1 /******************************************************************************* 2 3 Intel 82599 Virtual Function driver 4 Copyright(c) 1999 - 2015 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, see <http://www.gnu.org/licenses/>. 17 18 The full GNU General Public License is included in this distribution in 19 the file called "COPYING". 20 21 Contact Information: 22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 25 *******************************************************************************/ 26 27 /****************************************************************************** 28 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 29 ******************************************************************************/ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/types.h> 34 #include <linux/bitops.h> 35 #include <linux/module.h> 36 #include <linux/pci.h> 37 #include <linux/netdevice.h> 38 #include <linux/vmalloc.h> 39 #include <linux/string.h> 40 #include <linux/in.h> 41 #include <linux/ip.h> 42 #include <linux/tcp.h> 43 #include <linux/sctp.h> 44 #include <linux/ipv6.h> 45 #include <linux/slab.h> 46 #include <net/checksum.h> 47 #include <net/ip6_checksum.h> 48 #include <linux/ethtool.h> 49 #include <linux/if.h> 50 #include <linux/if_vlan.h> 51 #include <linux/prefetch.h> 52 #include <net/mpls.h> 53 54 #include "ixgbevf.h" 55 56 const char ixgbevf_driver_name[] = "ixgbevf"; 57 static const char ixgbevf_driver_string[] = 58 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 59 60 #define DRV_VERSION "4.1.0-k" 61 const char ixgbevf_driver_version[] = DRV_VERSION; 62 static char ixgbevf_copyright[] = 63 "Copyright (c) 2009 - 2015 Intel Corporation."; 64 65 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 66 [board_82599_vf] = &ixgbevf_82599_vf_info, 67 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 68 [board_X540_vf] = &ixgbevf_X540_vf_info, 69 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 70 [board_X550_vf] = &ixgbevf_X550_vf_info, 71 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 72 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 73 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 74 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 75 }; 76 77 /* ixgbevf_pci_tbl - PCI Device ID Table 78 * 79 * Wildcard entries (PCI_ANY_ID) should come last 80 * Last entry must be all 0s 81 * 82 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 83 * Class, Class Mask, private data (not used) } 84 */ 85 static const struct pci_device_id ixgbevf_pci_tbl[] = { 86 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 87 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 88 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 89 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 90 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 91 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 92 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 93 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 94 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 95 /* required last entry */ 96 {0, } 97 }; 98 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 99 100 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 101 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 102 MODULE_LICENSE("GPL"); 103 MODULE_VERSION(DRV_VERSION); 104 105 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 106 static int debug = -1; 107 module_param(debug, int, 0); 108 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 109 110 static struct workqueue_struct *ixgbevf_wq; 111 112 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 113 { 114 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 115 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 116 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 117 queue_work(ixgbevf_wq, &adapter->service_task); 118 } 119 120 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 121 { 122 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 123 124 /* flush memory to make sure state is correct before next watchdog */ 125 smp_mb__before_atomic(); 126 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 127 } 128 129 /* forward decls */ 130 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 131 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 132 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 133 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer); 134 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 135 struct ixgbevf_rx_buffer *old_buff); 136 137 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 138 { 139 struct ixgbevf_adapter *adapter = hw->back; 140 141 if (!hw->hw_addr) 142 return; 143 hw->hw_addr = NULL; 144 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 145 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 146 ixgbevf_service_event_schedule(adapter); 147 } 148 149 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 150 { 151 u32 value; 152 153 /* The following check not only optimizes a bit by not 154 * performing a read on the status register when the 155 * register just read was a status register read that 156 * returned IXGBE_FAILED_READ_REG. It also blocks any 157 * potential recursion. 158 */ 159 if (reg == IXGBE_VFSTATUS) { 160 ixgbevf_remove_adapter(hw); 161 return; 162 } 163 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 164 if (value == IXGBE_FAILED_READ_REG) 165 ixgbevf_remove_adapter(hw); 166 } 167 168 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 169 { 170 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 171 u32 value; 172 173 if (IXGBE_REMOVED(reg_addr)) 174 return IXGBE_FAILED_READ_REG; 175 value = readl(reg_addr + reg); 176 if (unlikely(value == IXGBE_FAILED_READ_REG)) 177 ixgbevf_check_remove(hw, reg); 178 return value; 179 } 180 181 /** 182 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 183 * @adapter: pointer to adapter struct 184 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 185 * @queue: queue to map the corresponding interrupt to 186 * @msix_vector: the vector to map to the corresponding queue 187 **/ 188 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 189 u8 queue, u8 msix_vector) 190 { 191 u32 ivar, index; 192 struct ixgbe_hw *hw = &adapter->hw; 193 194 if (direction == -1) { 195 /* other causes */ 196 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 197 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 198 ivar &= ~0xFF; 199 ivar |= msix_vector; 200 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 201 } else { 202 /* Tx or Rx causes */ 203 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 204 index = ((16 * (queue & 1)) + (8 * direction)); 205 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 206 ivar &= ~(0xFF << index); 207 ivar |= (msix_vector << index); 208 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 209 } 210 } 211 212 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 213 { 214 return ring->stats.packets; 215 } 216 217 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 218 { 219 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 220 struct ixgbe_hw *hw = &adapter->hw; 221 222 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 223 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 224 225 if (head != tail) 226 return (head < tail) ? 227 tail - head : (tail + ring->count - head); 228 229 return 0; 230 } 231 232 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 233 { 234 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 235 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 236 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 237 238 clear_check_for_tx_hang(tx_ring); 239 240 /* Check for a hung queue, but be thorough. This verifies 241 * that a transmit has been completed since the previous 242 * check AND there is at least one packet pending. The 243 * ARMED bit is set to indicate a potential hang. 244 */ 245 if ((tx_done_old == tx_done) && tx_pending) { 246 /* make sure it is true for two checks in a row */ 247 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 248 &tx_ring->state); 249 } 250 /* reset the countdown */ 251 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 252 253 /* update completed stats and continue */ 254 tx_ring->tx_stats.tx_done_old = tx_done; 255 256 return false; 257 } 258 259 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 260 { 261 /* Do the reset outside of interrupt context */ 262 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 263 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 264 ixgbevf_service_event_schedule(adapter); 265 } 266 } 267 268 /** 269 * ixgbevf_tx_timeout - Respond to a Tx Hang 270 * @netdev: network interface device structure 271 **/ 272 static void ixgbevf_tx_timeout(struct net_device *netdev) 273 { 274 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 275 276 ixgbevf_tx_timeout_reset(adapter); 277 } 278 279 /** 280 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 281 * @q_vector: board private structure 282 * @tx_ring: tx ring to clean 283 * @napi_budget: Used to determine if we are in netpoll 284 **/ 285 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 286 struct ixgbevf_ring *tx_ring, int napi_budget) 287 { 288 struct ixgbevf_adapter *adapter = q_vector->adapter; 289 struct ixgbevf_tx_buffer *tx_buffer; 290 union ixgbe_adv_tx_desc *tx_desc; 291 unsigned int total_bytes = 0, total_packets = 0; 292 unsigned int budget = tx_ring->count / 2; 293 unsigned int i = tx_ring->next_to_clean; 294 295 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 296 return true; 297 298 tx_buffer = &tx_ring->tx_buffer_info[i]; 299 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 300 i -= tx_ring->count; 301 302 do { 303 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 304 305 /* if next_to_watch is not set then there is no work pending */ 306 if (!eop_desc) 307 break; 308 309 /* prevent any other reads prior to eop_desc */ 310 smp_rmb(); 311 312 /* if DD is not set pending work has not been completed */ 313 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 314 break; 315 316 /* clear next_to_watch to prevent false hangs */ 317 tx_buffer->next_to_watch = NULL; 318 319 /* update the statistics for this packet */ 320 total_bytes += tx_buffer->bytecount; 321 total_packets += tx_buffer->gso_segs; 322 323 /* free the skb */ 324 napi_consume_skb(tx_buffer->skb, napi_budget); 325 326 /* unmap skb header data */ 327 dma_unmap_single(tx_ring->dev, 328 dma_unmap_addr(tx_buffer, dma), 329 dma_unmap_len(tx_buffer, len), 330 DMA_TO_DEVICE); 331 332 /* clear tx_buffer data */ 333 dma_unmap_len_set(tx_buffer, len, 0); 334 335 /* unmap remaining buffers */ 336 while (tx_desc != eop_desc) { 337 tx_buffer++; 338 tx_desc++; 339 i++; 340 if (unlikely(!i)) { 341 i -= tx_ring->count; 342 tx_buffer = tx_ring->tx_buffer_info; 343 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 344 } 345 346 /* unmap any remaining paged data */ 347 if (dma_unmap_len(tx_buffer, len)) { 348 dma_unmap_page(tx_ring->dev, 349 dma_unmap_addr(tx_buffer, dma), 350 dma_unmap_len(tx_buffer, len), 351 DMA_TO_DEVICE); 352 dma_unmap_len_set(tx_buffer, len, 0); 353 } 354 } 355 356 /* move us one more past the eop_desc for start of next pkt */ 357 tx_buffer++; 358 tx_desc++; 359 i++; 360 if (unlikely(!i)) { 361 i -= tx_ring->count; 362 tx_buffer = tx_ring->tx_buffer_info; 363 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 364 } 365 366 /* issue prefetch for next Tx descriptor */ 367 prefetch(tx_desc); 368 369 /* update budget accounting */ 370 budget--; 371 } while (likely(budget)); 372 373 i += tx_ring->count; 374 tx_ring->next_to_clean = i; 375 u64_stats_update_begin(&tx_ring->syncp); 376 tx_ring->stats.bytes += total_bytes; 377 tx_ring->stats.packets += total_packets; 378 u64_stats_update_end(&tx_ring->syncp); 379 q_vector->tx.total_bytes += total_bytes; 380 q_vector->tx.total_packets += total_packets; 381 382 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 383 struct ixgbe_hw *hw = &adapter->hw; 384 union ixgbe_adv_tx_desc *eop_desc; 385 386 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 387 388 pr_err("Detected Tx Unit Hang\n" 389 " Tx Queue <%d>\n" 390 " TDH, TDT <%x>, <%x>\n" 391 " next_to_use <%x>\n" 392 " next_to_clean <%x>\n" 393 "tx_buffer_info[next_to_clean]\n" 394 " next_to_watch <%p>\n" 395 " eop_desc->wb.status <%x>\n" 396 " time_stamp <%lx>\n" 397 " jiffies <%lx>\n", 398 tx_ring->queue_index, 399 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 400 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 401 tx_ring->next_to_use, i, 402 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 403 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 404 405 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 406 407 /* schedule immediate reset if we believe we hung */ 408 ixgbevf_tx_timeout_reset(adapter); 409 410 return true; 411 } 412 413 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 414 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 415 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 416 /* Make sure that anybody stopping the queue after this 417 * sees the new next_to_clean. 418 */ 419 smp_mb(); 420 421 if (__netif_subqueue_stopped(tx_ring->netdev, 422 tx_ring->queue_index) && 423 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 424 netif_wake_subqueue(tx_ring->netdev, 425 tx_ring->queue_index); 426 ++tx_ring->tx_stats.restart_queue; 427 } 428 } 429 430 return !!budget; 431 } 432 433 /** 434 * ixgbevf_rx_skb - Helper function to determine proper Rx method 435 * @q_vector: structure containing interrupt and ring information 436 * @skb: packet to send up 437 **/ 438 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 439 struct sk_buff *skb) 440 { 441 napi_gro_receive(&q_vector->napi, skb); 442 } 443 444 #define IXGBE_RSS_L4_TYPES_MASK \ 445 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 446 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 447 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 448 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 449 450 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 451 union ixgbe_adv_rx_desc *rx_desc, 452 struct sk_buff *skb) 453 { 454 u16 rss_type; 455 456 if (!(ring->netdev->features & NETIF_F_RXHASH)) 457 return; 458 459 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 460 IXGBE_RXDADV_RSSTYPE_MASK; 461 462 if (!rss_type) 463 return; 464 465 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 466 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 467 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 468 } 469 470 /** 471 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 472 * @ring: structure containig ring specific data 473 * @rx_desc: current Rx descriptor being processed 474 * @skb: skb currently being received and modified 475 **/ 476 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 477 union ixgbe_adv_rx_desc *rx_desc, 478 struct sk_buff *skb) 479 { 480 skb_checksum_none_assert(skb); 481 482 /* Rx csum disabled */ 483 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 484 return; 485 486 /* if IP and error */ 487 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 488 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 489 ring->rx_stats.csum_err++; 490 return; 491 } 492 493 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 494 return; 495 496 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 497 ring->rx_stats.csum_err++; 498 return; 499 } 500 501 /* It must be a TCP or UDP packet with a valid checksum */ 502 skb->ip_summed = CHECKSUM_UNNECESSARY; 503 } 504 505 /** 506 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 507 * @rx_ring: rx descriptor ring packet is being transacted on 508 * @rx_desc: pointer to the EOP Rx descriptor 509 * @skb: pointer to current skb being populated 510 * 511 * This function checks the ring, descriptor, and packet information in 512 * order to populate the checksum, VLAN, protocol, and other fields within 513 * the skb. 514 **/ 515 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 516 union ixgbe_adv_rx_desc *rx_desc, 517 struct sk_buff *skb) 518 { 519 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 520 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 521 522 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 523 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 524 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 525 526 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 527 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 528 } 529 530 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 531 } 532 533 static 534 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring, 535 const unsigned int size) 536 { 537 struct ixgbevf_rx_buffer *rx_buffer; 538 539 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 540 prefetchw(rx_buffer->page); 541 542 /* we are reusing so sync this buffer for CPU use */ 543 dma_sync_single_range_for_cpu(rx_ring->dev, 544 rx_buffer->dma, 545 rx_buffer->page_offset, 546 size, 547 DMA_FROM_DEVICE); 548 549 rx_buffer->pagecnt_bias--; 550 551 return rx_buffer; 552 } 553 554 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring, 555 struct ixgbevf_rx_buffer *rx_buffer) 556 { 557 if (ixgbevf_can_reuse_rx_page(rx_buffer)) { 558 /* hand second half of page back to the ring */ 559 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 560 } else { 561 /* We are not reusing the buffer so unmap it and free 562 * any references we are holding to it 563 */ 564 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 565 ixgbevf_rx_pg_size(rx_ring), 566 DMA_FROM_DEVICE, 567 IXGBEVF_RX_DMA_ATTR); 568 __page_frag_cache_drain(rx_buffer->page, 569 rx_buffer->pagecnt_bias); 570 } 571 572 /* clear contents of rx_buffer */ 573 rx_buffer->page = NULL; 574 } 575 576 /** 577 * ixgbevf_is_non_eop - process handling of non-EOP buffers 578 * @rx_ring: Rx ring being processed 579 * @rx_desc: Rx descriptor for current buffer 580 * 581 * This function updates next to clean. If the buffer is an EOP buffer 582 * this function exits returning false, otherwise it will place the 583 * sk_buff in the next buffer to be chained and return true indicating 584 * that this is in fact a non-EOP buffer. 