1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /****************************************************************************** 5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 6 ******************************************************************************/ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/types.h> 11 #include <linux/bitops.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/in.h> 18 #include <linux/ip.h> 19 #include <linux/tcp.h> 20 #include <linux/sctp.h> 21 #include <linux/ipv6.h> 22 #include <linux/slab.h> 23 #include <net/checksum.h> 24 #include <net/ip6_checksum.h> 25 #include <linux/ethtool.h> 26 #include <linux/if.h> 27 #include <linux/if_vlan.h> 28 #include <linux/prefetch.h> 29 #include <net/mpls.h> 30 #include <linux/bpf.h> 31 #include <linux/bpf_trace.h> 32 #include <linux/atomic.h> 33 #include <net/xfrm.h> 34 35 #include "ixgbevf.h" 36 37 const char ixgbevf_driver_name[] = "ixgbevf"; 38 static const char ixgbevf_driver_string[] = 39 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 40 41 static char ixgbevf_copyright[] = 42 "Copyright (c) 2009 - 2018 Intel Corporation."; 43 44 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 45 [board_82599_vf] = &ixgbevf_82599_vf_info, 46 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 47 [board_X540_vf] = &ixgbevf_X540_vf_info, 48 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 49 [board_X550_vf] = &ixgbevf_X550_vf_info, 50 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 51 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 52 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 53 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 54 }; 55 56 /* ixgbevf_pci_tbl - PCI Device ID Table 57 * 58 * Wildcard entries (PCI_ANY_ID) should come last 59 * Last entry must be all 0s 60 * 61 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 62 * Class, Class Mask, private data (not used) } 63 */ 64 static const struct pci_device_id ixgbevf_pci_tbl[] = { 65 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 66 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 74 /* required last entry */ 75 {0, } 76 }; 77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 78 79 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 80 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 81 MODULE_LICENSE("GPL v2"); 82 83 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 84 static int debug = -1; 85 module_param(debug, int, 0); 86 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 87 88 static struct workqueue_struct *ixgbevf_wq; 89 90 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 91 { 92 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 93 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 94 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 95 queue_work(ixgbevf_wq, &adapter->service_task); 96 } 97 98 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 99 { 100 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 101 102 /* flush memory to make sure state is correct before next watchdog */ 103 smp_mb__before_atomic(); 104 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 105 } 106 107 /* forward decls */ 108 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 109 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 110 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 111 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer); 112 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 113 struct ixgbevf_rx_buffer *old_buff); 114 115 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 116 { 117 struct ixgbevf_adapter *adapter = hw->back; 118 119 if (!hw->hw_addr) 120 return; 121 hw->hw_addr = NULL; 122 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 123 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 124 ixgbevf_service_event_schedule(adapter); 125 } 126 127 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 128 { 129 u32 value; 130 131 /* The following check not only optimizes a bit by not 132 * performing a read on the status register when the 133 * register just read was a status register read that 134 * returned IXGBE_FAILED_READ_REG. It also blocks any 135 * potential recursion. 136 */ 137 if (reg == IXGBE_VFSTATUS) { 138 ixgbevf_remove_adapter(hw); 139 return; 140 } 141 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 142 if (value == IXGBE_FAILED_READ_REG) 143 ixgbevf_remove_adapter(hw); 144 } 145 146 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 147 { 148 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 149 u32 value; 150 151 if (IXGBE_REMOVED(reg_addr)) 152 return IXGBE_FAILED_READ_REG; 153 value = readl(reg_addr + reg); 154 if (unlikely(value == IXGBE_FAILED_READ_REG)) 155 ixgbevf_check_remove(hw, reg); 156 return value; 157 } 158 159 /** 160 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 161 * @adapter: pointer to adapter struct 162 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 163 * @queue: queue to map the corresponding interrupt to 164 * @msix_vector: the vector to map to the corresponding queue 165 **/ 166 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 167 u8 queue, u8 msix_vector) 168 { 169 u32 ivar, index; 170 struct ixgbe_hw *hw = &adapter->hw; 171 172 if (direction == -1) { 173 /* other causes */ 174 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 175 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 176 ivar &= ~0xFF; 177 ivar |= msix_vector; 178 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 179 } else { 180 /* Tx or Rx causes */ 181 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 182 index = ((16 * (queue & 1)) + (8 * direction)); 183 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 184 ivar &= ~(0xFF << index); 185 ivar |= (msix_vector << index); 186 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 187 } 188 } 189 190 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 191 { 192 return ring->stats.packets; 193 } 194 195 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 196 { 197 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 198 struct ixgbe_hw *hw = &adapter->hw; 199 200 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 201 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 202 203 if (head != tail) 204 return (head < tail) ? 205 tail - head : (tail + ring->count - head); 206 207 return 0; 208 } 209 210 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 211 { 212 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 213 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 214 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 215 216 clear_check_for_tx_hang(tx_ring); 217 218 /* Check for a hung queue, but be thorough. This verifies 219 * that a transmit has been completed since the previous 220 * check AND there is at least one packet pending. The 221 * ARMED bit is set to indicate a potential hang. 222 */ 223 if ((tx_done_old == tx_done) && tx_pending) { 224 /* make sure it is true for two checks in a row */ 225 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 226 &tx_ring->state); 227 } 228 /* reset the countdown */ 229 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 230 231 /* update completed stats and continue */ 232 tx_ring->tx_stats.tx_done_old = tx_done; 233 234 return false; 235 } 236 237 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 238 { 239 /* Do the reset outside of interrupt context */ 240 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 241 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 242 ixgbevf_service_event_schedule(adapter); 243 } 244 } 245 246 /** 247 * ixgbevf_tx_timeout - Respond to a Tx Hang 248 * @netdev: network interface device structure 249 * @txqueue: transmit queue hanging (unused) 250 **/ 251 static void ixgbevf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) 252 { 253 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 254 255 ixgbevf_tx_timeout_reset(adapter); 256 } 257 258 /** 259 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 260 * @q_vector: board private structure 261 * @tx_ring: tx ring to clean 262 * @napi_budget: Used to determine if we are in netpoll 263 **/ 264 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 265 struct ixgbevf_ring *tx_ring, int napi_budget) 266 { 267 struct ixgbevf_adapter *adapter = q_vector->adapter; 268 struct ixgbevf_tx_buffer *tx_buffer; 269 union ixgbe_adv_tx_desc *tx_desc; 270 unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0; 271 unsigned int budget = tx_ring->count / 2; 272 unsigned int i = tx_ring->next_to_clean; 273 274 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 275 return true; 276 277 tx_buffer = &tx_ring->tx_buffer_info[i]; 278 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 279 i -= tx_ring->count; 280 281 do { 282 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 283 284 /* if next_to_watch is not set then there is no work pending */ 285 if (!eop_desc) 286 break; 287 288 /* prevent any other reads prior to eop_desc */ 289 smp_rmb(); 290 291 /* if DD is not set pending work has not been completed */ 292 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 293 break; 294 295 /* clear next_to_watch to prevent false hangs */ 296 tx_buffer->next_to_watch = NULL; 297 298 /* update the statistics for this packet */ 299 total_bytes += tx_buffer->bytecount; 300 total_packets += tx_buffer->gso_segs; 301 if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC) 302 total_ipsec++; 303 304 /* free the skb */ 305 if (ring_is_xdp(tx_ring)) 306 page_frag_free(tx_buffer->data); 307 else 308 napi_consume_skb(tx_buffer->skb, napi_budget); 309 310 /* unmap skb header data */ 311 dma_unmap_single(tx_ring->dev, 312 dma_unmap_addr(tx_buffer, dma), 313 dma_unmap_len(tx_buffer, len), 314 DMA_TO_DEVICE); 315 316 /* clear tx_buffer data */ 317 dma_unmap_len_set(tx_buffer, len, 0); 318 319 /* unmap remaining buffers */ 320 while (tx_desc != eop_desc) { 321 tx_buffer++; 322 tx_desc++; 323 i++; 324 if (unlikely(!i)) { 325 i -= tx_ring->count; 326 tx_buffer = tx_ring->tx_buffer_info; 327 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 328 } 329 330 /* unmap any remaining paged data */ 331 if (dma_unmap_len(tx_buffer, len)) { 332 dma_unmap_page(tx_ring->dev, 333 dma_unmap_addr(tx_buffer, dma), 334 dma_unmap_len(tx_buffer, len), 335 DMA_TO_DEVICE); 336 dma_unmap_len_set(tx_buffer, len, 0); 337 } 338 } 339 340 /* move us one more past the eop_desc for start of next pkt */ 341 tx_buffer++; 342 tx_desc++; 343 i++; 344 if (unlikely(!i)) { 345 i -= tx_ring->count; 346 tx_buffer = tx_ring->tx_buffer_info; 347 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 348 } 349 350 /* issue prefetch for next Tx descriptor */ 351 prefetch(tx_desc); 352 353 /* update budget accounting */ 354 budget--; 355 } while (likely(budget)); 356 357 i += tx_ring->count; 358 tx_ring->next_to_clean = i; 359 u64_stats_update_begin(&tx_ring->syncp); 360 tx_ring->stats.bytes += total_bytes; 361 tx_ring->stats.packets += total_packets; 362 u64_stats_update_end(&tx_ring->syncp); 363 q_vector->tx.total_bytes += total_bytes; 364 q_vector->tx.total_packets += total_packets; 365 adapter->tx_ipsec += total_ipsec; 366 367 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 368 struct ixgbe_hw *hw = &adapter->hw; 369 union ixgbe_adv_tx_desc *eop_desc; 370 371 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 372 373 pr_err("Detected Tx Unit Hang%s\n" 374 " Tx Queue <%d>\n" 375 " TDH, TDT <%x>, <%x>\n" 376 " next_to_use <%x>\n" 377 " next_to_clean <%x>\n" 378 "tx_buffer_info[next_to_clean]\n" 379 " next_to_watch <%p>\n" 380 " eop_desc->wb.status <%x>\n" 381 " time_stamp <%lx>\n" 382 " jiffies <%lx>\n", 383 ring_is_xdp(tx_ring) ? " XDP" : "", 384 tx_ring->queue_index, 385 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 386 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 387 tx_ring->next_to_use, i, 388 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 389 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 390 391 if (!ring_is_xdp(tx_ring)) 392 netif_stop_subqueue(tx_ring->netdev, 393 tx_ring->queue_index); 394 395 /* schedule immediate reset if we believe we hung */ 396 ixgbevf_tx_timeout_reset(adapter); 397 398 return true; 399 } 400 401 if (ring_is_xdp(tx_ring)) 402 return !!budget; 403 404 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 405 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 406 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 407 /* Make sure that anybody stopping the queue after this 408 * sees the new next_to_clean. 409 */ 410 smp_mb(); 411 412 if (__netif_subqueue_stopped(tx_ring->netdev, 413 tx_ring->queue_index) && 414 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 415 netif_wake_subqueue(tx_ring->netdev, 416 tx_ring->queue_index); 417 ++tx_ring->tx_stats.restart_queue; 418 } 419 } 420 421 return !!budget; 422 } 423 424 /** 425 * ixgbevf_rx_skb - Helper function to determine proper Rx method 426 * @q_vector: structure containing interrupt and ring information 427 * @skb: packet to send up 428 **/ 429 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 430 struct sk_buff *skb) 431 { 432 napi_gro_receive(&q_vector->napi, skb); 433 } 434 435 #define IXGBE_RSS_L4_TYPES_MASK \ 436 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 437 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 438 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 439 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 440 441 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 442 union ixgbe_adv_rx_desc *rx_desc, 443 struct sk_buff *skb) 444 { 445 u16 rss_type; 446 447 if (!(ring->netdev->features & NETIF_F_RXHASH)) 448 return; 449 450 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 451 IXGBE_RXDADV_RSSTYPE_MASK; 452 453 if (!rss_type) 454 return; 455 456 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 457 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 458 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 459 } 460 461 /** 462 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 463 * @ring: structure containig ring specific data 464 * @rx_desc: current Rx descriptor being processed 465 * @skb: skb currently being received and modified 466 **/ 467 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 468 union ixgbe_adv_rx_desc *rx_desc, 469 struct sk_buff *skb) 470 { 471 skb_checksum_none_assert(skb); 472 473 /* Rx csum disabled */ 474 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 475 return; 476 477 /* if IP and error */ 478 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 479 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 480 ring->rx_stats.csum_err++; 481 return; 482 } 483 484 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 485 return; 486 487 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 488 ring->rx_stats.csum_err++; 489 return; 490 } 491 492 /* It must be a TCP or UDP packet with a valid checksum */ 493 skb->ip_summed = CHECKSUM_UNNECESSARY; 494 } 495 496 /** 497 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 498 * @rx_ring: rx descriptor ring packet is being transacted on 499 * @rx_desc: pointer to the EOP Rx descriptor 500 * @skb: pointer to current skb being populated 501 * 502 * This function checks the ring, descriptor, and packet information in 503 * order to populate the checksum, VLAN, protocol, and other fields within 504 * the skb. 505 **/ 506 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 507 union ixgbe_adv_rx_desc *rx_desc, 508 struct sk_buff *skb) 509 { 510 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 511 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 512 513 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 514 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 515 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 516 517 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 518 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 519 } 520 521 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP)) 522 ixgbevf_ipsec_rx(rx_ring, rx_desc, skb); 523 524 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 525 } 526 527 static 528 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring, 529 const unsigned int size) 530 { 531 struct ixgbevf_rx_buffer *rx_buffer; 532 533 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 534 prefetchw(rx_buffer->page); 535 536 /* we are reusing so sync this buffer for CPU use */ 537 dma_sync_single_range_for_cpu(rx_ring->dev, 538 rx_buffer->dma, 539 rx_buffer->page_offset, 540 size, 541 DMA_FROM_DEVICE); 542 543 rx_buffer->pagecnt_bias--; 544 545 return rx_buffer; 546 } 547 548 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring, 549 struct ixgbevf_rx_buffer *rx_buffer, 550 struct sk_buff *skb) 551 { 552 if (ixgbevf_can_reuse_rx_page(rx_buffer)) { 553 /* hand second half of page back to the ring */ 554 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 555 } else { 556 if (IS_ERR(skb)) 557 /* We are not reusing the buffer so unmap it and free 558 * any references we are holding to it 559 */ 560 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 561 ixgbevf_rx_pg_size(rx_ring), 562 DMA_FROM_DEVICE, 563 IXGBEVF_RX_DMA_ATTR); 564 __page_frag_cache_drain(rx_buffer->page, 565 rx_buffer->pagecnt_bias); 566 } 567 568 /* clear contents of rx_buffer */ 569 rx_buffer->page = NULL; 570 } 571 572 /** 573 * ixgbevf_is_non_eop - process handling of non-EOP buffers 574 * @rx_ring: Rx ring being processed 575 * @rx_desc: Rx descriptor for current buffer 576 * 577 * This function updates next to clean. If the buffer is an EOP buffer 578 * this function exits returning false, otherwise it will place the 579 * sk_buff in the next buffer to be chained and return true indicating 580 * that this is in fact a non-EOP buffer. 