bi++; 684 i++; 685 if (unlikely(!i)) { 686 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 687 bi = rx_ring->rx_buffer_info; 688 i -= rx_ring->count; 689 } 690 691 /* clear the length for the next_to_use descriptor */ 692 rx_desc->wb.upper.length = 0; 693 694 cleaned_count--; 695 } while (cleaned_count); 696 697 i += rx_ring->count; 698 699 if (rx_ring->next_to_use != i) { 700 /* record the next descriptor to use */ 701 rx_ring->next_to_use = i; 702 703 /* update next to alloc since we have filled the ring */ 704 rx_ring->next_to_alloc = i; 705 706 /* Force memory writes to complete before letting h/w 707 * know there are new descriptors to fetch. (Only 708 * applicable for weak-ordered memory model archs, 709 * such as IA-64). 710 */ 711 wmb(); 712 ixgbevf_write_tail(rx_ring, i); 713 } 714 } 715 716 /** 717 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 718 * @rx_ring: rx descriptor ring packet is being transacted on 719 * @rx_desc: pointer to the EOP Rx descriptor 720 * @skb: pointer to current skb being fixed 721 * 722 * Check for corrupted packet headers caused by senders on the local L2 723 * embedded NIC switch not setting up their Tx Descriptors right. These 724 * should be very rare. 725 * 726 * Also address the case where we are pulling data in on pages only 727 * and as such no data is present in the skb header. 728 * 729 * In addition if skb is not at least 60 bytes we need to pad it so that 730 * it is large enough to qualify as a valid Ethernet frame. 731 * 732 * Returns true if an error was encountered and skb was freed. 733 **/ 734 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 735 union ixgbe_adv_rx_desc *rx_desc, 736 struct sk_buff *skb) 737 { 738 /* XDP packets use error pointer so abort at this point */ 739 if (IS_ERR(skb)) 740 return true; 741 742 /* verify that the packet does not have any known errors */ 743 if (unlikely(ixgbevf_test_staterr(rx_desc, 744 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 745 struct net_device *netdev = rx_ring->netdev; 746 747 if (!(netdev->features & NETIF_F_RXALL)) { 748 dev_kfree_skb_any(skb); 749 return true; 750 } 751 } 752 753 /* if eth_skb_pad returns an error the skb was freed */ 754 if (eth_skb_pad(skb)) 755 return true; 756 757 return false; 758 } 759 760 /** 761 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 762 * @rx_ring: rx descriptor ring to store buffers on 763 * @old_buff: donor buffer to have page reused 764 * 765 * Synchronizes page for reuse by the adapter 766 **/ 767 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 768 struct ixgbevf_rx_buffer *old_buff) 769 { 770 struct ixgbevf_rx_buffer *new_buff; 771 u16 nta = rx_ring->next_to_alloc; 772 773 new_buff = &rx_ring->rx_buffer_info[nta]; 774 775 /* update, and store next to alloc */ 776 nta++; 777 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 778 779 /* transfer page from old buffer to new buffer */ 780 new_buff->page = old_buff->page; 781 new_buff->dma = old_buff->dma; 782 new_buff->page_offset = old_buff->page_offset; 783 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 784 } 785 786 static inline bool ixgbevf_page_is_reserved(struct page *page) 787 { 788 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 789 } 790 791 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer) 792 { 793 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 794 struct page *page = rx_buffer->page; 795 796 /* avoid re-using remote pages */ 797 if (unlikely(ixgbevf_page_is_reserved(page))) 798 return false; 799 800 #if (PAGE_SIZE < 8192) 801 /* if we are only owner of page we can reuse it */ 802 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 803 return false; 804 #else 805 #define IXGBEVF_LAST_OFFSET \ 806 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048) 807 808 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET) 809 return false; 810 811 #endif 812 813 /* If we have drained the page fragment pool we need to update 814 * the pagecnt_bias and page count so that we fully restock the 815 * number of references the driver holds. 816 */ 817 if (unlikely(!pagecnt_bias)) { 818 page_ref_add(page, USHRT_MAX); 819 rx_buffer->pagecnt_bias = USHRT_MAX; 820 } 821 822 return true; 823 } 824 825 /** 826 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 827 * @rx_ring: rx descriptor ring to transact packets on 828 * @rx_buffer: buffer containing page to add 829 * @skb: sk_buff to place the data into 830 * @size: size of buffer to be added 831 * 832 * This function will add the data contained in rx_buffer->page to the skb. 833 **/ 834 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 835 struct ixgbevf_rx_buffer *rx_buffer, 836 struct sk_buff *skb, 837 unsigned int size) 838 { 839 #if (PAGE_SIZE < 8192) 840 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 841 #else 842 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 843 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 844 SKB_DATA_ALIGN(size); 845 #endif 846 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 847 rx_buffer->page_offset, size, truesize); 848 #if (PAGE_SIZE < 8192) 849 rx_buffer->page_offset ^= truesize; 850 #else 851 rx_buffer->page_offset += truesize; 852 #endif 853 } 854 855 static 856 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring, 857 struct ixgbevf_rx_buffer *rx_buffer, 858 struct xdp_buff *xdp, 859 union ixgbe_adv_rx_desc *rx_desc) 860 { 861 unsigned int size = xdp->data_end - xdp->data; 862 #if (PAGE_SIZE < 8192) 863 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 864 #else 865 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 866 xdp->data_hard_start); 867 #endif 868 unsigned int headlen; 869 struct sk_buff *skb; 870 871 /* prefetch first cache line of first page */ 872 prefetch(xdp->data); 873 #if L1_CACHE_BYTES < 128 874 prefetch(xdp->data + L1_CACHE_BYTES); 875 #endif 876 /* Note, we get here by enabling legacy-rx via: 877 * 878 * ethtool --set-priv-flags <dev> legacy-rx on 879 * 880 * In this mode, we currently get 0 extra XDP headroom as 881 * opposed to having legacy-rx off, where we process XDP 882 * packets going to stack via ixgbevf_build_skb(). 883 * 884 * For ixgbevf_construct_skb() mode it means that the 885 * xdp->data_meta will always point to xdp->data, since 886 * the helper cannot expand the head. Should this ever 887 * changed in future for legacy-rx mode on, then lets also 888 * add xdp->data_meta handling here. 889 */ 890 891 /* allocate a skb to store the frags */ 892 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE); 893 if (unlikely(!skb)) 894 return NULL; 895 896 /* Determine available headroom for copy */ 897 headlen = size; 898 if (headlen > IXGBEVF_RX_HDR_SIZE) 899 headlen = eth_get_headlen(skb->dev, xdp->data, 900 IXGBEVF_RX_HDR_SIZE); 901 902 /* align pull length to size of long to optimize memcpy performance */ 903 memcpy(__skb_put(skb, headlen), xdp->data, 904 ALIGN(headlen, sizeof(long))); 905 906 /* update all of the pointers */ 907 size -= headlen; 908 if (size) { 909 skb_add_rx_frag(skb, 0, rx_buffer->page, 910 (xdp->data + headlen) - 911 page_address(rx_buffer->page), 912 size, truesize); 913 #if (PAGE_SIZE < 8192) 914 rx_buffer->page_offset ^= truesize; 915 #else 916 rx_buffer->page_offset += truesize; 917 #endif 918 } else { 919 rx_buffer->pagecnt_bias++; 920 } 921 922 return skb; 923 } 924 925 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 926 u32 qmask) 927 { 928 struct ixgbe_hw *hw = &adapter->hw; 929 930 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 931 } 932 933 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring, 934 struct ixgbevf_rx_buffer *rx_buffer, 935 struct xdp_buff *xdp, 936 union ixgbe_adv_rx_desc *rx_desc) 937 { 938 unsigned int metasize = xdp->data - xdp->data_meta; 939 #if (PAGE_SIZE < 8192) 940 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 941 #else 942 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 943 SKB_DATA_ALIGN(xdp->data_end - 944 xdp->data_hard_start); 945 #endif 946 struct sk_buff *skb; 947 948 /* Prefetch first cache line of first page. If xdp->data_meta 949 * is unused, this points to xdp->data, otherwise, we likely 950 * have a consumer accessing first few bytes of meta data, 951 * and then actual data. 952 */ 953 prefetch(xdp->data_meta); 954 #if L1_CACHE_BYTES < 128 955 prefetch(xdp->data_meta + L1_CACHE_BYTES); 956 #endif 957 958 /* build an skb around the page buffer */ 959 skb = build_skb(xdp->data_hard_start, truesize); 960 if (unlikely(!skb)) 961 return NULL; 962 963 /* update pointers within the skb to store the data */ 964 skb_reserve(skb, xdp->data - xdp->data_hard_start); 965 __skb_put(skb, xdp->data_end - xdp->data); 966 if (metasize) 967 skb_metadata_set(skb, metasize); 968 969 /* update buffer offset */ 970 #if (PAGE_SIZE < 8192) 971 rx_buffer->page_offset ^= truesize; 972 #else 973 rx_buffer->page_offset += truesize; 974 #endif 975 976 return skb; 977 } 978 979 #define IXGBEVF_XDP_PASS 0 980 #define IXGBEVF_XDP_CONSUMED 1 981 #define IXGBEVF_XDP_TX 2 982 983 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring, 984 struct xdp_buff *xdp) 985 { 986 struct ixgbevf_tx_buffer *tx_buffer; 987 union ixgbe_adv_tx_desc *tx_desc; 988 u32 len, cmd_type; 989 dma_addr_t dma; 990 u16 i; 991 992 len = xdp->data_end - xdp->data; 993 994 if (unlikely(!ixgbevf_desc_unused(ring))) 995 return IXGBEVF_XDP_CONSUMED; 996 997 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE); 998 if (dma_mapping_error(ring->dev, dma)) 999 return IXGBEVF_XDP_CONSUMED; 1000 1001 /* record the location of the first descriptor for this packet */ 1002 i = ring->next_to_use; 1003 tx_buffer = &ring->tx_buffer_info[i]; 1004 1005 dma_unmap_len_set(tx_buffer, len, len); 1006 dma_unmap_addr_set(tx_buffer, dma, dma); 1007 tx_buffer->data = xdp->data; 1008 tx_buffer->bytecount = len; 1009 tx_buffer->gso_segs = 1; 1010 tx_buffer->protocol = 0; 1011 1012 /* Populate minimal context descriptor that will provide for the 1013 * fact that we are expected to process Ethernet frames. 1014 */ 1015 if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) { 1016 struct ixgbe_adv_tx_context_desc *context_desc; 1017 1018 set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1019 1020 context_desc = IXGBEVF_TX_CTXTDESC(ring, 0); 1021 context_desc->vlan_macip_lens = 1022 cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT); 1023 context_desc->fceof_saidx = 0; 1024 context_desc->type_tucmd_mlhl = 1025 cpu_to_le32(IXGBE_TXD_CMD_DEXT | 1026 IXGBE_ADVTXD_DTYP_CTXT); 1027 context_desc->mss_l4len_idx = 0; 1028 1029 i = 1; 1030 } 1031 1032 /* put descriptor type bits */ 1033 cmd_type = IXGBE_ADVTXD_DTYP_DATA | 1034 IXGBE_ADVTXD_DCMD_DEXT | 1035 IXGBE_ADVTXD_DCMD_IFCS; 1036 cmd_type |= len | IXGBE_TXD_CMD; 1037 1038 tx_desc = IXGBEVF_TX_DESC(ring, i); 1039 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1040 1041 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1042 tx_desc->read.olinfo_status = 1043 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) | 1044 IXGBE_ADVTXD_CC); 1045 1046 /* Avoid any potential race with cleanup */ 1047 smp_wmb(); 1048 1049 /* set next_to_watch value indicating a packet is present */ 1050 i++; 1051 if (i == ring->count) 1052 i = 0; 1053 1054 tx_buffer->next_to_watch = tx_desc; 1055 ring->next_to_use = i; 1056 1057 return IXGBEVF_XDP_TX; 1058 } 1059 1060 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter, 1061 struct ixgbevf_ring *rx_ring, 1062 struct xdp_buff *xdp) 1063 { 1064 int result = IXGBEVF_XDP_PASS; 1065 struct ixgbevf_ring *xdp_ring; 1066 struct bpf_prog *xdp_prog; 1067 u32 act; 1068 1069 rcu_read_lock(); 1070 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1071 1072 if (!xdp_prog) 1073 goto xdp_out; 1074 1075 act = bpf_prog_run_xdp(xdp_prog, xdp); 1076 switch (act) { 1077 case XDP_PASS: 1078 break; 1079 case XDP_TX: 1080 xdp_ring = adapter->xdp_ring[rx_ring->queue_index]; 1081 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp); 1082 break; 1083 default: 1084 bpf_warn_invalid_xdp_action(act); 1085 /* fallthrough */ 1086 case XDP_ABORTED: 1087 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 1088 /* fallthrough -- handle aborts by dropping packet */ 1089 case XDP_DROP: 1090 result = IXGBEVF_XDP_CONSUMED; 1091 break; 1092 } 1093 xdp_out: 1094 rcu_read_unlock(); 1095 return ERR_PTR(-result); 1096 } 1097 1098 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring, 1099 struct ixgbevf_rx_buffer *rx_buffer, 1100 unsigned int size) 1101 { 1102 #if (PAGE_SIZE < 8192) 1103 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 1104 1105 rx_buffer->page_offset ^= truesize; 1106 #else 1107 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 1108 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 1109 SKB_DATA_ALIGN(size); 1110 1111 rx_buffer->page_offset += truesize; 1112 #endif 1113 } 1114 1115 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 1116 struct ixgbevf_ring *rx_ring, 1117 int budget) 1118 { 1119 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1120 struct ixgbevf_adapter *adapter = q_vector->adapter; 1121 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 1122 struct sk_buff *skb = rx_ring->skb; 1123 bool xdp_xmit = false; 1124 struct xdp_buff xdp; 1125 1126 xdp.rxq = &rx_ring->xdp_rxq; 1127 1128 while (likely(total_rx_packets < budget)) { 1129 struct ixgbevf_rx_buffer *rx_buffer; 1130 union ixgbe_adv_rx_desc *rx_desc; 1131 unsigned int size; 1132 1133 /* return some buffers to hardware, one at a time is too slow */ 1134 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 1135 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 1136 cleaned_count = 0; 1137 } 1138 1139 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1140 size = le16_to_cpu(rx_desc->wb.upper.length); 1141 if (!size) 1142 break; 1143 1144 /* This memory barrier is needed to keep us from reading 1145 * any other fields out of the rx_desc until we know the 1146 * RXD_STAT_DD bit is set 1147 */ 1148 rmb(); 1149 1150 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size); 1151 1152 /* retrieve a buffer from the ring */ 1153 if (!skb) { 1154 xdp.data = page_address(rx_buffer->page) + 1155 rx_buffer->page_offset; 1156 xdp.data_meta = xdp.data; 1157 xdp.data_hard_start = xdp.data - 1158 ixgbevf_rx_offset(rx_ring); 1159 xdp.data_end = xdp.data + size; 1160 1161 skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp); 1162 } 1163 1164 if (IS_ERR(skb)) { 1165 if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) { 1166 xdp_xmit = true; 1167 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer, 1168 size); 1169 } else { 1170 rx_buffer->pagecnt_bias++; 1171 } 1172 total_rx_packets++; 1173 total_rx_bytes += size; 1174 } else if (skb) { 1175 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1176 } else if (ring_uses_build_skb(rx_ring)) { 1177 skb = ixgbevf_build_skb(rx_ring, rx_buffer, 1178 &xdp, rx_desc); 1179 } else { 1180 skb = ixgbevf_construct_skb(rx_ring, rx_buffer, 1181 &xdp, rx_desc); 1182 } 1183 1184 /* exit if we failed to retrieve a buffer */ 1185 if (!skb) { 1186 rx_ring->rx_stats.alloc_rx_buff_failed++; 1187 rx_buffer->pagecnt_bias++; 1188 break; 1189 } 1190 1191 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb); 1192 cleaned_count++; 1193 1194 /* fetch next buffer in frame if non-eop */ 1195 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 1196 continue; 1197 1198 /* verify the packet layout is correct */ 1199 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 1200 skb = NULL; 1201 continue; 1202 } 1203 1204 /* probably a little skewed due to removing CRC */ 1205 total_rx_bytes += skb->len; 1206 1207 /* Workaround hardware that can't do proper VEPA multicast 1208 * source pruning. 