1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /****************************************************************************** 5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 6 ******************************************************************************/ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/types.h> 11 #include <linux/bitops.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/in.h> 18 #include <linux/ip.h> 19 #include <linux/tcp.h> 20 #include <linux/sctp.h> 21 #include <linux/ipv6.h> 22 #include <linux/slab.h> 23 #include <net/checksum.h> 24 #include <net/ip6_checksum.h> 25 #include <linux/ethtool.h> 26 #include <linux/if.h> 27 #include <linux/if_vlan.h> 28 #include <linux/prefetch.h> 29 #include <net/mpls.h> 30 #include <linux/bpf.h> 31 #include <linux/bpf_trace.h> 32 #include <linux/atomic.h> 33 #include <net/xfrm.h> 34 35 #include "ixgbevf.h" 36 37 const char ixgbevf_driver_name[] = "ixgbevf"; 38 static const char ixgbevf_driver_string[] = 39 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 40 41 static char ixgbevf_copyright[] = 42 "Copyright (c) 2009 - 2018 Intel Corporation."; 43 44 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 45 [board_82599_vf] = &ixgbevf_82599_vf_info, 46 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 47 [board_X540_vf] = &ixgbevf_X540_vf_info, 48 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 49 [board_X550_vf] = &ixgbevf_X550_vf_info, 50 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 51 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 52 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 53 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 54 }; 55 56 /* ixgbevf_pci_tbl - PCI Device ID Table 57 * 58 * Wildcard entries (PCI_ANY_ID) should come last 59 * Last entry must be all 0s 60 * 61 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 62 * Class, Class Mask, private data (not used) } 63 */ 64 static const struct pci_device_id ixgbevf_pci_tbl[] = { 65 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 66 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 74 /* required last entry */ 75 {0, } 76 }; 77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 78 79 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 80 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 81 MODULE_LICENSE("GPL v2"); 82 83 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 84 static int debug = -1; 85 module_param(debug, int, 0); 86 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 87 88 static struct workqueue_struct *ixgbevf_wq; 89 90 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 91 { 92 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 93 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 94 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 95 queue_work(ixgbevf_wq, &adapter->service_task); 96 } 97 98 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 99 { 100 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 101 102 /* flush memory to make sure state is correct before next watchdog */ 103 smp_mb__before_atomic(); 104 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 105 } 106 107 /* forward decls */ 108 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 109 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 110 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 111 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer); 112 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 113 struct ixgbevf_rx_buffer *old_buff); 114 115 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 116 { 117 struct ixgbevf_adapter *adapter = hw->back; 118 119 if (!hw->hw_addr) 120 return; 121 hw->hw_addr = NULL; 122 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 123 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 124 ixgbevf_service_event_schedule(adapter); 125 } 126 127 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 128 { 129 u32 value; 130 131 /* The following check not only optimizes a bit by not 132 * performing a read on the status register when the 133 * register just read was a status register read that 134 * returned IXGBE_FAILED_READ_REG. It also blocks any 135 * potential recursion. 136 */ 137 if (reg == IXGBE_VFSTATUS) { 138 ixgbevf_remove_adapter(hw); 139 return; 140 } 141 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 142 if (value == IXGBE_FAILED_READ_REG) 143 ixgbevf_remove_adapter(hw); 144 } 145 146 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 147 { 148 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 149 u32 value; 150 151 if (IXGBE_REMOVED(reg_addr)) 152 return IXGBE_FAILED_READ_REG; 153 value = readl(reg_addr + reg); 154 if (unlikely(value == IXGBE_FAILED_READ_REG)) 155 ixgbevf_check_remove(hw, reg); 156 return value; 157 } 158 159 /** 160 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 161 * @adapter: pointer to adapter struct 162 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 163 * @queue: queue to map the corresponding interrupt to 164 * @msix_vector: the vector to map to the corresponding queue 165 **/ 166 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 167 u8 queue, u8 msix_vector) 168 { 169 u32 ivar, index; 170 struct ixgbe_hw *hw = &adapter->hw; 171 172 if (direction == -1) { 173 /* other causes */ 174 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 175 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 176 ivar &= ~0xFF; 177 ivar |= msix_vector; 178 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 179 } else { 180 /* Tx or Rx causes */ 181 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 182 index = ((16 * (queue & 1)) + (8 * direction)); 183 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 184 ivar &= ~(0xFF << index); 185 ivar |= (msix_vector << index); 186 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 187 } 188 } 189 190 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 191 { 192 return ring->stats.packets; 193 } 194 195 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 196 { 197 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 198 struct ixgbe_hw *hw = &adapter->hw; 199 200 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 201 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 202 203 if (head != tail) 204 return (head < tail) ? 205 tail - head : (tail + ring->count - head); 206 207 return 0; 208 } 209 210 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 211 { 212 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 213 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 214 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 215 216 clear_check_for_tx_hang(tx_ring); 217 218 /* Check for a hung queue, but be thorough. This verifies 219 * that a transmit has been completed since the previous 220 * check AND there is at least one packet pending. The 221 * ARMED bit is set to indicate a potential hang. 222 */ 223 if ((tx_done_old == tx_done) && tx_pending) { 224 /* make sure it is true for two checks in a row */ 225 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 226 &tx_ring->state); 227 } 228 /* reset the countdown */ 229 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 230 231 /* update completed stats and continue */ 232 tx_ring->tx_stats.tx_done_old = tx_done; 233 234 return false; 235 } 236 237 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 238 { 239 /* Do the reset outside of interrupt context */ 240 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 241 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 242 ixgbevf_service_event_schedule(adapter); 243 } 244 } 245 246 /** 247 * ixgbevf_tx_timeout - Respond to a Tx Hang 248 * @netdev: network interface device structure 249 * @txqueue: transmit queue hanging (unused) 250 **/ 251 static void ixgbevf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) 252 { 253 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 254 255 ixgbevf_tx_timeout_reset(adapter); 256 } 257 258 /** 259 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 260 * @q_vector: board private structure 261 * @tx_ring: tx ring to clean 262 * @napi_budget: Used to determine if we are in netpoll 263 **/ 264 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 265 struct ixgbevf_ring *tx_ring, int napi_budget) 266 { 267 struct ixgbevf_adapter *adapter = q_vector->adapter; 268 struct ixgbevf_tx_buffer *tx_buffer; 269 union ixgbe_adv_tx_desc *tx_desc; 270 unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0; 271 unsigned int budget = tx_ring->count / 2; 272 unsigned int i = tx_ring->next_to_clean; 273 274 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 275 return true; 276 277 tx_buffer = &tx_ring->tx_buffer_info[i]; 278 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 279 i -= tx_ring->count; 280 281 do { 282 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 283 284 /* if next_to_watch is not set then there is no work pending */ 285 if (!eop_desc) 286 break; 287 288 /* prevent any other reads prior to eop_desc */ 289 smp_rmb(); 290 291 /* if DD is not set pending work has not been completed */ 292 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 293 break; 294 295 /* clear next_to_watch to prevent false hangs */ 296 tx_buffer->next_to_watch = NULL; 297 298 /* update the statistics for this packet */ 299 total_bytes += tx_buffer->bytecount; 300 total_packets += tx_buffer->gso_segs; 301 if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC) 302 total_ipsec++; 303 304 /* free the skb */ 305 if (ring_is_xdp(tx_ring)) 306 page_frag_free(tx_buffer->data); 307 else 308 napi_consume_skb(tx_buffer->skb, napi_budget); 309 310 /* unmap skb header data */ 311 dma_unmap_single(tx_ring->dev, 312 dma_unmap_addr(tx_buffer, dma), 313 dma_unmap_len(tx_buffer, len), 314 DMA_TO_DEVICE); 315 316 /* clear tx_buffer data */ 317 dma_unmap_len_set(tx_buffer, len, 0); 318 319 /* unmap remaining buffers */ 320 while (tx_desc != eop_desc) { 321 tx_buffer++; 322 tx_desc++; 323 i++; 324 if (unlikely(!i)) { 325 i -= tx_ring->count; 326 tx_buffer = tx_ring->tx_buffer_info; 327 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 328 } 329 330 /* unmap any remaining paged data */ 331 if (dma_unmap_len(tx_buffer, len)) { 332 dma_unmap_page(tx_ring->dev, 333 dma_unmap_addr(tx_buffer, dma), 334 dma_unmap_len(tx_buffer, len), 335 DMA_TO_DEVICE); 336 dma_unmap_len_set(tx_buffer, len, 0); 337 } 338 } 339 340 /* move us one more past the eop_desc for start of next pkt */ 341 tx_buffer++; 342 tx_desc++; 343 i++; 344 if (unlikely(!i)) { 345 i -= tx_ring->count; 346 tx_buffer = tx_ring->tx_buffer_info; 347 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 348 } 349 350 /* issue prefetch for next Tx descriptor */ 351 prefetch(tx_desc); 352 353 /* update budget accounting */ 354 budget--; 355 } while (likely(budget)); 356 357 i += tx_ring->count; 358 tx_ring->next_to_clean = i; 359 u64_stats_update_begin(&tx_ring->syncp); 360 tx_ring->stats.bytes += total_bytes; 361 tx_ring->stats.packets += total_packets; 362 u64_stats_update_end(&tx_ring->syncp); 363 q_vector->tx.total_bytes += total_bytes; 364 q_vector->tx.total_packets += total_packets; 365 adapter->tx_ipsec += total_ipsec; 366 367 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 368 struct ixgbe_hw *hw = &adapter->hw; 369 union ixgbe_adv_tx_desc *eop_desc; 370 371 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 372 373 pr_err("Detected Tx Unit Hang%s\n" 374 " Tx Queue <%d>\n" 375 " TDH, TDT <%x>, <%x>\n" 376 " next_to_use <%x>\n" 377 " next_to_clean <%x>\n" 378 "tx_buffer_info[next_to_clean]\n" 379 " next_to_watch <%p>\n" 380 " eop_desc->wb.status <%x>\n" 381 " time_stamp <%lx>\n" 382 " jiffies <%lx>\n", 383 ring_is_xdp(tx_ring) ? " XDP" : "", 384 tx_ring->queue_index, 385 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 386 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 387 tx_ring->next_to_use, i, 388 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 389 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 390 391 if (!ring_is_xdp(tx_ring)) 392 netif_stop_subqueue(tx_ring->netdev, 393 tx_ring->queue_index); 394 395 /* schedule immediate reset if we believe we hung */ 396 ixgbevf_tx_timeout_reset(adapter); 397 398 return true; 399 } 400 401 if (ring_is_xdp(tx_ring)) 402 return !!budget; 403 404 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 405 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 406 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 407 /* Make sure that anybody stopping the queue after this 408 * sees the new next_to_clean. 409 */ 410 smp_mb(); 411 412 if (__netif_subqueue_stopped(tx_ring->netdev, 413 tx_ring->queue_index) && 414 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 415 netif_wake_subqueue(tx_ring->netdev, 416 tx_ring->queue_index); 417 ++tx_ring->tx_stats.restart_queue; 418 } 419 } 420 421 return !!budget; 422 } 423 424 /** 425 * ixgbevf_rx_skb - Helper function to determine proper Rx method 426 * @q_vector: structure containing interrupt and ring information 427 * @skb: packet to send up 428 **/ 429 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 430 struct sk_buff *skb) 431 { 432 napi_gro_receive(&q_vector->napi, skb); 433 } 434 435 #define IXGBE_RSS_L4_TYPES_MASK \ 436 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 437 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 438 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 439 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 440 441 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 442 union ixgbe_adv_rx_desc *rx_desc, 443 struct sk_buff *skb) 444 { 445 u16 rss_type; 446 447 if (!(ring->netdev->features & NETIF_F_RXHASH)) 448 return; 449 450 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 451 IXGBE_RXDADV_RSSTYPE_MASK; 452 453 if (!rss_type) 454 return; 455 456 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 457 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 458 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 459 } 460 461 /** 462 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 463 * @ring: structure containig ring specific data 464 * @rx_desc: current Rx descriptor being processed 465 * @skb: skb currently being received and modified 466 **/ 467 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 468 union ixgbe_adv_rx_desc *rx_desc, 469 struct sk_buff *skb) 470 { 471 skb_checksum_none_assert(skb); 472 473 /* Rx csum disabled */ 474 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 475 return; 476 477 /* if IP and error */ 478 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 479 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 480 ring->rx_stats.csum_err++; 481 return; 482 } 483 484 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 485 return; 486 487 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 488 ring->rx_stats.csum_err++; 489 return; 490 } 491 492 /* It must be a TCP or UDP packet with a valid checksum */ 493 skb->ip_summed = CHECKSUM_UNNECESSARY; 494 } 495 496 /** 497 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 498 * @rx_ring: rx descriptor ring packet is being transacted on 499 * @rx_desc: pointer to the EOP Rx descriptor 500 * @skb: pointer to current skb being populated 501 * 502 * This function checks the ring, descriptor, and packet information in 503 * order to populate the checksum, VLAN, protocol, and other fields within 504 * the skb. 505 **/ 506 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 507 union ixgbe_adv_rx_desc *rx_desc, 508 struct sk_buff *skb) 509 { 510 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 511 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 512 513 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 514 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 515 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 516 517 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 518 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 519 } 520 521 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP)) 522 ixgbevf_ipsec_rx(rx_ring, rx_desc, skb); 523 524 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 525 } 526 527 static 528 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring, 529 const unsigned int size) 530 { 531 struct ixgbevf_rx_buffer *rx_buffer; 532 533 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 534 prefetchw(rx_buffer->page); 535 536 /* we are reusing so sync this buffer for CPU use */ 537 dma_sync_single_range_for_cpu(rx_ring->dev, 538 rx_buffer->dma, 539 rx_buffer->page_offset, 540 size, 541 DMA_FROM_DEVICE); 542 543 rx_buffer->pagecnt_bias--; 544 545 return rx_buffer; 546 } 547 548 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring, 549 struct ixgbevf_rx_buffer *rx_buffer, 550 struct sk_buff *skb) 551 { 552 if (ixgbevf_can_reuse_rx_page(rx_buffer)) { 553 /* hand second half of page back to the ring */ 554 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 555 } else { 556 if (IS_ERR(skb)) 557 /* We are not reusing the buffer so unmap it and free 558 * any references we are holding to it 559 */ 560 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 561 ixgbevf_rx_pg_size(rx_ring), 562 DMA_FROM_DEVICE, 563 IXGBEVF_RX_DMA_ATTR); 564 __page_frag_cache_drain(rx_buffer->page, 565 rx_buffer->pagecnt_bias); 566 } 567 568 /* clear contents of rx_buffer */ 569 rx_buffer->page = NULL; 570 } 571 572 /** 573 * ixgbevf_is_non_eop - process handling of non-EOP buffers 574 * @rx_ring: Rx ring being processed 575 * @rx_desc: Rx descriptor for current buffer 576 * 577 * This function updates next to clean. If the buffer is an EOP buffer 578 * this function exits returning false, otherwise it will place the 579 * sk_buff in the next buffer to be chained and return true indicating 580 * that this is in fact a non-EOP buffer. 