xref: /linux/drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c (revision d96fc832bcb6269d96e33d506f33033d7ed08598)
1 /*******************************************************************************
2 
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2015 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17 
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20 
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 
25 *******************************************************************************/
26 
27 /******************************************************************************
28  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
29 ******************************************************************************/
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/types.h>
34 #include <linux/bitops.h>
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/vmalloc.h>
39 #include <linux/string.h>
40 #include <linux/in.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/sctp.h>
44 #include <linux/ipv6.h>
45 #include <linux/slab.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/ethtool.h>
49 #include <linux/if.h>
50 #include <linux/if_vlan.h>
51 #include <linux/prefetch.h>
52 #include <net/mpls.h>
53 
54 #include "ixgbevf.h"
55 
56 const char ixgbevf_driver_name[] = "ixgbevf";
57 static const char ixgbevf_driver_string[] =
58 	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
59 
60 #define DRV_VERSION "4.1.0-k"
61 const char ixgbevf_driver_version[] = DRV_VERSION;
62 static char ixgbevf_copyright[] =
63 	"Copyright (c) 2009 - 2015 Intel Corporation.";
64 
65 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
66 	[board_82599_vf]	= &ixgbevf_82599_vf_info,
67 	[board_82599_vf_hv]	= &ixgbevf_82599_vf_hv_info,
68 	[board_X540_vf]		= &ixgbevf_X540_vf_info,
69 	[board_X540_vf_hv]	= &ixgbevf_X540_vf_hv_info,
70 	[board_X550_vf]		= &ixgbevf_X550_vf_info,
71 	[board_X550_vf_hv]	= &ixgbevf_X550_vf_hv_info,
72 	[board_X550EM_x_vf]	= &ixgbevf_X550EM_x_vf_info,
73 	[board_X550EM_x_vf_hv]	= &ixgbevf_X550EM_x_vf_hv_info,
74 	[board_x550em_a_vf]	= &ixgbevf_x550em_a_vf_info,
75 };
76 
77 /* ixgbevf_pci_tbl - PCI Device ID Table
78  *
79  * Wildcard entries (PCI_ANY_ID) should come last
80  * Last entry must be all 0s
81  *
82  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
83  *   Class, Class Mask, private data (not used) }
84  */
85 static const struct pci_device_id ixgbevf_pci_tbl[] = {
86 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
87 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv },
88 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
89 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv },
90 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
91 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv },
92 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
93 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv},
94 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf },
95 	/* required last entry */
96 	{0, }
97 };
98 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
99 
100 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
101 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
102 MODULE_LICENSE("GPL");
103 MODULE_VERSION(DRV_VERSION);
104 
105 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
106 static int debug = -1;
107 module_param(debug, int, 0);
108 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
109 
110 static struct workqueue_struct *ixgbevf_wq;
111 
112 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
113 {
114 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
115 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
116 	    !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
117 		queue_work(ixgbevf_wq, &adapter->service_task);
118 }
119 
120 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
121 {
122 	BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
123 
124 	/* flush memory to make sure state is correct before next watchdog */
125 	smp_mb__before_atomic();
126 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
127 }
128 
129 /* forward decls */
130 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
131 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
132 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
133 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer);
134 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
135 				  struct ixgbevf_rx_buffer *old_buff);
136 
137 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
138 {
139 	struct ixgbevf_adapter *adapter = hw->back;
140 
141 	if (!hw->hw_addr)
142 		return;
143 	hw->hw_addr = NULL;
144 	dev_err(&adapter->pdev->dev, "Adapter removed\n");
145 	if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
146 		ixgbevf_service_event_schedule(adapter);
147 }
148 
149 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
150 {
151 	u32 value;
152 
153 	/* The following check not only optimizes a bit by not
154 	 * performing a read on the status register when the
155 	 * register just read was a status register read that
156 	 * returned IXGBE_FAILED_READ_REG. It also blocks any
157 	 * potential recursion.
158 	 */
159 	if (reg == IXGBE_VFSTATUS) {
160 		ixgbevf_remove_adapter(hw);
161 		return;
162 	}
163 	value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
164 	if (value == IXGBE_FAILED_READ_REG)
165 		ixgbevf_remove_adapter(hw);
166 }
167 
168 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
169 {
170 	u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr);
171 	u32 value;
172 
173 	if (IXGBE_REMOVED(reg_addr))
174 		return IXGBE_FAILED_READ_REG;
175 	value = readl(reg_addr + reg);
176 	if (unlikely(value == IXGBE_FAILED_READ_REG))
177 		ixgbevf_check_remove(hw, reg);
178 	return value;
179 }
180 
181 /**
182  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
183  * @adapter: pointer to adapter struct
184  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
185  * @queue: queue to map the corresponding interrupt to
186  * @msix_vector: the vector to map to the corresponding queue
187  **/
188 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
189 			     u8 queue, u8 msix_vector)
190 {
191 	u32 ivar, index;
192 	struct ixgbe_hw *hw = &adapter->hw;
193 
194 	if (direction == -1) {
195 		/* other causes */
196 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
197 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
198 		ivar &= ~0xFF;
199 		ivar |= msix_vector;
200 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
201 	} else {
202 		/* Tx or Rx causes */
203 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
204 		index = ((16 * (queue & 1)) + (8 * direction));
205 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
206 		ivar &= ~(0xFF << index);
207 		ivar |= (msix_vector << index);
208 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
209 	}
210 }
211 
212 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
213 {
214 	return ring->stats.packets;
215 }
216 
217 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
218 {
219 	struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
220 	struct ixgbe_hw *hw = &adapter->hw;
221 
222 	u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
223 	u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
224 
225 	if (head != tail)
226 		return (head < tail) ?
227 			tail - head : (tail + ring->count - head);
228 
229 	return 0;
230 }
231 
232 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
233 {
234 	u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
235 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
236 	u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
237 
238 	clear_check_for_tx_hang(tx_ring);
239 
240 	/* Check for a hung queue, but be thorough. This verifies
241 	 * that a transmit has been completed since the previous
242 	 * check AND there is at least one packet pending. The
243 	 * ARMED bit is set to indicate a potential hang.
244 	 */
245 	if ((tx_done_old == tx_done) && tx_pending) {
246 		/* make sure it is true for two checks in a row */
247 		return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
248 					&tx_ring->state);
249 	}
250 	/* reset the countdown */
251 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
252 
253 	/* update completed stats and continue */
254 	tx_ring->tx_stats.tx_done_old = tx_done;
255 
256 	return false;
257 }
258 
259 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
260 {
261 	/* Do the reset outside of interrupt context */
262 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
263 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
264 		ixgbevf_service_event_schedule(adapter);
265 	}
266 }
267 
268 /**
269  * ixgbevf_tx_timeout - Respond to a Tx Hang
270  * @netdev: network interface device structure
271  **/
272 static void ixgbevf_tx_timeout(struct net_device *netdev)
273 {
274 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
275 
276 	ixgbevf_tx_timeout_reset(adapter);
277 }
278 
279 /**
280  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
281  * @q_vector: board private structure
282  * @tx_ring: tx ring to clean
283  * @napi_budget: Used to determine if we are in netpoll
284  **/
285 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
286 				 struct ixgbevf_ring *tx_ring, int napi_budget)
287 {
288 	struct ixgbevf_adapter *adapter = q_vector->adapter;
289 	struct ixgbevf_tx_buffer *tx_buffer;
290 	union ixgbe_adv_tx_desc *tx_desc;
291 	unsigned int total_bytes = 0, total_packets = 0;
292 	unsigned int budget = tx_ring->count / 2;
293 	unsigned int i = tx_ring->next_to_clean;
294 
295 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
296 		return true;
297 
298 	tx_buffer = &tx_ring->tx_buffer_info[i];
299 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
300 	i -= tx_ring->count;
301 
302 	do {
303 		union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
304 
305 		/* if next_to_watch is not set then there is no work pending */
306 		if (!eop_desc)
307 			break;
308 
309 		/* prevent any other reads prior to eop_desc */
310 		smp_rmb();
311 
312 		/* if DD is not set pending work has not been completed */
313 		if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
314 			break;
315 
316 		/* clear next_to_watch to prevent false hangs */
317 		tx_buffer->next_to_watch = NULL;
318 
319 		/* update the statistics for this packet */
320 		total_bytes += tx_buffer->bytecount;
321 		total_packets += tx_buffer->gso_segs;
322 
323 		/* free the skb */
324 		napi_consume_skb(tx_buffer->skb, napi_budget);
325 
326 		/* unmap skb header data */
327 		dma_unmap_single(tx_ring->dev,
328 				 dma_unmap_addr(tx_buffer, dma),
329 				 dma_unmap_len(tx_buffer, len),
330 				 DMA_TO_DEVICE);
331 
332 		/* clear tx_buffer data */
333 		dma_unmap_len_set(tx_buffer, len, 0);
334 
335 		/* unmap remaining buffers */
336 		while (tx_desc != eop_desc) {
337 			tx_buffer++;
338 			tx_desc++;
339 			i++;
340 			if (unlikely(!i)) {
341 				i -= tx_ring->count;
342 				tx_buffer = tx_ring->tx_buffer_info;
343 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
344 			}
345 
346 			/* unmap any remaining paged data */
347 			if (dma_unmap_len(tx_buffer, len)) {
348 				dma_unmap_page(tx_ring->dev,
349 					       dma_unmap_addr(tx_buffer, dma),
350 					       dma_unmap_len(tx_buffer, len),
351 					       DMA_TO_DEVICE);
352 				dma_unmap_len_set(tx_buffer, len, 0);
353 			}
354 		}
355 
356 		/* move us one more past the eop_desc for start of next pkt */
357 		tx_buffer++;
358 		tx_desc++;
359 		i++;
360 		if (unlikely(!i)) {
361 			i -= tx_ring->count;
362 			tx_buffer = tx_ring->tx_buffer_info;
363 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
364 		}
365 
366 		/* issue prefetch for next Tx descriptor */
367 		prefetch(tx_desc);
368 
369 		/* update budget accounting */
370 		budget--;
371 	} while (likely(budget));
372 
373 	i += tx_ring->count;
374 	tx_ring->next_to_clean = i;
375 	u64_stats_update_begin(&tx_ring->syncp);
376 	tx_ring->stats.bytes += total_bytes;
377 	tx_ring->stats.packets += total_packets;
378 	u64_stats_update_end(&tx_ring->syncp);
379 	q_vector->tx.total_bytes += total_bytes;
380 	q_vector->tx.total_packets += total_packets;
381 
382 	if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
383 		struct ixgbe_hw *hw = &adapter->hw;
384 		union ixgbe_adv_tx_desc *eop_desc;
385 
386 		eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
387 
388 		pr_err("Detected Tx Unit Hang\n"
389 		       "  Tx Queue             <%d>\n"
390 		       "  TDH, TDT             <%x>, <%x>\n"
391 		       "  next_to_use          <%x>\n"
392 		       "  next_to_clean        <%x>\n"
393 		       "tx_buffer_info[next_to_clean]\n"
394 		       "  next_to_watch        <%p>\n"
395 		       "  eop_desc->wb.status  <%x>\n"
396 		       "  time_stamp           <%lx>\n"
397 		       "  jiffies              <%lx>\n",
398 		       tx_ring->queue_index,
399 		       IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
400 		       IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
401 		       tx_ring->next_to_use, i,
402 		       eop_desc, (eop_desc ? eop_desc->wb.status : 0),
403 		       tx_ring->tx_buffer_info[i].time_stamp, jiffies);
404 
405 		netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
406 
407 		/* schedule immediate reset if we believe we hung */
408 		ixgbevf_tx_timeout_reset(adapter);
409 
410 		return true;
411 	}
412 
413 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
414 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
415 		     (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
416 		/* Make sure that anybody stopping the queue after this
417 		 * sees the new next_to_clean.
418 		 */
419 		smp_mb();
420 
421 		if (__netif_subqueue_stopped(tx_ring->netdev,
422 					     tx_ring->queue_index) &&
423 		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
424 			netif_wake_subqueue(tx_ring->netdev,
425 					    tx_ring->queue_index);
426 			++tx_ring->tx_stats.restart_queue;
427 		}
428 	}
429 
430 	return !!budget;
431 }
432 
433 /**
434  * ixgbevf_rx_skb - Helper function to determine proper Rx method
435  * @q_vector: structure containing interrupt and ring information
436  * @skb: packet to send up
437  **/
438 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
439 			   struct sk_buff *skb)
440 {
441 	napi_gro_receive(&q_vector->napi, skb);
442 }
443 
444 #define IXGBE_RSS_L4_TYPES_MASK \
445 	((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
446 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
447 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
448 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
449 
450 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
451 				   union ixgbe_adv_rx_desc *rx_desc,
452 				   struct sk_buff *skb)
453 {
454 	u16 rss_type;
455 
456 	if (!(ring->netdev->features & NETIF_F_RXHASH))
457 		return;
458 
459 	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
460 		   IXGBE_RXDADV_RSSTYPE_MASK;
461 
462 	if (!rss_type)
463 		return;
464 
465 	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
466 		     (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
467 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
468 }
469 
470 /**
471  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
472  * @ring: structure containig ring specific data
473  * @rx_desc: current Rx descriptor being processed
474  * @skb: skb currently being received and modified
475  **/
476 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
477 				       union ixgbe_adv_rx_desc *rx_desc,
478 				       struct sk_buff *skb)
479 {
480 	skb_checksum_none_assert(skb);
481 
482 	/* Rx csum disabled */
483 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
484 		return;
485 
486 	/* if IP and error */
487 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
488 	    ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
489 		ring->rx_stats.csum_err++;
490 		return;
491 	}
492 
493 	if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
494 		return;
495 
496 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
497 		ring->rx_stats.csum_err++;
498 		return;
499 	}
500 
501 	/* It must be a TCP or UDP packet with a valid checksum */
502 	skb->ip_summed = CHECKSUM_UNNECESSARY;
503 }
504 
505 /**
506  * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
507  * @rx_ring: rx descriptor ring packet is being transacted on
508  * @rx_desc: pointer to the EOP Rx descriptor
509  * @skb: pointer to current skb being populated
510  *
511  * This function checks the ring, descriptor, and packet information in
512  * order to populate the checksum, VLAN, protocol, and other fields within
513  * the skb.
514  **/
515 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
516 				       union ixgbe_adv_rx_desc *rx_desc,
517 				       struct sk_buff *skb)
518 {
519 	ixgbevf_rx_hash(rx_ring, rx_desc, skb);
520 	ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
521 
522 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
523 		u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
524 		unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
525 
526 		if (test_bit(vid & VLAN_VID_MASK, active_vlans))
527 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
528 	}
529 
530 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
531 }
532 
533 static
534 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring,
535 						const unsigned int size)
536 {
537 	struct ixgbevf_rx_buffer *rx_buffer;
538 
539 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
540 	prefetchw(rx_buffer->page);
541 
542 	/* we are reusing so sync this buffer for CPU use */
543 	dma_sync_single_range_for_cpu(rx_ring->dev,
544 				      rx_buffer->dma,
545 				      rx_buffer->page_offset,
546 				      size,
547 				      DMA_FROM_DEVICE);
548 
549 	rx_buffer->pagecnt_bias--;
550 
551 	return rx_buffer;
552 }
553 
554 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring,
555 				  struct ixgbevf_rx_buffer *rx_buffer)
556 {
557 	if (ixgbevf_can_reuse_rx_page(rx_buffer)) {
558 		/* hand second half of page back to the ring */
559 		ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
560 	} else {
561 		/* We are not reusing the buffer so unmap it and free
562 		 * any references we are holding to it
563 		 */
564 		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
565 				     ixgbevf_rx_pg_size(rx_ring),
566 				     DMA_FROM_DEVICE,
567 				     IXGBEVF_RX_DMA_ATTR);
568 		__page_frag_cache_drain(rx_buffer->page,
569 					rx_buffer->pagecnt_bias);
570 	}
571 
572 	/* clear contents of rx_buffer */
573 	rx_buffer->page = NULL;
574 }
575 
576 /**
577  * ixgbevf_is_non_eop - process handling of non-EOP buffers
578  * @rx_ring: Rx ring being processed
579  * @rx_desc: Rx descriptor for current buffer
580  *
581  * This function updates next to clean.  If the buffer is an EOP buffer
582  * this function exits returning false, otherwise it will place the
583  * sk_buff in the next buffer to be chained and return true indicating
584  * that this is in fact a non-EOP buffer.