581 **/ 582 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 583 union ixgbe_adv_rx_desc *rx_desc) 584 { 585 u32 ntc = rx_ring->next_to_clean + 1; 586 587 /* fetch, update, and store next to clean */ 588 ntc = (ntc < rx_ring->count) ? ntc : 0; 589 rx_ring->next_to_clean = ntc; 590 591 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 592 593 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 594 return false; 595 596 return true; 597 } 598 599 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring) 600 { 601 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0; 602 } 603 604 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 605 struct ixgbevf_rx_buffer *bi) 606 { 607 struct page *page = bi->page; 608 dma_addr_t dma; 609 610 /* since we are recycling buffers we should seldom need to alloc */ 611 if (likely(page)) 612 return true; 613 614 /* alloc new page for storage */ 615 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring)); 616 if (unlikely(!page)) { 617 rx_ring->rx_stats.alloc_rx_page_failed++; 618 return false; 619 } 620 621 /* map page for use */ 622 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 623 ixgbevf_rx_pg_size(rx_ring), 624 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); 625 626 /* if mapping failed free memory back to system since 627 * there isn't much point in holding memory we can't use 628 */ 629 if (dma_mapping_error(rx_ring->dev, dma)) { 630 __free_pages(page, ixgbevf_rx_pg_order(rx_ring)); 631 632 rx_ring->rx_stats.alloc_rx_page_failed++; 633 return false; 634 } 635 636 bi->dma = dma; 637 bi->page = page; 638 bi->page_offset = ixgbevf_rx_offset(rx_ring); 639 bi->pagecnt_bias = 1; 640 rx_ring->rx_stats.alloc_rx_page++; 641 642 return true; 643 } 644 645 /** 646 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 647 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 648 * @cleaned_count: number of buffers to replace 649 **/ 650 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 651 u16 cleaned_count) 652 { 653 union ixgbe_adv_rx_desc *rx_desc; 654 struct ixgbevf_rx_buffer *bi; 655 unsigned int i = rx_ring->next_to_use; 656 657 /* nothing to do or no valid netdev defined */ 658 if (!cleaned_count || !rx_ring->netdev) 659 return; 660 661 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 662 bi = &rx_ring->rx_buffer_info[i]; 663 i -= rx_ring->count; 664 665 do { 666 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 667 break; 668 669 /* sync the buffer for use by the device */ 670 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 671 bi->page_offset, 672 ixgbevf_rx_bufsz(rx_ring), 673 DMA_FROM_DEVICE); 674 675 /* Refresh the desc even if pkt_addr didn't change 676 * because each write-back erases this info. 677 */ 678 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 679 680 rx_desc++; 681 bi++; 682 i++; 683 if (unlikely(!i)) { 684 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 685 bi = rx_ring->rx_buffer_info; 686 i -= rx_ring->count; 687 } 688 689 /* clear the length for the next_to_use descriptor */ 690 rx_desc->wb.upper.length = 0; 691 692 cleaned_count--; 693 } while (cleaned_count); 694 695 i += rx_ring->count; 696 697 if (rx_ring->next_to_use != i) { 698 /* record the next descriptor to use */ 699 rx_ring->next_to_use = i; 700 701 /* update next to alloc since we have filled the ring */ 702 rx_ring->next_to_alloc = i; 703 704 /* Force memory writes to complete before letting h/w 705 * know there are new descriptors to fetch. (Only 706 * applicable for weak-ordered memory model archs, 707 * such as IA-64). 708 */ 709 wmb(); 710 ixgbevf_write_tail(rx_ring, i); 711 } 712 } 713 714 /** 715 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 716 * @rx_ring: rx descriptor ring packet is being transacted on 717 * @rx_desc: pointer to the EOP Rx descriptor 718 * @skb: pointer to current skb being fixed 719 * 720 * Check for corrupted packet headers caused by senders on the local L2 721 * embedded NIC switch not setting up their Tx Descriptors right. These 722 * should be very rare. 723 * 724 * Also address the case where we are pulling data in on pages only 725 * and as such no data is present in the skb header. 726 * 727 * In addition if skb is not at least 60 bytes we need to pad it so that 728 * it is large enough to qualify as a valid Ethernet frame. 729 * 730 * Returns true if an error was encountered and skb was freed. 731 **/ 732 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 733 union ixgbe_adv_rx_desc *rx_desc, 734 struct sk_buff *skb) 735 { 736 /* XDP packets use error pointer so abort at this point */ 737 if (IS_ERR(skb)) 738 return true; 739 740 /* verify that the packet does not have any known errors */ 741 if (unlikely(ixgbevf_test_staterr(rx_desc, 742 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 743 struct net_device *netdev = rx_ring->netdev; 744 745 if (!(netdev->features & NETIF_F_RXALL)) { 746 dev_kfree_skb_any(skb); 747 return true; 748 } 749 } 750 751 /* if eth_skb_pad returns an error the skb was freed */ 752 if (eth_skb_pad(skb)) 753 return true; 754 755 return false; 756 } 757 758 /** 759 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 760 * @rx_ring: rx descriptor ring to store buffers on 761 * @old_buff: donor buffer to have page reused 762 * 763 * Synchronizes page for reuse by the adapter 764 **/ 765 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 766 struct ixgbevf_rx_buffer *old_buff) 767 { 768 struct ixgbevf_rx_buffer *new_buff; 769 u16 nta = rx_ring->next_to_alloc; 770 771 new_buff = &rx_ring->rx_buffer_info[nta]; 772 773 /* update, and store next to alloc */ 774 nta++; 775 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 776 777 /* transfer page from old buffer to new buffer */ 778 new_buff->page = old_buff->page; 779 new_buff->dma = old_buff->dma; 780 new_buff->page_offset = old_buff->page_offset; 781 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 782 } 783 784 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer) 785 { 786 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 787 struct page *page = rx_buffer->page; 788 789 /* avoid re-using remote and pfmemalloc pages */ 790 if (!dev_page_is_reusable(page)) 791 return false; 792 793 #if (PAGE_SIZE < 8192) 794 /* if we are only owner of page we can reuse it */ 795 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 796 return false; 797 #else 798 #define IXGBEVF_LAST_OFFSET \ 799 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048) 800 801 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET) 802 return false; 803 804 #endif 805 806 /* If we have drained the page fragment pool we need to update 807 * the pagecnt_bias and page count so that we fully restock the 808 * number of references the driver holds. 809 */ 810 if (unlikely(!pagecnt_bias)) { 811 page_ref_add(page, USHRT_MAX); 812 rx_buffer->pagecnt_bias = USHRT_MAX; 813 } 814 815 return true; 816 } 817 818 /** 819 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 820 * @rx_ring: rx descriptor ring to transact packets on 821 * @rx_buffer: buffer containing page to add 822 * @skb: sk_buff to place the data into 823 * @size: size of buffer to be added 824 * 825 * This function will add the data contained in rx_buffer->page to the skb. 826 **/ 827 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 828 struct ixgbevf_rx_buffer *rx_buffer, 829 struct sk_buff *skb, 830 unsigned int size) 831 { 832 #if (PAGE_SIZE < 8192) 833 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 834 #else 835 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 836 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 837 SKB_DATA_ALIGN(size); 838 #endif 839 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 840 rx_buffer->page_offset, size, truesize); 841 #if (PAGE_SIZE < 8192) 842 rx_buffer->page_offset ^= truesize; 843 #else 844 rx_buffer->page_offset += truesize; 845 #endif 846 } 847 848 static 849 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring, 850 struct ixgbevf_rx_buffer *rx_buffer, 851 struct xdp_buff *xdp, 852 union ixgbe_adv_rx_desc *rx_desc) 853 { 854 unsigned int size = xdp->data_end - xdp->data; 855 #if (PAGE_SIZE < 8192) 856 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 857 #else 858 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 859 xdp->data_hard_start); 860 #endif 861 unsigned int headlen; 862 struct sk_buff *skb; 863 864 /* prefetch first cache line of first page */ 865 net_prefetch(xdp->data); 866 867 /* Note, we get here by enabling legacy-rx via: 868 * 869 * ethtool --set-priv-flags <dev> legacy-rx on 870 * 871 * In this mode, we currently get 0 extra XDP headroom as 872 * opposed to having legacy-rx off, where we process XDP 873 * packets going to stack via ixgbevf_build_skb(). 874 * 875 * For ixgbevf_construct_skb() mode it means that the 876 * xdp->data_meta will always point to xdp->data, since 877 * the helper cannot expand the head. Should this ever 878 * changed in future for legacy-rx mode on, then lets also 879 * add xdp->data_meta handling here. 880 */ 881 882 /* allocate a skb to store the frags */ 883 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE); 884 if (unlikely(!skb)) 885 return NULL; 886 887 /* Determine available headroom for copy */ 888 headlen = size; 889 if (headlen > IXGBEVF_RX_HDR_SIZE) 890 headlen = eth_get_headlen(skb->dev, xdp->data, 891 IXGBEVF_RX_HDR_SIZE); 892 893 /* align pull length to size of long to optimize memcpy performance */ 894 memcpy(__skb_put(skb, headlen), xdp->data, 895 ALIGN(headlen, sizeof(long))); 896 897 /* update all of the pointers */ 898 size -= headlen; 899 if (size) { 900 skb_add_rx_frag(skb, 0, rx_buffer->page, 901 (xdp->data + headlen) - 902 page_address(rx_buffer->page), 903 size, truesize); 904 #if (PAGE_SIZE < 8192) 905 rx_buffer->page_offset ^= truesize; 906 #else 907 rx_buffer->page_offset += truesize; 908 #endif 909 } else { 910 rx_buffer->pagecnt_bias++; 911 } 912 913 return skb; 914 } 915 916 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 917 u32 qmask) 918 { 919 struct ixgbe_hw *hw = &adapter->hw; 920 921 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 922 } 923 924 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring, 925 struct ixgbevf_rx_buffer *rx_buffer, 926 struct xdp_buff *xdp, 927 union ixgbe_adv_rx_desc *rx_desc) 928 { 929 unsigned int metasize = xdp->data - xdp->data_meta; 930 #if (PAGE_SIZE < 8192) 931 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 932 #else 933 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 934 SKB_DATA_ALIGN(xdp->data_end - 935 xdp->data_hard_start); 936 #endif 937 struct sk_buff *skb; 938 939 /* Prefetch first cache line of first page. If xdp->data_meta 940 * is unused, this points to xdp->data, otherwise, we likely 941 * have a consumer accessing first few bytes of meta data, 942 * and then actual data. 943 */ 944 net_prefetch(xdp->data_meta); 945 946 /* build an skb around the page buffer */ 947 skb = build_skb(xdp->data_hard_start, truesize); 948 if (unlikely(!skb)) 949 return NULL; 950 951 /* update pointers within the skb to store the data */ 952 skb_reserve(skb, xdp->data - xdp->data_hard_start); 953 __skb_put(skb, xdp->data_end - xdp->data); 954 if (metasize) 955 skb_metadata_set(skb, metasize); 956 957 /* update buffer offset */ 958 #if (PAGE_SIZE < 8192) 959 rx_buffer->page_offset ^= truesize; 960 #else 961 rx_buffer->page_offset += truesize; 962 #endif 963 964 return skb; 965 } 966 967 #define IXGBEVF_XDP_PASS 0 968 #define IXGBEVF_XDP_CONSUMED 1 969 #define IXGBEVF_XDP_TX 2 970 971 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring, 972 struct xdp_buff *xdp) 973 { 974 struct ixgbevf_tx_buffer *tx_buffer; 975 union ixgbe_adv_tx_desc *tx_desc; 976 u32 len, cmd_type; 977 dma_addr_t dma; 978 u16 i; 979 980 len = xdp->data_end - xdp->data; 981 982 if (unlikely(!ixgbevf_desc_unused(ring))) 983 return IXGBEVF_XDP_CONSUMED; 984 985 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE); 986 if (dma_mapping_error(ring->dev, dma)) 987 return IXGBEVF_XDP_CONSUMED; 988 989 /* record the location of the first descriptor for this packet */ 990 i = ring->next_to_use; 991 tx_buffer = &ring->tx_buffer_info[i]; 992 993 dma_unmap_len_set(tx_buffer, len, len); 994 dma_unmap_addr_set(tx_buffer, dma, dma); 995 tx_buffer->data = xdp->data; 996 tx_buffer->bytecount = len; 997 tx_buffer->gso_segs = 1; 998 tx_buffer->protocol = 0; 999 1000 /* Populate minimal context descriptor that will provide for the 1001 * fact that we are expected to process Ethernet frames. 1002 */ 1003 if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) { 1004 struct ixgbe_adv_tx_context_desc *context_desc; 1005 1006 set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1007 1008 context_desc = IXGBEVF_TX_CTXTDESC(ring, 0); 1009 context_desc->vlan_macip_lens = 1010 cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT); 1011 context_desc->fceof_saidx = 0; 1012 context_desc->type_tucmd_mlhl = 1013 cpu_to_le32(IXGBE_TXD_CMD_DEXT | 1014 IXGBE_ADVTXD_DTYP_CTXT); 1015 context_desc->mss_l4len_idx = 0; 1016 1017 i = 1; 1018 } 1019 1020 /* put descriptor type bits */ 1021 cmd_type = IXGBE_ADVTXD_DTYP_DATA | 1022 IXGBE_ADVTXD_DCMD_DEXT | 1023 IXGBE_ADVTXD_DCMD_IFCS; 1024 cmd_type |= len | IXGBE_TXD_CMD; 1025 1026 tx_desc = IXGBEVF_TX_DESC(ring, i); 1027 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1028 1029 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1030 tx_desc->read.olinfo_status = 1031 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) | 1032 IXGBE_ADVTXD_CC); 1033 1034 /* Avoid any potential race with cleanup */ 1035 smp_wmb(); 1036 1037 /* set next_to_watch value indicating a packet is present */ 1038 i++; 1039 if (i == ring->count) 1040 i = 0; 1041 1042 tx_buffer->next_to_watch = tx_desc; 1043 ring->next_to_use = i; 1044 1045 return IXGBEVF_XDP_TX; 1046 } 1047 1048 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter, 1049 struct ixgbevf_ring *rx_ring, 1050 struct xdp_buff *xdp) 1051 { 1052 int result = IXGBEVF_XDP_PASS; 1053 struct ixgbevf_ring *xdp_ring; 1054 struct bpf_prog *xdp_prog; 1055 u32 act; 1056 1057 rcu_read_lock(); 1058 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1059 1060 if (!xdp_prog) 1061 goto xdp_out; 1062 1063 act = bpf_prog_run_xdp(xdp_prog, xdp); 1064 switch (act) { 1065 case XDP_PASS: 1066 break; 1067 case XDP_TX: 1068 xdp_ring = adapter->xdp_ring[rx_ring->queue_index]; 1069 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp); 1070 if (result == IXGBEVF_XDP_CONSUMED) 1071 goto out_failure; 1072 break; 1073 default: 1074 bpf_warn_invalid_xdp_action(act); 1075 fallthrough; 1076 case XDP_ABORTED: 1077 out_failure: 1078 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 1079 fallthrough; /* handle aborts by dropping packet */ 1080 case XDP_DROP: 1081 result = IXGBEVF_XDP_CONSUMED; 1082 break; 1083 } 1084 xdp_out: 1085 rcu_read_unlock(); 1086 return ERR_PTR(-result); 1087 } 1088 1089 static unsigned int ixgbevf_rx_frame_truesize(struct ixgbevf_ring *rx_ring, 1090 unsigned int size) 1091 { 1092 unsigned int truesize; 1093 1094 #if (PAGE_SIZE < 8192) 1095 truesize = ixgbevf_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 1096 #else 1097 truesize = ring_uses_build_skb(rx_ring) ? 1098 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) + 1099 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 1100 SKB_DATA_ALIGN(size); 1101 #endif 1102 return truesize; 1103 } 1104 1105 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring, 1106 struct ixgbevf_rx_buffer *rx_buffer, 1107 unsigned int size) 1108 { 1109 unsigned int truesize = ixgbevf_rx_frame_truesize(rx_ring, size); 1110 1111 #if (PAGE_SIZE < 8192) 1112 rx_buffer->page_offset ^= truesize; 1113 #else 1114 rx_buffer->page_offset += truesize; 1115 #endif 1116 } 1117 1118 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 1119 struct ixgbevf_ring *rx_ring, 1120 int budget) 1121 { 1122 unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0; 1123 struct ixgbevf_adapter *adapter = q_vector->adapter; 1124 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 1125 struct sk_buff *skb = rx_ring->skb; 1126 bool xdp_xmit = false; 1127 struct xdp_buff xdp; 1128 1129 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1130 #if (PAGE_SIZE < 8192) 1131 frame_sz = ixgbevf_rx_frame_truesize(rx_ring, 0); 1132 #endif 1133 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 1134 1135 while (likely(total_rx_packets < budget)) { 1136 struct ixgbevf_rx_buffer *rx_buffer; 1137 union ixgbe_adv_rx_desc *rx_desc; 1138 unsigned int size; 1139 1140 /* return some buffers to hardware, one at a time is too slow */ 1141 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 1142 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 1143 cleaned_count = 0; 1144 } 1145 1146 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1147 size = le16_to_cpu(rx_desc->wb.upper.length); 1148 if (!size) 1149 break; 1150 1151 /* This memory barrier is needed to keep us from reading 1152 * any other fields out of the rx_desc until we know the 1153 * RXD_STAT_DD bit is set 1154 */ 1155 rmb(); 1156 1157 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size); 1158 1159 /* retrieve a buffer from the ring */ 1160 if (!skb) { 1161 unsigned int offset = ixgbevf_rx_offset(rx_ring); 1162 unsigned char *hard_start; 1163 1164 hard_start = page_address(rx_buffer->page) + 1165 rx_buffer->page_offset - offset; 1166 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 1167 #if (PAGE_SIZE > 4096) 1168 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1169 xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, size); 1170 #endif 1171 skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp); 1172 } 1173 1174 if (IS_ERR(skb)) { 1175 if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) { 1176 xdp_xmit = true; 1177 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer, 1178 size); 1179 } else { 1180 rx_buffer->pagecnt_bias++; 1181 } 1182 total_rx_packets++; 1183 total_rx_bytes += size; 1184 } else if (skb) { 1185 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1186 } else if (ring_uses_build_skb(rx_ring)) { 1187 skb = ixgbevf_build_skb(rx_ring, rx_buffer, 1188 &xdp, rx_desc); 1189 } else { 1190 skb = ixgbevf_construct_skb(rx_ring, rx_buffer, 1191 &xdp, rx_desc); 1192 } 1193 1194 /* exit if we failed to retrieve a buffer */ 1195 if (!skb) { 1196 rx_ring->rx_stats.alloc_rx_buff_failed++; 1197 rx_buffer->pagecnt_bias++; 1198 break; 1199 } 1200 1201 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb); 1202 cleaned_count++; 1203 1204 /* fetch next buffer in frame if non-eop */ 1205 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 1206 continue; 1207 1208 /* verify the packet layout is correct */ 1209 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 1210 skb = NULL; 1211 continue; 1212 } 1213 1214 /* probably a little skewed due to removing CRC */ 1215 total_rx_bytes += skb->len; 1216 1217 /* Workaround hardware that can't do proper VEPA multicast 1218 * source pruning. 