581 **/ 582 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 583 union ixgbe_adv_rx_desc *rx_desc) 584 { 585 u32 ntc = rx_ring->next_to_clean + 1; 586 587 /* fetch, update, and store next to clean */ 588 ntc = (ntc < rx_ring->count) ? ntc : 0; 589 rx_ring->next_to_clean = ntc; 590 591 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 592 593 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 594 return false; 595 596 return true; 597 } 598 599 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring) 600 { 601 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0; 602 } 603 604 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 605 struct ixgbevf_rx_buffer *bi) 606 { 607 struct page *page = bi->page; 608 dma_addr_t dma; 609 610 /* since we are recycling buffers we should seldom need to alloc */ 611 if (likely(page)) 612 return true; 613 614 /* alloc new page for storage */ 615 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring)); 616 if (unlikely(!page)) { 617 rx_ring->rx_stats.alloc_rx_page_failed++; 618 return false; 619 } 620 621 /* map page for use */ 622 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 623 ixgbevf_rx_pg_size(rx_ring), 624 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); 625 626 /* if mapping failed free memory back to system since 627 * there isn't much point in holding memory we can't use 628 */ 629 if (dma_mapping_error(rx_ring->dev, dma)) { 630 __free_pages(page, ixgbevf_rx_pg_order(rx_ring)); 631 632 rx_ring->rx_stats.alloc_rx_page_failed++; 633 return false; 634 } 635 636 bi->dma = dma; 637 bi->page = page; 638 bi->page_offset = ixgbevf_rx_offset(rx_ring); 639 bi->pagecnt_bias = 1; 640 rx_ring->rx_stats.alloc_rx_page++; 641 642 return true; 643 } 644 645 /** 646 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 647 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 648 * @cleaned_count: number of buffers to replace 649 **/ 650 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 651 u16 cleaned_count) 652 { 653 union ixgbe_adv_rx_desc *rx_desc; 654 struct ixgbevf_rx_buffer *bi; 655 unsigned int i = rx_ring->next_to_use; 656 657 /* nothing to do or no valid netdev defined */ 658 if (!cleaned_count || !rx_ring->netdev) 659 return; 660 661 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 662 bi = &rx_ring->rx_buffer_info[i]; 663 i -= rx_ring->count; 664 665 do { 666 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 667 break; 668 669 /* sync the buffer for use by the device */ 670 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 671 bi->page_offset, 672 ixgbevf_rx_bufsz(rx_ring), 673 DMA_FROM_DEVICE); 674 675 /* Refresh the desc even if pkt_addr didn't change 676 * because each write-back erases this info. 677 */ 678 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 679 680 rx_desc++; 681 bi++; 682 i++; 683 if (unlikely(!i)) { 684 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 685 bi = rx_ring->rx_buffer_info; 686 i -= rx_ring->count; 687 } 688 689 /* clear the length for the next_to_use descriptor */ 690 rx_desc->wb.upper.length = 0; 691 692 cleaned_count--; 693 } while (cleaned_count); 694 695 i += rx_ring->count; 696 697 if (rx_ring->next_to_use != i) { 698 /* record the next descriptor to use */ 699 rx_ring->next_to_use = i; 700 701 /* update next to alloc since we have filled the ring */ 702 rx_ring->next_to_alloc = i; 703 704 /* Force memory writes to complete before letting h/w 705 * know there are new descriptors to fetch. (Only 706 * applicable for weak-ordered memory model archs, 707 * such as IA-64). 708 */ 709 wmb(); 710 ixgbevf_write_tail(rx_ring, i); 711 } 712 } 713 714 /** 715 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 716 * @rx_ring: rx descriptor ring packet is being transacted on 717 * @rx_desc: pointer to the EOP Rx descriptor 718 * @skb: pointer to current skb being fixed 719 * 720 * Check for corrupted packet headers caused by senders on the local L2 721 * embedded NIC switch not setting up their Tx Descriptors right. These 722 * should be very rare. 723 * 724 * Also address the case where we are pulling data in on pages only 725 * and as such no data is present in the skb header. 726 * 727 * In addition if skb is not at least 60 bytes we need to pad it so that 728 * it is large enough to qualify as a valid Ethernet frame. 729 * 730 * Returns true if an error was encountered and skb was freed. 731 **/ 732 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 733 union ixgbe_adv_rx_desc *rx_desc, 734 struct sk_buff *skb) 735 { 736 /* XDP packets use error pointer so abort at this point */ 737 if (IS_ERR(skb)) 738 return true; 739 740 /* verify that the packet does not have any known errors */ 741 if (unlikely(ixgbevf_test_staterr(rx_desc, 742 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 743 struct net_device *netdev = rx_ring->netdev; 744 745 if (!(netdev->features & NETIF_F_RXALL)) { 746 dev_kfree_skb_any(skb); 747 return true; 748 } 749 } 750 751 /* if eth_skb_pad returns an error the skb was freed */ 752 if (eth_skb_pad(skb)) 753 return true; 754 755 return false; 756 } 757 758 /** 759 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 760 * @rx_ring: rx descriptor ring to store buffers on 761 * @old_buff: donor buffer to have page reused 762 * 763 * Synchronizes page for reuse by the adapter 764 **/ 765 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 766 struct ixgbevf_rx_buffer *old_buff) 767 { 768 struct ixgbevf_rx_buffer *new_buff; 769 u16 nta = rx_ring->next_to_alloc; 770 771 new_buff = &rx_ring->rx_buffer_info[nta]; 772 773 /* update, and store next to alloc */ 774 nta++; 775 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 776 777 /* transfer page from old buffer to new buffer */ 778 new_buff->page = old_buff->page; 779 new_buff->dma = old_buff->dma; 780 new_buff->page_offset = old_buff->page_offset; 781 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 782 } 783 784 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer) 785 { 786 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 787 struct page *page = rx_buffer->page; 788 789 /* avoid re-using remote and pfmemalloc pages */ 790 if (!dev_page_is_reusable(page)) 791 return false; 792 793 #if (PAGE_SIZE < 8192) 794 /* if we are only owner of page we can reuse it */ 795 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 796 return false; 797 #else 798 #define IXGBEVF_LAST_OFFSET \ 799 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048) 800 801 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET) 802 return false; 803 804 #endif 805 806 /* If we have drained the page fragment pool we need to update 807 * the pagecnt_bias and page count so that we fully restock the 808 * number of references the driver holds. 809 */ 810 if (unlikely(!pagecnt_bias)) { 811 page_ref_add(page, USHRT_MAX); 812 rx_buffer->pagecnt_bias = USHRT_MAX; 813 } 814 815 return true; 816 } 817 818 /** 819 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 820 * @rx_ring: rx descriptor ring to transact packets on 821 * @rx_buffer: buffer containing page to add 822 * @skb: sk_buff to place the data into 823 * @size: size of buffer to be added 824 * 825 * This function will add the data contained in rx_buffer->page to the skb. 826 **/ 827 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 828 struct ixgbevf_rx_buffer *rx_buffer, 829 struct sk_buff *skb, 830 unsigned int size) 831 { 832 #if (PAGE_SIZE < 8192) 833 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 834 #else 835 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 836 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 837 SKB_DATA_ALIGN(size); 838 #endif 839 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 840 rx_buffer->page_offset, size, truesize); 841 #if (PAGE_SIZE < 8192) 842 rx_buffer->page_offset ^= truesize; 843 #else 844 rx_buffer->page_offset += truesize; 845 #endif 846 } 847 848 static 849 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring, 850 struct ixgbevf_rx_buffer *rx_buffer, 851 struct xdp_buff *xdp, 852 union ixgbe_adv_rx_desc *rx_desc) 853 { 854 unsigned int size = xdp->data_end - xdp->data; 855 #if (PAGE_SIZE < 8192) 856 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 857 #else 858 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 859 xdp->data_hard_start); 860 #endif 861 unsigned int headlen; 862 struct sk_buff *skb; 863 864 /* prefetch first cache line of first page */ 865 net_prefetch(xdp->data); 866 867 /* Note, we get here by enabling legacy-rx via: 868 * 869 * ethtool --set-priv-flags <dev> legacy-rx on 870 * 871 * In this mode, we currently get 0 extra XDP headroom as 872 * opposed to having legacy-rx off, where we process XDP 873 * packets going to stack via ixgbevf_build_skb(). 874 * 875 * For ixgbevf_construct_skb() mode it means that the 876 * xdp->data_meta will always point to xdp->data, since 877 * the helper cannot expand the head. Should this ever 878 * changed in future for legacy-rx mode on, then lets also 879 * add xdp->data_meta handling here. 880 */ 881 882 /* allocate a skb to store the frags */ 883 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE); 884 if (unlikely(!skb)) 885 return NULL; 886 887 /* Determine available headroom for copy */ 888 headlen = size; 889 if (headlen > IXGBEVF_RX_HDR_SIZE) 890 headlen = eth_get_headlen(skb->dev, xdp->data, 891 IXGBEVF_RX_HDR_SIZE); 892 893 /* align pull length to size of long to optimize memcpy performance */ 894 memcpy(__skb_put(skb, headlen), xdp->data, 895 ALIGN(headlen, sizeof(long))); 896 897 /* update all of the pointers */ 898 size -= headlen; 899 if (size) { 900 skb_add_rx_frag(skb, 0, rx_buffer->page, 901 (xdp->data + headlen) - 902 page_address(rx_buffer->page), 903 size, truesize); 904 #if (PAGE_SIZE < 8192) 905 rx_buffer->page_offset ^= truesize; 906 #else 907 rx_buffer->page_offset += truesize; 908 #endif 909 } else { 910 rx_buffer->pagecnt_bias++; 911 } 912 913 return skb; 914 } 915 916 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 917 u32 qmask) 918 { 919 struct ixgbe_hw *hw = &adapter->hw; 920 921 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 922 } 923 924 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring, 925 struct ixgbevf_rx_buffer *rx_buffer, 926 struct xdp_buff *xdp, 927 union ixgbe_adv_rx_desc *rx_desc) 928 { 929 unsigned int metasize = xdp->data - xdp->data_meta; 930 #if (PAGE_SIZE < 8192) 931 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 932 #else 933 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 934 SKB_DATA_ALIGN(xdp->data_end - 935 xdp->data_hard_start); 936 #endif 937 struct sk_buff *skb; 938 939 /* Prefetch first cache line of first page. If xdp->data_meta 940 * is unused, this points to xdp->data, otherwise, we likely 941 * have a consumer accessing first few bytes of meta data, 942 * and then actual data. 943 */ 944 net_prefetch(xdp->data_meta); 945 946 /* build an skb around the page buffer */ 947 skb = build_skb(xdp->data_hard_start, truesize); 948 if (unlikely(!skb)) 949 return NULL; 950 951 /* update pointers within the skb to store the data */ 952 skb_reserve(skb, xdp->data - xdp->data_hard_start); 953 __skb_put(skb, xdp->data_end - xdp->data); 954 if (metasize) 955 skb_metadata_set(skb, metasize); 956 957 /* update buffer offset */ 958 #if (PAGE_SIZE < 8192) 959 rx_buffer->page_offset ^= truesize; 960 #else 961 rx_buffer->page_offset += truesize; 962 #endif 963 964 return skb; 965 } 966 967 #define IXGBEVF_XDP_PASS 0 968 #define IXGBEVF_XDP_CONSUMED 1 969 #define IXGBEVF_XDP_TX 2 970 971 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring, 972 struct xdp_buff *xdp) 973 { 974 struct ixgbevf_tx_buffer *tx_buffer; 975 union ixgbe_adv_tx_desc *tx_desc; 976 u32 len, cmd_type; 977 dma_addr_t dma; 978 u16 i; 979 980 len = xdp->data_end - xdp->data; 981 982 if (unlikely(!ixgbevf_desc_unused(ring))) 983 return IXGBEVF_XDP_CONSUMED; 984 985 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE); 986 if (dma_mapping_error(ring->dev, dma)) 987 return IXGBEVF_XDP_CONSUMED; 988 989 /* record the location of the first descriptor for this packet */ 990 i = ring->next_to_use; 991 tx_buffer = &ring->tx_buffer_info[i]; 992 993 dma_unmap_len_set(tx_buffer, len, len); 994 dma_unmap_addr_set(tx_buffer, dma, dma); 995 tx_buffer->data = xdp->data; 996 tx_buffer->bytecount = len; 997 tx_buffer->gso_segs = 1; 998 tx_buffer->protocol = 0; 999 1000 /* Populate minimal context descriptor that will provide for the 1001 * fact that we are expected to process Ethernet frames. 1002 */ 1003 if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) { 1004 struct ixgbe_adv_tx_context_desc *context_desc; 1005 1006 set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1007 1008 context_desc = IXGBEVF_TX_CTXTDESC(ring, 0); 1009 context_desc->vlan_macip_lens = 1010 cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT); 1011 context_desc->fceof_saidx = 0; 1012 context_desc->type_tucmd_mlhl = 1013 cpu_to_le32(IXGBE_TXD_CMD_DEXT | 1014 IXGBE_ADVTXD_DTYP_CTXT); 1015 context_desc->mss_l4len_idx = 0; 1016 1017 i = 1; 1018 } 1019 1020 /* put descriptor type bits */ 1021 cmd_type = IXGBE_ADVTXD_DTYP_DATA | 1022 IXGBE_ADVTXD_DCMD_DEXT | 1023 IXGBE_ADVTXD_DCMD_IFCS; 1024 cmd_type |= len | IXGBE_TXD_CMD; 1025 1026 tx_desc = IXGBEVF_TX_DESC(ring, i); 1027 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1028 1029 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1030 tx_desc->read.olinfo_status = 1031 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) | 1032 IXGBE_ADVTXD_CC); 1033 1034 /* Avoid any potential race with cleanup */ 1035 smp_wmb(); 1036 1037 /* set next_to_watch value indicating a packet is present */ 1038 i++; 1039 if (i == ring->count) 1040 i = 0; 1041 1042 tx_buffer->next_to_watch = tx_desc; 1043 ring->next_to_use = i; 1044 1045 return IXGBEVF_XDP_TX; 1046 } 1047 1048 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter, 1049 struct ixgbevf_ring *rx_ring, 1050 struct xdp_buff *xdp) 1051 { 1052 int result = IXGBEVF_XDP_PASS; 1053 struct ixgbevf_ring *xdp_ring; 1054 struct bpf_prog *xdp_prog; 1055 u32 act; 1056 1057 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1058 1059 if (!xdp_prog) 1060 goto xdp_out; 1061 1062 act = bpf_prog_run_xdp(xdp_prog, xdp); 1063 switch (act) { 1064 case XDP_PASS: 1065 break; 1066 case XDP_TX: 1067 xdp_ring = adapter->xdp_ring[rx_ring->queue_index]; 1068 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp); 1069 if (result == IXGBEVF_XDP_CONSUMED) 1070 goto out_failure; 1071 break; 1072 default: 1073 bpf_warn_invalid_xdp_action(act); 1074 fallthrough; 1075 case XDP_ABORTED: 1076 out_failure: 1077 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 1078 fallthrough; /* handle aborts by dropping packet */ 1079 case XDP_DROP: 1080 result = IXGBEVF_XDP_CONSUMED; 1081 break; 1082 } 1083 xdp_out: 1084 return ERR_PTR(-result); 1085 } 1086 1087 static unsigned int ixgbevf_rx_frame_truesize(struct ixgbevf_ring *rx_ring, 1088 unsigned int size) 1089 { 1090 unsigned int truesize; 1091 1092 #if (PAGE_SIZE < 8192) 1093 truesize = ixgbevf_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 1094 #else 1095 truesize = ring_uses_build_skb(rx_ring) ? 1096 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) + 1097 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 1098 SKB_DATA_ALIGN(size); 1099 #endif 1100 return truesize; 1101 } 1102 1103 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring, 1104 struct ixgbevf_rx_buffer *rx_buffer, 1105 unsigned int size) 1106 { 1107 unsigned int truesize = ixgbevf_rx_frame_truesize(rx_ring, size); 1108 1109 #if (PAGE_SIZE < 8192) 1110 rx_buffer->page_offset ^= truesize; 1111 #else 1112 rx_buffer->page_offset += truesize; 1113 #endif 1114 } 1115 1116 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 1117 struct ixgbevf_ring *rx_ring, 1118 int budget) 1119 { 1120 unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0; 1121 struct ixgbevf_adapter *adapter = q_vector->adapter; 1122 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 1123 struct sk_buff *skb = rx_ring->skb; 1124 bool xdp_xmit = false; 1125 struct xdp_buff xdp; 1126 1127 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1128 #if (PAGE_SIZE < 8192) 1129 frame_sz = ixgbevf_rx_frame_truesize(rx_ring, 0); 1130 #endif 1131 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 1132 1133 while (likely(total_rx_packets < budget)) { 1134 struct ixgbevf_rx_buffer *rx_buffer; 1135 union ixgbe_adv_rx_desc *rx_desc; 1136 unsigned int size; 1137 1138 /* return some buffers to hardware, one at a time is too slow */ 1139 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 1140 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 1141 cleaned_count = 0; 1142 } 1143 1144 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1145 size = le16_to_cpu(rx_desc->wb.upper.length); 1146 if (!size) 1147 break; 1148 1149 /* This memory barrier is needed to keep us from reading 1150 * any other fields out of the rx_desc until we know the 1151 * RXD_STAT_DD bit is set 1152 */ 1153 rmb(); 1154 1155 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size); 1156 1157 /* retrieve a buffer from the ring */ 1158 if (!skb) { 1159 unsigned int offset = ixgbevf_rx_offset(rx_ring); 1160 unsigned char *hard_start; 1161 1162 hard_start = page_address(rx_buffer->page) + 1163 rx_buffer->page_offset - offset; 1164 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 1165 #if (PAGE_SIZE > 4096) 1166 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1167 xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, size); 1168 #endif 1169 skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp); 1170 } 1171 1172 if (IS_ERR(skb)) { 1173 if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) { 1174 xdp_xmit = true; 1175 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer, 1176 size); 1177 } else { 1178 rx_buffer->pagecnt_bias++; 1179 } 1180 total_rx_packets++; 1181 total_rx_bytes += size; 1182 } else if (skb) { 1183 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1184 } else if (ring_uses_build_skb(rx_ring)) { 1185 skb = ixgbevf_build_skb(rx_ring, rx_buffer, 1186 &xdp, rx_desc); 1187 } else { 1188 skb = ixgbevf_construct_skb(rx_ring, rx_buffer, 1189 &xdp, rx_desc); 1190 } 1191 1192 /* exit if we failed to retrieve a buffer */ 1193 if (!skb) { 1194 rx_ring->rx_stats.alloc_rx_buff_failed++; 1195 rx_buffer->pagecnt_bias++; 1196 break; 1197 } 1198 1199 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb); 1200 cleaned_count++; 1201 1202 /* fetch next buffer in frame if non-eop */ 1203 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 1204 continue; 1205 1206 /* verify the packet layout is correct */ 1207 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 1208 skb = NULL; 1209 continue; 1210 } 1211 1212 /* probably a little skewed due to removing CRC */ 1213 total_rx_bytes += skb->len; 1214 1215 /* Workaround hardware that can't do proper VEPA multicast 1216 * source pruning. 