585  **/
586 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
587 			       union ixgbe_adv_rx_desc *rx_desc)
588 {
589 	u32 ntc = rx_ring->next_to_clean + 1;
590 
591 	/* fetch, update, and store next to clean */
592 	ntc = (ntc < rx_ring->count) ? ntc : 0;
593 	rx_ring->next_to_clean = ntc;
594 
595 	prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
596 
597 	if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
598 		return false;
599 
600 	return true;
601 }
602 
603 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring)
604 {
605 	return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0;
606 }
607 
608 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
609 				      struct ixgbevf_rx_buffer *bi)
610 {
611 	struct page *page = bi->page;
612 	dma_addr_t dma;
613 
614 	/* since we are recycling buffers we should seldom need to alloc */
615 	if (likely(page))
616 		return true;
617 
618 	/* alloc new page for storage */
619 	page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring));
620 	if (unlikely(!page)) {
621 		rx_ring->rx_stats.alloc_rx_page_failed++;
622 		return false;
623 	}
624 
625 	/* map page for use */
626 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
627 				 ixgbevf_rx_pg_size(rx_ring),
628 				 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR);
629 
630 	/* if mapping failed free memory back to system since
631 	 * there isn't much point in holding memory we can't use
632 	 */
633 	if (dma_mapping_error(rx_ring->dev, dma)) {
634 		__free_pages(page, ixgbevf_rx_pg_order(rx_ring));
635 
636 		rx_ring->rx_stats.alloc_rx_page_failed++;
637 		return false;
638 	}
639 
640 	bi->dma = dma;
641 	bi->page = page;
642 	bi->page_offset = ixgbevf_rx_offset(rx_ring);
643 	bi->pagecnt_bias = 1;
644 	rx_ring->rx_stats.alloc_rx_page++;
645 
646 	return true;
647 }
648 
649 /**
650  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
651  * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
652  * @cleaned_count: number of buffers to replace
653  **/
654 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
655 				     u16 cleaned_count)
656 {
657 	union ixgbe_adv_rx_desc *rx_desc;
658 	struct ixgbevf_rx_buffer *bi;
659 	unsigned int i = rx_ring->next_to_use;
660 
661 	/* nothing to do or no valid netdev defined */
662 	if (!cleaned_count || !rx_ring->netdev)
663 		return;
664 
665 	rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
666 	bi = &rx_ring->rx_buffer_info[i];
667 	i -= rx_ring->count;
668 
669 	do {
670 		if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
671 			break;
672 
673 		/* sync the buffer for use by the device */
674 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
675 						 bi->page_offset,
676 						 ixgbevf_rx_bufsz(rx_ring),
677 						 DMA_FROM_DEVICE);
678 
679 		/* Refresh the desc even if pkt_addr didn't change
680 		 * because each write-back erases this info.
681 		 */
682 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
683 
684 		rx_desc++;
685 		bi++;
686 		i++;
687 		if (unlikely(!i)) {
688 			rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
689 			bi = rx_ring->rx_buffer_info;
690 			i -= rx_ring->count;
691 		}
692 
693 		/* clear the length for the next_to_use descriptor */
694 		rx_desc->wb.upper.length = 0;
695 
696 		cleaned_count--;
697 	} while (cleaned_count);
698 
699 	i += rx_ring->count;
700 
701 	if (rx_ring->next_to_use != i) {
702 		/* record the next descriptor to use */
703 		rx_ring->next_to_use = i;
704 
705 		/* update next to alloc since we have filled the ring */
706 		rx_ring->next_to_alloc = i;
707 
708 		/* Force memory writes to complete before letting h/w
709 		 * know there are new descriptors to fetch.  (Only
710 		 * applicable for weak-ordered memory model archs,
711 		 * such as IA-64).
712 		 */
713 		wmb();
714 		ixgbevf_write_tail(rx_ring, i);
715 	}
716 }
717 
718 /**
719  * ixgbevf_cleanup_headers - Correct corrupted or empty headers
720  * @rx_ring: rx descriptor ring packet is being transacted on
721  * @rx_desc: pointer to the EOP Rx descriptor
722  * @skb: pointer to current skb being fixed
723  *
724  * Check for corrupted packet headers caused by senders on the local L2
725  * embedded NIC switch not setting up their Tx Descriptors right.  These
726  * should be very rare.
727  *
728  * Also address the case where we are pulling data in on pages only
729  * and as such no data is present in the skb header.
730  *
731  * In addition if skb is not at least 60 bytes we need to pad it so that
732  * it is large enough to qualify as a valid Ethernet frame.
733  *
734  * Returns true if an error was encountered and skb was freed.
735  **/
736 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
737 				    union ixgbe_adv_rx_desc *rx_desc,
738 				    struct sk_buff *skb)
739 {
740 	/* verify that the packet does not have any known errors */
741 	if (unlikely(ixgbevf_test_staterr(rx_desc,
742 					  IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
743 		struct net_device *netdev = rx_ring->netdev;
744 
745 		if (!(netdev->features & NETIF_F_RXALL)) {
746 			dev_kfree_skb_any(skb);
747 			return true;
748 		}
749 	}
750 
751 	/* if eth_skb_pad returns an error the skb was freed */
752 	if (eth_skb_pad(skb))
753 		return true;
754 
755 	return false;
756 }
757 
758 /**
759  * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
760  * @rx_ring: rx descriptor ring to store buffers on
761  * @old_buff: donor buffer to have page reused
762  *
763  * Synchronizes page for reuse by the adapter
764  **/
765 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
766 				  struct ixgbevf_rx_buffer *old_buff)
767 {
768 	struct ixgbevf_rx_buffer *new_buff;
769 	u16 nta = rx_ring->next_to_alloc;
770 
771 	new_buff = &rx_ring->rx_buffer_info[nta];
772 
773 	/* update, and store next to alloc */
774 	nta++;
775 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
776 
777 	/* transfer page from old buffer to new buffer */
778 	new_buff->page = old_buff->page;
779 	new_buff->dma = old_buff->dma;
780 	new_buff->page_offset = old_buff->page_offset;
781 	new_buff->pagecnt_bias = old_buff->pagecnt_bias;
782 }
783 
784 static inline bool ixgbevf_page_is_reserved(struct page *page)
785 {
786 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
787 }
788 
789 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer)
790 {
791 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
792 	struct page *page = rx_buffer->page;
793 
794 	/* avoid re-using remote pages */
795 	if (unlikely(ixgbevf_page_is_reserved(page)))
796 		return false;
797 
798 #if (PAGE_SIZE < 8192)
799 	/* if we are only owner of page we can reuse it */
800 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
801 		return false;
802 #else
803 #define IXGBEVF_LAST_OFFSET \
804 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048)
805 
806 	if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET)
807 		return false;
808 
809 #endif
810 
811 	/* If we have drained the page fragment pool we need to update
812 	 * the pagecnt_bias and page count so that we fully restock the
813 	 * number of references the driver holds.
814 	 */
815 	if (unlikely(!pagecnt_bias)) {
816 		page_ref_add(page, USHRT_MAX);
817 		rx_buffer->pagecnt_bias = USHRT_MAX;
818 	}
819 
820 	return true;
821 }
822 
823 /**
824  * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
825  * @rx_ring: rx descriptor ring to transact packets on
826  * @rx_buffer: buffer containing page to add
827  * @skb: sk_buff to place the data into
828  * @size: size of buffer to be added
829  *
830  * This function will add the data contained in rx_buffer->page to the skb.
831  **/
832 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
833 				struct ixgbevf_rx_buffer *rx_buffer,
834 				struct sk_buff *skb,
835 				unsigned int size)
836 {
837 #if (PAGE_SIZE < 8192)
838 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
839 #else
840 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
841 				SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) :
842 				SKB_DATA_ALIGN(size);
843 #endif
844 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
845 			rx_buffer->page_offset, size, truesize);
846 #if (PAGE_SIZE < 8192)
847 	rx_buffer->page_offset ^= truesize;
848 #else
849 	rx_buffer->page_offset += truesize;
850 #endif
851 }
852 
853 static
854 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring,
855 				      struct ixgbevf_rx_buffer *rx_buffer,
856 				      union ixgbe_adv_rx_desc *rx_desc,
857 				      unsigned int size)
858 {
859 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
860 #if (PAGE_SIZE < 8192)
861 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
862 #else
863 	unsigned int truesize = SKB_DATA_ALIGN(size);
864 #endif
865 	unsigned int headlen;
866 	struct sk_buff *skb;
867 
868 	/* prefetch first cache line of first page */
869 	prefetch(va);
870 #if L1_CACHE_BYTES < 128
871 	prefetch(va + L1_CACHE_BYTES);
872 #endif
873 
874 	/* allocate a skb to store the frags */
875 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE);
876 	if (unlikely(!skb))
877 		return NULL;
878 
879 	/* Determine available headroom for copy */
880 	headlen = size;
881 	if (headlen > IXGBEVF_RX_HDR_SIZE)
882 		headlen = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE);
883 
884 	/* align pull length to size of long to optimize memcpy performance */
885 	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
886 
887 	/* update all of the pointers */
888 	size -= headlen;
889 	if (size) {
890 		skb_add_rx_frag(skb, 0, rx_buffer->page,
891 				(va + headlen) - page_address(rx_buffer->page),
892 				size, truesize);
893 #if (PAGE_SIZE < 8192)
894 		rx_buffer->page_offset ^= truesize;
895 #else
896 		rx_buffer->page_offset += truesize;
897 #endif
898 	} else {
899 		rx_buffer->pagecnt_bias++;
900 	}
901 
902 	return skb;
903 }
904 
905 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
906 					     u32 qmask)
907 {
908 	struct ixgbe_hw *hw = &adapter->hw;
909 
910 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
911 }
912 
913 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring,
914 					 struct ixgbevf_rx_buffer *rx_buffer,
915 					 union ixgbe_adv_rx_desc *rx_desc,
916 					 unsigned int size)
917 {
918 	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
919 #if (PAGE_SIZE < 8192)
920 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
921 #else
922 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
923 				SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size);
924 #endif
925 	struct sk_buff *skb;
926 
927 	/* prefetch first cache line of first page */
928 	prefetch(va);
929 #if L1_CACHE_BYTES < 128
930 	prefetch(va + L1_CACHE_BYTES);
931 #endif
932 
933 	/* build an skb to around the page buffer */
934 	skb = build_skb(va - IXGBEVF_SKB_PAD, truesize);
935 	if (unlikely(!skb))
936 		return NULL;
937 
938 	/* update pointers within the skb to store the data */
939 	skb_reserve(skb, IXGBEVF_SKB_PAD);
940 	__skb_put(skb, size);
941 
942 	/* update buffer offset */
943 #if (PAGE_SIZE < 8192)
944 	rx_buffer->page_offset ^= truesize;
945 #else
946 	rx_buffer->page_offset += truesize;
947 #endif
948 
949 	return skb;
950 }
951 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
952 				struct ixgbevf_ring *rx_ring,
953 				int budget)
954 {
955 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
956 	u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
957 	struct sk_buff *skb = rx_ring->skb;
958 
959 	while (likely(total_rx_packets < budget)) {
960 		union ixgbe_adv_rx_desc *rx_desc;
961 		struct ixgbevf_rx_buffer *rx_buffer;
962 		unsigned int size;
963 
964 		/* return some buffers to hardware, one at a time is too slow */
965 		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
966 			ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
967 			cleaned_count = 0;
968 		}
969 
970 		rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
971 		size = le16_to_cpu(rx_desc->wb.upper.length);
972 		if (!size)
973 			break;
974 
975 		/* This memory barrier is needed to keep us from reading
976 		 * any other fields out of the rx_desc until we know the
977 		 * RXD_STAT_DD bit is set
978 		 */
979 		rmb();
980 
981 		rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size);
982 
983 		/* retrieve a buffer from the ring */
984 		if (skb)
985 			ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size);
986 		else if (ring_uses_build_skb(rx_ring))
987 			skb = ixgbevf_build_skb(rx_ring, rx_buffer,
988 						rx_desc, size);
989 		else
990 			skb = ixgbevf_construct_skb(rx_ring, rx_buffer,
991 						    rx_desc, size);
992 
993 		/* exit if we failed to retrieve a buffer */
994 		if (!skb) {
995 			rx_ring->rx_stats.alloc_rx_buff_failed++;
996 			rx_buffer->pagecnt_bias++;
997 			break;
998 		}
999 
1000 		ixgbevf_put_rx_buffer(rx_ring, rx_buffer);
1001 		cleaned_count++;
1002 
1003 		/* fetch next buffer in frame if non-eop */
1004 		if (ixgbevf_is_non_eop(rx_ring, rx_desc))
1005 			continue;
1006 
1007 		/* verify the packet layout is correct */
1008 		if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
1009 			skb = NULL;
1010 			continue;
1011 		}
1012 
1013 		/* probably a little skewed due to removing CRC */
1014 		total_rx_bytes += skb->len;
1015 
1016 		/* Workaround hardware that can't do proper VEPA multicast
1017 		 * source pruning.
1018 		 */
1019 		if ((skb->pkt_type == PACKET_BROADCAST ||
1020 		     skb->pkt_type == PACKET_MULTICAST) &&
1021 		    ether_addr_equal(rx_ring->netdev->dev_addr,
1022 				     eth_hdr(skb)->h_source)) {
1023 			dev_kfree_skb_irq(skb);
1024 			continue;
1025 		}
1026 
1027 		/* populate checksum, VLAN, and protocol */
1028 		ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
1029 
1030 		ixgbevf_rx_skb(q_vector, skb);
1031 
1032 		/* reset skb pointer */
1033 		skb = NULL;
1034 
1035 		/* update budget accounting */
1036 		total_rx_packets++;
1037 	}
1038 
1039 	/* place incomplete frames back on ring for completion */
1040 	rx_ring->skb = skb;
1041 
1042 	u64_stats_update_begin(&rx_ring->syncp);
1043 	rx_ring->stats.packets += total_rx_packets;
1044 	rx_ring->stats.bytes += total_rx_bytes;
1045 	u64_stats_update_end(&rx_ring->syncp);
1046 	q_vector->rx.total_packets += total_rx_packets;
1047 	q_vector->rx.total_bytes += total_rx_bytes;
1048 
1049 	return total_rx_packets;
1050 }
1051 
1052 /**
1053  * ixgbevf_poll - NAPI polling calback
1054  * @napi: napi struct with our devices info in it
1055  * @budget: amount of work driver is allowed to do this pass, in packets
1056  *
1057  * This function will clean more than one or more rings associated with a
1058  * q_vector.
1059  **/
1060 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1061 {
1062 	struct ixgbevf_q_vector *q_vector =
1063 		container_of(napi, struct ixgbevf_q_vector, napi);
1064 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1065 	struct ixgbevf_ring *ring;
1066 	int per_ring_budget, work_done = 0;
1067 	bool clean_complete = true;
1068 
1069 	ixgbevf_for_each_ring(ring, q_vector->tx) {
1070 		if (!ixgbevf_clean_tx_irq(q_vector, ring, budget))
1071 			clean_complete = false;
1072 	}
1073 
1074 	if (budget <= 0)
1075 		return budget;
1076 
1077 	/* attempt to distribute budget to each queue fairly, but don't allow
1078 	 * the budget to go below 1 because we'll exit polling
1079 	 */
1080 	if (q_vector->rx.count > 1)
1081 		per_ring_budget = max(budget/q_vector->rx.count, 1);
1082 	else
1083 		per_ring_budget = budget;
1084 
1085 	ixgbevf_for_each_ring(ring, q_vector->rx) {
1086 		int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1087 						   per_ring_budget);
1088 		work_done += cleaned;
1089 		if (cleaned >= per_ring_budget)
1090 			clean_complete = false;
1091 	}
1092 
1093 	/* If all work not completed, return budget and keep polling */
1094 	if (!clean_complete)
1095 		return budget;
1096 	/* all work done, exit the polling mode */
1097 	napi_complete_done(napi, work_done);
1098 	if (adapter->rx_itr_setting == 1)
1099 		ixgbevf_set_itr(q_vector);
1100 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1101 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1102 		ixgbevf_irq_enable_queues(adapter,
1103 					  BIT(q_vector->v_idx));
1104 
1105 	return 0;
1106 }
1107 
1108 /**
1109  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1110  * @q_vector: structure containing interrupt and ring information
1111  **/
1112 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1113 {
1114 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1115 	struct ixgbe_hw *hw = &adapter->hw;
1116 	int v_idx = q_vector->v_idx;
1117 	u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1118 
1119 	/* set the WDIS bit to not clear the timer bits and cause an
1120 	 * immediate assertion of the interrupt
1121 	 */
1122 	itr_reg |= IXGBE_EITR_CNT_WDIS;
1123 
1124 	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1125 }
1126 
1127 /**
1128  * ixgbevf_configure_msix - Configure MSI-X hardware
1129  * @adapter: board private structure
1130  *
1131  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1132  * interrupts.
1133  **/
1134 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1135 {
1136 	struct ixgbevf_q_vector *q_vector;
1137 	int q_vectors, v_idx;
1138 
1139 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1140 	adapter->eims_enable_mask = 0;
1141 
1142 	/* Populate the IVAR table and set the ITR values to the
1143 	 * corresponding register.
1144 	 */
1145 	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1146 		struct ixgbevf_ring *ring;
1147 
1148 		q_vector = adapter->q_vector[v_idx];
1149 
1150 		ixgbevf_for_each_ring(ring, q_vector->rx)
1151 			ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1152 
1153 		ixgbevf_for_each_ring(ring, q_vector->tx)
1154 			ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1155 
1156 		if (q_vector->tx.ring && !q_vector->rx.ring) {
1157 			/* Tx only vector */
1158 			if (adapter->tx_itr_setting == 1)
1159 				q_vector->itr = IXGBE_12K_ITR;
1160 			else
1161 				q_vector->itr = adapter->tx_itr_setting;
1162 		} else {
1163 			/* Rx or Rx/Tx vector */
1164 			if (adapter->rx_itr_setting == 1)
1165 				q_vector->itr = IXGBE_20K_ITR;
1166 			else
1167 				q_vector->itr = adapter->rx_itr_setting;
1168 		}
1169 
1170 		/* add q_vector eims value to global eims_enable_mask */
1171 		adapter->eims_enable_mask |= BIT(v_idx);
1172 
1173 		ixgbevf_write_eitr(q_vector);
1174 	}
1175 
1176 	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1177 	/* setup eims_other and add value to global eims_enable_mask */
1178 	adapter->eims_other = BIT(v_idx);
1179 	adapter->eims_enable_mask |= adapter->eims_other;
1180 }
1181 
1182 enum latency_range {
1183 	lowest_latency = 0,
1184 	low_latency = 1,
1185 	bulk_latency = 2,
1186 	latency_invalid = 255
1187 };
1188 
1189 /**
1190  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1191  * @q_vector: structure containing interrupt and ring information
1192  * @ring_container: structure containing ring performance data
1193  *
1194  * Stores a new ITR value based on packets and byte
1195  * counts during the last interrupt.  The advantage of per interrupt
1196  * computation is faster updates and more accurate ITR for the current
1197  * traffic pattern.  Constants in this function were computed
1198  * based on theoretical maximum wire speed and thresholds were set based
1199  * on testing data as well as attempting to minimize response time
1200  * while increasing bulk throughput.