1219 */ 1220 if ((skb->pkt_type == PACKET_BROADCAST || 1221 skb->pkt_type == PACKET_MULTICAST) && 1222 ether_addr_equal(rx_ring->netdev->dev_addr, 1223 eth_hdr(skb)->h_source)) { 1224 dev_kfree_skb_irq(skb); 1225 continue; 1226 } 1227 1228 /* populate checksum, VLAN, and protocol */ 1229 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 1230 1231 ixgbevf_rx_skb(q_vector, skb); 1232 1233 /* reset skb pointer */ 1234 skb = NULL; 1235 1236 /* update budget accounting */ 1237 total_rx_packets++; 1238 } 1239 1240 /* place incomplete frames back on ring for completion */ 1241 rx_ring->skb = skb; 1242 1243 if (xdp_xmit) { 1244 struct ixgbevf_ring *xdp_ring = 1245 adapter->xdp_ring[rx_ring->queue_index]; 1246 1247 /* Force memory writes to complete before letting h/w 1248 * know there are new descriptors to fetch. 1249 */ 1250 wmb(); 1251 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use); 1252 } 1253 1254 u64_stats_update_begin(&rx_ring->syncp); 1255 rx_ring->stats.packets += total_rx_packets; 1256 rx_ring->stats.bytes += total_rx_bytes; 1257 u64_stats_update_end(&rx_ring->syncp); 1258 q_vector->rx.total_packets += total_rx_packets; 1259 q_vector->rx.total_bytes += total_rx_bytes; 1260 1261 return total_rx_packets; 1262 } 1263 1264 /** 1265 * ixgbevf_poll - NAPI polling calback 1266 * @napi: napi struct with our devices info in it 1267 * @budget: amount of work driver is allowed to do this pass, in packets 1268 * 1269 * This function will clean more than one or more rings associated with a 1270 * q_vector. 1271 **/ 1272 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1273 { 1274 struct ixgbevf_q_vector *q_vector = 1275 container_of(napi, struct ixgbevf_q_vector, napi); 1276 struct ixgbevf_adapter *adapter = q_vector->adapter; 1277 struct ixgbevf_ring *ring; 1278 int per_ring_budget, work_done = 0; 1279 bool clean_complete = true; 1280 1281 ixgbevf_for_each_ring(ring, q_vector->tx) { 1282 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1283 clean_complete = false; 1284 } 1285 1286 if (budget <= 0) 1287 return budget; 1288 1289 /* attempt to distribute budget to each queue fairly, but don't allow 1290 * the budget to go below 1 because we'll exit polling 1291 */ 1292 if (q_vector->rx.count > 1) 1293 per_ring_budget = max(budget/q_vector->rx.count, 1); 1294 else 1295 per_ring_budget = budget; 1296 1297 ixgbevf_for_each_ring(ring, q_vector->rx) { 1298 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1299 per_ring_budget); 1300 work_done += cleaned; 1301 if (cleaned >= per_ring_budget) 1302 clean_complete = false; 1303 } 1304 1305 /* If all work not completed, return budget and keep polling */ 1306 if (!clean_complete) 1307 return budget; 1308 1309 /* Exit the polling mode, but don't re-enable interrupts if stack might 1310 * poll us due to busy-polling 1311 */ 1312 if (likely(napi_complete_done(napi, work_done))) { 1313 if (adapter->rx_itr_setting == 1) 1314 ixgbevf_set_itr(q_vector); 1315 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1316 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1317 ixgbevf_irq_enable_queues(adapter, 1318 BIT(q_vector->v_idx)); 1319 } 1320 1321 return min(work_done, budget - 1); 1322 } 1323 1324 /** 1325 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1326 * @q_vector: structure containing interrupt and ring information 1327 **/ 1328 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1329 { 1330 struct ixgbevf_adapter *adapter = q_vector->adapter; 1331 struct ixgbe_hw *hw = &adapter->hw; 1332 int v_idx = q_vector->v_idx; 1333 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1334 1335 /* set the WDIS bit to not clear the timer bits and cause an 1336 * immediate assertion of the interrupt 1337 */ 1338 itr_reg |= IXGBE_EITR_CNT_WDIS; 1339 1340 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1341 } 1342 1343 /** 1344 * ixgbevf_configure_msix - Configure MSI-X hardware 1345 * @adapter: board private structure 1346 * 1347 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1348 * interrupts. 1349 **/ 1350 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1351 { 1352 struct ixgbevf_q_vector *q_vector; 1353 int q_vectors, v_idx; 1354 1355 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1356 adapter->eims_enable_mask = 0; 1357 1358 /* Populate the IVAR table and set the ITR values to the 1359 * corresponding register. 1360 */ 1361 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1362 struct ixgbevf_ring *ring; 1363 1364 q_vector = adapter->q_vector[v_idx]; 1365 1366 ixgbevf_for_each_ring(ring, q_vector->rx) 1367 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1368 1369 ixgbevf_for_each_ring(ring, q_vector->tx) 1370 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1371 1372 if (q_vector->tx.ring && !q_vector->rx.ring) { 1373 /* Tx only vector */ 1374 if (adapter->tx_itr_setting == 1) 1375 q_vector->itr = IXGBE_12K_ITR; 1376 else 1377 q_vector->itr = adapter->tx_itr_setting; 1378 } else { 1379 /* Rx or Rx/Tx vector */ 1380 if (adapter->rx_itr_setting == 1) 1381 q_vector->itr = IXGBE_20K_ITR; 1382 else 1383 q_vector->itr = adapter->rx_itr_setting; 1384 } 1385 1386 /* add q_vector eims value to global eims_enable_mask */ 1387 adapter->eims_enable_mask |= BIT(v_idx); 1388 1389 ixgbevf_write_eitr(q_vector); 1390 } 1391 1392 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1393 /* setup eims_other and add value to global eims_enable_mask */ 1394 adapter->eims_other = BIT(v_idx); 1395 adapter->eims_enable_mask |= adapter->eims_other; 1396 } 1397 1398 enum latency_range { 1399 lowest_latency = 0, 1400 low_latency = 1, 1401 bulk_latency = 2, 1402 latency_invalid = 255 1403 }; 1404 1405 /** 1406 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1407 * @q_vector: structure containing interrupt and ring information 1408 * @ring_container: structure containing ring performance data 1409 * 1410 * Stores a new ITR value based on packets and byte 1411 * counts during the last interrupt. The advantage of per interrupt 1412 * computation is faster updates and more accurate ITR for the current 1413 * traffic pattern. Constants in this function were computed 1414 * based on theoretical maximum wire speed and thresholds were set based 1415 * on testing data as well as attempting to minimize response time 1416 * while increasing bulk throughput. 1417 **/ 1418 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1419 struct ixgbevf_ring_container *ring_container) 1420 { 1421 int bytes = ring_container->total_bytes; 1422 int packets = ring_container->total_packets; 1423 u32 timepassed_us; 1424 u64 bytes_perint; 1425 u8 itr_setting = ring_container->itr; 1426 1427 if (packets == 0) 1428 return; 1429 1430 /* simple throttle rate management 1431 * 0-20MB/s lowest (100000 ints/s) 1432 * 20-100MB/s low (20000 ints/s) 1433 * 100-1249MB/s bulk (12000 ints/s) 1434 */ 1435 /* what was last interrupt timeslice? */ 1436 timepassed_us = q_vector->itr >> 2; 1437 if (timepassed_us == 0) 1438 return; 1439 1440 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1441 1442 switch (itr_setting) { 1443 case lowest_latency: 1444 if (bytes_perint > 10) 1445 itr_setting = low_latency; 1446 break; 1447 case low_latency: 1448 if (bytes_perint > 20) 1449 itr_setting = bulk_latency; 1450 else if (bytes_perint <= 10) 1451 itr_setting = lowest_latency; 1452 break; 1453 case bulk_latency: 1454 if (bytes_perint <= 20) 1455 itr_setting = low_latency; 1456 break; 1457 } 1458 1459 /* clear work counters since we have the values we need */ 1460 ring_container->total_bytes = 0; 1461 ring_container->total_packets = 0; 1462 1463 /* write updated itr to ring container */ 1464 ring_container->itr = itr_setting; 1465 } 1466 1467 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1468 { 1469 u32 new_itr = q_vector->itr; 1470 u8 current_itr; 1471 1472 ixgbevf_update_itr(q_vector, &q_vector->tx); 1473 ixgbevf_update_itr(q_vector, &q_vector->rx); 1474 1475 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1476 1477 switch (current_itr) { 1478 /* counts and packets in update_itr are dependent on these numbers */ 1479 case lowest_latency: 1480 new_itr = IXGBE_100K_ITR; 1481 break; 1482 case low_latency: 1483 new_itr = IXGBE_20K_ITR; 1484 break; 1485 case bulk_latency: 1486 new_itr = IXGBE_12K_ITR; 1487 break; 1488 default: 1489 break; 1490 } 1491 1492 if (new_itr != q_vector->itr) { 1493 /* do an exponential smoothing */ 1494 new_itr = (10 * new_itr * q_vector->itr) / 1495 ((9 * new_itr) + q_vector->itr); 1496 1497 /* save the algorithm value here */ 1498 q_vector->itr = new_itr; 1499 1500 ixgbevf_write_eitr(q_vector); 1501 } 1502 } 1503 1504 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1505 { 1506 struct ixgbevf_adapter *adapter = data; 1507 struct ixgbe_hw *hw = &adapter->hw; 1508 1509 hw->mac.get_link_status = 1; 1510 1511 ixgbevf_service_event_schedule(adapter); 1512 1513 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1514 1515 return IRQ_HANDLED; 1516 } 1517 1518 /** 1519 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1520 * @irq: unused 1521 * @data: pointer to our q_vector struct for this interrupt vector 1522 **/ 1523 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1524 { 1525 struct ixgbevf_q_vector *q_vector = data; 1526 1527 /* EIAM disabled interrupts (on this vector) for us */ 1528 if (q_vector->rx.ring || q_vector->tx.ring) 1529 napi_schedule_irqoff(&q_vector->napi); 1530 1531 return IRQ_HANDLED; 1532 } 1533 1534 /** 1535 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1536 * @adapter: board private structure 1537 * 1538 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1539 * interrupts from the kernel. 1540 **/ 1541 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1542 { 1543 struct net_device *netdev = adapter->netdev; 1544 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1545 unsigned int ri = 0, ti = 0; 1546 int vector, err; 1547 1548 for (vector = 0; vector < q_vectors; vector++) { 1549 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1550 struct msix_entry *entry = &adapter->msix_entries[vector]; 1551 1552 if (q_vector->tx.ring && q_vector->rx.ring) { 1553 snprintf(q_vector->name, sizeof(q_vector->name), 1554 "%s-TxRx-%u", netdev->name, ri++); 1555 ti++; 1556 } else if (q_vector->rx.ring) { 1557 snprintf(q_vector->name, sizeof(q_vector->name), 1558 "%s-rx-%u", netdev->name, ri++); 1559 } else if (q_vector->tx.ring) { 1560 snprintf(q_vector->name, sizeof(q_vector->name), 1561 "%s-tx-%u", netdev->name, ti++); 1562 } else { 1563 /* skip this unused q_vector */ 1564 continue; 1565 } 1566 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1567 q_vector->name, q_vector); 1568 if (err) { 1569 hw_dbg(&adapter->hw, 1570 "request_irq failed for MSIX interrupt Error: %d\n", 1571 err); 1572 goto free_queue_irqs; 1573 } 1574 } 1575 1576 err = request_irq(adapter->msix_entries[vector].vector, 1577 &ixgbevf_msix_other, 0, netdev->name, adapter); 1578 if (err) { 1579 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1580 err); 1581 goto free_queue_irqs; 1582 } 1583 1584 return 0; 1585 1586 free_queue_irqs: 1587 while (vector) { 1588 vector--; 1589 free_irq(adapter->msix_entries[vector].vector, 1590 adapter->q_vector[vector]); 1591 } 1592 /* This failure is non-recoverable - it indicates the system is 1593 * out of MSIX vector resources and the VF driver cannot run 1594 * without them. Set the number of msix vectors to zero 1595 * indicating that not enough can be allocated. The error 1596 * will be returned to the user indicating device open failed. 1597 * Any further attempts to force the driver to open will also 1598 * fail. The only way to recover is to unload the driver and 1599 * reload it again. If the system has recovered some MSIX 1600 * vectors then it may succeed. 1601 */ 1602 adapter->num_msix_vectors = 0; 1603 return err; 1604 } 1605 1606 /** 1607 * ixgbevf_request_irq - initialize interrupts 1608 * @adapter: board private structure 1609 * 1610 * Attempts to configure interrupts using the best available 1611 * capabilities of the hardware and kernel. 1612 **/ 1613 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1614 { 1615 int err = ixgbevf_request_msix_irqs(adapter); 1616 1617 if (err) 1618 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1619 1620 return err; 1621 } 1622 1623 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1624 { 1625 int i, q_vectors; 1626 1627 if (!adapter->msix_entries) 1628 return; 1629 1630 q_vectors = adapter->num_msix_vectors; 1631 i = q_vectors - 1; 1632 1633 free_irq(adapter->msix_entries[i].vector, adapter); 1634 i--; 1635 1636 for (; i >= 0; i--) { 1637 /* free only the irqs that were actually requested */ 1638 if (!adapter->q_vector[i]->rx.ring && 1639 !adapter->q_vector[i]->tx.ring) 1640 continue; 1641 1642 free_irq(adapter->msix_entries[i].vector, 1643 adapter->q_vector[i]); 1644 } 1645 } 1646 1647 /** 1648 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1649 * @adapter: board private structure 1650 **/ 1651 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1652 { 1653 struct ixgbe_hw *hw = &adapter->hw; 1654 int i; 1655 1656 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1657 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1658 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1659 1660 IXGBE_WRITE_FLUSH(hw); 1661 1662 for (i = 0; i < adapter->num_msix_vectors; i++) 1663 synchronize_irq(adapter->msix_entries[i].vector); 1664 } 1665 1666 /** 1667 * ixgbevf_irq_enable - Enable default interrupt generation settings 1668 * @adapter: board private structure 1669 **/ 1670 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1671 { 1672 struct ixgbe_hw *hw = &adapter->hw; 1673 1674 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1675 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1676 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1677 } 1678 1679 /** 1680 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1681 * @adapter: board private structure 1682 * @ring: structure containing ring specific data 1683 * 1684 * Configure the Tx descriptor ring after a reset. 1685 **/ 1686 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1687 struct ixgbevf_ring *ring) 1688 { 1689 struct ixgbe_hw *hw = &adapter->hw; 1690 u64 tdba = ring->dma; 1691 int wait_loop = 10; 1692 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1693 u8 reg_idx = ring->reg_idx; 1694 1695 /* disable queue to avoid issues while updating state */ 1696 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1697 IXGBE_WRITE_FLUSH(hw); 1698 1699 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1700 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1701 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1702 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1703 1704 /* disable head writeback */ 1705 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1706 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1707 1708 /* enable relaxed ordering */ 1709 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1710 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1711 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1712 1713 /* reset head and tail pointers */ 1714 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1715 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1716 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1717 1718 /* reset ntu and ntc to place SW in sync with hardwdare */ 1719 ring->next_to_clean = 0; 1720 ring->next_to_use = 0; 1721 1722 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1723 * to or less than the number of on chip descriptors, which is 1724 * currently 40. 1725 */ 1726 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1727 1728 /* Setting PTHRESH to 32 both improves performance */ 1729 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1730 32; /* PTHRESH = 32 */ 1731 1732 /* reinitialize tx_buffer_info */ 1733 memset(ring->tx_buffer_info, 0, 1734 sizeof(struct ixgbevf_tx_buffer) * ring->count); 1735 1736 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1737 clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1738 1739 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1740 1741 /* poll to verify queue is enabled */ 1742 do { 1743 usleep_range(1000, 2000); 1744 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1745 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1746 if (!wait_loop) 1747 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1748 } 1749 1750 /** 1751 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1752 * @adapter: board private structure 1753 * 1754 * Configure the Tx unit of the MAC after a reset. 1755 **/ 1756 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1757 { 1758 u32 i; 1759 1760 /* Setup the HW Tx Head and Tail descriptor pointers */ 1761 for (i = 0; i < adapter->num_tx_queues; i++) 1762 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1763 for (i = 0; i < adapter->num_xdp_queues; i++) 1764 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]); 1765 } 1766 1767 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1768 1769 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, 1770 struct ixgbevf_ring *ring, int index) 1771 { 1772 struct ixgbe_hw *hw = &adapter->hw; 1773 u32 srrctl; 1774 1775 srrctl = IXGBE_SRRCTL_DROP_EN; 1776 1777 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1778 if (ring_uses_large_buffer(ring)) 1779 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1780 else 1781 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1782 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1783 1784 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1785 } 1786 1787 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1788 { 1789 struct ixgbe_hw *hw = &adapter->hw; 1790 1791 /* PSRTYPE must be initialized in 82599 */ 1792 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1793 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1794 IXGBE_PSRTYPE_L2HDR; 1795 1796 if (adapter->num_rx_queues > 1) 1797 psrtype |= BIT(29); 1798 1799 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1800 } 1801 1802 #define IXGBEVF_MAX_RX_DESC_POLL 10 1803 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1804 struct ixgbevf_ring *ring) 1805 { 1806 struct ixgbe_hw *hw = &adapter->hw; 1807 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1808 u32 rxdctl; 1809 u8 reg_idx = ring->reg_idx; 1810 1811 if (IXGBE_REMOVED(hw->hw_addr)) 1812 return; 1813 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1814 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1815 1816 /* write value back with RXDCTL.ENABLE bit cleared */ 1817 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1818 1819 /* the hardware may take up to 100us to really disable the Rx queue */ 1820 do { 1821 udelay(10); 1822 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1823 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1824 1825 if (!wait_loop) 1826 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1827 reg_idx); 1828 } 1829 1830 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1831 struct ixgbevf_ring *ring) 1832 { 1833 struct ixgbe_hw *hw = &adapter->hw; 1834 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1835 u32 rxdctl; 1836 u8 reg_idx = ring->reg_idx; 1837 1838 if (IXGBE_REMOVED(hw->hw_addr)) 1839 return; 1840 do { 1841 usleep_range(1000, 2000); 1842 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1843 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1844 1845 if (!wait_loop) 1846 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1847 reg_idx); 1848 } 1849 1850 /** 1851 * ixgbevf_init_rss_key - Initialize adapter RSS key 1852 * @adapter: device handle 1853 * 1854 * Allocates and initializes the RSS key if it is not allocated. 