1217 */ 1218 if ((skb->pkt_type == PACKET_BROADCAST || 1219 skb->pkt_type == PACKET_MULTICAST) && 1220 ether_addr_equal(rx_ring->netdev->dev_addr, 1221 eth_hdr(skb)->h_source)) { 1222 dev_kfree_skb_irq(skb); 1223 continue; 1224 } 1225 1226 /* populate checksum, VLAN, and protocol */ 1227 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 1228 1229 ixgbevf_rx_skb(q_vector, skb); 1230 1231 /* reset skb pointer */ 1232 skb = NULL; 1233 1234 /* update budget accounting */ 1235 total_rx_packets++; 1236 } 1237 1238 /* place incomplete frames back on ring for completion */ 1239 rx_ring->skb = skb; 1240 1241 if (xdp_xmit) { 1242 struct ixgbevf_ring *xdp_ring = 1243 adapter->xdp_ring[rx_ring->queue_index]; 1244 1245 /* Force memory writes to complete before letting h/w 1246 * know there are new descriptors to fetch. 1247 */ 1248 wmb(); 1249 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use); 1250 } 1251 1252 u64_stats_update_begin(&rx_ring->syncp); 1253 rx_ring->stats.packets += total_rx_packets; 1254 rx_ring->stats.bytes += total_rx_bytes; 1255 u64_stats_update_end(&rx_ring->syncp); 1256 q_vector->rx.total_packets += total_rx_packets; 1257 q_vector->rx.total_bytes += total_rx_bytes; 1258 1259 return total_rx_packets; 1260 } 1261 1262 /** 1263 * ixgbevf_poll - NAPI polling calback 1264 * @napi: napi struct with our devices info in it 1265 * @budget: amount of work driver is allowed to do this pass, in packets 1266 * 1267 * This function will clean more than one or more rings associated with a 1268 * q_vector. 1269 **/ 1270 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1271 { 1272 struct ixgbevf_q_vector *q_vector = 1273 container_of(napi, struct ixgbevf_q_vector, napi); 1274 struct ixgbevf_adapter *adapter = q_vector->adapter; 1275 struct ixgbevf_ring *ring; 1276 int per_ring_budget, work_done = 0; 1277 bool clean_complete = true; 1278 1279 ixgbevf_for_each_ring(ring, q_vector->tx) { 1280 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1281 clean_complete = false; 1282 } 1283 1284 if (budget <= 0) 1285 return budget; 1286 1287 /* attempt to distribute budget to each queue fairly, but don't allow 1288 * the budget to go below 1 because we'll exit polling 1289 */ 1290 if (q_vector->rx.count > 1) 1291 per_ring_budget = max(budget/q_vector->rx.count, 1); 1292 else 1293 per_ring_budget = budget; 1294 1295 ixgbevf_for_each_ring(ring, q_vector->rx) { 1296 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1297 per_ring_budget); 1298 work_done += cleaned; 1299 if (cleaned >= per_ring_budget) 1300 clean_complete = false; 1301 } 1302 1303 /* If all work not completed, return budget and keep polling */ 1304 if (!clean_complete) 1305 return budget; 1306 1307 /* Exit the polling mode, but don't re-enable interrupts if stack might 1308 * poll us due to busy-polling 1309 */ 1310 if (likely(napi_complete_done(napi, work_done))) { 1311 if (adapter->rx_itr_setting == 1) 1312 ixgbevf_set_itr(q_vector); 1313 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1314 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1315 ixgbevf_irq_enable_queues(adapter, 1316 BIT(q_vector->v_idx)); 1317 } 1318 1319 return min(work_done, budget - 1); 1320 } 1321 1322 /** 1323 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1324 * @q_vector: structure containing interrupt and ring information 1325 **/ 1326 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1327 { 1328 struct ixgbevf_adapter *adapter = q_vector->adapter; 1329 struct ixgbe_hw *hw = &adapter->hw; 1330 int v_idx = q_vector->v_idx; 1331 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1332 1333 /* set the WDIS bit to not clear the timer bits and cause an 1334 * immediate assertion of the interrupt 1335 */ 1336 itr_reg |= IXGBE_EITR_CNT_WDIS; 1337 1338 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1339 } 1340 1341 /** 1342 * ixgbevf_configure_msix - Configure MSI-X hardware 1343 * @adapter: board private structure 1344 * 1345 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1346 * interrupts. 1347 **/ 1348 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1349 { 1350 struct ixgbevf_q_vector *q_vector; 1351 int q_vectors, v_idx; 1352 1353 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1354 adapter->eims_enable_mask = 0; 1355 1356 /* Populate the IVAR table and set the ITR values to the 1357 * corresponding register. 1358 */ 1359 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1360 struct ixgbevf_ring *ring; 1361 1362 q_vector = adapter->q_vector[v_idx]; 1363 1364 ixgbevf_for_each_ring(ring, q_vector->rx) 1365 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1366 1367 ixgbevf_for_each_ring(ring, q_vector->tx) 1368 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1369 1370 if (q_vector->tx.ring && !q_vector->rx.ring) { 1371 /* Tx only vector */ 1372 if (adapter->tx_itr_setting == 1) 1373 q_vector->itr = IXGBE_12K_ITR; 1374 else 1375 q_vector->itr = adapter->tx_itr_setting; 1376 } else { 1377 /* Rx or Rx/Tx vector */ 1378 if (adapter->rx_itr_setting == 1) 1379 q_vector->itr = IXGBE_20K_ITR; 1380 else 1381 q_vector->itr = adapter->rx_itr_setting; 1382 } 1383 1384 /* add q_vector eims value to global eims_enable_mask */ 1385 adapter->eims_enable_mask |= BIT(v_idx); 1386 1387 ixgbevf_write_eitr(q_vector); 1388 } 1389 1390 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1391 /* setup eims_other and add value to global eims_enable_mask */ 1392 adapter->eims_other = BIT(v_idx); 1393 adapter->eims_enable_mask |= adapter->eims_other; 1394 } 1395 1396 enum latency_range { 1397 lowest_latency = 0, 1398 low_latency = 1, 1399 bulk_latency = 2, 1400 latency_invalid = 255 1401 }; 1402 1403 /** 1404 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1405 * @q_vector: structure containing interrupt and ring information 1406 * @ring_container: structure containing ring performance data 1407 * 1408 * Stores a new ITR value based on packets and byte 1409 * counts during the last interrupt. The advantage of per interrupt 1410 * computation is faster updates and more accurate ITR for the current 1411 * traffic pattern. Constants in this function were computed 1412 * based on theoretical maximum wire speed and thresholds were set based 1413 * on testing data as well as attempting to minimize response time 1414 * while increasing bulk throughput. 1415 **/ 1416 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1417 struct ixgbevf_ring_container *ring_container) 1418 { 1419 int bytes = ring_container->total_bytes; 1420 int packets = ring_container->total_packets; 1421 u32 timepassed_us; 1422 u64 bytes_perint; 1423 u8 itr_setting = ring_container->itr; 1424 1425 if (packets == 0) 1426 return; 1427 1428 /* simple throttle rate management 1429 * 0-20MB/s lowest (100000 ints/s) 1430 * 20-100MB/s low (20000 ints/s) 1431 * 100-1249MB/s bulk (12000 ints/s) 1432 */ 1433 /* what was last interrupt timeslice? */ 1434 timepassed_us = q_vector->itr >> 2; 1435 if (timepassed_us == 0) 1436 return; 1437 1438 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1439 1440 switch (itr_setting) { 1441 case lowest_latency: 1442 if (bytes_perint > 10) 1443 itr_setting = low_latency; 1444 break; 1445 case low_latency: 1446 if (bytes_perint > 20) 1447 itr_setting = bulk_latency; 1448 else if (bytes_perint <= 10) 1449 itr_setting = lowest_latency; 1450 break; 1451 case bulk_latency: 1452 if (bytes_perint <= 20) 1453 itr_setting = low_latency; 1454 break; 1455 } 1456 1457 /* clear work counters since we have the values we need */ 1458 ring_container->total_bytes = 0; 1459 ring_container->total_packets = 0; 1460 1461 /* write updated itr to ring container */ 1462 ring_container->itr = itr_setting; 1463 } 1464 1465 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1466 { 1467 u32 new_itr = q_vector->itr; 1468 u8 current_itr; 1469 1470 ixgbevf_update_itr(q_vector, &q_vector->tx); 1471 ixgbevf_update_itr(q_vector, &q_vector->rx); 1472 1473 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1474 1475 switch (current_itr) { 1476 /* counts and packets in update_itr are dependent on these numbers */ 1477 case lowest_latency: 1478 new_itr = IXGBE_100K_ITR; 1479 break; 1480 case low_latency: 1481 new_itr = IXGBE_20K_ITR; 1482 break; 1483 case bulk_latency: 1484 new_itr = IXGBE_12K_ITR; 1485 break; 1486 default: 1487 break; 1488 } 1489 1490 if (new_itr != q_vector->itr) { 1491 /* do an exponential smoothing */ 1492 new_itr = (10 * new_itr * q_vector->itr) / 1493 ((9 * new_itr) + q_vector->itr); 1494 1495 /* save the algorithm value here */ 1496 q_vector->itr = new_itr; 1497 1498 ixgbevf_write_eitr(q_vector); 1499 } 1500 } 1501 1502 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1503 { 1504 struct ixgbevf_adapter *adapter = data; 1505 struct ixgbe_hw *hw = &adapter->hw; 1506 1507 hw->mac.get_link_status = 1; 1508 1509 ixgbevf_service_event_schedule(adapter); 1510 1511 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1512 1513 return IRQ_HANDLED; 1514 } 1515 1516 /** 1517 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1518 * @irq: unused 1519 * @data: pointer to our q_vector struct for this interrupt vector 1520 **/ 1521 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1522 { 1523 struct ixgbevf_q_vector *q_vector = data; 1524 1525 /* EIAM disabled interrupts (on this vector) for us */ 1526 if (q_vector->rx.ring || q_vector->tx.ring) 1527 napi_schedule_irqoff(&q_vector->napi); 1528 1529 return IRQ_HANDLED; 1530 } 1531 1532 /** 1533 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1534 * @adapter: board private structure 1535 * 1536 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1537 * interrupts from the kernel. 1538 **/ 1539 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1540 { 1541 struct net_device *netdev = adapter->netdev; 1542 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1543 unsigned int ri = 0, ti = 0; 1544 int vector, err; 1545 1546 for (vector = 0; vector < q_vectors; vector++) { 1547 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1548 struct msix_entry *entry = &adapter->msix_entries[vector]; 1549 1550 if (q_vector->tx.ring && q_vector->rx.ring) { 1551 snprintf(q_vector->name, sizeof(q_vector->name), 1552 "%s-TxRx-%u", netdev->name, ri++); 1553 ti++; 1554 } else if (q_vector->rx.ring) { 1555 snprintf(q_vector->name, sizeof(q_vector->name), 1556 "%s-rx-%u", netdev->name, ri++); 1557 } else if (q_vector->tx.ring) { 1558 snprintf(q_vector->name, sizeof(q_vector->name), 1559 "%s-tx-%u", netdev->name, ti++); 1560 } else { 1561 /* skip this unused q_vector */ 1562 continue; 1563 } 1564 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1565 q_vector->name, q_vector); 1566 if (err) { 1567 hw_dbg(&adapter->hw, 1568 "request_irq failed for MSIX interrupt Error: %d\n", 1569 err); 1570 goto free_queue_irqs; 1571 } 1572 } 1573 1574 err = request_irq(adapter->msix_entries[vector].vector, 1575 &ixgbevf_msix_other, 0, netdev->name, adapter); 1576 if (err) { 1577 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1578 err); 1579 goto free_queue_irqs; 1580 } 1581 1582 return 0; 1583 1584 free_queue_irqs: 1585 while (vector) { 1586 vector--; 1587 free_irq(adapter->msix_entries[vector].vector, 1588 adapter->q_vector[vector]); 1589 } 1590 /* This failure is non-recoverable - it indicates the system is 1591 * out of MSIX vector resources and the VF driver cannot run 1592 * without them. Set the number of msix vectors to zero 1593 * indicating that not enough can be allocated. The error 1594 * will be returned to the user indicating device open failed. 1595 * Any further attempts to force the driver to open will also 1596 * fail. The only way to recover is to unload the driver and 1597 * reload it again. If the system has recovered some MSIX 1598 * vectors then it may succeed. 1599 */ 1600 adapter->num_msix_vectors = 0; 1601 return err; 1602 } 1603 1604 /** 1605 * ixgbevf_request_irq - initialize interrupts 1606 * @adapter: board private structure 1607 * 1608 * Attempts to configure interrupts using the best available 1609 * capabilities of the hardware and kernel. 1610 **/ 1611 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1612 { 1613 int err = ixgbevf_request_msix_irqs(adapter); 1614 1615 if (err) 1616 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1617 1618 return err; 1619 } 1620 1621 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1622 { 1623 int i, q_vectors; 1624 1625 if (!adapter->msix_entries) 1626 return; 1627 1628 q_vectors = adapter->num_msix_vectors; 1629 i = q_vectors - 1; 1630 1631 free_irq(adapter->msix_entries[i].vector, adapter); 1632 i--; 1633 1634 for (; i >= 0; i--) { 1635 /* free only the irqs that were actually requested */ 1636 if (!adapter->q_vector[i]->rx.ring && 1637 !adapter->q_vector[i]->tx.ring) 1638 continue; 1639 1640 free_irq(adapter->msix_entries[i].vector, 1641 adapter->q_vector[i]); 1642 } 1643 } 1644 1645 /** 1646 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1647 * @adapter: board private structure 1648 **/ 1649 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1650 { 1651 struct ixgbe_hw *hw = &adapter->hw; 1652 int i; 1653 1654 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1655 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1656 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1657 1658 IXGBE_WRITE_FLUSH(hw); 1659 1660 for (i = 0; i < adapter->num_msix_vectors; i++) 1661 synchronize_irq(adapter->msix_entries[i].vector); 1662 } 1663 1664 /** 1665 * ixgbevf_irq_enable - Enable default interrupt generation settings 1666 * @adapter: board private structure 1667 **/ 1668 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1669 { 1670 struct ixgbe_hw *hw = &adapter->hw; 1671 1672 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1673 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1674 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1675 } 1676 1677 /** 1678 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1679 * @adapter: board private structure 1680 * @ring: structure containing ring specific data 1681 * 1682 * Configure the Tx descriptor ring after a reset. 1683 **/ 1684 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1685 struct ixgbevf_ring *ring) 1686 { 1687 struct ixgbe_hw *hw = &adapter->hw; 1688 u64 tdba = ring->dma; 1689 int wait_loop = 10; 1690 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1691 u8 reg_idx = ring->reg_idx; 1692 1693 /* disable queue to avoid issues while updating state */ 1694 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1695 IXGBE_WRITE_FLUSH(hw); 1696 1697 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1698 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1699 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1700 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1701 1702 /* disable head writeback */ 1703 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1704 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1705 1706 /* enable relaxed ordering */ 1707 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1708 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1709 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1710 1711 /* reset head and tail pointers */ 1712 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1713 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1714 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1715 1716 /* reset ntu and ntc to place SW in sync with hardwdare */ 1717 ring->next_to_clean = 0; 1718 ring->next_to_use = 0; 1719 1720 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1721 * to or less than the number of on chip descriptors, which is 1722 * currently 40. 1723 */ 1724 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1725 1726 /* Setting PTHRESH to 32 both improves performance */ 1727 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1728 32; /* PTHRESH = 32 */ 1729 1730 /* reinitialize tx_buffer_info */ 1731 memset(ring->tx_buffer_info, 0, 1732 sizeof(struct ixgbevf_tx_buffer) * ring->count); 1733 1734 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1735 clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1736 1737 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1738 1739 /* poll to verify queue is enabled */ 1740 do { 1741 usleep_range(1000, 2000); 1742 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1743 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1744 if (!wait_loop) 1745 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1746 } 1747 1748 /** 1749 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1750 * @adapter: board private structure 1751 * 1752 * Configure the Tx unit of the MAC after a reset. 1753 **/ 1754 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1755 { 1756 u32 i; 1757 1758 /* Setup the HW Tx Head and Tail descriptor pointers */ 1759 for (i = 0; i < adapter->num_tx_queues; i++) 1760 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1761 for (i = 0; i < adapter->num_xdp_queues; i++) 1762 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]); 1763 } 1764 1765 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1766 1767 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, 1768 struct ixgbevf_ring *ring, int index) 1769 { 1770 struct ixgbe_hw *hw = &adapter->hw; 1771 u32 srrctl; 1772 1773 srrctl = IXGBE_SRRCTL_DROP_EN; 1774 1775 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1776 if (ring_uses_large_buffer(ring)) 1777 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1778 else 1779 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1780 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1781 1782 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1783 } 1784 1785 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1786 { 1787 struct ixgbe_hw *hw = &adapter->hw; 1788 1789 /* PSRTYPE must be initialized in 82599 */ 1790 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1791 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1792 IXGBE_PSRTYPE_L2HDR; 1793 1794 if (adapter->num_rx_queues > 1) 1795 psrtype |= BIT(29); 1796 1797 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1798 } 1799 1800 #define IXGBEVF_MAX_RX_DESC_POLL 10 1801 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1802 struct ixgbevf_ring *ring) 1803 { 1804 struct ixgbe_hw *hw = &adapter->hw; 1805 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1806 u32 rxdctl; 1807 u8 reg_idx = ring->reg_idx; 1808 1809 if (IXGBE_REMOVED(hw->hw_addr)) 1810 return; 1811 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1812 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1813 1814 /* write value back with RXDCTL.ENABLE bit cleared */ 1815 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1816 1817 /* the hardware may take up to 100us to really disable the Rx queue */ 1818 do { 1819 udelay(10); 1820 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1821 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1822 1823 if (!wait_loop) 1824 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1825 reg_idx); 1826 } 1827 1828 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1829 struct ixgbevf_ring *ring) 1830 { 1831 struct ixgbe_hw *hw = &adapter->hw; 1832 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1833 u32 rxdctl; 1834 u8 reg_idx = ring->reg_idx; 1835 1836 if (IXGBE_REMOVED(hw->hw_addr)) 1837 return; 1838 do { 1839 usleep_range(1000, 2000); 1840 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1841 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1842 1843 if (!wait_loop) 1844 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1845 reg_idx); 1846 } 1847 1848 /** 1849 * ixgbevf_init_rss_key - Initialize adapter RSS key 1850 * @adapter: device handle 1851 * 1852 * Allocates and initializes the RSS key if it is not allocated. 