1209 */ 1210 if ((skb->pkt_type == PACKET_BROADCAST || 1211 skb->pkt_type == PACKET_MULTICAST) && 1212 ether_addr_equal(rx_ring->netdev->dev_addr, 1213 eth_hdr(skb)->h_source)) { 1214 dev_kfree_skb_irq(skb); 1215 continue; 1216 } 1217 1218 /* populate checksum, VLAN, and protocol */ 1219 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 1220 1221 ixgbevf_rx_skb(q_vector, skb); 1222 1223 /* reset skb pointer */ 1224 skb = NULL; 1225 1226 /* update budget accounting */ 1227 total_rx_packets++; 1228 } 1229 1230 /* place incomplete frames back on ring for completion */ 1231 rx_ring->skb = skb; 1232 1233 if (xdp_xmit) { 1234 struct ixgbevf_ring *xdp_ring = 1235 adapter->xdp_ring[rx_ring->queue_index]; 1236 1237 /* Force memory writes to complete before letting h/w 1238 * know there are new descriptors to fetch. 1239 */ 1240 wmb(); 1241 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use); 1242 } 1243 1244 u64_stats_update_begin(&rx_ring->syncp); 1245 rx_ring->stats.packets += total_rx_packets; 1246 rx_ring->stats.bytes += total_rx_bytes; 1247 u64_stats_update_end(&rx_ring->syncp); 1248 q_vector->rx.total_packets += total_rx_packets; 1249 q_vector->rx.total_bytes += total_rx_bytes; 1250 1251 return total_rx_packets; 1252 } 1253 1254 /** 1255 * ixgbevf_poll - NAPI polling calback 1256 * @napi: napi struct with our devices info in it 1257 * @budget: amount of work driver is allowed to do this pass, in packets 1258 * 1259 * This function will clean more than one or more rings associated with a 1260 * q_vector. 1261 **/ 1262 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1263 { 1264 struct ixgbevf_q_vector *q_vector = 1265 container_of(napi, struct ixgbevf_q_vector, napi); 1266 struct ixgbevf_adapter *adapter = q_vector->adapter; 1267 struct ixgbevf_ring *ring; 1268 int per_ring_budget, work_done = 0; 1269 bool clean_complete = true; 1270 1271 ixgbevf_for_each_ring(ring, q_vector->tx) { 1272 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1273 clean_complete = false; 1274 } 1275 1276 if (budget <= 0) 1277 return budget; 1278 1279 /* attempt to distribute budget to each queue fairly, but don't allow 1280 * the budget to go below 1 because we'll exit polling 1281 */ 1282 if (q_vector->rx.count > 1) 1283 per_ring_budget = max(budget/q_vector->rx.count, 1); 1284 else 1285 per_ring_budget = budget; 1286 1287 ixgbevf_for_each_ring(ring, q_vector->rx) { 1288 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1289 per_ring_budget); 1290 work_done += cleaned; 1291 if (cleaned >= per_ring_budget) 1292 clean_complete = false; 1293 } 1294 1295 /* If all work not completed, return budget and keep polling */ 1296 if (!clean_complete) 1297 return budget; 1298 1299 /* Exit the polling mode, but don't re-enable interrupts if stack might 1300 * poll us due to busy-polling 1301 */ 1302 if (likely(napi_complete_done(napi, work_done))) { 1303 if (adapter->rx_itr_setting == 1) 1304 ixgbevf_set_itr(q_vector); 1305 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1306 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1307 ixgbevf_irq_enable_queues(adapter, 1308 BIT(q_vector->v_idx)); 1309 } 1310 1311 return min(work_done, budget - 1); 1312 } 1313 1314 /** 1315 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1316 * @q_vector: structure containing interrupt and ring information 1317 **/ 1318 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1319 { 1320 struct ixgbevf_adapter *adapter = q_vector->adapter; 1321 struct ixgbe_hw *hw = &adapter->hw; 1322 int v_idx = q_vector->v_idx; 1323 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1324 1325 /* set the WDIS bit to not clear the timer bits and cause an 1326 * immediate assertion of the interrupt 1327 */ 1328 itr_reg |= IXGBE_EITR_CNT_WDIS; 1329 1330 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1331 } 1332 1333 /** 1334 * ixgbevf_configure_msix - Configure MSI-X hardware 1335 * @adapter: board private structure 1336 * 1337 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1338 * interrupts. 1339 **/ 1340 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1341 { 1342 struct ixgbevf_q_vector *q_vector; 1343 int q_vectors, v_idx; 1344 1345 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1346 adapter->eims_enable_mask = 0; 1347 1348 /* Populate the IVAR table and set the ITR values to the 1349 * corresponding register. 1350 */ 1351 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1352 struct ixgbevf_ring *ring; 1353 1354 q_vector = adapter->q_vector[v_idx]; 1355 1356 ixgbevf_for_each_ring(ring, q_vector->rx) 1357 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1358 1359 ixgbevf_for_each_ring(ring, q_vector->tx) 1360 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1361 1362 if (q_vector->tx.ring && !q_vector->rx.ring) { 1363 /* Tx only vector */ 1364 if (adapter->tx_itr_setting == 1) 1365 q_vector->itr = IXGBE_12K_ITR; 1366 else 1367 q_vector->itr = adapter->tx_itr_setting; 1368 } else { 1369 /* Rx or Rx/Tx vector */ 1370 if (adapter->rx_itr_setting == 1) 1371 q_vector->itr = IXGBE_20K_ITR; 1372 else 1373 q_vector->itr = adapter->rx_itr_setting; 1374 } 1375 1376 /* add q_vector eims value to global eims_enable_mask */ 1377 adapter->eims_enable_mask |= BIT(v_idx); 1378 1379 ixgbevf_write_eitr(q_vector); 1380 } 1381 1382 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1383 /* setup eims_other and add value to global eims_enable_mask */ 1384 adapter->eims_other = BIT(v_idx); 1385 adapter->eims_enable_mask |= adapter->eims_other; 1386 } 1387 1388 enum latency_range { 1389 lowest_latency = 0, 1390 low_latency = 1, 1391 bulk_latency = 2, 1392 latency_invalid = 255 1393 }; 1394 1395 /** 1396 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1397 * @q_vector: structure containing interrupt and ring information 1398 * @ring_container: structure containing ring performance data 1399 * 1400 * Stores a new ITR value based on packets and byte 1401 * counts during the last interrupt. The advantage of per interrupt 1402 * computation is faster updates and more accurate ITR for the current 1403 * traffic pattern. Constants in this function were computed 1404 * based on theoretical maximum wire speed and thresholds were set based 1405 * on testing data as well as attempting to minimize response time 1406 * while increasing bulk throughput. 1407 **/ 1408 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1409 struct ixgbevf_ring_container *ring_container) 1410 { 1411 int bytes = ring_container->total_bytes; 1412 int packets = ring_container->total_packets; 1413 u32 timepassed_us; 1414 u64 bytes_perint; 1415 u8 itr_setting = ring_container->itr; 1416 1417 if (packets == 0) 1418 return; 1419 1420 /* simple throttle rate management 1421 * 0-20MB/s lowest (100000 ints/s) 1422 * 20-100MB/s low (20000 ints/s) 1423 * 100-1249MB/s bulk (12000 ints/s) 1424 */ 1425 /* what was last interrupt timeslice? */ 1426 timepassed_us = q_vector->itr >> 2; 1427 if (timepassed_us == 0) 1428 return; 1429 1430 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1431 1432 switch (itr_setting) { 1433 case lowest_latency: 1434 if (bytes_perint > 10) 1435 itr_setting = low_latency; 1436 break; 1437 case low_latency: 1438 if (bytes_perint > 20) 1439 itr_setting = bulk_latency; 1440 else if (bytes_perint <= 10) 1441 itr_setting = lowest_latency; 1442 break; 1443 case bulk_latency: 1444 if (bytes_perint <= 20) 1445 itr_setting = low_latency; 1446 break; 1447 } 1448 1449 /* clear work counters since we have the values we need */ 1450 ring_container->total_bytes = 0; 1451 ring_container->total_packets = 0; 1452 1453 /* write updated itr to ring container */ 1454 ring_container->itr = itr_setting; 1455 } 1456 1457 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1458 { 1459 u32 new_itr = q_vector->itr; 1460 u8 current_itr; 1461 1462 ixgbevf_update_itr(q_vector, &q_vector->tx); 1463 ixgbevf_update_itr(q_vector, &q_vector->rx); 1464 1465 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1466 1467 switch (current_itr) { 1468 /* counts and packets in update_itr are dependent on these numbers */ 1469 case lowest_latency: 1470 new_itr = IXGBE_100K_ITR; 1471 break; 1472 case low_latency: 1473 new_itr = IXGBE_20K_ITR; 1474 break; 1475 case bulk_latency: 1476 new_itr = IXGBE_12K_ITR; 1477 break; 1478 default: 1479 break; 1480 } 1481 1482 if (new_itr != q_vector->itr) { 1483 /* do an exponential smoothing */ 1484 new_itr = (10 * new_itr * q_vector->itr) / 1485 ((9 * new_itr) + q_vector->itr); 1486 1487 /* save the algorithm value here */ 1488 q_vector->itr = new_itr; 1489 1490 ixgbevf_write_eitr(q_vector); 1491 } 1492 } 1493 1494 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1495 { 1496 struct ixgbevf_adapter *adapter = data; 1497 struct ixgbe_hw *hw = &adapter->hw; 1498 1499 hw->mac.get_link_status = 1; 1500 1501 ixgbevf_service_event_schedule(adapter); 1502 1503 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1504 1505 return IRQ_HANDLED; 1506 } 1507 1508 /** 1509 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1510 * @irq: unused 1511 * @data: pointer to our q_vector struct for this interrupt vector 1512 **/ 1513 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1514 { 1515 struct ixgbevf_q_vector *q_vector = data; 1516 1517 /* EIAM disabled interrupts (on this vector) for us */ 1518 if (q_vector->rx.ring || q_vector->tx.ring) 1519 napi_schedule_irqoff(&q_vector->napi); 1520 1521 return IRQ_HANDLED; 1522 } 1523 1524 /** 1525 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1526 * @adapter: board private structure 1527 * 1528 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1529 * interrupts from the kernel. 1530 **/ 1531 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1532 { 1533 struct net_device *netdev = adapter->netdev; 1534 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1535 unsigned int ri = 0, ti = 0; 1536 int vector, err; 1537 1538 for (vector = 0; vector < q_vectors; vector++) { 1539 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1540 struct msix_entry *entry = &adapter->msix_entries[vector]; 1541 1542 if (q_vector->tx.ring && q_vector->rx.ring) { 1543 snprintf(q_vector->name, sizeof(q_vector->name), 1544 "%s-TxRx-%u", netdev->name, ri++); 1545 ti++; 1546 } else if (q_vector->rx.ring) { 1547 snprintf(q_vector->name, sizeof(q_vector->name), 1548 "%s-rx-%u", netdev->name, ri++); 1549 } else if (q_vector->tx.ring) { 1550 snprintf(q_vector->name, sizeof(q_vector->name), 1551 "%s-tx-%u", netdev->name, ti++); 1552 } else { 1553 /* skip this unused q_vector */ 1554 continue; 1555 } 1556 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1557 q_vector->name, q_vector); 1558 if (err) { 1559 hw_dbg(&adapter->hw, 1560 "request_irq failed for MSIX interrupt Error: %d\n", 1561 err); 1562 goto free_queue_irqs; 1563 } 1564 } 1565 1566 err = request_irq(adapter->msix_entries[vector].vector, 1567 &ixgbevf_msix_other, 0, netdev->name, adapter); 1568 if (err) { 1569 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1570 err); 1571 goto free_queue_irqs; 1572 } 1573 1574 return 0; 1575 1576 free_queue_irqs: 1577 while (vector) { 1578 vector--; 1579 free_irq(adapter->msix_entries[vector].vector, 1580 adapter->q_vector[vector]); 1581 } 1582 /* This failure is non-recoverable - it indicates the system is 1583 * out of MSIX vector resources and the VF driver cannot run 1584 * without them. Set the number of msix vectors to zero 1585 * indicating that not enough can be allocated. The error 1586 * will be returned to the user indicating device open failed. 1587 * Any further attempts to force the driver to open will also 1588 * fail. The only way to recover is to unload the driver and 1589 * reload it again. If the system has recovered some MSIX 1590 * vectors then it may succeed. 1591 */ 1592 adapter->num_msix_vectors = 0; 1593 return err; 1594 } 1595 1596 /** 1597 * ixgbevf_request_irq - initialize interrupts 1598 * @adapter: board private structure 1599 * 1600 * Attempts to configure interrupts using the best available 1601 * capabilities of the hardware and kernel. 1602 **/ 1603 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1604 { 1605 int err = ixgbevf_request_msix_irqs(adapter); 1606 1607 if (err) 1608 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1609 1610 return err; 1611 } 1612 1613 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1614 { 1615 int i, q_vectors; 1616 1617 if (!adapter->msix_entries) 1618 return; 1619 1620 q_vectors = adapter->num_msix_vectors; 1621 i = q_vectors - 1; 1622 1623 free_irq(adapter->msix_entries[i].vector, adapter); 1624 i--; 1625 1626 for (; i >= 0; i--) { 1627 /* free only the irqs that were actually requested */ 1628 if (!adapter->q_vector[i]->rx.ring && 1629 !adapter->q_vector[i]->tx.ring) 1630 continue; 1631 1632 free_irq(adapter->msix_entries[i].vector, 1633 adapter->q_vector[i]); 1634 } 1635 } 1636 1637 /** 1638 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1639 * @adapter: board private structure 1640 **/ 1641 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1642 { 1643 struct ixgbe_hw *hw = &adapter->hw; 1644 int i; 1645 1646 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1647 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1648 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1649 1650 IXGBE_WRITE_FLUSH(hw); 1651 1652 for (i = 0; i < adapter->num_msix_vectors; i++) 1653 synchronize_irq(adapter->msix_entries[i].vector); 1654 } 1655 1656 /** 1657 * ixgbevf_irq_enable - Enable default interrupt generation settings 1658 * @adapter: board private structure 1659 **/ 1660 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1661 { 1662 struct ixgbe_hw *hw = &adapter->hw; 1663 1664 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1665 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1666 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1667 } 1668 1669 /** 1670 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1671 * @adapter: board private structure 1672 * @ring: structure containing ring specific data 1673 * 1674 * Configure the Tx descriptor ring after a reset. 1675 **/ 1676 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1677 struct ixgbevf_ring *ring) 1678 { 1679 struct ixgbe_hw *hw = &adapter->hw; 1680 u64 tdba = ring->dma; 1681 int wait_loop = 10; 1682 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1683 u8 reg_idx = ring->reg_idx; 1684 1685 /* disable queue to avoid issues while updating state */ 1686 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1687 IXGBE_WRITE_FLUSH(hw); 1688 1689 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1690 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1691 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1692 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1693 1694 /* disable head writeback */ 1695 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1696 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1697 1698 /* enable relaxed ordering */ 1699 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1700 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1701 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1702 1703 /* reset head and tail pointers */ 1704 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1705 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1706 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1707 1708 /* reset ntu and ntc to place SW in sync with hardwdare */ 1709 ring->next_to_clean = 0; 1710 ring->next_to_use = 0; 1711 1712 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1713 * to or less than the number of on chip descriptors, which is 1714 * currently 40. 1715 */ 1716 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1717 1718 /* Setting PTHRESH to 32 both improves performance */ 1719 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1720 32; /* PTHRESH = 32 */ 1721 1722 /* reinitialize tx_buffer_info */ 1723 memset(ring->tx_buffer_info, 0, 1724 sizeof(struct ixgbevf_tx_buffer) * ring->count); 1725 1726 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1727 clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1728 1729 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1730 1731 /* poll to verify queue is enabled */ 1732 do { 1733 usleep_range(1000, 2000); 1734 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1735 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1736 if (!wait_loop) 1737 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1738 } 1739 1740 /** 1741 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1742 * @adapter: board private structure 1743 * 1744 * Configure the Tx unit of the MAC after a reset. 