1855 **/ 1856 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1857 { 1858 u32 *rss_key; 1859 1860 if (!adapter->rss_key) { 1861 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1862 if (unlikely(!rss_key)) 1863 return -ENOMEM; 1864 1865 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1866 adapter->rss_key = rss_key; 1867 } 1868 1869 return 0; 1870 } 1871 1872 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1873 { 1874 struct ixgbe_hw *hw = &adapter->hw; 1875 u32 vfmrqc = 0, vfreta = 0; 1876 u16 rss_i = adapter->num_rx_queues; 1877 u8 i, j; 1878 1879 /* Fill out hash function seeds */ 1880 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1881 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1882 1883 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1884 if (j == rss_i) 1885 j = 0; 1886 1887 adapter->rss_indir_tbl[i] = j; 1888 1889 vfreta |= j << (i & 0x3) * 8; 1890 if ((i & 3) == 3) { 1891 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1892 vfreta = 0; 1893 } 1894 } 1895 1896 /* Perform hash on these packet types */ 1897 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1898 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1899 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1900 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1901 1902 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1903 1904 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1905 } 1906 1907 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1908 struct ixgbevf_ring *ring) 1909 { 1910 struct ixgbe_hw *hw = &adapter->hw; 1911 union ixgbe_adv_rx_desc *rx_desc; 1912 u64 rdba = ring->dma; 1913 u32 rxdctl; 1914 u8 reg_idx = ring->reg_idx; 1915 1916 /* disable queue to avoid issues while updating state */ 1917 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1918 ixgbevf_disable_rx_queue(adapter, ring); 1919 1920 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1921 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1922 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1923 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1924 1925 #ifndef CONFIG_SPARC 1926 /* enable relaxed ordering */ 1927 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1928 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1929 #else 1930 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1931 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1932 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1933 #endif 1934 1935 /* reset head and tail pointers */ 1936 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1937 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1938 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1939 1940 /* initialize rx_buffer_info */ 1941 memset(ring->rx_buffer_info, 0, 1942 sizeof(struct ixgbevf_rx_buffer) * ring->count); 1943 1944 /* initialize Rx descriptor 0 */ 1945 rx_desc = IXGBEVF_RX_DESC(ring, 0); 1946 rx_desc->wb.upper.length = 0; 1947 1948 /* reset ntu and ntc to place SW in sync with hardwdare */ 1949 ring->next_to_clean = 0; 1950 ring->next_to_use = 0; 1951 ring->next_to_alloc = 0; 1952 1953 ixgbevf_configure_srrctl(adapter, ring, reg_idx); 1954 1955 /* RXDCTL.RLPML does not work on 82599 */ 1956 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) { 1957 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK | 1958 IXGBE_RXDCTL_RLPML_EN); 1959 1960 #if (PAGE_SIZE < 8192) 1961 /* Limit the maximum frame size so we don't overrun the skb */ 1962 if (ring_uses_build_skb(ring) && 1963 !ring_uses_large_buffer(ring)) 1964 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB | 1965 IXGBE_RXDCTL_RLPML_EN; 1966 #endif 1967 } 1968 1969 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1970 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1971 1972 ixgbevf_rx_desc_queue_enable(adapter, ring); 1973 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1974 } 1975 1976 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter, 1977 struct ixgbevf_ring *rx_ring) 1978 { 1979 struct net_device *netdev = adapter->netdev; 1980 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1981 1982 /* set build_skb and buffer size flags */ 1983 clear_ring_build_skb_enabled(rx_ring); 1984 clear_ring_uses_large_buffer(rx_ring); 1985 1986 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX) 1987 return; 1988 1989 set_ring_build_skb_enabled(rx_ring); 1990 1991 if (PAGE_SIZE < 8192) { 1992 if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB) 1993 return; 1994 1995 set_ring_uses_large_buffer(rx_ring); 1996 } 1997 } 1998 1999 /** 2000 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 2001 * @adapter: board private structure 2002 * 2003 * Configure the Rx unit of the MAC after a reset. 2004 **/ 2005 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 2006 { 2007 struct ixgbe_hw *hw = &adapter->hw; 2008 struct net_device *netdev = adapter->netdev; 2009 int i, ret; 2010 2011 ixgbevf_setup_psrtype(adapter); 2012 if (hw->mac.type >= ixgbe_mac_X550_vf) 2013 ixgbevf_setup_vfmrqc(adapter); 2014 2015 spin_lock_bh(&adapter->mbx_lock); 2016 /* notify the PF of our intent to use this size of frame */ 2017 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 2018 spin_unlock_bh(&adapter->mbx_lock); 2019 if (ret) 2020 dev_err(&adapter->pdev->dev, 2021 "Failed to set MTU at %d\n", netdev->mtu); 2022 2023 /* Setup the HW Rx Head and Tail Descriptor Pointers and 2024 * the Base and Length of the Rx Descriptor Ring 2025 */ 2026 for (i = 0; i < adapter->num_rx_queues; i++) { 2027 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 2028 2029 ixgbevf_set_rx_buffer_len(adapter, rx_ring); 2030 ixgbevf_configure_rx_ring(adapter, rx_ring); 2031 } 2032 } 2033 2034 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 2035 __be16 proto, u16 vid) 2036 { 2037 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2038 struct ixgbe_hw *hw = &adapter->hw; 2039 int err; 2040 2041 spin_lock_bh(&adapter->mbx_lock); 2042 2043 /* add VID to filter table */ 2044 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 2045 2046 spin_unlock_bh(&adapter->mbx_lock); 2047 2048 /* translate error return types so error makes sense */ 2049 if (err == IXGBE_ERR_MBX) 2050 return -EIO; 2051 2052 if (err == IXGBE_ERR_INVALID_ARGUMENT) 2053 return -EACCES; 2054 2055 set_bit(vid, adapter->active_vlans); 2056 2057 return err; 2058 } 2059 2060 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 2061 __be16 proto, u16 vid) 2062 { 2063 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2064 struct ixgbe_hw *hw = &adapter->hw; 2065 int err; 2066 2067 spin_lock_bh(&adapter->mbx_lock); 2068 2069 /* remove VID from filter table */ 2070 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 2071 2072 spin_unlock_bh(&adapter->mbx_lock); 2073 2074 clear_bit(vid, adapter->active_vlans); 2075 2076 return err; 2077 } 2078 2079 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 2080 { 2081 u16 vid; 2082 2083 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2084 ixgbevf_vlan_rx_add_vid(adapter->netdev, 2085 htons(ETH_P_8021Q), vid); 2086 } 2087 2088 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 2089 { 2090 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2091 struct ixgbe_hw *hw = &adapter->hw; 2092 int count = 0; 2093 2094 if (!netdev_uc_empty(netdev)) { 2095 struct netdev_hw_addr *ha; 2096 2097 netdev_for_each_uc_addr(ha, netdev) { 2098 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 2099 udelay(200); 2100 } 2101 } else { 2102 /* If the list is empty then send message to PF driver to 2103 * clear all MAC VLANs on this VF. 2104 */ 2105 hw->mac.ops.set_uc_addr(hw, 0, NULL); 2106 } 2107 2108 return count; 2109 } 2110 2111 /** 2112 * ixgbevf_set_rx_mode - Multicast and unicast set 2113 * @netdev: network interface device structure 2114 * 2115 * The set_rx_method entry point is called whenever the multicast address 2116 * list, unicast address list or the network interface flags are updated. 2117 * This routine is responsible for configuring the hardware for proper 2118 * multicast mode and configuring requested unicast filters. 2119 **/ 2120 static void ixgbevf_set_rx_mode(struct net_device *netdev) 2121 { 2122 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2123 struct ixgbe_hw *hw = &adapter->hw; 2124 unsigned int flags = netdev->flags; 2125 int xcast_mode; 2126 2127 /* request the most inclusive mode we need */ 2128 if (flags & IFF_PROMISC) 2129 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 2130 else if (flags & IFF_ALLMULTI) 2131 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 2132 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 2133 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 2134 else 2135 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 2136 2137 spin_lock_bh(&adapter->mbx_lock); 2138 2139 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 2140 2141 /* reprogram multicast list */ 2142 hw->mac.ops.update_mc_addr_list(hw, netdev); 2143 2144 ixgbevf_write_uc_addr_list(netdev); 2145 2146 spin_unlock_bh(&adapter->mbx_lock); 2147 } 2148 2149 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 2150 { 2151 int q_idx; 2152 struct ixgbevf_q_vector *q_vector; 2153 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2154 2155 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2156 q_vector = adapter->q_vector[q_idx]; 2157 napi_enable(&q_vector->napi); 2158 } 2159 } 2160 2161 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 2162 { 2163 int q_idx; 2164 struct ixgbevf_q_vector *q_vector; 2165 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2166 2167 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2168 q_vector = adapter->q_vector[q_idx]; 2169 napi_disable(&q_vector->napi); 2170 } 2171 } 2172 2173 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 2174 { 2175 struct ixgbe_hw *hw = &adapter->hw; 2176 unsigned int def_q = 0; 2177 unsigned int num_tcs = 0; 2178 unsigned int num_rx_queues = adapter->num_rx_queues; 2179 unsigned int num_tx_queues = adapter->num_tx_queues; 2180 int err; 2181 2182 spin_lock_bh(&adapter->mbx_lock); 2183 2184 /* fetch queue configuration from the PF */ 2185 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2186 2187 spin_unlock_bh(&adapter->mbx_lock); 2188 2189 if (err) 2190 return err; 2191 2192 if (num_tcs > 1) { 2193 /* we need only one Tx queue */ 2194 num_tx_queues = 1; 2195 2196 /* update default Tx ring register index */ 2197 adapter->tx_ring[0]->reg_idx = def_q; 2198 2199 /* we need as many queues as traffic classes */ 2200 num_rx_queues = num_tcs; 2201 } 2202 2203 /* if we have a bad config abort request queue reset */ 2204 if ((adapter->num_rx_queues != num_rx_queues) || 2205 (adapter->num_tx_queues != num_tx_queues)) { 2206 /* force mailbox timeout to prevent further messages */ 2207 hw->mbx.timeout = 0; 2208 2209 /* wait for watchdog to come around and bail us out */ 2210 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2211 } 2212 2213 return 0; 2214 } 2215 2216 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2217 { 2218 ixgbevf_configure_dcb(adapter); 2219 2220 ixgbevf_set_rx_mode(adapter->netdev); 2221 2222 ixgbevf_restore_vlan(adapter); 2223 ixgbevf_ipsec_restore(adapter); 2224 2225 ixgbevf_configure_tx(adapter); 2226 ixgbevf_configure_rx(adapter); 2227 } 2228 2229 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2230 { 2231 /* Only save pre-reset stats if there are some */ 2232 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2233 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2234 adapter->stats.base_vfgprc; 2235 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2236 adapter->stats.base_vfgptc; 2237 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2238 adapter->stats.base_vfgorc; 2239 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2240 adapter->stats.base_vfgotc; 2241 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2242 adapter->stats.base_vfmprc; 2243 } 2244 } 2245 2246 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2247 { 2248 struct ixgbe_hw *hw = &adapter->hw; 2249 2250 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2251 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2252 adapter->stats.last_vfgorc |= 2253 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2254 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2255 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2256 adapter->stats.last_vfgotc |= 2257 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2258 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2259 2260 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2261 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2262 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2263 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2264 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2265 } 2266 2267 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2268 { 2269 struct ixgbe_hw *hw = &adapter->hw; 2270 static const int api[] = { 2271 ixgbe_mbox_api_14, 2272 ixgbe_mbox_api_13, 2273 ixgbe_mbox_api_12, 2274 ixgbe_mbox_api_11, 2275 ixgbe_mbox_api_10, 2276 ixgbe_mbox_api_unknown 2277 }; 2278 int err, idx = 0; 2279 2280 spin_lock_bh(&adapter->mbx_lock); 2281 2282 while (api[idx] != ixgbe_mbox_api_unknown) { 2283 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2284 if (!err) 2285 break; 2286 idx++; 2287 } 2288 2289 spin_unlock_bh(&adapter->mbx_lock); 2290 } 2291 2292 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2293 { 2294 struct net_device *netdev = adapter->netdev; 2295 struct ixgbe_hw *hw = &adapter->hw; 2296 2297 ixgbevf_configure_msix(adapter); 2298 2299 spin_lock_bh(&adapter->mbx_lock); 2300 2301 if (is_valid_ether_addr(hw->mac.addr)) 2302 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2303 else 2304 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2305 2306 spin_unlock_bh(&adapter->mbx_lock); 2307 2308 smp_mb__before_atomic(); 2309 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2310 ixgbevf_napi_enable_all(adapter); 2311 2312 /* clear any pending interrupts, may auto mask */ 2313 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2314 ixgbevf_irq_enable(adapter); 2315 2316 /* enable transmits */ 2317 netif_tx_start_all_queues(netdev); 2318 2319 ixgbevf_save_reset_stats(adapter); 2320 ixgbevf_init_last_counter_stats(adapter); 2321 2322 hw->mac.get_link_status = 1; 2323 mod_timer(&adapter->service_timer, jiffies); 2324 } 2325 2326 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2327 { 2328 ixgbevf_configure(adapter); 2329 2330 ixgbevf_up_complete(adapter); 2331 } 2332 2333 /** 2334 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2335 * @rx_ring: ring to free buffers from 2336 **/ 2337 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2338 { 2339 u16 i = rx_ring->next_to_clean; 2340 2341 /* Free Rx ring sk_buff */ 2342 if (rx_ring->skb) { 2343 dev_kfree_skb(rx_ring->skb); 2344 rx_ring->skb = NULL; 2345 } 2346 2347 /* Free all the Rx ring pages */ 2348 while (i != rx_ring->next_to_alloc) { 2349 struct ixgbevf_rx_buffer *rx_buffer; 2350 2351 rx_buffer = &rx_ring->rx_buffer_info[i]; 2352 2353 /* Invalidate cache lines that may have been written to by 2354 * device so that we avoid corrupting memory. 