1853 **/ 1854 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1855 { 1856 u32 *rss_key; 1857 1858 if (!adapter->rss_key) { 1859 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1860 if (unlikely(!rss_key)) 1861 return -ENOMEM; 1862 1863 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1864 adapter->rss_key = rss_key; 1865 } 1866 1867 return 0; 1868 } 1869 1870 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1871 { 1872 struct ixgbe_hw *hw = &adapter->hw; 1873 u32 vfmrqc = 0, vfreta = 0; 1874 u16 rss_i = adapter->num_rx_queues; 1875 u8 i, j; 1876 1877 /* Fill out hash function seeds */ 1878 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1879 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1880 1881 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1882 if (j == rss_i) 1883 j = 0; 1884 1885 adapter->rss_indir_tbl[i] = j; 1886 1887 vfreta |= j << (i & 0x3) * 8; 1888 if ((i & 3) == 3) { 1889 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1890 vfreta = 0; 1891 } 1892 } 1893 1894 /* Perform hash on these packet types */ 1895 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1896 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1897 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1898 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1899 1900 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1901 1902 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1903 } 1904 1905 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1906 struct ixgbevf_ring *ring) 1907 { 1908 struct ixgbe_hw *hw = &adapter->hw; 1909 union ixgbe_adv_rx_desc *rx_desc; 1910 u64 rdba = ring->dma; 1911 u32 rxdctl; 1912 u8 reg_idx = ring->reg_idx; 1913 1914 /* disable queue to avoid issues while updating state */ 1915 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1916 ixgbevf_disable_rx_queue(adapter, ring); 1917 1918 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1919 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1920 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1921 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1922 1923 #ifndef CONFIG_SPARC 1924 /* enable relaxed ordering */ 1925 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1926 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1927 #else 1928 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1929 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1930 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1931 #endif 1932 1933 /* reset head and tail pointers */ 1934 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1935 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1936 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1937 1938 /* initialize rx_buffer_info */ 1939 memset(ring->rx_buffer_info, 0, 1940 sizeof(struct ixgbevf_rx_buffer) * ring->count); 1941 1942 /* initialize Rx descriptor 0 */ 1943 rx_desc = IXGBEVF_RX_DESC(ring, 0); 1944 rx_desc->wb.upper.length = 0; 1945 1946 /* reset ntu and ntc to place SW in sync with hardwdare */ 1947 ring->next_to_clean = 0; 1948 ring->next_to_use = 0; 1949 ring->next_to_alloc = 0; 1950 1951 ixgbevf_configure_srrctl(adapter, ring, reg_idx); 1952 1953 /* RXDCTL.RLPML does not work on 82599 */ 1954 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) { 1955 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK | 1956 IXGBE_RXDCTL_RLPML_EN); 1957 1958 #if (PAGE_SIZE < 8192) 1959 /* Limit the maximum frame size so we don't overrun the skb */ 1960 if (ring_uses_build_skb(ring) && 1961 !ring_uses_large_buffer(ring)) 1962 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB | 1963 IXGBE_RXDCTL_RLPML_EN; 1964 #endif 1965 } 1966 1967 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1968 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1969 1970 ixgbevf_rx_desc_queue_enable(adapter, ring); 1971 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1972 } 1973 1974 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter, 1975 struct ixgbevf_ring *rx_ring) 1976 { 1977 struct net_device *netdev = adapter->netdev; 1978 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1979 1980 /* set build_skb and buffer size flags */ 1981 clear_ring_build_skb_enabled(rx_ring); 1982 clear_ring_uses_large_buffer(rx_ring); 1983 1984 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX) 1985 return; 1986 1987 set_ring_build_skb_enabled(rx_ring); 1988 1989 if (PAGE_SIZE < 8192) { 1990 if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB) 1991 return; 1992 1993 set_ring_uses_large_buffer(rx_ring); 1994 } 1995 } 1996 1997 /** 1998 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 1999 * @adapter: board private structure 2000 * 2001 * Configure the Rx unit of the MAC after a reset. 2002 **/ 2003 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 2004 { 2005 struct ixgbe_hw *hw = &adapter->hw; 2006 struct net_device *netdev = adapter->netdev; 2007 int i, ret; 2008 2009 ixgbevf_setup_psrtype(adapter); 2010 if (hw->mac.type >= ixgbe_mac_X550_vf) 2011 ixgbevf_setup_vfmrqc(adapter); 2012 2013 spin_lock_bh(&adapter->mbx_lock); 2014 /* notify the PF of our intent to use this size of frame */ 2015 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 2016 spin_unlock_bh(&adapter->mbx_lock); 2017 if (ret) 2018 dev_err(&adapter->pdev->dev, 2019 "Failed to set MTU at %d\n", netdev->mtu); 2020 2021 /* Setup the HW Rx Head and Tail Descriptor Pointers and 2022 * the Base and Length of the Rx Descriptor Ring 2023 */ 2024 for (i = 0; i < adapter->num_rx_queues; i++) { 2025 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 2026 2027 ixgbevf_set_rx_buffer_len(adapter, rx_ring); 2028 ixgbevf_configure_rx_ring(adapter, rx_ring); 2029 } 2030 } 2031 2032 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 2033 __be16 proto, u16 vid) 2034 { 2035 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2036 struct ixgbe_hw *hw = &adapter->hw; 2037 int err; 2038 2039 spin_lock_bh(&adapter->mbx_lock); 2040 2041 /* add VID to filter table */ 2042 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 2043 2044 spin_unlock_bh(&adapter->mbx_lock); 2045 2046 /* translate error return types so error makes sense */ 2047 if (err == IXGBE_ERR_MBX) 2048 return -EIO; 2049 2050 if (err == IXGBE_ERR_INVALID_ARGUMENT) 2051 return -EACCES; 2052 2053 set_bit(vid, adapter->active_vlans); 2054 2055 return err; 2056 } 2057 2058 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 2059 __be16 proto, u16 vid) 2060 { 2061 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2062 struct ixgbe_hw *hw = &adapter->hw; 2063 int err; 2064 2065 spin_lock_bh(&adapter->mbx_lock); 2066 2067 /* remove VID from filter table */ 2068 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 2069 2070 spin_unlock_bh(&adapter->mbx_lock); 2071 2072 clear_bit(vid, adapter->active_vlans); 2073 2074 return err; 2075 } 2076 2077 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 2078 { 2079 u16 vid; 2080 2081 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2082 ixgbevf_vlan_rx_add_vid(adapter->netdev, 2083 htons(ETH_P_8021Q), vid); 2084 } 2085 2086 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 2087 { 2088 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2089 struct ixgbe_hw *hw = &adapter->hw; 2090 int count = 0; 2091 2092 if (!netdev_uc_empty(netdev)) { 2093 struct netdev_hw_addr *ha; 2094 2095 netdev_for_each_uc_addr(ha, netdev) { 2096 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 2097 udelay(200); 2098 } 2099 } else { 2100 /* If the list is empty then send message to PF driver to 2101 * clear all MAC VLANs on this VF. 2102 */ 2103 hw->mac.ops.set_uc_addr(hw, 0, NULL); 2104 } 2105 2106 return count; 2107 } 2108 2109 /** 2110 * ixgbevf_set_rx_mode - Multicast and unicast set 2111 * @netdev: network interface device structure 2112 * 2113 * The set_rx_method entry point is called whenever the multicast address 2114 * list, unicast address list or the network interface flags are updated. 2115 * This routine is responsible for configuring the hardware for proper 2116 * multicast mode and configuring requested unicast filters. 2117 **/ 2118 static void ixgbevf_set_rx_mode(struct net_device *netdev) 2119 { 2120 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2121 struct ixgbe_hw *hw = &adapter->hw; 2122 unsigned int flags = netdev->flags; 2123 int xcast_mode; 2124 2125 /* request the most inclusive mode we need */ 2126 if (flags & IFF_PROMISC) 2127 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 2128 else if (flags & IFF_ALLMULTI) 2129 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 2130 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 2131 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 2132 else 2133 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 2134 2135 spin_lock_bh(&adapter->mbx_lock); 2136 2137 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 2138 2139 /* reprogram multicast list */ 2140 hw->mac.ops.update_mc_addr_list(hw, netdev); 2141 2142 ixgbevf_write_uc_addr_list(netdev); 2143 2144 spin_unlock_bh(&adapter->mbx_lock); 2145 } 2146 2147 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 2148 { 2149 int q_idx; 2150 struct ixgbevf_q_vector *q_vector; 2151 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2152 2153 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2154 q_vector = adapter->q_vector[q_idx]; 2155 napi_enable(&q_vector->napi); 2156 } 2157 } 2158 2159 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 2160 { 2161 int q_idx; 2162 struct ixgbevf_q_vector *q_vector; 2163 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2164 2165 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2166 q_vector = adapter->q_vector[q_idx]; 2167 napi_disable(&q_vector->napi); 2168 } 2169 } 2170 2171 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 2172 { 2173 struct ixgbe_hw *hw = &adapter->hw; 2174 unsigned int def_q = 0; 2175 unsigned int num_tcs = 0; 2176 unsigned int num_rx_queues = adapter->num_rx_queues; 2177 unsigned int num_tx_queues = adapter->num_tx_queues; 2178 int err; 2179 2180 spin_lock_bh(&adapter->mbx_lock); 2181 2182 /* fetch queue configuration from the PF */ 2183 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2184 2185 spin_unlock_bh(&adapter->mbx_lock); 2186 2187 if (err) 2188 return err; 2189 2190 if (num_tcs > 1) { 2191 /* we need only one Tx queue */ 2192 num_tx_queues = 1; 2193 2194 /* update default Tx ring register index */ 2195 adapter->tx_ring[0]->reg_idx = def_q; 2196 2197 /* we need as many queues as traffic classes */ 2198 num_rx_queues = num_tcs; 2199 } 2200 2201 /* if we have a bad config abort request queue reset */ 2202 if ((adapter->num_rx_queues != num_rx_queues) || 2203 (adapter->num_tx_queues != num_tx_queues)) { 2204 /* force mailbox timeout to prevent further messages */ 2205 hw->mbx.timeout = 0; 2206 2207 /* wait for watchdog to come around and bail us out */ 2208 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2209 } 2210 2211 return 0; 2212 } 2213 2214 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2215 { 2216 ixgbevf_configure_dcb(adapter); 2217 2218 ixgbevf_set_rx_mode(adapter->netdev); 2219 2220 ixgbevf_restore_vlan(adapter); 2221 ixgbevf_ipsec_restore(adapter); 2222 2223 ixgbevf_configure_tx(adapter); 2224 ixgbevf_configure_rx(adapter); 2225 } 2226 2227 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2228 { 2229 /* Only save pre-reset stats if there are some */ 2230 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2231 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2232 adapter->stats.base_vfgprc; 2233 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2234 adapter->stats.base_vfgptc; 2235 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2236 adapter->stats.base_vfgorc; 2237 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2238 adapter->stats.base_vfgotc; 2239 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2240 adapter->stats.base_vfmprc; 2241 } 2242 } 2243 2244 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2245 { 2246 struct ixgbe_hw *hw = &adapter->hw; 2247 2248 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2249 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2250 adapter->stats.last_vfgorc |= 2251 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2252 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2253 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2254 adapter->stats.last_vfgotc |= 2255 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2256 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2257 2258 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2259 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2260 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2261 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2262 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2263 } 2264 2265 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2266 { 2267 struct ixgbe_hw *hw = &adapter->hw; 2268 static const int api[] = { 2269 ixgbe_mbox_api_14, 2270 ixgbe_mbox_api_13, 2271 ixgbe_mbox_api_12, 2272 ixgbe_mbox_api_11, 2273 ixgbe_mbox_api_10, 2274 ixgbe_mbox_api_unknown 2275 }; 2276 int err, idx = 0; 2277 2278 spin_lock_bh(&adapter->mbx_lock); 2279 2280 while (api[idx] != ixgbe_mbox_api_unknown) { 2281 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2282 if (!err) 2283 break; 2284 idx++; 2285 } 2286 2287 spin_unlock_bh(&adapter->mbx_lock); 2288 } 2289 2290 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2291 { 2292 struct net_device *netdev = adapter->netdev; 2293 struct ixgbe_hw *hw = &adapter->hw; 2294 2295 ixgbevf_configure_msix(adapter); 2296 2297 spin_lock_bh(&adapter->mbx_lock); 2298 2299 if (is_valid_ether_addr(hw->mac.addr)) 2300 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2301 else 2302 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2303 2304 spin_unlock_bh(&adapter->mbx_lock); 2305 2306 smp_mb__before_atomic(); 2307 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2308 ixgbevf_napi_enable_all(adapter); 2309 2310 /* clear any pending interrupts, may auto mask */ 2311 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2312 ixgbevf_irq_enable(adapter); 2313 2314 /* enable transmits */ 2315 netif_tx_start_all_queues(netdev); 2316 2317 ixgbevf_save_reset_stats(adapter); 2318 ixgbevf_init_last_counter_stats(adapter); 2319 2320 hw->mac.get_link_status = 1; 2321 mod_timer(&adapter->service_timer, jiffies); 2322 } 2323 2324 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2325 { 2326 ixgbevf_configure(adapter); 2327 2328 ixgbevf_up_complete(adapter); 2329 } 2330 2331 /** 2332 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2333 * @rx_ring: ring to free buffers from 2334 **/ 2335 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2336 { 2337 u16 i = rx_ring->next_to_clean; 2338 2339 /* Free Rx ring sk_buff */ 2340 if (rx_ring->skb) { 2341 dev_kfree_skb(rx_ring->skb); 2342 rx_ring->skb = NULL; 2343 } 2344 2345 /* Free all the Rx ring pages */ 2346 while (i != rx_ring->next_to_alloc) { 2347 struct ixgbevf_rx_buffer *rx_buffer; 2348 2349 rx_buffer = &rx_ring->rx_buffer_info[i]; 2350 2351 /* Invalidate cache lines that may have been written to by 2352 * device so that we avoid corrupting memory. 