1745 **/ 1746 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1747 { 1748 u32 i; 1749 1750 /* Setup the HW Tx Head and Tail descriptor pointers */ 1751 for (i = 0; i < adapter->num_tx_queues; i++) 1752 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1753 for (i = 0; i < adapter->num_xdp_queues; i++) 1754 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]); 1755 } 1756 1757 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1758 1759 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, 1760 struct ixgbevf_ring *ring, int index) 1761 { 1762 struct ixgbe_hw *hw = &adapter->hw; 1763 u32 srrctl; 1764 1765 srrctl = IXGBE_SRRCTL_DROP_EN; 1766 1767 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1768 if (ring_uses_large_buffer(ring)) 1769 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1770 else 1771 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1772 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1773 1774 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1775 } 1776 1777 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1778 { 1779 struct ixgbe_hw *hw = &adapter->hw; 1780 1781 /* PSRTYPE must be initialized in 82599 */ 1782 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1783 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1784 IXGBE_PSRTYPE_L2HDR; 1785 1786 if (adapter->num_rx_queues > 1) 1787 psrtype |= BIT(29); 1788 1789 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1790 } 1791 1792 #define IXGBEVF_MAX_RX_DESC_POLL 10 1793 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1794 struct ixgbevf_ring *ring) 1795 { 1796 struct ixgbe_hw *hw = &adapter->hw; 1797 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1798 u32 rxdctl; 1799 u8 reg_idx = ring->reg_idx; 1800 1801 if (IXGBE_REMOVED(hw->hw_addr)) 1802 return; 1803 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1804 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1805 1806 /* write value back with RXDCTL.ENABLE bit cleared */ 1807 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1808 1809 /* the hardware may take up to 100us to really disable the Rx queue */ 1810 do { 1811 udelay(10); 1812 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1813 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1814 1815 if (!wait_loop) 1816 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1817 reg_idx); 1818 } 1819 1820 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1821 struct ixgbevf_ring *ring) 1822 { 1823 struct ixgbe_hw *hw = &adapter->hw; 1824 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1825 u32 rxdctl; 1826 u8 reg_idx = ring->reg_idx; 1827 1828 if (IXGBE_REMOVED(hw->hw_addr)) 1829 return; 1830 do { 1831 usleep_range(1000, 2000); 1832 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1833 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1834 1835 if (!wait_loop) 1836 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1837 reg_idx); 1838 } 1839 1840 /** 1841 * ixgbevf_init_rss_key - Initialize adapter RSS key 1842 * @adapter: device handle 1843 * 1844 * Allocates and initializes the RSS key if it is not allocated. 1845 **/ 1846 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1847 { 1848 u32 *rss_key; 1849 1850 if (!adapter->rss_key) { 1851 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1852 if (unlikely(!rss_key)) 1853 return -ENOMEM; 1854 1855 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1856 adapter->rss_key = rss_key; 1857 } 1858 1859 return 0; 1860 } 1861 1862 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1863 { 1864 struct ixgbe_hw *hw = &adapter->hw; 1865 u32 vfmrqc = 0, vfreta = 0; 1866 u16 rss_i = adapter->num_rx_queues; 1867 u8 i, j; 1868 1869 /* Fill out hash function seeds */ 1870 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1871 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1872 1873 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1874 if (j == rss_i) 1875 j = 0; 1876 1877 adapter->rss_indir_tbl[i] = j; 1878 1879 vfreta |= j << (i & 0x3) * 8; 1880 if ((i & 3) == 3) { 1881 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1882 vfreta = 0; 1883 } 1884 } 1885 1886 /* Perform hash on these packet types */ 1887 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1888 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1889 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1890 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1891 1892 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1893 1894 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1895 } 1896 1897 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1898 struct ixgbevf_ring *ring) 1899 { 1900 struct ixgbe_hw *hw = &adapter->hw; 1901 union ixgbe_adv_rx_desc *rx_desc; 1902 u64 rdba = ring->dma; 1903 u32 rxdctl; 1904 u8 reg_idx = ring->reg_idx; 1905 1906 /* disable queue to avoid issues while updating state */ 1907 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1908 ixgbevf_disable_rx_queue(adapter, ring); 1909 1910 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1911 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1912 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1913 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1914 1915 #ifndef CONFIG_SPARC 1916 /* enable relaxed ordering */ 1917 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1918 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1919 #else 1920 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1921 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1922 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1923 #endif 1924 1925 /* reset head and tail pointers */ 1926 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1927 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1928 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1929 1930 /* initialize rx_buffer_info */ 1931 memset(ring->rx_buffer_info, 0, 1932 sizeof(struct ixgbevf_rx_buffer) * ring->count); 1933 1934 /* initialize Rx descriptor 0 */ 1935 rx_desc = IXGBEVF_RX_DESC(ring, 0); 1936 rx_desc->wb.upper.length = 0; 1937 1938 /* reset ntu and ntc to place SW in sync with hardwdare */ 1939 ring->next_to_clean = 0; 1940 ring->next_to_use = 0; 1941 ring->next_to_alloc = 0; 1942 1943 ixgbevf_configure_srrctl(adapter, ring, reg_idx); 1944 1945 /* RXDCTL.RLPML does not work on 82599 */ 1946 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) { 1947 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK | 1948 IXGBE_RXDCTL_RLPML_EN); 1949 1950 #if (PAGE_SIZE < 8192) 1951 /* Limit the maximum frame size so we don't overrun the skb */ 1952 if (ring_uses_build_skb(ring) && 1953 !ring_uses_large_buffer(ring)) 1954 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB | 1955 IXGBE_RXDCTL_RLPML_EN; 1956 #endif 1957 } 1958 1959 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1960 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1961 1962 ixgbevf_rx_desc_queue_enable(adapter, ring); 1963 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1964 } 1965 1966 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter, 1967 struct ixgbevf_ring *rx_ring) 1968 { 1969 struct net_device *netdev = adapter->netdev; 1970 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1971 1972 /* set build_skb and buffer size flags */ 1973 clear_ring_build_skb_enabled(rx_ring); 1974 clear_ring_uses_large_buffer(rx_ring); 1975 1976 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX) 1977 return; 1978 1979 set_ring_build_skb_enabled(rx_ring); 1980 1981 if (PAGE_SIZE < 8192) { 1982 if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB) 1983 return; 1984 1985 set_ring_uses_large_buffer(rx_ring); 1986 } 1987 } 1988 1989 /** 1990 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 1991 * @adapter: board private structure 1992 * 1993 * Configure the Rx unit of the MAC after a reset. 1994 **/ 1995 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 1996 { 1997 struct ixgbe_hw *hw = &adapter->hw; 1998 struct net_device *netdev = adapter->netdev; 1999 int i, ret; 2000 2001 ixgbevf_setup_psrtype(adapter); 2002 if (hw->mac.type >= ixgbe_mac_X550_vf) 2003 ixgbevf_setup_vfmrqc(adapter); 2004 2005 spin_lock_bh(&adapter->mbx_lock); 2006 /* notify the PF of our intent to use this size of frame */ 2007 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 2008 spin_unlock_bh(&adapter->mbx_lock); 2009 if (ret) 2010 dev_err(&adapter->pdev->dev, 2011 "Failed to set MTU at %d\n", netdev->mtu); 2012 2013 /* Setup the HW Rx Head and Tail Descriptor Pointers and 2014 * the Base and Length of the Rx Descriptor Ring 2015 */ 2016 for (i = 0; i < adapter->num_rx_queues; i++) { 2017 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 2018 2019 ixgbevf_set_rx_buffer_len(adapter, rx_ring); 2020 ixgbevf_configure_rx_ring(adapter, rx_ring); 2021 } 2022 } 2023 2024 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 2025 __be16 proto, u16 vid) 2026 { 2027 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2028 struct ixgbe_hw *hw = &adapter->hw; 2029 int err; 2030 2031 spin_lock_bh(&adapter->mbx_lock); 2032 2033 /* add VID to filter table */ 2034 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 2035 2036 spin_unlock_bh(&adapter->mbx_lock); 2037 2038 /* translate error return types so error makes sense */ 2039 if (err == IXGBE_ERR_MBX) 2040 return -EIO; 2041 2042 if (err == IXGBE_ERR_INVALID_ARGUMENT) 2043 return -EACCES; 2044 2045 set_bit(vid, adapter->active_vlans); 2046 2047 return err; 2048 } 2049 2050 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 2051 __be16 proto, u16 vid) 2052 { 2053 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2054 struct ixgbe_hw *hw = &adapter->hw; 2055 int err; 2056 2057 spin_lock_bh(&adapter->mbx_lock); 2058 2059 /* remove VID from filter table */ 2060 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 2061 2062 spin_unlock_bh(&adapter->mbx_lock); 2063 2064 clear_bit(vid, adapter->active_vlans); 2065 2066 return err; 2067 } 2068 2069 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 2070 { 2071 u16 vid; 2072 2073 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2074 ixgbevf_vlan_rx_add_vid(adapter->netdev, 2075 htons(ETH_P_8021Q), vid); 2076 } 2077 2078 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 2079 { 2080 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2081 struct ixgbe_hw *hw = &adapter->hw; 2082 int count = 0; 2083 2084 if ((netdev_uc_count(netdev)) > 10) { 2085 pr_err("Too many unicast filters - No Space\n"); 2086 return -ENOSPC; 2087 } 2088 2089 if (!netdev_uc_empty(netdev)) { 2090 struct netdev_hw_addr *ha; 2091 2092 netdev_for_each_uc_addr(ha, netdev) { 2093 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 2094 udelay(200); 2095 } 2096 } else { 2097 /* If the list is empty then send message to PF driver to 2098 * clear all MAC VLANs on this VF. 2099 */ 2100 hw->mac.ops.set_uc_addr(hw, 0, NULL); 2101 } 2102 2103 return count; 2104 } 2105 2106 /** 2107 * ixgbevf_set_rx_mode - Multicast and unicast set 2108 * @netdev: network interface device structure 2109 * 2110 * The set_rx_method entry point is called whenever the multicast address 2111 * list, unicast address list or the network interface flags are updated. 2112 * This routine is responsible for configuring the hardware for proper 2113 * multicast mode and configuring requested unicast filters. 2114 **/ 2115 static void ixgbevf_set_rx_mode(struct net_device *netdev) 2116 { 2117 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2118 struct ixgbe_hw *hw = &adapter->hw; 2119 unsigned int flags = netdev->flags; 2120 int xcast_mode; 2121 2122 /* request the most inclusive mode we need */ 2123 if (flags & IFF_PROMISC) 2124 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 2125 else if (flags & IFF_ALLMULTI) 2126 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 2127 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 2128 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 2129 else 2130 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 2131 2132 spin_lock_bh(&adapter->mbx_lock); 2133 2134 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 2135 2136 /* reprogram multicast list */ 2137 hw->mac.ops.update_mc_addr_list(hw, netdev); 2138 2139 ixgbevf_write_uc_addr_list(netdev); 2140 2141 spin_unlock_bh(&adapter->mbx_lock); 2142 } 2143 2144 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 2145 { 2146 int q_idx; 2147 struct ixgbevf_q_vector *q_vector; 2148 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2149 2150 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2151 q_vector = adapter->q_vector[q_idx]; 2152 napi_enable(&q_vector->napi); 2153 } 2154 } 2155 2156 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 2157 { 2158 int q_idx; 2159 struct ixgbevf_q_vector *q_vector; 2160 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2161 2162 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2163 q_vector = adapter->q_vector[q_idx]; 2164 napi_disable(&q_vector->napi); 2165 } 2166 } 2167 2168 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 2169 { 2170 struct ixgbe_hw *hw = &adapter->hw; 2171 unsigned int def_q = 0; 2172 unsigned int num_tcs = 0; 2173 unsigned int num_rx_queues = adapter->num_rx_queues; 2174 unsigned int num_tx_queues = adapter->num_tx_queues; 2175 int err; 2176 2177 spin_lock_bh(&adapter->mbx_lock); 2178 2179 /* fetch queue configuration from the PF */ 2180 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2181 2182 spin_unlock_bh(&adapter->mbx_lock); 2183 2184 if (err) 2185 return err; 2186 2187 if (num_tcs > 1) { 2188 /* we need only one Tx queue */ 2189 num_tx_queues = 1; 2190 2191 /* update default Tx ring register index */ 2192 adapter->tx_ring[0]->reg_idx = def_q; 2193 2194 /* we need as many queues as traffic classes */ 2195 num_rx_queues = num_tcs; 2196 } 2197 2198 /* if we have a bad config abort request queue reset */ 2199 if ((adapter->num_rx_queues != num_rx_queues) || 2200 (adapter->num_tx_queues != num_tx_queues)) { 2201 /* force mailbox timeout to prevent further messages */ 2202 hw->mbx.timeout = 0; 2203 2204 /* wait for watchdog to come around and bail us out */ 2205 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2206 } 2207 2208 return 0; 2209 } 2210 2211 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2212 { 2213 ixgbevf_configure_dcb(adapter); 2214 2215 ixgbevf_set_rx_mode(adapter->netdev); 2216 2217 ixgbevf_restore_vlan(adapter); 2218 ixgbevf_ipsec_restore(adapter); 2219 2220 ixgbevf_configure_tx(adapter); 2221 ixgbevf_configure_rx(adapter); 2222 } 2223 2224 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2225 { 2226 /* Only save pre-reset stats if there are some */ 2227 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2228 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2229 adapter->stats.base_vfgprc; 2230 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2231 adapter->stats.base_vfgptc; 2232 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2233 adapter->stats.base_vfgorc; 2234 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2235 adapter->stats.base_vfgotc; 2236 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2237 adapter->stats.base_vfmprc; 2238 } 2239 } 2240 2241 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2242 { 2243 struct ixgbe_hw *hw = &adapter->hw; 2244 2245 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2246 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2247 adapter->stats.last_vfgorc |= 2248 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2249 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2250 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2251 adapter->stats.last_vfgotc |= 2252 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2253 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2254 2255 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2256 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2257 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2258 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2259 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2260 } 2261 2262 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2263 { 2264 struct ixgbe_hw *hw = &adapter->hw; 2265 int api[] = { ixgbe_mbox_api_14, 2266 ixgbe_mbox_api_13, 2267 ixgbe_mbox_api_12, 2268 ixgbe_mbox_api_11, 2269 ixgbe_mbox_api_10, 2270 ixgbe_mbox_api_unknown }; 2271 int err, idx = 0; 2272 2273 spin_lock_bh(&adapter->mbx_lock); 2274 2275 while (api[idx] != ixgbe_mbox_api_unknown) { 2276 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2277 if (!err) 2278 break; 2279 idx++; 2280 } 2281 2282 spin_unlock_bh(&adapter->mbx_lock); 2283 } 2284 2285 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2286 { 2287 struct net_device *netdev = adapter->netdev; 2288 struct ixgbe_hw *hw = &adapter->hw; 2289 2290 ixgbevf_configure_msix(adapter); 2291 2292 spin_lock_bh(&adapter->mbx_lock); 2293 2294 if (is_valid_ether_addr(hw->mac.addr)) 2295 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2296 else 2297 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2298 2299 spin_unlock_bh(&adapter->mbx_lock); 2300 2301 smp_mb__before_atomic(); 2302 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2303 ixgbevf_napi_enable_all(adapter); 2304 2305 /* clear any pending interrupts, may auto mask */ 2306 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2307 ixgbevf_irq_enable(adapter); 2308 2309 /* enable transmits */ 2310 netif_tx_start_all_queues(netdev); 2311 2312 ixgbevf_save_reset_stats(adapter); 2313 ixgbevf_init_last_counter_stats(adapter); 2314 2315 hw->mac.get_link_status = 1; 2316 mod_timer(&adapter->service_timer, jiffies); 2317 } 2318 2319 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2320 { 2321 ixgbevf_configure(adapter); 2322 2323 ixgbevf_up_complete(adapter); 2324 } 2325 2326 /** 2327 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2328 * @rx_ring: ring to free buffers from 2329 **/ 2330 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2331 { 2332 u16 i = rx_ring->next_to_clean; 2333 2334 /* Free Rx ring sk_buff */ 2335 if (rx_ring->skb) { 2336 dev_kfree_skb(rx_ring->skb); 2337 rx_ring->skb = NULL; 2338 } 2339 2340 /* Free all the Rx ring pages */ 2341 while (i != rx_ring->next_to_alloc) { 2342 struct ixgbevf_rx_buffer *rx_buffer; 2343 2344 rx_buffer = &rx_ring->rx_buffer_info[i]; 2345 2346 /* Invalidate cache lines that may have been written to by 2347 * device so that we avoid corrupting memory. 2348 */ 2349 dma_sync_single_range_for_cpu(rx_ring->dev, 2350 rx_buffer->dma, 2351 rx_buffer->page_offset, 2352 ixgbevf_rx_bufsz(rx_ring), 2353 DMA_FROM_DEVICE); 2354 2355 /* free resources associated with mapping */ 2356 dma_unmap_page_attrs(rx_ring->dev, 2357 rx_buffer->dma, 2358 ixgbevf_rx_pg_size(rx_ring), 2359 DMA_FROM_DEVICE, 2360 IXGBEVF_RX_DMA_ATTR); 2361 2362 __page_frag_cache_drain(rx_buffer->page, 2363 rx_buffer->pagecnt_bias); 2364 2365 i++; 2366 if (i == rx_ring->count) 2367 i = 0; 2368 } 2369 2370 rx_ring->next_to_alloc = 0; 2371 rx_ring->next_to_clean = 0; 2372 rx_ring->next_to_use = 0; 2373 } 2374 2375 /** 2376 * ixgbevf_clean_tx_ring - Free Tx Buffers 2377 * @tx_ring: ring to be cleaned 2378 **/ 2379 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2380 { 2381 u16 i = tx_ring->next_to_clean; 2382 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 2383 2384 while (i != tx_ring->next_to_use) { 2385 union ixgbe_adv_tx_desc *eop_desc, *tx_desc; 2386 2387 /* Free all the Tx ring sk_buffs */ 2388 if (ring_is_xdp(tx_ring)) 2389 page_frag_free(tx_buffer->data); 2390 else 2391 dev_kfree_skb_any(tx_buffer->skb); 2392 2393 /* unmap skb header data */ 2394 dma_unmap_single(tx_ring->dev, 2395 dma_unmap_addr(tx_buffer, dma), 2396 dma_unmap_len(tx_buffer, len), 2397 DMA_TO_DEVICE); 2398 2399 /* check for eop_desc to determine the end of the packet */ 2400 eop_desc = tx_buffer->next_to_watch; 2401 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 2402 2403 /* unmap remaining buffers */ 2404 while (tx_desc != eop_desc) { 2405 tx_buffer++; 2406 tx_desc++; 2407 i++; 2408 if (unlikely(i == tx_ring->count)) { 2409 i = 0; 2410 tx_buffer = tx_ring->tx_buffer_info; 2411 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 2412 } 2413 2414 /* unmap any remaining paged data */ 2415 if (dma_unmap_len(tx_buffer, len)) 2416 dma_unmap_page(tx_ring->dev, 2417 dma_unmap_addr(tx_buffer, dma), 2418 dma_unmap_len(tx_buffer, len), 2419 DMA_TO_DEVICE); 2420 } 2421 2422 /* move us one more past the eop_desc for start of next pkt */ 2423 tx_buffer++; 2424 i++; 2425 if (unlikely(i == tx_ring->count)) { 2426 i = 0; 2427 tx_buffer = tx_ring->tx_buffer_info; 2428 } 2429 } 2430 2431 /* reset next_to_use and next_to_clean */ 2432 tx_ring->next_to_use = 0; 2433 tx_ring->next_to_clean = 0; 2434 2435 } 2436 2437 /** 2438 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2439 * @adapter: board private structure 2440 **/ 2441 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2442 { 2443 int i; 2444 2445 for (i = 0; i < adapter->num_rx_queues; i++) 2446 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2447 } 2448 2449 /** 2450 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2451 * @adapter: board private structure 2452 **/ 2453 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2454 { 2455 int i; 2456 2457 for (i = 0; i < adapter->num_tx_queues; i++) 2458 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2459 for (i = 0; i < adapter->num_xdp_queues; i++) 2460 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]); 2461 } 2462 2463 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2464 { 2465 struct net_device *netdev = adapter->netdev; 2466 struct ixgbe_hw *hw = &adapter->hw; 2467 int i; 2468 2469 /* signal that we are down to the interrupt handler */ 2470 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2471 return; /* do nothing if already down */ 2472 2473 /* disable all enabled Rx queues */ 2474 for (i = 0; i < adapter->num_rx_queues; i++) 2475 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2476 2477 usleep_range(10000, 20000); 2478 2479 netif_tx_stop_all_queues(netdev); 2480 2481 /* call carrier off first to avoid false dev_watchdog timeouts */ 2482 netif_carrier_off(netdev); 2483 netif_tx_disable(netdev); 2484 2485 ixgbevf_irq_disable(adapter); 2486 2487 ixgbevf_napi_disable_all(adapter); 2488 2489 del_timer_sync(&adapter->service_timer); 2490 2491 /* disable transmits in the hardware now that interrupts are off */ 2492 for (i = 0; i < adapter->num_tx_queues; i++) { 2493 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2494 2495 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2496 IXGBE_TXDCTL_SWFLSH); 2497 } 2498 2499 for (i = 0; i < adapter->num_xdp_queues; i++) { 2500 u8 reg_idx = adapter->xdp_ring[i]->reg_idx; 2501 2502 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2503 IXGBE_TXDCTL_SWFLSH); 2504 } 2505 2506 if (!pci_channel_offline(adapter->pdev)) 2507 ixgbevf_reset(adapter); 2508 2509 ixgbevf_clean_all_tx_rings(adapter); 2510 ixgbevf_clean_all_rx_rings(adapter); 2511 } 2512 2513 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2514 { 2515 WARN_ON(in_interrupt()); 2516 2517 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2518 msleep(1); 2519 2520 ixgbevf_down(adapter); 2521 ixgbevf_up(adapter); 2522 2523 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2524 } 2525 2526 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2527 { 2528 struct ixgbe_hw *hw = &adapter->hw; 2529 struct net_device *netdev = adapter->netdev; 2530 2531 if (hw->mac.ops.reset_hw(hw)) { 2532 hw_dbg(hw, "PF still resetting\n"); 2533 } else { 2534 hw->mac.ops.init_hw(hw); 2535 ixgbevf_negotiate_api(adapter); 2536 } 2537 2538 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2539 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 2540 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2541 } 2542 2543 adapter->last_reset = jiffies; 2544 } 2545 2546 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2547 int vectors) 2548 { 2549 int vector_threshold; 2550 2551 /* We'll want at least 2 (vector_threshold): 2552 * 1) TxQ[0] + RxQ[0] handler 2553 * 2) Other (Link Status Change, etc.) 2554 */ 2555 vector_threshold = MIN_MSIX_COUNT; 2556 2557 /* The more we get, the more we will assign to Tx/Rx Cleanup 2558 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2559 * Right now, we simply care about how many we'll get; we'll 2560 * set them up later while requesting irq's. 2561 */ 2562 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2563 vector_threshold, vectors); 2564 2565 if (vectors < 0) { 2566 dev_err(&adapter->pdev->dev, 2567 "Unable to allocate MSI-X interrupts\n"); 2568 kfree(adapter->msix_entries); 2569 adapter->msix_entries = NULL; 2570 return vectors; 2571 } 2572 2573 /* Adjust for only the vectors we'll use, which is minimum 2574 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2575 * vectors we were allocated. 2576 */ 2577 adapter->num_msix_vectors = vectors; 2578 2579 return 0; 2580 } 2581 2582 /** 2583 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2584 * @adapter: board private structure to initialize 2585 * 2586 * This is the top level queue allocation routine. The order here is very 2587 * important, starting with the "most" number of features turned on at once, 2588 * and ending with the smallest set of features. This way large combinations 2589 * can be allocated if they're turned on, and smaller combinations are the 2590 * fallthrough conditions. 2591 * 2592 **/ 2593 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2594 { 2595 struct ixgbe_hw *hw = &adapter->hw; 2596 unsigned int def_q = 0; 2597 unsigned int num_tcs = 0; 2598 int err; 2599 2600 /* Start with base case */ 2601 adapter->num_rx_queues = 1; 2602 adapter->num_tx_queues = 1; 2603 adapter->num_xdp_queues = 0; 2604 2605 spin_lock_bh(&adapter->mbx_lock); 2606 2607 /* fetch queue configuration from the PF */ 2608 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2609 2610 spin_unlock_bh(&adapter->mbx_lock); 2611 2612 if (err) 2613 return; 2614 2615 /* we need as many queues as traffic classes */ 2616 if (num_tcs > 1) { 2617 adapter->num_rx_queues = num_tcs; 2618 } else { 2619 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2620 2621 switch (hw->api_version) { 2622 case ixgbe_mbox_api_11: 2623 case ixgbe_mbox_api_12: 2624 case ixgbe_mbox_api_13: 2625 case ixgbe_mbox_api_14: 2626 if (adapter->xdp_prog && 2627 hw->mac.max_tx_queues == rss) 2628 rss = rss > 3 ? 2 : 1; 2629 2630 adapter->num_rx_queues = rss; 2631 adapter->num_tx_queues = rss; 2632 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0; 2633 default: 2634 break; 2635 } 2636 } 2637 } 2638 2639 /** 2640 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2641 * @adapter: board private structure to initialize 2642 * 2643 * Attempt to configure the interrupts using the best available 2644 * capabilities of the hardware and the kernel. 2645 **/ 2646 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2647 { 2648 int vector, v_budget; 2649 2650 /* It's easy to be greedy for MSI-X vectors, but it really 2651 * doesn't do us much good if we have a lot more vectors 2652 * than CPU's. So let's be conservative and only ask for 2653 * (roughly) the same number of vectors as there are CPU's. 2654 * The default is to use pairs of vectors. 2655 */ 2656 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2657 v_budget = min_t(int, v_budget, num_online_cpus()); 2658 v_budget += NON_Q_VECTORS; 2659 2660 adapter->msix_entries = kcalloc(v_budget, 2661 sizeof(struct msix_entry), GFP_KERNEL); 2662 if (!adapter->msix_entries) 2663 return -ENOMEM; 2664 2665 for (vector = 0; vector < v_budget; vector++) 2666 adapter->msix_entries[vector].entry = vector; 2667 2668 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver 2669 * does not support any other modes, so we will simply fail here. Note 2670 * that we clean up the msix_entries pointer else-where. 2671 */ 2672 return ixgbevf_acquire_msix_vectors(adapter, v_budget); 2673 } 2674 2675 static void ixgbevf_add_ring(struct ixgbevf_ring *ring, 2676 struct ixgbevf_ring_container *head) 2677 { 2678 ring->next = head->ring; 2679 head->ring = ring; 2680 head->count++; 2681 } 2682 2683 /** 2684 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector 2685 * @adapter: board private structure to initialize 2686 * @v_idx: index of vector in adapter struct 2687 * @txr_count: number of Tx rings for q vector 2688 * @txr_idx: index of first Tx ring to assign 2689 * @xdp_count: total number of XDP rings to allocate 2690 * @xdp_idx: index of first XDP ring to allocate 2691 * @rxr_count: number of Rx rings for q vector 2692 * @rxr_idx: index of first Rx ring to assign 2693 * 2694 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2695 **/ 2696 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx, 2697 int txr_count, int txr_idx, 2698 int xdp_count, int xdp_idx, 2699 int rxr_count, int rxr_idx) 2700 { 2701 struct ixgbevf_q_vector *q_vector; 2702 int reg_idx = txr_idx + xdp_idx; 2703 struct ixgbevf_ring *ring; 2704 int ring_count, size; 2705 2706 ring_count = txr_count + xdp_count + rxr_count; 2707 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count); 2708 2709 /* allocate q_vector and rings */ 2710 q_vector = kzalloc(size, GFP_KERNEL); 2711 if (!q_vector) 2712 return -ENOMEM; 2713 2714 /* initialize NAPI */ 2715 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64); 2716 2717 /* tie q_vector and adapter together */ 2718 adapter->q_vector[v_idx] = q_vector; 2719 q_vector->adapter = adapter; 2720 q_vector->v_idx = v_idx; 2721 2722 /* initialize pointer to rings */ 2723 ring = q_vector->ring; 2724 2725 while (txr_count) { 2726 /* assign generic ring traits */ 2727 ring->dev = &adapter->pdev->dev; 2728 ring->netdev = adapter->netdev; 2729 2730 /* configure backlink on ring */ 2731 ring->q_vector = q_vector; 2732 2733 /* update q_vector Tx values */ 2734 ixgbevf_add_ring(ring, &q_vector->tx); 2735 2736 /* apply Tx specific ring traits */ 2737 ring->count = adapter->tx_ring_count; 2738 ring->queue_index = txr_idx; 2739 ring->reg_idx = reg_idx; 2740 2741 /* assign ring to adapter */ 2742 adapter->tx_ring[txr_idx] = ring; 2743 2744 /* update count and index */ 2745 txr_count--; 2746 txr_idx++; 2747 reg_idx++; 2748 2749 /* push pointer to next ring */ 2750 ring++; 2751 } 2752 2753 while (xdp_count) { 2754 /* assign generic ring traits */ 2755 ring->dev = &adapter->pdev->dev; 2756 ring->netdev = adapter->netdev; 2757 2758 /* configure backlink on ring */ 2759 ring->q_vector = q_vector; 2760 2761 /* update q_vector Tx values */ 2762 ixgbevf_add_ring(ring, &q_vector->tx); 2763 2764 /* apply Tx specific ring traits */ 2765 ring->count = adapter->tx_ring_count; 2766 ring->queue_index = xdp_idx; 2767 ring->reg_idx = reg_idx; 2768 set_ring_xdp(ring); 2769 2770 /* assign ring to adapter */ 2771 adapter->xdp_ring[xdp_idx] = ring; 2772 2773 /* update count and index */ 2774 xdp_count--; 2775 xdp_idx++; 2776 reg_idx++; 2777 2778 /* push pointer to next ring */ 2779 ring++; 2780 } 2781 2782 while (rxr_count) { 2783 /* assign generic ring traits */ 2784 ring->dev = &adapter->pdev->dev; 2785 ring->netdev = adapter->netdev; 2786 2787 /* configure backlink on ring */ 2788 ring->q_vector = q_vector; 2789 2790 /* update q_vector Rx values */ 2791 ixgbevf_add_ring(ring, &q_vector->rx); 2792 2793 /* apply Rx specific ring traits */ 2794 ring->count = adapter->rx_ring_count; 2795 ring->queue_index = rxr_idx; 2796 ring->reg_idx = rxr_idx; 2797 2798 /* assign ring to adapter */ 2799 adapter->rx_ring[rxr_idx] = ring; 2800 2801 /* update count and index */ 2802 rxr_count--; 2803 rxr_idx++; 2804 2805 /* push pointer to next ring */ 2806 ring++; 2807 } 2808 2809 return 0; 2810 } 2811 2812 /** 2813 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector 2814 * @adapter: board private structure to initialize 2815 * @v_idx: index of vector in adapter struct 2816 * 2817 * This function frees the memory allocated to the q_vector. In addition if 2818 * NAPI is enabled it will delete any references to the NAPI struct prior 2819 * to freeing the q_vector. 