585 **/ 586 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 587 union ixgbe_adv_rx_desc *rx_desc) 588 { 589 u32 ntc = rx_ring->next_to_clean + 1; 590 591 /* fetch, update, and store next to clean */ 592 ntc = (ntc < rx_ring->count) ? ntc : 0; 593 rx_ring->next_to_clean = ntc; 594 595 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 596 597 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 598 return false; 599 600 return true; 601 } 602 603 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring) 604 { 605 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0; 606 } 607 608 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 609 struct ixgbevf_rx_buffer *bi) 610 { 611 struct page *page = bi->page; 612 dma_addr_t dma; 613 614 /* since we are recycling buffers we should seldom need to alloc */ 615 if (likely(page)) 616 return true; 617 618 /* alloc new page for storage */ 619 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring)); 620 if (unlikely(!page)) { 621 rx_ring->rx_stats.alloc_rx_page_failed++; 622 return false; 623 } 624 625 /* map page for use */ 626 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 627 ixgbevf_rx_pg_size(rx_ring), 628 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); 629 630 /* if mapping failed free memory back to system since 631 * there isn't much point in holding memory we can't use 632 */ 633 if (dma_mapping_error(rx_ring->dev, dma)) { 634 __free_pages(page, ixgbevf_rx_pg_order(rx_ring)); 635 636 rx_ring->rx_stats.alloc_rx_page_failed++; 637 return false; 638 } 639 640 bi->dma = dma; 641 bi->page = page; 642 bi->page_offset = ixgbevf_rx_offset(rx_ring); 643 bi->pagecnt_bias = 1; 644 rx_ring->rx_stats.alloc_rx_page++; 645 646 return true; 647 } 648 649 /** 650 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 651 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 652 * @cleaned_count: number of buffers to replace 653 **/ 654 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 655 u16 cleaned_count) 656 { 657 union ixgbe_adv_rx_desc *rx_desc; 658 struct ixgbevf_rx_buffer *bi; 659 unsigned int i = rx_ring->next_to_use; 660 661 /* nothing to do or no valid netdev defined */ 662 if (!cleaned_count || !rx_ring->netdev) 663 return; 664 665 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 666 bi = &rx_ring->rx_buffer_info[i]; 667 i -= rx_ring->count; 668 669 do { 670 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 671 break; 672 673 /* sync the buffer for use by the device */ 674 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 675 bi->page_offset, 676 ixgbevf_rx_bufsz(rx_ring), 677 DMA_FROM_DEVICE); 678 679 /* Refresh the desc even if pkt_addr didn't change 680 * because each write-back erases this info. 681 */ 682 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 683 684 rx_desc++; 685 bi++; 686 i++; 687 if (unlikely(!i)) { 688 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 689 bi = rx_ring->rx_buffer_info; 690 i -= rx_ring->count; 691 } 692 693 /* clear the length for the next_to_use descriptor */ 694 rx_desc->wb.upper.length = 0; 695 696 cleaned_count--; 697 } while (cleaned_count); 698 699 i += rx_ring->count; 700 701 if (rx_ring->next_to_use != i) { 702 /* record the next descriptor to use */ 703 rx_ring->next_to_use = i; 704 705 /* update next to alloc since we have filled the ring */ 706 rx_ring->next_to_alloc = i; 707 708 /* Force memory writes to complete before letting h/w 709 * know there are new descriptors to fetch. (Only 710 * applicable for weak-ordered memory model archs, 711 * such as IA-64). 712 */ 713 wmb(); 714 ixgbevf_write_tail(rx_ring, i); 715 } 716 } 717 718 /** 719 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 720 * @rx_ring: rx descriptor ring packet is being transacted on 721 * @rx_desc: pointer to the EOP Rx descriptor 722 * @skb: pointer to current skb being fixed 723 * 724 * Check for corrupted packet headers caused by senders on the local L2 725 * embedded NIC switch not setting up their Tx Descriptors right. These 726 * should be very rare. 727 * 728 * Also address the case where we are pulling data in on pages only 729 * and as such no data is present in the skb header. 730 * 731 * In addition if skb is not at least 60 bytes we need to pad it so that 732 * it is large enough to qualify as a valid Ethernet frame. 733 * 734 * Returns true if an error was encountered and skb was freed. 735 **/ 736 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 737 union ixgbe_adv_rx_desc *rx_desc, 738 struct sk_buff *skb) 739 { 740 /* verify that the packet does not have any known errors */ 741 if (unlikely(ixgbevf_test_staterr(rx_desc, 742 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 743 struct net_device *netdev = rx_ring->netdev; 744 745 if (!(netdev->features & NETIF_F_RXALL)) { 746 dev_kfree_skb_any(skb); 747 return true; 748 } 749 } 750 751 /* if eth_skb_pad returns an error the skb was freed */ 752 if (eth_skb_pad(skb)) 753 return true; 754 755 return false; 756 } 757 758 /** 759 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 760 * @rx_ring: rx descriptor ring to store buffers on 761 * @old_buff: donor buffer to have page reused 762 * 763 * Synchronizes page for reuse by the adapter 764 **/ 765 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 766 struct ixgbevf_rx_buffer *old_buff) 767 { 768 struct ixgbevf_rx_buffer *new_buff; 769 u16 nta = rx_ring->next_to_alloc; 770 771 new_buff = &rx_ring->rx_buffer_info[nta]; 772 773 /* update, and store next to alloc */ 774 nta++; 775 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 776 777 /* transfer page from old buffer to new buffer */ 778 new_buff->page = old_buff->page; 779 new_buff->dma = old_buff->dma; 780 new_buff->page_offset = old_buff->page_offset; 781 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 782 } 783 784 static inline bool ixgbevf_page_is_reserved(struct page *page) 785 { 786 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 787 } 788 789 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer) 790 { 791 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 792 struct page *page = rx_buffer->page; 793 794 /* avoid re-using remote pages */ 795 if (unlikely(ixgbevf_page_is_reserved(page))) 796 return false; 797 798 #if (PAGE_SIZE < 8192) 799 /* if we are only owner of page we can reuse it */ 800 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 801 return false; 802 #else 803 #define IXGBEVF_LAST_OFFSET \ 804 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048) 805 806 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET) 807 return false; 808 809 #endif 810 811 /* If we have drained the page fragment pool we need to update 812 * the pagecnt_bias and page count so that we fully restock the 813 * number of references the driver holds. 814 */ 815 if (unlikely(!pagecnt_bias)) { 816 page_ref_add(page, USHRT_MAX); 817 rx_buffer->pagecnt_bias = USHRT_MAX; 818 } 819 820 return true; 821 } 822 823 /** 824 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 825 * @rx_ring: rx descriptor ring to transact packets on 826 * @rx_buffer: buffer containing page to add 827 * @skb: sk_buff to place the data into 828 * @size: size of buffer to be added 829 * 830 * This function will add the data contained in rx_buffer->page to the skb. 831 **/ 832 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 833 struct ixgbevf_rx_buffer *rx_buffer, 834 struct sk_buff *skb, 835 unsigned int size) 836 { 837 #if (PAGE_SIZE < 8192) 838 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 839 #else 840 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 841 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 842 SKB_DATA_ALIGN(size); 843 #endif 844 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 845 rx_buffer->page_offset, size, truesize); 846 #if (PAGE_SIZE < 8192) 847 rx_buffer->page_offset ^= truesize; 848 #else 849 rx_buffer->page_offset += truesize; 850 #endif 851 } 852 853 static 854 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring, 855 struct ixgbevf_rx_buffer *rx_buffer, 856 union ixgbe_adv_rx_desc *rx_desc, 857 unsigned int size) 858 { 859 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset; 860 #if (PAGE_SIZE < 8192) 861 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 862 #else 863 unsigned int truesize = SKB_DATA_ALIGN(size); 864 #endif 865 unsigned int headlen; 866 struct sk_buff *skb; 867 868 /* prefetch first cache line of first page */ 869 prefetch(va); 870 #if L1_CACHE_BYTES < 128 871 prefetch(va + L1_CACHE_BYTES); 872 #endif 873 874 /* allocate a skb to store the frags */ 875 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE); 876 if (unlikely(!skb)) 877 return NULL; 878 879 /* Determine available headroom for copy */ 880 headlen = size; 881 if (headlen > IXGBEVF_RX_HDR_SIZE) 882 headlen = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE); 883 884 /* align pull length to size of long to optimize memcpy performance */ 885 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long))); 886 887 /* update all of the pointers */ 888 size -= headlen; 889 if (size) { 890 skb_add_rx_frag(skb, 0, rx_buffer->page, 891 (va + headlen) - page_address(rx_buffer->page), 892 size, truesize); 893 #if (PAGE_SIZE < 8192) 894 rx_buffer->page_offset ^= truesize; 895 #else 896 rx_buffer->page_offset += truesize; 897 #endif 898 } else { 899 rx_buffer->pagecnt_bias++; 900 } 901 902 return skb; 903 } 904 905 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 906 u32 qmask) 907 { 908 struct ixgbe_hw *hw = &adapter->hw; 909 910 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 911 } 912 913 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring, 914 struct ixgbevf_rx_buffer *rx_buffer, 915 union ixgbe_adv_rx_desc *rx_desc, 916 unsigned int size) 917 { 918 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset; 919 #if (PAGE_SIZE < 8192) 920 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 921 #else 922 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 923 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size); 924 #endif 925 struct sk_buff *skb; 926 927 /* prefetch first cache line of first page */ 928 prefetch(va); 929 #if L1_CACHE_BYTES < 128 930 prefetch(va + L1_CACHE_BYTES); 931 #endif 932 933 /* build an skb to around the page buffer */ 934 skb = build_skb(va - IXGBEVF_SKB_PAD, truesize); 935 if (unlikely(!skb)) 936 return NULL; 937 938 /* update pointers within the skb to store the data */ 939 skb_reserve(skb, IXGBEVF_SKB_PAD); 940 __skb_put(skb, size); 941 942 /* update buffer offset */ 943 #if (PAGE_SIZE < 8192) 944 rx_buffer->page_offset ^= truesize; 945 #else 946 rx_buffer->page_offset += truesize; 947 #endif 948 949 return skb; 950 } 951 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 952 struct ixgbevf_ring *rx_ring, 953 int budget) 954 { 955 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 956 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 957 struct sk_buff *skb = rx_ring->skb; 958 959 while (likely(total_rx_packets < budget)) { 960 union ixgbe_adv_rx_desc *rx_desc; 961 struct ixgbevf_rx_buffer *rx_buffer; 962 unsigned int size; 963 964 /* return some buffers to hardware, one at a time is too slow */ 965 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 966 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 967 cleaned_count = 0; 968 } 969 970 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 971 size = le16_to_cpu(rx_desc->wb.upper.length); 972 if (!size) 973 break; 974 975 /* This memory barrier is needed to keep us from reading 976 * any other fields out of the rx_desc until we know the 977 * RXD_STAT_DD bit is set 978 */ 979 rmb(); 980 981 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size); 982 983 /* retrieve a buffer from the ring */ 984 if (skb) 985 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size); 986 else if (ring_uses_build_skb(rx_ring)) 987 skb = ixgbevf_build_skb(rx_ring, rx_buffer, 988 rx_desc, size); 989 else 990 skb = ixgbevf_construct_skb(rx_ring, rx_buffer, 991 rx_desc, size); 992 993 /* exit if we failed to retrieve a buffer */ 994 if (!skb) { 995 rx_ring->rx_stats.alloc_rx_buff_failed++; 996 rx_buffer->pagecnt_bias++; 997 break; 998 } 999 1000 ixgbevf_put_rx_buffer(rx_ring, rx_buffer); 1001 cleaned_count++; 1002 1003 /* fetch next buffer in frame if non-eop */ 1004 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 1005 continue; 1006 1007 /* verify the packet layout is correct */ 1008 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 1009 skb = NULL; 1010 continue; 1011 } 1012 1013 /* probably a little skewed due to removing CRC */ 1014 total_rx_bytes += skb->len; 1015 1016 /* Workaround hardware that can't do proper VEPA multicast 1017 * source pruning. 1018 */ 1019 if ((skb->pkt_type == PACKET_BROADCAST || 1020 skb->pkt_type == PACKET_MULTICAST) && 1021 ether_addr_equal(rx_ring->netdev->dev_addr, 1022 eth_hdr(skb)->h_source)) { 1023 dev_kfree_skb_irq(skb); 1024 continue; 1025 } 1026 1027 /* populate checksum, VLAN, and protocol */ 1028 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 1029 1030 ixgbevf_rx_skb(q_vector, skb); 1031 1032 /* reset skb pointer */ 1033 skb = NULL; 1034 1035 /* update budget accounting */ 1036 total_rx_packets++; 1037 } 1038 1039 /* place incomplete frames back on ring for completion */ 1040 rx_ring->skb = skb; 1041 1042 u64_stats_update_begin(&rx_ring->syncp); 1043 rx_ring->stats.packets += total_rx_packets; 1044 rx_ring->stats.bytes += total_rx_bytes; 1045 u64_stats_update_end(&rx_ring->syncp); 1046 q_vector->rx.total_packets += total_rx_packets; 1047 q_vector->rx.total_bytes += total_rx_bytes; 1048 1049 return total_rx_packets; 1050 } 1051 1052 /** 1053 * ixgbevf_poll - NAPI polling calback 1054 * @napi: napi struct with our devices info in it 1055 * @budget: amount of work driver is allowed to do this pass, in packets 1056 * 1057 * This function will clean more than one or more rings associated with a 1058 * q_vector. 1059 **/ 1060 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1061 { 1062 struct ixgbevf_q_vector *q_vector = 1063 container_of(napi, struct ixgbevf_q_vector, napi); 1064 struct ixgbevf_adapter *adapter = q_vector->adapter; 1065 struct ixgbevf_ring *ring; 1066 int per_ring_budget, work_done = 0; 1067 bool clean_complete = true; 1068 1069 ixgbevf_for_each_ring(ring, q_vector->tx) { 1070 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1071 clean_complete = false; 1072 } 1073 1074 if (budget <= 0) 1075 return budget; 1076 1077 /* attempt to distribute budget to each queue fairly, but don't allow 1078 * the budget to go below 1 because we'll exit polling 1079 */ 1080 if (q_vector->rx.count > 1) 1081 per_ring_budget = max(budget/q_vector->rx.count, 1); 1082 else 1083 per_ring_budget = budget; 1084 1085 ixgbevf_for_each_ring(ring, q_vector->rx) { 1086 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1087 per_ring_budget); 1088 work_done += cleaned; 1089 if (cleaned >= per_ring_budget) 1090 clean_complete = false; 1091 } 1092 1093 /* If all work not completed, return budget and keep polling */ 1094 if (!clean_complete) 1095 return budget; 1096 /* all work done, exit the polling mode */ 1097 napi_complete_done(napi, work_done); 1098 if (adapter->rx_itr_setting == 1) 1099 ixgbevf_set_itr(q_vector); 1100 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1101 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1102 ixgbevf_irq_enable_queues(adapter, 1103 BIT(q_vector->v_idx)); 1104 1105 return 0; 1106 } 1107 1108 /** 1109 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1110 * @q_vector: structure containing interrupt and ring information 1111 **/ 1112 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1113 { 1114 struct ixgbevf_adapter *adapter = q_vector->adapter; 1115 struct ixgbe_hw *hw = &adapter->hw; 1116 int v_idx = q_vector->v_idx; 1117 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1118 1119 /* set the WDIS bit to not clear the timer bits and cause an 1120 * immediate assertion of the interrupt 1121 */ 1122 itr_reg |= IXGBE_EITR_CNT_WDIS; 1123 1124 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1125 } 1126 1127 /** 1128 * ixgbevf_configure_msix - Configure MSI-X hardware 1129 * @adapter: board private structure 1130 * 1131 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1132 * interrupts. 