2353 */ 2354 dma_sync_single_range_for_cpu(rx_ring->dev, 2355 rx_buffer->dma, 2356 rx_buffer->page_offset, 2357 ixgbevf_rx_bufsz(rx_ring), 2358 DMA_FROM_DEVICE); 2359 2360 /* free resources associated with mapping */ 2361 dma_unmap_page_attrs(rx_ring->dev, 2362 rx_buffer->dma, 2363 ixgbevf_rx_pg_size(rx_ring), 2364 DMA_FROM_DEVICE, 2365 IXGBEVF_RX_DMA_ATTR); 2366 2367 __page_frag_cache_drain(rx_buffer->page, 2368 rx_buffer->pagecnt_bias); 2369 2370 i++; 2371 if (i == rx_ring->count) 2372 i = 0; 2373 } 2374 2375 rx_ring->next_to_alloc = 0; 2376 rx_ring->next_to_clean = 0; 2377 rx_ring->next_to_use = 0; 2378 } 2379 2380 /** 2381 * ixgbevf_clean_tx_ring - Free Tx Buffers 2382 * @tx_ring: ring to be cleaned 2383 **/ 2384 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2385 { 2386 u16 i = tx_ring->next_to_clean; 2387 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 2388 2389 while (i != tx_ring->next_to_use) { 2390 union ixgbe_adv_tx_desc *eop_desc, *tx_desc; 2391 2392 /* Free all the Tx ring sk_buffs */ 2393 if (ring_is_xdp(tx_ring)) 2394 page_frag_free(tx_buffer->data); 2395 else 2396 dev_kfree_skb_any(tx_buffer->skb); 2397 2398 /* unmap skb header data */ 2399 dma_unmap_single(tx_ring->dev, 2400 dma_unmap_addr(tx_buffer, dma), 2401 dma_unmap_len(tx_buffer, len), 2402 DMA_TO_DEVICE); 2403 2404 /* check for eop_desc to determine the end of the packet */ 2405 eop_desc = tx_buffer->next_to_watch; 2406 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 2407 2408 /* unmap remaining buffers */ 2409 while (tx_desc != eop_desc) { 2410 tx_buffer++; 2411 tx_desc++; 2412 i++; 2413 if (unlikely(i == tx_ring->count)) { 2414 i = 0; 2415 tx_buffer = tx_ring->tx_buffer_info; 2416 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 2417 } 2418 2419 /* unmap any remaining paged data */ 2420 if (dma_unmap_len(tx_buffer, len)) 2421 dma_unmap_page(tx_ring->dev, 2422 dma_unmap_addr(tx_buffer, dma), 2423 dma_unmap_len(tx_buffer, len), 2424 DMA_TO_DEVICE); 2425 } 2426 2427 /* move us one more past the eop_desc for start of next pkt */ 2428 tx_buffer++; 2429 i++; 2430 if (unlikely(i == tx_ring->count)) { 2431 i = 0; 2432 tx_buffer = tx_ring->tx_buffer_info; 2433 } 2434 } 2435 2436 /* reset next_to_use and next_to_clean */ 2437 tx_ring->next_to_use = 0; 2438 tx_ring->next_to_clean = 0; 2439 2440 } 2441 2442 /** 2443 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2444 * @adapter: board private structure 2445 **/ 2446 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2447 { 2448 int i; 2449 2450 for (i = 0; i < adapter->num_rx_queues; i++) 2451 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2452 } 2453 2454 /** 2455 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2456 * @adapter: board private structure 2457 **/ 2458 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2459 { 2460 int i; 2461 2462 for (i = 0; i < adapter->num_tx_queues; i++) 2463 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2464 for (i = 0; i < adapter->num_xdp_queues; i++) 2465 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]); 2466 } 2467 2468 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2469 { 2470 struct net_device *netdev = adapter->netdev; 2471 struct ixgbe_hw *hw = &adapter->hw; 2472 int i; 2473 2474 /* signal that we are down to the interrupt handler */ 2475 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2476 return; /* do nothing if already down */ 2477 2478 /* disable all enabled Rx queues */ 2479 for (i = 0; i < adapter->num_rx_queues; i++) 2480 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2481 2482 usleep_range(10000, 20000); 2483 2484 netif_tx_stop_all_queues(netdev); 2485 2486 /* call carrier off first to avoid false dev_watchdog timeouts */ 2487 netif_carrier_off(netdev); 2488 netif_tx_disable(netdev); 2489 2490 ixgbevf_irq_disable(adapter); 2491 2492 ixgbevf_napi_disable_all(adapter); 2493 2494 del_timer_sync(&adapter->service_timer); 2495 2496 /* disable transmits in the hardware now that interrupts are off */ 2497 for (i = 0; i < adapter->num_tx_queues; i++) { 2498 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2499 2500 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2501 IXGBE_TXDCTL_SWFLSH); 2502 } 2503 2504 for (i = 0; i < adapter->num_xdp_queues; i++) { 2505 u8 reg_idx = adapter->xdp_ring[i]->reg_idx; 2506 2507 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2508 IXGBE_TXDCTL_SWFLSH); 2509 } 2510 2511 if (!pci_channel_offline(adapter->pdev)) 2512 ixgbevf_reset(adapter); 2513 2514 ixgbevf_clean_all_tx_rings(adapter); 2515 ixgbevf_clean_all_rx_rings(adapter); 2516 } 2517 2518 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2519 { 2520 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2521 msleep(1); 2522 2523 ixgbevf_down(adapter); 2524 pci_set_master(adapter->pdev); 2525 ixgbevf_up(adapter); 2526 2527 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2528 } 2529 2530 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2531 { 2532 struct ixgbe_hw *hw = &adapter->hw; 2533 struct net_device *netdev = adapter->netdev; 2534 2535 if (hw->mac.ops.reset_hw(hw)) { 2536 hw_dbg(hw, "PF still resetting\n"); 2537 } else { 2538 hw->mac.ops.init_hw(hw); 2539 ixgbevf_negotiate_api(adapter); 2540 } 2541 2542 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2543 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 2544 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2545 } 2546 2547 adapter->last_reset = jiffies; 2548 } 2549 2550 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2551 int vectors) 2552 { 2553 int vector_threshold; 2554 2555 /* We'll want at least 2 (vector_threshold): 2556 * 1) TxQ[0] + RxQ[0] handler 2557 * 2) Other (Link Status Change, etc.) 2558 */ 2559 vector_threshold = MIN_MSIX_COUNT; 2560 2561 /* The more we get, the more we will assign to Tx/Rx Cleanup 2562 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2563 * Right now, we simply care about how many we'll get; we'll 2564 * set them up later while requesting irq's. 2565 */ 2566 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2567 vector_threshold, vectors); 2568 2569 if (vectors < 0) { 2570 dev_err(&adapter->pdev->dev, 2571 "Unable to allocate MSI-X interrupts\n"); 2572 kfree(adapter->msix_entries); 2573 adapter->msix_entries = NULL; 2574 return vectors; 2575 } 2576 2577 /* Adjust for only the vectors we'll use, which is minimum 2578 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2579 * vectors we were allocated. 2580 */ 2581 adapter->num_msix_vectors = vectors; 2582 2583 return 0; 2584 } 2585 2586 /** 2587 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2588 * @adapter: board private structure to initialize 2589 * 2590 * This is the top level queue allocation routine. The order here is very 2591 * important, starting with the "most" number of features turned on at once, 2592 * and ending with the smallest set of features. This way large combinations 2593 * can be allocated if they're turned on, and smaller combinations are the 2594 * fall through conditions. 2595 * 2596 **/ 2597 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2598 { 2599 struct ixgbe_hw *hw = &adapter->hw; 2600 unsigned int def_q = 0; 2601 unsigned int num_tcs = 0; 2602 int err; 2603 2604 /* Start with base case */ 2605 adapter->num_rx_queues = 1; 2606 adapter->num_tx_queues = 1; 2607 adapter->num_xdp_queues = 0; 2608 2609 spin_lock_bh(&adapter->mbx_lock); 2610 2611 /* fetch queue configuration from the PF */ 2612 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2613 2614 spin_unlock_bh(&adapter->mbx_lock); 2615 2616 if (err) 2617 return; 2618 2619 /* we need as many queues as traffic classes */ 2620 if (num_tcs > 1) { 2621 adapter->num_rx_queues = num_tcs; 2622 } else { 2623 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2624 2625 switch (hw->api_version) { 2626 case ixgbe_mbox_api_11: 2627 case ixgbe_mbox_api_12: 2628 case ixgbe_mbox_api_13: 2629 case ixgbe_mbox_api_14: 2630 if (adapter->xdp_prog && 2631 hw->mac.max_tx_queues == rss) 2632 rss = rss > 3 ? 2 : 1; 2633 2634 adapter->num_rx_queues = rss; 2635 adapter->num_tx_queues = rss; 2636 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0; 2637 break; 2638 default: 2639 break; 2640 } 2641 } 2642 } 2643 2644 /** 2645 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2646 * @adapter: board private structure to initialize 2647 * 2648 * Attempt to configure the interrupts using the best available 2649 * capabilities of the hardware and the kernel. 2650 **/ 2651 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2652 { 2653 int vector, v_budget; 2654 2655 /* It's easy to be greedy for MSI-X vectors, but it really 2656 * doesn't do us much good if we have a lot more vectors 2657 * than CPU's. So let's be conservative and only ask for 2658 * (roughly) the same number of vectors as there are CPU's. 2659 * The default is to use pairs of vectors. 2660 */ 2661 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2662 v_budget = min_t(int, v_budget, num_online_cpus()); 2663 v_budget += NON_Q_VECTORS; 2664 2665 adapter->msix_entries = kcalloc(v_budget, 2666 sizeof(struct msix_entry), GFP_KERNEL); 2667 if (!adapter->msix_entries) 2668 return -ENOMEM; 2669 2670 for (vector = 0; vector < v_budget; vector++) 2671 adapter->msix_entries[vector].entry = vector; 2672 2673 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver 2674 * does not support any other modes, so we will simply fail here. Note 2675 * that we clean up the msix_entries pointer else-where. 2676 */ 2677 return ixgbevf_acquire_msix_vectors(adapter, v_budget); 2678 } 2679 2680 static void ixgbevf_add_ring(struct ixgbevf_ring *ring, 2681 struct ixgbevf_ring_container *head) 2682 { 2683 ring->next = head->ring; 2684 head->ring = ring; 2685 head->count++; 2686 } 2687 2688 /** 2689 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector 2690 * @adapter: board private structure to initialize 2691 * @v_idx: index of vector in adapter struct 2692 * @txr_count: number of Tx rings for q vector 2693 * @txr_idx: index of first Tx ring to assign 2694 * @xdp_count: total number of XDP rings to allocate 2695 * @xdp_idx: index of first XDP ring to allocate 2696 * @rxr_count: number of Rx rings for q vector 2697 * @rxr_idx: index of first Rx ring to assign 2698 * 2699 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2700 **/ 2701 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx, 2702 int txr_count, int txr_idx, 2703 int xdp_count, int xdp_idx, 2704 int rxr_count, int rxr_idx) 2705 { 2706 struct ixgbevf_q_vector *q_vector; 2707 int reg_idx = txr_idx + xdp_idx; 2708 struct ixgbevf_ring *ring; 2709 int ring_count, size; 2710 2711 ring_count = txr_count + xdp_count + rxr_count; 2712 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count); 2713 2714 /* allocate q_vector and rings */ 2715 q_vector = kzalloc(size, GFP_KERNEL); 2716 if (!q_vector) 2717 return -ENOMEM; 2718 2719 /* initialize NAPI */ 2720 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64); 2721 2722 /* tie q_vector and adapter together */ 2723 adapter->q_vector[v_idx] = q_vector; 2724 q_vector->adapter = adapter; 2725 q_vector->v_idx = v_idx; 2726 2727 /* initialize pointer to rings */ 2728 ring = q_vector->ring; 2729 2730 while (txr_count) { 2731 /* assign generic ring traits */ 2732 ring->dev = &adapter->pdev->dev; 2733 ring->netdev = adapter->netdev; 2734 2735 /* configure backlink on ring */ 2736 ring->q_vector = q_vector; 2737 2738 /* update q_vector Tx values */ 2739 ixgbevf_add_ring(ring, &q_vector->tx); 2740 2741 /* apply Tx specific ring traits */ 2742 ring->count = adapter->tx_ring_count; 2743 ring->queue_index = txr_idx; 2744 ring->reg_idx = reg_idx; 2745 2746 /* assign ring to adapter */ 2747 adapter->tx_ring[txr_idx] = ring; 2748 2749 /* update count and index */ 2750 txr_count--; 2751 txr_idx++; 2752 reg_idx++; 2753 2754 /* push pointer to next ring */ 2755 ring++; 2756 } 2757 2758 while (xdp_count) { 2759 /* assign generic ring traits */ 2760 ring->dev = &adapter->pdev->dev; 2761 ring->netdev = adapter->netdev; 2762 2763 /* configure backlink on ring */ 2764 ring->q_vector = q_vector; 2765 2766 /* update q_vector Tx values */ 2767 ixgbevf_add_ring(ring, &q_vector->tx); 2768 2769 /* apply Tx specific ring traits */ 2770 ring->count = adapter->tx_ring_count; 2771 ring->queue_index = xdp_idx; 2772 ring->reg_idx = reg_idx; 2773 set_ring_xdp(ring); 2774 2775 /* assign ring to adapter */ 2776 adapter->xdp_ring[xdp_idx] = ring; 2777 2778 /* update count and index */ 2779 xdp_count--; 2780 xdp_idx++; 2781 reg_idx++; 2782 2783 /* push pointer to next ring */ 2784 ring++; 2785 } 2786 2787 while (rxr_count) { 2788 /* assign generic ring traits */ 2789 ring->dev = &adapter->pdev->dev; 2790 ring->netdev = adapter->netdev; 2791 2792 /* configure backlink on ring */ 2793 ring->q_vector = q_vector; 2794 2795 /* update q_vector Rx values */ 2796 ixgbevf_add_ring(ring, &q_vector->rx); 2797 2798 /* apply Rx specific ring traits */ 2799 ring->count = adapter->rx_ring_count; 2800 ring->queue_index = rxr_idx; 2801 ring->reg_idx = rxr_idx; 2802 2803 /* assign ring to adapter */ 2804 adapter->rx_ring[rxr_idx] = ring; 2805 2806 /* update count and index */ 2807 rxr_count--; 2808 rxr_idx++; 2809 2810 /* push pointer to next ring */ 2811 ring++; 2812 } 2813 2814 return 0; 2815 } 2816 2817 /** 2818 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector 2819 * @adapter: board private structure to initialize 2820 * @v_idx: index of vector in adapter struct 2821 * 2822 * This function frees the memory allocated to the q_vector. In addition if 2823 * NAPI is enabled it will delete any references to the NAPI struct prior 2824 * to freeing the q_vector. 2825 **/ 2826 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx) 2827 { 2828 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx]; 2829 struct ixgbevf_ring *ring; 2830 2831 ixgbevf_for_each_ring(ring, q_vector->tx) { 2832 if (ring_is_xdp(ring)) 2833 adapter->xdp_ring[ring->queue_index] = NULL; 2834 else 2835 adapter->tx_ring[ring->queue_index] = NULL; 2836 } 2837 2838 ixgbevf_for_each_ring(ring, q_vector->rx) 2839 adapter->rx_ring[ring->queue_index] = NULL; 2840 2841 adapter->q_vector[v_idx] = NULL; 2842 netif_napi_del(&q_vector->napi); 2843 2844 /* ixgbevf_get_stats() might access the rings on this vector, 2845 * we must wait a grace period before freeing it. 2846 */ 2847 kfree_rcu(q_vector, rcu); 2848 } 2849 2850 /** 2851 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2852 * @adapter: board private structure to initialize 2853 * 2854 * We allocate one q_vector per queue interrupt. If allocation fails we 2855 * return -ENOMEM. 2856 **/ 2857 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2858 { 2859 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2860 int rxr_remaining = adapter->num_rx_queues; 2861 int txr_remaining = adapter->num_tx_queues; 2862 int xdp_remaining = adapter->num_xdp_queues; 2863 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0; 2864 int err; 2865 2866 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) { 2867 for (; rxr_remaining; v_idx++, q_vectors--) { 2868 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2869 2870 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2871 0, 0, 0, 0, rqpv, rxr_idx); 2872 if (err) 2873 goto err_out; 2874 2875 /* update counts and index */ 2876 rxr_remaining -= rqpv; 2877 rxr_idx += rqpv; 2878 } 2879 } 2880 2881 for (; q_vectors; v_idx++, q_vectors--) { 2882 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2883 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors); 2884 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors); 2885 2886 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2887 tqpv, txr_idx, 2888 xqpv, xdp_idx, 2889 rqpv, rxr_idx); 2890 2891 if (err) 2892 goto err_out; 2893 2894 /* update counts and index */ 2895 rxr_remaining -= rqpv; 2896 rxr_idx += rqpv; 2897 txr_remaining -= tqpv; 2898 txr_idx += tqpv; 2899 xdp_remaining -= xqpv; 2900 xdp_idx += xqpv; 2901 } 2902 2903 return 0; 2904 2905 err_out: 2906 while (v_idx) { 2907 v_idx--; 2908 ixgbevf_free_q_vector(adapter, v_idx); 2909 } 2910 2911 return -ENOMEM; 2912 } 2913 2914 /** 2915 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2916 * @adapter: board private structure to initialize 2917 * 2918 * This function frees the memory allocated to the q_vectors. In addition if 2919 * NAPI is enabled it will delete any references to the NAPI struct prior 2920 * to freeing the q_vector. 2921 **/ 2922 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2923 { 2924 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2925 2926 while (q_vectors) { 2927 q_vectors--; 2928 ixgbevf_free_q_vector(adapter, q_vectors); 2929 } 2930 } 2931 2932 /** 2933 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2934 * @adapter: board private structure 2935 * 2936 **/ 2937 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2938 { 2939 if (!adapter->msix_entries) 2940 return; 2941 2942 pci_disable_msix(adapter->pdev); 2943 kfree(adapter->msix_entries); 2944 adapter->msix_entries = NULL; 2945 } 2946 2947 /** 2948 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2949 * @adapter: board private structure to initialize 2950 * 2951 **/ 2952 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2953 { 2954 int err; 2955 2956 /* Number of supported queues */ 2957 ixgbevf_set_num_queues(adapter); 2958 2959 err = ixgbevf_set_interrupt_capability(adapter); 2960 if (err) { 2961 hw_dbg(&adapter->hw, 2962 "Unable to setup interrupt capabilities\n"); 2963 goto err_set_interrupt; 2964 } 2965 2966 err = ixgbevf_alloc_q_vectors(adapter); 2967 if (err) { 2968 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2969 goto err_alloc_q_vectors; 2970 } 2971 2972 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n", 2973 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled", 2974 adapter->num_rx_queues, adapter->num_tx_queues, 2975 adapter->num_xdp_queues); 2976 2977 set_bit(__IXGBEVF_DOWN, &adapter->state); 2978 2979 return 0; 2980 err_alloc_q_vectors: 2981 ixgbevf_reset_interrupt_capability(adapter); 2982 err_set_interrupt: 2983 return err; 2984 } 2985 2986 /** 2987 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2988 * @adapter: board private structure to clear interrupt scheme on 2989 * 2990 * We go through and clear interrupt specific resources and reset the structure 2991 * to pre-load conditions 2992 **/ 2993 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 2994 { 2995 adapter->num_tx_queues = 0; 2996 adapter->num_xdp_queues = 0; 2997 adapter->num_rx_queues = 0; 2998 2999 ixgbevf_free_q_vectors(adapter); 3000 ixgbevf_reset_interrupt_capability(adapter); 3001 } 3002 3003 /** 3004 * ixgbevf_sw_init - Initialize general software structures 3005 * @adapter: board private structure to initialize 3006 * 3007 * ixgbevf_sw_init initializes the Adapter private data structure. 3008 * Fields are initialized based on PCI device information and 3009 * OS network device settings (MTU size). 3010 **/ 3011 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 3012 { 3013 struct ixgbe_hw *hw = &adapter->hw; 3014 struct pci_dev *pdev = adapter->pdev; 3015 struct net_device *netdev = adapter->netdev; 3016 int err; 3017 3018 /* PCI config space info */ 3019 hw->vendor_id = pdev->vendor; 3020 hw->device_id = pdev->device; 3021 hw->revision_id = pdev->revision; 3022 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3023 hw->subsystem_device_id = pdev->subsystem_device; 3024 3025 hw->mbx.ops.init_params(hw); 3026 3027 if (hw->mac.type >= ixgbe_mac_X550_vf) { 3028 err = ixgbevf_init_rss_key(adapter); 3029 if (err) 3030 goto out; 3031 } 3032 3033 /* assume legacy case in which PF would only give VF 2 queues */ 3034 hw->mac.max_tx_queues = 2; 3035 hw->mac.max_rx_queues = 2; 3036 3037 /* lock to protect mailbox accesses */ 3038 spin_lock_init(&adapter->mbx_lock); 3039 3040 err = hw->mac.ops.reset_hw(hw); 3041 if (err) { 3042 dev_info(&pdev->dev, 3043 "PF still in reset state. Is the PF interface up?\n"); 3044 } else { 3045 err = hw->mac.ops.init_hw(hw); 3046 if (err) { 3047 pr_err("init_shared_code failed: %d\n", err); 3048 goto out; 3049 } 3050 ixgbevf_negotiate_api(adapter); 3051 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 3052 if (err) 3053 dev_info(&pdev->dev, "Error reading MAC address\n"); 3054 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 3055 dev_info(&pdev->dev, 3056 "MAC address not assigned by administrator.