1201  **/
1202 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1203 			       struct ixgbevf_ring_container *ring_container)
1204 {
1205 	int bytes = ring_container->total_bytes;
1206 	int packets = ring_container->total_packets;
1207 	u32 timepassed_us;
1208 	u64 bytes_perint;
1209 	u8 itr_setting = ring_container->itr;
1210 
1211 	if (packets == 0)
1212 		return;
1213 
1214 	/* simple throttle rate management
1215 	 *    0-20MB/s lowest (100000 ints/s)
1216 	 *   20-100MB/s low   (20000 ints/s)
1217 	 *  100-1249MB/s bulk (12000 ints/s)
1218 	 */
1219 	/* what was last interrupt timeslice? */
1220 	timepassed_us = q_vector->itr >> 2;
1221 	bytes_perint = bytes / timepassed_us; /* bytes/usec */
1222 
1223 	switch (itr_setting) {
1224 	case lowest_latency:
1225 		if (bytes_perint > 10)
1226 			itr_setting = low_latency;
1227 		break;
1228 	case low_latency:
1229 		if (bytes_perint > 20)
1230 			itr_setting = bulk_latency;
1231 		else if (bytes_perint <= 10)
1232 			itr_setting = lowest_latency;
1233 		break;
1234 	case bulk_latency:
1235 		if (bytes_perint <= 20)
1236 			itr_setting = low_latency;
1237 		break;
1238 	}
1239 
1240 	/* clear work counters since we have the values we need */
1241 	ring_container->total_bytes = 0;
1242 	ring_container->total_packets = 0;
1243 
1244 	/* write updated itr to ring container */
1245 	ring_container->itr = itr_setting;
1246 }
1247 
1248 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1249 {
1250 	u32 new_itr = q_vector->itr;
1251 	u8 current_itr;
1252 
1253 	ixgbevf_update_itr(q_vector, &q_vector->tx);
1254 	ixgbevf_update_itr(q_vector, &q_vector->rx);
1255 
1256 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1257 
1258 	switch (current_itr) {
1259 	/* counts and packets in update_itr are dependent on these numbers */
1260 	case lowest_latency:
1261 		new_itr = IXGBE_100K_ITR;
1262 		break;
1263 	case low_latency:
1264 		new_itr = IXGBE_20K_ITR;
1265 		break;
1266 	case bulk_latency:
1267 		new_itr = IXGBE_12K_ITR;
1268 		break;
1269 	default:
1270 		break;
1271 	}
1272 
1273 	if (new_itr != q_vector->itr) {
1274 		/* do an exponential smoothing */
1275 		new_itr = (10 * new_itr * q_vector->itr) /
1276 			  ((9 * new_itr) + q_vector->itr);
1277 
1278 		/* save the algorithm value here */
1279 		q_vector->itr = new_itr;
1280 
1281 		ixgbevf_write_eitr(q_vector);
1282 	}
1283 }
1284 
1285 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1286 {
1287 	struct ixgbevf_adapter *adapter = data;
1288 	struct ixgbe_hw *hw = &adapter->hw;
1289 
1290 	hw->mac.get_link_status = 1;
1291 
1292 	ixgbevf_service_event_schedule(adapter);
1293 
1294 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1295 
1296 	return IRQ_HANDLED;
1297 }
1298 
1299 /**
1300  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1301  * @irq: unused
1302  * @data: pointer to our q_vector struct for this interrupt vector
1303  **/
1304 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1305 {
1306 	struct ixgbevf_q_vector *q_vector = data;
1307 
1308 	/* EIAM disabled interrupts (on this vector) for us */
1309 	if (q_vector->rx.ring || q_vector->tx.ring)
1310 		napi_schedule_irqoff(&q_vector->napi);
1311 
1312 	return IRQ_HANDLED;
1313 }
1314 
1315 /**
1316  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1317  * @adapter: board private structure
1318  *
1319  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1320  * interrupts from the kernel.
1321  **/
1322 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1323 {
1324 	struct net_device *netdev = adapter->netdev;
1325 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1326 	unsigned int ri = 0, ti = 0;
1327 	int vector, err;
1328 
1329 	for (vector = 0; vector < q_vectors; vector++) {
1330 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1331 		struct msix_entry *entry = &adapter->msix_entries[vector];
1332 
1333 		if (q_vector->tx.ring && q_vector->rx.ring) {
1334 			snprintf(q_vector->name, sizeof(q_vector->name),
1335 				 "%s-TxRx-%u", netdev->name, ri++);
1336 			ti++;
1337 		} else if (q_vector->rx.ring) {
1338 			snprintf(q_vector->name, sizeof(q_vector->name),
1339 				 "%s-rx-%u", netdev->name, ri++);
1340 		} else if (q_vector->tx.ring) {
1341 			snprintf(q_vector->name, sizeof(q_vector->name),
1342 				 "%s-tx-%u", netdev->name, ti++);
1343 		} else {
1344 			/* skip this unused q_vector */
1345 			continue;
1346 		}
1347 		err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1348 				  q_vector->name, q_vector);
1349 		if (err) {
1350 			hw_dbg(&adapter->hw,
1351 			       "request_irq failed for MSIX interrupt Error: %d\n",
1352 			       err);
1353 			goto free_queue_irqs;
1354 		}
1355 	}
1356 
1357 	err = request_irq(adapter->msix_entries[vector].vector,
1358 			  &ixgbevf_msix_other, 0, netdev->name, adapter);
1359 	if (err) {
1360 		hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1361 		       err);
1362 		goto free_queue_irqs;
1363 	}
1364 
1365 	return 0;
1366 
1367 free_queue_irqs:
1368 	while (vector) {
1369 		vector--;
1370 		free_irq(adapter->msix_entries[vector].vector,
1371 			 adapter->q_vector[vector]);
1372 	}
1373 	/* This failure is non-recoverable - it indicates the system is
1374 	 * out of MSIX vector resources and the VF driver cannot run
1375 	 * without them.  Set the number of msix vectors to zero
1376 	 * indicating that not enough can be allocated.  The error
1377 	 * will be returned to the user indicating device open failed.
1378 	 * Any further attempts to force the driver to open will also
1379 	 * fail.  The only way to recover is to unload the driver and
1380 	 * reload it again.  If the system has recovered some MSIX
1381 	 * vectors then it may succeed.
1382 	 */
1383 	adapter->num_msix_vectors = 0;
1384 	return err;
1385 }
1386 
1387 /**
1388  * ixgbevf_request_irq - initialize interrupts
1389  * @adapter: board private structure
1390  *
1391  * Attempts to configure interrupts using the best available
1392  * capabilities of the hardware and kernel.
1393  **/
1394 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1395 {
1396 	int err = ixgbevf_request_msix_irqs(adapter);
1397 
1398 	if (err)
1399 		hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1400 
1401 	return err;
1402 }
1403 
1404 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1405 {
1406 	int i, q_vectors;
1407 
1408 	if (!adapter->msix_entries)
1409 		return;
1410 
1411 	q_vectors = adapter->num_msix_vectors;
1412 	i = q_vectors - 1;
1413 
1414 	free_irq(adapter->msix_entries[i].vector, adapter);
1415 	i--;
1416 
1417 	for (; i >= 0; i--) {
1418 		/* free only the irqs that were actually requested */
1419 		if (!adapter->q_vector[i]->rx.ring &&
1420 		    !adapter->q_vector[i]->tx.ring)
1421 			continue;
1422 
1423 		free_irq(adapter->msix_entries[i].vector,
1424 			 adapter->q_vector[i]);
1425 	}
1426 }
1427 
1428 /**
1429  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1430  * @adapter: board private structure
1431  **/
1432 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1433 {
1434 	struct ixgbe_hw *hw = &adapter->hw;
1435 	int i;
1436 
1437 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1438 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1439 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1440 
1441 	IXGBE_WRITE_FLUSH(hw);
1442 
1443 	for (i = 0; i < adapter->num_msix_vectors; i++)
1444 		synchronize_irq(adapter->msix_entries[i].vector);
1445 }
1446 
1447 /**
1448  * ixgbevf_irq_enable - Enable default interrupt generation settings
1449  * @adapter: board private structure
1450  **/
1451 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1452 {
1453 	struct ixgbe_hw *hw = &adapter->hw;
1454 
1455 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1456 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1457 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1458 }
1459 
1460 /**
1461  * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1462  * @adapter: board private structure
1463  * @ring: structure containing ring specific data
1464  *
1465  * Configure the Tx descriptor ring after a reset.
1466  **/
1467 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1468 				      struct ixgbevf_ring *ring)
1469 {
1470 	struct ixgbe_hw *hw = &adapter->hw;
1471 	u64 tdba = ring->dma;
1472 	int wait_loop = 10;
1473 	u32 txdctl = IXGBE_TXDCTL_ENABLE;
1474 	u8 reg_idx = ring->reg_idx;
1475 
1476 	/* disable queue to avoid issues while updating state */
1477 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1478 	IXGBE_WRITE_FLUSH(hw);
1479 
1480 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1481 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1482 	IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1483 			ring->count * sizeof(union ixgbe_adv_tx_desc));
1484 
1485 	/* disable head writeback */
1486 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1487 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1488 
1489 	/* enable relaxed ordering */
1490 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1491 			(IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1492 			 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1493 
1494 	/* reset head and tail pointers */
1495 	IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1496 	IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1497 	ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1498 
1499 	/* reset ntu and ntc to place SW in sync with hardwdare */
1500 	ring->next_to_clean = 0;
1501 	ring->next_to_use = 0;
1502 
1503 	/* In order to avoid issues WTHRESH + PTHRESH should always be equal
1504 	 * to or less than the number of on chip descriptors, which is
1505 	 * currently 40.
1506 	 */
1507 	txdctl |= (8 << 16);    /* WTHRESH = 8 */
1508 
1509 	/* Setting PTHRESH to 32 both improves performance */
1510 	txdctl |= (1u << 8) |    /* HTHRESH = 1 */
1511 		   32;           /* PTHRESH = 32 */
1512 
1513 	/* reinitialize tx_buffer_info */
1514 	memset(ring->tx_buffer_info, 0,
1515 	       sizeof(struct ixgbevf_tx_buffer) * ring->count);
1516 
1517 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1518 
1519 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1520 
1521 	/* poll to verify queue is enabled */
1522 	do {
1523 		usleep_range(1000, 2000);
1524 		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1525 	}  while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1526 	if (!wait_loop)
1527 		hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx);
1528 }
1529 
1530 /**
1531  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1532  * @adapter: board private structure
1533  *
1534  * Configure the Tx unit of the MAC after a reset.
1535  **/
1536 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1537 {
1538 	u32 i;
1539 
1540 	/* Setup the HW Tx Head and Tail descriptor pointers */
1541 	for (i = 0; i < adapter->num_tx_queues; i++)
1542 		ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1543 }
1544 
1545 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1546 
1547 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter,
1548 				     struct ixgbevf_ring *ring, int index)
1549 {
1550 	struct ixgbe_hw *hw = &adapter->hw;
1551 	u32 srrctl;
1552 
1553 	srrctl = IXGBE_SRRCTL_DROP_EN;
1554 
1555 	srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1556 	if (ring_uses_large_buffer(ring))
1557 		srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1558 	else
1559 		srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1560 	srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1561 
1562 	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1563 }
1564 
1565 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1566 {
1567 	struct ixgbe_hw *hw = &adapter->hw;
1568 
1569 	/* PSRTYPE must be initialized in 82599 */
1570 	u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1571 		      IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1572 		      IXGBE_PSRTYPE_L2HDR;
1573 
1574 	if (adapter->num_rx_queues > 1)
1575 		psrtype |= BIT(29);
1576 
1577 	IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1578 }
1579 
1580 #define IXGBEVF_MAX_RX_DESC_POLL 10
1581 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1582 				     struct ixgbevf_ring *ring)
1583 {
1584 	struct ixgbe_hw *hw = &adapter->hw;
1585 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1586 	u32 rxdctl;
1587 	u8 reg_idx = ring->reg_idx;
1588 
1589 	if (IXGBE_REMOVED(hw->hw_addr))
1590 		return;
1591 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1592 	rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1593 
1594 	/* write value back with RXDCTL.ENABLE bit cleared */
1595 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1596 
1597 	/* the hardware may take up to 100us to really disable the Rx queue */
1598 	do {
1599 		udelay(10);
1600 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1601 	} while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1602 
1603 	if (!wait_loop)
1604 		pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1605 		       reg_idx);
1606 }
1607 
1608 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1609 					 struct ixgbevf_ring *ring)
1610 {
1611 	struct ixgbe_hw *hw = &adapter->hw;
1612 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1613 	u32 rxdctl;
1614 	u8 reg_idx = ring->reg_idx;
1615 
1616 	if (IXGBE_REMOVED(hw->hw_addr))
1617 		return;
1618 	do {
1619 		usleep_range(1000, 2000);
1620 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1621 	} while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1622 
1623 	if (!wait_loop)
1624 		pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1625 		       reg_idx);
1626 }
1627 
1628 /**
1629  * ixgbevf_init_rss_key - Initialize adapter RSS key
1630  * @adapter: device handle
1631  *
1632  * Allocates and initializes the RSS key if it is not allocated.
1633  **/
1634 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter)
1635 {
1636 	u32 *rss_key;
1637 
1638 	if (!adapter->rss_key) {
1639 		rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL);
1640 		if (unlikely(!rss_key))
1641 			return -ENOMEM;
1642 
1643 		netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE);
1644 		adapter->rss_key = rss_key;
1645 	}
1646 
1647 	return 0;
1648 }
1649 
1650 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1651 {
1652 	struct ixgbe_hw *hw = &adapter->hw;
1653 	u32 vfmrqc = 0, vfreta = 0;
1654 	u16 rss_i = adapter->num_rx_queues;
1655 	u8 i, j;
1656 
1657 	/* Fill out hash function seeds */
1658 	for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1659 		IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i));
1660 
1661 	for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1662 		if (j == rss_i)
1663 			j = 0;
1664 
1665 		adapter->rss_indir_tbl[i] = j;
1666 
1667 		vfreta |= j << (i & 0x3) * 8;
1668 		if ((i & 3) == 3) {
1669 			IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1670 			vfreta = 0;
1671 		}
1672 	}
1673 
1674 	/* Perform hash on these packet types */
1675 	vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1676 		IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1677 		IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1678 		IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1679 
1680 	vfmrqc |= IXGBE_VFMRQC_RSSEN;
1681 
1682 	IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1683 }
1684 
1685 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1686 				      struct ixgbevf_ring *ring)
1687 {
1688 	struct ixgbe_hw *hw = &adapter->hw;
1689 	union ixgbe_adv_rx_desc *rx_desc;
1690 	u64 rdba = ring->dma;
1691 	u32 rxdctl;
1692 	u8 reg_idx = ring->reg_idx;
1693 
1694 	/* disable queue to avoid issues while updating state */
1695 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1696 	ixgbevf_disable_rx_queue(adapter, ring);
1697 
1698 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1699 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1700 	IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1701 			ring->count * sizeof(union ixgbe_adv_rx_desc));
1702 
1703 #ifndef CONFIG_SPARC
1704 	/* enable relaxed ordering */
1705 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1706 			IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1707 #else
1708 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1709 			IXGBE_DCA_RXCTRL_DESC_RRO_EN |
1710 			IXGBE_DCA_RXCTRL_DATA_WRO_EN);
1711 #endif
1712 
1713 	/* reset head and tail pointers */
1714 	IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1715 	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1716 	ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1717 
1718 	/* initialize rx_buffer_info */
1719 	memset(ring->rx_buffer_info, 0,
1720 	       sizeof(struct ixgbevf_rx_buffer) * ring->count);
1721 
1722 	/* initialize Rx descriptor 0 */
1723 	rx_desc = IXGBEVF_RX_DESC(ring, 0);
1724 	rx_desc->wb.upper.length = 0;
1725 
1726 	/* reset ntu and ntc to place SW in sync with hardwdare */
1727 	ring->next_to_clean = 0;
1728 	ring->next_to_use = 0;
1729 	ring->next_to_alloc = 0;
1730 
1731 	ixgbevf_configure_srrctl(adapter, ring, reg_idx);
1732 
1733 	/* RXDCTL.RLPML does not work on 82599 */
1734 	if (adapter->hw.mac.type != ixgbe_mac_82599_vf) {
1735 		rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK |
1736 			    IXGBE_RXDCTL_RLPML_EN);
1737 
1738 #if (PAGE_SIZE < 8192)
1739 		/* Limit the maximum frame size so we don't overrun the skb */
1740 		if (ring_uses_build_skb(ring) &&
1741 		    !ring_uses_large_buffer(ring))
1742 			rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB |
1743 				  IXGBE_RXDCTL_RLPML_EN;
1744 #endif
1745 	}
1746 
1747 	rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1748 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1749 
1750 	ixgbevf_rx_desc_queue_enable(adapter, ring);
1751 	ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1752 }
1753 
1754 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter,
1755 				      struct ixgbevf_ring *rx_ring)
1756 {
1757 	struct net_device *netdev = adapter->netdev;
1758 	unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1759 
1760 	/* set build_skb and buffer size flags */
1761 	clear_ring_build_skb_enabled(rx_ring);
1762 	clear_ring_uses_large_buffer(rx_ring);
1763 
1764 	if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX)
1765 		return;
1766 
1767 	set_ring_build_skb_enabled(rx_ring);
1768 
1769 #if (PAGE_SIZE < 8192)
1770 	if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB)
1771 		return;
1772 
1773 	set_ring_uses_large_buffer(rx_ring);
1774 #endif
1775 }
1776 
1777 /**
1778  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1779  * @adapter: board private structure
1780  *
1781  * Configure the Rx unit of the MAC after a reset.