1133 **/ 1134 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1135 { 1136 struct ixgbevf_q_vector *q_vector; 1137 int q_vectors, v_idx; 1138 1139 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1140 adapter->eims_enable_mask = 0; 1141 1142 /* Populate the IVAR table and set the ITR values to the 1143 * corresponding register. 1144 */ 1145 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1146 struct ixgbevf_ring *ring; 1147 1148 q_vector = adapter->q_vector[v_idx]; 1149 1150 ixgbevf_for_each_ring(ring, q_vector->rx) 1151 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1152 1153 ixgbevf_for_each_ring(ring, q_vector->tx) 1154 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1155 1156 if (q_vector->tx.ring && !q_vector->rx.ring) { 1157 /* Tx only vector */ 1158 if (adapter->tx_itr_setting == 1) 1159 q_vector->itr = IXGBE_12K_ITR; 1160 else 1161 q_vector->itr = adapter->tx_itr_setting; 1162 } else { 1163 /* Rx or Rx/Tx vector */ 1164 if (adapter->rx_itr_setting == 1) 1165 q_vector->itr = IXGBE_20K_ITR; 1166 else 1167 q_vector->itr = adapter->rx_itr_setting; 1168 } 1169 1170 /* add q_vector eims value to global eims_enable_mask */ 1171 adapter->eims_enable_mask |= BIT(v_idx); 1172 1173 ixgbevf_write_eitr(q_vector); 1174 } 1175 1176 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1177 /* setup eims_other and add value to global eims_enable_mask */ 1178 adapter->eims_other = BIT(v_idx); 1179 adapter->eims_enable_mask |= adapter->eims_other; 1180 } 1181 1182 enum latency_range { 1183 lowest_latency = 0, 1184 low_latency = 1, 1185 bulk_latency = 2, 1186 latency_invalid = 255 1187 }; 1188 1189 /** 1190 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1191 * @q_vector: structure containing interrupt and ring information 1192 * @ring_container: structure containing ring performance data 1193 * 1194 * Stores a new ITR value based on packets and byte 1195 * counts during the last interrupt. The advantage of per interrupt 1196 * computation is faster updates and more accurate ITR for the current 1197 * traffic pattern. Constants in this function were computed 1198 * based on theoretical maximum wire speed and thresholds were set based 1199 * on testing data as well as attempting to minimize response time 1200 * while increasing bulk throughput. 1201 **/ 1202 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1203 struct ixgbevf_ring_container *ring_container) 1204 { 1205 int bytes = ring_container->total_bytes; 1206 int packets = ring_container->total_packets; 1207 u32 timepassed_us; 1208 u64 bytes_perint; 1209 u8 itr_setting = ring_container->itr; 1210 1211 if (packets == 0) 1212 return; 1213 1214 /* simple throttle rate management 1215 * 0-20MB/s lowest (100000 ints/s) 1216 * 20-100MB/s low (20000 ints/s) 1217 * 100-1249MB/s bulk (12000 ints/s) 1218 */ 1219 /* what was last interrupt timeslice? */ 1220 timepassed_us = q_vector->itr >> 2; 1221 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1222 1223 switch (itr_setting) { 1224 case lowest_latency: 1225 if (bytes_perint > 10) 1226 itr_setting = low_latency; 1227 break; 1228 case low_latency: 1229 if (bytes_perint > 20) 1230 itr_setting = bulk_latency; 1231 else if (bytes_perint <= 10) 1232 itr_setting = lowest_latency; 1233 break; 1234 case bulk_latency: 1235 if (bytes_perint <= 20) 1236 itr_setting = low_latency; 1237 break; 1238 } 1239 1240 /* clear work counters since we have the values we need */ 1241 ring_container->total_bytes = 0; 1242 ring_container->total_packets = 0; 1243 1244 /* write updated itr to ring container */ 1245 ring_container->itr = itr_setting; 1246 } 1247 1248 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1249 { 1250 u32 new_itr = q_vector->itr; 1251 u8 current_itr; 1252 1253 ixgbevf_update_itr(q_vector, &q_vector->tx); 1254 ixgbevf_update_itr(q_vector, &q_vector->rx); 1255 1256 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1257 1258 switch (current_itr) { 1259 /* counts and packets in update_itr are dependent on these numbers */ 1260 case lowest_latency: 1261 new_itr = IXGBE_100K_ITR; 1262 break; 1263 case low_latency: 1264 new_itr = IXGBE_20K_ITR; 1265 break; 1266 case bulk_latency: 1267 new_itr = IXGBE_12K_ITR; 1268 break; 1269 default: 1270 break; 1271 } 1272 1273 if (new_itr != q_vector->itr) { 1274 /* do an exponential smoothing */ 1275 new_itr = (10 * new_itr * q_vector->itr) / 1276 ((9 * new_itr) + q_vector->itr); 1277 1278 /* save the algorithm value here */ 1279 q_vector->itr = new_itr; 1280 1281 ixgbevf_write_eitr(q_vector); 1282 } 1283 } 1284 1285 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1286 { 1287 struct ixgbevf_adapter *adapter = data; 1288 struct ixgbe_hw *hw = &adapter->hw; 1289 1290 hw->mac.get_link_status = 1; 1291 1292 ixgbevf_service_event_schedule(adapter); 1293 1294 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1295 1296 return IRQ_HANDLED; 1297 } 1298 1299 /** 1300 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1301 * @irq: unused 1302 * @data: pointer to our q_vector struct for this interrupt vector 1303 **/ 1304 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1305 { 1306 struct ixgbevf_q_vector *q_vector = data; 1307 1308 /* EIAM disabled interrupts (on this vector) for us */ 1309 if (q_vector->rx.ring || q_vector->tx.ring) 1310 napi_schedule_irqoff(&q_vector->napi); 1311 1312 return IRQ_HANDLED; 1313 } 1314 1315 /** 1316 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1317 * @adapter: board private structure 1318 * 1319 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1320 * interrupts from the kernel. 1321 **/ 1322 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1323 { 1324 struct net_device *netdev = adapter->netdev; 1325 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1326 unsigned int ri = 0, ti = 0; 1327 int vector, err; 1328 1329 for (vector = 0; vector < q_vectors; vector++) { 1330 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1331 struct msix_entry *entry = &adapter->msix_entries[vector]; 1332 1333 if (q_vector->tx.ring && q_vector->rx.ring) { 1334 snprintf(q_vector->name, sizeof(q_vector->name), 1335 "%s-TxRx-%u", netdev->name, ri++); 1336 ti++; 1337 } else if (q_vector->rx.ring) { 1338 snprintf(q_vector->name, sizeof(q_vector->name), 1339 "%s-rx-%u", netdev->name, ri++); 1340 } else if (q_vector->tx.ring) { 1341 snprintf(q_vector->name, sizeof(q_vector->name), 1342 "%s-tx-%u", netdev->name, ti++); 1343 } else { 1344 /* skip this unused q_vector */ 1345 continue; 1346 } 1347 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1348 q_vector->name, q_vector); 1349 if (err) { 1350 hw_dbg(&adapter->hw, 1351 "request_irq failed for MSIX interrupt Error: %d\n", 1352 err); 1353 goto free_queue_irqs; 1354 } 1355 } 1356 1357 err = request_irq(adapter->msix_entries[vector].vector, 1358 &ixgbevf_msix_other, 0, netdev->name, adapter); 1359 if (err) { 1360 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1361 err); 1362 goto free_queue_irqs; 1363 } 1364 1365 return 0; 1366 1367 free_queue_irqs: 1368 while (vector) { 1369 vector--; 1370 free_irq(adapter->msix_entries[vector].vector, 1371 adapter->q_vector[vector]); 1372 } 1373 /* This failure is non-recoverable - it indicates the system is 1374 * out of MSIX vector resources and the VF driver cannot run 1375 * without them. Set the number of msix vectors to zero 1376 * indicating that not enough can be allocated. The error 1377 * will be returned to the user indicating device open failed. 1378 * Any further attempts to force the driver to open will also 1379 * fail. The only way to recover is to unload the driver and 1380 * reload it again. If the system has recovered some MSIX 1381 * vectors then it may succeed. 1382 */ 1383 adapter->num_msix_vectors = 0; 1384 return err; 1385 } 1386 1387 /** 1388 * ixgbevf_request_irq - initialize interrupts 1389 * @adapter: board private structure 1390 * 1391 * Attempts to configure interrupts using the best available 1392 * capabilities of the hardware and kernel. 1393 **/ 1394 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1395 { 1396 int err = ixgbevf_request_msix_irqs(adapter); 1397 1398 if (err) 1399 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1400 1401 return err; 1402 } 1403 1404 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1405 { 1406 int i, q_vectors; 1407 1408 if (!adapter->msix_entries) 1409 return; 1410 1411 q_vectors = adapter->num_msix_vectors; 1412 i = q_vectors - 1; 1413 1414 free_irq(adapter->msix_entries[i].vector, adapter); 1415 i--; 1416 1417 for (; i >= 0; i--) { 1418 /* free only the irqs that were actually requested */ 1419 if (!adapter->q_vector[i]->rx.ring && 1420 !adapter->q_vector[i]->tx.ring) 1421 continue; 1422 1423 free_irq(adapter->msix_entries[i].vector, 1424 adapter->q_vector[i]); 1425 } 1426 } 1427 1428 /** 1429 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1430 * @adapter: board private structure 1431 **/ 1432 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1433 { 1434 struct ixgbe_hw *hw = &adapter->hw; 1435 int i; 1436 1437 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1438 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1439 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1440 1441 IXGBE_WRITE_FLUSH(hw); 1442 1443 for (i = 0; i < adapter->num_msix_vectors; i++) 1444 synchronize_irq(adapter->msix_entries[i].vector); 1445 } 1446 1447 /** 1448 * ixgbevf_irq_enable - Enable default interrupt generation settings 1449 * @adapter: board private structure 1450 **/ 1451 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1452 { 1453 struct ixgbe_hw *hw = &adapter->hw; 1454 1455 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1456 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1457 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1458 } 1459 1460 /** 1461 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1462 * @adapter: board private structure 1463 * @ring: structure containing ring specific data 1464 * 1465 * Configure the Tx descriptor ring after a reset. 1466 **/ 1467 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1468 struct ixgbevf_ring *ring) 1469 { 1470 struct ixgbe_hw *hw = &adapter->hw; 1471 u64 tdba = ring->dma; 1472 int wait_loop = 10; 1473 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1474 u8 reg_idx = ring->reg_idx; 1475 1476 /* disable queue to avoid issues while updating state */ 1477 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1478 IXGBE_WRITE_FLUSH(hw); 1479 1480 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1481 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1482 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1483 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1484 1485 /* disable head writeback */ 1486 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1487 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1488 1489 /* enable relaxed ordering */ 1490 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1491 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1492 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1493 1494 /* reset head and tail pointers */ 1495 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1496 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1497 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1498 1499 /* reset ntu and ntc to place SW in sync with hardwdare */ 1500 ring->next_to_clean = 0; 1501 ring->next_to_use = 0; 1502 1503 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1504 * to or less than the number of on chip descriptors, which is 1505 * currently 40. 1506 */ 1507 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1508 1509 /* Setting PTHRESH to 32 both improves performance */ 1510 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1511 32; /* PTHRESH = 32 */ 1512 1513 /* reinitialize tx_buffer_info */ 1514 memset(ring->tx_buffer_info, 0, 1515 sizeof(struct ixgbevf_tx_buffer) * ring->count); 1516 1517 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1518 1519 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1520 1521 /* poll to verify queue is enabled */ 1522 do { 1523 usleep_range(1000, 2000); 1524 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1525 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1526 if (!wait_loop) 1527 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1528 } 1529 1530 /** 1531 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1532 * @adapter: board private structure 1533 * 1534 * Configure the Tx unit of the MAC after a reset. 1535 **/ 1536 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1537 { 1538 u32 i; 1539 1540 /* Setup the HW Tx Head and Tail descriptor pointers */ 1541 for (i = 0; i < adapter->num_tx_queues; i++) 1542 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1543 } 1544 1545 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1546 1547 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, 1548 struct ixgbevf_ring *ring, int index) 1549 { 1550 struct ixgbe_hw *hw = &adapter->hw; 1551 u32 srrctl; 1552 1553 srrctl = IXGBE_SRRCTL_DROP_EN; 1554 1555 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1556 if (ring_uses_large_buffer(ring)) 1557 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1558 else 1559 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1560 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1561 1562 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1563 } 1564 1565 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1566 { 1567 struct ixgbe_hw *hw = &adapter->hw; 1568 1569 /* PSRTYPE must be initialized in 82599 */ 1570 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1571 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1572 IXGBE_PSRTYPE_L2HDR; 1573 1574 if (adapter->num_rx_queues > 1) 1575 psrtype |= BIT(29); 1576 1577 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1578 } 1579 1580 #define IXGBEVF_MAX_RX_DESC_POLL 10 1581 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1582 struct ixgbevf_ring *ring) 1583 { 1584 struct ixgbe_hw *hw = &adapter->hw; 1585 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1586 u32 rxdctl; 1587 u8 reg_idx = ring->reg_idx; 1588 1589 if (IXGBE_REMOVED(hw->hw_addr)) 1590 return; 1591 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1592 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1593 1594 /* write value back with RXDCTL.ENABLE bit cleared */ 1595 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1596 1597 /* the hardware may take up to 100us to really disable the Rx queue */ 1598 do { 1599 udelay(10); 1600 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1601 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1602 1603 if (!wait_loop) 1604 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1605 reg_idx); 1606 } 1607 1608 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1609 struct ixgbevf_ring *ring) 1610 { 1611 struct ixgbe_hw *hw = &adapter->hw; 1612 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1613 u32 rxdctl; 1614 u8 reg_idx = ring->reg_idx; 1615 1616 if (IXGBE_REMOVED(hw->hw_addr)) 1617 return; 1618 do { 1619 usleep_range(1000, 2000); 1620 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1621 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1622 1623 if (!wait_loop) 1624 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1625 reg_idx); 1626 } 1627 1628 /** 1629 * ixgbevf_init_rss_key - Initialize adapter RSS key 1630 * @adapter: device handle 1631 * 1632 * Allocates and initializes the RSS key if it is not allocated. 