1 /******************************************************************************* 2 3 Intel 82599 Virtual Function driver 4 Copyright(c) 1999 - 2015 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, see <http://www.gnu.org/licenses/>. 17 18 The full GNU General Public License is included in this distribution in 19 the file called "COPYING". 20 21 Contact Information: 22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 25 *******************************************************************************/ 26 27 /****************************************************************************** 28 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 29 ******************************************************************************/ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/types.h> 34 #include <linux/bitops.h> 35 #include <linux/module.h> 36 #include <linux/pci.h> 37 #include <linux/netdevice.h> 38 #include <linux/vmalloc.h> 39 #include <linux/string.h> 40 #include <linux/in.h> 41 #include <linux/ip.h> 42 #include <linux/tcp.h> 43 #include <linux/sctp.h> 44 #include <linux/ipv6.h> 45 #include <linux/slab.h> 46 #include <net/checksum.h> 47 #include <net/ip6_checksum.h> 48 #include <linux/ethtool.h> 49 #include <linux/if.h> 50 #include <linux/if_vlan.h> 51 #include <linux/prefetch.h> 52 53 #include "ixgbevf.h" 54 55 const char ixgbevf_driver_name[] = "ixgbevf"; 56 static const char ixgbevf_driver_string[] = 57 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 58 59 #define DRV_VERSION "2.12.1-k" 60 const char ixgbevf_driver_version[] = DRV_VERSION; 61 static char ixgbevf_copyright[] = 62 "Copyright (c) 2009 - 2012 Intel Corporation."; 63 64 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 65 [board_82599_vf] = &ixgbevf_82599_vf_info, 66 [board_X540_vf] = &ixgbevf_X540_vf_info, 67 [board_X550_vf] = &ixgbevf_X550_vf_info, 68 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 69 }; 70 71 /* ixgbevf_pci_tbl - PCI Device ID Table 72 * 73 * Wildcard entries (PCI_ANY_ID) should come last 74 * Last entry must be all 0s 75 * 76 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 77 * Class, Class Mask, private data (not used) } 78 */ 79 static const struct pci_device_id ixgbevf_pci_tbl[] = { 80 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 81 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 82 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 83 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 84 /* required last entry */ 85 {0, } 86 }; 87 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 88 89 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 90 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 91 MODULE_LICENSE("GPL"); 92 MODULE_VERSION(DRV_VERSION); 93 94 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 95 static int debug = -1; 96 module_param(debug, int, 0); 97 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 98 99 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 100 { 101 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 102 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 103 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 104 schedule_work(&adapter->service_task); 105 } 106 107 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 108 { 109 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 110 111 /* flush memory to make sure state is correct before next watchdog */ 112 smp_mb__before_atomic(); 113 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 114 } 115 116 /* forward decls */ 117 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 118 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 119 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 120 121 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 122 { 123 struct ixgbevf_adapter *adapter = hw->back; 124 125 if (!hw->hw_addr) 126 return; 127 hw->hw_addr = NULL; 128 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 129 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 130 ixgbevf_service_event_schedule(adapter); 131 } 132 133 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 134 { 135 u32 value; 136 137 /* The following check not only optimizes a bit by not 138 * performing a read on the status register when the 139 * register just read was a status register read that 140 * returned IXGBE_FAILED_READ_REG. It also blocks any 141 * potential recursion. 