2820 **/ 2821 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx) 2822 { 2823 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx]; 2824 struct ixgbevf_ring *ring; 2825 2826 ixgbevf_for_each_ring(ring, q_vector->tx) { 2827 if (ring_is_xdp(ring)) 2828 adapter->xdp_ring[ring->queue_index] = NULL; 2829 else 2830 adapter->tx_ring[ring->queue_index] = NULL; 2831 } 2832 2833 ixgbevf_for_each_ring(ring, q_vector->rx) 2834 adapter->rx_ring[ring->queue_index] = NULL; 2835 2836 adapter->q_vector[v_idx] = NULL; 2837 netif_napi_del(&q_vector->napi); 2838 2839 /* ixgbevf_get_stats() might access the rings on this vector, 2840 * we must wait a grace period before freeing it. 2841 */ 2842 kfree_rcu(q_vector, rcu); 2843 } 2844 2845 /** 2846 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2847 * @adapter: board private structure to initialize 2848 * 2849 * We allocate one q_vector per queue interrupt. If allocation fails we 2850 * return -ENOMEM. 2851 **/ 2852 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2853 { 2854 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2855 int rxr_remaining = adapter->num_rx_queues; 2856 int txr_remaining = adapter->num_tx_queues; 2857 int xdp_remaining = adapter->num_xdp_queues; 2858 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0; 2859 int err; 2860 2861 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) { 2862 for (; rxr_remaining; v_idx++, q_vectors--) { 2863 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2864 2865 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2866 0, 0, 0, 0, rqpv, rxr_idx); 2867 if (err) 2868 goto err_out; 2869 2870 /* update counts and index */ 2871 rxr_remaining -= rqpv; 2872 rxr_idx += rqpv; 2873 } 2874 } 2875 2876 for (; q_vectors; v_idx++, q_vectors--) { 2877 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2878 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors); 2879 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors); 2880 2881 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2882 tqpv, txr_idx, 2883 xqpv, xdp_idx, 2884 rqpv, rxr_idx); 2885 2886 if (err) 2887 goto err_out; 2888 2889 /* update counts and index */ 2890 rxr_remaining -= rqpv; 2891 rxr_idx += rqpv; 2892 txr_remaining -= tqpv; 2893 txr_idx += tqpv; 2894 xdp_remaining -= xqpv; 2895 xdp_idx += xqpv; 2896 } 2897 2898 return 0; 2899 2900 err_out: 2901 while (v_idx) { 2902 v_idx--; 2903 ixgbevf_free_q_vector(adapter, v_idx); 2904 } 2905 2906 return -ENOMEM; 2907 } 2908 2909 /** 2910 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2911 * @adapter: board private structure to initialize 2912 * 2913 * This function frees the memory allocated to the q_vectors. In addition if 2914 * NAPI is enabled it will delete any references to the NAPI struct prior 2915 * to freeing the q_vector. 2916 **/ 2917 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2918 { 2919 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2920 2921 while (q_vectors) { 2922 q_vectors--; 2923 ixgbevf_free_q_vector(adapter, q_vectors); 2924 } 2925 } 2926 2927 /** 2928 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2929 * @adapter: board private structure 2930 * 2931 **/ 2932 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2933 { 2934 if (!adapter->msix_entries) 2935 return; 2936 2937 pci_disable_msix(adapter->pdev); 2938 kfree(adapter->msix_entries); 2939 adapter->msix_entries = NULL; 2940 } 2941 2942 /** 2943 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2944 * @adapter: board private structure to initialize 2945 * 2946 **/ 2947 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2948 { 2949 int err; 2950 2951 /* Number of supported queues */ 2952 ixgbevf_set_num_queues(adapter); 2953 2954 err = ixgbevf_set_interrupt_capability(adapter); 2955 if (err) { 2956 hw_dbg(&adapter->hw, 2957 "Unable to setup interrupt capabilities\n"); 2958 goto err_set_interrupt; 2959 } 2960 2961 err = ixgbevf_alloc_q_vectors(adapter); 2962 if (err) { 2963 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2964 goto err_alloc_q_vectors; 2965 } 2966 2967 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n", 2968 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled", 2969 adapter->num_rx_queues, adapter->num_tx_queues, 2970 adapter->num_xdp_queues); 2971 2972 set_bit(__IXGBEVF_DOWN, &adapter->state); 2973 2974 return 0; 2975 err_alloc_q_vectors: 2976 ixgbevf_reset_interrupt_capability(adapter); 2977 err_set_interrupt: 2978 return err; 2979 } 2980 2981 /** 2982 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2983 * @adapter: board private structure to clear interrupt scheme on 2984 * 2985 * We go through and clear interrupt specific resources and reset the structure 2986 * to pre-load conditions 2987 **/ 2988 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 2989 { 2990 adapter->num_tx_queues = 0; 2991 adapter->num_xdp_queues = 0; 2992 adapter->num_rx_queues = 0; 2993 2994 ixgbevf_free_q_vectors(adapter); 2995 ixgbevf_reset_interrupt_capability(adapter); 2996 } 2997 2998 /** 2999 * ixgbevf_sw_init - Initialize general software structures 3000 * @adapter: board private structure to initialize 3001 * 3002 * ixgbevf_sw_init initializes the Adapter private data structure. 3003 * Fields are initialized based on PCI device information and 3004 * OS network device settings (MTU size). 3005 **/ 3006 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 3007 { 3008 struct ixgbe_hw *hw = &adapter->hw; 3009 struct pci_dev *pdev = adapter->pdev; 3010 struct net_device *netdev = adapter->netdev; 3011 int err; 3012 3013 /* PCI config space info */ 3014 hw->vendor_id = pdev->vendor; 3015 hw->device_id = pdev->device; 3016 hw->revision_id = pdev->revision; 3017 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3018 hw->subsystem_device_id = pdev->subsystem_device; 3019 3020 hw->mbx.ops.init_params(hw); 3021 3022 if (hw->mac.type >= ixgbe_mac_X550_vf) { 3023 err = ixgbevf_init_rss_key(adapter); 3024 if (err) 3025 goto out; 3026 } 3027 3028 /* assume legacy case in which PF would only give VF 2 queues */ 3029 hw->mac.max_tx_queues = 2; 3030 hw->mac.max_rx_queues = 2; 3031 3032 /* lock to protect mailbox accesses */ 3033 spin_lock_init(&adapter->mbx_lock); 3034 3035 err = hw->mac.ops.reset_hw(hw); 3036 if (err) { 3037 dev_info(&pdev->dev, 3038 "PF still in reset state. Is the PF interface up?\n"); 3039 } else { 3040 err = hw->mac.ops.init_hw(hw); 3041 if (err) { 3042 pr_err("init_shared_code failed: %d\n", err); 3043 goto out; 3044 } 3045 ixgbevf_negotiate_api(adapter); 3046 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 3047 if (err) 3048 dev_info(&pdev->dev, "Error reading MAC address\n"); 3049 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 3050 dev_info(&pdev->dev, 3051 "MAC address not assigned by administrator.\n"); 3052 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 3053 } 3054 3055 if (!is_valid_ether_addr(netdev->dev_addr)) { 3056 dev_info(&pdev->dev, "Assigning random MAC address\n"); 3057 eth_hw_addr_random(netdev); 3058 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 3059 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 3060 } 3061 3062 /* Enable dynamic interrupt throttling rates */ 3063 adapter->rx_itr_setting = 1; 3064 adapter->tx_itr_setting = 1; 3065 3066 /* set default ring sizes */ 3067 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 3068 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 3069 3070 set_bit(__IXGBEVF_DOWN, &adapter->state); 3071 return 0; 3072 3073 out: 3074 return err; 3075 } 3076 3077 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 3078 { \ 3079 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 3080 if (current_counter < last_counter) \ 3081 counter += 0x100000000LL; \ 3082 last_counter = current_counter; \ 3083 counter &= 0xFFFFFFFF00000000LL; \ 3084 counter |= current_counter; \ 3085 } 3086 3087 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 3088 { \ 3089 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 3090 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 3091 u64 current_counter = (current_counter_msb << 32) | \ 3092 current_counter_lsb; \ 3093 if (current_counter < last_counter) \ 3094 counter += 0x1000000000LL; \ 3095 last_counter = current_counter; \ 3096 counter &= 0xFFFFFFF000000000LL; \ 3097 counter |= current_counter; \ 3098 } 3099 /** 3100 * ixgbevf_update_stats - Update the board statistics counters. 3101 * @adapter: board private structure 3102 **/ 3103 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 3104 { 3105 struct ixgbe_hw *hw = &adapter->hw; 3106 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; 3107 u64 alloc_rx_page = 0, hw_csum_rx_error = 0; 3108 int i; 3109 3110 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3111 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3112 return; 3113 3114 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 3115 adapter->stats.vfgprc); 3116 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 3117 adapter->stats.vfgptc); 3118 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 3119 adapter->stats.last_vfgorc, 3120 adapter->stats.vfgorc); 3121 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 3122 adapter->stats.last_vfgotc, 3123 adapter->stats.vfgotc); 3124 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 3125 adapter->stats.vfmprc); 3126 3127 for (i = 0; i < adapter->num_rx_queues; i++) { 3128 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 3129 3130 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 3131 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; 3132 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 3133 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; 3134 } 3135 3136 adapter->hw_csum_rx_error = hw_csum_rx_error; 3137 adapter->alloc_rx_page_failed = alloc_rx_page_failed; 3138 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; 3139 adapter->alloc_rx_page = alloc_rx_page; 3140 } 3141 3142 /** 3143 * ixgbevf_service_timer - Timer Call-back 3144 * @t: pointer to timer_list struct 3145 **/ 3146 static void ixgbevf_service_timer(struct timer_list *t) 3147 { 3148 struct ixgbevf_adapter *adapter = from_timer(adapter, t, 3149 service_timer); 3150 3151 /* Reset the timer */ 3152 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 3153 3154 ixgbevf_service_event_schedule(adapter); 3155 } 3156 3157 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 3158 { 3159 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 3160 return; 3161 3162 rtnl_lock(); 3163 /* If we're already down or resetting, just bail */ 3164 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3165 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 3166 test_bit(__IXGBEVF_RESETTING, &adapter->state)) { 3167 rtnl_unlock(); 3168 return; 3169 } 3170 3171 adapter->tx_timeout_count++; 3172 3173 ixgbevf_reinit_locked(adapter); 3174 rtnl_unlock(); 3175 } 3176 3177 /** 3178 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 3179 * @adapter: pointer to the device adapter structure 3180 * 3181 * This function serves two purposes. First it strobes the interrupt lines 3182 * in order to make certain interrupts are occurring. Secondly it sets the 3183 * bits needed to check for TX hangs. As a result we should immediately 3184 * determine if a hang has occurred. 3185 **/ 3186 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 3187 { 3188 struct ixgbe_hw *hw = &adapter->hw; 3189 u32 eics = 0; 3190 int i; 3191 3192 /* If we're down or resetting, just bail */ 3193 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3194 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3195 return; 3196 3197 /* Force detection of hung controller */ 3198 if (netif_carrier_ok(adapter->netdev)) { 3199 for (i = 0; i < adapter->num_tx_queues; i++) 3200 set_check_for_tx_hang(adapter->tx_ring[i]); 3201 for (i = 0; i < adapter->num_xdp_queues; i++) 3202 set_check_for_tx_hang(adapter->xdp_ring[i]); 3203 } 3204 3205 /* get one bit for every active Tx/Rx interrupt vector */ 3206 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 3207 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 3208 3209 if (qv->rx.ring || qv->tx.ring) 3210 eics |= BIT(i); 3211 } 3212 3213 /* Cause software interrupt to ensure rings are cleaned */ 3214 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 3215 } 3216 3217 /** 3218 * ixgbevf_watchdog_update_link - update the link status 3219 * @adapter: pointer to the device adapter structure 3220 **/ 3221 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 3222 { 3223 struct ixgbe_hw *hw = &adapter->hw; 3224 u32 link_speed = adapter->link_speed; 3225 bool link_up = adapter->link_up; 3226 s32 err; 3227 3228 spin_lock_bh(&adapter->mbx_lock); 3229 3230 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 3231 3232 spin_unlock_bh(&adapter->mbx_lock); 3233 3234 /* if check for link returns error we will need to reset */ 3235 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 3236 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 3237 link_up = false; 3238 } 3239 3240 adapter->link_up = link_up; 3241 adapter->link_speed = link_speed; 3242 } 3243 3244 /** 3245 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 3246 * print link up message 3247 * @adapter: pointer to the device adapter structure 3248 **/ 3249 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 3250 { 3251 struct net_device *netdev = adapter->netdev; 3252 3253 /* only continue if link was previously down */ 3254 if (netif_carrier_ok(netdev)) 3255 return; 3256 3257 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 3258 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 3259 "10 Gbps" : 3260 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 3261 "1 Gbps" : 3262 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 3263 "100 Mbps" : 3264 "unknown speed"); 3265 3266 netif_carrier_on(netdev); 3267 } 3268 3269 /** 3270 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 3271 * print link down message 3272 * @adapter: pointer to the adapter structure 3273 **/ 3274 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 3275 { 3276 struct net_device *netdev = adapter->netdev; 3277 3278 adapter->link_speed = 0; 3279 3280 /* only continue if link was up previously */ 3281 if (!netif_carrier_ok(netdev)) 3282 return; 3283 3284 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 3285 3286 netif_carrier_off(netdev); 3287 } 3288 3289 /** 3290 * ixgbevf_watchdog_subtask - worker thread to bring link up 3291 * @adapter: board private structure 3292 **/ 3293 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 3294 { 3295 /* if interface is down do nothing */ 3296 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3297 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3298 return; 3299 3300 ixgbevf_watchdog_update_link(adapter); 3301 3302 if (adapter->link_up) 3303 ixgbevf_watchdog_link_is_up(adapter); 3304 else 3305 ixgbevf_watchdog_link_is_down(adapter); 3306 3307 ixgbevf_update_stats(adapter); 3308 } 3309 3310 /** 3311 * ixgbevf_service_task - manages and runs subtasks 3312 * @work: pointer to work_struct containing our data 3313 **/ 3314 static void ixgbevf_service_task(struct work_struct *work) 3315 { 3316 struct ixgbevf_adapter *adapter = container_of(work, 3317 struct ixgbevf_adapter, 3318 service_task); 3319 struct ixgbe_hw *hw = &adapter->hw; 3320 3321 if (IXGBE_REMOVED(hw->hw_addr)) { 3322 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 3323 rtnl_lock(); 3324 ixgbevf_down(adapter); 3325 rtnl_unlock(); 3326 } 3327 return; 3328 } 3329 3330 ixgbevf_queue_reset_subtask(adapter); 3331 ixgbevf_reset_subtask(adapter); 3332 ixgbevf_watchdog_subtask(adapter); 3333 ixgbevf_check_hang_subtask(adapter); 3334 3335 ixgbevf_service_event_complete(adapter); 3336 } 3337 3338 /** 3339 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 3340 * @tx_ring: Tx descriptor ring for a specific queue 3341 * 3342 * Free all transmit software resources 3343 **/ 3344 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 3345 { 3346 ixgbevf_clean_tx_ring(tx_ring); 3347 3348 vfree(tx_ring->tx_buffer_info); 3349 tx_ring->tx_buffer_info = NULL; 3350 3351 /* if not set, then don't free */ 3352 if (!tx_ring->desc) 3353 return; 3354 3355 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 3356 tx_ring->dma); 3357 3358 tx_ring->desc = NULL; 3359 } 3360 3361 /** 3362 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 3363 * @adapter: board private structure 3364 * 3365 * Free all transmit software resources 3366 **/ 3367 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 3368 { 3369 int i; 3370 3371 for (i = 0; i < adapter->num_tx_queues; i++) 3372 if (adapter->tx_ring[i]->desc) 3373 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3374 for (i = 0; i < adapter->num_xdp_queues; i++) 3375 if (adapter->xdp_ring[i]->desc) 3376 ixgbevf_free_tx_resources(adapter->xdp_ring[i]); 3377 } 3378 3379 /** 3380 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 3381 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 3382 * 3383 * Return 0 on success, negative on failure 3384 **/ 3385 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3386 { 3387 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3388 int size; 3389 3390 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3391 tx_ring->tx_buffer_info = vmalloc(size); 3392 if (!tx_ring->tx_buffer_info) 3393 goto err; 3394 3395 u64_stats_init(&tx_ring->syncp); 3396 3397 /* round up to nearest 4K */ 3398 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3399 tx_ring->size = ALIGN(tx_ring->size, 4096); 3400 3401 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3402 &tx_ring->dma, GFP_KERNEL); 3403 if (!tx_ring->desc) 3404 goto err; 3405 3406 return 0; 3407 3408 err: 3409 vfree(tx_ring->tx_buffer_info); 3410 tx_ring->tx_buffer_info = NULL; 3411 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3412 return -ENOMEM; 3413 } 3414 3415 /** 3416 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3417 * @adapter: board private structure 3418 * 3419 * If this function returns with an error, then it's possible one or 3420 * more of the rings is populated (while the rest are not). It is the 3421 * callers duty to clean those orphaned rings. 3422 * 3423 * Return 0 on success, negative on failure 3424 **/ 3425 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3426 { 3427 int i, j = 0, err = 0; 3428 3429 for (i = 0; i < adapter->num_tx_queues; i++) { 3430 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3431 if (!err) 3432 continue; 3433 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3434 goto err_setup_tx; 3435 } 3436 3437 for (j = 0; j < adapter->num_xdp_queues; j++) { 3438 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]); 3439 if (!err) 3440 continue; 3441 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j); 3442 goto err_setup_tx; 3443 } 3444 3445 return 0; 3446 err_setup_tx: 3447 /* rewind the index freeing the rings as we go */ 3448 while (j--) 3449 ixgbevf_free_tx_resources(adapter->xdp_ring[j]); 3450 while (i--) 3451 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3452 3453 return err; 3454 } 3455 3456 /** 3457 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3458 * @adapter: board private structure 3459 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3460 * 3461 * Returns 0 on success, negative on failure 3462 **/ 3463 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter, 3464 struct ixgbevf_ring *rx_ring) 3465 { 3466 int size; 3467 3468 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3469 rx_ring->rx_buffer_info = vmalloc(size); 3470 if (!rx_ring->rx_buffer_info) 3471 goto err; 3472 3473 u64_stats_init(&rx_ring->syncp); 3474 3475 /* Round up to nearest 4K */ 3476 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3477 rx_ring->size = ALIGN(rx_ring->size, 4096); 3478 3479 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3480 &rx_ring->dma, GFP_KERNEL); 3481 3482 if (!rx_ring->desc) 3483 goto err; 3484 3485 /* XDP RX-queue info */ 3486 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev, 3487 rx_ring->queue_index) < 0) 3488 goto err; 3489 3490 rx_ring->xdp_prog = adapter->xdp_prog; 3491 3492 return 0; 3493 err: 3494 vfree(rx_ring->rx_buffer_info); 3495 rx_ring->rx_buffer_info = NULL; 3496 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3497 return -ENOMEM; 3498 } 3499 3500 /** 3501 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3502 * @adapter: board private structure 3503 * 3504 * If this function returns with an error, then it's possible one or 3505 * more of the rings is populated (while the rest are not). It is the 3506 * callers duty to clean those orphaned rings. 3507 * 3508 * Return 0 on success, negative on failure 3509 **/ 3510 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3511 { 3512 int i, err = 0; 3513 3514 for (i = 0; i < adapter->num_rx_queues; i++) { 3515 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]); 3516 if (!err) 3517 continue; 3518 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3519 goto err_setup_rx; 3520 } 3521 3522 return 0; 3523 err_setup_rx: 3524 /* rewind the index freeing the rings as we go */ 3525 while (i--) 3526 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3527 return err; 3528 } 3529 3530 /** 3531 * ixgbevf_free_rx_resources - Free Rx Resources 3532 * @rx_ring: ring to clean the resources from 3533 * 3534 * Free all receive software resources 3535 **/ 3536 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3537 { 3538 ixgbevf_clean_rx_ring(rx_ring); 3539 3540 rx_ring->xdp_prog = NULL; 3541 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 3542 vfree(rx_ring->rx_buffer_info); 3543 rx_ring->rx_buffer_info = NULL; 3544 3545 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3546 rx_ring->dma); 3547 3548 rx_ring->desc = NULL; 3549 } 3550 3551 /** 3552 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3553 * @adapter: board private structure 3554 * 3555 * Free all receive software resources 3556 **/ 3557 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3558 { 3559 int i; 3560 3561 for (i = 0; i < adapter->num_rx_queues; i++) 3562 if (adapter->rx_ring[i]->desc) 3563 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3564 } 3565 3566 /** 3567 * ixgbevf_open - Called when a network interface is made active 3568 * @netdev: network interface device structure 3569 * 3570 * Returns 0 on success, negative value on failure 3571 * 3572 * The open entry point is called when a network interface is made 3573 * active by the system (IFF_UP). At this point all resources needed 3574 * for transmit and receive operations are allocated, the interrupt 3575 * handler is registered with the OS, the watchdog timer is started, 3576 * and the stack is notified that the interface is ready. 3577 **/ 3578 int ixgbevf_open(struct net_device *netdev) 3579 { 3580 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3581 struct ixgbe_hw *hw = &adapter->hw; 3582 int err; 3583 3584 /* A previous failure to open the device because of a lack of 3585 * available MSIX vector resources may have reset the number 3586 * of msix vectors variable to zero. The only way to recover 3587 * is to unload/reload the driver and hope that the system has 3588 * been able to recover some MSIX vector resources. 3589 */ 3590 if (!adapter->num_msix_vectors) 3591 return -ENOMEM; 3592 3593 if (hw->adapter_stopped) { 3594 ixgbevf_reset(adapter); 3595 /* if adapter is still stopped then PF isn't up and 3596 * the VF can't start. 3597 */ 3598 if (hw->adapter_stopped) { 3599 err = IXGBE_ERR_MBX; 3600 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3601 goto err_setup_reset; 3602 } 3603 } 3604 3605 /* disallow open during test */ 3606 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3607 return -EBUSY; 3608 3609 netif_carrier_off(netdev); 3610 3611 /* allocate transmit descriptors */ 3612 err = ixgbevf_setup_all_tx_resources(adapter); 3613 if (err) 3614 goto err_setup_tx; 3615 3616 /* allocate receive descriptors */ 3617 err = ixgbevf_setup_all_rx_resources(adapter); 3618 if (err) 3619 goto err_setup_rx; 3620 3621 ixgbevf_configure(adapter); 3622 3623 err = ixgbevf_request_irq(adapter); 3624 if (err) 3625 goto err_req_irq; 3626 3627 /* Notify the stack of the actual queue counts. */ 3628 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3629 if (err) 3630 goto err_set_queues; 3631 3632 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3633 if (err) 3634 goto err_set_queues; 3635 3636 ixgbevf_up_complete(adapter); 3637 3638 return 0; 3639 3640 err_set_queues: 3641 ixgbevf_free_irq(adapter); 3642 err_req_irq: 3643 ixgbevf_free_all_rx_resources(adapter); 3644 err_setup_rx: 3645 ixgbevf_free_all_tx_resources(adapter); 3646 err_setup_tx: 3647 ixgbevf_reset(adapter); 3648 err_setup_reset: 3649 3650 return err; 3651 } 3652 3653 /** 3654 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3655 * @adapter: the private adapter struct 3656 * 3657 * This function should contain the necessary work common to both suspending 3658 * and closing of the device. 3659 */ 3660 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3661 { 3662 ixgbevf_down(adapter); 3663 ixgbevf_free_irq(adapter); 3664 ixgbevf_free_all_tx_resources(adapter); 3665 ixgbevf_free_all_rx_resources(adapter); 3666 } 3667 3668 /** 3669 * ixgbevf_close - Disables a network interface 3670 * @netdev: network interface device structure 3671 * 3672 * Returns 0, this is not allowed to fail 3673 * 3674 * The close entry point is called when an interface is de-activated 3675 * by the OS. The hardware is still under the drivers control, but 3676 * needs to be disabled. A global MAC reset is issued to stop the 3677 * hardware, and all transmit and receive resources are freed. 3678 **/ 3679 int ixgbevf_close(struct net_device *netdev) 3680 { 3681 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3682 3683 if (netif_device_present(netdev)) 3684 ixgbevf_close_suspend(adapter); 3685 3686 return 0; 3687 } 3688 3689 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3690 { 3691 struct net_device *dev = adapter->netdev; 3692 3693 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3694 &adapter->state)) 3695 return; 3696 3697 /* if interface is down do nothing */ 3698 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3699 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3700 return; 3701 3702 /* Hardware has to reinitialize queues and interrupts to 3703 * match packet buffer alignment. Unfortunately, the 3704 * hardware is not flexible enough to do this dynamically. 3705 */ 3706 rtnl_lock(); 3707 3708 if (netif_running(dev)) 3709 ixgbevf_close(dev); 3710 3711 ixgbevf_clear_interrupt_scheme(adapter); 3712 ixgbevf_init_interrupt_scheme(adapter); 3713 3714 if (netif_running(dev)) 3715 ixgbevf_open(dev); 3716 3717 rtnl_unlock(); 3718 } 3719 3720 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3721 u32 vlan_macip_lens, u32 fceof_saidx, 3722 u32 type_tucmd, u32 mss_l4len_idx) 3723 { 3724 struct ixgbe_adv_tx_context_desc *context_desc; 3725 u16 i = tx_ring->next_to_use; 3726 3727 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3728 3729 i++; 3730 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3731 3732 /* set bits to identify this as an advanced context descriptor */ 3733 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3734 3735 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3736 context_desc->fceof_saidx = cpu_to_le32(fceof_saidx); 3737 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3738 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3739 } 3740 3741 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3742 struct ixgbevf_tx_buffer *first, 3743 u8 *hdr_len, 3744 struct ixgbevf_ipsec_tx_data *itd) 3745 { 3746 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3747 struct sk_buff *skb = first->skb; 3748 union { 3749 struct iphdr *v4; 3750 struct ipv6hdr *v6; 3751 unsigned char *hdr; 3752 } ip; 3753 union { 3754 struct tcphdr *tcp; 3755 unsigned char *hdr; 3756 } l4; 3757 u32 paylen, l4_offset; 3758 u32 fceof_saidx = 0; 3759 int err; 3760 3761 if (skb->ip_summed != CHECKSUM_PARTIAL) 3762 return 0; 3763 3764 if (!skb_is_gso(skb)) 3765 return 0; 3766 3767 err = skb_cow_head(skb, 0); 3768 if (err < 0) 3769 return err; 3770 3771 if (eth_p_mpls(first->protocol)) 3772 ip.hdr = skb_inner_network_header(skb); 3773 else 3774 ip.hdr = skb_network_header(skb); 3775 l4.hdr = skb_checksum_start(skb); 3776 3777 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3778 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3779 3780 /* initialize outer IP header fields */ 3781 if (ip.v4->version == 4) { 3782 unsigned char *csum_start = skb_checksum_start(skb); 3783 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3784 int len = csum_start - trans_start; 3785 3786 /* IP header will have to cancel out any data that 3787 * is not a part of the outer IP header, so set to 3788 * a reverse csum if needed, else init check to 0. 3789 */ 3790 ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ? 