1633 **/ 1634 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1635 { 1636 u32 *rss_key; 1637 1638 if (!adapter->rss_key) { 1639 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1640 if (unlikely(!rss_key)) 1641 return -ENOMEM; 1642 1643 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1644 adapter->rss_key = rss_key; 1645 } 1646 1647 return 0; 1648 } 1649 1650 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1651 { 1652 struct ixgbe_hw *hw = &adapter->hw; 1653 u32 vfmrqc = 0, vfreta = 0; 1654 u16 rss_i = adapter->num_rx_queues; 1655 u8 i, j; 1656 1657 /* Fill out hash function seeds */ 1658 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1659 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1660 1661 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1662 if (j == rss_i) 1663 j = 0; 1664 1665 adapter->rss_indir_tbl[i] = j; 1666 1667 vfreta |= j << (i & 0x3) * 8; 1668 if ((i & 3) == 3) { 1669 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1670 vfreta = 0; 1671 } 1672 } 1673 1674 /* Perform hash on these packet types */ 1675 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1676 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1677 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1678 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1679 1680 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1681 1682 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1683 } 1684 1685 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1686 struct ixgbevf_ring *ring) 1687 { 1688 struct ixgbe_hw *hw = &adapter->hw; 1689 union ixgbe_adv_rx_desc *rx_desc; 1690 u64 rdba = ring->dma; 1691 u32 rxdctl; 1692 u8 reg_idx = ring->reg_idx; 1693 1694 /* disable queue to avoid issues while updating state */ 1695 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1696 ixgbevf_disable_rx_queue(adapter, ring); 1697 1698 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1699 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1700 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1701 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1702 1703 #ifndef CONFIG_SPARC 1704 /* enable relaxed ordering */ 1705 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1706 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1707 #else 1708 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1709 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1710 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1711 #endif 1712 1713 /* reset head and tail pointers */ 1714 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1715 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1716 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1717 1718 /* initialize rx_buffer_info */ 1719 memset(ring->rx_buffer_info, 0, 1720 sizeof(struct ixgbevf_rx_buffer) * ring->count); 1721 1722 /* initialize Rx descriptor 0 */ 1723 rx_desc = IXGBEVF_RX_DESC(ring, 0); 1724 rx_desc->wb.upper.length = 0; 1725 1726 /* reset ntu and ntc to place SW in sync with hardwdare */ 1727 ring->next_to_clean = 0; 1728 ring->next_to_use = 0; 1729 ring->next_to_alloc = 0; 1730 1731 ixgbevf_configure_srrctl(adapter, ring, reg_idx); 1732 1733 /* RXDCTL.RLPML does not work on 82599 */ 1734 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) { 1735 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK | 1736 IXGBE_RXDCTL_RLPML_EN); 1737 1738 #if (PAGE_SIZE < 8192) 1739 /* Limit the maximum frame size so we don't overrun the skb */ 1740 if (ring_uses_build_skb(ring) && 1741 !ring_uses_large_buffer(ring)) 1742 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB | 1743 IXGBE_RXDCTL_RLPML_EN; 1744 #endif 1745 } 1746 1747 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1748 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1749 1750 ixgbevf_rx_desc_queue_enable(adapter, ring); 1751 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1752 } 1753 1754 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter, 1755 struct ixgbevf_ring *rx_ring) 1756 { 1757 struct net_device *netdev = adapter->netdev; 1758 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1759 1760 /* set build_skb and buffer size flags */ 1761 clear_ring_build_skb_enabled(rx_ring); 1762 clear_ring_uses_large_buffer(rx_ring); 1763 1764 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX) 1765 return; 1766 1767 set_ring_build_skb_enabled(rx_ring); 1768 1769 #if (PAGE_SIZE < 8192) 1770 if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB) 1771 return; 1772 1773 set_ring_uses_large_buffer(rx_ring); 1774 #endif 1775 } 1776 1777 /** 1778 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 1779 * @adapter: board private structure 1780 * 1781 * Configure the Rx unit of the MAC after a reset. 1782 **/ 1783 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 1784 { 1785 struct ixgbe_hw *hw = &adapter->hw; 1786 struct net_device *netdev = adapter->netdev; 1787 int i, ret; 1788 1789 ixgbevf_setup_psrtype(adapter); 1790 if (hw->mac.type >= ixgbe_mac_X550_vf) 1791 ixgbevf_setup_vfmrqc(adapter); 1792 1793 spin_lock_bh(&adapter->mbx_lock); 1794 /* notify the PF of our intent to use this size of frame */ 1795 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 1796 spin_unlock_bh(&adapter->mbx_lock); 1797 if (ret) 1798 dev_err(&adapter->pdev->dev, 1799 "Failed to set MTU at %d\n", netdev->mtu); 1800 1801 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1802 * the Base and Length of the Rx Descriptor Ring 1803 */ 1804 for (i = 0; i < adapter->num_rx_queues; i++) { 1805 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 1806 1807 ixgbevf_set_rx_buffer_len(adapter, rx_ring); 1808 ixgbevf_configure_rx_ring(adapter, rx_ring); 1809 } 1810 } 1811 1812 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 1813 __be16 proto, u16 vid) 1814 { 1815 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1816 struct ixgbe_hw *hw = &adapter->hw; 1817 int err; 1818 1819 spin_lock_bh(&adapter->mbx_lock); 1820 1821 /* add VID to filter table */ 1822 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 1823 1824 spin_unlock_bh(&adapter->mbx_lock); 1825 1826 /* translate error return types so error makes sense */ 1827 if (err == IXGBE_ERR_MBX) 1828 return -EIO; 1829 1830 if (err == IXGBE_ERR_INVALID_ARGUMENT) 1831 return -EACCES; 1832 1833 set_bit(vid, adapter->active_vlans); 1834 1835 return err; 1836 } 1837 1838 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 1839 __be16 proto, u16 vid) 1840 { 1841 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1842 struct ixgbe_hw *hw = &adapter->hw; 1843 int err; 1844 1845 spin_lock_bh(&adapter->mbx_lock); 1846 1847 /* remove VID from filter table */ 1848 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 1849 1850 spin_unlock_bh(&adapter->mbx_lock); 1851 1852 clear_bit(vid, adapter->active_vlans); 1853 1854 return err; 1855 } 1856 1857 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 1858 { 1859 u16 vid; 1860 1861 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 1862 ixgbevf_vlan_rx_add_vid(adapter->netdev, 1863 htons(ETH_P_8021Q), vid); 1864 } 1865 1866 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 1867 { 1868 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1869 struct ixgbe_hw *hw = &adapter->hw; 1870 int count = 0; 1871 1872 if ((netdev_uc_count(netdev)) > 10) { 1873 pr_err("Too many unicast filters - No Space\n"); 1874 return -ENOSPC; 1875 } 1876 1877 if (!netdev_uc_empty(netdev)) { 1878 struct netdev_hw_addr *ha; 1879 1880 netdev_for_each_uc_addr(ha, netdev) { 1881 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 1882 udelay(200); 1883 } 1884 } else { 1885 /* If the list is empty then send message to PF driver to 1886 * clear all MAC VLANs on this VF. 1887 */ 1888 hw->mac.ops.set_uc_addr(hw, 0, NULL); 1889 } 1890 1891 return count; 1892 } 1893 1894 /** 1895 * ixgbevf_set_rx_mode - Multicast and unicast set 1896 * @netdev: network interface device structure 1897 * 1898 * The set_rx_method entry point is called whenever the multicast address 1899 * list, unicast address list or the network interface flags are updated. 1900 * This routine is responsible for configuring the hardware for proper 1901 * multicast mode and configuring requested unicast filters. 1902 **/ 1903 static void ixgbevf_set_rx_mode(struct net_device *netdev) 1904 { 1905 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1906 struct ixgbe_hw *hw = &adapter->hw; 1907 unsigned int flags = netdev->flags; 1908 int xcast_mode; 1909 1910 /* request the most inclusive mode we need */ 1911 if (flags & IFF_PROMISC) 1912 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 1913 else if (flags & IFF_ALLMULTI) 1914 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 1915 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 1916 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 1917 else 1918 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 1919 1920 spin_lock_bh(&adapter->mbx_lock); 1921 1922 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 1923 1924 /* reprogram multicast list */ 1925 hw->mac.ops.update_mc_addr_list(hw, netdev); 1926 1927 ixgbevf_write_uc_addr_list(netdev); 1928 1929 spin_unlock_bh(&adapter->mbx_lock); 1930 } 1931 1932 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 1933 { 1934 int q_idx; 1935 struct ixgbevf_q_vector *q_vector; 1936 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1937 1938 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1939 q_vector = adapter->q_vector[q_idx]; 1940 napi_enable(&q_vector->napi); 1941 } 1942 } 1943 1944 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 1945 { 1946 int q_idx; 1947 struct ixgbevf_q_vector *q_vector; 1948 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1949 1950 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1951 q_vector = adapter->q_vector[q_idx]; 1952 napi_disable(&q_vector->napi); 1953 } 1954 } 1955 1956 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 1957 { 1958 struct ixgbe_hw *hw = &adapter->hw; 1959 unsigned int def_q = 0; 1960 unsigned int num_tcs = 0; 1961 unsigned int num_rx_queues = adapter->num_rx_queues; 1962 unsigned int num_tx_queues = adapter->num_tx_queues; 1963 int err; 1964 1965 spin_lock_bh(&adapter->mbx_lock); 1966 1967 /* fetch queue configuration from the PF */ 1968 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 1969 1970 spin_unlock_bh(&adapter->mbx_lock); 1971 1972 if (err) 1973 return err; 1974 1975 if (num_tcs > 1) { 1976 /* we need only one Tx queue */ 1977 num_tx_queues = 1; 1978 1979 /* update default Tx ring register index */ 1980 adapter->tx_ring[0]->reg_idx = def_q; 1981 1982 /* we need as many queues as traffic classes */ 1983 num_rx_queues = num_tcs; 1984 } 1985 1986 /* if we have a bad config abort request queue reset */ 1987 if ((adapter->num_rx_queues != num_rx_queues) || 1988 (adapter->num_tx_queues != num_tx_queues)) { 1989 /* force mailbox timeout to prevent further messages */ 1990 hw->mbx.timeout = 0; 1991 1992 /* wait for watchdog to come around and bail us out */ 1993 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 1994 } 1995 1996 return 0; 1997 } 1998 1999 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2000 { 2001 ixgbevf_configure_dcb(adapter); 2002 2003 ixgbevf_set_rx_mode(adapter->netdev); 2004 2005 ixgbevf_restore_vlan(adapter); 2006 2007 ixgbevf_configure_tx(adapter); 2008 ixgbevf_configure_rx(adapter); 2009 } 2010 2011 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2012 { 2013 /* Only save pre-reset stats if there are some */ 2014 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2015 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2016 adapter->stats.base_vfgprc; 2017 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2018 adapter->stats.base_vfgptc; 2019 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2020 adapter->stats.base_vfgorc; 2021 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2022 adapter->stats.base_vfgotc; 2023 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2024 adapter->stats.base_vfmprc; 2025 } 2026 } 2027 2028 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2029 { 2030 struct ixgbe_hw *hw = &adapter->hw; 2031 2032 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2033 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2034 adapter->stats.last_vfgorc |= 2035 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2036 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2037 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2038 adapter->stats.last_vfgotc |= 2039 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2040 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2041 2042 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2043 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2044 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2045 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2046 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2047 } 2048 2049 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2050 { 2051 struct ixgbe_hw *hw = &adapter->hw; 2052 int api[] = { ixgbe_mbox_api_13, 2053 ixgbe_mbox_api_12, 2054 ixgbe_mbox_api_11, 2055 ixgbe_mbox_api_10, 2056 ixgbe_mbox_api_unknown }; 2057 int err, idx = 0; 2058 2059 spin_lock_bh(&adapter->mbx_lock); 2060 2061 while (api[idx] != ixgbe_mbox_api_unknown) { 2062 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2063 if (!err) 2064 break; 2065 idx++; 2066 } 2067 2068 spin_unlock_bh(&adapter->mbx_lock); 2069 } 2070 2071 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2072 { 2073 struct net_device *netdev = adapter->netdev; 2074 struct ixgbe_hw *hw = &adapter->hw; 2075 2076 ixgbevf_configure_msix(adapter); 2077 2078 spin_lock_bh(&adapter->mbx_lock); 2079 2080 if (is_valid_ether_addr(hw->mac.addr)) 2081 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2082 else 2083 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2084 2085 spin_unlock_bh(&adapter->mbx_lock); 2086 2087 smp_mb__before_atomic(); 2088 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2089 ixgbevf_napi_enable_all(adapter); 2090 2091 /* clear any pending interrupts, may auto mask */ 2092 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2093 ixgbevf_irq_enable(adapter); 2094 2095 /* enable transmits */ 2096 netif_tx_start_all_queues(netdev); 2097 2098 ixgbevf_save_reset_stats(adapter); 2099 ixgbevf_init_last_counter_stats(adapter); 2100 2101 hw->mac.get_link_status = 1; 2102 mod_timer(&adapter->service_timer, jiffies); 2103 } 2104 2105 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2106 { 2107 ixgbevf_configure(adapter); 2108 2109 ixgbevf_up_complete(adapter); 2110 } 2111 2112 /** 2113 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2114 * @rx_ring: ring to free buffers from 2115 **/ 2116 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2117 { 2118 u16 i = rx_ring->next_to_clean; 2119 2120 /* Free Rx ring sk_buff */ 2121 if (rx_ring->skb) { 2122 dev_kfree_skb(rx_ring->skb); 2123 rx_ring->skb = NULL; 2124 } 2125 2126 /* Free all the Rx ring pages */ 2127 while (i != rx_ring->next_to_alloc) { 2128 struct ixgbevf_rx_buffer *rx_buffer; 2129 2130 rx_buffer = &rx_ring->rx_buffer_info[i]; 2131 2132 /* Invalidate cache lines that may have been written to by 2133 * device so that we avoid corrupting memory. 2134 */ 2135 dma_sync_single_range_for_cpu(rx_ring->dev, 2136 rx_buffer->dma, 2137 rx_buffer->page_offset, 2138 ixgbevf_rx_bufsz(rx_ring), 2139 DMA_FROM_DEVICE); 2140 2141 /* free resources associated with mapping */ 2142 dma_unmap_page_attrs(rx_ring->dev, 2143 rx_buffer->dma, 2144 ixgbevf_rx_pg_size(rx_ring), 2145 DMA_FROM_DEVICE, 2146 IXGBEVF_RX_DMA_ATTR); 2147 2148 __page_frag_cache_drain(rx_buffer->page, 2149 rx_buffer->pagecnt_bias); 2150 2151 i++; 2152 if (i == rx_ring->count) 2153 i = 0; 2154 } 2155 2156 rx_ring->next_to_alloc = 0; 2157 rx_ring->next_to_clean = 0; 2158 rx_ring->next_to_use = 0; 2159 } 2160 2161 /** 2162 * ixgbevf_clean_tx_ring - Free Tx Buffers 2163 * @tx_ring: ring to be cleaned 2164 **/ 2165 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2166 { 2167 u16 i = tx_ring->next_to_clean; 2168 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 2169 2170 while (i != tx_ring->next_to_use) { 2171 union ixgbe_adv_tx_desc *eop_desc, *tx_desc; 2172 2173 /* Free all the Tx ring sk_buffs */ 2174 dev_kfree_skb_any(tx_buffer->skb); 2175 2176 /* unmap skb header data */ 2177 dma_unmap_single(tx_ring->dev, 2178 dma_unmap_addr(tx_buffer, dma), 2179 dma_unmap_len(tx_buffer, len), 2180 DMA_TO_DEVICE); 2181 2182 /* check for eop_desc to determine the end of the packet */ 2183 eop_desc = tx_buffer->next_to_watch; 2184 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 2185 2186 /* unmap remaining buffers */ 2187 while (tx_desc != eop_desc) { 2188 tx_buffer++; 2189 tx_desc++; 2190 i++; 2191 if (unlikely(i == tx_ring->count)) { 2192 i = 0; 2193 tx_buffer = tx_ring->tx_buffer_info; 2194 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 2195 } 2196 2197 /* unmap any remaining paged data */ 2198 if (dma_unmap_len(tx_buffer, len)) 2199 dma_unmap_page(tx_ring->dev, 2200 dma_unmap_addr(tx_buffer, dma), 2201 dma_unmap_len(tx_buffer, len), 2202 DMA_TO_DEVICE); 2203 } 2204 2205 /* move us one more past the eop_desc for start of next pkt */ 2206 tx_buffer++; 2207 i++; 2208 if (unlikely(i == tx_ring->count)) { 2209 i = 0; 2210 tx_buffer = tx_ring->tx_buffer_info; 2211 } 2212 } 2213 2214 /* reset next_to_use and next_to_clean */ 2215 tx_ring->next_to_use = 0; 2216 tx_ring->next_to_clean = 0; 2217 2218 } 2219 2220 /** 2221 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2222 * @adapter: board private structure 2223 **/ 2224 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2225 { 2226 int i; 2227 2228 for (i = 0; i < adapter->num_rx_queues; i++) 2229 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2230 } 2231 2232 /** 2233 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2234 * @adapter: board private structure 2235 **/ 2236 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2237 { 2238 int i; 2239 2240 for (i = 0; i < adapter->num_tx_queues; i++) 2241 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2242 } 2243 2244 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2245 { 2246 struct net_device *netdev = adapter->netdev; 2247 struct ixgbe_hw *hw = &adapter->hw; 2248 int i; 2249 2250 /* signal that we are down to the interrupt handler */ 2251 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2252 return; /* do nothing if already down */ 2253 2254 /* disable all enabled Rx queues */ 2255 for (i = 0; i < adapter->num_rx_queues; i++) 2256 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2257 2258 usleep_range(10000, 20000); 2259 2260 netif_tx_stop_all_queues(netdev); 2261 2262 /* call carrier off first to avoid false dev_watchdog timeouts */ 2263 netif_carrier_off(netdev); 2264 netif_tx_disable(netdev); 2265 2266 ixgbevf_irq_disable(adapter); 2267 2268 ixgbevf_napi_disable_all(adapter); 2269 2270 del_timer_sync(&adapter->service_timer); 2271 2272 /* disable transmits in the hardware now that interrupts are off */ 2273 for (i = 0; i < adapter->num_tx_queues; i++) { 2274 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2275 2276 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2277 IXGBE_TXDCTL_SWFLSH); 2278 } 2279 2280 if (!pci_channel_offline(adapter->pdev)) 2281 ixgbevf_reset(adapter); 2282 2283 ixgbevf_clean_all_tx_rings(adapter); 2284 ixgbevf_clean_all_rx_rings(adapter); 2285 } 2286 2287 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2288 { 2289 WARN_ON(in_interrupt()); 2290 2291 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2292 msleep(1); 2293 2294 ixgbevf_down(adapter); 2295 ixgbevf_up(adapter); 2296 2297 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2298 } 2299 2300 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2301 { 2302 struct ixgbe_hw *hw = &adapter->hw; 2303 struct net_device *netdev = adapter->netdev; 2304 2305 if (hw->mac.ops.reset_hw(hw)) { 2306 hw_dbg(hw, "PF still resetting\n"); 2307 } else { 2308 hw->mac.ops.init_hw(hw); 2309 ixgbevf_negotiate_api(adapter); 2310 } 2311 2312 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2313 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 2314 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2315 } 2316 2317 adapter->last_reset = jiffies; 2318 } 2319 2320 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2321 int vectors) 2322 { 2323 int vector_threshold; 2324 2325 /* We'll want at least 2 (vector_threshold): 2326 * 1) TxQ[0] + RxQ[0] handler 2327 * 2) Other (Link Status Change, etc.) 2328 */ 2329 vector_threshold = MIN_MSIX_COUNT; 2330 2331 /* The more we get, the more we will assign to Tx/Rx Cleanup 2332 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2333 * Right now, we simply care about how many we'll get; we'll 2334 * set them up later while requesting irq's. 2335 */ 2336 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2337 vector_threshold, vectors); 2338 2339 if (vectors < 0) { 2340 dev_err(&adapter->pdev->dev, 2341 "Unable to allocate MSI-X interrupts\n"); 2342 kfree(adapter->msix_entries); 2343 adapter->msix_entries = NULL; 2344 return vectors; 2345 } 2346 2347 /* Adjust for only the vectors we'll use, which is minimum 2348 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2349 * vectors we were allocated. 2350 */ 2351 adapter->num_msix_vectors = vectors; 2352 2353 return 0; 2354 } 2355 2356 /** 2357 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2358 * @adapter: board private structure to initialize 2359 * 2360 * This is the top level queue allocation routine. The order here is very 2361 * important, starting with the "most" number of features turned on at once, 2362 * and ending with the smallest set of features. This way large combinations 2363 * can be allocated if they're turned on, and smaller combinations are the 2364 * fallthrough conditions. 2365 * 2366 **/ 2367 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2368 { 2369 struct ixgbe_hw *hw = &adapter->hw; 2370 unsigned int def_q = 0; 2371 unsigned int num_tcs = 0; 2372 int err; 2373 2374 /* Start with base case */ 2375 adapter->num_rx_queues = 1; 2376 adapter->num_tx_queues = 1; 2377 2378 spin_lock_bh(&adapter->mbx_lock); 2379 2380 /* fetch queue configuration from the PF */ 2381 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2382 2383 spin_unlock_bh(&adapter->mbx_lock); 2384 2385 if (err) 2386 return; 2387 2388 /* we need as many queues as traffic classes */ 2389 if (num_tcs > 1) { 2390 adapter->num_rx_queues = num_tcs; 2391 } else { 2392 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2393 2394 switch (hw->api_version) { 2395 case ixgbe_mbox_api_11: 2396 case ixgbe_mbox_api_12: 2397 case ixgbe_mbox_api_13: 2398 adapter->num_rx_queues = rss; 2399 adapter->num_tx_queues = rss; 2400 default: 2401 break; 2402 } 2403 } 2404 } 2405 2406 /** 2407 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2408 * @adapter: board private structure to initialize 2409 * 2410 * Attempt to configure the interrupts using the best available 2411 * capabilities of the hardware and the kernel. 2412 **/ 2413 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2414 { 2415 int vector, v_budget; 2416 2417 /* It's easy to be greedy for MSI-X vectors, but it really 2418 * doesn't do us much good if we have a lot more vectors 2419 * than CPU's. So let's be conservative and only ask for 2420 * (roughly) the same number of vectors as there are CPU's. 2421 * The default is to use pairs of vectors. 2422 */ 2423 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2424 v_budget = min_t(int, v_budget, num_online_cpus()); 2425 v_budget += NON_Q_VECTORS; 2426 2427 adapter->msix_entries = kcalloc(v_budget, 2428 sizeof(struct msix_entry), GFP_KERNEL); 2429 if (!adapter->msix_entries) 2430 return -ENOMEM; 2431 2432 for (vector = 0; vector < v_budget; vector++) 2433 adapter->msix_entries[vector].entry = vector; 2434 2435 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver 2436 * does not support any other modes, so we will simply fail here. Note 2437 * that we clean up the msix_entries pointer else-where. 2438 */ 2439 return ixgbevf_acquire_msix_vectors(adapter, v_budget); 2440 } 2441 2442 static void ixgbevf_add_ring(struct ixgbevf_ring *ring, 2443 struct ixgbevf_ring_container *head) 2444 { 2445 ring->next = head->ring; 2446 head->ring = ring; 2447 head->count++; 2448 } 2449 2450 /** 2451 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector 2452 * @adapter: board private structure to initialize 2453 * @v_idx: index of vector in adapter struct 2454 * @txr_count: number of Tx rings for q vector 2455 * @txr_idx: index of first Tx ring to assign 2456 * @rxr_count: number of Rx rings for q vector 2457 * @rxr_idx: index of first Rx ring to assign 2458 * 2459 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2460 **/ 2461 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx, 2462 int txr_count, int txr_idx, 2463 int rxr_count, int rxr_idx) 2464 { 2465 struct ixgbevf_q_vector *q_vector; 2466 struct ixgbevf_ring *ring; 2467 int ring_count, size; 2468 2469 ring_count = txr_count + rxr_count; 2470 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count); 2471 2472 /* allocate q_vector and rings */ 2473 q_vector = kzalloc(size, GFP_KERNEL); 2474 if (!q_vector) 2475 return -ENOMEM; 2476 2477 /* initialize NAPI */ 2478 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64); 2479 2480 /* tie q_vector and adapter together */ 2481 adapter->q_vector[v_idx] = q_vector; 2482 q_vector->adapter = adapter; 2483 q_vector->v_idx = v_idx; 2484 2485 /* initialize pointer to rings */ 2486 ring = q_vector->ring; 2487 2488 while (txr_count) { 2489 /* assign generic ring traits */ 2490 ring->dev = &adapter->pdev->dev; 2491 ring->netdev = adapter->netdev; 2492 2493 /* configure backlink on ring */ 2494 ring->q_vector = q_vector; 2495 2496 /* update q_vector Tx values */ 2497 ixgbevf_add_ring(ring, &q_vector->tx); 2498 2499 /* apply Tx specific ring traits */ 2500 ring->count = adapter->tx_ring_count; 2501 ring->queue_index = txr_idx; 2502 ring->reg_idx = txr_idx; 2503 2504 /* assign ring to adapter */ 2505 adapter->tx_ring[txr_idx] = ring; 2506 2507 /* update count and index */ 2508 txr_count--; 2509 txr_idx++; 2510 2511 /* push pointer to next ring */ 2512 ring++; 2513 } 2514 2515 while (rxr_count) { 2516 /* assign generic ring traits */ 2517 ring->dev = &adapter->pdev->dev; 2518 ring->netdev = adapter->netdev; 2519 2520 /* configure backlink on ring */ 2521 ring->q_vector = q_vector; 2522 2523 /* update q_vector Rx values */ 2524 ixgbevf_add_ring(ring, &q_vector->rx); 2525 2526 /* apply Rx specific ring traits */ 2527 ring->count = adapter->rx_ring_count; 2528 ring->queue_index = rxr_idx; 2529 ring->reg_idx = rxr_idx; 2530 2531 /* assign ring to adapter */ 2532 adapter->rx_ring[rxr_idx] = ring; 2533 2534 /* update count and index */ 2535 rxr_count--; 2536 rxr_idx++; 2537 2538 /* push pointer to next ring */ 2539 ring++; 2540 } 2541 2542 return 0; 2543 } 2544 2545 /** 2546 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector 2547 * @adapter: board private structure to initialize 2548 * @v_idx: index of vector in adapter struct 2549 * 2550 * This function frees the memory allocated to the q_vector. In addition if 2551 * NAPI is enabled it will delete any references to the NAPI struct prior 2552 * to freeing the q_vector. 2553 **/ 2554 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx) 2555 { 2556 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx]; 2557 struct ixgbevf_ring *ring; 2558 2559 ixgbevf_for_each_ring(ring, q_vector->tx) 2560 adapter->tx_ring[ring->queue_index] = NULL; 2561 2562 ixgbevf_for_each_ring(ring, q_vector->rx) 2563 adapter->rx_ring[ring->queue_index] = NULL; 2564 2565 adapter->q_vector[v_idx] = NULL; 2566 netif_napi_del(&q_vector->napi); 2567 2568 /* ixgbevf_get_stats() might access the rings on this vector, 2569 * we must wait a grace period before freeing it. 2570 */ 2571 kfree_rcu(q_vector, rcu); 2572 } 2573 2574 /** 2575 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2576 * @adapter: board private structure to initialize 2577 * 2578 * We allocate one q_vector per queue interrupt. If allocation fails we 2579 * return -ENOMEM. 2580 **/ 2581 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2582 { 2583 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2584 int rxr_remaining = adapter->num_rx_queues; 2585 int txr_remaining = adapter->num_tx_queues; 2586 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 2587 int err; 2588 2589 if (q_vectors >= (rxr_remaining + txr_remaining)) { 2590 for (; rxr_remaining; v_idx++, q_vectors--) { 2591 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2592 2593 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2594 0, 0, rqpv, rxr_idx); 2595 if (err) 2596 goto err_out; 2597 2598 /* update counts and index */ 2599 rxr_remaining -= rqpv; 2600 rxr_idx += rqpv; 2601 } 2602 } 2603 2604 for (; q_vectors; v_idx++, q_vectors--) { 2605 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2606 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors); 2607 2608 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2609 tqpv, txr_idx, 2610 rqpv, rxr_idx); 2611 2612 if (err) 2613 goto err_out; 2614 2615 /* update counts and index */ 2616 rxr_remaining -= rqpv; 2617 rxr_idx += rqpv; 2618 txr_remaining -= tqpv; 2619 txr_idx += tqpv; 2620 } 2621 2622 return 0; 2623 2624 err_out: 2625 while (v_idx) { 2626 v_idx--; 2627 ixgbevf_free_q_vector(adapter, v_idx); 2628 } 2629 2630 return -ENOMEM; 2631 } 2632 2633 /** 2634 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2635 * @adapter: board private structure to initialize 2636 * 2637 * This function frees the memory allocated to the q_vectors. In addition if 2638 * NAPI is enabled it will delete any references to the NAPI struct prior 2639 * to freeing the q_vector. 2640 **/ 2641 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2642 { 2643 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2644 2645 while (q_vectors) { 2646 q_vectors--; 2647 ixgbevf_free_q_vector(adapter, q_vectors); 2648 } 2649 } 2650 2651 /** 2652 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2653 * @adapter: board private structure 2654 * 2655 **/ 2656 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2657 { 2658 if (!adapter->msix_entries) 2659 return; 2660 2661 pci_disable_msix(adapter->pdev); 2662 kfree(adapter->msix_entries); 2663 adapter->msix_entries = NULL; 2664 } 2665 2666 /** 2667 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2668 * @adapter: board private structure to initialize 2669 * 2670 **/ 2671 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2672 { 2673 int err; 2674 2675 /* Number of supported queues */ 2676 ixgbevf_set_num_queues(adapter); 2677 2678 err = ixgbevf_set_interrupt_capability(adapter); 2679 if (err) { 2680 hw_dbg(&adapter->hw, 2681 "Unable to setup interrupt capabilities\n"); 2682 goto err_set_interrupt; 2683 } 2684 2685 err = ixgbevf_alloc_q_vectors(adapter); 2686 if (err) { 2687 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2688 goto err_alloc_q_vectors; 2689 } 2690 2691 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n", 2692 (adapter->num_rx_queues > 1) ? "Enabled" : 2693 "Disabled", adapter->num_rx_queues, adapter->num_tx_queues); 2694 2695 set_bit(__IXGBEVF_DOWN, &adapter->state); 2696 2697 return 0; 2698 err_alloc_q_vectors: 2699 ixgbevf_reset_interrupt_capability(adapter); 2700 err_set_interrupt: 2701 return err; 2702 } 2703 2704 /** 2705 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2706 * @adapter: board private structure to clear interrupt scheme on 2707 * 2708 * We go through and clear interrupt specific resources and reset the structure 2709 * to pre-load conditions 2710 **/ 2711 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 2712 { 2713 adapter->num_tx_queues = 0; 2714 adapter->num_rx_queues = 0; 2715 2716 ixgbevf_free_q_vectors(adapter); 2717 ixgbevf_reset_interrupt_capability(adapter); 2718 } 2719 2720 /** 2721 * ixgbevf_sw_init - Initialize general software structures 2722 * @adapter: board private structure to initialize 2723 * 2724 * ixgbevf_sw_init initializes the Adapter private data structure. 2725 * Fields are initialized based on PCI device information and 2726 * OS network device settings (MTU size). 2727 **/ 2728 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 2729 { 2730 struct ixgbe_hw *hw = &adapter->hw; 2731 struct pci_dev *pdev = adapter->pdev; 2732 struct net_device *netdev = adapter->netdev; 2733 int err; 2734 2735 /* PCI config space info */ 2736 hw->vendor_id = pdev->vendor; 2737 hw->device_id = pdev->device; 2738 hw->revision_id = pdev->revision; 2739 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2740 hw->subsystem_device_id = pdev->subsystem_device; 2741 2742 hw->mbx.ops.init_params(hw); 2743 2744 if (hw->mac.type >= ixgbe_mac_X550_vf) { 2745 err = ixgbevf_init_rss_key(adapter); 2746 if (err) 2747 goto out; 2748 } 2749 2750 /* assume legacy case in which PF would only give VF 2 queues */ 2751 hw->mac.max_tx_queues = 2; 2752 hw->mac.max_rx_queues = 2; 2753 2754 /* lock to protect mailbox accesses */ 2755 spin_lock_init(&adapter->mbx_lock); 2756 2757 err = hw->mac.ops.reset_hw(hw); 2758 if (err) { 2759 dev_info(&pdev->dev, 2760 "PF still in reset state. Is the PF interface up?\n"); 2761 } else { 2762 err = hw->mac.ops.init_hw(hw); 2763 if (err) { 2764 pr_err("init_shared_code failed: %d\n", err); 2765 goto out; 2766 } 2767 ixgbevf_negotiate_api(adapter); 2768 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 2769 if (err) 2770 dev_info(&pdev->dev, "Error reading MAC address\n"); 2771 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 2772 dev_info(&pdev->dev, 2773 "MAC address not assigned by administrator.\n"); 2774 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 2775 } 2776 2777 if (!is_valid_ether_addr(netdev->dev_addr)) { 2778 dev_info(&pdev->dev, "Assigning random MAC address\n"); 2779 eth_hw_addr_random(netdev); 2780 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 2781 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 2782 } 2783 2784 /* Enable dynamic interrupt throttling rates */ 2785 adapter->rx_itr_setting = 1; 2786 adapter->tx_itr_setting = 1; 2787 2788 /* set default ring sizes */ 2789 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 2790 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 2791 2792 set_bit(__IXGBEVF_DOWN, &adapter->state); 2793 return 0; 2794 2795 out: 2796 return err; 2797 } 2798 2799 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 2800 { \ 2801 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 2802 if (current_counter < last_counter) \ 2803 counter += 0x100000000LL; \ 2804 last_counter = current_counter; \ 2805 counter &= 0xFFFFFFFF00000000LL; \ 2806 counter |= current_counter; \ 2807 } 2808 2809 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 2810 { \ 2811 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 2812 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 2813 u64 current_counter = (current_counter_msb << 32) | \ 2814 current_counter_lsb; \ 2815 if (current_counter < last_counter) \ 2816 counter += 0x1000000000LL; \ 2817 last_counter = current_counter; \ 2818 counter &= 0xFFFFFFF000000000LL; \ 2819 counter |= current_counter; \ 2820 } 2821 /** 2822 * ixgbevf_update_stats - Update the board statistics counters. 