142 */ 143 if (reg == IXGBE_VFSTATUS) { 144 ixgbevf_remove_adapter(hw); 145 return; 146 } 147 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 148 if (value == IXGBE_FAILED_READ_REG) 149 ixgbevf_remove_adapter(hw); 150 } 151 152 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 153 { 154 u8 __iomem *reg_addr = ACCESS_ONCE(hw->hw_addr); 155 u32 value; 156 157 if (IXGBE_REMOVED(reg_addr)) 158 return IXGBE_FAILED_READ_REG; 159 value = readl(reg_addr + reg); 160 if (unlikely(value == IXGBE_FAILED_READ_REG)) 161 ixgbevf_check_remove(hw, reg); 162 return value; 163 } 164 165 /** 166 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 167 * @adapter: pointer to adapter struct 168 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 169 * @queue: queue to map the corresponding interrupt to 170 * @msix_vector: the vector to map to the corresponding queue 171 **/ 172 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 173 u8 queue, u8 msix_vector) 174 { 175 u32 ivar, index; 176 struct ixgbe_hw *hw = &adapter->hw; 177 178 if (direction == -1) { 179 /* other causes */ 180 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 181 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 182 ivar &= ~0xFF; 183 ivar |= msix_vector; 184 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 185 } else { 186 /* Tx or Rx causes */ 187 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 188 index = ((16 * (queue & 1)) + (8 * direction)); 189 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 190 ivar &= ~(0xFF << index); 191 ivar |= (msix_vector << index); 192 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 193 } 194 } 195 196 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring, 197 struct ixgbevf_tx_buffer *tx_buffer) 198 { 199 if (tx_buffer->skb) { 200 dev_kfree_skb_any(tx_buffer->skb); 201 if (dma_unmap_len(tx_buffer, len)) 202 dma_unmap_single(tx_ring->dev, 203 dma_unmap_addr(tx_buffer, dma), 204 dma_unmap_len(tx_buffer, len), 205 DMA_TO_DEVICE); 206 } else if (dma_unmap_len(tx_buffer, len)) { 207 dma_unmap_page(tx_ring->dev, 208 dma_unmap_addr(tx_buffer, dma), 209 dma_unmap_len(tx_buffer, len), 210 DMA_TO_DEVICE); 211 } 212 tx_buffer->next_to_watch = NULL; 213 tx_buffer->skb = NULL; 214 dma_unmap_len_set(tx_buffer, len, 0); 215 /* tx_buffer must be completely set up in the transmit path */ 216 } 217 218 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 219 { 220 return ring->stats.packets; 221 } 222 223 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 224 { 225 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 226 struct ixgbe_hw *hw = &adapter->hw; 227 228 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 229 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 230 231 if (head != tail) 232 return (head < tail) ? 233 tail - head : (tail + ring->count - head); 234 235 return 0; 236 } 237 238 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 239 { 240 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 241 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 242 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 243 244 clear_check_for_tx_hang(tx_ring); 245 246 /* Check for a hung queue, but be thorough. This verifies 247 * that a transmit has been completed since the previous 248 * check AND there is at least one packet pending. The 249 * ARMED bit is set to indicate a potential hang. 250 */ 251 if ((tx_done_old == tx_done) && tx_pending) { 252 /* make sure it is true for two checks in a row */ 253 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 254 &tx_ring->state); 255 } 256 /* reset the countdown */ 257 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 258 259 /* update completed stats and continue */ 260 tx_ring->tx_stats.tx_done_old = tx_done; 261 262 return false; 263 } 264 265 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 266 { 267 /* Do the reset outside of interrupt context */ 268 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 269 adapter->flags |= IXGBEVF_FLAG_RESET_REQUESTED; 270 ixgbevf_service_event_schedule(adapter); 271 } 272 } 273 274 /** 275 * ixgbevf_tx_timeout - Respond to a Tx Hang 276 * @netdev: network interface device structure 277 **/ 278 static void ixgbevf_tx_timeout(struct net_device *netdev) 279 { 280 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 281 282 ixgbevf_tx_timeout_reset(adapter); 283 } 284 285 /** 286 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 287 * @q_vector: board private structure 288 * @tx_ring: tx ring to clean 289 **/ 290 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 291 struct ixgbevf_ring *tx_ring) 292 { 293 struct ixgbevf_adapter *adapter = q_vector->adapter; 294 struct ixgbevf_tx_buffer *tx_buffer; 295 union ixgbe_adv_tx_desc *tx_desc; 296 unsigned int total_bytes = 0, total_packets = 0; 297 unsigned int budget = tx_ring->count / 2; 298 unsigned int i = tx_ring->next_to_clean; 299 300 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 301 return true; 302 303 tx_buffer = &tx_ring->tx_buffer_info[i]; 304 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 305 i -= tx_ring->count; 306 307 do { 308 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 309 310 /* if next_to_watch is not set then there is no work pending */ 311 if (!eop_desc) 312 break; 313 314 /* prevent any other reads prior to eop_desc */ 315 read_barrier_depends(); 316 317 /* if DD is not set pending work has not been completed */ 318 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 319 break; 320 321 /* clear next_to_watch to prevent false hangs */ 322 tx_buffer->next_to_watch = NULL; 323 324 /* update the statistics for this packet */ 325 total_bytes += tx_buffer->bytecount; 326 total_packets += tx_buffer->gso_segs; 327 