1782  **/
1783 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1784 {
1785 	struct ixgbe_hw *hw = &adapter->hw;
1786 	struct net_device *netdev = adapter->netdev;
1787 	int i, ret;
1788 
1789 	ixgbevf_setup_psrtype(adapter);
1790 	if (hw->mac.type >= ixgbe_mac_X550_vf)
1791 		ixgbevf_setup_vfmrqc(adapter);
1792 
1793 	spin_lock_bh(&adapter->mbx_lock);
1794 	/* notify the PF of our intent to use this size of frame */
1795 	ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
1796 	spin_unlock_bh(&adapter->mbx_lock);
1797 	if (ret)
1798 		dev_err(&adapter->pdev->dev,
1799 			"Failed to set MTU at %d\n", netdev->mtu);
1800 
1801 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1802 	 * the Base and Length of the Rx Descriptor Ring
1803 	 */
1804 	for (i = 0; i < adapter->num_rx_queues; i++) {
1805 		struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
1806 
1807 		ixgbevf_set_rx_buffer_len(adapter, rx_ring);
1808 		ixgbevf_configure_rx_ring(adapter, rx_ring);
1809 	}
1810 }
1811 
1812 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
1813 				   __be16 proto, u16 vid)
1814 {
1815 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1816 	struct ixgbe_hw *hw = &adapter->hw;
1817 	int err;
1818 
1819 	spin_lock_bh(&adapter->mbx_lock);
1820 
1821 	/* add VID to filter table */
1822 	err = hw->mac.ops.set_vfta(hw, vid, 0, true);
1823 
1824 	spin_unlock_bh(&adapter->mbx_lock);
1825 
1826 	/* translate error return types so error makes sense */
1827 	if (err == IXGBE_ERR_MBX)
1828 		return -EIO;
1829 
1830 	if (err == IXGBE_ERR_INVALID_ARGUMENT)
1831 		return -EACCES;
1832 
1833 	set_bit(vid, adapter->active_vlans);
1834 
1835 	return err;
1836 }
1837 
1838 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
1839 				    __be16 proto, u16 vid)
1840 {
1841 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1842 	struct ixgbe_hw *hw = &adapter->hw;
1843 	int err;
1844 
1845 	spin_lock_bh(&adapter->mbx_lock);
1846 
1847 	/* remove VID from filter table */
1848 	err = hw->mac.ops.set_vfta(hw, vid, 0, false);
1849 
1850 	spin_unlock_bh(&adapter->mbx_lock);
1851 
1852 	clear_bit(vid, adapter->active_vlans);
1853 
1854 	return err;
1855 }
1856 
1857 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1858 {
1859 	u16 vid;
1860 
1861 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1862 		ixgbevf_vlan_rx_add_vid(adapter->netdev,
1863 					htons(ETH_P_8021Q), vid);
1864 }
1865 
1866 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1867 {
1868 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1869 	struct ixgbe_hw *hw = &adapter->hw;
1870 	int count = 0;
1871 
1872 	if ((netdev_uc_count(netdev)) > 10) {
1873 		pr_err("Too many unicast filters - No Space\n");
1874 		return -ENOSPC;
1875 	}
1876 
1877 	if (!netdev_uc_empty(netdev)) {
1878 		struct netdev_hw_addr *ha;
1879 
1880 		netdev_for_each_uc_addr(ha, netdev) {
1881 			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1882 			udelay(200);
1883 		}
1884 	} else {
1885 		/* If the list is empty then send message to PF driver to
1886 		 * clear all MAC VLANs on this VF.
1887 		 */
1888 		hw->mac.ops.set_uc_addr(hw, 0, NULL);
1889 	}
1890 
1891 	return count;
1892 }
1893 
1894 /**
1895  * ixgbevf_set_rx_mode - Multicast and unicast set
1896  * @netdev: network interface device structure
1897  *
1898  * The set_rx_method entry point is called whenever the multicast address
1899  * list, unicast address list or the network interface flags are updated.
1900  * This routine is responsible for configuring the hardware for proper
1901  * multicast mode and configuring requested unicast filters.
1902  **/
1903 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1904 {
1905 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1906 	struct ixgbe_hw *hw = &adapter->hw;
1907 	unsigned int flags = netdev->flags;
1908 	int xcast_mode;
1909 
1910 	/* request the most inclusive mode we need */
1911 	if (flags & IFF_PROMISC)
1912 		xcast_mode = IXGBEVF_XCAST_MODE_PROMISC;
1913 	else if (flags & IFF_ALLMULTI)
1914 		xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI;
1915 	else if (flags & (IFF_BROADCAST | IFF_MULTICAST))
1916 		xcast_mode = IXGBEVF_XCAST_MODE_MULTI;
1917 	else
1918 		xcast_mode = IXGBEVF_XCAST_MODE_NONE;
1919 
1920 	spin_lock_bh(&adapter->mbx_lock);
1921 
1922 	hw->mac.ops.update_xcast_mode(hw, xcast_mode);
1923 
1924 	/* reprogram multicast list */
1925 	hw->mac.ops.update_mc_addr_list(hw, netdev);
1926 
1927 	ixgbevf_write_uc_addr_list(netdev);
1928 
1929 	spin_unlock_bh(&adapter->mbx_lock);
1930 }
1931 
1932 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1933 {
1934 	int q_idx;
1935 	struct ixgbevf_q_vector *q_vector;
1936 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1937 
1938 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1939 		q_vector = adapter->q_vector[q_idx];
1940 		napi_enable(&q_vector->napi);
1941 	}
1942 }
1943 
1944 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1945 {
1946 	int q_idx;
1947 	struct ixgbevf_q_vector *q_vector;
1948 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1949 
1950 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1951 		q_vector = adapter->q_vector[q_idx];
1952 		napi_disable(&q_vector->napi);
1953 	}
1954 }
1955 
1956 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
1957 {
1958 	struct ixgbe_hw *hw = &adapter->hw;
1959 	unsigned int def_q = 0;
1960 	unsigned int num_tcs = 0;
1961 	unsigned int num_rx_queues = adapter->num_rx_queues;
1962 	unsigned int num_tx_queues = adapter->num_tx_queues;
1963 	int err;
1964 
1965 	spin_lock_bh(&adapter->mbx_lock);
1966 
1967 	/* fetch queue configuration from the PF */
1968 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
1969 
1970 	spin_unlock_bh(&adapter->mbx_lock);
1971 
1972 	if (err)
1973 		return err;
1974 
1975 	if (num_tcs > 1) {
1976 		/* we need only one Tx queue */
1977 		num_tx_queues = 1;
1978 
1979 		/* update default Tx ring register index */
1980 		adapter->tx_ring[0]->reg_idx = def_q;
1981 
1982 		/* we need as many queues as traffic classes */
1983 		num_rx_queues = num_tcs;
1984 	}
1985 
1986 	/* if we have a bad config abort request queue reset */
1987 	if ((adapter->num_rx_queues != num_rx_queues) ||
1988 	    (adapter->num_tx_queues != num_tx_queues)) {
1989 		/* force mailbox timeout to prevent further messages */
1990 		hw->mbx.timeout = 0;
1991 
1992 		/* wait for watchdog to come around and bail us out */
1993 		set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state);
1994 	}
1995 
1996 	return 0;
1997 }
1998 
1999 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
2000 {
2001 	ixgbevf_configure_dcb(adapter);
2002 
2003 	ixgbevf_set_rx_mode(adapter->netdev);
2004 
2005 	ixgbevf_restore_vlan(adapter);
2006 
2007 	ixgbevf_configure_tx(adapter);
2008 	ixgbevf_configure_rx(adapter);
2009 }
2010 
2011 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2012 {
2013 	/* Only save pre-reset stats if there are some */
2014 	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2015 		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2016 			adapter->stats.base_vfgprc;
2017 		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2018 			adapter->stats.base_vfgptc;
2019 		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2020 			adapter->stats.base_vfgorc;
2021 		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2022 			adapter->stats.base_vfgotc;
2023 		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2024 			adapter->stats.base_vfmprc;
2025 	}
2026 }
2027 
2028 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2029 {
2030 	struct ixgbe_hw *hw = &adapter->hw;
2031 
2032 	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2033 	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2034 	adapter->stats.last_vfgorc |=
2035 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2036 	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2037 	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2038 	adapter->stats.last_vfgotc |=
2039 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2040 	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2041 
2042 	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2043 	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2044 	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2045 	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2046 	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2047 }
2048 
2049 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2050 {
2051 	struct ixgbe_hw *hw = &adapter->hw;
2052 	int api[] = { ixgbe_mbox_api_13,
2053 		      ixgbe_mbox_api_12,
2054 		      ixgbe_mbox_api_11,
2055 		      ixgbe_mbox_api_10,
2056 		      ixgbe_mbox_api_unknown };
2057 	int err, idx = 0;
2058 
2059 	spin_lock_bh(&adapter->mbx_lock);
2060 
2061 	while (api[idx] != ixgbe_mbox_api_unknown) {
2062 		err = hw->mac.ops.negotiate_api_version(hw, api[idx]);
2063 		if (!err)
2064 			break;
2065 		idx++;
2066 	}
2067 
2068 	spin_unlock_bh(&adapter->mbx_lock);
2069 }
2070 
2071 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2072 {
2073 	struct net_device *netdev = adapter->netdev;
2074 	struct ixgbe_hw *hw = &adapter->hw;
2075 
2076 	ixgbevf_configure_msix(adapter);
2077 
2078 	spin_lock_bh(&adapter->mbx_lock);
2079 
2080 	if (is_valid_ether_addr(hw->mac.addr))
2081 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2082 	else
2083 		hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2084 
2085 	spin_unlock_bh(&adapter->mbx_lock);
2086 
2087 	smp_mb__before_atomic();
2088 	clear_bit(__IXGBEVF_DOWN, &adapter->state);
2089 	ixgbevf_napi_enable_all(adapter);
2090 
2091 	/* clear any pending interrupts, may auto mask */
2092 	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2093 	ixgbevf_irq_enable(adapter);
2094 
2095 	/* enable transmits */
2096 	netif_tx_start_all_queues(netdev);
2097 
2098 	ixgbevf_save_reset_stats(adapter);
2099 	ixgbevf_init_last_counter_stats(adapter);
2100 
2101 	hw->mac.get_link_status = 1;
2102 	mod_timer(&adapter->service_timer, jiffies);
2103 }
2104 
2105 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2106 {
2107 	ixgbevf_configure(adapter);
2108 
2109 	ixgbevf_up_complete(adapter);
2110 }
2111 
2112 /**
2113  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2114  * @rx_ring: ring to free buffers from
2115  **/
2116 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2117 {
2118 	u16 i = rx_ring->next_to_clean;
2119 
2120 	/* Free Rx ring sk_buff */
2121 	if (rx_ring->skb) {
2122 		dev_kfree_skb(rx_ring->skb);
2123 		rx_ring->skb = NULL;
2124 	}
2125 
2126 	/* Free all the Rx ring pages */
2127 	while (i != rx_ring->next_to_alloc) {
2128 		struct ixgbevf_rx_buffer *rx_buffer;
2129 
2130 		rx_buffer = &rx_ring->rx_buffer_info[i];
2131 
2132 		/* Invalidate cache lines that may have been written to by
2133 		 * device so that we avoid corrupting memory.
2134 		 */
2135 		dma_sync_single_range_for_cpu(rx_ring->dev,
2136 					      rx_buffer->dma,
2137 					      rx_buffer->page_offset,
2138 					      ixgbevf_rx_bufsz(rx_ring),
2139 					      DMA_FROM_DEVICE);
2140 
2141 		/* free resources associated with mapping */
2142 		dma_unmap_page_attrs(rx_ring->dev,
2143 				     rx_buffer->dma,
2144 				     ixgbevf_rx_pg_size(rx_ring),
2145 				     DMA_FROM_DEVICE,
2146 				     IXGBEVF_RX_DMA_ATTR);
2147 
2148 		__page_frag_cache_drain(rx_buffer->page,
2149 					rx_buffer->pagecnt_bias);
2150 
2151 		i++;
2152 		if (i == rx_ring->count)
2153 			i = 0;
2154 	}
2155 
2156 	rx_ring->next_to_alloc = 0;
2157 	rx_ring->next_to_clean = 0;
2158 	rx_ring->next_to_use = 0;
2159 }
2160 
2161 /**
2162  * ixgbevf_clean_tx_ring - Free Tx Buffers
2163  * @tx_ring: ring to be cleaned
2164  **/
2165 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2166 {
2167 	u16 i = tx_ring->next_to_clean;
2168 	struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
2169 
2170 	while (i != tx_ring->next_to_use) {
2171 		union ixgbe_adv_tx_desc *eop_desc, *tx_desc;
2172 
2173 		/* Free all the Tx ring sk_buffs */
2174 		dev_kfree_skb_any(tx_buffer->skb);
2175 
2176 		/* unmap skb header data */
2177 		dma_unmap_single(tx_ring->dev,
2178 				 dma_unmap_addr(tx_buffer, dma),
2179 				 dma_unmap_len(tx_buffer, len),
2180 				 DMA_TO_DEVICE);
2181 
2182 		/* check for eop_desc to determine the end of the packet */
2183 		eop_desc = tx_buffer->next_to_watch;
2184 		tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
2185 
2186 		/* unmap remaining buffers */
2187 		while (tx_desc != eop_desc) {
2188 			tx_buffer++;
2189 			tx_desc++;
2190 			i++;
2191 			if (unlikely(i == tx_ring->count)) {
2192 				i = 0;
2193 				tx_buffer = tx_ring->tx_buffer_info;
2194 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
2195 			}
2196 
2197 			/* unmap any remaining paged data */
2198 			if (dma_unmap_len(tx_buffer, len))
2199 				dma_unmap_page(tx_ring->dev,
2200 					       dma_unmap_addr(tx_buffer, dma),
2201 					       dma_unmap_len(tx_buffer, len),
2202 					       DMA_TO_DEVICE);
2203 		}
2204 
2205 		/* move us one more past the eop_desc for start of next pkt */
2206 		tx_buffer++;
2207 		i++;
2208 		if (unlikely(i == tx_ring->count)) {
2209 			i = 0;
2210 			tx_buffer = tx_ring->tx_buffer_info;
2211 		}
2212 	}
2213 
2214 	/* reset next_to_use and next_to_clean */
2215 	tx_ring->next_to_use = 0;
2216 	tx_ring->next_to_clean = 0;
2217 
2218 }
2219 
2220 /**
2221  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2222  * @adapter: board private structure
2223  **/
2224 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2225 {
2226 	int i;
2227 
2228 	for (i = 0; i < adapter->num_rx_queues; i++)
2229 		ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2230 }
2231 
2232 /**
2233  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2234  * @adapter: board private structure
2235  **/
2236 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2237 {
2238 	int i;
2239 
2240 	for (i = 0; i < adapter->num_tx_queues; i++)
2241 		ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2242 }
2243 
2244 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2245 {
2246 	struct net_device *netdev = adapter->netdev;
2247 	struct ixgbe_hw *hw = &adapter->hw;
2248 	int i;
2249 
2250 	/* signal that we are down to the interrupt handler */
2251 	if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2252 		return; /* do nothing if already down */
2253 
2254 	/* disable all enabled Rx queues */
2255 	for (i = 0; i < adapter->num_rx_queues; i++)
2256 		ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2257 
2258 	usleep_range(10000, 20000);
2259 
2260 	netif_tx_stop_all_queues(netdev);
2261 
2262 	/* call carrier off first to avoid false dev_watchdog timeouts */
2263 	netif_carrier_off(netdev);
2264 	netif_tx_disable(netdev);
2265 
2266 	ixgbevf_irq_disable(adapter);
2267 
2268 	ixgbevf_napi_disable_all(adapter);
2269 
2270 	del_timer_sync(&adapter->service_timer);
2271 
2272 	/* disable transmits in the hardware now that interrupts are off */
2273 	for (i = 0; i < adapter->num_tx_queues; i++) {
2274 		u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2275 
2276 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2277 				IXGBE_TXDCTL_SWFLSH);
2278 	}
2279 
2280 	if (!pci_channel_offline(adapter->pdev))
2281 		ixgbevf_reset(adapter);
2282 
2283 	ixgbevf_clean_all_tx_rings(adapter);
2284 	ixgbevf_clean_all_rx_rings(adapter);
2285 }
2286 
2287 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2288 {
2289 	WARN_ON(in_interrupt());
2290 
2291 	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2292 		msleep(1);
2293 
2294 	ixgbevf_down(adapter);
2295 	ixgbevf_up(adapter);
2296 
2297 	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2298 }
2299 
2300 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2301 {
2302 	struct ixgbe_hw *hw = &adapter->hw;
2303 	struct net_device *netdev = adapter->netdev;
2304 
2305 	if (hw->mac.ops.reset_hw(hw)) {
2306 		hw_dbg(hw, "PF still resetting\n");
2307 	} else {
2308 		hw->mac.ops.init_hw(hw);
2309 		ixgbevf_negotiate_api(adapter);
2310 	}
2311 
2312 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2313 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
2314 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2315 	}
2316 
2317 	adapter->last_reset = jiffies;
2318 }
2319 
2320 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2321 					int vectors)
2322 {
2323 	int vector_threshold;
2324 
2325 	/* We'll want at least 2 (vector_threshold):
2326 	 * 1) TxQ[0] + RxQ[0] handler
2327 	 * 2) Other (Link Status Change, etc.)