2355 */ 2356 dma_sync_single_range_for_cpu(rx_ring->dev, 2357 rx_buffer->dma, 2358 rx_buffer->page_offset, 2359 ixgbevf_rx_bufsz(rx_ring), 2360 DMA_FROM_DEVICE); 2361 2362 /* free resources associated with mapping */ 2363 dma_unmap_page_attrs(rx_ring->dev, 2364 rx_buffer->dma, 2365 ixgbevf_rx_pg_size(rx_ring), 2366 DMA_FROM_DEVICE, 2367 IXGBEVF_RX_DMA_ATTR); 2368 2369 __page_frag_cache_drain(rx_buffer->page, 2370 rx_buffer->pagecnt_bias); 2371 2372 i++; 2373 if (i == rx_ring->count) 2374 i = 0; 2375 } 2376 2377 rx_ring->next_to_alloc = 0; 2378 rx_ring->next_to_clean = 0; 2379 rx_ring->next_to_use = 0; 2380 } 2381 2382 /** 2383 * ixgbevf_clean_tx_ring - Free Tx Buffers 2384 * @tx_ring: ring to be cleaned 2385 **/ 2386 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2387 { 2388 u16 i = tx_ring->next_to_clean; 2389 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 2390 2391 while (i != tx_ring->next_to_use) { 2392 union ixgbe_adv_tx_desc *eop_desc, *tx_desc; 2393 2394 /* Free all the Tx ring sk_buffs */ 2395 if (ring_is_xdp(tx_ring)) 2396 page_frag_free(tx_buffer->data); 2397 else 2398 dev_kfree_skb_any(tx_buffer->skb); 2399 2400 /* unmap skb header data */ 2401 dma_unmap_single(tx_ring->dev, 2402 dma_unmap_addr(tx_buffer, dma), 2403 dma_unmap_len(tx_buffer, len), 2404 DMA_TO_DEVICE); 2405 2406 /* check for eop_desc to determine the end of the packet */ 2407 eop_desc = tx_buffer->next_to_watch; 2408 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 2409 2410 /* unmap remaining buffers */ 2411 while (tx_desc != eop_desc) { 2412 tx_buffer++; 2413 tx_desc++; 2414 i++; 2415 if (unlikely(i == tx_ring->count)) { 2416 i = 0; 2417 tx_buffer = tx_ring->tx_buffer_info; 2418 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 2419 } 2420 2421 /* unmap any remaining paged data */ 2422 if (dma_unmap_len(tx_buffer, len)) 2423 dma_unmap_page(tx_ring->dev, 2424 dma_unmap_addr(tx_buffer, dma), 2425 dma_unmap_len(tx_buffer, len), 2426 DMA_TO_DEVICE); 2427 } 2428 2429 /* move us one more past the eop_desc for start of next pkt */ 2430 tx_buffer++; 2431 i++; 2432 if (unlikely(i == tx_ring->count)) { 2433 i = 0; 2434 tx_buffer = tx_ring->tx_buffer_info; 2435 } 2436 } 2437 2438 /* reset next_to_use and next_to_clean */ 2439 tx_ring->next_to_use = 0; 2440 tx_ring->next_to_clean = 0; 2441 2442 } 2443 2444 /** 2445 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2446 * @adapter: board private structure 2447 **/ 2448 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2449 { 2450 int i; 2451 2452 for (i = 0; i < adapter->num_rx_queues; i++) 2453 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2454 } 2455 2456 /** 2457 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2458 * @adapter: board private structure 2459 **/ 2460 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2461 { 2462 int i; 2463 2464 for (i = 0; i < adapter->num_tx_queues; i++) 2465 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2466 for (i = 0; i < adapter->num_xdp_queues; i++) 2467 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]); 2468 } 2469 2470 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2471 { 2472 struct net_device *netdev = adapter->netdev; 2473 struct ixgbe_hw *hw = &adapter->hw; 2474 int i; 2475 2476 /* signal that we are down to the interrupt handler */ 2477 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2478 return; /* do nothing if already down */ 2479 2480 /* disable all enabled Rx queues */ 2481 for (i = 0; i < adapter->num_rx_queues; i++) 2482 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2483 2484 usleep_range(10000, 20000); 2485 2486 netif_tx_stop_all_queues(netdev); 2487 2488 /* call carrier off first to avoid false dev_watchdog timeouts */ 2489 netif_carrier_off(netdev); 2490 netif_tx_disable(netdev); 2491 2492 ixgbevf_irq_disable(adapter); 2493 2494 ixgbevf_napi_disable_all(adapter); 2495 2496 del_timer_sync(&adapter->service_timer); 2497 2498 /* disable transmits in the hardware now that interrupts are off */ 2499 for (i = 0; i < adapter->num_tx_queues; i++) { 2500 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2501 2502 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2503 IXGBE_TXDCTL_SWFLSH); 2504 } 2505 2506 for (i = 0; i < adapter->num_xdp_queues; i++) { 2507 u8 reg_idx = adapter->xdp_ring[i]->reg_idx; 2508 2509 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2510 IXGBE_TXDCTL_SWFLSH); 2511 } 2512 2513 if (!pci_channel_offline(adapter->pdev)) 2514 ixgbevf_reset(adapter); 2515 2516 ixgbevf_clean_all_tx_rings(adapter); 2517 ixgbevf_clean_all_rx_rings(adapter); 2518 } 2519 2520 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2521 { 2522 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2523 msleep(1); 2524 2525 ixgbevf_down(adapter); 2526 pci_set_master(adapter->pdev); 2527 ixgbevf_up(adapter); 2528 2529 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2530 } 2531 2532 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2533 { 2534 struct ixgbe_hw *hw = &adapter->hw; 2535 struct net_device *netdev = adapter->netdev; 2536 2537 if (hw->mac.ops.reset_hw(hw)) { 2538 hw_dbg(hw, "PF still resetting\n"); 2539 } else { 2540 hw->mac.ops.init_hw(hw); 2541 ixgbevf_negotiate_api(adapter); 2542 } 2543 2544 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2545 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 2546 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2547 } 2548 2549 adapter->last_reset = jiffies; 2550 } 2551 2552 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2553 int vectors) 2554 { 2555 int vector_threshold; 2556 2557 /* We'll want at least 2 (vector_threshold): 2558 * 1) TxQ[0] + RxQ[0] handler 2559 * 2) Other (Link Status Change, etc.) 2560 */ 2561 vector_threshold = MIN_MSIX_COUNT; 2562 2563 /* The more we get, the more we will assign to Tx/Rx Cleanup 2564 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2565 * Right now, we simply care about how many we'll get; we'll 2566 * set them up later while requesting irq's. 2567 */ 2568 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2569 vector_threshold, vectors); 2570 2571 if (vectors < 0) { 2572 dev_err(&adapter->pdev->dev, 2573 "Unable to allocate MSI-X interrupts\n"); 2574 kfree(adapter->msix_entries); 2575 adapter->msix_entries = NULL; 2576 return vectors; 2577 } 2578 2579 /* Adjust for only the vectors we'll use, which is minimum 2580 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2581 * vectors we were allocated. 2582 */ 2583 adapter->num_msix_vectors = vectors; 2584 2585 return 0; 2586 } 2587 2588 /** 2589 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2590 * @adapter: board private structure to initialize 2591 * 2592 * This is the top level queue allocation routine. The order here is very 2593 * important, starting with the "most" number of features turned on at once, 2594 * and ending with the smallest set of features. This way large combinations 2595 * can be allocated if they're turned on, and smaller combinations are the 2596 * fall through conditions. 2597 * 2598 **/ 2599 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2600 { 2601 struct ixgbe_hw *hw = &adapter->hw; 2602 unsigned int def_q = 0; 2603 unsigned int num_tcs = 0; 2604 int err; 2605 2606 /* Start with base case */ 2607 adapter->num_rx_queues = 1; 2608 adapter->num_tx_queues = 1; 2609 adapter->num_xdp_queues = 0; 2610 2611 spin_lock_bh(&adapter->mbx_lock); 2612 2613 /* fetch queue configuration from the PF */ 2614 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2615 2616 spin_unlock_bh(&adapter->mbx_lock); 2617 2618 if (err) 2619 return; 2620 2621 /* we need as many queues as traffic classes */ 2622 if (num_tcs > 1) { 2623 adapter->num_rx_queues = num_tcs; 2624 } else { 2625 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2626 2627 switch (hw->api_version) { 2628 case ixgbe_mbox_api_11: 2629 case ixgbe_mbox_api_12: 2630 case ixgbe_mbox_api_13: 2631 case ixgbe_mbox_api_14: 2632 if (adapter->xdp_prog && 2633 hw->mac.max_tx_queues == rss) 2634 rss = rss > 3 ? 2 : 1; 2635 2636 adapter->num_rx_queues = rss; 2637 adapter->num_tx_queues = rss; 2638 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0; 2639 break; 2640 default: 2641 break; 2642 } 2643 } 2644 } 2645 2646 /** 2647 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2648 * @adapter: board private structure to initialize 2649 * 2650 * Attempt to configure the interrupts using the best available 2651 * capabilities of the hardware and the kernel. 2652 **/ 2653 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2654 { 2655 int vector, v_budget; 2656 2657 /* It's easy to be greedy for MSI-X vectors, but it really 2658 * doesn't do us much good if we have a lot more vectors 2659 * than CPU's. So let's be conservative and only ask for 2660 * (roughly) the same number of vectors as there are CPU's. 2661 * The default is to use pairs of vectors. 2662 */ 2663 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2664 v_budget = min_t(int, v_budget, num_online_cpus()); 2665 v_budget += NON_Q_VECTORS; 2666 2667 adapter->msix_entries = kcalloc(v_budget, 2668 sizeof(struct msix_entry), GFP_KERNEL); 2669 if (!adapter->msix_entries) 2670 return -ENOMEM; 2671 2672 for (vector = 0; vector < v_budget; vector++) 2673 adapter->msix_entries[vector].entry = vector; 2674 2675 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver 2676 * does not support any other modes, so we will simply fail here. Note 2677 * that we clean up the msix_entries pointer else-where. 2678 */ 2679 return ixgbevf_acquire_msix_vectors(adapter, v_budget); 2680 } 2681 2682 static void ixgbevf_add_ring(struct ixgbevf_ring *ring, 2683 struct ixgbevf_ring_container *head) 2684 { 2685 ring->next = head->ring; 2686 head->ring = ring; 2687 head->count++; 2688 } 2689 2690 /** 2691 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector 2692 * @adapter: board private structure to initialize 2693 * @v_idx: index of vector in adapter struct 2694 * @txr_count: number of Tx rings for q vector 2695 * @txr_idx: index of first Tx ring to assign 2696 * @xdp_count: total number of XDP rings to allocate 2697 * @xdp_idx: index of first XDP ring to allocate 2698 * @rxr_count: number of Rx rings for q vector 2699 * @rxr_idx: index of first Rx ring to assign 2700 * 2701 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2702 **/ 2703 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx, 2704 int txr_count, int txr_idx, 2705 int xdp_count, int xdp_idx, 2706 int rxr_count, int rxr_idx) 2707 { 2708 struct ixgbevf_q_vector *q_vector; 2709 int reg_idx = txr_idx + xdp_idx; 2710 struct ixgbevf_ring *ring; 2711 int ring_count, size; 2712 2713 ring_count = txr_count + xdp_count + rxr_count; 2714 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count); 2715 2716 /* allocate q_vector and rings */ 2717 q_vector = kzalloc(size, GFP_KERNEL); 2718 if (!q_vector) 2719 return -ENOMEM; 2720 2721 /* initialize NAPI */ 2722 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64); 2723 2724 /* tie q_vector and adapter together */ 2725 adapter->q_vector[v_idx] = q_vector; 2726 q_vector->adapter = adapter; 2727 q_vector->v_idx = v_idx; 2728 2729 /* initialize pointer to rings */ 2730 ring = q_vector->ring; 2731 2732 while (txr_count) { 2733 /* assign generic ring traits */ 2734 ring->dev = &adapter->pdev->dev; 2735 ring->netdev = adapter->netdev; 2736 2737 /* configure backlink on ring */ 2738 ring->q_vector = q_vector; 2739 2740 /* update q_vector Tx values */ 2741 ixgbevf_add_ring(ring, &q_vector->tx); 2742 2743 /* apply Tx specific ring traits */ 2744 ring->count = adapter->tx_ring_count; 2745 ring->queue_index = txr_idx; 2746 ring->reg_idx = reg_idx; 2747 2748 /* assign ring to adapter */ 2749 adapter->tx_ring[txr_idx] = ring; 2750 2751 /* update count and index */ 2752 txr_count--; 2753 txr_idx++; 2754 reg_idx++; 2755 2756 /* push pointer to next ring */ 2757 ring++; 2758 } 2759 2760 while (xdp_count) { 2761 /* assign generic ring traits */ 2762 ring->dev = &adapter->pdev->dev; 2763 ring->netdev = adapter->netdev; 2764 2765 /* configure backlink on ring */ 2766 ring->q_vector = q_vector; 2767 2768 /* update q_vector Tx values */ 2769 ixgbevf_add_ring(ring, &q_vector->tx); 2770 2771 /* apply Tx specific ring traits */ 2772 ring->count = adapter->tx_ring_count; 2773 ring->queue_index = xdp_idx; 2774 ring->reg_idx = reg_idx; 2775 set_ring_xdp(ring); 2776 2777 /* assign ring to adapter */ 2778 adapter->xdp_ring[xdp_idx] = ring; 2779 2780 /* update count and index */ 2781 xdp_count--; 2782 xdp_idx++; 2783 reg_idx++; 2784 2785 /* push pointer to next ring */ 2786 ring++; 2787 } 2788 2789 while (rxr_count) { 2790 /* assign generic ring traits */ 2791 ring->dev = &adapter->pdev->dev; 2792 ring->netdev = adapter->netdev; 2793 2794 /* configure backlink on ring */ 2795 ring->q_vector = q_vector; 2796 2797 /* update q_vector Rx values */ 2798 ixgbevf_add_ring(ring, &q_vector->rx); 2799 2800 /* apply Rx specific ring traits */ 2801 ring->count = adapter->rx_ring_count; 2802 ring->queue_index = rxr_idx; 2803 ring->reg_idx = rxr_idx; 2804 2805 /* assign ring to adapter */ 2806 adapter->rx_ring[rxr_idx] = ring; 2807 2808 /* update count and index */ 2809 rxr_count--; 2810 rxr_idx++; 2811 2812 /* push pointer to next ring */ 2813 ring++; 2814 } 2815 2816 return 0; 2817 } 2818 2819 /** 2820 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector 2821 * @adapter: board private structure to initialize 2822 * @v_idx: index of vector in adapter struct 2823 * 2824 * This function frees the memory allocated to the q_vector. In addition if 2825 * NAPI is enabled it will delete any references to the NAPI struct prior 2826 * to freeing the q_vector. 2827 **/ 2828 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx) 2829 { 2830 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx]; 2831 struct ixgbevf_ring *ring; 2832 2833 ixgbevf_for_each_ring(ring, q_vector->tx) { 2834 if (ring_is_xdp(ring)) 2835 adapter->xdp_ring[ring->queue_index] = NULL; 2836 else 2837 adapter->tx_ring[ring->queue_index] = NULL; 2838 } 2839 2840 ixgbevf_for_each_ring(ring, q_vector->rx) 2841 adapter->rx_ring[ring->queue_index] = NULL; 2842 2843 adapter->q_vector[v_idx] = NULL; 2844 netif_napi_del(&q_vector->napi); 2845 2846 /* ixgbevf_get_stats() might access the rings on this vector, 2847 * we must wait a grace period before freeing it. 2848 */ 2849 kfree_rcu(q_vector, rcu); 2850 } 2851 2852 /** 2853 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2854 * @adapter: board private structure to initialize 2855 * 2856 * We allocate one q_vector per queue interrupt. If allocation fails we 2857 * return -ENOMEM. 2858 **/ 2859 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2860 { 2861 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2862 int rxr_remaining = adapter->num_rx_queues; 2863 int txr_remaining = adapter->num_tx_queues; 2864 int xdp_remaining = adapter->num_xdp_queues; 2865 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0; 2866 int err; 2867 2868 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) { 2869 for (; rxr_remaining; v_idx++, q_vectors--) { 2870 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2871 2872 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2873 0, 0, 0, 0, rqpv, rxr_idx); 2874 if (err) 2875 goto err_out; 2876 2877 /* update counts and index */ 2878 rxr_remaining -= rqpv; 2879 rxr_idx += rqpv; 2880 } 2881 } 2882 2883 for (; q_vectors; v_idx++, q_vectors--) { 2884 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2885 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors); 2886 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors); 2887 2888 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2889 tqpv, txr_idx, 2890 xqpv, xdp_idx, 2891 rqpv, rxr_idx); 2892 2893 if (err) 2894 goto err_out; 2895 2896 /* update counts and index */ 2897 rxr_remaining -= rqpv; 2898 rxr_idx += rqpv; 2899 txr_remaining -= tqpv; 2900 txr_idx += tqpv; 2901 xdp_remaining -= xqpv; 2902 xdp_idx += xqpv; 2903 } 2904 2905 return 0; 2906 2907 err_out: 2908 while (v_idx) { 2909 v_idx--; 2910 ixgbevf_free_q_vector(adapter, v_idx); 2911 } 2912 2913 return -ENOMEM; 2914 } 2915 2916 /** 2917 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2918 * @adapter: board private structure to initialize 2919 * 2920 * This function frees the memory allocated to the q_vectors. In addition if 2921 * NAPI is enabled it will delete any references to the NAPI struct prior 2922 * to freeing the q_vector. 2923 **/ 2924 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2925 { 2926 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2927 2928 while (q_vectors) { 2929 q_vectors--; 2930 ixgbevf_free_q_vector(adapter, q_vectors); 2931 } 2932 } 2933 2934 /** 2935 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2936 * @adapter: board private structure 2937 * 2938 **/ 2939 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2940 { 2941 if (!adapter->msix_entries) 2942 return; 2943 2944 pci_disable_msix(adapter->pdev); 2945 kfree(adapter->msix_entries); 2946 adapter->msix_entries = NULL; 2947 } 2948 2949 /** 2950 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2951 * @adapter: board private structure to initialize 2952 * 2953 **/ 2954 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2955 { 2956 int err; 2957 2958 /* Number of supported queues */ 2959 ixgbevf_set_num_queues(adapter); 2960 2961 err = ixgbevf_set_interrupt_capability(adapter); 2962 if (err) { 2963 hw_dbg(&adapter->hw, 2964 "Unable to setup interrupt capabilities\n"); 2965 goto err_set_interrupt; 2966 } 2967 2968 err = ixgbevf_alloc_q_vectors(adapter); 2969 if (err) { 2970 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2971 goto err_alloc_q_vectors; 2972 } 2973 2974 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n", 2975 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled", 2976 adapter->num_rx_queues, adapter->num_tx_queues, 2977 adapter->num_xdp_queues); 2978 2979 set_bit(__IXGBEVF_DOWN, &adapter->state); 2980 2981 return 0; 2982 err_alloc_q_vectors: 2983 ixgbevf_reset_interrupt_capability(adapter); 2984 err_set_interrupt: 2985 return err; 2986 } 2987 2988 /** 2989 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2990 * @adapter: board private structure to clear interrupt scheme on 2991 * 2992 * We go through and clear interrupt specific resources and reset the structure 2993 * to pre-load conditions 2994 **/ 2995 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 2996 { 2997 adapter->num_tx_queues = 0; 2998 adapter->num_xdp_queues = 0; 2999 adapter->num_rx_queues = 0; 3000 3001 ixgbevf_free_q_vectors(adapter); 3002 ixgbevf_reset_interrupt_capability(adapter); 3003 } 3004 3005 /** 3006 * ixgbevf_sw_init - Initialize general software structures 3007 * @adapter: board private structure to initialize 3008 * 3009 * ixgbevf_sw_init initializes the Adapter private data structure. 3010 * Fields are initialized based on PCI device information and 3011 * OS network device settings (MTU size). 3012 **/ 3013 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 3014 { 3015 struct ixgbe_hw *hw = &adapter->hw; 3016 struct pci_dev *pdev = adapter->pdev; 3017 struct net_device *netdev = adapter->netdev; 3018 int err; 3019 3020 /* PCI config space info */ 3021 hw->vendor_id = pdev->vendor; 3022 hw->device_id = pdev->device; 3023 hw->revision_id = pdev->revision; 3024 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3025 hw->subsystem_device_id = pdev->subsystem_device; 3026 3027 hw->mbx.ops.init_params(hw); 3028 3029 if (hw->mac.type >= ixgbe_mac_X550_vf) { 3030 err = ixgbevf_init_rss_key(adapter); 3031 if (err) 3032 goto out; 3033 } 3034 3035 /* assume legacy case in which PF would only give VF 2 queues */ 3036 hw->mac.max_tx_queues = 2; 3037 hw->mac.max_rx_queues = 2; 3038 3039 /* lock to protect mailbox accesses */ 3040 spin_lock_init(&adapter->mbx_lock); 3041 3042 err = hw->mac.ops.reset_hw(hw); 3043 if (err) { 3044 dev_info(&pdev->dev, 3045 "PF still in reset state. Is the PF interface up?\n"); 3046 } else { 3047 err = hw->mac.ops.init_hw(hw); 3048 if (err) { 3049 pr_err("init_shared_code failed: %d\n", err); 3050 goto out; 3051 } 3052 ixgbevf_negotiate_api(adapter); 3053 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 3054 if (err) 3055 dev_info(&pdev->dev, "Error reading MAC address\n"); 3056 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 3057 dev_info(&pdev->dev, 3058 "MAC address not assigned by administrator.