3791 csum_fold(csum_partial(trans_start, 3792 len, 0)) : 0; 3793 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3794 3795 ip.v4->tot_len = 0; 3796 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3797 IXGBE_TX_FLAGS_CSUM | 3798 IXGBE_TX_FLAGS_IPV4; 3799 } else { 3800 ip.v6->payload_len = 0; 3801 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3802 IXGBE_TX_FLAGS_CSUM; 3803 } 3804 3805 /* determine offset of inner transport header */ 3806 l4_offset = l4.hdr - skb->data; 3807 3808 /* compute length of segmentation header */ 3809 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3810 3811 /* remove payload length from inner checksum */ 3812 paylen = skb->len - l4_offset; 3813 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 3814 3815 /* update gso size and bytecount with header size */ 3816 first->gso_segs = skb_shinfo(skb)->gso_segs; 3817 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3818 3819 /* mss_l4len_id: use 1 as index for TSO */ 3820 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3821 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3822 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3823 3824 fceof_saidx |= itd->pfsa; 3825 type_tucmd |= itd->flags | itd->trailer_len; 3826 3827 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3828 vlan_macip_lens = l4.hdr - ip.hdr; 3829 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3830 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3831 3832 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd, 3833 mss_l4len_idx); 3834 3835 return 1; 3836 } 3837 3838 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb) 3839 { 3840 unsigned int offset = 0; 3841 3842 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 3843 3844 return offset == skb_checksum_start_offset(skb); 3845 } 3846 3847 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3848 struct ixgbevf_tx_buffer *first, 3849 struct ixgbevf_ipsec_tx_data *itd) 3850 { 3851 struct sk_buff *skb = first->skb; 3852 u32 vlan_macip_lens = 0; 3853 u32 fceof_saidx = 0; 3854 u32 type_tucmd = 0; 3855 3856 if (skb->ip_summed != CHECKSUM_PARTIAL) 3857 goto no_csum; 3858 3859 switch (skb->csum_offset) { 3860 case offsetof(struct tcphdr, check): 3861 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3862 /* fall through */ 3863 case offsetof(struct udphdr, check): 3864 break; 3865 case offsetof(struct sctphdr, checksum): 3866 /* validate that this is actually an SCTP request */ 3867 if (((first->protocol == htons(ETH_P_IP)) && 3868 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 3869 ((first->protocol == htons(ETH_P_IPV6)) && 3870 ixgbevf_ipv6_csum_is_sctp(skb))) { 3871 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3872 break; 3873 } 3874 /* fall through */ 3875 default: 3876 skb_checksum_help(skb); 3877 goto no_csum; 3878 } 3879 3880 if (first->protocol == htons(ETH_P_IP)) 3881 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3882 3883 /* update TX checksum flag */ 3884 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3885 vlan_macip_lens = skb_checksum_start_offset(skb) - 3886 skb_network_offset(skb); 3887 no_csum: 3888 /* vlan_macip_lens: MACLEN, VLAN tag */ 3889 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3890 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3891 3892 fceof_saidx |= itd->pfsa; 3893 type_tucmd |= itd->flags | itd->trailer_len; 3894 3895 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3896 fceof_saidx, type_tucmd, 0); 3897 } 3898 3899 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3900 { 3901 /* set type for advanced descriptor with frame checksum insertion */ 3902 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3903 IXGBE_ADVTXD_DCMD_IFCS | 3904 IXGBE_ADVTXD_DCMD_DEXT); 3905 3906 /* set HW VLAN bit if VLAN is present */ 3907 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3908 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3909 3910 /* set segmentation enable bits for TSO/FSO */ 3911 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3912 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3913 3914 return cmd_type; 3915 } 3916 3917 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3918 u32 tx_flags, unsigned int paylen) 3919 { 3920 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3921 3922 /* enable L4 checksum for TSO and TX checksum offload */ 3923 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3924 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3925 3926 /* enble IPv4 checksum for TSO */ 3927 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3928 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3929 3930 /* enable IPsec */ 3931 if (tx_flags & IXGBE_TX_FLAGS_IPSEC) 3932 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC); 3933 3934 /* use index 1 context for TSO/FSO/FCOE/IPSEC */ 3935 if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC)) 3936 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3937 3938 /* Check Context must be set if Tx switch is enabled, which it 3939 * always is for case where virtual functions are running 3940 */ 3941 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3942 3943 tx_desc->read.olinfo_status = olinfo_status; 3944 } 3945 3946 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3947 struct ixgbevf_tx_buffer *first, 3948 const u8 hdr_len) 3949 { 3950 struct sk_buff *skb = first->skb; 3951 struct ixgbevf_tx_buffer *tx_buffer; 3952 union ixgbe_adv_tx_desc *tx_desc; 3953 struct skb_frag_struct *frag; 3954 dma_addr_t dma; 3955 unsigned int data_len, size; 3956 u32 tx_flags = first->tx_flags; 3957 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3958 u16 i = tx_ring->next_to_use; 3959 3960 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3961 3962 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 3963 3964 size = skb_headlen(skb); 3965 data_len = skb->data_len; 3966 3967 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3968 3969 tx_buffer = first; 3970 3971 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3972 if (dma_mapping_error(tx_ring->dev, dma)) 3973 goto dma_error; 3974 3975 /* record length, and DMA address */ 3976 dma_unmap_len_set(tx_buffer, len, size); 3977 dma_unmap_addr_set(tx_buffer, dma, dma); 3978 3979 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3980 3981 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3982 tx_desc->read.cmd_type_len = 3983 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3984 3985 i++; 3986 tx_desc++; 3987 if (i == tx_ring->count) { 3988 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3989 i = 0; 3990 } 3991 tx_desc->read.olinfo_status = 0; 3992 3993 dma += IXGBE_MAX_DATA_PER_TXD; 3994 size -= IXGBE_MAX_DATA_PER_TXD; 3995 3996 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3997 } 3998 3999 if (likely(!data_len)) 4000 break; 4001 4002 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 4003 4004 i++; 4005 tx_desc++; 4006 if (i == tx_ring->count) { 4007 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4008 i = 0; 4009 } 4010 tx_desc->read.olinfo_status = 0; 4011 4012 size = skb_frag_size(frag); 4013 data_len -= size; 4014 4015 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 4016 DMA_TO_DEVICE); 4017 4018 tx_buffer = &tx_ring->tx_buffer_info[i]; 4019 } 4020 4021 /* write last descriptor with RS and EOP bits */ 4022 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 4023 tx_desc->read.cmd_type_len = cmd_type; 4024 4025 /* set the timestamp */ 4026 first->time_stamp = jiffies; 4027 4028 skb_tx_timestamp(skb); 4029 4030 /* Force memory writes to complete before letting h/w know there 4031 * are new descriptors to fetch. (Only applicable for weak-ordered 4032 * memory model archs, such as IA-64). 4033 * 4034 * We also need this memory barrier (wmb) to make certain all of the 4035 * status bits have been updated before next_to_watch is written. 4036 */ 4037 wmb(); 4038 4039 /* set next_to_watch value indicating a packet is present */ 4040 first->next_to_watch = tx_desc; 4041 4042 i++; 4043 if (i == tx_ring->count) 4044 i = 0; 4045 4046 tx_ring->next_to_use = i; 4047 4048 /* notify HW of packet */ 4049 ixgbevf_write_tail(tx_ring, i); 4050 4051 return; 4052 dma_error: 4053 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4054 tx_buffer = &tx_ring->tx_buffer_info[i]; 4055 4056 /* clear dma mappings for failed tx_buffer_info map */ 4057 while (tx_buffer != first) { 4058 if (dma_unmap_len(tx_buffer, len)) 4059 dma_unmap_page(tx_ring->dev, 4060 dma_unmap_addr(tx_buffer, dma), 4061 dma_unmap_len(tx_buffer, len), 4062 DMA_TO_DEVICE); 4063 dma_unmap_len_set(tx_buffer, len, 0); 4064 4065 if (i-- == 0) 4066 i += tx_ring->count; 4067 tx_buffer = &tx_ring->tx_buffer_info[i]; 4068 } 4069 4070 if (dma_unmap_len(tx_buffer, len)) 4071 dma_unmap_single(tx_ring->dev, 4072 dma_unmap_addr(tx_buffer, dma), 4073 dma_unmap_len(tx_buffer, len), 4074 DMA_TO_DEVICE); 4075 dma_unmap_len_set(tx_buffer, len, 0); 4076 4077 dev_kfree_skb_any(tx_buffer->skb); 4078 tx_buffer->skb = NULL; 4079 4080 tx_ring->next_to_use = i; 4081 } 4082 4083 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4084 { 4085 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 4086 /* Herbert's original patch had: 4087 * smp_mb__after_netif_stop_queue(); 4088 * but since that doesn't exist yet, just open code it. 4089 */ 4090 smp_mb(); 4091 4092 /* We need to check again in a case another CPU has just 4093 * made room available. 4094 */ 4095 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 4096 return -EBUSY; 4097 4098 /* A reprieve! - use start_queue because it doesn't call schedule */ 4099 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 4100 ++tx_ring->tx_stats.restart_queue; 4101 4102 return 0; 4103 } 4104 4105 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4106 { 4107 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 4108 return 0; 4109 return __ixgbevf_maybe_stop_tx(tx_ring, size); 4110 } 4111 4112 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb, 4113 struct ixgbevf_ring *tx_ring) 4114 { 4115 struct ixgbevf_tx_buffer *first; 4116 int tso; 4117 u32 tx_flags = 0; 4118 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4119 struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 }; 4120 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4121 unsigned short f; 4122 #endif 4123 u8 hdr_len = 0; 4124 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 4125 4126 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 4127 dev_kfree_skb_any(skb); 4128 return NETDEV_TX_OK; 4129 } 4130 4131 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 4132 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 4133 * + 2 desc gap to keep tail from touching head, 4134 * + 1 desc for context descriptor, 4135 * otherwise try next time 4136 */ 4137 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4138 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 4139 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 4140 #else 4141 count += skb_shinfo(skb)->nr_frags; 4142 #endif 4143 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 4144 tx_ring->tx_stats.tx_busy++; 4145 return NETDEV_TX_BUSY; 4146 } 4147 4148 /* record the location of the first descriptor for this packet */ 4149 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4150 first->skb = skb; 4151 first->bytecount = skb->len; 4152 first->gso_segs = 1; 4153 4154 if (skb_vlan_tag_present(skb)) { 4155 tx_flags |= skb_vlan_tag_get(skb); 4156 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 4157 tx_flags |= IXGBE_TX_FLAGS_VLAN; 4158 } 4159 4160 /* record initial flags and protocol */ 4161 first->tx_flags = tx_flags; 4162 first->protocol = vlan_get_protocol(skb); 4163 4164 #ifdef CONFIG_IXGBEVF_IPSEC 4165 if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx)) 4166 goto out_drop; 4167 #endif 4168 tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx); 4169 if (tso < 0) 4170 goto out_drop; 4171 else if (!tso) 4172 ixgbevf_tx_csum(tx_ring, first, &ipsec_tx); 4173 4174 ixgbevf_tx_map(tx_ring, first, hdr_len); 4175 4176 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 4177 4178 return NETDEV_TX_OK; 4179 4180 out_drop: 4181 dev_kfree_skb_any(first->skb); 4182 first->skb = NULL; 4183 4184 return NETDEV_TX_OK; 4185 } 4186 4187 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 4188 { 4189 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4190 struct ixgbevf_ring *tx_ring; 4191 4192 if (skb->len <= 0) { 4193 dev_kfree_skb_any(skb); 4194 return NETDEV_TX_OK; 4195 } 4196 4197 /* The minimum packet size for olinfo paylen is 17 so pad the skb 4198 * in order to meet this minimum size requirement. 4199 */ 4200 if (skb->len < 17) { 4201 if (skb_padto(skb, 17)) 4202 return NETDEV_TX_OK; 4203 skb->len = 17; 4204 } 4205 4206 tx_ring = adapter->tx_ring[skb->queue_mapping]; 4207 return ixgbevf_xmit_frame_ring(skb, tx_ring); 4208 } 4209 4210 /** 4211 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 4212 * @netdev: network interface device structure 4213 * @p: pointer to an address structure 4214 * 4215 * Returns 0 on success, negative on failure 4216 **/ 4217 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 4218 { 4219 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4220 struct ixgbe_hw *hw = &adapter->hw; 4221 struct sockaddr *addr = p; 4222 int err; 4223 4224 if (!is_valid_ether_addr(addr->sa_data)) 4225 return -EADDRNOTAVAIL; 4226 4227 spin_lock_bh(&adapter->mbx_lock); 4228 4229 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 4230 4231 spin_unlock_bh(&adapter->mbx_lock); 4232 4233 if (err) 4234 return -EPERM; 4235 4236 ether_addr_copy(hw->mac.addr, addr->sa_data); 4237 ether_addr_copy(hw->mac.perm_addr, addr->sa_data); 4238 ether_addr_copy(netdev->dev_addr, addr->sa_data); 4239 4240 return 0; 4241 } 4242 4243 /** 4244 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 4245 * @netdev: network interface device structure 4246 * @new_mtu: new value for maximum frame size 4247 * 4248 * Returns 0 on success, negative on failure 4249 **/ 4250 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 4251 { 4252 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4253 struct ixgbe_hw *hw = &adapter->hw; 4254 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 4255 int ret; 4256 4257 /* prevent MTU being changed to a size unsupported by XDP */ 4258 if (adapter->xdp_prog) { 4259 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n"); 4260 return -EPERM; 4261 } 4262 4263 spin_lock_bh(&adapter->mbx_lock); 4264 /* notify the PF of our intent to use this size of frame */ 4265 ret = hw->mac.ops.set_rlpml(hw, max_frame); 4266 spin_unlock_bh(&adapter->mbx_lock); 4267 if (ret) 4268 return -EINVAL; 4269 4270 hw_dbg(hw, "changing MTU from %d to %d\n", 4271 netdev->mtu, new_mtu); 4272 4273 /* must set new MTU before calling down or up */ 4274 netdev->mtu = new_mtu; 4275 4276 if (netif_running(netdev)) 4277 ixgbevf_reinit_locked(adapter); 4278 4279 return 0; 4280 } 4281 4282 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state) 4283 { 4284 struct net_device *netdev = pci_get_drvdata(pdev); 4285 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4286 #ifdef CONFIG_PM 4287 int retval = 0; 4288 #endif 4289 4290 rtnl_lock(); 4291 netif_device_detach(netdev); 4292 4293 if (netif_running(netdev)) 4294 ixgbevf_close_suspend(adapter); 4295 4296 ixgbevf_clear_interrupt_scheme(adapter); 4297 rtnl_unlock(); 4298 4299 #ifdef CONFIG_PM 4300 retval = pci_save_state(pdev); 4301 if (retval) 4302 return retval; 4303 4304 #endif 4305 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4306 pci_disable_device(pdev); 4307 4308 return 0; 4309 } 4310 4311 #ifdef CONFIG_PM 4312 static int ixgbevf_resume(struct pci_dev *pdev) 4313 { 4314 struct net_device *netdev = pci_get_drvdata(pdev); 4315 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4316 u32 err; 4317 4318 pci_restore_state(pdev); 4319 /* pci_restore_state clears dev->state_saved so call 4320 * pci_save_state to restore it. 4321 */ 4322 pci_save_state(pdev); 4323 4324 err = pci_enable_device_mem(pdev); 4325 if (err) { 4326 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 4327 return err; 4328 } 4329 4330 adapter->hw.hw_addr = adapter->io_addr; 4331 smp_mb__before_atomic(); 4332 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4333 pci_set_master(pdev); 4334 4335 ixgbevf_reset(adapter); 4336 4337 rtnl_lock(); 4338 err = ixgbevf_init_interrupt_scheme(adapter); 4339 if (!err && netif_running(netdev)) 4340 err = ixgbevf_open(netdev); 4341 rtnl_unlock(); 4342 if (err) 4343 return err; 4344 4345 netif_device_attach(netdev); 4346 4347 return err; 4348 } 4349 4350 #endif /* CONFIG_PM */ 4351 static void ixgbevf_shutdown(struct pci_dev *pdev) 4352 { 4353 ixgbevf_suspend(pdev, PMSG_SUSPEND); 4354 } 4355 4356 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats, 4357 const struct ixgbevf_ring *ring) 4358 { 4359 u64 bytes, packets; 4360 unsigned int start; 4361 4362 if (ring) { 4363 do { 4364 start = u64_stats_fetch_begin_irq(&ring->syncp); 4365 bytes = ring->stats.bytes; 4366 packets = ring->stats.packets; 4367 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4368 stats->tx_bytes += bytes; 4369 stats->tx_packets += packets; 4370 } 4371 } 4372 4373 static void ixgbevf_get_stats(struct net_device *netdev, 4374 struct rtnl_link_stats64 *stats) 4375 { 4376 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4377 unsigned int start; 4378 u64 bytes, packets; 4379 const struct ixgbevf_ring *ring; 4380 int i; 4381 4382 ixgbevf_update_stats(adapter); 4383 4384 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 4385 4386 rcu_read_lock(); 4387 for (i = 0; i < adapter->num_rx_queues; i++) { 4388 ring = adapter->rx_ring[i]; 4389 do { 4390 start = u64_stats_fetch_begin_irq(&ring->syncp); 4391 bytes = ring->stats.bytes; 4392 packets = ring->stats.packets; 4393 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4394 stats->rx_bytes += bytes; 4395 stats->rx_packets += packets; 4396 } 4397 4398 for (i = 0; i < adapter->num_tx_queues; i++) { 4399 ring = adapter->tx_ring[i]; 4400 ixgbevf_get_tx_ring_stats(stats, ring); 4401 } 4402 4403 for (i = 0; i < adapter->num_xdp_queues; i++) { 4404 ring = adapter->xdp_ring[i]; 4405 ixgbevf_get_tx_ring_stats(stats, ring); 4406 } 4407 rcu_read_unlock(); 4408 } 4409 4410 #define IXGBEVF_MAX_MAC_HDR_LEN 127 4411 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 4412 4413 static netdev_features_t 4414 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 4415 netdev_features_t features) 4416 { 4417 unsigned int network_hdr_len, mac_hdr_len; 4418 4419 /* Make certain the headers can be described by a context descriptor */ 4420 mac_hdr_len = skb_network_header(skb) - skb->data; 4421 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 4422 return features & ~(NETIF_F_HW_CSUM | 4423 NETIF_F_SCTP_CRC | 4424 NETIF_F_HW_VLAN_CTAG_TX | 4425 NETIF_F_TSO | 4426 NETIF_F_TSO6); 4427 4428 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4429 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 4430 return features & ~(NETIF_F_HW_CSUM | 4431 NETIF_F_SCTP_CRC | 4432 NETIF_F_TSO | 4433 NETIF_F_TSO6); 4434 4435 /* We can only support IPV4 TSO in tunnels if we can mangle the 4436 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4437 */ 4438 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4439 features &= ~NETIF_F_TSO; 4440 4441 return features; 4442 } 4443 4444 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog) 4445 { 4446 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4447 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4448 struct bpf_prog *old_prog; 4449 4450 /* verify ixgbevf ring attributes are sufficient for XDP */ 4451 for (i = 0; i < adapter->num_rx_queues; i++) { 4452 struct ixgbevf_ring *ring = adapter->rx_ring[i]; 4453 4454 if (frame_size > ixgbevf_rx_bufsz(ring)) 4455 return -EINVAL; 4456 } 4457 4458 old_prog = xchg(&adapter->xdp_prog, prog); 4459 4460 /* If transitioning XDP modes reconfigure rings */ 4461 if (!!prog != !!old_prog) { 4462 /* Hardware has to reinitialize queues and interrupts to 4463 * match packet buffer alignment. Unfortunately, the 4464 * hardware is not flexible enough to do this dynamically. 