2823 * @adapter: board private structure 2824 **/ 2825 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 2826 { 2827 struct ixgbe_hw *hw = &adapter->hw; 2828 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; 2829 u64 alloc_rx_page = 0, hw_csum_rx_error = 0; 2830 int i; 2831 2832 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2833 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2834 return; 2835 2836 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 2837 adapter->stats.vfgprc); 2838 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 2839 adapter->stats.vfgptc); 2840 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 2841 adapter->stats.last_vfgorc, 2842 adapter->stats.vfgorc); 2843 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 2844 adapter->stats.last_vfgotc, 2845 adapter->stats.vfgotc); 2846 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 2847 adapter->stats.vfmprc); 2848 2849 for (i = 0; i < adapter->num_rx_queues; i++) { 2850 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 2851 2852 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 2853 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; 2854 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 2855 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; 2856 } 2857 2858 adapter->hw_csum_rx_error = hw_csum_rx_error; 2859 adapter->alloc_rx_page_failed = alloc_rx_page_failed; 2860 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; 2861 adapter->alloc_rx_page = alloc_rx_page; 2862 } 2863 2864 /** 2865 * ixgbevf_service_timer - Timer Call-back 2866 * @t: pointer to timer_list struct 2867 **/ 2868 static void ixgbevf_service_timer(struct timer_list *t) 2869 { 2870 struct ixgbevf_adapter *adapter = from_timer(adapter, t, 2871 service_timer); 2872 2873 /* Reset the timer */ 2874 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 2875 2876 ixgbevf_service_event_schedule(adapter); 2877 } 2878 2879 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 2880 { 2881 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 2882 return; 2883 2884 /* If we're already down or resetting, just bail */ 2885 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2886 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 2887 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2888 return; 2889 2890 adapter->tx_timeout_count++; 2891 2892 rtnl_lock(); 2893 ixgbevf_reinit_locked(adapter); 2894 rtnl_unlock(); 2895 } 2896 2897 /** 2898 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 2899 * @adapter: pointer to the device adapter structure 2900 * 2901 * This function serves two purposes. First it strobes the interrupt lines 2902 * in order to make certain interrupts are occurring. Secondly it sets the 2903 * bits needed to check for TX hangs. As a result we should immediately 2904 * determine if a hang has occurred. 2905 **/ 2906 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 2907 { 2908 struct ixgbe_hw *hw = &adapter->hw; 2909 u32 eics = 0; 2910 int i; 2911 2912 /* If we're down or resetting, just bail */ 2913 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2914 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2915 return; 2916 2917 /* Force detection of hung controller */ 2918 if (netif_carrier_ok(adapter->netdev)) { 2919 for (i = 0; i < adapter->num_tx_queues; i++) 2920 set_check_for_tx_hang(adapter->tx_ring[i]); 2921 } 2922 2923 /* get one bit for every active Tx/Rx interrupt vector */ 2924 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 2925 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 2926 2927 if (qv->rx.ring || qv->tx.ring) 2928 eics |= BIT(i); 2929 } 2930 2931 /* Cause software interrupt to ensure rings are cleaned */ 2932 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 2933 } 2934 2935 /** 2936 * ixgbevf_watchdog_update_link - update the link status 2937 * @adapter: pointer to the device adapter structure 2938 **/ 2939 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 2940 { 2941 struct ixgbe_hw *hw = &adapter->hw; 2942 u32 link_speed = adapter->link_speed; 2943 bool link_up = adapter->link_up; 2944 s32 err; 2945 2946 spin_lock_bh(&adapter->mbx_lock); 2947 2948 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 2949 2950 spin_unlock_bh(&adapter->mbx_lock); 2951 2952 /* if check for link returns error we will need to reset */ 2953 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 2954 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 2955 link_up = false; 2956 } 2957 2958 adapter->link_up = link_up; 2959 adapter->link_speed = link_speed; 2960 } 2961 2962 /** 2963 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 2964 * print link up message 2965 * @adapter: pointer to the device adapter structure 2966 **/ 2967 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 2968 { 2969 struct net_device *netdev = adapter->netdev; 2970 2971 /* only continue if link was previously down */ 2972 if (netif_carrier_ok(netdev)) 2973 return; 2974 2975 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 2976 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 2977 "10 Gbps" : 2978 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 2979 "1 Gbps" : 2980 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 2981 "100 Mbps" : 2982 "unknown speed"); 2983 2984 netif_carrier_on(netdev); 2985 } 2986 2987 /** 2988 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 2989 * print link down message 2990 * @adapter: pointer to the adapter structure 2991 **/ 2992 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 2993 { 2994 struct net_device *netdev = adapter->netdev; 2995 2996 adapter->link_speed = 0; 2997 2998 /* only continue if link was up previously */ 2999 if (!netif_carrier_ok(netdev)) 3000 return; 3001 3002 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 3003 3004 netif_carrier_off(netdev); 3005 } 3006 3007 /** 3008 * ixgbevf_watchdog_subtask - worker thread to bring link up 3009 * @adapter: board private structure 3010 **/ 3011 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 3012 { 3013 /* if interface is down do nothing */ 3014 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3015 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3016 return; 3017 3018 ixgbevf_watchdog_update_link(adapter); 3019 3020 if (adapter->link_up) 3021 ixgbevf_watchdog_link_is_up(adapter); 3022 else 3023 ixgbevf_watchdog_link_is_down(adapter); 3024 3025 ixgbevf_update_stats(adapter); 3026 } 3027 3028 /** 3029 * ixgbevf_service_task - manages and runs subtasks 3030 * @work: pointer to work_struct containing our data 3031 **/ 3032 static void ixgbevf_service_task(struct work_struct *work) 3033 { 3034 struct ixgbevf_adapter *adapter = container_of(work, 3035 struct ixgbevf_adapter, 3036 service_task); 3037 struct ixgbe_hw *hw = &adapter->hw; 3038 3039 if (IXGBE_REMOVED(hw->hw_addr)) { 3040 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 3041 rtnl_lock(); 3042 ixgbevf_down(adapter); 3043 rtnl_unlock(); 3044 } 3045 return; 3046 } 3047 3048 ixgbevf_queue_reset_subtask(adapter); 3049 ixgbevf_reset_subtask(adapter); 3050 ixgbevf_watchdog_subtask(adapter); 3051 ixgbevf_check_hang_subtask(adapter); 3052 3053 ixgbevf_service_event_complete(adapter); 3054 } 3055 3056 /** 3057 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 3058 * @tx_ring: Tx descriptor ring for a specific queue 3059 * 3060 * Free all transmit software resources 3061 **/ 3062 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 3063 { 3064 ixgbevf_clean_tx_ring(tx_ring); 3065 3066 vfree(tx_ring->tx_buffer_info); 3067 tx_ring->tx_buffer_info = NULL; 3068 3069 /* if not set, then don't free */ 3070 if (!tx_ring->desc) 3071 return; 3072 3073 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 3074 tx_ring->dma); 3075 3076 tx_ring->desc = NULL; 3077 } 3078 3079 /** 3080 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 3081 * @adapter: board private structure 3082 * 3083 * Free all transmit software resources 3084 **/ 3085 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 3086 { 3087 int i; 3088 3089 for (i = 0; i < adapter->num_tx_queues; i++) 3090 if (adapter->tx_ring[i]->desc) 3091 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3092 } 3093 3094 /** 3095 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 3096 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 3097 * 3098 * Return 0 on success, negative on failure 3099 **/ 3100 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3101 { 3102 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3103 int size; 3104 3105 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3106 tx_ring->tx_buffer_info = vmalloc(size); 3107 if (!tx_ring->tx_buffer_info) 3108 goto err; 3109 3110 u64_stats_init(&tx_ring->syncp); 3111 3112 /* round up to nearest 4K */ 3113 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3114 tx_ring->size = ALIGN(tx_ring->size, 4096); 3115 3116 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3117 &tx_ring->dma, GFP_KERNEL); 3118 if (!tx_ring->desc) 3119 goto err; 3120 3121 return 0; 3122 3123 err: 3124 vfree(tx_ring->tx_buffer_info); 3125 tx_ring->tx_buffer_info = NULL; 3126 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3127 return -ENOMEM; 3128 } 3129 3130 /** 3131 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3132 * @adapter: board private structure 3133 * 3134 * If this function returns with an error, then it's possible one or 3135 * more of the rings is populated (while the rest are not). It is the 3136 * callers duty to clean those orphaned rings. 3137 * 3138 * Return 0 on success, negative on failure 3139 **/ 3140 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3141 { 3142 int i, err = 0; 3143 3144 for (i = 0; i < adapter->num_tx_queues; i++) { 3145 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3146 if (!err) 3147 continue; 3148 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3149 goto err_setup_tx; 3150 } 3151 3152 return 0; 3153 err_setup_tx: 3154 /* rewind the index freeing the rings as we go */ 3155 while (i--) 3156 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3157 return err; 3158 } 3159 3160 /** 3161 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3162 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3163 * 3164 * Returns 0 on success, negative on failure 3165 **/ 3166 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring) 3167 { 3168 int size; 3169 3170 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3171 rx_ring->rx_buffer_info = vmalloc(size); 3172 if (!rx_ring->rx_buffer_info) 3173 goto err; 3174 3175 u64_stats_init(&rx_ring->syncp); 3176 3177 /* Round up to nearest 4K */ 3178 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3179 rx_ring->size = ALIGN(rx_ring->size, 4096); 3180 3181 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3182 &rx_ring->dma, GFP_KERNEL); 3183 3184 if (!rx_ring->desc) 3185 goto err; 3186 3187 return 0; 3188 err: 3189 vfree(rx_ring->rx_buffer_info); 3190 rx_ring->rx_buffer_info = NULL; 3191 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3192 return -ENOMEM; 3193 } 3194 3195 /** 3196 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3197 * @adapter: board private structure 3198 * 3199 * If this function returns with an error, then it's possible one or 3200 * more of the rings is populated (while the rest are not). It is the 3201 * callers duty to clean those orphaned rings. 3202 * 3203 * Return 0 on success, negative on failure 3204 **/ 3205 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3206 { 3207 int i, err = 0; 3208 3209 for (i = 0; i < adapter->num_rx_queues; i++) { 3210 err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]); 3211 if (!err) 3212 continue; 3213 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3214 goto err_setup_rx; 3215 } 3216 3217 return 0; 3218 err_setup_rx: 3219 /* rewind the index freeing the rings as we go */ 3220 while (i--) 3221 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3222 return err; 3223 } 3224 3225 /** 3226 * ixgbevf_free_rx_resources - Free Rx Resources 3227 * @rx_ring: ring to clean the resources from 3228 * 3229 * Free all receive software resources 3230 **/ 3231 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3232 { 3233 ixgbevf_clean_rx_ring(rx_ring); 3234 3235 vfree(rx_ring->rx_buffer_info); 3236 rx_ring->rx_buffer_info = NULL; 3237 3238 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3239 rx_ring->dma); 3240 3241 rx_ring->desc = NULL; 3242 } 3243 3244 /** 3245 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3246 * @adapter: board private structure 3247 * 3248 * Free all receive software resources 3249 **/ 3250 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3251 { 3252 int i; 3253 3254 for (i = 0; i < adapter->num_rx_queues; i++) 3255 if (adapter->rx_ring[i]->desc) 3256 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3257 } 3258 3259 /** 3260 * ixgbevf_open - Called when a network interface is made active 3261 * @netdev: network interface device structure 3262 * 3263 * Returns 0 on success, negative value on failure 3264 * 3265 * The open entry point is called when a network interface is made 3266 * active by the system (IFF_UP). At this point all resources needed 3267 * for transmit and receive operations are allocated, the interrupt 3268 * handler is registered with the OS, the watchdog timer is started, 3269 * and the stack is notified that the interface is ready. 3270 **/ 3271 int ixgbevf_open(struct net_device *netdev) 3272 { 3273 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3274 struct ixgbe_hw *hw = &adapter->hw; 3275 int err; 3276 3277 /* A previous failure to open the device because of a lack of 3278 * available MSIX vector resources may have reset the number 3279 * of msix vectors variable to zero. The only way to recover 3280 * is to unload/reload the driver and hope that the system has 3281 * been able to recover some MSIX vector resources. 3282 */ 3283 if (!adapter->num_msix_vectors) 3284 return -ENOMEM; 3285 3286 if (hw->adapter_stopped) { 3287 ixgbevf_reset(adapter); 3288 /* if adapter is still stopped then PF isn't up and 3289 * the VF can't start. 3290 */ 3291 if (hw->adapter_stopped) { 3292 err = IXGBE_ERR_MBX; 3293 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3294 goto err_setup_reset; 3295 } 3296 } 3297 3298 /* disallow open during test */ 3299 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3300 return -EBUSY; 3301 3302 netif_carrier_off(netdev); 3303 3304 /* allocate transmit descriptors */ 3305 err = ixgbevf_setup_all_tx_resources(adapter); 3306 if (err) 3307 goto err_setup_tx; 3308 3309 /* allocate receive descriptors */ 3310 err = ixgbevf_setup_all_rx_resources(adapter); 3311 if (err) 3312 goto err_setup_rx; 3313 3314 ixgbevf_configure(adapter); 3315 3316 err = ixgbevf_request_irq(adapter); 3317 if (err) 3318 goto err_req_irq; 3319 3320 /* Notify the stack of the actual queue counts. */ 3321 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3322 if (err) 3323 goto err_set_queues; 3324 3325 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3326 if (err) 3327 goto err_set_queues; 3328 3329 ixgbevf_up_complete(adapter); 3330 3331 return 0; 3332 3333 err_set_queues: 3334 ixgbevf_free_irq(adapter); 3335 err_req_irq: 3336 ixgbevf_free_all_rx_resources(adapter); 3337 err_setup_rx: 3338 ixgbevf_free_all_tx_resources(adapter); 3339 err_setup_tx: 3340 ixgbevf_reset(adapter); 3341 err_setup_reset: 3342 3343 return err; 3344 } 3345 3346 /** 3347 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3348 * @adapter: the private adapter struct 3349 * 3350 * This function should contain the necessary work common to both suspending 3351 * and closing of the device. 3352 */ 3353 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3354 { 3355 ixgbevf_down(adapter); 3356 ixgbevf_free_irq(adapter); 3357 ixgbevf_free_all_tx_resources(adapter); 3358 ixgbevf_free_all_rx_resources(adapter); 3359 } 3360 3361 /** 3362 * ixgbevf_close - Disables a network interface 3363 * @netdev: network interface device structure 3364 * 3365 * Returns 0, this is not allowed to fail 3366 * 3367 * The close entry point is called when an interface is de-activated 3368 * by the OS. The hardware is still under the drivers control, but 3369 * needs to be disabled. A global MAC reset is issued to stop the 3370 * hardware, and all transmit and receive resources are freed. 3371 **/ 3372 int ixgbevf_close(struct net_device *netdev) 3373 { 3374 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3375 3376 if (netif_device_present(netdev)) 3377 ixgbevf_close_suspend(adapter); 3378 3379 return 0; 3380 } 3381 3382 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3383 { 3384 struct net_device *dev = adapter->netdev; 3385 3386 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3387 &adapter->state)) 3388 return; 3389 3390 /* if interface is down do nothing */ 3391 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3392 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3393 return; 3394 3395 /* Hardware has to reinitialize queues and interrupts to 3396 * match packet buffer alignment. Unfortunately, the 3397 * hardware is not flexible enough to do this dynamically. 