2328 	 */
2329 	vector_threshold = MIN_MSIX_COUNT;
2330 
2331 	/* The more we get, the more we will assign to Tx/Rx Cleanup
2332 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2333 	 * Right now, we simply care about how many we'll get; we'll
2334 	 * set them up later while requesting irq's.
2335 	 */
2336 	vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2337 					vector_threshold, vectors);
2338 
2339 	if (vectors < 0) {
2340 		dev_err(&adapter->pdev->dev,
2341 			"Unable to allocate MSI-X interrupts\n");
2342 		kfree(adapter->msix_entries);
2343 		adapter->msix_entries = NULL;
2344 		return vectors;
2345 	}
2346 
2347 	/* Adjust for only the vectors we'll use, which is minimum
2348 	 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2349 	 * vectors we were allocated.
2350 	 */
2351 	adapter->num_msix_vectors = vectors;
2352 
2353 	return 0;
2354 }
2355 
2356 /**
2357  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2358  * @adapter: board private structure to initialize
2359  *
2360  * This is the top level queue allocation routine.  The order here is very
2361  * important, starting with the "most" number of features turned on at once,
2362  * and ending with the smallest set of features.  This way large combinations
2363  * can be allocated if they're turned on, and smaller combinations are the
2364  * fallthrough conditions.
2365  *
2366  **/
2367 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2368 {
2369 	struct ixgbe_hw *hw = &adapter->hw;
2370 	unsigned int def_q = 0;
2371 	unsigned int num_tcs = 0;
2372 	int err;
2373 
2374 	/* Start with base case */
2375 	adapter->num_rx_queues = 1;
2376 	adapter->num_tx_queues = 1;
2377 
2378 	spin_lock_bh(&adapter->mbx_lock);
2379 
2380 	/* fetch queue configuration from the PF */
2381 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2382 
2383 	spin_unlock_bh(&adapter->mbx_lock);
2384 
2385 	if (err)
2386 		return;
2387 
2388 	/* we need as many queues as traffic classes */
2389 	if (num_tcs > 1) {
2390 		adapter->num_rx_queues = num_tcs;
2391 	} else {
2392 		u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2393 
2394 		switch (hw->api_version) {
2395 		case ixgbe_mbox_api_11:
2396 		case ixgbe_mbox_api_12:
2397 		case ixgbe_mbox_api_13:
2398 			adapter->num_rx_queues = rss;
2399 			adapter->num_tx_queues = rss;
2400 		default:
2401 			break;
2402 		}
2403 	}
2404 }
2405 
2406 /**
2407  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2408  * @adapter: board private structure to initialize
2409  *
2410  * Attempt to configure the interrupts using the best available
2411  * capabilities of the hardware and the kernel.
2412  **/
2413 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2414 {
2415 	int vector, v_budget;
2416 
2417 	/* It's easy to be greedy for MSI-X vectors, but it really
2418 	 * doesn't do us much good if we have a lot more vectors
2419 	 * than CPU's.  So let's be conservative and only ask for
2420 	 * (roughly) the same number of vectors as there are CPU's.
2421 	 * The default is to use pairs of vectors.
2422 	 */
2423 	v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2424 	v_budget = min_t(int, v_budget, num_online_cpus());
2425 	v_budget += NON_Q_VECTORS;
2426 
2427 	adapter->msix_entries = kcalloc(v_budget,
2428 					sizeof(struct msix_entry), GFP_KERNEL);
2429 	if (!adapter->msix_entries)
2430 		return -ENOMEM;
2431 
2432 	for (vector = 0; vector < v_budget; vector++)
2433 		adapter->msix_entries[vector].entry = vector;
2434 
2435 	/* A failure in MSI-X entry allocation isn't fatal, but the VF driver
2436 	 * does not support any other modes, so we will simply fail here. Note
2437 	 * that we clean up the msix_entries pointer else-where.
2438 	 */
2439 	return ixgbevf_acquire_msix_vectors(adapter, v_budget);
2440 }
2441 
2442 static void ixgbevf_add_ring(struct ixgbevf_ring *ring,
2443 			     struct ixgbevf_ring_container *head)
2444 {
2445 	ring->next = head->ring;
2446 	head->ring = ring;
2447 	head->count++;
2448 }
2449 
2450 /**
2451  * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector
2452  * @adapter: board private structure to initialize
2453  * @v_idx: index of vector in adapter struct
2454  * @txr_count: number of Tx rings for q vector
2455  * @txr_idx: index of first Tx ring to assign
2456  * @rxr_count: number of Rx rings for q vector
2457  * @rxr_idx: index of first Rx ring to assign
2458  *
2459  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
2460  **/
2461 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx,
2462 				  int txr_count, int txr_idx,
2463 				  int rxr_count, int rxr_idx)
2464 {
2465 	struct ixgbevf_q_vector *q_vector;
2466 	struct ixgbevf_ring *ring;
2467 	int ring_count, size;
2468 
2469 	ring_count = txr_count + rxr_count;
2470 	size = sizeof(*q_vector) + (sizeof(*ring) * ring_count);
2471 
2472 	/* allocate q_vector and rings */
2473 	q_vector = kzalloc(size, GFP_KERNEL);
2474 	if (!q_vector)
2475 		return -ENOMEM;
2476 
2477 	/* initialize NAPI */
2478 	netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64);
2479 
2480 	/* tie q_vector and adapter together */
2481 	adapter->q_vector[v_idx] = q_vector;
2482 	q_vector->adapter = adapter;
2483 	q_vector->v_idx = v_idx;
2484 
2485 	/* initialize pointer to rings */
2486 	ring = q_vector->ring;
2487 
2488 	while (txr_count) {
2489 		/* assign generic ring traits */
2490 		ring->dev = &adapter->pdev->dev;
2491 		ring->netdev = adapter->netdev;
2492 
2493 		/* configure backlink on ring */
2494 		ring->q_vector = q_vector;
2495 
2496 		/* update q_vector Tx values */
2497 		ixgbevf_add_ring(ring, &q_vector->tx);
2498 
2499 		/* apply Tx specific ring traits */
2500 		ring->count = adapter->tx_ring_count;
2501 		ring->queue_index = txr_idx;
2502 		ring->reg_idx = txr_idx;
2503 
2504 		/* assign ring to adapter */
2505 		 adapter->tx_ring[txr_idx] = ring;
2506 
2507 		/* update count and index */
2508 		txr_count--;
2509 		txr_idx++;
2510 
2511 		/* push pointer to next ring */
2512 		ring++;
2513 	}
2514 
2515 	while (rxr_count) {
2516 		/* assign generic ring traits */
2517 		ring->dev = &adapter->pdev->dev;
2518 		ring->netdev = adapter->netdev;
2519 
2520 		/* configure backlink on ring */
2521 		ring->q_vector = q_vector;
2522 
2523 		/* update q_vector Rx values */
2524 		ixgbevf_add_ring(ring, &q_vector->rx);
2525 
2526 		/* apply Rx specific ring traits */
2527 		ring->count = adapter->rx_ring_count;
2528 		ring->queue_index = rxr_idx;
2529 		ring->reg_idx = rxr_idx;
2530 
2531 		/* assign ring to adapter */
2532 		adapter->rx_ring[rxr_idx] = ring;
2533 
2534 		/* update count and index */
2535 		rxr_count--;
2536 		rxr_idx++;
2537 
2538 		/* push pointer to next ring */
2539 		ring++;
2540 	}
2541 
2542 	return 0;
2543 }
2544 
2545 /**
2546  * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector
2547  * @adapter: board private structure to initialize
2548  * @v_idx: index of vector in adapter struct
2549  *
2550  * This function frees the memory allocated to the q_vector.  In addition if
2551  * NAPI is enabled it will delete any references to the NAPI struct prior
2552  * to freeing the q_vector.
2553  **/
2554 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx)
2555 {
2556 	struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx];
2557 	struct ixgbevf_ring *ring;
2558 
2559 	ixgbevf_for_each_ring(ring, q_vector->tx)
2560 		adapter->tx_ring[ring->queue_index] = NULL;
2561 
2562 	ixgbevf_for_each_ring(ring, q_vector->rx)
2563 		adapter->rx_ring[ring->queue_index] = NULL;
2564 
2565 	adapter->q_vector[v_idx] = NULL;
2566 	netif_napi_del(&q_vector->napi);
2567 
2568 	/* ixgbevf_get_stats() might access the rings on this vector,
2569 	 * we must wait a grace period before freeing it.
2570 	 */
2571 	kfree_rcu(q_vector, rcu);
2572 }
2573 
2574 /**
2575  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2576  * @adapter: board private structure to initialize
2577  *
2578  * We allocate one q_vector per queue interrupt.  If allocation fails we
2579  * return -ENOMEM.
2580  **/
2581 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2582 {
2583 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2584 	int rxr_remaining = adapter->num_rx_queues;
2585 	int txr_remaining = adapter->num_tx_queues;
2586 	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
2587 	int err;
2588 
2589 	if (q_vectors >= (rxr_remaining + txr_remaining)) {
2590 		for (; rxr_remaining; v_idx++, q_vectors--) {
2591 			int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2592 
2593 			err = ixgbevf_alloc_q_vector(adapter, v_idx,
2594 						     0, 0, rqpv, rxr_idx);
2595 			if (err)
2596 				goto err_out;
2597 
2598 			/* update counts and index */
2599 			rxr_remaining -= rqpv;
2600 			rxr_idx += rqpv;
2601 		}
2602 	}
2603 
2604 	for (; q_vectors; v_idx++, q_vectors--) {
2605 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2606 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors);
2607 
2608 		err = ixgbevf_alloc_q_vector(adapter, v_idx,
2609 					     tqpv, txr_idx,
2610 					     rqpv, rxr_idx);
2611 
2612 		if (err)
2613 			goto err_out;
2614 
2615 		/* update counts and index */
2616 		rxr_remaining -= rqpv;
2617 		rxr_idx += rqpv;
2618 		txr_remaining -= tqpv;
2619 		txr_idx += tqpv;
2620 	}
2621 
2622 	return 0;
2623 
2624 err_out:
2625 	while (v_idx) {
2626 		v_idx--;
2627 		ixgbevf_free_q_vector(adapter, v_idx);
2628 	}
2629 
2630 	return -ENOMEM;
2631 }
2632 
2633 /**
2634  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2635  * @adapter: board private structure to initialize
2636  *
2637  * This function frees the memory allocated to the q_vectors.  In addition if
2638  * NAPI is enabled it will delete any references to the NAPI struct prior
2639  * to freeing the q_vector.
2640  **/
2641 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2642 {
2643 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2644 
2645 	while (q_vectors) {
2646 		q_vectors--;
2647 		ixgbevf_free_q_vector(adapter, q_vectors);
2648 	}
2649 }
2650 
2651 /**
2652  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2653  * @adapter: board private structure
2654  *
2655  **/
2656 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2657 {
2658 	if (!adapter->msix_entries)
2659 		return;
2660 
2661 	pci_disable_msix(adapter->pdev);
2662 	kfree(adapter->msix_entries);
2663 	adapter->msix_entries = NULL;
2664 }
2665 
2666 /**
2667  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2668  * @adapter: board private structure to initialize
2669  *
2670  **/
2671 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2672 {
2673 	int err;
2674 
2675 	/* Number of supported queues */
2676 	ixgbevf_set_num_queues(adapter);
2677 
2678 	err = ixgbevf_set_interrupt_capability(adapter);
2679 	if (err) {
2680 		hw_dbg(&adapter->hw,
2681 		       "Unable to setup interrupt capabilities\n");
2682 		goto err_set_interrupt;
2683 	}
2684 
2685 	err = ixgbevf_alloc_q_vectors(adapter);
2686 	if (err) {
2687 		hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2688 		goto err_alloc_q_vectors;
2689 	}
2690 
2691 	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n",
2692 	       (adapter->num_rx_queues > 1) ? "Enabled" :
2693 	       "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2694 
2695 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2696 
2697 	return 0;
2698 err_alloc_q_vectors:
2699 	ixgbevf_reset_interrupt_capability(adapter);
2700 err_set_interrupt:
2701 	return err;
2702 }
2703 
2704 /**
2705  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2706  * @adapter: board private structure to clear interrupt scheme on
2707  *
2708  * We go through and clear interrupt specific resources and reset the structure
2709  * to pre-load conditions
2710  **/
2711 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2712 {
2713 	adapter->num_tx_queues = 0;
2714 	adapter->num_rx_queues = 0;
2715 
2716 	ixgbevf_free_q_vectors(adapter);
2717 	ixgbevf_reset_interrupt_capability(adapter);
2718 }
2719 
2720 /**
2721  * ixgbevf_sw_init - Initialize general software structures
2722  * @adapter: board private structure to initialize
2723  *
2724  * ixgbevf_sw_init initializes the Adapter private data structure.
2725  * Fields are initialized based on PCI device information and
2726  * OS network device settings (MTU size).
2727  **/
2728 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2729 {
2730 	struct ixgbe_hw *hw = &adapter->hw;
2731 	struct pci_dev *pdev = adapter->pdev;
2732 	struct net_device *netdev = adapter->netdev;
2733 	int err;
2734 
2735 	/* PCI config space info */
2736 	hw->vendor_id = pdev->vendor;
2737 	hw->device_id = pdev->device;
2738 	hw->revision_id = pdev->revision;
2739 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2740 	hw->subsystem_device_id = pdev->subsystem_device;
2741 
2742 	hw->mbx.ops.init_params(hw);
2743 
2744 	if (hw->mac.type >= ixgbe_mac_X550_vf) {
2745 		err = ixgbevf_init_rss_key(adapter);
2746 		if (err)
2747 			goto out;
2748 	}
2749 
2750 	/* assume legacy case in which PF would only give VF 2 queues */
2751 	hw->mac.max_tx_queues = 2;
2752 	hw->mac.max_rx_queues = 2;
2753 
2754 	/* lock to protect mailbox accesses */
2755 	spin_lock_init(&adapter->mbx_lock);
2756 
2757 	err = hw->mac.ops.reset_hw(hw);
2758 	if (err) {
2759 		dev_info(&pdev->dev,
2760 			 "PF still in reset state.  Is the PF interface up?\n");
2761 	} else {
2762 		err = hw->mac.ops.init_hw(hw);
2763 		if (err) {
2764 			pr_err("init_shared_code failed: %d\n", err);
2765 			goto out;
2766 		}
2767 		ixgbevf_negotiate_api(adapter);
2768 		err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2769 		if (err)
2770 			dev_info(&pdev->dev, "Error reading MAC address\n");
2771 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
2772 			dev_info(&pdev->dev,
2773 				 "MAC address not assigned by administrator.\n");
2774 		ether_addr_copy(netdev->dev_addr, hw->mac.addr);
2775 	}
2776 
2777 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2778 		dev_info(&pdev->dev, "Assigning random MAC address\n");
2779 		eth_hw_addr_random(netdev);
2780 		ether_addr_copy(hw->mac.addr, netdev->dev_addr);
2781 		ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
2782 	}
2783 
2784 	/* Enable dynamic interrupt throttling rates */
2785 	adapter->rx_itr_setting = 1;
2786 	adapter->tx_itr_setting = 1;
2787 
2788 	/* set default ring sizes */
2789 	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2790 	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2791 
2792 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2793 	return 0;
2794 
2795 out:
2796 	return err;
2797 }
2798 
2799 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
2800 	{							\
2801 		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
2802 		if (current_counter < last_counter)		\
2803 			counter += 0x100000000LL;		\
2804 		last_counter = current_counter;			\
2805 		counter &= 0xFFFFFFFF00000000LL;		\
2806 		counter |= current_counter;			\
2807 	}
2808 
2809 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2810 	{								 \
2811 		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
2812 		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
2813 		u64 current_counter = (current_counter_msb << 32) |	 \
2814 			current_counter_lsb;				 \
2815 		if (current_counter < last_counter)			 \
2816 			counter += 0x1000000000LL;			 \
2817 		last_counter = current_counter;				 \
2818 		counter &= 0xFFFFFFF000000000LL;			 \
2819 		counter |= current_counter;				 \
2820 	}
2821 /**
2822  * ixgbevf_update_stats - Update the board statistics counters.