\n"); 3057 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 3058 } 3059 3060 if (!is_valid_ether_addr(netdev->dev_addr)) { 3061 dev_info(&pdev->dev, "Assigning random MAC address\n"); 3062 eth_hw_addr_random(netdev); 3063 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 3064 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 3065 } 3066 3067 /* Enable dynamic interrupt throttling rates */ 3068 adapter->rx_itr_setting = 1; 3069 adapter->tx_itr_setting = 1; 3070 3071 /* set default ring sizes */ 3072 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 3073 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 3074 3075 set_bit(__IXGBEVF_DOWN, &adapter->state); 3076 return 0; 3077 3078 out: 3079 return err; 3080 } 3081 3082 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 3083 { \ 3084 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 3085 if (current_counter < last_counter) \ 3086 counter += 0x100000000LL; \ 3087 last_counter = current_counter; \ 3088 counter &= 0xFFFFFFFF00000000LL; \ 3089 counter |= current_counter; \ 3090 } 3091 3092 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 3093 { \ 3094 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 3095 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 3096 u64 current_counter = (current_counter_msb << 32) | \ 3097 current_counter_lsb; \ 3098 if (current_counter < last_counter) \ 3099 counter += 0x1000000000LL; \ 3100 last_counter = current_counter; \ 3101 counter &= 0xFFFFFFF000000000LL; \ 3102 counter |= current_counter; \ 3103 } 3104 /** 3105 * ixgbevf_update_stats - Update the board statistics counters. 3106 * @adapter: board private structure 3107 **/ 3108 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 3109 { 3110 struct ixgbe_hw *hw = &adapter->hw; 3111 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; 3112 u64 alloc_rx_page = 0, hw_csum_rx_error = 0; 3113 int i; 3114 3115 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3116 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3117 return; 3118 3119 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 3120 adapter->stats.vfgprc); 3121 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 3122 adapter->stats.vfgptc); 3123 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 3124 adapter->stats.last_vfgorc, 3125 adapter->stats.vfgorc); 3126 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 3127 adapter->stats.last_vfgotc, 3128 adapter->stats.vfgotc); 3129 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 3130 adapter->stats.vfmprc); 3131 3132 for (i = 0; i < adapter->num_rx_queues; i++) { 3133 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 3134 3135 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 3136 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; 3137 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 3138 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; 3139 } 3140 3141 adapter->hw_csum_rx_error = hw_csum_rx_error; 3142 adapter->alloc_rx_page_failed = alloc_rx_page_failed; 3143 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; 3144 adapter->alloc_rx_page = alloc_rx_page; 3145 } 3146 3147 /** 3148 * ixgbevf_service_timer - Timer Call-back 3149 * @t: pointer to timer_list struct 3150 **/ 3151 static void ixgbevf_service_timer(struct timer_list *t) 3152 { 3153 struct ixgbevf_adapter *adapter = from_timer(adapter, t, 3154 service_timer); 3155 3156 /* Reset the timer */ 3157 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 3158 3159 ixgbevf_service_event_schedule(adapter); 3160 } 3161 3162 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 3163 { 3164 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 3165 return; 3166 3167 rtnl_lock(); 3168 /* If we're already down or resetting, just bail */ 3169 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3170 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 3171 test_bit(__IXGBEVF_RESETTING, &adapter->state)) { 3172 rtnl_unlock(); 3173 return; 3174 } 3175 3176 adapter->tx_timeout_count++; 3177 3178 ixgbevf_reinit_locked(adapter); 3179 rtnl_unlock(); 3180 } 3181 3182 /** 3183 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 3184 * @adapter: pointer to the device adapter structure 3185 * 3186 * This function serves two purposes. First it strobes the interrupt lines 3187 * in order to make certain interrupts are occurring. Secondly it sets the 3188 * bits needed to check for TX hangs. As a result we should immediately 3189 * determine if a hang has occurred. 3190 **/ 3191 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 3192 { 3193 struct ixgbe_hw *hw = &adapter->hw; 3194 u32 eics = 0; 3195 int i; 3196 3197 /* If we're down or resetting, just bail */ 3198 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3199 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3200 return; 3201 3202 /* Force detection of hung controller */ 3203 if (netif_carrier_ok(adapter->netdev)) { 3204 for (i = 0; i < adapter->num_tx_queues; i++) 3205 set_check_for_tx_hang(adapter->tx_ring[i]); 3206 for (i = 0; i < adapter->num_xdp_queues; i++) 3207 set_check_for_tx_hang(adapter->xdp_ring[i]); 3208 } 3209 3210 /* get one bit for every active Tx/Rx interrupt vector */ 3211 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 3212 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 3213 3214 if (qv->rx.ring || qv->tx.ring) 3215 eics |= BIT(i); 3216 } 3217 3218 /* Cause software interrupt to ensure rings are cleaned */ 3219 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 3220 } 3221 3222 /** 3223 * ixgbevf_watchdog_update_link - update the link status 3224 * @adapter: pointer to the device adapter structure 3225 **/ 3226 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 3227 { 3228 struct ixgbe_hw *hw = &adapter->hw; 3229 u32 link_speed = adapter->link_speed; 3230 bool link_up = adapter->link_up; 3231 s32 err; 3232 3233 spin_lock_bh(&adapter->mbx_lock); 3234 3235 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 3236 3237 spin_unlock_bh(&adapter->mbx_lock); 3238 3239 /* if check for link returns error we will need to reset */ 3240 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 3241 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 3242 link_up = false; 3243 } 3244 3245 adapter->link_up = link_up; 3246 adapter->link_speed = link_speed; 3247 } 3248 3249 /** 3250 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 3251 * print link up message 3252 * @adapter: pointer to the device adapter structure 3253 **/ 3254 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 3255 { 3256 struct net_device *netdev = adapter->netdev; 3257 3258 /* only continue if link was previously down */ 3259 if (netif_carrier_ok(netdev)) 3260 return; 3261 3262 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 3263 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 3264 "10 Gbps" : 3265 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 3266 "1 Gbps" : 3267 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 3268 "100 Mbps" : 3269 "unknown speed"); 3270 3271 netif_carrier_on(netdev); 3272 } 3273 3274 /** 3275 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 3276 * print link down message 3277 * @adapter: pointer to the adapter structure 3278 **/ 3279 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 3280 { 3281 struct net_device *netdev = adapter->netdev; 3282 3283 adapter->link_speed = 0; 3284 3285 /* only continue if link was up previously */ 3286 if (!netif_carrier_ok(netdev)) 3287 return; 3288 3289 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 3290 3291 netif_carrier_off(netdev); 3292 } 3293 3294 /** 3295 * ixgbevf_watchdog_subtask - worker thread to bring link up 3296 * @adapter: board private structure 3297 **/ 3298 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 3299 { 3300 /* if interface is down do nothing */ 3301 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3302 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3303 return; 3304 3305 ixgbevf_watchdog_update_link(adapter); 3306 3307 if (adapter->link_up) 3308 ixgbevf_watchdog_link_is_up(adapter); 3309 else 3310 ixgbevf_watchdog_link_is_down(adapter); 3311 3312 ixgbevf_update_stats(adapter); 3313 } 3314 3315 /** 3316 * ixgbevf_service_task - manages and runs subtasks 3317 * @work: pointer to work_struct containing our data 3318 **/ 3319 static void ixgbevf_service_task(struct work_struct *work) 3320 { 3321 struct ixgbevf_adapter *adapter = container_of(work, 3322 struct ixgbevf_adapter, 3323 service_task); 3324 struct ixgbe_hw *hw = &adapter->hw; 3325 3326 if (IXGBE_REMOVED(hw->hw_addr)) { 3327 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 3328 rtnl_lock(); 3329 ixgbevf_down(adapter); 3330 rtnl_unlock(); 3331 } 3332 return; 3333 } 3334 3335 ixgbevf_queue_reset_subtask(adapter); 3336 ixgbevf_reset_subtask(adapter); 3337 ixgbevf_watchdog_subtask(adapter); 3338 ixgbevf_check_hang_subtask(adapter); 3339 3340 ixgbevf_service_event_complete(adapter); 3341 } 3342 3343 /** 3344 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 3345 * @tx_ring: Tx descriptor ring for a specific queue 3346 * 3347 * Free all transmit software resources 3348 **/ 3349 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 3350 { 3351 ixgbevf_clean_tx_ring(tx_ring); 3352 3353 vfree(tx_ring->tx_buffer_info); 3354 tx_ring->tx_buffer_info = NULL; 3355 3356 /* if not set, then don't free */ 3357 if (!tx_ring->desc) 3358 return; 3359 3360 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 3361 tx_ring->dma); 3362 3363 tx_ring->desc = NULL; 3364 } 3365 3366 /** 3367 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 3368 * @adapter: board private structure 3369 * 3370 * Free all transmit software resources 3371 **/ 3372 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 3373 { 3374 int i; 3375 3376 for (i = 0; i < adapter->num_tx_queues; i++) 3377 if (adapter->tx_ring[i]->desc) 3378 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3379 for (i = 0; i < adapter->num_xdp_queues; i++) 3380 if (adapter->xdp_ring[i]->desc) 3381 ixgbevf_free_tx_resources(adapter->xdp_ring[i]); 3382 } 3383 3384 /** 3385 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 3386 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 3387 * 3388 * Return 0 on success, negative on failure 3389 **/ 3390 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3391 { 3392 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3393 int size; 3394 3395 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3396 tx_ring->tx_buffer_info = vmalloc(size); 3397 if (!tx_ring->tx_buffer_info) 3398 goto err; 3399 3400 u64_stats_init(&tx_ring->syncp); 3401 3402 /* round up to nearest 4K */ 3403 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3404 tx_ring->size = ALIGN(tx_ring->size, 4096); 3405 3406 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3407 &tx_ring->dma, GFP_KERNEL); 3408 if (!tx_ring->desc) 3409 goto err; 3410 3411 return 0; 3412 3413 err: 3414 vfree(tx_ring->tx_buffer_info); 3415 tx_ring->tx_buffer_info = NULL; 3416 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3417 return -ENOMEM; 3418 } 3419 3420 /** 3421 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3422 * @adapter: board private structure 3423 * 3424 * If this function returns with an error, then it's possible one or 3425 * more of the rings is populated (while the rest are not). It is the 3426 * callers duty to clean those orphaned rings. 3427 * 3428 * Return 0 on success, negative on failure 3429 **/ 3430 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3431 { 3432 int i, j = 0, err = 0; 3433 3434 for (i = 0; i < adapter->num_tx_queues; i++) { 3435 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3436 if (!err) 3437 continue; 3438 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3439 goto err_setup_tx; 3440 } 3441 3442 for (j = 0; j < adapter->num_xdp_queues; j++) { 3443 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]); 3444 if (!err) 3445 continue; 3446 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j); 3447 goto err_setup_tx; 3448 } 3449 3450 return 0; 3451 err_setup_tx: 3452 /* rewind the index freeing the rings as we go */ 3453 while (j--) 3454 ixgbevf_free_tx_resources(adapter->xdp_ring[j]); 3455 while (i--) 3456 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3457 3458 return err; 3459 } 3460 3461 /** 3462 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3463 * @adapter: board private structure 3464 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3465 * 3466 * Returns 0 on success, negative on failure 3467 **/ 3468 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter, 3469 struct ixgbevf_ring *rx_ring) 3470 { 3471 int size; 3472 3473 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3474 rx_ring->rx_buffer_info = vmalloc(size); 3475 if (!rx_ring->rx_buffer_info) 3476 goto err; 3477 3478 u64_stats_init(&rx_ring->syncp); 3479 3480 /* Round up to nearest 4K */ 3481 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3482 rx_ring->size = ALIGN(rx_ring->size, 4096); 3483 3484 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3485 &rx_ring->dma, GFP_KERNEL); 3486 3487 if (!rx_ring->desc) 3488 goto err; 3489 3490 /* XDP RX-queue info */ 3491 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev, 3492 rx_ring->queue_index, 0) < 0) 3493 goto err; 3494 3495 rx_ring->xdp_prog = adapter->xdp_prog; 3496 3497 return 0; 3498 err: 3499 vfree(rx_ring->rx_buffer_info); 3500 rx_ring->rx_buffer_info = NULL; 3501 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3502 return -ENOMEM; 3503 } 3504 3505 /** 3506 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3507 * @adapter: board private structure 3508 * 3509 * If this function returns with an error, then it's possible one or 3510 * more of the rings is populated (while the rest are not). It is the 3511 * callers duty to clean those orphaned rings. 3512 * 3513 * Return 0 on success, negative on failure 3514 **/ 3515 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3516 { 3517 int i, err = 0; 3518 3519 for (i = 0; i < adapter->num_rx_queues; i++) { 3520 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]); 3521 if (!err) 3522 continue; 3523 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3524 goto err_setup_rx; 3525 } 3526 3527 return 0; 3528 err_setup_rx: 3529 /* rewind the index freeing the rings as we go */ 3530 while (i--) 3531 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3532 return err; 3533 } 3534 3535 /** 3536 * ixgbevf_free_rx_resources - Free Rx Resources 3537 * @rx_ring: ring to clean the resources from 3538 * 3539 * Free all receive software resources 3540 **/ 3541 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3542 { 3543 ixgbevf_clean_rx_ring(rx_ring); 3544 3545 rx_ring->xdp_prog = NULL; 3546 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 3547 vfree(rx_ring->rx_buffer_info); 3548 rx_ring->rx_buffer_info = NULL; 3549 3550 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3551 rx_ring->dma); 3552 3553 rx_ring->desc = NULL; 3554 } 3555 3556 /** 3557 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3558 * @adapter: board private structure 3559 * 3560 * Free all receive software resources 3561 **/ 3562 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3563 { 3564 int i; 3565 3566 for (i = 0; i < adapter->num_rx_queues; i++) 3567 if (adapter->rx_ring[i]->desc) 3568 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3569 } 3570 3571 /** 3572 * ixgbevf_open - Called when a network interface is made active 3573 * @netdev: network interface device structure 3574 * 3575 * Returns 0 on success, negative value on failure 3576 * 3577 * The open entry point is called when a network interface is made 3578 * active by the system (IFF_UP). At this point all resources needed 3579 * for transmit and receive operations are allocated, the interrupt 3580 * handler is registered with the OS, the watchdog timer is started, 3581 * and the stack is notified that the interface is ready. 3582 **/ 3583 int ixgbevf_open(struct net_device *netdev) 3584 { 3585 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3586 struct ixgbe_hw *hw = &adapter->hw; 3587 int err; 3588 3589 /* A previous failure to open the device because of a lack of 3590 * available MSIX vector resources may have reset the number 3591 * of msix vectors variable to zero. The only way to recover 3592 * is to unload/reload the driver and hope that the system has 3593 * been able to recover some MSIX vector resources. 3594 */ 3595 if (!adapter->num_msix_vectors) 3596 return -ENOMEM; 3597 3598 if (hw->adapter_stopped) { 3599 ixgbevf_reset(adapter); 3600 /* if adapter is still stopped then PF isn't up and 3601 * the VF can't start. 3602 */ 3603 if (hw->adapter_stopped) { 3604 err = IXGBE_ERR_MBX; 3605 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3606 goto err_setup_reset; 3607 } 3608 } 3609 3610 /* disallow open during test */ 3611 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3612 return -EBUSY; 3613 3614 netif_carrier_off(netdev); 3615 3616 /* allocate transmit descriptors */ 3617 err = ixgbevf_setup_all_tx_resources(adapter); 3618 if (err) 3619 goto err_setup_tx; 3620 3621 /* allocate receive descriptors */ 3622 err = ixgbevf_setup_all_rx_resources(adapter); 3623 if (err) 3624 goto err_setup_rx; 3625 3626 ixgbevf_configure(adapter); 3627 3628 err = ixgbevf_request_irq(adapter); 3629 if (err) 3630 goto err_req_irq; 3631 3632 /* Notify the stack of the actual queue counts. */ 3633 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3634 if (err) 3635 goto err_set_queues; 3636 3637 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3638 if (err) 3639 goto err_set_queues; 3640 3641 ixgbevf_up_complete(adapter); 3642 3643 return 0; 3644 3645 err_set_queues: 3646 ixgbevf_free_irq(adapter); 3647 err_req_irq: 3648 ixgbevf_free_all_rx_resources(adapter); 3649 err_setup_rx: 3650 ixgbevf_free_all_tx_resources(adapter); 3651 err_setup_tx: 3652 ixgbevf_reset(adapter); 3653 err_setup_reset: 3654 3655 return err; 3656 } 3657 3658 /** 3659 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3660 * @adapter: the private adapter struct 3661 * 3662 * This function should contain the necessary work common to both suspending 3663 * and closing of the device. 