3398 */ 3399 rtnl_lock(); 3400 3401 if (netif_running(dev)) 3402 ixgbevf_close(dev); 3403 3404 ixgbevf_clear_interrupt_scheme(adapter); 3405 ixgbevf_init_interrupt_scheme(adapter); 3406 3407 if (netif_running(dev)) 3408 ixgbevf_open(dev); 3409 3410 rtnl_unlock(); 3411 } 3412 3413 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3414 u32 vlan_macip_lens, u32 type_tucmd, 3415 u32 mss_l4len_idx) 3416 { 3417 struct ixgbe_adv_tx_context_desc *context_desc; 3418 u16 i = tx_ring->next_to_use; 3419 3420 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3421 3422 i++; 3423 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3424 3425 /* set bits to identify this as an advanced context descriptor */ 3426 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3427 3428 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3429 context_desc->seqnum_seed = 0; 3430 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3431 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3432 } 3433 3434 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3435 struct ixgbevf_tx_buffer *first, 3436 u8 *hdr_len) 3437 { 3438 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3439 struct sk_buff *skb = first->skb; 3440 union { 3441 struct iphdr *v4; 3442 struct ipv6hdr *v6; 3443 unsigned char *hdr; 3444 } ip; 3445 union { 3446 struct tcphdr *tcp; 3447 unsigned char *hdr; 3448 } l4; 3449 u32 paylen, l4_offset; 3450 int err; 3451 3452 if (skb->ip_summed != CHECKSUM_PARTIAL) 3453 return 0; 3454 3455 if (!skb_is_gso(skb)) 3456 return 0; 3457 3458 err = skb_cow_head(skb, 0); 3459 if (err < 0) 3460 return err; 3461 3462 if (eth_p_mpls(first->protocol)) 3463 ip.hdr = skb_inner_network_header(skb); 3464 else 3465 ip.hdr = skb_network_header(skb); 3466 l4.hdr = skb_checksum_start(skb); 3467 3468 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3469 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3470 3471 /* initialize outer IP header fields */ 3472 if (ip.v4->version == 4) { 3473 unsigned char *csum_start = skb_checksum_start(skb); 3474 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3475 3476 /* IP header will have to cancel out any data that 3477 * is not a part of the outer IP header 3478 */ 3479 ip.v4->check = csum_fold(csum_partial(trans_start, 3480 csum_start - trans_start, 3481 0)); 3482 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3483 3484 ip.v4->tot_len = 0; 3485 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3486 IXGBE_TX_FLAGS_CSUM | 3487 IXGBE_TX_FLAGS_IPV4; 3488 } else { 3489 ip.v6->payload_len = 0; 3490 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3491 IXGBE_TX_FLAGS_CSUM; 3492 } 3493 3494 /* determine offset of inner transport header */ 3495 l4_offset = l4.hdr - skb->data; 3496 3497 /* compute length of segmentation header */ 3498 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3499 3500 /* remove payload length from inner checksum */ 3501 paylen = skb->len - l4_offset; 3502 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 3503 3504 /* update gso size and bytecount with header size */ 3505 first->gso_segs = skb_shinfo(skb)->gso_segs; 3506 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3507 3508 /* mss_l4len_id: use 1 as index for TSO */ 3509 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3510 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3511 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3512 3513 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3514 vlan_macip_lens = l4.hdr - ip.hdr; 3515 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3516 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3517 3518 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3519 type_tucmd, mss_l4len_idx); 3520 3521 return 1; 3522 } 3523 3524 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb) 3525 { 3526 unsigned int offset = 0; 3527 3528 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 3529 3530 return offset == skb_checksum_start_offset(skb); 3531 } 3532 3533 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3534 struct ixgbevf_tx_buffer *first) 3535 { 3536 struct sk_buff *skb = first->skb; 3537 u32 vlan_macip_lens = 0; 3538 u32 type_tucmd = 0; 3539 3540 if (skb->ip_summed != CHECKSUM_PARTIAL) 3541 goto no_csum; 3542 3543 switch (skb->csum_offset) { 3544 case offsetof(struct tcphdr, check): 3545 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3546 /* fall through */ 3547 case offsetof(struct udphdr, check): 3548 break; 3549 case offsetof(struct sctphdr, checksum): 3550 /* validate that this is actually an SCTP request */ 3551 if (((first->protocol == htons(ETH_P_IP)) && 3552 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 3553 ((first->protocol == htons(ETH_P_IPV6)) && 3554 ixgbevf_ipv6_csum_is_sctp(skb))) { 3555 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3556 break; 3557 } 3558 /* fall through */ 3559 default: 3560 skb_checksum_help(skb); 3561 goto no_csum; 3562 } 3563 /* update TX checksum flag */ 3564 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3565 vlan_macip_lens = skb_checksum_start_offset(skb) - 3566 skb_network_offset(skb); 3567 no_csum: 3568 /* vlan_macip_lens: MACLEN, VLAN tag */ 3569 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3570 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3571 3572 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0); 3573 } 3574 3575 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3576 { 3577 /* set type for advanced descriptor with frame checksum insertion */ 3578 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3579 IXGBE_ADVTXD_DCMD_IFCS | 3580 IXGBE_ADVTXD_DCMD_DEXT); 3581 3582 /* set HW VLAN bit if VLAN is present */ 3583 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3584 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3585 3586 /* set segmentation enable bits for TSO/FSO */ 3587 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3588 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3589 3590 return cmd_type; 3591 } 3592 3593 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3594 u32 tx_flags, unsigned int paylen) 3595 { 3596 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3597 3598 /* enable L4 checksum for TSO and TX checksum offload */ 3599 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3600 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3601 3602 /* enble IPv4 checksum for TSO */ 3603 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3604 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3605 3606 /* use index 1 context for TSO/FSO/FCOE */ 3607 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3608 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3609 3610 /* Check Context must be set if Tx switch is enabled, which it 3611 * always is for case where virtual functions are running 3612 */ 3613 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3614 3615 tx_desc->read.olinfo_status = olinfo_status; 3616 } 3617 3618 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3619 struct ixgbevf_tx_buffer *first, 3620 const u8 hdr_len) 3621 { 3622 struct sk_buff *skb = first->skb; 3623 struct ixgbevf_tx_buffer *tx_buffer; 3624 union ixgbe_adv_tx_desc *tx_desc; 3625 struct skb_frag_struct *frag; 3626 dma_addr_t dma; 3627 unsigned int data_len, size; 3628 u32 tx_flags = first->tx_flags; 3629 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3630 u16 i = tx_ring->next_to_use; 3631 3632 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3633 3634 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 3635 3636 size = skb_headlen(skb); 3637 data_len = skb->data_len; 3638 3639 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3640 3641 tx_buffer = first; 3642 3643 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3644 if (dma_mapping_error(tx_ring->dev, dma)) 3645 goto dma_error; 3646 3647 /* record length, and DMA address */ 3648 dma_unmap_len_set(tx_buffer, len, size); 3649 dma_unmap_addr_set(tx_buffer, dma, dma); 3650 3651 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3652 3653 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3654 tx_desc->read.cmd_type_len = 3655 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3656 3657 i++; 3658 tx_desc++; 3659 if (i == tx_ring->count) { 3660 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3661 i = 0; 3662 } 3663 tx_desc->read.olinfo_status = 0; 3664 3665 dma += IXGBE_MAX_DATA_PER_TXD; 3666 size -= IXGBE_MAX_DATA_PER_TXD; 3667 3668 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3669 } 3670 3671 if (likely(!data_len)) 3672 break; 3673 3674 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 3675 3676 i++; 3677 tx_desc++; 3678 if (i == tx_ring->count) { 3679 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3680 i = 0; 3681 } 3682 tx_desc->read.olinfo_status = 0; 3683 3684 size = skb_frag_size(frag); 3685 data_len -= size; 3686 3687 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3688 DMA_TO_DEVICE); 3689 3690 tx_buffer = &tx_ring->tx_buffer_info[i]; 3691 } 3692 3693 /* write last descriptor with RS and EOP bits */ 3694 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 3695 tx_desc->read.cmd_type_len = cmd_type; 3696 3697 /* set the timestamp */ 3698 first->time_stamp = jiffies; 3699 3700 /* Force memory writes to complete before letting h/w know there 3701 * are new descriptors to fetch. (Only applicable for weak-ordered 3702 * memory model archs, such as IA-64). 3703 * 3704 * We also need this memory barrier (wmb) to make certain all of the 3705 * status bits have been updated before next_to_watch is written. 3706 */ 3707 wmb(); 3708 3709 /* set next_to_watch value indicating a packet is present */ 3710 first->next_to_watch = tx_desc; 3711 3712 i++; 3713 if (i == tx_ring->count) 3714 i = 0; 3715 3716 tx_ring->next_to_use = i; 3717 3718 /* notify HW of packet */ 3719 ixgbevf_write_tail(tx_ring, i); 3720 3721 return; 3722 dma_error: 3723 dev_err(tx_ring->dev, "TX DMA map failed\n"); 3724 tx_buffer = &tx_ring->tx_buffer_info[i]; 3725 3726 /* clear dma mappings for failed tx_buffer_info map */ 3727 while (tx_buffer != first) { 3728 if (dma_unmap_len(tx_buffer, len)) 3729 dma_unmap_page(tx_ring->dev, 3730 dma_unmap_addr(tx_buffer, dma), 3731 dma_unmap_len(tx_buffer, len), 3732 DMA_TO_DEVICE); 3733 dma_unmap_len_set(tx_buffer, len, 0); 3734 3735 if (i-- == 0) 3736 i += tx_ring->count; 3737 tx_buffer = &tx_ring->tx_buffer_info[i]; 3738 } 3739 3740 if (dma_unmap_len(tx_buffer, len)) 3741 dma_unmap_single(tx_ring->dev, 3742 dma_unmap_addr(tx_buffer, dma), 3743 dma_unmap_len(tx_buffer, len), 3744 DMA_TO_DEVICE); 3745 dma_unmap_len_set(tx_buffer, len, 0); 3746 3747 dev_kfree_skb_any(tx_buffer->skb); 3748 tx_buffer->skb = NULL; 3749 3750 tx_ring->next_to_use = i; 3751 } 3752 3753 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 3754 { 3755 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 3756 /* Herbert's original patch had: 3757 * smp_mb__after_netif_stop_queue(); 3758 * but since that doesn't exist yet, just open code it. 3759 */ 3760 smp_mb(); 3761 3762 /* We need to check again in a case another CPU has just 3763 * made room available. 3764 */ 3765 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 3766 return -EBUSY; 3767 3768 /* A reprieve! - use start_queue because it doesn't call schedule */ 3769 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 3770 ++tx_ring->tx_stats.restart_queue; 3771 3772 return 0; 3773 } 3774 3775 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 3776 { 3777 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 3778 return 0; 3779 return __ixgbevf_maybe_stop_tx(tx_ring, size); 3780 } 3781 3782 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb, 3783 struct ixgbevf_ring *tx_ring) 3784 { 3785 struct ixgbevf_tx_buffer *first; 3786 int tso; 3787 u32 tx_flags = 0; 3788 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 3789 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 3790 unsigned short f; 3791 #endif 3792 u8 hdr_len = 0; 3793 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 3794 3795 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 3796 dev_kfree_skb_any(skb); 3797 return NETDEV_TX_OK; 3798 } 3799 3800 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 3801 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 3802 * + 2 desc gap to keep tail from touching head, 3803 * + 1 desc for context descriptor, 3804 * otherwise try next time 3805 */ 3806 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 3807 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 3808 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 3809 #else 3810 count += skb_shinfo(skb)->nr_frags; 3811 #endif 3812 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 3813 tx_ring->tx_stats.tx_busy++; 3814 return NETDEV_TX_BUSY; 3815 } 3816 3817 /* record the location of the first descriptor for this packet */ 3818 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 3819 first->skb = skb; 3820 first->bytecount = skb->len; 3821 first->gso_segs = 1; 3822 3823 if (skb_vlan_tag_present(skb)) { 3824 tx_flags |= skb_vlan_tag_get(skb); 3825 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 3826 tx_flags |= IXGBE_TX_FLAGS_VLAN; 3827 } 3828 3829 /* record initial flags and protocol */ 3830 first->tx_flags = tx_flags; 3831 first->protocol = vlan_get_protocol(skb); 3832 3833 tso = ixgbevf_tso(tx_ring, first, &hdr_len); 3834 if (tso < 0) 3835 goto out_drop; 3836 else if (!tso) 3837 ixgbevf_tx_csum(tx_ring, first); 3838 3839 ixgbevf_tx_map(tx_ring, first, hdr_len); 3840 3841 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 3842 3843 return NETDEV_TX_OK; 3844 3845 out_drop: 3846 dev_kfree_skb_any(first->skb); 3847 first->skb = NULL; 3848 3849 return NETDEV_TX_OK; 3850 } 3851 3852 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3853 { 3854 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3855 struct ixgbevf_ring *tx_ring; 3856 3857 if (skb->len <= 0) { 3858 dev_kfree_skb_any(skb); 3859 return NETDEV_TX_OK; 3860 } 3861 3862 /* The minimum packet size for olinfo paylen is 17 so pad the skb 3863 * in order to meet this minimum size requirement. 3864 */ 3865 if (skb->len < 17) { 3866 if (skb_padto(skb, 17)) 3867 return NETDEV_TX_OK; 3868 skb->len = 17; 3869 } 3870 3871 tx_ring = adapter->tx_ring[skb->queue_mapping]; 3872 return ixgbevf_xmit_frame_ring(skb, tx_ring); 3873 } 3874 3875 /** 3876 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 3877 * @netdev: network interface device structure 3878 * @p: pointer to an address structure 3879 * 3880 * Returns 0 on success, negative on failure 3881 **/ 3882 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 3883 { 3884 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3885 struct ixgbe_hw *hw = &adapter->hw; 3886 struct sockaddr *addr = p; 3887 int err; 3888 3889 if (!is_valid_ether_addr(addr->sa_data)) 3890 return -EADDRNOTAVAIL; 3891 3892 spin_lock_bh(&adapter->mbx_lock); 3893 3894 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 3895 3896 spin_unlock_bh(&adapter->mbx_lock); 3897 3898 if (err) 3899 return -EPERM; 3900 3901 ether_addr_copy(hw->mac.addr, addr->sa_data); 3902 ether_addr_copy(netdev->dev_addr, addr->sa_data); 3903 3904 return 0; 3905 } 3906 3907 /** 3908 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 3909 * @netdev: network interface device structure 3910 * @new_mtu: new value for maximum frame size 3911 * 3912 * Returns 0 on success, negative on failure 3913 **/ 3914 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 3915 { 3916 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3917 struct ixgbe_hw *hw = &adapter->hw; 3918 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3919 int ret; 3920 3921 spin_lock_bh(&adapter->mbx_lock); 3922 /* notify the PF of our intent to use this size of frame */ 3923 ret = hw->mac.ops.set_rlpml(hw, max_frame); 3924 spin_unlock_bh(&adapter->mbx_lock); 3925 if (ret) 3926 return -EINVAL; 3927 3928 hw_dbg(hw, "changing MTU from %d to %d\n", 3929 netdev->mtu, new_mtu); 3930 3931 /* must set new MTU before calling down or up */ 3932 netdev->mtu = new_mtu; 3933 3934 if (netif_running(netdev)) 3935 ixgbevf_reinit_locked(adapter); 3936 3937 return 0; 3938 } 3939 3940 #ifdef CONFIG_NET_POLL_CONTROLLER 3941 /* Polling 'interrupt' - used by things like netconsole to send skbs 3942 * without having to re-enable interrupts. It's not called while 3943 * the interrupt routine is executing. 