2823  * @adapter: board private structure
2824  **/
2825 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2826 {
2827 	struct ixgbe_hw *hw = &adapter->hw;
2828 	u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0;
2829 	u64 alloc_rx_page = 0, hw_csum_rx_error = 0;
2830 	int i;
2831 
2832 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2833 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2834 		return;
2835 
2836 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2837 				adapter->stats.vfgprc);
2838 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2839 				adapter->stats.vfgptc);
2840 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2841 				adapter->stats.last_vfgorc,
2842 				adapter->stats.vfgorc);
2843 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2844 				adapter->stats.last_vfgotc,
2845 				adapter->stats.vfgotc);
2846 	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2847 				adapter->stats.vfmprc);
2848 
2849 	for (i = 0;  i  < adapter->num_rx_queues;  i++) {
2850 		struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
2851 
2852 		hw_csum_rx_error += rx_ring->rx_stats.csum_err;
2853 		alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed;
2854 		alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
2855 		alloc_rx_page += rx_ring->rx_stats.alloc_rx_page;
2856 	}
2857 
2858 	adapter->hw_csum_rx_error = hw_csum_rx_error;
2859 	adapter->alloc_rx_page_failed = alloc_rx_page_failed;
2860 	adapter->alloc_rx_buff_failed = alloc_rx_buff_failed;
2861 	adapter->alloc_rx_page = alloc_rx_page;
2862 }
2863 
2864 /**
2865  * ixgbevf_service_timer - Timer Call-back
2866  * @t: pointer to timer_list struct
2867  **/
2868 static void ixgbevf_service_timer(struct timer_list *t)
2869 {
2870 	struct ixgbevf_adapter *adapter = from_timer(adapter, t,
2871 						     service_timer);
2872 
2873 	/* Reset the timer */
2874 	mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
2875 
2876 	ixgbevf_service_event_schedule(adapter);
2877 }
2878 
2879 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
2880 {
2881 	if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state))
2882 		return;
2883 
2884 	/* If we're already down or resetting, just bail */
2885 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2886 	    test_bit(__IXGBEVF_REMOVING, &adapter->state) ||
2887 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2888 		return;
2889 
2890 	adapter->tx_timeout_count++;
2891 
2892 	rtnl_lock();
2893 	ixgbevf_reinit_locked(adapter);
2894 	rtnl_unlock();
2895 }
2896 
2897 /**
2898  * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
2899  * @adapter: pointer to the device adapter structure
2900  *
2901  * This function serves two purposes.  First it strobes the interrupt lines
2902  * in order to make certain interrupts are occurring.  Secondly it sets the
2903  * bits needed to check for TX hangs.  As a result we should immediately
2904  * determine if a hang has occurred.
2905  **/
2906 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
2907 {
2908 	struct ixgbe_hw *hw = &adapter->hw;
2909 	u32 eics = 0;
2910 	int i;
2911 
2912 	/* If we're down or resetting, just bail */
2913 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2914 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2915 		return;
2916 
2917 	/* Force detection of hung controller */
2918 	if (netif_carrier_ok(adapter->netdev)) {
2919 		for (i = 0; i < adapter->num_tx_queues; i++)
2920 			set_check_for_tx_hang(adapter->tx_ring[i]);
2921 	}
2922 
2923 	/* get one bit for every active Tx/Rx interrupt vector */
2924 	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2925 		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2926 
2927 		if (qv->rx.ring || qv->tx.ring)
2928 			eics |= BIT(i);
2929 	}
2930 
2931 	/* Cause software interrupt to ensure rings are cleaned */
2932 	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
2933 }
2934 
2935 /**
2936  * ixgbevf_watchdog_update_link - update the link status
2937  * @adapter: pointer to the device adapter structure
2938  **/
2939 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
2940 {
2941 	struct ixgbe_hw *hw = &adapter->hw;
2942 	u32 link_speed = adapter->link_speed;
2943 	bool link_up = adapter->link_up;
2944 	s32 err;
2945 
2946 	spin_lock_bh(&adapter->mbx_lock);
2947 
2948 	err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
2949 
2950 	spin_unlock_bh(&adapter->mbx_lock);
2951 
2952 	/* if check for link returns error we will need to reset */
2953 	if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
2954 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
2955 		link_up = false;
2956 	}
2957 
2958 	adapter->link_up = link_up;
2959 	adapter->link_speed = link_speed;
2960 }
2961 
2962 /**
2963  * ixgbevf_watchdog_link_is_up - update netif_carrier status and
2964  *				 print link up message
2965  * @adapter: pointer to the device adapter structure
2966  **/
2967 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
2968 {
2969 	struct net_device *netdev = adapter->netdev;
2970 
2971 	/* only continue if link was previously down */
2972 	if (netif_carrier_ok(netdev))
2973 		return;
2974 
2975 	dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
2976 		 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2977 		 "10 Gbps" :
2978 		 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
2979 		 "1 Gbps" :
2980 		 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
2981 		 "100 Mbps" :
2982 		 "unknown speed");
2983 
2984 	netif_carrier_on(netdev);
2985 }
2986 
2987 /**
2988  * ixgbevf_watchdog_link_is_down - update netif_carrier status and
2989  *				   print link down message
2990  * @adapter: pointer to the adapter structure
2991  **/
2992 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
2993 {
2994 	struct net_device *netdev = adapter->netdev;
2995 
2996 	adapter->link_speed = 0;
2997 
2998 	/* only continue if link was up previously */
2999 	if (!netif_carrier_ok(netdev))
3000 		return;
3001 
3002 	dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
3003 
3004 	netif_carrier_off(netdev);
3005 }
3006 
3007 /**
3008  * ixgbevf_watchdog_subtask - worker thread to bring link up
3009  * @adapter: board private structure
3010  **/
3011 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
3012 {
3013 	/* if interface is down do nothing */
3014 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3015 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3016 		return;
3017 
3018 	ixgbevf_watchdog_update_link(adapter);
3019 
3020 	if (adapter->link_up)
3021 		ixgbevf_watchdog_link_is_up(adapter);
3022 	else
3023 		ixgbevf_watchdog_link_is_down(adapter);
3024 
3025 	ixgbevf_update_stats(adapter);
3026 }
3027 
3028 /**
3029  * ixgbevf_service_task - manages and runs subtasks
3030  * @work: pointer to work_struct containing our data
3031  **/
3032 static void ixgbevf_service_task(struct work_struct *work)
3033 {
3034 	struct ixgbevf_adapter *adapter = container_of(work,
3035 						       struct ixgbevf_adapter,
3036 						       service_task);
3037 	struct ixgbe_hw *hw = &adapter->hw;
3038 
3039 	if (IXGBE_REMOVED(hw->hw_addr)) {
3040 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
3041 			rtnl_lock();
3042 			ixgbevf_down(adapter);
3043 			rtnl_unlock();
3044 		}
3045 		return;
3046 	}
3047 
3048 	ixgbevf_queue_reset_subtask(adapter);
3049 	ixgbevf_reset_subtask(adapter);
3050 	ixgbevf_watchdog_subtask(adapter);
3051 	ixgbevf_check_hang_subtask(adapter);
3052 
3053 	ixgbevf_service_event_complete(adapter);
3054 }
3055 
3056 /**
3057  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
3058  * @tx_ring: Tx descriptor ring for a specific queue
3059  *
3060  * Free all transmit software resources
3061  **/
3062 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
3063 {
3064 	ixgbevf_clean_tx_ring(tx_ring);
3065 
3066 	vfree(tx_ring->tx_buffer_info);
3067 	tx_ring->tx_buffer_info = NULL;
3068 
3069 	/* if not set, then don't free */
3070 	if (!tx_ring->desc)
3071 		return;
3072 
3073 	dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
3074 			  tx_ring->dma);
3075 
3076 	tx_ring->desc = NULL;
3077 }
3078 
3079 /**
3080  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
3081  * @adapter: board private structure
3082  *
3083  * Free all transmit software resources
3084  **/
3085 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
3086 {
3087 	int i;
3088 
3089 	for (i = 0; i < adapter->num_tx_queues; i++)
3090 		if (adapter->tx_ring[i]->desc)
3091 			ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3092 }
3093 
3094 /**
3095  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
3096  * @tx_ring: Tx descriptor ring (for a specific queue) to setup
3097  *
3098  * Return 0 on success, negative on failure
3099  **/
3100 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
3101 {
3102 	struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
3103 	int size;
3104 
3105 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
3106 	tx_ring->tx_buffer_info = vmalloc(size);
3107 	if (!tx_ring->tx_buffer_info)
3108 		goto err;
3109 
3110 	u64_stats_init(&tx_ring->syncp);
3111 
3112 	/* round up to nearest 4K */
3113 	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
3114 	tx_ring->size = ALIGN(tx_ring->size, 4096);
3115 
3116 	tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
3117 					   &tx_ring->dma, GFP_KERNEL);
3118 	if (!tx_ring->desc)
3119 		goto err;
3120 
3121 	return 0;
3122 
3123 err:
3124 	vfree(tx_ring->tx_buffer_info);
3125 	tx_ring->tx_buffer_info = NULL;
3126 	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3127 	return -ENOMEM;
3128 }
3129 
3130 /**
3131  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3132  * @adapter: board private structure
3133  *
3134  * If this function returns with an error, then it's possible one or
3135  * more of the rings is populated (while the rest are not).  It is the
3136  * callers duty to clean those orphaned rings.
3137  *
3138  * Return 0 on success, negative on failure
3139  **/
3140 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3141 {
3142 	int i, err = 0;
3143 
3144 	for (i = 0; i < adapter->num_tx_queues; i++) {
3145 		err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3146 		if (!err)
3147 			continue;
3148 		hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3149 		goto err_setup_tx;
3150 	}
3151 
3152 	return 0;
3153 err_setup_tx:
3154 	/* rewind the index freeing the rings as we go */
3155 	while (i--)
3156 		ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3157 	return err;
3158 }
3159 
3160 /**
3161  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3162  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3163  *
3164  * Returns 0 on success, negative on failure
3165  **/
3166 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring)
3167 {
3168 	int size;
3169 
3170 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3171 	rx_ring->rx_buffer_info = vmalloc(size);
3172 	if (!rx_ring->rx_buffer_info)
3173 		goto err;
3174 
3175 	u64_stats_init(&rx_ring->syncp);
3176 
3177 	/* Round up to nearest 4K */
3178 	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3179 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3180 
3181 	rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3182 					   &rx_ring->dma, GFP_KERNEL);
3183 
3184 	if (!rx_ring->desc)
3185 		goto err;
3186 
3187 	return 0;
3188 err:
3189 	vfree(rx_ring->rx_buffer_info);
3190 	rx_ring->rx_buffer_info = NULL;
3191 	dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3192 	return -ENOMEM;
3193 }
3194 
3195 /**
3196  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3197  * @adapter: board private structure
3198  *
3199  * If this function returns with an error, then it's possible one or
3200  * more of the rings is populated (while the rest are not).  It is the
3201  * callers duty to clean those orphaned rings.
3202  *
3203  * Return 0 on success, negative on failure
3204  **/
3205 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3206 {
3207 	int i, err = 0;
3208 
3209 	for (i = 0; i < adapter->num_rx_queues; i++) {
3210 		err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]);
3211 		if (!err)
3212 			continue;
3213 		hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3214 		goto err_setup_rx;
3215 	}
3216 
3217 	return 0;
3218 err_setup_rx:
3219 	/* rewind the index freeing the rings as we go */
3220 	while (i--)
3221 		ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3222 	return err;
3223 }
3224 
3225 /**
3226  * ixgbevf_free_rx_resources - Free Rx Resources
3227  * @rx_ring: ring to clean the resources from
3228  *
3229  * Free all receive software resources
3230  **/
3231 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3232 {
3233 	ixgbevf_clean_rx_ring(rx_ring);
3234 
3235 	vfree(rx_ring->rx_buffer_info);
3236 	rx_ring->rx_buffer_info = NULL;
3237 
3238 	dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3239 			  rx_ring->dma);
3240 
3241 	rx_ring->desc = NULL;
3242 }
3243 
3244 /**
3245  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3246  * @adapter: board private structure
3247  *
3248  * Free all receive software resources
3249  **/
3250 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3251 {
3252 	int i;
3253 
3254 	for (i = 0; i < adapter->num_rx_queues; i++)
3255 		if (adapter->rx_ring[i]->desc)
3256 			ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3257 }
3258 
3259 /**
3260  * ixgbevf_open - Called when a network interface is made active
3261  * @netdev: network interface device structure
3262  *
3263  * Returns 0 on success, negative value on failure
3264  *
3265  * The open entry point is called when a network interface is made
3266  * active by the system (IFF_UP).  At this point all resources needed
3267  * for transmit and receive operations are allocated, the interrupt
3268  * handler is registered with the OS, the watchdog timer is started,
3269  * and the stack is notified that the interface is ready.
3270  **/
3271 int ixgbevf_open(struct net_device *netdev)
3272 {
3273 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3274 	struct ixgbe_hw *hw = &adapter->hw;
3275 	int err;
3276 
3277 	/* A previous failure to open the device because of a lack of
3278 	 * available MSIX vector resources may have reset the number
3279 	 * of msix vectors variable to zero.  The only way to recover
3280 	 * is to unload/reload the driver and hope that the system has
3281 	 * been able to recover some MSIX vector resources.
3282 	 */
3283 	if (!adapter->num_msix_vectors)
3284 		return -ENOMEM;
3285 
3286 	if (hw->adapter_stopped) {
3287 		ixgbevf_reset(adapter);
3288 		/* if adapter is still stopped then PF isn't up and
3289 		 * the VF can't start.
3290 		 */
3291 		if (hw->adapter_stopped) {
3292 			err = IXGBE_ERR_MBX;
3293 			pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3294 			goto err_setup_reset;
3295 		}
3296 	}
3297 
3298 	/* disallow open during test */
3299 	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3300 		return -EBUSY;
3301 
3302 	netif_carrier_off(netdev);
3303 
3304 	/* allocate transmit descriptors */
3305 	err = ixgbevf_setup_all_tx_resources(adapter);
3306 	if (err)
3307 		goto err_setup_tx;
3308 
3309 	/* allocate receive descriptors */
3310 	err = ixgbevf_setup_all_rx_resources(adapter);
3311 	if (err)
3312 		goto err_setup_rx;
3313 
3314 	ixgbevf_configure(adapter);
3315 
3316 	err = ixgbevf_request_irq(adapter);
3317 	if (err)
3318 		goto err_req_irq;
3319 
3320 	/* Notify the stack of the actual queue counts. */
3321 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3322 	if (err)
3323 		goto err_set_queues;
3324 
3325 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3326 	if (err)
3327 		goto err_set_queues;
3328 
3329 	ixgbevf_up_complete(adapter);
3330 
3331 	return 0;
3332 
3333 err_set_queues:
3334 	ixgbevf_free_irq(adapter);
3335 err_req_irq:
3336 	ixgbevf_free_all_rx_resources(adapter);
3337 err_setup_rx:
3338 	ixgbevf_free_all_tx_resources(adapter);
3339 err_setup_tx:
3340 	ixgbevf_reset(adapter);
3341 err_setup_reset:
3342 
3343 	return err;
3344 }
3345 
3346 /**
3347  * ixgbevf_close_suspend - actions necessary to both suspend and close flows
3348  * @adapter: the private adapter struct
3349  *
3350  * This function should contain the necessary work common to both suspending
3351  * and closing of the device.
3352  */
3353 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter)
3354 {
3355 	ixgbevf_down(adapter);
3356 	ixgbevf_free_irq(adapter);
3357 	ixgbevf_free_all_tx_resources(adapter);
3358 	ixgbevf_free_all_rx_resources(adapter);
3359 }
3360 
3361 /**
3362  * ixgbevf_close - Disables a network interface
3363  * @netdev: network interface device structure
3364  *
3365  * Returns 0, this is not allowed to fail
3366  *
3367  * The close entry point is called when an interface is de-activated
3368  * by the OS.  The hardware is still under the drivers control, but
3369  * needs to be disabled.  A global MAC reset is issued to stop the
3370  * hardware, and all transmit and receive resources are freed.
3371  **/
3372 int ixgbevf_close(struct net_device *netdev)
3373 {
3374 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3375 
3376 	if (netif_device_present(netdev))
3377 		ixgbevf_close_suspend(adapter);
3378 
3379 	return 0;
3380 }
3381 
3382 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3383 {
3384 	struct net_device *dev = adapter->netdev;
3385 
3386 	if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED,
3387 				&adapter->state))
3388 		return;
3389 
3390 	/* if interface is down do nothing */
3391 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3392 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3393 		return;
3394 
3395 	/* Hardware has to reinitialize queues and interrupts to
3396 	 * match packet buffer alignment. Unfortunately, the
3397 	 * hardware is not flexible enough to do this dynamically.