3664 */ 3665 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3666 { 3667 ixgbevf_down(adapter); 3668 ixgbevf_free_irq(adapter); 3669 ixgbevf_free_all_tx_resources(adapter); 3670 ixgbevf_free_all_rx_resources(adapter); 3671 } 3672 3673 /** 3674 * ixgbevf_close - Disables a network interface 3675 * @netdev: network interface device structure 3676 * 3677 * Returns 0, this is not allowed to fail 3678 * 3679 * The close entry point is called when an interface is de-activated 3680 * by the OS. The hardware is still under the drivers control, but 3681 * needs to be disabled. A global MAC reset is issued to stop the 3682 * hardware, and all transmit and receive resources are freed. 3683 **/ 3684 int ixgbevf_close(struct net_device *netdev) 3685 { 3686 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3687 3688 if (netif_device_present(netdev)) 3689 ixgbevf_close_suspend(adapter); 3690 3691 return 0; 3692 } 3693 3694 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3695 { 3696 struct net_device *dev = adapter->netdev; 3697 3698 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3699 &adapter->state)) 3700 return; 3701 3702 /* if interface is down do nothing */ 3703 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3704 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3705 return; 3706 3707 /* Hardware has to reinitialize queues and interrupts to 3708 * match packet buffer alignment. Unfortunately, the 3709 * hardware is not flexible enough to do this dynamically. 3710 */ 3711 rtnl_lock(); 3712 3713 if (netif_running(dev)) 3714 ixgbevf_close(dev); 3715 3716 ixgbevf_clear_interrupt_scheme(adapter); 3717 ixgbevf_init_interrupt_scheme(adapter); 3718 3719 if (netif_running(dev)) 3720 ixgbevf_open(dev); 3721 3722 rtnl_unlock(); 3723 } 3724 3725 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3726 u32 vlan_macip_lens, u32 fceof_saidx, 3727 u32 type_tucmd, u32 mss_l4len_idx) 3728 { 3729 struct ixgbe_adv_tx_context_desc *context_desc; 3730 u16 i = tx_ring->next_to_use; 3731 3732 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3733 3734 i++; 3735 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3736 3737 /* set bits to identify this as an advanced context descriptor */ 3738 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3739 3740 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3741 context_desc->fceof_saidx = cpu_to_le32(fceof_saidx); 3742 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3743 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3744 } 3745 3746 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3747 struct ixgbevf_tx_buffer *first, 3748 u8 *hdr_len, 3749 struct ixgbevf_ipsec_tx_data *itd) 3750 { 3751 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3752 struct sk_buff *skb = first->skb; 3753 union { 3754 struct iphdr *v4; 3755 struct ipv6hdr *v6; 3756 unsigned char *hdr; 3757 } ip; 3758 union { 3759 struct tcphdr *tcp; 3760 unsigned char *hdr; 3761 } l4; 3762 u32 paylen, l4_offset; 3763 u32 fceof_saidx = 0; 3764 int err; 3765 3766 if (skb->ip_summed != CHECKSUM_PARTIAL) 3767 return 0; 3768 3769 if (!skb_is_gso(skb)) 3770 return 0; 3771 3772 err = skb_cow_head(skb, 0); 3773 if (err < 0) 3774 return err; 3775 3776 if (eth_p_mpls(first->protocol)) 3777 ip.hdr = skb_inner_network_header(skb); 3778 else 3779 ip.hdr = skb_network_header(skb); 3780 l4.hdr = skb_checksum_start(skb); 3781 3782 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3783 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3784 3785 /* initialize outer IP header fields */ 3786 if (ip.v4->version == 4) { 3787 unsigned char *csum_start = skb_checksum_start(skb); 3788 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3789 int len = csum_start - trans_start; 3790 3791 /* IP header will have to cancel out any data that 3792 * is not a part of the outer IP header, so set to 3793 * a reverse csum if needed, else init check to 0. 3794 */ 3795 ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ? 3796 csum_fold(csum_partial(trans_start, 3797 len, 0)) : 0; 3798 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3799 3800 ip.v4->tot_len = 0; 3801 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3802 IXGBE_TX_FLAGS_CSUM | 3803 IXGBE_TX_FLAGS_IPV4; 3804 } else { 3805 ip.v6->payload_len = 0; 3806 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3807 IXGBE_TX_FLAGS_CSUM; 3808 } 3809 3810 /* determine offset of inner transport header */ 3811 l4_offset = l4.hdr - skb->data; 3812 3813 /* compute length of segmentation header */ 3814 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3815 3816 /* remove payload length from inner checksum */ 3817 paylen = skb->len - l4_offset; 3818 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 3819 3820 /* update gso size and bytecount with header size */ 3821 first->gso_segs = skb_shinfo(skb)->gso_segs; 3822 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3823 3824 /* mss_l4len_id: use 1 as index for TSO */ 3825 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3826 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3827 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3828 3829 fceof_saidx |= itd->pfsa; 3830 type_tucmd |= itd->flags | itd->trailer_len; 3831 3832 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3833 vlan_macip_lens = l4.hdr - ip.hdr; 3834 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3835 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3836 3837 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd, 3838 mss_l4len_idx); 3839 3840 return 1; 3841 } 3842 3843 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3844 struct ixgbevf_tx_buffer *first, 3845 struct ixgbevf_ipsec_tx_data *itd) 3846 { 3847 struct sk_buff *skb = first->skb; 3848 u32 vlan_macip_lens = 0; 3849 u32 fceof_saidx = 0; 3850 u32 type_tucmd = 0; 3851 3852 if (skb->ip_summed != CHECKSUM_PARTIAL) 3853 goto no_csum; 3854 3855 switch (skb->csum_offset) { 3856 case offsetof(struct tcphdr, check): 3857 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3858 fallthrough; 3859 case offsetof(struct udphdr, check): 3860 break; 3861 case offsetof(struct sctphdr, checksum): 3862 /* validate that this is actually an SCTP request */ 3863 if (skb_csum_is_sctp(skb)) { 3864 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3865 break; 3866 } 3867 fallthrough; 3868 default: 3869 skb_checksum_help(skb); 3870 goto no_csum; 3871 } 3872 3873 if (first->protocol == htons(ETH_P_IP)) 3874 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3875 3876 /* update TX checksum flag */ 3877 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3878 vlan_macip_lens = skb_checksum_start_offset(skb) - 3879 skb_network_offset(skb); 3880 no_csum: 3881 /* vlan_macip_lens: MACLEN, VLAN tag */ 3882 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3883 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3884 3885 fceof_saidx |= itd->pfsa; 3886 type_tucmd |= itd->flags | itd->trailer_len; 3887 3888 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3889 fceof_saidx, type_tucmd, 0); 3890 } 3891 3892 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3893 { 3894 /* set type for advanced descriptor with frame checksum insertion */ 3895 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3896 IXGBE_ADVTXD_DCMD_IFCS | 3897 IXGBE_ADVTXD_DCMD_DEXT); 3898 3899 /* set HW VLAN bit if VLAN is present */ 3900 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3901 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3902 3903 /* set segmentation enable bits for TSO/FSO */ 3904 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3905 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3906 3907 return cmd_type; 3908 } 3909 3910 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3911 u32 tx_flags, unsigned int paylen) 3912 { 3913 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3914 3915 /* enable L4 checksum for TSO and TX checksum offload */ 3916 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3917 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3918 3919 /* enble IPv4 checksum for TSO */ 3920 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3921 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3922 3923 /* enable IPsec */ 3924 if (tx_flags & IXGBE_TX_FLAGS_IPSEC) 3925 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC); 3926 3927 /* use index 1 context for TSO/FSO/FCOE/IPSEC */ 3928 if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC)) 3929 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3930 3931 /* Check Context must be set if Tx switch is enabled, which it 3932 * always is for case where virtual functions are running 3933 */ 3934 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3935 3936 tx_desc->read.olinfo_status = olinfo_status; 3937 } 3938 3939 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3940 struct ixgbevf_tx_buffer *first, 3941 const u8 hdr_len) 3942 { 3943 struct sk_buff *skb = first->skb; 3944 struct ixgbevf_tx_buffer *tx_buffer; 3945 union ixgbe_adv_tx_desc *tx_desc; 3946 skb_frag_t *frag; 3947 dma_addr_t dma; 3948 unsigned int data_len, size; 3949 u32 tx_flags = first->tx_flags; 3950 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3951 u16 i = tx_ring->next_to_use; 3952 3953 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3954 3955 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 3956 3957 size = skb_headlen(skb); 3958 data_len = skb->data_len; 3959 3960 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3961 3962 tx_buffer = first; 3963 3964 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3965 if (dma_mapping_error(tx_ring->dev, dma)) 3966 goto dma_error; 3967 3968 /* record length, and DMA address */ 3969 dma_unmap_len_set(tx_buffer, len, size); 3970 dma_unmap_addr_set(tx_buffer, dma, dma); 3971 3972 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3973 3974 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3975 tx_desc->read.cmd_type_len = 3976 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3977 3978 i++; 3979 tx_desc++; 3980 if (i == tx_ring->count) { 3981 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3982 i = 0; 3983 } 3984 tx_desc->read.olinfo_status = 0; 3985 3986 dma += IXGBE_MAX_DATA_PER_TXD; 3987 size -= IXGBE_MAX_DATA_PER_TXD; 3988 3989 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3990 } 3991 3992 if (likely(!data_len)) 3993 break; 3994 3995 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 3996 3997 i++; 3998 tx_desc++; 3999 if (i == tx_ring->count) { 4000 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4001 i = 0; 4002 } 4003 tx_desc->read.olinfo_status = 0; 4004 4005 size = skb_frag_size(frag); 4006 data_len -= size; 4007 4008 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 4009 DMA_TO_DEVICE); 4010 4011 tx_buffer = &tx_ring->tx_buffer_info[i]; 4012 } 4013 4014 /* write last descriptor with RS and EOP bits */ 4015 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 4016 tx_desc->read.cmd_type_len = cmd_type; 4017 4018 /* set the timestamp */ 4019 first->time_stamp = jiffies; 4020 4021 skb_tx_timestamp(skb); 4022 4023 /* Force memory writes to complete before letting h/w know there 4024 * are new descriptors to fetch. (Only applicable for weak-ordered 4025 * memory model archs, such as IA-64). 4026 * 4027 * We also need this memory barrier (wmb) to make certain all of the 4028 * status bits have been updated before next_to_watch is written. 4029 */ 4030 wmb(); 4031 4032 /* set next_to_watch value indicating a packet is present */ 4033 first->next_to_watch = tx_desc; 4034 4035 i++; 4036 if (i == tx_ring->count) 4037 i = 0; 4038 4039 tx_ring->next_to_use = i; 4040 4041 /* notify HW of packet */ 4042 ixgbevf_write_tail(tx_ring, i); 4043 4044 return; 4045 dma_error: 4046 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4047 tx_buffer = &tx_ring->tx_buffer_info[i]; 4048 4049 /* clear dma mappings for failed tx_buffer_info map */ 4050 while (tx_buffer != first) { 4051 if (dma_unmap_len(tx_buffer, len)) 4052 dma_unmap_page(tx_ring->dev, 4053 dma_unmap_addr(tx_buffer, dma), 4054 dma_unmap_len(tx_buffer, len), 4055 DMA_TO_DEVICE); 4056 dma_unmap_len_set(tx_buffer, len, 0); 4057 4058 if (i-- == 0) 4059 i += tx_ring->count; 4060 tx_buffer = &tx_ring->tx_buffer_info[i]; 4061 } 4062 4063 if (dma_unmap_len(tx_buffer, len)) 4064 dma_unmap_single(tx_ring->dev, 4065 dma_unmap_addr(tx_buffer, dma), 4066 dma_unmap_len(tx_buffer, len), 4067 DMA_TO_DEVICE); 4068 dma_unmap_len_set(tx_buffer, len, 0); 4069 4070 dev_kfree_skb_any(tx_buffer->skb); 4071 tx_buffer->skb = NULL; 4072 4073 tx_ring->next_to_use = i; 4074 } 4075 4076 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4077 { 4078 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 4079 /* Herbert's original patch had: 4080 * smp_mb__after_netif_stop_queue(); 4081 * but since that doesn't exist yet, just open code it. 4082 */ 4083 smp_mb(); 4084 4085 /* We need to check again in a case another CPU has just 4086 * made room available. 4087 */ 4088 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 4089 return -EBUSY; 4090 4091 /* A reprieve! - use start_queue because it doesn't call schedule */ 4092 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 4093 ++tx_ring->tx_stats.restart_queue; 4094 4095 return 0; 4096 } 4097 4098 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4099 { 4100 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 4101 return 0; 4102 return __ixgbevf_maybe_stop_tx(tx_ring, size); 4103 } 4104 4105 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb, 4106 struct ixgbevf_ring *tx_ring) 4107 { 4108 struct ixgbevf_tx_buffer *first; 4109 int tso; 4110 u32 tx_flags = 0; 4111 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4112 struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 }; 4113 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4114 unsigned short f; 4115 #endif 4116 u8 hdr_len = 0; 4117 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 4118 4119 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 4120 dev_kfree_skb_any(skb); 4121 return NETDEV_TX_OK; 4122 } 4123 4124 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 4125 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 4126 * + 2 desc gap to keep tail from touching head, 4127 * + 1 desc for context descriptor, 4128 * otherwise try next time 4129 */ 4130 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4131 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 4132 skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 4133 4134 count += TXD_USE_COUNT(skb_frag_size(frag)); 4135 } 4136 #else 4137 count += skb_shinfo(skb)->nr_frags; 4138 #endif 4139 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 4140 tx_ring->tx_stats.tx_busy++; 4141 return NETDEV_TX_BUSY; 4142 } 4143 4144 /* record the location of the first descriptor for this packet */ 4145 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4146 first->skb = skb; 4147 first->bytecount = skb->len; 4148 first->gso_segs = 1; 4149 4150 if (skb_vlan_tag_present(skb)) { 4151 tx_flags |= skb_vlan_tag_get(skb); 4152 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 4153 tx_flags |= IXGBE_TX_FLAGS_VLAN; 4154 } 4155 4156 /* record initial flags and protocol */ 4157 first->tx_flags = tx_flags; 4158 first->protocol = vlan_get_protocol(skb); 4159 4160 #ifdef CONFIG_IXGBEVF_IPSEC 4161 if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx)) 4162 goto out_drop; 4163 #endif 4164 tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx); 4165 if (tso < 0) 4166 goto out_drop; 4167 else if (!tso) 4168 ixgbevf_tx_csum(tx_ring, first, &ipsec_tx); 4169 4170 ixgbevf_tx_map(tx_ring, first, hdr_len); 4171 4172 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 4173 4174 return NETDEV_TX_OK; 4175 4176 out_drop: 4177 dev_kfree_skb_any(first->skb); 4178 first->skb = NULL; 4179 4180 return NETDEV_TX_OK; 4181 } 4182 4183 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 4184 { 4185 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4186 struct ixgbevf_ring *tx_ring; 4187 4188 if (skb->len <= 0) { 4189 dev_kfree_skb_any(skb); 4190 return NETDEV_TX_OK; 4191 } 4192 4193 /* The minimum packet size for olinfo paylen is 17 so pad the skb 4194 * in order to meet this minimum size requirement. 