\n"); 3059 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 3060 } 3061 3062 if (!is_valid_ether_addr(netdev->dev_addr)) { 3063 dev_info(&pdev->dev, "Assigning random MAC address\n"); 3064 eth_hw_addr_random(netdev); 3065 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 3066 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 3067 } 3068 3069 /* Enable dynamic interrupt throttling rates */ 3070 adapter->rx_itr_setting = 1; 3071 adapter->tx_itr_setting = 1; 3072 3073 /* set default ring sizes */ 3074 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 3075 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 3076 3077 set_bit(__IXGBEVF_DOWN, &adapter->state); 3078 return 0; 3079 3080 out: 3081 return err; 3082 } 3083 3084 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 3085 { \ 3086 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 3087 if (current_counter < last_counter) \ 3088 counter += 0x100000000LL; \ 3089 last_counter = current_counter; \ 3090 counter &= 0xFFFFFFFF00000000LL; \ 3091 counter |= current_counter; \ 3092 } 3093 3094 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 3095 { \ 3096 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 3097 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 3098 u64 current_counter = (current_counter_msb << 32) | \ 3099 current_counter_lsb; \ 3100 if (current_counter < last_counter) \ 3101 counter += 0x1000000000LL; \ 3102 last_counter = current_counter; \ 3103 counter &= 0xFFFFFFF000000000LL; \ 3104 counter |= current_counter; \ 3105 } 3106 /** 3107 * ixgbevf_update_stats - Update the board statistics counters. 3108 * @adapter: board private structure 3109 **/ 3110 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 3111 { 3112 struct ixgbe_hw *hw = &adapter->hw; 3113 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; 3114 u64 alloc_rx_page = 0, hw_csum_rx_error = 0; 3115 int i; 3116 3117 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3118 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3119 return; 3120 3121 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 3122 adapter->stats.vfgprc); 3123 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 3124 adapter->stats.vfgptc); 3125 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 3126 adapter->stats.last_vfgorc, 3127 adapter->stats.vfgorc); 3128 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 3129 adapter->stats.last_vfgotc, 3130 adapter->stats.vfgotc); 3131 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 3132 adapter->stats.vfmprc); 3133 3134 for (i = 0; i < adapter->num_rx_queues; i++) { 3135 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 3136 3137 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 3138 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; 3139 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 3140 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; 3141 } 3142 3143 adapter->hw_csum_rx_error = hw_csum_rx_error; 3144 adapter->alloc_rx_page_failed = alloc_rx_page_failed; 3145 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; 3146 adapter->alloc_rx_page = alloc_rx_page; 3147 } 3148 3149 /** 3150 * ixgbevf_service_timer - Timer Call-back 3151 * @t: pointer to timer_list struct 3152 **/ 3153 static void ixgbevf_service_timer(struct timer_list *t) 3154 { 3155 struct ixgbevf_adapter *adapter = from_timer(adapter, t, 3156 service_timer); 3157 3158 /* Reset the timer */ 3159 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 3160 3161 ixgbevf_service_event_schedule(adapter); 3162 } 3163 3164 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 3165 { 3166 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 3167 return; 3168 3169 rtnl_lock(); 3170 /* If we're already down or resetting, just bail */ 3171 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3172 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 3173 test_bit(__IXGBEVF_RESETTING, &adapter->state)) { 3174 rtnl_unlock(); 3175 return; 3176 } 3177 3178 adapter->tx_timeout_count++; 3179 3180 ixgbevf_reinit_locked(adapter); 3181 rtnl_unlock(); 3182 } 3183 3184 /** 3185 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 3186 * @adapter: pointer to the device adapter structure 3187 * 3188 * This function serves two purposes. First it strobes the interrupt lines 3189 * in order to make certain interrupts are occurring. Secondly it sets the 3190 * bits needed to check for TX hangs. As a result we should immediately 3191 * determine if a hang has occurred. 3192 **/ 3193 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 3194 { 3195 struct ixgbe_hw *hw = &adapter->hw; 3196 u32 eics = 0; 3197 int i; 3198 3199 /* If we're down or resetting, just bail */ 3200 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3201 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3202 return; 3203 3204 /* Force detection of hung controller */ 3205 if (netif_carrier_ok(adapter->netdev)) { 3206 for (i = 0; i < adapter->num_tx_queues; i++) 3207 set_check_for_tx_hang(adapter->tx_ring[i]); 3208 for (i = 0; i < adapter->num_xdp_queues; i++) 3209 set_check_for_tx_hang(adapter->xdp_ring[i]); 3210 } 3211 3212 /* get one bit for every active Tx/Rx interrupt vector */ 3213 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 3214 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 3215 3216 if (qv->rx.ring || qv->tx.ring) 3217 eics |= BIT(i); 3218 } 3219 3220 /* Cause software interrupt to ensure rings are cleaned */ 3221 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 3222 } 3223 3224 /** 3225 * ixgbevf_watchdog_update_link - update the link status 3226 * @adapter: pointer to the device adapter structure 3227 **/ 3228 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 3229 { 3230 struct ixgbe_hw *hw = &adapter->hw; 3231 u32 link_speed = adapter->link_speed; 3232 bool link_up = adapter->link_up; 3233 s32 err; 3234 3235 spin_lock_bh(&adapter->mbx_lock); 3236 3237 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 3238 3239 spin_unlock_bh(&adapter->mbx_lock); 3240 3241 /* if check for link returns error we will need to reset */ 3242 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 3243 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 3244 link_up = false; 3245 } 3246 3247 adapter->link_up = link_up; 3248 adapter->link_speed = link_speed; 3249 } 3250 3251 /** 3252 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 3253 * print link up message 3254 * @adapter: pointer to the device adapter structure 3255 **/ 3256 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 3257 { 3258 struct net_device *netdev = adapter->netdev; 3259 3260 /* only continue if link was previously down */ 3261 if (netif_carrier_ok(netdev)) 3262 return; 3263 3264 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 3265 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 3266 "10 Gbps" : 3267 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 3268 "1 Gbps" : 3269 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 3270 "100 Mbps" : 3271 "unknown speed"); 3272 3273 netif_carrier_on(netdev); 3274 } 3275 3276 /** 3277 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 3278 * print link down message 3279 * @adapter: pointer to the adapter structure 3280 **/ 3281 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 3282 { 3283 struct net_device *netdev = adapter->netdev; 3284 3285 adapter->link_speed = 0; 3286 3287 /* only continue if link was up previously */ 3288 if (!netif_carrier_ok(netdev)) 3289 return; 3290 3291 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 3292 3293 netif_carrier_off(netdev); 3294 } 3295 3296 /** 3297 * ixgbevf_watchdog_subtask - worker thread to bring link up 3298 * @adapter: board private structure 3299 **/ 3300 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 3301 { 3302 /* if interface is down do nothing */ 3303 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3304 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3305 return; 3306 3307 ixgbevf_watchdog_update_link(adapter); 3308 3309 if (adapter->link_up) 3310 ixgbevf_watchdog_link_is_up(adapter); 3311 else 3312 ixgbevf_watchdog_link_is_down(adapter); 3313 3314 ixgbevf_update_stats(adapter); 3315 } 3316 3317 /** 3318 * ixgbevf_service_task - manages and runs subtasks 3319 * @work: pointer to work_struct containing our data 3320 **/ 3321 static void ixgbevf_service_task(struct work_struct *work) 3322 { 3323 struct ixgbevf_adapter *adapter = container_of(work, 3324 struct ixgbevf_adapter, 3325 service_task); 3326 struct ixgbe_hw *hw = &adapter->hw; 3327 3328 if (IXGBE_REMOVED(hw->hw_addr)) { 3329 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 3330 rtnl_lock(); 3331 ixgbevf_down(adapter); 3332 rtnl_unlock(); 3333 } 3334 return; 3335 } 3336 3337 ixgbevf_queue_reset_subtask(adapter); 3338 ixgbevf_reset_subtask(adapter); 3339 ixgbevf_watchdog_subtask(adapter); 3340 ixgbevf_check_hang_subtask(adapter); 3341 3342 ixgbevf_service_event_complete(adapter); 3343 } 3344 3345 /** 3346 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 3347 * @tx_ring: Tx descriptor ring for a specific queue 3348 * 3349 * Free all transmit software resources 3350 **/ 3351 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 3352 { 3353 ixgbevf_clean_tx_ring(tx_ring); 3354 3355 vfree(tx_ring->tx_buffer_info); 3356 tx_ring->tx_buffer_info = NULL; 3357 3358 /* if not set, then don't free */ 3359 if (!tx_ring->desc) 3360 return; 3361 3362 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 3363 tx_ring->dma); 3364 3365 tx_ring->desc = NULL; 3366 } 3367 3368 /** 3369 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 3370 * @adapter: board private structure 3371 * 3372 * Free all transmit software resources 3373 **/ 3374 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 3375 { 3376 int i; 3377 3378 for (i = 0; i < adapter->num_tx_queues; i++) 3379 if (adapter->tx_ring[i]->desc) 3380 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3381 for (i = 0; i < adapter->num_xdp_queues; i++) 3382 if (adapter->xdp_ring[i]->desc) 3383 ixgbevf_free_tx_resources(adapter->xdp_ring[i]); 3384 } 3385 3386 /** 3387 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 3388 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 3389 * 3390 * Return 0 on success, negative on failure 3391 **/ 3392 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3393 { 3394 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3395 int size; 3396 3397 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3398 tx_ring->tx_buffer_info = vmalloc(size); 3399 if (!tx_ring->tx_buffer_info) 3400 goto err; 3401 3402 u64_stats_init(&tx_ring->syncp); 3403 3404 /* round up to nearest 4K */ 3405 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3406 tx_ring->size = ALIGN(tx_ring->size, 4096); 3407 3408 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3409 &tx_ring->dma, GFP_KERNEL); 3410 if (!tx_ring->desc) 3411 goto err; 3412 3413 return 0; 3414 3415 err: 3416 vfree(tx_ring->tx_buffer_info); 3417 tx_ring->tx_buffer_info = NULL; 3418 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3419 return -ENOMEM; 3420 } 3421 3422 /** 3423 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3424 * @adapter: board private structure 3425 * 3426 * If this function returns with an error, then it's possible one or 3427 * more of the rings is populated (while the rest are not). It is the 3428 * callers duty to clean those orphaned rings. 3429 * 3430 * Return 0 on success, negative on failure 3431 **/ 3432 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3433 { 3434 int i, j = 0, err = 0; 3435 3436 for (i = 0; i < adapter->num_tx_queues; i++) { 3437 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3438 if (!err) 3439 continue; 3440 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3441 goto err_setup_tx; 3442 } 3443 3444 for (j = 0; j < adapter->num_xdp_queues; j++) { 3445 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]); 3446 if (!err) 3447 continue; 3448 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j); 3449 goto err_setup_tx; 3450 } 3451 3452 return 0; 3453 err_setup_tx: 3454 /* rewind the index freeing the rings as we go */ 3455 while (j--) 3456 ixgbevf_free_tx_resources(adapter->xdp_ring[j]); 3457 while (i--) 3458 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3459 3460 return err; 3461 } 3462 3463 /** 3464 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3465 * @adapter: board private structure 3466 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3467 * 3468 * Returns 0 on success, negative on failure 3469 **/ 3470 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter, 3471 struct ixgbevf_ring *rx_ring) 3472 { 3473 int size; 3474 3475 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3476 rx_ring->rx_buffer_info = vmalloc(size); 3477 if (!rx_ring->rx_buffer_info) 3478 goto err; 3479 3480 u64_stats_init(&rx_ring->syncp); 3481 3482 /* Round up to nearest 4K */ 3483 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3484 rx_ring->size = ALIGN(rx_ring->size, 4096); 3485 3486 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3487 &rx_ring->dma, GFP_KERNEL); 3488 3489 if (!rx_ring->desc) 3490 goto err; 3491 3492 /* XDP RX-queue info */ 3493 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev, 3494 rx_ring->queue_index, 0) < 0) 3495 goto err; 3496 3497 rx_ring->xdp_prog = adapter->xdp_prog; 3498 3499 return 0; 3500 err: 3501 vfree(rx_ring->rx_buffer_info); 3502 rx_ring->rx_buffer_info = NULL; 3503 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3504 return -ENOMEM; 3505 } 3506 3507 /** 3508 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3509 * @adapter: board private structure 3510 * 3511 * If this function returns with an error, then it's possible one or 3512 * more of the rings is populated (while the rest are not). It is the 3513 * callers duty to clean those orphaned rings. 3514 * 3515 * Return 0 on success, negative on failure 3516 **/ 3517 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3518 { 3519 int i, err = 0; 3520 3521 for (i = 0; i < adapter->num_rx_queues; i++) { 3522 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]); 3523 if (!err) 3524 continue; 3525 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3526 goto err_setup_rx; 3527 } 3528 3529 return 0; 3530 err_setup_rx: 3531 /* rewind the index freeing the rings as we go */ 3532 while (i--) 3533 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3534 return err; 3535 } 3536 3537 /** 3538 * ixgbevf_free_rx_resources - Free Rx Resources 3539 * @rx_ring: ring to clean the resources from 3540 * 3541 * Free all receive software resources 3542 **/ 3543 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3544 { 3545 ixgbevf_clean_rx_ring(rx_ring); 3546 3547 rx_ring->xdp_prog = NULL; 3548 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 3549 vfree(rx_ring->rx_buffer_info); 3550 rx_ring->rx_buffer_info = NULL; 3551 3552 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3553 rx_ring->dma); 3554 3555 rx_ring->desc = NULL; 3556 } 3557 3558 /** 3559 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3560 * @adapter: board private structure 3561 * 3562 * Free all receive software resources 3563 **/ 3564 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3565 { 3566 int i; 3567 3568 for (i = 0; i < adapter->num_rx_queues; i++) 3569 if (adapter->rx_ring[i]->desc) 3570 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3571 } 3572 3573 /** 3574 * ixgbevf_open - Called when a network interface is made active 3575 * @netdev: network interface device structure 3576 * 3577 * Returns 0 on success, negative value on failure 3578 * 3579 * The open entry point is called when a network interface is made 3580 * active by the system (IFF_UP). At this point all resources needed 3581 * for transmit and receive operations are allocated, the interrupt 3582 * handler is registered with the OS, the watchdog timer is started, 3583 * and the stack is notified that the interface is ready. 3584 **/ 3585 int ixgbevf_open(struct net_device *netdev) 3586 { 3587 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3588 struct ixgbe_hw *hw = &adapter->hw; 3589 int err; 3590 3591 /* A previous failure to open the device because of a lack of 3592 * available MSIX vector resources may have reset the number 3593 * of msix vectors variable to zero. The only way to recover 3594 * is to unload/reload the driver and hope that the system has 3595 * been able to recover some MSIX vector resources. 3596 */ 3597 if (!adapter->num_msix_vectors) 3598 return -ENOMEM; 3599 3600 if (hw->adapter_stopped) { 3601 ixgbevf_reset(adapter); 3602 /* if adapter is still stopped then PF isn't up and 3603 * the VF can't start. 3604 */ 3605 if (hw->adapter_stopped) { 3606 err = IXGBE_ERR_MBX; 3607 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3608 goto err_setup_reset; 3609 } 3610 } 3611 3612 /* disallow open during test */ 3613 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3614 return -EBUSY; 3615 3616 netif_carrier_off(netdev); 3617 3618 /* allocate transmit descriptors */ 3619 err = ixgbevf_setup_all_tx_resources(adapter); 3620 if (err) 3621 goto err_setup_tx; 3622 3623 /* allocate receive descriptors */ 3624 err = ixgbevf_setup_all_rx_resources(adapter); 3625 if (err) 3626 goto err_setup_rx; 3627 3628 ixgbevf_configure(adapter); 3629 3630 err = ixgbevf_request_irq(adapter); 3631 if (err) 3632 goto err_req_irq; 3633 3634 /* Notify the stack of the actual queue counts. */ 3635 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3636 if (err) 3637 goto err_set_queues; 3638 3639 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3640 if (err) 3641 goto err_set_queues; 3642 3643 ixgbevf_up_complete(adapter); 3644 3645 return 0; 3646 3647 err_set_queues: 3648 ixgbevf_free_irq(adapter); 3649 err_req_irq: 3650 ixgbevf_free_all_rx_resources(adapter); 3651 err_setup_rx: 3652 ixgbevf_free_all_tx_resources(adapter); 3653 err_setup_tx: 3654 ixgbevf_reset(adapter); 3655 err_setup_reset: 3656 3657 return err; 3658 } 3659 3660 /** 3661 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3662 * @adapter: the private adapter struct 3663 * 3664 * This function should contain the necessary work common to both suspending 3665 * and closing of the device. 