3398 	 */
3399 	rtnl_lock();
3400 
3401 	if (netif_running(dev))
3402 		ixgbevf_close(dev);
3403 
3404 	ixgbevf_clear_interrupt_scheme(adapter);
3405 	ixgbevf_init_interrupt_scheme(adapter);
3406 
3407 	if (netif_running(dev))
3408 		ixgbevf_open(dev);
3409 
3410 	rtnl_unlock();
3411 }
3412 
3413 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3414 				u32 vlan_macip_lens, u32 type_tucmd,
3415 				u32 mss_l4len_idx)
3416 {
3417 	struct ixgbe_adv_tx_context_desc *context_desc;
3418 	u16 i = tx_ring->next_to_use;
3419 
3420 	context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3421 
3422 	i++;
3423 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3424 
3425 	/* set bits to identify this as an advanced context descriptor */
3426 	type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3427 
3428 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
3429 	context_desc->seqnum_seed	= 0;
3430 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
3431 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
3432 }
3433 
3434 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3435 		       struct ixgbevf_tx_buffer *first,
3436 		       u8 *hdr_len)
3437 {
3438 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
3439 	struct sk_buff *skb = first->skb;
3440 	union {
3441 		struct iphdr *v4;
3442 		struct ipv6hdr *v6;
3443 		unsigned char *hdr;
3444 	} ip;
3445 	union {
3446 		struct tcphdr *tcp;
3447 		unsigned char *hdr;
3448 	} l4;
3449 	u32 paylen, l4_offset;
3450 	int err;
3451 
3452 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3453 		return 0;
3454 
3455 	if (!skb_is_gso(skb))
3456 		return 0;
3457 
3458 	err = skb_cow_head(skb, 0);
3459 	if (err < 0)
3460 		return err;
3461 
3462 	if (eth_p_mpls(first->protocol))
3463 		ip.hdr = skb_inner_network_header(skb);
3464 	else
3465 		ip.hdr = skb_network_header(skb);
3466 	l4.hdr = skb_checksum_start(skb);
3467 
3468 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3469 	type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3470 
3471 	/* initialize outer IP header fields */
3472 	if (ip.v4->version == 4) {
3473 		unsigned char *csum_start = skb_checksum_start(skb);
3474 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
3475 
3476 		/* IP header will have to cancel out any data that
3477 		 * is not a part of the outer IP header
3478 		 */
3479 		ip.v4->check = csum_fold(csum_partial(trans_start,
3480 						      csum_start - trans_start,
3481 						      0));
3482 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3483 
3484 		ip.v4->tot_len = 0;
3485 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3486 				   IXGBE_TX_FLAGS_CSUM |
3487 				   IXGBE_TX_FLAGS_IPV4;
3488 	} else {
3489 		ip.v6->payload_len = 0;
3490 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3491 				   IXGBE_TX_FLAGS_CSUM;
3492 	}
3493 
3494 	/* determine offset of inner transport header */
3495 	l4_offset = l4.hdr - skb->data;
3496 
3497 	/* compute length of segmentation header */
3498 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3499 
3500 	/* remove payload length from inner checksum */
3501 	paylen = skb->len - l4_offset;
3502 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
3503 
3504 	/* update gso size and bytecount with header size */
3505 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3506 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3507 
3508 	/* mss_l4len_id: use 1 as index for TSO */
3509 	mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT;
3510 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3511 	mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT);
3512 
3513 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3514 	vlan_macip_lens = l4.hdr - ip.hdr;
3515 	vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT;
3516 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3517 
3518 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3519 			    type_tucmd, mss_l4len_idx);
3520 
3521 	return 1;
3522 }
3523 
3524 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb)
3525 {
3526 	unsigned int offset = 0;
3527 
3528 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
3529 
3530 	return offset == skb_checksum_start_offset(skb);
3531 }
3532 
3533 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3534 			    struct ixgbevf_tx_buffer *first)
3535 {
3536 	struct sk_buff *skb = first->skb;
3537 	u32 vlan_macip_lens = 0;
3538 	u32 type_tucmd = 0;
3539 
3540 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3541 		goto no_csum;
3542 
3543 	switch (skb->csum_offset) {
3544 	case offsetof(struct tcphdr, check):
3545 		type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3546 		/* fall through */
3547 	case offsetof(struct udphdr, check):
3548 		break;
3549 	case offsetof(struct sctphdr, checksum):
3550 		/* validate that this is actually an SCTP request */
3551 		if (((first->protocol == htons(ETH_P_IP)) &&
3552 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
3553 		    ((first->protocol == htons(ETH_P_IPV6)) &&
3554 		     ixgbevf_ipv6_csum_is_sctp(skb))) {
3555 			type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3556 			break;
3557 		}
3558 		/* fall through */
3559 	default:
3560 		skb_checksum_help(skb);
3561 		goto no_csum;
3562 	}
3563 	/* update TX checksum flag */
3564 	first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3565 	vlan_macip_lens = skb_checksum_start_offset(skb) -
3566 			  skb_network_offset(skb);
3567 no_csum:
3568 	/* vlan_macip_lens: MACLEN, VLAN tag */
3569 	vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3570 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3571 
3572 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
3573 }
3574 
3575 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3576 {
3577 	/* set type for advanced descriptor with frame checksum insertion */
3578 	__le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3579 				      IXGBE_ADVTXD_DCMD_IFCS |
3580 				      IXGBE_ADVTXD_DCMD_DEXT);
3581 
3582 	/* set HW VLAN bit if VLAN is present */
3583 	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3584 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3585 
3586 	/* set segmentation enable bits for TSO/FSO */
3587 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3588 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3589 
3590 	return cmd_type;
3591 }
3592 
3593 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3594 				     u32 tx_flags, unsigned int paylen)
3595 {
3596 	__le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3597 
3598 	/* enable L4 checksum for TSO and TX checksum offload */
3599 	if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3600 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3601 
3602 	/* enble IPv4 checksum for TSO */
3603 	if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3604 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3605 
3606 	/* use index 1 context for TSO/FSO/FCOE */
3607 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3608 		olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT);
3609 
3610 	/* Check Context must be set if Tx switch is enabled, which it
3611 	 * always is for case where virtual functions are running
3612 	 */
3613 	olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3614 
3615 	tx_desc->read.olinfo_status = olinfo_status;
3616 }
3617 
3618 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3619 			   struct ixgbevf_tx_buffer *first,
3620 			   const u8 hdr_len)
3621 {
3622 	struct sk_buff *skb = first->skb;
3623 	struct ixgbevf_tx_buffer *tx_buffer;
3624 	union ixgbe_adv_tx_desc *tx_desc;
3625 	struct skb_frag_struct *frag;
3626 	dma_addr_t dma;
3627 	unsigned int data_len, size;
3628 	u32 tx_flags = first->tx_flags;
3629 	__le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3630 	u16 i = tx_ring->next_to_use;
3631 
3632 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3633 
3634 	ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
3635 
3636 	size = skb_headlen(skb);
3637 	data_len = skb->data_len;
3638 
3639 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3640 
3641 	tx_buffer = first;
3642 
3643 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3644 		if (dma_mapping_error(tx_ring->dev, dma))
3645 			goto dma_error;
3646 
3647 		/* record length, and DMA address */
3648 		dma_unmap_len_set(tx_buffer, len, size);
3649 		dma_unmap_addr_set(tx_buffer, dma, dma);
3650 
3651 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3652 
3653 		while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3654 			tx_desc->read.cmd_type_len =
3655 				cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3656 
3657 			i++;
3658 			tx_desc++;
3659 			if (i == tx_ring->count) {
3660 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3661 				i = 0;
3662 			}
3663 			tx_desc->read.olinfo_status = 0;
3664 
3665 			dma += IXGBE_MAX_DATA_PER_TXD;
3666 			size -= IXGBE_MAX_DATA_PER_TXD;
3667 
3668 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
3669 		}
3670 
3671 		if (likely(!data_len))
3672 			break;
3673 
3674 		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3675 
3676 		i++;
3677 		tx_desc++;
3678 		if (i == tx_ring->count) {
3679 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3680 			i = 0;
3681 		}
3682 		tx_desc->read.olinfo_status = 0;
3683 
3684 		size = skb_frag_size(frag);
3685 		data_len -= size;
3686 
3687 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3688 				       DMA_TO_DEVICE);
3689 
3690 		tx_buffer = &tx_ring->tx_buffer_info[i];
3691 	}
3692 
3693 	/* write last descriptor with RS and EOP bits */
3694 	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
3695 	tx_desc->read.cmd_type_len = cmd_type;
3696 
3697 	/* set the timestamp */
3698 	first->time_stamp = jiffies;
3699 
3700 	/* Force memory writes to complete before letting h/w know there
3701 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
3702 	 * memory model archs, such as IA-64).
3703 	 *
3704 	 * We also need this memory barrier (wmb) to make certain all of the
3705 	 * status bits have been updated before next_to_watch is written.
3706 	 */
3707 	wmb();
3708 
3709 	/* set next_to_watch value indicating a packet is present */
3710 	first->next_to_watch = tx_desc;
3711 
3712 	i++;
3713 	if (i == tx_ring->count)
3714 		i = 0;
3715 
3716 	tx_ring->next_to_use = i;
3717 
3718 	/* notify HW of packet */
3719 	ixgbevf_write_tail(tx_ring, i);
3720 
3721 	return;
3722 dma_error:
3723 	dev_err(tx_ring->dev, "TX DMA map failed\n");
3724 	tx_buffer = &tx_ring->tx_buffer_info[i];
3725 
3726 	/* clear dma mappings for failed tx_buffer_info map */
3727 	while (tx_buffer != first) {
3728 		if (dma_unmap_len(tx_buffer, len))
3729 			dma_unmap_page(tx_ring->dev,
3730 				       dma_unmap_addr(tx_buffer, dma),
3731 				       dma_unmap_len(tx_buffer, len),
3732 				       DMA_TO_DEVICE);
3733 		dma_unmap_len_set(tx_buffer, len, 0);
3734 
3735 		if (i-- == 0)
3736 			i += tx_ring->count;
3737 		tx_buffer = &tx_ring->tx_buffer_info[i];
3738 	}
3739 
3740 	if (dma_unmap_len(tx_buffer, len))
3741 		dma_unmap_single(tx_ring->dev,
3742 				 dma_unmap_addr(tx_buffer, dma),
3743 				 dma_unmap_len(tx_buffer, len),
3744 				 DMA_TO_DEVICE);
3745 	dma_unmap_len_set(tx_buffer, len, 0);
3746 
3747 	dev_kfree_skb_any(tx_buffer->skb);
3748 	tx_buffer->skb = NULL;
3749 
3750 	tx_ring->next_to_use = i;
3751 }
3752 
3753 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3754 {
3755 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3756 	/* Herbert's original patch had:
3757 	 *  smp_mb__after_netif_stop_queue();
3758 	 * but since that doesn't exist yet, just open code it.
3759 	 */
3760 	smp_mb();
3761 
3762 	/* We need to check again in a case another CPU has just
3763 	 * made room available.
3764 	 */
3765 	if (likely(ixgbevf_desc_unused(tx_ring) < size))
3766 		return -EBUSY;
3767 
3768 	/* A reprieve! - use start_queue because it doesn't call schedule */
3769 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3770 	++tx_ring->tx_stats.restart_queue;
3771 
3772 	return 0;
3773 }
3774 
3775 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3776 {
3777 	if (likely(ixgbevf_desc_unused(tx_ring) >= size))
3778 		return 0;
3779 	return __ixgbevf_maybe_stop_tx(tx_ring, size);
3780 }
3781 
3782 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb,
3783 				   struct ixgbevf_ring *tx_ring)
3784 {
3785 	struct ixgbevf_tx_buffer *first;
3786 	int tso;
3787 	u32 tx_flags = 0;
3788 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
3789 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3790 	unsigned short f;
3791 #endif
3792 	u8 hdr_len = 0;
3793 	u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
3794 
3795 	if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
3796 		dev_kfree_skb_any(skb);
3797 		return NETDEV_TX_OK;
3798 	}
3799 
3800 	/* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
3801 	 *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
3802 	 *       + 2 desc gap to keep tail from touching head,
3803 	 *       + 1 desc for context descriptor,
3804 	 * otherwise try next time
3805 	 */
3806 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3807 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3808 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3809 #else
3810 	count += skb_shinfo(skb)->nr_frags;
3811 #endif
3812 	if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
3813 		tx_ring->tx_stats.tx_busy++;
3814 		return NETDEV_TX_BUSY;
3815 	}
3816 
3817 	/* record the location of the first descriptor for this packet */
3818 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
3819 	first->skb = skb;
3820 	first->bytecount = skb->len;
3821 	first->gso_segs = 1;
3822 
3823 	if (skb_vlan_tag_present(skb)) {
3824 		tx_flags |= skb_vlan_tag_get(skb);
3825 		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3826 		tx_flags |= IXGBE_TX_FLAGS_VLAN;
3827 	}
3828 
3829 	/* record initial flags and protocol */
3830 	first->tx_flags = tx_flags;
3831 	first->protocol = vlan_get_protocol(skb);
3832 
3833 	tso = ixgbevf_tso(tx_ring, first, &hdr_len);
3834 	if (tso < 0)
3835 		goto out_drop;
3836 	else if (!tso)
3837 		ixgbevf_tx_csum(tx_ring, first);
3838 
3839 	ixgbevf_tx_map(tx_ring, first, hdr_len);
3840 
3841 	ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
3842 
3843 	return NETDEV_TX_OK;
3844 
3845 out_drop:
3846 	dev_kfree_skb_any(first->skb);
3847 	first->skb = NULL;
3848 
3849 	return NETDEV_TX_OK;
3850 }
3851 
3852 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3853 {
3854 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3855 	struct ixgbevf_ring *tx_ring;
3856 
3857 	if (skb->len <= 0) {
3858 		dev_kfree_skb_any(skb);
3859 		return NETDEV_TX_OK;
3860 	}
3861 
3862 	/* The minimum packet size for olinfo paylen is 17 so pad the skb
3863 	 * in order to meet this minimum size requirement.
3864 	 */
3865 	if (skb->len < 17) {
3866 		if (skb_padto(skb, 17))
3867 			return NETDEV_TX_OK;
3868 		skb->len = 17;
3869 	}
3870 
3871 	tx_ring = adapter->tx_ring[skb->queue_mapping];
3872 	return ixgbevf_xmit_frame_ring(skb, tx_ring);
3873 }
3874 
3875 /**
3876  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3877  * @netdev: network interface device structure
3878  * @p: pointer to an address structure
3879  *
3880  * Returns 0 on success, negative on failure
3881  **/
3882 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3883 {
3884 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3885 	struct ixgbe_hw *hw = &adapter->hw;
3886 	struct sockaddr *addr = p;
3887 	int err;
3888 
3889 	if (!is_valid_ether_addr(addr->sa_data))
3890 		return -EADDRNOTAVAIL;
3891 
3892 	spin_lock_bh(&adapter->mbx_lock);
3893 
3894 	err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0);
3895 
3896 	spin_unlock_bh(&adapter->mbx_lock);
3897 
3898 	if (err)
3899 		return -EPERM;
3900 
3901 	ether_addr_copy(hw->mac.addr, addr->sa_data);
3902 	ether_addr_copy(netdev->dev_addr, addr->sa_data);
3903 
3904 	return 0;
3905 }
3906 
3907 /**
3908  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3909  * @netdev: network interface device structure
3910  * @new_mtu: new value for maximum frame size
3911  *
3912  * Returns 0 on success, negative on failure
3913  **/
3914 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3915 {
3916 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3917 	struct ixgbe_hw *hw = &adapter->hw;
3918 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3919 	int ret;
3920 
3921 	spin_lock_bh(&adapter->mbx_lock);
3922 	/* notify the PF of our intent to use this size of frame */
3923 	ret = hw->mac.ops.set_rlpml(hw, max_frame);
3924 	spin_unlock_bh(&adapter->mbx_lock);
3925 	if (ret)
3926 		return -EINVAL;
3927 
3928 	hw_dbg(hw, "changing MTU from %d to %d\n",
3929 	       netdev->mtu, new_mtu);
3930 
3931 	/* must set new MTU before calling down or up */
3932 	netdev->mtu = new_mtu;
3933 
3934 	if (netif_running(netdev))
3935 		ixgbevf_reinit_locked(adapter);
3936 
3937 	return 0;
3938 }
3939 
3940 #ifdef CONFIG_NET_POLL_CONTROLLER
3941 /* Polling 'interrupt' - used by things like netconsole to send skbs
3942  * without having to re-enable interrupts. It's not called while
3943  * the interrupt routine is executing.
3944  */
3945 static void ixgbevf_netpoll(struct net_device *netdev)
3946 {
3947 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3948 	int i;
3949 
3950 	/* if interface is down do nothing */
3951 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
3952 		return;
3953 	for (i = 0; i < adapter->num_rx_queues; i++)
3954 		ixgbevf_msix_clean_rings(0, adapter->q_vector[i]);
3955 }
3956 #endif /* CONFIG_NET_POLL_CONTROLLER */
3957 
3958 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
3959 {
3960 	struct net_device *netdev = pci_get_drvdata(pdev);
3961 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3962 #ifdef CONFIG_PM
3963 	int retval = 0;
3964 #endif
3965 
3966 	rtnl_lock();
3967 	netif_device_detach(netdev);
3968 
3969 	if (netif_running(netdev))
3970 		ixgbevf_close_suspend(adapter);
3971 
3972 	ixgbevf_clear_interrupt_scheme(adapter);
3973 	rtnl_unlock();
3974 
3975 #ifdef CONFIG_PM
3976 	retval = pci_save_state(pdev);
3977 	if (retval)
3978 		return retval;
3979 
3980 #endif
3981 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
3982 		pci_disable_device(pdev);
3983 
3984 	return 0;
3985 }
3986 
3987 #ifdef CONFIG_PM
3988 static int ixgbevf_resume(struct pci_dev *pdev)
3989 {
3990 	struct net_device *netdev = pci_get_drvdata(pdev);
3991 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3992 	u32 err;
3993 
3994 	pci_restore_state(pdev);
3995 	/* pci_restore_state clears dev->state_saved so call
3996 	 * pci_save_state to restore it.