4195 */ 4196 if (skb->len < 17) { 4197 if (skb_padto(skb, 17)) 4198 return NETDEV_TX_OK; 4199 skb->len = 17; 4200 } 4201 4202 tx_ring = adapter->tx_ring[skb->queue_mapping]; 4203 return ixgbevf_xmit_frame_ring(skb, tx_ring); 4204 } 4205 4206 /** 4207 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 4208 * @netdev: network interface device structure 4209 * @p: pointer to an address structure 4210 * 4211 * Returns 0 on success, negative on failure 4212 **/ 4213 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 4214 { 4215 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4216 struct ixgbe_hw *hw = &adapter->hw; 4217 struct sockaddr *addr = p; 4218 int err; 4219 4220 if (!is_valid_ether_addr(addr->sa_data)) 4221 return -EADDRNOTAVAIL; 4222 4223 spin_lock_bh(&adapter->mbx_lock); 4224 4225 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 4226 4227 spin_unlock_bh(&adapter->mbx_lock); 4228 4229 if (err) 4230 return -EPERM; 4231 4232 ether_addr_copy(hw->mac.addr, addr->sa_data); 4233 ether_addr_copy(hw->mac.perm_addr, addr->sa_data); 4234 ether_addr_copy(netdev->dev_addr, addr->sa_data); 4235 4236 return 0; 4237 } 4238 4239 /** 4240 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 4241 * @netdev: network interface device structure 4242 * @new_mtu: new value for maximum frame size 4243 * 4244 * Returns 0 on success, negative on failure 4245 **/ 4246 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 4247 { 4248 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4249 struct ixgbe_hw *hw = &adapter->hw; 4250 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 4251 int ret; 4252 4253 /* prevent MTU being changed to a size unsupported by XDP */ 4254 if (adapter->xdp_prog) { 4255 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n"); 4256 return -EPERM; 4257 } 4258 4259 spin_lock_bh(&adapter->mbx_lock); 4260 /* notify the PF of our intent to use this size of frame */ 4261 ret = hw->mac.ops.set_rlpml(hw, max_frame); 4262 spin_unlock_bh(&adapter->mbx_lock); 4263 if (ret) 4264 return -EINVAL; 4265 4266 hw_dbg(hw, "changing MTU from %d to %d\n", 4267 netdev->mtu, new_mtu); 4268 4269 /* must set new MTU before calling down or up */ 4270 netdev->mtu = new_mtu; 4271 4272 if (netif_running(netdev)) 4273 ixgbevf_reinit_locked(adapter); 4274 4275 return 0; 4276 } 4277 4278 static int __maybe_unused ixgbevf_suspend(struct device *dev_d) 4279 { 4280 struct net_device *netdev = dev_get_drvdata(dev_d); 4281 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4282 4283 rtnl_lock(); 4284 netif_device_detach(netdev); 4285 4286 if (netif_running(netdev)) 4287 ixgbevf_close_suspend(adapter); 4288 4289 ixgbevf_clear_interrupt_scheme(adapter); 4290 rtnl_unlock(); 4291 4292 return 0; 4293 } 4294 4295 static int __maybe_unused ixgbevf_resume(struct device *dev_d) 4296 { 4297 struct pci_dev *pdev = to_pci_dev(dev_d); 4298 struct net_device *netdev = pci_get_drvdata(pdev); 4299 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4300 u32 err; 4301 4302 adapter->hw.hw_addr = adapter->io_addr; 4303 smp_mb__before_atomic(); 4304 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4305 pci_set_master(pdev); 4306 4307 ixgbevf_reset(adapter); 4308 4309 rtnl_lock(); 4310 err = ixgbevf_init_interrupt_scheme(adapter); 4311 if (!err && netif_running(netdev)) 4312 err = ixgbevf_open(netdev); 4313 rtnl_unlock(); 4314 if (err) 4315 return err; 4316 4317 netif_device_attach(netdev); 4318 4319 return err; 4320 } 4321 4322 static void ixgbevf_shutdown(struct pci_dev *pdev) 4323 { 4324 ixgbevf_suspend(&pdev->dev); 4325 } 4326 4327 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats, 4328 const struct ixgbevf_ring *ring) 4329 { 4330 u64 bytes, packets; 4331 unsigned int start; 4332 4333 if (ring) { 4334 do { 4335 start = u64_stats_fetch_begin_irq(&ring->syncp); 4336 bytes = ring->stats.bytes; 4337 packets = ring->stats.packets; 4338 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4339 stats->tx_bytes += bytes; 4340 stats->tx_packets += packets; 4341 } 4342 } 4343 4344 static void ixgbevf_get_stats(struct net_device *netdev, 4345 struct rtnl_link_stats64 *stats) 4346 { 4347 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4348 unsigned int start; 4349 u64 bytes, packets; 4350 const struct ixgbevf_ring *ring; 4351 int i; 4352 4353 ixgbevf_update_stats(adapter); 4354 4355 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 4356 4357 rcu_read_lock(); 4358 for (i = 0; i < adapter->num_rx_queues; i++) { 4359 ring = adapter->rx_ring[i]; 4360 do { 4361 start = u64_stats_fetch_begin_irq(&ring->syncp); 4362 bytes = ring->stats.bytes; 4363 packets = ring->stats.packets; 4364 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4365 stats->rx_bytes += bytes; 4366 stats->rx_packets += packets; 4367 } 4368 4369 for (i = 0; i < adapter->num_tx_queues; i++) { 4370 ring = adapter->tx_ring[i]; 4371 ixgbevf_get_tx_ring_stats(stats, ring); 4372 } 4373 4374 for (i = 0; i < adapter->num_xdp_queues; i++) { 4375 ring = adapter->xdp_ring[i]; 4376 ixgbevf_get_tx_ring_stats(stats, ring); 4377 } 4378 rcu_read_unlock(); 4379 } 4380 4381 #define IXGBEVF_MAX_MAC_HDR_LEN 127 4382 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 4383 4384 static netdev_features_t 4385 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 4386 netdev_features_t features) 4387 { 4388 unsigned int network_hdr_len, mac_hdr_len; 4389 4390 /* Make certain the headers can be described by a context descriptor */ 4391 mac_hdr_len = skb_network_header(skb) - skb->data; 4392 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 4393 return features & ~(NETIF_F_HW_CSUM | 4394 NETIF_F_SCTP_CRC | 4395 NETIF_F_HW_VLAN_CTAG_TX | 4396 NETIF_F_TSO | 4397 NETIF_F_TSO6); 4398 4399 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4400 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 4401 return features & ~(NETIF_F_HW_CSUM | 4402 NETIF_F_SCTP_CRC | 4403 NETIF_F_TSO | 4404 NETIF_F_TSO6); 4405 4406 /* We can only support IPV4 TSO in tunnels if we can mangle the 4407 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4408 */ 4409 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4410 features &= ~NETIF_F_TSO; 4411 4412 return features; 4413 } 4414 4415 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog) 4416 { 4417 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4418 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4419 struct bpf_prog *old_prog; 4420 4421 /* verify ixgbevf ring attributes are sufficient for XDP */ 4422 for (i = 0; i < adapter->num_rx_queues; i++) { 4423 struct ixgbevf_ring *ring = adapter->rx_ring[i]; 4424 4425 if (frame_size > ixgbevf_rx_bufsz(ring)) 4426 return -EINVAL; 4427 } 4428 4429 old_prog = xchg(&adapter->xdp_prog, prog); 4430 4431 /* If transitioning XDP modes reconfigure rings */ 4432 if (!!prog != !!old_prog) { 4433 /* Hardware has to reinitialize queues and interrupts to 4434 * match packet buffer alignment. Unfortunately, the 4435 * hardware is not flexible enough to do this dynamically. 4436 */ 4437 if (netif_running(dev)) 4438 ixgbevf_close(dev); 4439 4440 ixgbevf_clear_interrupt_scheme(adapter); 4441 ixgbevf_init_interrupt_scheme(adapter); 4442 4443 if (netif_running(dev)) 4444 ixgbevf_open(dev); 4445 } else { 4446 for (i = 0; i < adapter->num_rx_queues; i++) 4447 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog); 4448 } 4449 4450 if (old_prog) 4451 bpf_prog_put(old_prog); 4452 4453 return 0; 4454 } 4455 4456 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4457 { 4458 switch (xdp->command) { 4459 case XDP_SETUP_PROG: 4460 return ixgbevf_xdp_setup(dev, xdp->prog); 4461 default: 4462 return -EINVAL; 4463 } 4464 } 4465 4466 static const struct net_device_ops ixgbevf_netdev_ops = { 4467 .ndo_open = ixgbevf_open, 4468 .ndo_stop = ixgbevf_close, 4469 .ndo_start_xmit = ixgbevf_xmit_frame, 4470 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 4471 .ndo_get_stats64 = ixgbevf_get_stats, 4472 .ndo_validate_addr = eth_validate_addr, 4473 .ndo_set_mac_address = ixgbevf_set_mac, 4474 .ndo_change_mtu = ixgbevf_change_mtu, 4475 .ndo_tx_timeout = ixgbevf_tx_timeout, 4476 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 4477 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 4478 .ndo_features_check = ixgbevf_features_check, 4479 .ndo_bpf = ixgbevf_xdp, 4480 }; 4481 4482 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 4483 { 4484 dev->netdev_ops = &ixgbevf_netdev_ops; 4485 ixgbevf_set_ethtool_ops(dev); 4486 dev->watchdog_timeo = 5 * HZ; 4487 } 4488 4489 /** 4490 * ixgbevf_probe - Device Initialization Routine 4491 * @pdev: PCI device information struct 4492 * @ent: entry in ixgbevf_pci_tbl 4493 * 4494 * Returns 0 on success, negative on failure 4495 * 4496 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 4497 * The OS initialization, configuring of the adapter private structure, 4498 * and a hardware reset occur. 4499 **/ 4500 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4501 { 4502 struct net_device *netdev; 4503 struct ixgbevf_adapter *adapter = NULL; 4504 struct ixgbe_hw *hw = NULL; 4505 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 4506 int err, pci_using_dac; 4507 bool disable_dev = false; 4508 4509 err = pci_enable_device(pdev); 4510 if (err) 4511 return err; 4512 4513 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 4514 pci_using_dac = 1; 4515 } else { 4516 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4517 if (err) { 4518 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4519 goto err_dma; 4520 } 4521 pci_using_dac = 0; 4522 } 4523 4524 err = pci_request_regions(pdev, ixgbevf_driver_name); 4525 if (err) { 4526 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4527 goto err_pci_reg; 4528 } 4529 4530 pci_set_master(pdev); 4531 4532 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4533 MAX_TX_QUEUES); 4534 if (!netdev) { 4535 err = -ENOMEM; 4536 goto err_alloc_etherdev; 4537 } 4538 4539 SET_NETDEV_DEV(netdev, &pdev->dev); 4540 4541 adapter = netdev_priv(netdev); 4542 4543 adapter->netdev = netdev; 4544 adapter->pdev = pdev; 4545 hw = &adapter->hw; 4546 hw->back = adapter; 4547 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4548 4549 /* call save state here in standalone driver because it relies on 4550 * adapter struct to exist, and needs to call netdev_priv 4551 */ 4552 pci_save_state(pdev); 4553 4554 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4555 pci_resource_len(pdev, 0)); 4556 adapter->io_addr = hw->hw_addr; 4557 if (!hw->hw_addr) { 4558 err = -EIO; 4559 goto err_ioremap; 4560 } 4561 4562 ixgbevf_assign_netdev_ops(netdev); 4563 4564 /* Setup HW API */ 4565 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4566 hw->mac.type = ii->mac; 4567 4568 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 4569 sizeof(struct ixgbe_mbx_operations)); 4570 4571 /* setup the private structure */ 4572 err = ixgbevf_sw_init(adapter); 4573 if (err) 4574 goto err_sw_init; 4575 4576 /* The HW MAC address was set and/or determined in sw_init */ 4577 if (!is_valid_ether_addr(netdev->dev_addr)) { 4578 pr_err("invalid MAC address\n"); 4579 err = -EIO; 4580 goto err_sw_init; 4581 } 4582 4583 netdev->hw_features = NETIF_F_SG | 4584 NETIF_F_TSO | 4585 NETIF_F_TSO6 | 4586 NETIF_F_RXCSUM | 4587 NETIF_F_HW_CSUM | 4588 NETIF_F_SCTP_CRC; 4589 4590 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4591 NETIF_F_GSO_GRE_CSUM | \ 4592 NETIF_F_GSO_IPXIP4 | \ 4593 NETIF_F_GSO_IPXIP6 | \ 4594 NETIF_F_GSO_UDP_TUNNEL | \ 4595 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4596 4597 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4598 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4599 IXGBEVF_GSO_PARTIAL_FEATURES; 4600 4601 netdev->features = netdev->hw_features; 4602 4603 if (pci_using_dac) 4604 netdev->features |= NETIF_F_HIGHDMA; 4605 4606 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4607 netdev->mpls_features |= NETIF_F_SG | 4608 NETIF_F_TSO | 4609 NETIF_F_TSO6 | 4610 NETIF_F_HW_CSUM; 4611 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4612 netdev->hw_enc_features |= netdev->vlan_features; 4613 4614 /* set this bit last since it cannot be part of vlan_features */ 4615 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4616 NETIF_F_HW_VLAN_CTAG_RX | 4617 NETIF_F_HW_VLAN_CTAG_TX; 4618 4619 netdev->priv_flags |= IFF_UNICAST_FLT; 4620 4621 /* MTU range: 68 - 1504 or 9710 */ 4622 netdev->min_mtu = ETH_MIN_MTU; 4623 switch (adapter->hw.api_version) { 4624 case ixgbe_mbox_api_11: 4625 case ixgbe_mbox_api_12: 4626 case ixgbe_mbox_api_13: 4627 case ixgbe_mbox_api_14: 4628 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4629 (ETH_HLEN + ETH_FCS_LEN); 4630 break; 4631 default: 4632 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4633 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4634 (ETH_HLEN + ETH_FCS_LEN); 4635 else 4636 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4637 break; 4638 } 4639 4640 if (IXGBE_REMOVED(hw->hw_addr)) { 4641 err = -EIO; 4642 goto err_sw_init; 4643 } 4644 4645 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); 4646 4647 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4648 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4649 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4650 4651 err = ixgbevf_init_interrupt_scheme(adapter); 4652 if (err) 4653 goto err_sw_init; 4654 4655 strcpy(netdev->name, "eth%d"); 4656 4657 err = register_netdev(netdev); 4658 if (err) 4659 goto err_register; 4660 4661 pci_set_drvdata(pdev, netdev); 4662 netif_carrier_off(netdev); 4663 ixgbevf_init_ipsec_offload(adapter); 4664 4665 ixgbevf_init_last_counter_stats(adapter); 4666 4667 /* print the VF info */ 4668 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4669 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4670 4671 switch (hw->mac.type) { 4672 case ixgbe_mac_X550_vf: 4673 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4674 break; 4675 case ixgbe_mac_X540_vf: 4676 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4677 break; 4678 case ixgbe_mac_82599_vf: 4679 default: 4680 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4681 break; 4682 } 4683 4684 return 0; 4685 4686 err_register: 4687 ixgbevf_clear_interrupt_scheme(adapter); 4688 err_sw_init: 4689 ixgbevf_reset_interrupt_capability(adapter); 4690 iounmap(adapter->io_addr); 4691 kfree(adapter->rss_key); 4692 err_ioremap: 4693 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4694 free_netdev(netdev); 4695 err_alloc_etherdev: 4696 pci_release_regions(pdev); 4697 err_pci_reg: 4698 err_dma: 4699 if (!adapter || disable_dev) 4700 pci_disable_device(pdev); 4701 return err; 4702 } 4703 4704 /** 4705 * ixgbevf_remove - Device Removal Routine 4706 * @pdev: PCI device information struct 4707 * 4708 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4709 * that it should release a PCI device. The could be caused by a 4710 * Hot-Plug event, or because the driver is going to be removed from 4711 * memory. 4712 **/ 4713 static void ixgbevf_remove(struct pci_dev *pdev) 4714 { 4715 struct net_device *netdev = pci_get_drvdata(pdev); 4716 struct ixgbevf_adapter *adapter; 4717 bool disable_dev; 4718 4719 if (!netdev) 4720 return; 4721 4722 adapter = netdev_priv(netdev); 4723 4724 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4725 cancel_work_sync(&adapter->service_task); 4726 4727 if (netdev->reg_state == NETREG_REGISTERED) 4728 unregister_netdev(netdev); 4729 4730 ixgbevf_stop_ipsec_offload(adapter); 4731 ixgbevf_clear_interrupt_scheme(adapter); 4732 ixgbevf_reset_interrupt_capability(adapter); 4733 4734 iounmap(adapter->io_addr); 4735 pci_release_regions(pdev); 4736 4737 hw_dbg(&adapter->hw, "Remove complete\n"); 4738 4739 kfree(adapter->rss_key); 4740 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4741 free_netdev(netdev); 4742 4743 if (disable_dev) 4744 pci_disable_device(pdev); 4745 } 4746 4747 /** 4748 * ixgbevf_io_error_detected - called when PCI error is detected 4749 * @pdev: Pointer to PCI device 4750 * @state: The current pci connection state 4751 * 4752 * This function is called after a PCI bus error affecting 4753 * this device has been detected. 4754 **/ 4755 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4756 pci_channel_state_t state) 4757 { 4758 struct net_device *netdev = pci_get_drvdata(pdev); 4759 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4760 4761 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4762 return PCI_ERS_RESULT_DISCONNECT; 4763 4764 rtnl_lock(); 4765 netif_device_detach(netdev); 4766 4767 if (netif_running(netdev)) 4768 ixgbevf_close_suspend(adapter); 4769 4770 if (state == pci_channel_io_perm_failure) { 4771 rtnl_unlock(); 4772 return PCI_ERS_RESULT_DISCONNECT; 4773 } 4774 4775 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4776 pci_disable_device(pdev); 4777 rtnl_unlock(); 4778 4779 /* Request a slot slot reset. */ 4780 return PCI_ERS_RESULT_NEED_RESET; 4781 } 4782 4783 /** 4784 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4785 * @pdev: Pointer to PCI device 4786 * 4787 * Restart the card from scratch, as if from a cold-boot. Implementation 4788 * resembles the first-half of the ixgbevf_resume routine. 4789 **/ 4790 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4791 { 4792 struct net_device *netdev = pci_get_drvdata(pdev); 4793 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4794 4795 if (pci_enable_device_mem(pdev)) { 4796 dev_err(&pdev->dev, 4797 "Cannot re-enable PCI device after reset.\n"); 4798 return PCI_ERS_RESULT_DISCONNECT; 4799 } 4800 4801 adapter->hw.hw_addr = adapter->io_addr; 4802 smp_mb__before_atomic(); 4803 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4804 pci_set_master(pdev); 4805 4806 ixgbevf_reset(adapter); 4807 4808 return PCI_ERS_RESULT_RECOVERED; 4809 } 4810 4811 /** 4812 * ixgbevf_io_resume - called when traffic can start flowing again. 4813 * @pdev: Pointer to PCI device 4814 * 4815 * This callback is called when the error recovery driver tells us that 4816 * its OK to resume normal operation. Implementation resembles the 4817 * second-half of the ixgbevf_resume routine. 4818 **/ 4819 static void ixgbevf_io_resume(struct pci_dev *pdev) 4820 { 4821 struct net_device *netdev = pci_get_drvdata(pdev); 4822 4823 rtnl_lock(); 4824 if (netif_running(netdev)) 4825 ixgbevf_open(netdev); 4826 4827 netif_device_attach(netdev); 4828 rtnl_unlock(); 4829 } 4830 4831 /* PCI Error Recovery (ERS) */ 4832 static const struct pci_error_handlers ixgbevf_err_handler = { 4833 .error_detected = ixgbevf_io_error_detected, 4834 .slot_reset = ixgbevf_io_slot_reset, 4835 .resume = ixgbevf_io_resume, 4836 }; 4837 4838 static SIMPLE_DEV_PM_OPS(ixgbevf_pm_ops, ixgbevf_suspend, ixgbevf_resume); 4839 4840 static struct pci_driver ixgbevf_driver = { 4841 .name = ixgbevf_driver_name, 4842 .id_table = ixgbevf_pci_tbl, 4843 .probe = ixgbevf_probe, 4844 .remove = ixgbevf_remove, 4845 4846 /* Power Management Hooks */ 4847 .driver.pm = &ixgbevf_pm_ops, 4848 4849 .shutdown = ixgbevf_shutdown, 4850 .err_handler = &ixgbevf_err_handler 4851 }; 4852 4853 /** 4854 * ixgbevf_init_module - Driver Registration Routine 4855 * 4856 * ixgbevf_init_module is the first routine called when the driver is 4857 * loaded. All it does is register with the PCI subsystem. 4858 **/ 4859 static int __init ixgbevf_init_module(void) 4860 { 4861 pr_info("%s\n", ixgbevf_driver_string); 4862 pr_info("%s\n", ixgbevf_copyright); 4863 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4864 if (!ixgbevf_wq) { 4865 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4866 return -ENOMEM; 4867 } 4868 4869 return pci_register_driver(&ixgbevf_driver); 4870 } 4871 4872 module_init(ixgbevf_init_module); 4873 4874 /** 4875 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4876 * 4877 * ixgbevf_exit_module is called just before the driver is removed 4878 * from memory. 4879 **/ 4880 static void __exit ixgbevf_exit_module(void) 4881 { 4882 pci_unregister_driver(&ixgbevf_driver); 4883 if (ixgbevf_wq) { 4884 destroy_workqueue(ixgbevf_wq); 4885 ixgbevf_wq = NULL; 4886 } 4887 } 4888 4889 #ifdef DEBUG 4890 /** 4891 * ixgbevf_get_hw_dev_name - return device name string 4892 * used by hardware layer to print debugging information 4893 * @hw: pointer to private hardware struct 4894 **/ 4895 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4896 { 4897 struct ixgbevf_adapter *adapter = hw->back; 4898 4899 return adapter->netdev->name; 4900 } 4901 4902 #endif 4903 module_exit(ixgbevf_exit_module); 4904 4905 /* ixgbevf_main.c */ 4906