3666 */ 3667 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3668 { 3669 ixgbevf_down(adapter); 3670 ixgbevf_free_irq(adapter); 3671 ixgbevf_free_all_tx_resources(adapter); 3672 ixgbevf_free_all_rx_resources(adapter); 3673 } 3674 3675 /** 3676 * ixgbevf_close - Disables a network interface 3677 * @netdev: network interface device structure 3678 * 3679 * Returns 0, this is not allowed to fail 3680 * 3681 * The close entry point is called when an interface is de-activated 3682 * by the OS. The hardware is still under the drivers control, but 3683 * needs to be disabled. A global MAC reset is issued to stop the 3684 * hardware, and all transmit and receive resources are freed. 3685 **/ 3686 int ixgbevf_close(struct net_device *netdev) 3687 { 3688 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3689 3690 if (netif_device_present(netdev)) 3691 ixgbevf_close_suspend(adapter); 3692 3693 return 0; 3694 } 3695 3696 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3697 { 3698 struct net_device *dev = adapter->netdev; 3699 3700 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3701 &adapter->state)) 3702 return; 3703 3704 /* if interface is down do nothing */ 3705 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3706 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3707 return; 3708 3709 /* Hardware has to reinitialize queues and interrupts to 3710 * match packet buffer alignment. Unfortunately, the 3711 * hardware is not flexible enough to do this dynamically. 3712 */ 3713 rtnl_lock(); 3714 3715 if (netif_running(dev)) 3716 ixgbevf_close(dev); 3717 3718 ixgbevf_clear_interrupt_scheme(adapter); 3719 ixgbevf_init_interrupt_scheme(adapter); 3720 3721 if (netif_running(dev)) 3722 ixgbevf_open(dev); 3723 3724 rtnl_unlock(); 3725 } 3726 3727 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3728 u32 vlan_macip_lens, u32 fceof_saidx, 3729 u32 type_tucmd, u32 mss_l4len_idx) 3730 { 3731 struct ixgbe_adv_tx_context_desc *context_desc; 3732 u16 i = tx_ring->next_to_use; 3733 3734 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3735 3736 i++; 3737 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3738 3739 /* set bits to identify this as an advanced context descriptor */ 3740 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3741 3742 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3743 context_desc->fceof_saidx = cpu_to_le32(fceof_saidx); 3744 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3745 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3746 } 3747 3748 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3749 struct ixgbevf_tx_buffer *first, 3750 u8 *hdr_len, 3751 struct ixgbevf_ipsec_tx_data *itd) 3752 { 3753 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3754 struct sk_buff *skb = first->skb; 3755 union { 3756 struct iphdr *v4; 3757 struct ipv6hdr *v6; 3758 unsigned char *hdr; 3759 } ip; 3760 union { 3761 struct tcphdr *tcp; 3762 unsigned char *hdr; 3763 } l4; 3764 u32 paylen, l4_offset; 3765 u32 fceof_saidx = 0; 3766 int err; 3767 3768 if (skb->ip_summed != CHECKSUM_PARTIAL) 3769 return 0; 3770 3771 if (!skb_is_gso(skb)) 3772 return 0; 3773 3774 err = skb_cow_head(skb, 0); 3775 if (err < 0) 3776 return err; 3777 3778 if (eth_p_mpls(first->protocol)) 3779 ip.hdr = skb_inner_network_header(skb); 3780 else 3781 ip.hdr = skb_network_header(skb); 3782 l4.hdr = skb_checksum_start(skb); 3783 3784 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3785 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3786 3787 /* initialize outer IP header fields */ 3788 if (ip.v4->version == 4) { 3789 unsigned char *csum_start = skb_checksum_start(skb); 3790 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3791 int len = csum_start - trans_start; 3792 3793 /* IP header will have to cancel out any data that 3794 * is not a part of the outer IP header, so set to 3795 * a reverse csum if needed, else init check to 0. 3796 */ 3797 ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ? 3798 csum_fold(csum_partial(trans_start, 3799 len, 0)) : 0; 3800 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3801 3802 ip.v4->tot_len = 0; 3803 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3804 IXGBE_TX_FLAGS_CSUM | 3805 IXGBE_TX_FLAGS_IPV4; 3806 } else { 3807 ip.v6->payload_len = 0; 3808 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3809 IXGBE_TX_FLAGS_CSUM; 3810 } 3811 3812 /* determine offset of inner transport header */ 3813 l4_offset = l4.hdr - skb->data; 3814 3815 /* compute length of segmentation header */ 3816 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3817 3818 /* remove payload length from inner checksum */ 3819 paylen = skb->len - l4_offset; 3820 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 3821 3822 /* update gso size and bytecount with header size */ 3823 first->gso_segs = skb_shinfo(skb)->gso_segs; 3824 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3825 3826 /* mss_l4len_id: use 1 as index for TSO */ 3827 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3828 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3829 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3830 3831 fceof_saidx |= itd->pfsa; 3832 type_tucmd |= itd->flags | itd->trailer_len; 3833 3834 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3835 vlan_macip_lens = l4.hdr - ip.hdr; 3836 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3837 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3838 3839 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd, 3840 mss_l4len_idx); 3841 3842 return 1; 3843 } 3844 3845 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3846 struct ixgbevf_tx_buffer *first, 3847 struct ixgbevf_ipsec_tx_data *itd) 3848 { 3849 struct sk_buff *skb = first->skb; 3850 u32 vlan_macip_lens = 0; 3851 u32 fceof_saidx = 0; 3852 u32 type_tucmd = 0; 3853 3854 if (skb->ip_summed != CHECKSUM_PARTIAL) 3855 goto no_csum; 3856 3857 switch (skb->csum_offset) { 3858 case offsetof(struct tcphdr, check): 3859 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3860 fallthrough; 3861 case offsetof(struct udphdr, check): 3862 break; 3863 case offsetof(struct sctphdr, checksum): 3864 /* validate that this is actually an SCTP request */ 3865 if (skb_csum_is_sctp(skb)) { 3866 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3867 break; 3868 } 3869 fallthrough; 3870 default: 3871 skb_checksum_help(skb); 3872 goto no_csum; 3873 } 3874 3875 if (first->protocol == htons(ETH_P_IP)) 3876 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3877 3878 /* update TX checksum flag */ 3879 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3880 vlan_macip_lens = skb_checksum_start_offset(skb) - 3881 skb_network_offset(skb); 3882 no_csum: 3883 /* vlan_macip_lens: MACLEN, VLAN tag */ 3884 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3885 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3886 3887 fceof_saidx |= itd->pfsa; 3888 type_tucmd |= itd->flags | itd->trailer_len; 3889 3890 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3891 fceof_saidx, type_tucmd, 0); 3892 } 3893 3894 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3895 { 3896 /* set type for advanced descriptor with frame checksum insertion */ 3897 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3898 IXGBE_ADVTXD_DCMD_IFCS | 3899 IXGBE_ADVTXD_DCMD_DEXT); 3900 3901 /* set HW VLAN bit if VLAN is present */ 3902 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3903 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3904 3905 /* set segmentation enable bits for TSO/FSO */ 3906 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3907 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3908 3909 return cmd_type; 3910 } 3911 3912 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3913 u32 tx_flags, unsigned int paylen) 3914 { 3915 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3916 3917 /* enable L4 checksum for TSO and TX checksum offload */ 3918 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3919 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3920 3921 /* enble IPv4 checksum for TSO */ 3922 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3923 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3924 3925 /* enable IPsec */ 3926 if (tx_flags & IXGBE_TX_FLAGS_IPSEC) 3927 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC); 3928 3929 /* use index 1 context for TSO/FSO/FCOE/IPSEC */ 3930 if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC)) 3931 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3932 3933 /* Check Context must be set if Tx switch is enabled, which it 3934 * always is for case where virtual functions are running 3935 */ 3936 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3937 3938 tx_desc->read.olinfo_status = olinfo_status; 3939 } 3940 3941 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3942 struct ixgbevf_tx_buffer *first, 3943 const u8 hdr_len) 3944 { 3945 struct sk_buff *skb = first->skb; 3946 struct ixgbevf_tx_buffer *tx_buffer; 3947 union ixgbe_adv_tx_desc *tx_desc; 3948 skb_frag_t *frag; 3949 dma_addr_t dma; 3950 unsigned int data_len, size; 3951 u32 tx_flags = first->tx_flags; 3952 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3953 u16 i = tx_ring->next_to_use; 3954 3955 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3956 3957 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 3958 3959 size = skb_headlen(skb); 3960 data_len = skb->data_len; 3961 3962 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3963 3964 tx_buffer = first; 3965 3966 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3967 if (dma_mapping_error(tx_ring->dev, dma)) 3968 goto dma_error; 3969 3970 /* record length, and DMA address */ 3971 dma_unmap_len_set(tx_buffer, len, size); 3972 dma_unmap_addr_set(tx_buffer, dma, dma); 3973 3974 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3975 3976 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3977 tx_desc->read.cmd_type_len = 3978 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3979 3980 i++; 3981 tx_desc++; 3982 if (i == tx_ring->count) { 3983 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3984 i = 0; 3985 } 3986 tx_desc->read.olinfo_status = 0; 3987 3988 dma += IXGBE_MAX_DATA_PER_TXD; 3989 size -= IXGBE_MAX_DATA_PER_TXD; 3990 3991 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3992 } 3993 3994 if (likely(!data_len)) 3995 break; 3996 3997 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 3998 3999 i++; 4000 tx_desc++; 4001 if (i == tx_ring->count) { 4002 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4003 i = 0; 4004 } 4005 tx_desc->read.olinfo_status = 0; 4006 4007 size = skb_frag_size(frag); 4008 data_len -= size; 4009 4010 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 4011 DMA_TO_DEVICE); 4012 4013 tx_buffer = &tx_ring->tx_buffer_info[i]; 4014 } 4015 4016 /* write last descriptor with RS and EOP bits */ 4017 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 4018 tx_desc->read.cmd_type_len = cmd_type; 4019 4020 /* set the timestamp */ 4021 first->time_stamp = jiffies; 4022 4023 skb_tx_timestamp(skb); 4024 4025 /* Force memory writes to complete before letting h/w know there 4026 * are new descriptors to fetch. (Only applicable for weak-ordered 4027 * memory model archs, such as IA-64). 4028 * 4029 * We also need this memory barrier (wmb) to make certain all of the 4030 * status bits have been updated before next_to_watch is written. 4031 */ 4032 wmb(); 4033 4034 /* set next_to_watch value indicating a packet is present */ 4035 first->next_to_watch = tx_desc; 4036 4037 i++; 4038 if (i == tx_ring->count) 4039 i = 0; 4040 4041 tx_ring->next_to_use = i; 4042 4043 /* notify HW of packet */ 4044 ixgbevf_write_tail(tx_ring, i); 4045 4046 return; 4047 dma_error: 4048 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4049 tx_buffer = &tx_ring->tx_buffer_info[i]; 4050 4051 /* clear dma mappings for failed tx_buffer_info map */ 4052 while (tx_buffer != first) { 4053 if (dma_unmap_len(tx_buffer, len)) 4054 dma_unmap_page(tx_ring->dev, 4055 dma_unmap_addr(tx_buffer, dma), 4056 dma_unmap_len(tx_buffer, len), 4057 DMA_TO_DEVICE); 4058 dma_unmap_len_set(tx_buffer, len, 0); 4059 4060 if (i-- == 0) 4061 i += tx_ring->count; 4062 tx_buffer = &tx_ring->tx_buffer_info[i]; 4063 } 4064 4065 if (dma_unmap_len(tx_buffer, len)) 4066 dma_unmap_single(tx_ring->dev, 4067 dma_unmap_addr(tx_buffer, dma), 4068 dma_unmap_len(tx_buffer, len), 4069 DMA_TO_DEVICE); 4070 dma_unmap_len_set(tx_buffer, len, 0); 4071 4072 dev_kfree_skb_any(tx_buffer->skb); 4073 tx_buffer->skb = NULL; 4074 4075 tx_ring->next_to_use = i; 4076 } 4077 4078 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4079 { 4080 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 4081 /* Herbert's original patch had: 4082 * smp_mb__after_netif_stop_queue(); 4083 * but since that doesn't exist yet, just open code it. 4084 */ 4085 smp_mb(); 4086 4087 /* We need to check again in a case another CPU has just 4088 * made room available. 4089 */ 4090 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 4091 return -EBUSY; 4092 4093 /* A reprieve! - use start_queue because it doesn't call schedule */ 4094 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 4095 ++tx_ring->tx_stats.restart_queue; 4096 4097 return 0; 4098 } 4099 4100 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4101 { 4102 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 4103 return 0; 4104 return __ixgbevf_maybe_stop_tx(tx_ring, size); 4105 } 4106 4107 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb, 4108 struct ixgbevf_ring *tx_ring) 4109 { 4110 struct ixgbevf_tx_buffer *first; 4111 int tso; 4112 u32 tx_flags = 0; 4113 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4114 struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 }; 4115 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4116 unsigned short f; 4117 #endif 4118 u8 hdr_len = 0; 4119 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 4120 4121 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 4122 dev_kfree_skb_any(skb); 4123 return NETDEV_TX_OK; 4124 } 4125 4126 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 4127 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 4128 * + 2 desc gap to keep tail from touching head, 4129 * + 1 desc for context descriptor, 4130 * otherwise try next time 4131 */ 4132 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4133 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 4134 skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 4135 4136 count += TXD_USE_COUNT(skb_frag_size(frag)); 4137 } 4138 #else 4139 count += skb_shinfo(skb)->nr_frags; 4140 #endif 4141 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 4142 tx_ring->tx_stats.tx_busy++; 4143 return NETDEV_TX_BUSY; 4144 } 4145 4146 /* record the location of the first descriptor for this packet */ 4147 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4148 first->skb = skb; 4149 first->bytecount = skb->len; 4150 first->gso_segs = 1; 4151 4152 if (skb_vlan_tag_present(skb)) { 4153 tx_flags |= skb_vlan_tag_get(skb); 4154 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 4155 tx_flags |= IXGBE_TX_FLAGS_VLAN; 4156 } 4157 4158 /* record initial flags and protocol */ 4159 first->tx_flags = tx_flags; 4160 first->protocol = vlan_get_protocol(skb); 4161 4162 #ifdef CONFIG_IXGBEVF_IPSEC 4163 if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx)) 4164 goto out_drop; 4165 #endif 4166 tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx); 4167 if (tso < 0) 4168 goto out_drop; 4169 else if (!tso) 4170 ixgbevf_tx_csum(tx_ring, first, &ipsec_tx); 4171 4172 ixgbevf_tx_map(tx_ring, first, hdr_len); 4173 4174 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 4175 4176 return NETDEV_TX_OK; 4177 4178 out_drop: 4179 dev_kfree_skb_any(first->skb); 4180 first->skb = NULL; 4181 4182 return NETDEV_TX_OK; 4183 } 4184 4185 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 4186 { 4187 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4188 struct ixgbevf_ring *tx_ring; 4189 4190 if (skb->len <= 0) { 4191 dev_kfree_skb_any(skb); 4192 return NETDEV_TX_OK; 4193 } 4194 4195 /* The minimum packet size for olinfo paylen is 17 so pad the skb 4196 * in order to meet this minimum size requirement. 