4465 */ 4466 if (netif_running(dev)) 4467 ixgbevf_close(dev); 4468 4469 ixgbevf_clear_interrupt_scheme(adapter); 4470 ixgbevf_init_interrupt_scheme(adapter); 4471 4472 if (netif_running(dev)) 4473 ixgbevf_open(dev); 4474 } else { 4475 for (i = 0; i < adapter->num_rx_queues; i++) 4476 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog); 4477 } 4478 4479 if (old_prog) 4480 bpf_prog_put(old_prog); 4481 4482 return 0; 4483 } 4484 4485 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4486 { 4487 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4488 4489 switch (xdp->command) { 4490 case XDP_SETUP_PROG: 4491 return ixgbevf_xdp_setup(dev, xdp->prog); 4492 case XDP_QUERY_PROG: 4493 xdp->prog_id = adapter->xdp_prog ? 4494 adapter->xdp_prog->aux->id : 0; 4495 return 0; 4496 default: 4497 return -EINVAL; 4498 } 4499 } 4500 4501 static const struct net_device_ops ixgbevf_netdev_ops = { 4502 .ndo_open = ixgbevf_open, 4503 .ndo_stop = ixgbevf_close, 4504 .ndo_start_xmit = ixgbevf_xmit_frame, 4505 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 4506 .ndo_get_stats64 = ixgbevf_get_stats, 4507 .ndo_validate_addr = eth_validate_addr, 4508 .ndo_set_mac_address = ixgbevf_set_mac, 4509 .ndo_change_mtu = ixgbevf_change_mtu, 4510 .ndo_tx_timeout = ixgbevf_tx_timeout, 4511 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 4512 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 4513 .ndo_features_check = ixgbevf_features_check, 4514 .ndo_bpf = ixgbevf_xdp, 4515 }; 4516 4517 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 4518 { 4519 dev->netdev_ops = &ixgbevf_netdev_ops; 4520 ixgbevf_set_ethtool_ops(dev); 4521 dev->watchdog_timeo = 5 * HZ; 4522 } 4523 4524 /** 4525 * ixgbevf_probe - Device Initialization Routine 4526 * @pdev: PCI device information struct 4527 * @ent: entry in ixgbevf_pci_tbl 4528 * 4529 * Returns 0 on success, negative on failure 4530 * 4531 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 4532 * The OS initialization, configuring of the adapter private structure, 4533 * and a hardware reset occur. 4534 **/ 4535 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4536 { 4537 struct net_device *netdev; 4538 struct ixgbevf_adapter *adapter = NULL; 4539 struct ixgbe_hw *hw = NULL; 4540 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 4541 int err, pci_using_dac; 4542 bool disable_dev = false; 4543 4544 err = pci_enable_device(pdev); 4545 if (err) 4546 return err; 4547 4548 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 4549 pci_using_dac = 1; 4550 } else { 4551 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4552 if (err) { 4553 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4554 goto err_dma; 4555 } 4556 pci_using_dac = 0; 4557 } 4558 4559 err = pci_request_regions(pdev, ixgbevf_driver_name); 4560 if (err) { 4561 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4562 goto err_pci_reg; 4563 } 4564 4565 pci_set_master(pdev); 4566 4567 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4568 MAX_TX_QUEUES); 4569 if (!netdev) { 4570 err = -ENOMEM; 4571 goto err_alloc_etherdev; 4572 } 4573 4574 SET_NETDEV_DEV(netdev, &pdev->dev); 4575 4576 adapter = netdev_priv(netdev); 4577 4578 adapter->netdev = netdev; 4579 adapter->pdev = pdev; 4580 hw = &adapter->hw; 4581 hw->back = adapter; 4582 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4583 4584 /* call save state here in standalone driver because it relies on 4585 * adapter struct to exist, and needs to call netdev_priv 4586 */ 4587 pci_save_state(pdev); 4588 4589 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4590 pci_resource_len(pdev, 0)); 4591 adapter->io_addr = hw->hw_addr; 4592 if (!hw->hw_addr) { 4593 err = -EIO; 4594 goto err_ioremap; 4595 } 4596 4597 ixgbevf_assign_netdev_ops(netdev); 4598 4599 /* Setup HW API */ 4600 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4601 hw->mac.type = ii->mac; 4602 4603 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 4604 sizeof(struct ixgbe_mbx_operations)); 4605 4606 /* setup the private structure */ 4607 err = ixgbevf_sw_init(adapter); 4608 if (err) 4609 goto err_sw_init; 4610 4611 /* The HW MAC address was set and/or determined in sw_init */ 4612 if (!is_valid_ether_addr(netdev->dev_addr)) { 4613 pr_err("invalid MAC address\n"); 4614 err = -EIO; 4615 goto err_sw_init; 4616 } 4617 4618 netdev->hw_features = NETIF_F_SG | 4619 NETIF_F_TSO | 4620 NETIF_F_TSO6 | 4621 NETIF_F_RXCSUM | 4622 NETIF_F_HW_CSUM | 4623 NETIF_F_SCTP_CRC; 4624 4625 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4626 NETIF_F_GSO_GRE_CSUM | \ 4627 NETIF_F_GSO_IPXIP4 | \ 4628 NETIF_F_GSO_IPXIP6 | \ 4629 NETIF_F_GSO_UDP_TUNNEL | \ 4630 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4631 4632 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4633 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4634 IXGBEVF_GSO_PARTIAL_FEATURES; 4635 4636 netdev->features = netdev->hw_features; 4637 4638 if (pci_using_dac) 4639 netdev->features |= NETIF_F_HIGHDMA; 4640 4641 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4642 netdev->mpls_features |= NETIF_F_SG | 4643 NETIF_F_TSO | 4644 NETIF_F_TSO6 | 4645 NETIF_F_HW_CSUM; 4646 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4647 netdev->hw_enc_features |= netdev->vlan_features; 4648 4649 /* set this bit last since it cannot be part of vlan_features */ 4650 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4651 NETIF_F_HW_VLAN_CTAG_RX | 4652 NETIF_F_HW_VLAN_CTAG_TX; 4653 4654 netdev->priv_flags |= IFF_UNICAST_FLT; 4655 4656 /* MTU range: 68 - 1504 or 9710 */ 4657 netdev->min_mtu = ETH_MIN_MTU; 4658 switch (adapter->hw.api_version) { 4659 case ixgbe_mbox_api_11: 4660 case ixgbe_mbox_api_12: 4661 case ixgbe_mbox_api_13: 4662 case ixgbe_mbox_api_14: 4663 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4664 (ETH_HLEN + ETH_FCS_LEN); 4665 break; 4666 default: 4667 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4668 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4669 (ETH_HLEN + ETH_FCS_LEN); 4670 else 4671 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4672 break; 4673 } 4674 4675 if (IXGBE_REMOVED(hw->hw_addr)) { 4676 err = -EIO; 4677 goto err_sw_init; 4678 } 4679 4680 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); 4681 4682 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4683 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4684 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4685 4686 err = ixgbevf_init_interrupt_scheme(adapter); 4687 if (err) 4688 goto err_sw_init; 4689 4690 strcpy(netdev->name, "eth%d"); 4691 4692 err = register_netdev(netdev); 4693 if (err) 4694 goto err_register; 4695 4696 pci_set_drvdata(pdev, netdev); 4697 netif_carrier_off(netdev); 4698 ixgbevf_init_ipsec_offload(adapter); 4699 4700 ixgbevf_init_last_counter_stats(adapter); 4701 4702 /* print the VF info */ 4703 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4704 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4705 4706 switch (hw->mac.type) { 4707 case ixgbe_mac_X550_vf: 4708 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4709 break; 4710 case ixgbe_mac_X540_vf: 4711 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4712 break; 4713 case ixgbe_mac_82599_vf: 4714 default: 4715 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4716 break; 4717 } 4718 4719 return 0; 4720 4721 err_register: 4722 ixgbevf_clear_interrupt_scheme(adapter); 4723 err_sw_init: 4724 ixgbevf_reset_interrupt_capability(adapter); 4725 iounmap(adapter->io_addr); 4726 kfree(adapter->rss_key); 4727 err_ioremap: 4728 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4729 free_netdev(netdev); 4730 err_alloc_etherdev: 4731 pci_release_regions(pdev); 4732 err_pci_reg: 4733 err_dma: 4734 if (!adapter || disable_dev) 4735 pci_disable_device(pdev); 4736 return err; 4737 } 4738 4739 /** 4740 * ixgbevf_remove - Device Removal Routine 4741 * @pdev: PCI device information struct 4742 * 4743 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4744 * that it should release a PCI device. The could be caused by a 4745 * Hot-Plug event, or because the driver is going to be removed from 4746 * memory. 4747 **/ 4748 static void ixgbevf_remove(struct pci_dev *pdev) 4749 { 4750 struct net_device *netdev = pci_get_drvdata(pdev); 4751 struct ixgbevf_adapter *adapter; 4752 bool disable_dev; 4753 4754 if (!netdev) 4755 return; 4756 4757 adapter = netdev_priv(netdev); 4758 4759 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4760 cancel_work_sync(&adapter->service_task); 4761 4762 if (netdev->reg_state == NETREG_REGISTERED) 4763 unregister_netdev(netdev); 4764 4765 ixgbevf_stop_ipsec_offload(adapter); 4766 ixgbevf_clear_interrupt_scheme(adapter); 4767 ixgbevf_reset_interrupt_capability(adapter); 4768 4769 iounmap(adapter->io_addr); 4770 pci_release_regions(pdev); 4771 4772 hw_dbg(&adapter->hw, "Remove complete\n"); 4773 4774 kfree(adapter->rss_key); 4775 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4776 free_netdev(netdev); 4777 4778 if (disable_dev) 4779 pci_disable_device(pdev); 4780 } 4781 4782 /** 4783 * ixgbevf_io_error_detected - called when PCI error is detected 4784 * @pdev: Pointer to PCI device 4785 * @state: The current pci connection state 4786 * 4787 * This function is called after a PCI bus error affecting 4788 * this device has been detected. 4789 **/ 4790 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4791 pci_channel_state_t state) 4792 { 4793 struct net_device *netdev = pci_get_drvdata(pdev); 4794 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4795 4796 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4797 return PCI_ERS_RESULT_DISCONNECT; 4798 4799 rtnl_lock(); 4800 netif_device_detach(netdev); 4801 4802 if (netif_running(netdev)) 4803 ixgbevf_close_suspend(adapter); 4804 4805 if (state == pci_channel_io_perm_failure) { 4806 rtnl_unlock(); 4807 return PCI_ERS_RESULT_DISCONNECT; 4808 } 4809 4810 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4811 pci_disable_device(pdev); 4812 rtnl_unlock(); 4813 4814 /* Request a slot slot reset. */ 4815 return PCI_ERS_RESULT_NEED_RESET; 4816 } 4817 4818 /** 4819 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4820 * @pdev: Pointer to PCI device 4821 * 4822 * Restart the card from scratch, as if from a cold-boot. Implementation 4823 * resembles the first-half of the ixgbevf_resume routine. 4824 **/ 4825 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4826 { 4827 struct net_device *netdev = pci_get_drvdata(pdev); 4828 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4829 4830 if (pci_enable_device_mem(pdev)) { 4831 dev_err(&pdev->dev, 4832 "Cannot re-enable PCI device after reset.\n"); 4833 return PCI_ERS_RESULT_DISCONNECT; 4834 } 4835 4836 adapter->hw.hw_addr = adapter->io_addr; 4837 smp_mb__before_atomic(); 4838 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4839 pci_set_master(pdev); 4840 4841 ixgbevf_reset(adapter); 4842 4843 return PCI_ERS_RESULT_RECOVERED; 4844 } 4845 4846 /** 4847 * ixgbevf_io_resume - called when traffic can start flowing again. 4848 * @pdev: Pointer to PCI device 4849 * 4850 * This callback is called when the error recovery driver tells us that 4851 * its OK to resume normal operation. Implementation resembles the 4852 * second-half of the ixgbevf_resume routine. 4853 **/ 4854 static void ixgbevf_io_resume(struct pci_dev *pdev) 4855 { 4856 struct net_device *netdev = pci_get_drvdata(pdev); 4857 4858 rtnl_lock(); 4859 if (netif_running(netdev)) 4860 ixgbevf_open(netdev); 4861 4862 netif_device_attach(netdev); 4863 rtnl_unlock(); 4864 } 4865 4866 /* PCI Error Recovery (ERS) */ 4867 static const struct pci_error_handlers ixgbevf_err_handler = { 4868 .error_detected = ixgbevf_io_error_detected, 4869 .slot_reset = ixgbevf_io_slot_reset, 4870 .resume = ixgbevf_io_resume, 4871 }; 4872 4873 static struct pci_driver ixgbevf_driver = { 4874 .name = ixgbevf_driver_name, 4875 .id_table = ixgbevf_pci_tbl, 4876 .probe = ixgbevf_probe, 4877 .remove = ixgbevf_remove, 4878 #ifdef CONFIG_PM 4879 /* Power Management Hooks */ 4880 .suspend = ixgbevf_suspend, 4881 .resume = ixgbevf_resume, 4882 #endif 4883 .shutdown = ixgbevf_shutdown, 4884 .err_handler = &ixgbevf_err_handler 4885 }; 4886 4887 /** 4888 * ixgbevf_init_module - Driver Registration Routine 4889 * 4890 * ixgbevf_init_module is the first routine called when the driver is 4891 * loaded. All it does is register with the PCI subsystem. 4892 **/ 4893 static int __init ixgbevf_init_module(void) 4894 { 4895 pr_info("%s - version %s\n", ixgbevf_driver_string, 4896 ixgbevf_driver_version); 4897 4898 pr_info("%s\n", ixgbevf_copyright); 4899 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4900 if (!ixgbevf_wq) { 4901 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4902 return -ENOMEM; 4903 } 4904 4905 return pci_register_driver(&ixgbevf_driver); 4906 } 4907 4908 module_init(ixgbevf_init_module); 4909 4910 /** 4911 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4912 * 4913 * ixgbevf_exit_module is called just before the driver is removed 4914 * from memory. 4915 **/ 4916 static void __exit ixgbevf_exit_module(void) 4917 { 4918 pci_unregister_driver(&ixgbevf_driver); 4919 if (ixgbevf_wq) { 4920 destroy_workqueue(ixgbevf_wq); 4921 ixgbevf_wq = NULL; 4922 } 4923 } 4924 4925 #ifdef DEBUG 4926 /** 4927 * ixgbevf_get_hw_dev_name - return device name string 4928 * used by hardware layer to print debugging information 4929 * @hw: pointer to private hardware struct 4930 **/ 4931 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4932 { 4933 struct ixgbevf_adapter *adapter = hw->back; 4934 4935 return adapter->netdev->name; 4936 } 4937 4938 #endif 4939 module_exit(ixgbevf_exit_module); 4940 4941 /* ixgbevf_main.c */ 4942