3997 	 */
3998 	pci_save_state(pdev);
3999 
4000 	err = pci_enable_device_mem(pdev);
4001 	if (err) {
4002 		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
4003 		return err;
4004 	}
4005 
4006 	adapter->hw.hw_addr = adapter->io_addr;
4007 	smp_mb__before_atomic();
4008 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4009 	pci_set_master(pdev);
4010 
4011 	ixgbevf_reset(adapter);
4012 
4013 	rtnl_lock();
4014 	err = ixgbevf_init_interrupt_scheme(adapter);
4015 	if (!err && netif_running(netdev))
4016 		err = ixgbevf_open(netdev);
4017 	rtnl_unlock();
4018 	if (err)
4019 		return err;
4020 
4021 	netif_device_attach(netdev);
4022 
4023 	return err;
4024 }
4025 
4026 #endif /* CONFIG_PM */
4027 static void ixgbevf_shutdown(struct pci_dev *pdev)
4028 {
4029 	ixgbevf_suspend(pdev, PMSG_SUSPEND);
4030 }
4031 
4032 static void ixgbevf_get_stats(struct net_device *netdev,
4033 			      struct rtnl_link_stats64 *stats)
4034 {
4035 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4036 	unsigned int start;
4037 	u64 bytes, packets;
4038 	const struct ixgbevf_ring *ring;
4039 	int i;
4040 
4041 	ixgbevf_update_stats(adapter);
4042 
4043 	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
4044 
4045 	rcu_read_lock();
4046 	for (i = 0; i < adapter->num_rx_queues; i++) {
4047 		ring = adapter->rx_ring[i];
4048 		do {
4049 			start = u64_stats_fetch_begin_irq(&ring->syncp);
4050 			bytes = ring->stats.bytes;
4051 			packets = ring->stats.packets;
4052 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4053 		stats->rx_bytes += bytes;
4054 		stats->rx_packets += packets;
4055 	}
4056 
4057 	for (i = 0; i < adapter->num_tx_queues; i++) {
4058 		ring = adapter->tx_ring[i];
4059 		do {
4060 			start = u64_stats_fetch_begin_irq(&ring->syncp);
4061 			bytes = ring->stats.bytes;
4062 			packets = ring->stats.packets;
4063 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4064 		stats->tx_bytes += bytes;
4065 		stats->tx_packets += packets;
4066 	}
4067 	rcu_read_unlock();
4068 }
4069 
4070 #define IXGBEVF_MAX_MAC_HDR_LEN		127
4071 #define IXGBEVF_MAX_NETWORK_HDR_LEN	511
4072 
4073 static netdev_features_t
4074 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev,
4075 		       netdev_features_t features)
4076 {
4077 	unsigned int network_hdr_len, mac_hdr_len;
4078 
4079 	/* Make certain the headers can be described by a context descriptor */
4080 	mac_hdr_len = skb_network_header(skb) - skb->data;
4081 	if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN))
4082 		return features & ~(NETIF_F_HW_CSUM |
4083 				    NETIF_F_SCTP_CRC |
4084 				    NETIF_F_HW_VLAN_CTAG_TX |
4085 				    NETIF_F_TSO |
4086 				    NETIF_F_TSO6);
4087 
4088 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4089 	if (unlikely(network_hdr_len >  IXGBEVF_MAX_NETWORK_HDR_LEN))
4090 		return features & ~(NETIF_F_HW_CSUM |
4091 				    NETIF_F_SCTP_CRC |
4092 				    NETIF_F_TSO |
4093 				    NETIF_F_TSO6);
4094 
4095 	/* We can only support IPV4 TSO in tunnels if we can mangle the
4096 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4097 	 */
4098 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4099 		features &= ~NETIF_F_TSO;
4100 
4101 	return features;
4102 }
4103 
4104 static const struct net_device_ops ixgbevf_netdev_ops = {
4105 	.ndo_open		= ixgbevf_open,
4106 	.ndo_stop		= ixgbevf_close,
4107 	.ndo_start_xmit		= ixgbevf_xmit_frame,
4108 	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
4109 	.ndo_get_stats64	= ixgbevf_get_stats,
4110 	.ndo_validate_addr	= eth_validate_addr,
4111 	.ndo_set_mac_address	= ixgbevf_set_mac,
4112 	.ndo_change_mtu		= ixgbevf_change_mtu,
4113 	.ndo_tx_timeout		= ixgbevf_tx_timeout,
4114 	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
4115 	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
4116 #ifdef CONFIG_NET_POLL_CONTROLLER
4117 	.ndo_poll_controller	= ixgbevf_netpoll,
4118 #endif
4119 	.ndo_features_check	= ixgbevf_features_check,
4120 };
4121 
4122 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
4123 {
4124 	dev->netdev_ops = &ixgbevf_netdev_ops;
4125 	ixgbevf_set_ethtool_ops(dev);
4126 	dev->watchdog_timeo = 5 * HZ;
4127 }
4128 
4129 /**
4130  * ixgbevf_probe - Device Initialization Routine
4131  * @pdev: PCI device information struct
4132  * @ent: entry in ixgbevf_pci_tbl
4133  *
4134  * Returns 0 on success, negative on failure
4135  *
4136  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
4137  * The OS initialization, configuring of the adapter private structure,
4138  * and a hardware reset occur.
4139  **/
4140 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4141 {
4142 	struct net_device *netdev;
4143 	struct ixgbevf_adapter *adapter = NULL;
4144 	struct ixgbe_hw *hw = NULL;
4145 	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
4146 	int err, pci_using_dac;
4147 	bool disable_dev = false;
4148 
4149 	err = pci_enable_device(pdev);
4150 	if (err)
4151 		return err;
4152 
4153 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
4154 		pci_using_dac = 1;
4155 	} else {
4156 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4157 		if (err) {
4158 			dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4159 			goto err_dma;
4160 		}
4161 		pci_using_dac = 0;
4162 	}
4163 
4164 	err = pci_request_regions(pdev, ixgbevf_driver_name);
4165 	if (err) {
4166 		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
4167 		goto err_pci_reg;
4168 	}
4169 
4170 	pci_set_master(pdev);
4171 
4172 	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
4173 				   MAX_TX_QUEUES);
4174 	if (!netdev) {
4175 		err = -ENOMEM;
4176 		goto err_alloc_etherdev;
4177 	}
4178 
4179 	SET_NETDEV_DEV(netdev, &pdev->dev);
4180 
4181 	adapter = netdev_priv(netdev);
4182 
4183 	adapter->netdev = netdev;
4184 	adapter->pdev = pdev;
4185 	hw = &adapter->hw;
4186 	hw->back = adapter;
4187 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4188 
4189 	/* call save state here in standalone driver because it relies on
4190 	 * adapter struct to exist, and needs to call netdev_priv
4191 	 */
4192 	pci_save_state(pdev);
4193 
4194 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4195 			      pci_resource_len(pdev, 0));
4196 	adapter->io_addr = hw->hw_addr;
4197 	if (!hw->hw_addr) {
4198 		err = -EIO;
4199 		goto err_ioremap;
4200 	}
4201 
4202 	ixgbevf_assign_netdev_ops(netdev);
4203 
4204 	/* Setup HW API */
4205 	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
4206 	hw->mac.type  = ii->mac;
4207 
4208 	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
4209 	       sizeof(struct ixgbe_mbx_operations));
4210 
4211 	/* setup the private structure */
4212 	err = ixgbevf_sw_init(adapter);
4213 	if (err)
4214 		goto err_sw_init;
4215 
4216 	/* The HW MAC address was set and/or determined in sw_init */
4217 	if (!is_valid_ether_addr(netdev->dev_addr)) {
4218 		pr_err("invalid MAC address\n");
4219 		err = -EIO;
4220 		goto err_sw_init;
4221 	}
4222 
4223 	netdev->hw_features = NETIF_F_SG |
4224 			      NETIF_F_TSO |
4225 			      NETIF_F_TSO6 |
4226 			      NETIF_F_RXCSUM |
4227 			      NETIF_F_HW_CSUM |
4228 			      NETIF_F_SCTP_CRC;
4229 
4230 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
4231 				      NETIF_F_GSO_GRE_CSUM | \
4232 				      NETIF_F_GSO_IPXIP4 | \
4233 				      NETIF_F_GSO_IPXIP6 | \
4234 				      NETIF_F_GSO_UDP_TUNNEL | \
4235 				      NETIF_F_GSO_UDP_TUNNEL_CSUM)
4236 
4237 	netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES;
4238 	netdev->hw_features |= NETIF_F_GSO_PARTIAL |
4239 			       IXGBEVF_GSO_PARTIAL_FEATURES;
4240 
4241 	netdev->features = netdev->hw_features;
4242 
4243 	if (pci_using_dac)
4244 		netdev->features |= NETIF_F_HIGHDMA;
4245 
4246 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
4247 	netdev->mpls_features |= NETIF_F_SG |
4248 				 NETIF_F_TSO |
4249 				 NETIF_F_TSO6 |
4250 				 NETIF_F_HW_CSUM;
4251 	netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES;
4252 	netdev->hw_enc_features |= netdev->vlan_features;
4253 
4254 	/* set this bit last since it cannot be part of vlan_features */
4255 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4256 			    NETIF_F_HW_VLAN_CTAG_RX |
4257 			    NETIF_F_HW_VLAN_CTAG_TX;
4258 
4259 	netdev->priv_flags |= IFF_UNICAST_FLT;
4260 
4261 	/* MTU range: 68 - 1504 or 9710 */
4262 	netdev->min_mtu = ETH_MIN_MTU;
4263 	switch (adapter->hw.api_version) {
4264 	case ixgbe_mbox_api_11:
4265 	case ixgbe_mbox_api_12:
4266 	case ixgbe_mbox_api_13:
4267 		netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4268 				  (ETH_HLEN + ETH_FCS_LEN);
4269 		break;
4270 	default:
4271 		if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
4272 			netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4273 					  (ETH_HLEN + ETH_FCS_LEN);
4274 		else
4275 			netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN;
4276 		break;
4277 	}
4278 
4279 	if (IXGBE_REMOVED(hw->hw_addr)) {
4280 		err = -EIO;
4281 		goto err_sw_init;
4282 	}
4283 
4284 	timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0);
4285 
4286 	INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4287 	set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4288 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4289 
4290 	err = ixgbevf_init_interrupt_scheme(adapter);
4291 	if (err)
4292 		goto err_sw_init;
4293 
4294 	strcpy(netdev->name, "eth%d");
4295 
4296 	err = register_netdev(netdev);
4297 	if (err)
4298 		goto err_register;
4299 
4300 	pci_set_drvdata(pdev, netdev);
4301 	netif_carrier_off(netdev);
4302 
4303 	ixgbevf_init_last_counter_stats(adapter);
4304 
4305 	/* print the VF info */
4306 	dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4307 	dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4308 
4309 	switch (hw->mac.type) {
4310 	case ixgbe_mac_X550_vf:
4311 		dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4312 		break;
4313 	case ixgbe_mac_X540_vf:
4314 		dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4315 		break;
4316 	case ixgbe_mac_82599_vf:
4317 	default:
4318 		dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4319 		break;
4320 	}
4321 
4322 	return 0;
4323 
4324 err_register:
4325 	ixgbevf_clear_interrupt_scheme(adapter);
4326 err_sw_init:
4327 	ixgbevf_reset_interrupt_capability(adapter);
4328 	iounmap(adapter->io_addr);
4329 	kfree(adapter->rss_key);
4330 err_ioremap:
4331 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4332 	free_netdev(netdev);
4333 err_alloc_etherdev:
4334 	pci_release_regions(pdev);
4335 err_pci_reg:
4336 err_dma:
4337 	if (!adapter || disable_dev)
4338 		pci_disable_device(pdev);
4339 	return err;
4340 }
4341 
4342 /**
4343  * ixgbevf_remove - Device Removal Routine
4344  * @pdev: PCI device information struct
4345  *
4346  * ixgbevf_remove is called by the PCI subsystem to alert the driver
4347  * that it should release a PCI device.  The could be caused by a
4348  * Hot-Plug event, or because the driver is going to be removed from
4349  * memory.
4350  **/
4351 static void ixgbevf_remove(struct pci_dev *pdev)
4352 {
4353 	struct net_device *netdev = pci_get_drvdata(pdev);
4354 	struct ixgbevf_adapter *adapter;
4355 	bool disable_dev;
4356 
4357 	if (!netdev)
4358 		return;
4359 
4360 	adapter = netdev_priv(netdev);
4361 
4362 	set_bit(__IXGBEVF_REMOVING, &adapter->state);
4363 	cancel_work_sync(&adapter->service_task);
4364 
4365 	if (netdev->reg_state == NETREG_REGISTERED)
4366 		unregister_netdev(netdev);
4367 
4368 	ixgbevf_clear_interrupt_scheme(adapter);
4369 	ixgbevf_reset_interrupt_capability(adapter);
4370 
4371 	iounmap(adapter->io_addr);
4372 	pci_release_regions(pdev);
4373 
4374 	hw_dbg(&adapter->hw, "Remove complete\n");
4375 
4376 	kfree(adapter->rss_key);
4377 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4378 	free_netdev(netdev);
4379 
4380 	if (disable_dev)
4381 		pci_disable_device(pdev);
4382 }
4383 
4384 /**
4385  * ixgbevf_io_error_detected - called when PCI error is detected
4386  * @pdev: Pointer to PCI device
4387  * @state: The current pci connection state
4388  *
4389  * This function is called after a PCI bus error affecting
4390  * this device has been detected.
4391  **/
4392 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4393 						  pci_channel_state_t state)
4394 {
4395 	struct net_device *netdev = pci_get_drvdata(pdev);
4396 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4397 
4398 	if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4399 		return PCI_ERS_RESULT_DISCONNECT;
4400 
4401 	rtnl_lock();
4402 	netif_device_detach(netdev);
4403 
4404 	if (state == pci_channel_io_perm_failure) {
4405 		rtnl_unlock();
4406 		return PCI_ERS_RESULT_DISCONNECT;
4407 	}
4408 
4409 	if (netif_running(netdev))
4410 		ixgbevf_close_suspend(adapter);
4411 
4412 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4413 		pci_disable_device(pdev);
4414 	rtnl_unlock();
4415 
4416 	/* Request a slot slot reset. */
4417 	return PCI_ERS_RESULT_NEED_RESET;
4418 }
4419 
4420 /**
4421  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4422  * @pdev: Pointer to PCI device
4423  *
4424  * Restart the card from scratch, as if from a cold-boot. Implementation
4425  * resembles the first-half of the ixgbevf_resume routine.
4426  **/
4427 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4428 {
4429 	struct net_device *netdev = pci_get_drvdata(pdev);
4430 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4431 
4432 	if (pci_enable_device_mem(pdev)) {
4433 		dev_err(&pdev->dev,
4434 			"Cannot re-enable PCI device after reset.\n");
4435 		return PCI_ERS_RESULT_DISCONNECT;
4436 	}
4437 
4438 	adapter->hw.hw_addr = adapter->io_addr;
4439 	smp_mb__before_atomic();
4440 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4441 	pci_set_master(pdev);
4442 
4443 	ixgbevf_reset(adapter);
4444 
4445 	return PCI_ERS_RESULT_RECOVERED;
4446 }
4447 
4448 /**
4449  * ixgbevf_io_resume - called when traffic can start flowing again.
4450  * @pdev: Pointer to PCI device
4451  *
4452  * This callback is called when the error recovery driver tells us that
4453  * its OK to resume normal operation. Implementation resembles the
4454  * second-half of the ixgbevf_resume routine.
4455  **/
4456 static void ixgbevf_io_resume(struct pci_dev *pdev)
4457 {
4458 	struct net_device *netdev = pci_get_drvdata(pdev);
4459 
4460 	rtnl_lock();
4461 	if (netif_running(netdev))
4462 		ixgbevf_open(netdev);
4463 
4464 	netif_device_attach(netdev);
4465 	rtnl_unlock();
4466 }
4467 
4468 /* PCI Error Recovery (ERS) */
4469 static const struct pci_error_handlers ixgbevf_err_handler = {
4470 	.error_detected = ixgbevf_io_error_detected,
4471 	.slot_reset = ixgbevf_io_slot_reset,
4472 	.resume = ixgbevf_io_resume,
4473 };
4474 
4475 static struct pci_driver ixgbevf_driver = {
4476 	.name		= ixgbevf_driver_name,
4477 	.id_table	= ixgbevf_pci_tbl,
4478 	.probe		= ixgbevf_probe,
4479 	.remove		= ixgbevf_remove,
4480 #ifdef CONFIG_PM
4481 	/* Power Management Hooks */
4482 	.suspend	= ixgbevf_suspend,
4483 	.resume		= ixgbevf_resume,
4484 #endif
4485 	.shutdown	= ixgbevf_shutdown,
4486 	.err_handler	= &ixgbevf_err_handler
4487 };
4488 
4489 /**
4490  * ixgbevf_init_module - Driver Registration Routine
4491  *
4492  * ixgbevf_init_module is the first routine called when the driver is
4493  * loaded. All it does is register with the PCI subsystem.
4494  **/
4495 static int __init ixgbevf_init_module(void)
4496 {
4497 	pr_info("%s - version %s\n", ixgbevf_driver_string,
4498 		ixgbevf_driver_version);
4499 
4500 	pr_info("%s\n", ixgbevf_copyright);
4501 	ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4502 	if (!ixgbevf_wq) {
4503 		pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4504 		return -ENOMEM;
4505 	}
4506 
4507 	return pci_register_driver(&ixgbevf_driver);
4508 }
4509 
4510 module_init(ixgbevf_init_module);
4511 
4512 /**
4513  * ixgbevf_exit_module - Driver Exit Cleanup Routine
4514  *
4515  * ixgbevf_exit_module is called just before the driver is removed
4516  * from memory.
4517  **/
4518 static void __exit ixgbevf_exit_module(void)
4519 {
4520 	pci_unregister_driver(&ixgbevf_driver);
4521 	if (ixgbevf_wq) {
4522 		destroy_workqueue(ixgbevf_wq);
4523 		ixgbevf_wq = NULL;
4524 	}
4525 }
4526 
4527 #ifdef DEBUG
4528 /**
4529  * ixgbevf_get_hw_dev_name - return device name string
4530  * used by hardware layer to print debugging information
4531  * @hw: pointer to private hardware struct
4532  **/
4533 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4534 {
4535 	struct ixgbevf_adapter *adapter = hw->back;
4536 
4537 	return adapter->netdev->name;
4538 }
4539 
4540 #endif
4541 module_exit(ixgbevf_exit_module);
4542 
4543 /* ixgbevf_main.c */
4544