4197 */ 4198 if (skb->len < 17) { 4199 if (skb_padto(skb, 17)) 4200 return NETDEV_TX_OK; 4201 skb->len = 17; 4202 } 4203 4204 tx_ring = adapter->tx_ring[skb->queue_mapping]; 4205 return ixgbevf_xmit_frame_ring(skb, tx_ring); 4206 } 4207 4208 /** 4209 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 4210 * @netdev: network interface device structure 4211 * @p: pointer to an address structure 4212 * 4213 * Returns 0 on success, negative on failure 4214 **/ 4215 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 4216 { 4217 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4218 struct ixgbe_hw *hw = &adapter->hw; 4219 struct sockaddr *addr = p; 4220 int err; 4221 4222 if (!is_valid_ether_addr(addr->sa_data)) 4223 return -EADDRNOTAVAIL; 4224 4225 spin_lock_bh(&adapter->mbx_lock); 4226 4227 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 4228 4229 spin_unlock_bh(&adapter->mbx_lock); 4230 4231 if (err) 4232 return -EPERM; 4233 4234 ether_addr_copy(hw->mac.addr, addr->sa_data); 4235 ether_addr_copy(hw->mac.perm_addr, addr->sa_data); 4236 ether_addr_copy(netdev->dev_addr, addr->sa_data); 4237 4238 return 0; 4239 } 4240 4241 /** 4242 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 4243 * @netdev: network interface device structure 4244 * @new_mtu: new value for maximum frame size 4245 * 4246 * Returns 0 on success, negative on failure 4247 **/ 4248 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 4249 { 4250 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4251 struct ixgbe_hw *hw = &adapter->hw; 4252 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 4253 int ret; 4254 4255 /* prevent MTU being changed to a size unsupported by XDP */ 4256 if (adapter->xdp_prog) { 4257 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n"); 4258 return -EPERM; 4259 } 4260 4261 spin_lock_bh(&adapter->mbx_lock); 4262 /* notify the PF of our intent to use this size of frame */ 4263 ret = hw->mac.ops.set_rlpml(hw, max_frame); 4264 spin_unlock_bh(&adapter->mbx_lock); 4265 if (ret) 4266 return -EINVAL; 4267 4268 hw_dbg(hw, "changing MTU from %d to %d\n", 4269 netdev->mtu, new_mtu); 4270 4271 /* must set new MTU before calling down or up */ 4272 netdev->mtu = new_mtu; 4273 4274 if (netif_running(netdev)) 4275 ixgbevf_reinit_locked(adapter); 4276 4277 return 0; 4278 } 4279 4280 static int __maybe_unused ixgbevf_suspend(struct device *dev_d) 4281 { 4282 struct net_device *netdev = dev_get_drvdata(dev_d); 4283 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4284 4285 rtnl_lock(); 4286 netif_device_detach(netdev); 4287 4288 if (netif_running(netdev)) 4289 ixgbevf_close_suspend(adapter); 4290 4291 ixgbevf_clear_interrupt_scheme(adapter); 4292 rtnl_unlock(); 4293 4294 return 0; 4295 } 4296 4297 static int __maybe_unused ixgbevf_resume(struct device *dev_d) 4298 { 4299 struct pci_dev *pdev = to_pci_dev(dev_d); 4300 struct net_device *netdev = pci_get_drvdata(pdev); 4301 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4302 u32 err; 4303 4304 adapter->hw.hw_addr = adapter->io_addr; 4305 smp_mb__before_atomic(); 4306 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4307 pci_set_master(pdev); 4308 4309 ixgbevf_reset(adapter); 4310 4311 rtnl_lock(); 4312 err = ixgbevf_init_interrupt_scheme(adapter); 4313 if (!err && netif_running(netdev)) 4314 err = ixgbevf_open(netdev); 4315 rtnl_unlock(); 4316 if (err) 4317 return err; 4318 4319 netif_device_attach(netdev); 4320 4321 return err; 4322 } 4323 4324 static void ixgbevf_shutdown(struct pci_dev *pdev) 4325 { 4326 ixgbevf_suspend(&pdev->dev); 4327 } 4328 4329 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats, 4330 const struct ixgbevf_ring *ring) 4331 { 4332 u64 bytes, packets; 4333 unsigned int start; 4334 4335 if (ring) { 4336 do { 4337 start = u64_stats_fetch_begin_irq(&ring->syncp); 4338 bytes = ring->stats.bytes; 4339 packets = ring->stats.packets; 4340 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4341 stats->tx_bytes += bytes; 4342 stats->tx_packets += packets; 4343 } 4344 } 4345 4346 static void ixgbevf_get_stats(struct net_device *netdev, 4347 struct rtnl_link_stats64 *stats) 4348 { 4349 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4350 unsigned int start; 4351 u64 bytes, packets; 4352 const struct ixgbevf_ring *ring; 4353 int i; 4354 4355 ixgbevf_update_stats(adapter); 4356 4357 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 4358 4359 rcu_read_lock(); 4360 for (i = 0; i < adapter->num_rx_queues; i++) { 4361 ring = adapter->rx_ring[i]; 4362 do { 4363 start = u64_stats_fetch_begin_irq(&ring->syncp); 4364 bytes = ring->stats.bytes; 4365 packets = ring->stats.packets; 4366 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4367 stats->rx_bytes += bytes; 4368 stats->rx_packets += packets; 4369 } 4370 4371 for (i = 0; i < adapter->num_tx_queues; i++) { 4372 ring = adapter->tx_ring[i]; 4373 ixgbevf_get_tx_ring_stats(stats, ring); 4374 } 4375 4376 for (i = 0; i < adapter->num_xdp_queues; i++) { 4377 ring = adapter->xdp_ring[i]; 4378 ixgbevf_get_tx_ring_stats(stats, ring); 4379 } 4380 rcu_read_unlock(); 4381 } 4382 4383 #define IXGBEVF_MAX_MAC_HDR_LEN 127 4384 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 4385 4386 static netdev_features_t 4387 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 4388 netdev_features_t features) 4389 { 4390 unsigned int network_hdr_len, mac_hdr_len; 4391 4392 /* Make certain the headers can be described by a context descriptor */ 4393 mac_hdr_len = skb_network_header(skb) - skb->data; 4394 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 4395 return features & ~(NETIF_F_HW_CSUM | 4396 NETIF_F_SCTP_CRC | 4397 NETIF_F_HW_VLAN_CTAG_TX | 4398 NETIF_F_TSO | 4399 NETIF_F_TSO6); 4400 4401 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4402 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 4403 return features & ~(NETIF_F_HW_CSUM | 4404 NETIF_F_SCTP_CRC | 4405 NETIF_F_TSO | 4406 NETIF_F_TSO6); 4407 4408 /* We can only support IPV4 TSO in tunnels if we can mangle the 4409 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4410 */ 4411 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4412 features &= ~NETIF_F_TSO; 4413 4414 return features; 4415 } 4416 4417 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog) 4418 { 4419 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4420 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4421 struct bpf_prog *old_prog; 4422 4423 /* verify ixgbevf ring attributes are sufficient for XDP */ 4424 for (i = 0; i < adapter->num_rx_queues; i++) { 4425 struct ixgbevf_ring *ring = adapter->rx_ring[i]; 4426 4427 if (frame_size > ixgbevf_rx_bufsz(ring)) 4428 return -EINVAL; 4429 } 4430 4431 old_prog = xchg(&adapter->xdp_prog, prog); 4432 4433 /* If transitioning XDP modes reconfigure rings */ 4434 if (!!prog != !!old_prog) { 4435 /* Hardware has to reinitialize queues and interrupts to 4436 * match packet buffer alignment. Unfortunately, the 4437 * hardware is not flexible enough to do this dynamically. 4438 */ 4439 if (netif_running(dev)) 4440 ixgbevf_close(dev); 4441 4442 ixgbevf_clear_interrupt_scheme(adapter); 4443 ixgbevf_init_interrupt_scheme(adapter); 4444 4445 if (netif_running(dev)) 4446 ixgbevf_open(dev); 4447 } else { 4448 for (i = 0; i < adapter->num_rx_queues; i++) 4449 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog); 4450 } 4451 4452 if (old_prog) 4453 bpf_prog_put(old_prog); 4454 4455 return 0; 4456 } 4457 4458 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4459 { 4460 switch (xdp->command) { 4461 case XDP_SETUP_PROG: 4462 return ixgbevf_xdp_setup(dev, xdp->prog); 4463 default: 4464 return -EINVAL; 4465 } 4466 } 4467 4468 static const struct net_device_ops ixgbevf_netdev_ops = { 4469 .ndo_open = ixgbevf_open, 4470 .ndo_stop = ixgbevf_close, 4471 .ndo_start_xmit = ixgbevf_xmit_frame, 4472 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 4473 .ndo_get_stats64 = ixgbevf_get_stats, 4474 .ndo_validate_addr = eth_validate_addr, 4475 .ndo_set_mac_address = ixgbevf_set_mac, 4476 .ndo_change_mtu = ixgbevf_change_mtu, 4477 .ndo_tx_timeout = ixgbevf_tx_timeout, 4478 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 4479 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 4480 .ndo_features_check = ixgbevf_features_check, 4481 .ndo_bpf = ixgbevf_xdp, 4482 }; 4483 4484 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 4485 { 4486 dev->netdev_ops = &ixgbevf_netdev_ops; 4487 ixgbevf_set_ethtool_ops(dev); 4488 dev->watchdog_timeo = 5 * HZ; 4489 } 4490 4491 /** 4492 * ixgbevf_probe - Device Initialization Routine 4493 * @pdev: PCI device information struct 4494 * @ent: entry in ixgbevf_pci_tbl 4495 * 4496 * Returns 0 on success, negative on failure 4497 * 4498 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 4499 * The OS initialization, configuring of the adapter private structure, 4500 * and a hardware reset occur. 4501 **/ 4502 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4503 { 4504 struct net_device *netdev; 4505 struct ixgbevf_adapter *adapter = NULL; 4506 struct ixgbe_hw *hw = NULL; 4507 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 4508 int err, pci_using_dac; 4509 bool disable_dev = false; 4510 4511 err = pci_enable_device(pdev); 4512 if (err) 4513 return err; 4514 4515 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 4516 pci_using_dac = 1; 4517 } else { 4518 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4519 if (err) { 4520 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4521 goto err_dma; 4522 } 4523 pci_using_dac = 0; 4524 } 4525 4526 err = pci_request_regions(pdev, ixgbevf_driver_name); 4527 if (err) { 4528 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4529 goto err_pci_reg; 4530 } 4531 4532 pci_set_master(pdev); 4533 4534 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4535 MAX_TX_QUEUES); 4536 if (!netdev) { 4537 err = -ENOMEM; 4538 goto err_alloc_etherdev; 4539 } 4540 4541 SET_NETDEV_DEV(netdev, &pdev->dev); 4542 4543 adapter = netdev_priv(netdev); 4544 4545 adapter->netdev = netdev; 4546 adapter->pdev = pdev; 4547 hw = &adapter->hw; 4548 hw->back = adapter; 4549 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4550 4551 /* call save state here in standalone driver because it relies on 4552 * adapter struct to exist, and needs to call netdev_priv 4553 */ 4554 pci_save_state(pdev); 4555 4556 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4557 pci_resource_len(pdev, 0)); 4558 adapter->io_addr = hw->hw_addr; 4559 if (!hw->hw_addr) { 4560 err = -EIO; 4561 goto err_ioremap; 4562 } 4563 4564 ixgbevf_assign_netdev_ops(netdev); 4565 4566 /* Setup HW API */ 4567 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4568 hw->mac.type = ii->mac; 4569 4570 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 4571 sizeof(struct ixgbe_mbx_operations)); 4572 4573 /* setup the private structure */ 4574 err = ixgbevf_sw_init(adapter); 4575 if (err) 4576 goto err_sw_init; 4577 4578 /* The HW MAC address was set and/or determined in sw_init */ 4579 if (!is_valid_ether_addr(netdev->dev_addr)) { 4580 pr_err("invalid MAC address\n"); 4581 err = -EIO; 4582 goto err_sw_init; 4583 } 4584 4585 netdev->hw_features = NETIF_F_SG | 4586 NETIF_F_TSO | 4587 NETIF_F_TSO6 | 4588 NETIF_F_RXCSUM | 4589 NETIF_F_HW_CSUM | 4590 NETIF_F_SCTP_CRC; 4591 4592 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4593 NETIF_F_GSO_GRE_CSUM | \ 4594 NETIF_F_GSO_IPXIP4 | \ 4595 NETIF_F_GSO_IPXIP6 | \ 4596 NETIF_F_GSO_UDP_TUNNEL | \ 4597 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4598 4599 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4600 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4601 IXGBEVF_GSO_PARTIAL_FEATURES; 4602 4603 netdev->features = netdev->hw_features; 4604 4605 if (pci_using_dac) 4606 netdev->features |= NETIF_F_HIGHDMA; 4607 4608 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4609 netdev->mpls_features |= NETIF_F_SG | 4610 NETIF_F_TSO | 4611 NETIF_F_TSO6 | 4612 NETIF_F_HW_CSUM; 4613 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4614 netdev->hw_enc_features |= netdev->vlan_features; 4615 4616 /* set this bit last since it cannot be part of vlan_features */ 4617 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4618 NETIF_F_HW_VLAN_CTAG_RX | 4619 NETIF_F_HW_VLAN_CTAG_TX; 4620 4621 netdev->priv_flags |= IFF_UNICAST_FLT; 4622 4623 /* MTU range: 68 - 1504 or 9710 */ 4624 netdev->min_mtu = ETH_MIN_MTU; 4625 switch (adapter->hw.api_version) { 4626 case ixgbe_mbox_api_11: 4627 case ixgbe_mbox_api_12: 4628 case ixgbe_mbox_api_13: 4629 case ixgbe_mbox_api_14: 4630 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4631 (ETH_HLEN + ETH_FCS_LEN); 4632 break; 4633 default: 4634 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4635 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4636 (ETH_HLEN + ETH_FCS_LEN); 4637 else 4638 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4639 break; 4640 } 4641 4642 if (IXGBE_REMOVED(hw->hw_addr)) { 4643 err = -EIO; 4644 goto err_sw_init; 4645 } 4646 4647 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); 4648 4649 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4650 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4651 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4652 4653 err = ixgbevf_init_interrupt_scheme(adapter); 4654 if (err) 4655 goto err_sw_init; 4656 4657 strcpy(netdev->name, "eth%d"); 4658 4659 err = register_netdev(netdev); 4660 if (err) 4661 goto err_register; 4662 4663 pci_set_drvdata(pdev, netdev); 4664 netif_carrier_off(netdev); 4665 ixgbevf_init_ipsec_offload(adapter); 4666 4667 ixgbevf_init_last_counter_stats(adapter); 4668 4669 /* print the VF info */ 4670 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4671 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4672 4673 switch (hw->mac.type) { 4674 case ixgbe_mac_X550_vf: 4675 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4676 break; 4677 case ixgbe_mac_X540_vf: 4678 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4679 break; 4680 case ixgbe_mac_82599_vf: 4681 default: 4682 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4683 break; 4684 } 4685 4686 return 0; 4687 4688 err_register: 4689 ixgbevf_clear_interrupt_scheme(adapter); 4690 err_sw_init: 4691 ixgbevf_reset_interrupt_capability(adapter); 4692 iounmap(adapter->io_addr); 4693 kfree(adapter->rss_key); 4694 err_ioremap: 4695 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4696 free_netdev(netdev); 4697 err_alloc_etherdev: 4698 pci_release_regions(pdev); 4699 err_pci_reg: 4700 err_dma: 4701 if (!adapter || disable_dev) 4702 pci_disable_device(pdev); 4703 return err; 4704 } 4705 4706 /** 4707 * ixgbevf_remove - Device Removal Routine 4708 * @pdev: PCI device information struct 4709 * 4710 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4711 * that it should release a PCI device. The could be caused by a 4712 * Hot-Plug event, or because the driver is going to be removed from 4713 * memory. 4714 **/ 4715 static void ixgbevf_remove(struct pci_dev *pdev) 4716 { 4717 struct net_device *netdev = pci_get_drvdata(pdev); 4718 struct ixgbevf_adapter *adapter; 4719 bool disable_dev; 4720 4721 if (!netdev) 4722 return; 4723 4724 adapter = netdev_priv(netdev); 4725 4726 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4727 cancel_work_sync(&adapter->service_task); 4728 4729 if (netdev->reg_state == NETREG_REGISTERED) 4730 unregister_netdev(netdev); 4731 4732 ixgbevf_stop_ipsec_offload(adapter); 4733 ixgbevf_clear_interrupt_scheme(adapter); 4734 ixgbevf_reset_interrupt_capability(adapter); 4735 4736 iounmap(adapter->io_addr); 4737 pci_release_regions(pdev); 4738 4739 hw_dbg(&adapter->hw, "Remove complete\n"); 4740 4741 kfree(adapter->rss_key); 4742 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4743 free_netdev(netdev); 4744 4745 if (disable_dev) 4746 pci_disable_device(pdev); 4747 } 4748 4749 /** 4750 * ixgbevf_io_error_detected - called when PCI error is detected 4751 * @pdev: Pointer to PCI device 4752 * @state: The current pci connection state 4753 * 4754 * This function is called after a PCI bus error affecting 4755 * this device has been detected. 4756 **/ 4757 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4758 pci_channel_state_t state) 4759 { 4760 struct net_device *netdev = pci_get_drvdata(pdev); 4761 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4762 4763 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4764 return PCI_ERS_RESULT_DISCONNECT; 4765 4766 rtnl_lock(); 4767 netif_device_detach(netdev); 4768 4769 if (netif_running(netdev)) 4770 ixgbevf_close_suspend(adapter); 4771 4772 if (state == pci_channel_io_perm_failure) { 4773 rtnl_unlock(); 4774 return PCI_ERS_RESULT_DISCONNECT; 4775 } 4776 4777 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4778 pci_disable_device(pdev); 4779 rtnl_unlock(); 4780 4781 /* Request a slot slot reset. */ 4782 return PCI_ERS_RESULT_NEED_RESET; 4783 } 4784 4785 /** 4786 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4787 * @pdev: Pointer to PCI device 4788 * 4789 * Restart the card from scratch, as if from a cold-boot. Implementation 4790 * resembles the first-half of the ixgbevf_resume routine. 4791 **/ 4792 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4793 { 4794 struct net_device *netdev = pci_get_drvdata(pdev); 4795 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4796 4797 if (pci_enable_device_mem(pdev)) { 4798 dev_err(&pdev->dev, 4799 "Cannot re-enable PCI device after reset.\n"); 4800 return PCI_ERS_RESULT_DISCONNECT; 4801 } 4802 4803 adapter->hw.hw_addr = adapter->io_addr; 4804 smp_mb__before_atomic(); 4805 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4806 pci_set_master(pdev); 4807 4808 ixgbevf_reset(adapter); 4809 4810 return PCI_ERS_RESULT_RECOVERED; 4811 } 4812 4813 /** 4814 * ixgbevf_io_resume - called when traffic can start flowing again. 4815 * @pdev: Pointer to PCI device 4816 * 4817 * This callback is called when the error recovery driver tells us that 4818 * its OK to resume normal operation. Implementation resembles the 4819 * second-half of the ixgbevf_resume routine. 4820 **/ 4821 static void ixgbevf_io_resume(struct pci_dev *pdev) 4822 { 4823 struct net_device *netdev = pci_get_drvdata(pdev); 4824 4825 rtnl_lock(); 4826 if (netif_running(netdev)) 4827 ixgbevf_open(netdev); 4828 4829 netif_device_attach(netdev); 4830 rtnl_unlock(); 4831 } 4832 4833 /* PCI Error Recovery (ERS) */ 4834 static const struct pci_error_handlers ixgbevf_err_handler = { 4835 .error_detected = ixgbevf_io_error_detected, 4836 .slot_reset = ixgbevf_io_slot_reset, 4837 .resume = ixgbevf_io_resume, 4838 }; 4839 4840 static SIMPLE_DEV_PM_OPS(ixgbevf_pm_ops, ixgbevf_suspend, ixgbevf_resume); 4841 4842 static struct pci_driver ixgbevf_driver = { 4843 .name = ixgbevf_driver_name, 4844 .id_table = ixgbevf_pci_tbl, 4845 .probe = ixgbevf_probe, 4846 .remove = ixgbevf_remove, 4847 4848 /* Power Management Hooks */ 4849 .driver.pm = &ixgbevf_pm_ops, 4850 4851 .shutdown = ixgbevf_shutdown, 4852 .err_handler = &ixgbevf_err_handler 4853 }; 4854 4855 /** 4856 * ixgbevf_init_module - Driver Registration Routine 4857 * 4858 * ixgbevf_init_module is the first routine called when the driver is 4859 * loaded. All it does is register with the PCI subsystem. 4860 **/ 4861 static int __init ixgbevf_init_module(void) 4862 { 4863 pr_info("%s\n", ixgbevf_driver_string); 4864 pr_info("%s\n", ixgbevf_copyright); 4865 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4866 if (!ixgbevf_wq) { 4867 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4868 return -ENOMEM; 4869 } 4870 4871 return pci_register_driver(&ixgbevf_driver); 4872 } 4873 4874 module_init(ixgbevf_init_module); 4875 4876 /** 4877 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4878 * 4879 * ixgbevf_exit_module is called just before the driver is removed 4880 * from memory. 4881 **/ 4882 static void __exit ixgbevf_exit_module(void) 4883 { 4884 pci_unregister_driver(&ixgbevf_driver); 4885 if (ixgbevf_wq) { 4886 destroy_workqueue(ixgbevf_wq); 4887 ixgbevf_wq = NULL; 4888 } 4889 } 4890 4891 #ifdef DEBUG 4892 /** 4893 * ixgbevf_get_hw_dev_name - return device name string 4894 * used by hardware layer to print debugging information 4895 * @hw: pointer to private hardware struct 4896 **/ 4897 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4898 { 4899 struct ixgbevf_adapter *adapter = hw->back; 4900 4901 return adapter->netdev->name; 4902 } 4903 4904 #endif 4905 module_exit(ixgbevf_exit_module); 4906 4907 /* ixgbevf_main.c */ 4908