3944 */ 3945 static void ixgbevf_netpoll(struct net_device *netdev) 3946 { 3947 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3948 int i; 3949 3950 /* if interface is down do nothing */ 3951 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 3952 return; 3953 for (i = 0; i < adapter->num_rx_queues; i++) 3954 ixgbevf_msix_clean_rings(0, adapter->q_vector[i]); 3955 } 3956 #endif /* CONFIG_NET_POLL_CONTROLLER */ 3957 3958 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state) 3959 { 3960 struct net_device *netdev = pci_get_drvdata(pdev); 3961 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3962 #ifdef CONFIG_PM 3963 int retval = 0; 3964 #endif 3965 3966 rtnl_lock(); 3967 netif_device_detach(netdev); 3968 3969 if (netif_running(netdev)) 3970 ixgbevf_close_suspend(adapter); 3971 3972 ixgbevf_clear_interrupt_scheme(adapter); 3973 rtnl_unlock(); 3974 3975 #ifdef CONFIG_PM 3976 retval = pci_save_state(pdev); 3977 if (retval) 3978 return retval; 3979 3980 #endif 3981 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 3982 pci_disable_device(pdev); 3983 3984 return 0; 3985 } 3986 3987 #ifdef CONFIG_PM 3988 static int ixgbevf_resume(struct pci_dev *pdev) 3989 { 3990 struct net_device *netdev = pci_get_drvdata(pdev); 3991 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3992 u32 err; 3993 3994 pci_restore_state(pdev); 3995 /* pci_restore_state clears dev->state_saved so call 3996 * pci_save_state to restore it. 3997 */ 3998 pci_save_state(pdev); 3999 4000 err = pci_enable_device_mem(pdev); 4001 if (err) { 4002 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 4003 return err; 4004 } 4005 4006 adapter->hw.hw_addr = adapter->io_addr; 4007 smp_mb__before_atomic(); 4008 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4009 pci_set_master(pdev); 4010 4011 ixgbevf_reset(adapter); 4012 4013 rtnl_lock(); 4014 err = ixgbevf_init_interrupt_scheme(adapter); 4015 if (!err && netif_running(netdev)) 4016 err = ixgbevf_open(netdev); 4017 rtnl_unlock(); 4018 if (err) 4019 return err; 4020 4021 netif_device_attach(netdev); 4022 4023 return err; 4024 } 4025 4026 #endif /* CONFIG_PM */ 4027 static void ixgbevf_shutdown(struct pci_dev *pdev) 4028 { 4029 ixgbevf_suspend(pdev, PMSG_SUSPEND); 4030 } 4031 4032 static void ixgbevf_get_stats(struct net_device *netdev, 4033 struct rtnl_link_stats64 *stats) 4034 { 4035 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4036 unsigned int start; 4037 u64 bytes, packets; 4038 const struct ixgbevf_ring *ring; 4039 int i; 4040 4041 ixgbevf_update_stats(adapter); 4042 4043 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 4044 4045 rcu_read_lock(); 4046 for (i = 0; i < adapter->num_rx_queues; i++) { 4047 ring = adapter->rx_ring[i]; 4048 do { 4049 start = u64_stats_fetch_begin_irq(&ring->syncp); 4050 bytes = ring->stats.bytes; 4051 packets = ring->stats.packets; 4052 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4053 stats->rx_bytes += bytes; 4054 stats->rx_packets += packets; 4055 } 4056 4057 for (i = 0; i < adapter->num_tx_queues; i++) { 4058 ring = adapter->tx_ring[i]; 4059 do { 4060 start = u64_stats_fetch_begin_irq(&ring->syncp); 4061 bytes = ring->stats.bytes; 4062 packets = ring->stats.packets; 4063 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4064 stats->tx_bytes += bytes; 4065 stats->tx_packets += packets; 4066 } 4067 rcu_read_unlock(); 4068 } 4069 4070 #define IXGBEVF_MAX_MAC_HDR_LEN 127 4071 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 4072 4073 static netdev_features_t 4074 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 4075 netdev_features_t features) 4076 { 4077 unsigned int network_hdr_len, mac_hdr_len; 4078 4079 /* Make certain the headers can be described by a context descriptor */ 4080 mac_hdr_len = skb_network_header(skb) - skb->data; 4081 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 4082 return features & ~(NETIF_F_HW_CSUM | 4083 NETIF_F_SCTP_CRC | 4084 NETIF_F_HW_VLAN_CTAG_TX | 4085 NETIF_F_TSO | 4086 NETIF_F_TSO6); 4087 4088 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4089 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 4090 return features & ~(NETIF_F_HW_CSUM | 4091 NETIF_F_SCTP_CRC | 4092 NETIF_F_TSO | 4093 NETIF_F_TSO6); 4094 4095 /* We can only support IPV4 TSO in tunnels if we can mangle the 4096 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4097 */ 4098 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4099 features &= ~NETIF_F_TSO; 4100 4101 return features; 4102 } 4103 4104 static const struct net_device_ops ixgbevf_netdev_ops = { 4105 .ndo_open = ixgbevf_open, 4106 .ndo_stop = ixgbevf_close, 4107 .ndo_start_xmit = ixgbevf_xmit_frame, 4108 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 4109 .ndo_get_stats64 = ixgbevf_get_stats, 4110 .ndo_validate_addr = eth_validate_addr, 4111 .ndo_set_mac_address = ixgbevf_set_mac, 4112 .ndo_change_mtu = ixgbevf_change_mtu, 4113 .ndo_tx_timeout = ixgbevf_tx_timeout, 4114 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 4115 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 4116 #ifdef CONFIG_NET_POLL_CONTROLLER 4117 .ndo_poll_controller = ixgbevf_netpoll, 4118 #endif 4119 .ndo_features_check = ixgbevf_features_check, 4120 }; 4121 4122 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 4123 { 4124 dev->netdev_ops = &ixgbevf_netdev_ops; 4125 ixgbevf_set_ethtool_ops(dev); 4126 dev->watchdog_timeo = 5 * HZ; 4127 } 4128 4129 /** 4130 * ixgbevf_probe - Device Initialization Routine 4131 * @pdev: PCI device information struct 4132 * @ent: entry in ixgbevf_pci_tbl 4133 * 4134 * Returns 0 on success, negative on failure 4135 * 4136 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 4137 * The OS initialization, configuring of the adapter private structure, 4138 * and a hardware reset occur. 4139 **/ 4140 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4141 { 4142 struct net_device *netdev; 4143 struct ixgbevf_adapter *adapter = NULL; 4144 struct ixgbe_hw *hw = NULL; 4145 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 4146 int err, pci_using_dac; 4147 bool disable_dev = false; 4148 4149 err = pci_enable_device(pdev); 4150 if (err) 4151 return err; 4152 4153 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 4154 pci_using_dac = 1; 4155 } else { 4156 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4157 if (err) { 4158 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4159 goto err_dma; 4160 } 4161 pci_using_dac = 0; 4162 } 4163 4164 err = pci_request_regions(pdev, ixgbevf_driver_name); 4165 if (err) { 4166 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4167 goto err_pci_reg; 4168 } 4169 4170 pci_set_master(pdev); 4171 4172 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4173 MAX_TX_QUEUES); 4174 if (!netdev) { 4175 err = -ENOMEM; 4176 goto err_alloc_etherdev; 4177 } 4178 4179 SET_NETDEV_DEV(netdev, &pdev->dev); 4180 4181 adapter = netdev_priv(netdev); 4182 4183 adapter->netdev = netdev; 4184 adapter->pdev = pdev; 4185 hw = &adapter->hw; 4186 hw->back = adapter; 4187 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4188 4189 /* call save state here in standalone driver because it relies on 4190 * adapter struct to exist, and needs to call netdev_priv 4191 */ 4192 pci_save_state(pdev); 4193 4194 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4195 pci_resource_len(pdev, 0)); 4196 adapter->io_addr = hw->hw_addr; 4197 if (!hw->hw_addr) { 4198 err = -EIO; 4199 goto err_ioremap; 4200 } 4201 4202 ixgbevf_assign_netdev_ops(netdev); 4203 4204 /* Setup HW API */ 4205 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4206 hw->mac.type = ii->mac; 4207 4208 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 4209 sizeof(struct ixgbe_mbx_operations)); 4210 4211 /* setup the private structure */ 4212 err = ixgbevf_sw_init(adapter); 4213 if (err) 4214 goto err_sw_init; 4215 4216 /* The HW MAC address was set and/or determined in sw_init */ 4217 if (!is_valid_ether_addr(netdev->dev_addr)) { 4218 pr_err("invalid MAC address\n"); 4219 err = -EIO; 4220 goto err_sw_init; 4221 } 4222 4223 netdev->hw_features = NETIF_F_SG | 4224 NETIF_F_TSO | 4225 NETIF_F_TSO6 | 4226 NETIF_F_RXCSUM | 4227 NETIF_F_HW_CSUM | 4228 NETIF_F_SCTP_CRC; 4229 4230 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4231 NETIF_F_GSO_GRE_CSUM | \ 4232 NETIF_F_GSO_IPXIP4 | \ 4233 NETIF_F_GSO_IPXIP6 | \ 4234 NETIF_F_GSO_UDP_TUNNEL | \ 4235 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4236 4237 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4238 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4239 IXGBEVF_GSO_PARTIAL_FEATURES; 4240 4241 netdev->features = netdev->hw_features; 4242 4243 if (pci_using_dac) 4244 netdev->features |= NETIF_F_HIGHDMA; 4245 4246 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4247 netdev->mpls_features |= NETIF_F_SG | 4248 NETIF_F_TSO | 4249 NETIF_F_TSO6 | 4250 NETIF_F_HW_CSUM; 4251 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4252 netdev->hw_enc_features |= netdev->vlan_features; 4253 4254 /* set this bit last since it cannot be part of vlan_features */ 4255 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4256 NETIF_F_HW_VLAN_CTAG_RX | 4257 NETIF_F_HW_VLAN_CTAG_TX; 4258 4259 netdev->priv_flags |= IFF_UNICAST_FLT; 4260 4261 /* MTU range: 68 - 1504 or 9710 */ 4262 netdev->min_mtu = ETH_MIN_MTU; 4263 switch (adapter->hw.api_version) { 4264 case ixgbe_mbox_api_11: 4265 case ixgbe_mbox_api_12: 4266 case ixgbe_mbox_api_13: 4267 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4268 (ETH_HLEN + ETH_FCS_LEN); 4269 break; 4270 default: 4271 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4272 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4273 (ETH_HLEN + ETH_FCS_LEN); 4274 else 4275 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4276 break; 4277 } 4278 4279 if (IXGBE_REMOVED(hw->hw_addr)) { 4280 err = -EIO; 4281 goto err_sw_init; 4282 } 4283 4284 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); 4285 4286 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4287 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4288 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4289 4290 err = ixgbevf_init_interrupt_scheme(adapter); 4291 if (err) 4292 goto err_sw_init; 4293 4294 strcpy(netdev->name, "eth%d"); 4295 4296 err = register_netdev(netdev); 4297 if (err) 4298 goto err_register; 4299 4300 pci_set_drvdata(pdev, netdev); 4301 netif_carrier_off(netdev); 4302 4303 ixgbevf_init_last_counter_stats(adapter); 4304 4305 /* print the VF info */ 4306 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4307 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4308 4309 switch (hw->mac.type) { 4310 case ixgbe_mac_X550_vf: 4311 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4312 break; 4313 case ixgbe_mac_X540_vf: 4314 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4315 break; 4316 case ixgbe_mac_82599_vf: 4317 default: 4318 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4319 break; 4320 } 4321 4322 return 0; 4323 4324 err_register: 4325 ixgbevf_clear_interrupt_scheme(adapter); 4326 err_sw_init: 4327 ixgbevf_reset_interrupt_capability(adapter); 4328 iounmap(adapter->io_addr); 4329 kfree(adapter->rss_key); 4330 err_ioremap: 4331 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4332 free_netdev(netdev); 4333 err_alloc_etherdev: 4334 pci_release_regions(pdev); 4335 err_pci_reg: 4336 err_dma: 4337 if (!adapter || disable_dev) 4338 pci_disable_device(pdev); 4339 return err; 4340 } 4341 4342 /** 4343 * ixgbevf_remove - Device Removal Routine 4344 * @pdev: PCI device information struct 4345 * 4346 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4347 * that it should release a PCI device. The could be caused by a 4348 * Hot-Plug event, or because the driver is going to be removed from 4349 * memory. 4350 **/ 4351 static void ixgbevf_remove(struct pci_dev *pdev) 4352 { 4353 struct net_device *netdev = pci_get_drvdata(pdev); 4354 struct ixgbevf_adapter *adapter; 4355 bool disable_dev; 4356 4357 if (!netdev) 4358 return; 4359 4360 adapter = netdev_priv(netdev); 4361 4362 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4363 cancel_work_sync(&adapter->service_task); 4364 4365 if (netdev->reg_state == NETREG_REGISTERED) 4366 unregister_netdev(netdev); 4367 4368 ixgbevf_clear_interrupt_scheme(adapter); 4369 ixgbevf_reset_interrupt_capability(adapter); 4370 4371 iounmap(adapter->io_addr); 4372 pci_release_regions(pdev); 4373 4374 hw_dbg(&adapter->hw, "Remove complete\n"); 4375 4376 kfree(adapter->rss_key); 4377 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4378 free_netdev(netdev); 4379 4380 if (disable_dev) 4381 pci_disable_device(pdev); 4382 } 4383 4384 /** 4385 * ixgbevf_io_error_detected - called when PCI error is detected 4386 * @pdev: Pointer to PCI device 4387 * @state: The current pci connection state 4388 * 4389 * This function is called after a PCI bus error affecting 4390 * this device has been detected. 4391 **/ 4392 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4393 pci_channel_state_t state) 4394 { 4395 struct net_device *netdev = pci_get_drvdata(pdev); 4396 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4397 4398 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4399 return PCI_ERS_RESULT_DISCONNECT; 4400 4401 rtnl_lock(); 4402 netif_device_detach(netdev); 4403 4404 if (state == pci_channel_io_perm_failure) { 4405 rtnl_unlock(); 4406 return PCI_ERS_RESULT_DISCONNECT; 4407 } 4408 4409 if (netif_running(netdev)) 4410 ixgbevf_close_suspend(adapter); 4411 4412 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4413 pci_disable_device(pdev); 4414 rtnl_unlock(); 4415 4416 /* Request a slot slot reset. */ 4417 return PCI_ERS_RESULT_NEED_RESET; 4418 } 4419 4420 /** 4421 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4422 * @pdev: Pointer to PCI device 4423 * 4424 * Restart the card from scratch, as if from a cold-boot. Implementation 4425 * resembles the first-half of the ixgbevf_resume routine. 4426 **/ 4427 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4428 { 4429 struct net_device *netdev = pci_get_drvdata(pdev); 4430 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4431 4432 if (pci_enable_device_mem(pdev)) { 4433 dev_err(&pdev->dev, 4434 "Cannot re-enable PCI device after reset.\n"); 4435 return PCI_ERS_RESULT_DISCONNECT; 4436 } 4437 4438 adapter->hw.hw_addr = adapter->io_addr; 4439 smp_mb__before_atomic(); 4440 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4441 pci_set_master(pdev); 4442 4443 ixgbevf_reset(adapter); 4444 4445 return PCI_ERS_RESULT_RECOVERED; 4446 } 4447 4448 /** 4449 * ixgbevf_io_resume - called when traffic can start flowing again. 4450 * @pdev: Pointer to PCI device 4451 * 4452 * This callback is called when the error recovery driver tells us that 4453 * its OK to resume normal operation. Implementation resembles the 4454 * second-half of the ixgbevf_resume routine. 4455 **/ 4456 static void ixgbevf_io_resume(struct pci_dev *pdev) 4457 { 4458 struct net_device *netdev = pci_get_drvdata(pdev); 4459 4460 rtnl_lock(); 4461 if (netif_running(netdev)) 4462 ixgbevf_open(netdev); 4463 4464 netif_device_attach(netdev); 4465 rtnl_unlock(); 4466 } 4467 4468 /* PCI Error Recovery (ERS) */ 4469 static const struct pci_error_handlers ixgbevf_err_handler = { 4470 .error_detected = ixgbevf_io_error_detected, 4471 .slot_reset = ixgbevf_io_slot_reset, 4472 .resume = ixgbevf_io_resume, 4473 }; 4474 4475 static struct pci_driver ixgbevf_driver = { 4476 .name = ixgbevf_driver_name, 4477 .id_table = ixgbevf_pci_tbl, 4478 .probe = ixgbevf_probe, 4479 .remove = ixgbevf_remove, 4480 #ifdef CONFIG_PM 4481 /* Power Management Hooks */ 4482 .suspend = ixgbevf_suspend, 4483 .resume = ixgbevf_resume, 4484 #endif 4485 .shutdown = ixgbevf_shutdown, 4486 .err_handler = &ixgbevf_err_handler 4487 }; 4488 4489 /** 4490 * ixgbevf_init_module - Driver Registration Routine 4491 * 4492 * ixgbevf_init_module is the first routine called when the driver is 4493 * loaded. All it does is register with the PCI subsystem. 4494 **/ 4495 static int __init ixgbevf_init_module(void) 4496 { 4497 pr_info("%s - version %s\n", ixgbevf_driver_string, 4498 ixgbevf_driver_version); 4499 4500 pr_info("%s\n", ixgbevf_copyright); 4501 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4502 if (!ixgbevf_wq) { 4503 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4504 return -ENOMEM; 4505 } 4506 4507 return pci_register_driver(&ixgbevf_driver); 4508 } 4509 4510 module_init(ixgbevf_init_module); 4511 4512 /** 4513 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4514 * 4515 * ixgbevf_exit_module is called just before the driver is removed 4516 * from memory. 4517 **/ 4518 static void __exit ixgbevf_exit_module(void) 4519 { 4520 pci_unregister_driver(&ixgbevf_driver); 4521 if (ixgbevf_wq) { 4522 destroy_workqueue(ixgbevf_wq); 4523 ixgbevf_wq = NULL; 4524 } 4525 } 4526 4527 #ifdef DEBUG 4528 /** 4529 * ixgbevf_get_hw_dev_name - return device name string 4530 * used by hardware layer to print debugging information 4531 * @hw: pointer to private hardware struct 4532 **/ 4533 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4534 { 4535 struct ixgbevf_adapter *adapter = hw->back; 4536 4537 return adapter->netdev->name; 4538 } 4539 4540 #endif 4541 module_exit(ixgbevf_exit_module); 4542 4543 /* ixgbevf_main.c */ 4544