328 /* free the skb */ 329 dev_kfree_skb_any(tx_buffer->skb); 330 331 /* unmap skb header data */ 332 dma_unmap_single(tx_ring->dev, 333 dma_unmap_addr(tx_buffer, dma), 334 dma_unmap_len(tx_buffer, len), 335 DMA_TO_DEVICE); 336 337 /* clear tx_buffer data */ 338 tx_buffer->skb = NULL; 339 dma_unmap_len_set(tx_buffer, len, 0); 340 341 /* unmap remaining buffers */ 342 while (tx_desc != eop_desc) { 343 tx_buffer++; 344 tx_desc++; 345 i++; 346 if (unlikely(!i)) { 347 i -= tx_ring->count; 348 tx_buffer = tx_ring->tx_buffer_info; 349 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 350 } 351 352 /* unmap any remaining paged data */ 353 if (dma_unmap_len(tx_buffer, len)) { 354 dma_unmap_page(tx_ring->dev, 355 dma_unmap_addr(tx_buffer, dma), 356 dma_unmap_len(tx_buffer, len), 357 DMA_TO_DEVICE); 358 dma_unmap_len_set(tx_buffer, len, 0); 359 } 360 } 361 362 /* move us one more past the eop_desc for start of next pkt */ 363 tx_buffer++; 364 tx_desc++; 365 i++; 366 if (unlikely(!i)) { 367 i -= tx_ring->count; 368 tx_buffer = tx_ring->tx_buffer_info; 369 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 370 } 371 372 /* issue prefetch for next Tx descriptor */ 373 prefetch(tx_desc); 374 375 /* update budget accounting */ 376 budget--; 377 } while (likely(budget)); 378 379 i += tx_ring->count; 380 tx_ring->next_to_clean = i; 381 u64_stats_update_begin(&tx_ring->syncp); 382 tx_ring->stats.bytes += total_bytes; 383 tx_ring->stats.packets += total_packets; 384 u64_stats_update_end(&tx_ring->syncp); 385 q_vector->tx.total_bytes += total_bytes; 386 q_vector->tx.total_packets += total_packets; 387 388 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 389 struct ixgbe_hw *hw = &adapter->hw; 390 union ixgbe_adv_tx_desc *eop_desc; 391 392 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 393 394 pr_err("Detected Tx Unit Hang\n" 395 " Tx Queue <%d>\n" 396 " TDH, TDT <%x>, <%x>\n" 397 " next_to_use <%x>\n" 398 " next_to_clean <%x>\n" 399 "tx_buffer_info[next_to_clean]\n" 400 " next_to_watch <%p>\n" 401 " eop_desc->wb.status <%x>\n" 402 " time_stamp <%lx>\n" 403 " jiffies <%lx>\n", 404 tx_ring->queue_index, 405 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 406 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 407 tx_ring->next_to_use, i, 408 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 409 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 410 411 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 412 413 /* schedule immediate reset if we believe we hung */ 414 ixgbevf_tx_timeout_reset(adapter); 415 416 return true; 417 } 418 419 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 420 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 421 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 422 /* Make sure that anybody stopping the queue after this 423 * sees the new next_to_clean. 424 */ 425 smp_mb(); 426 427 if (__netif_subqueue_stopped(tx_ring->netdev, 428 tx_ring->queue_index) && 429 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 430 netif_wake_subqueue(tx_ring->netdev, 431 tx_ring->queue_index); 432 ++tx_ring->tx_stats.restart_queue; 433 } 434 } 435 436 return !!budget; 437 } 438 439 /** 440 * ixgbevf_rx_skb - Helper function to determine proper Rx method 441 * @q_vector: structure containing interrupt and ring information 442 * @skb: packet to send up 443 **/ 444 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 445 struct sk_buff *skb) 446 { 447 #ifdef CONFIG_NET_RX_BUSY_POLL 448 skb_mark_napi_id(skb, &q_vector->napi); 449 450 if (ixgbevf_qv_busy_polling(q_vector)) { 451 netif_receive_skb(skb); 452 /* exit early if we busy polled */ 453 return; 454 } 455 #endif /* CONFIG_NET_RX_BUSY_POLL */ 456 457 napi_gro_receive(&q_vector->napi, skb); 458 } 459 460 #define IXGBE_RSS_L4_TYPES_MASK \ 461 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 462 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 463 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 464 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 465 466 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 467 union ixgbe_adv_rx_desc *rx_desc, 468 struct sk_buff *skb) 469 { 470 u16 rss_type; 471 472 if (!(ring->netdev->features & NETIF_F_RXHASH)) 473 return; 474 475 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 476 IXGBE_RXDADV_RSSTYPE_MASK; 477 478 if (!rss_type) 479 return; 480 481 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 482 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 483 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 484 } 485 486 /** 487 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 488 * @ring: structure containig ring specific data 489 * @rx_desc: current Rx descriptor being processed 490 * @skb: skb currently being received and modified 491 **/ 492 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 493 union ixgbe_adv_rx_desc *rx_desc, 494 struct sk_buff *skb) 495 { 496 skb_checksum_none_assert(skb); 497 498 /* Rx csum disabled */ 499 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 500 return; 501 502 /* if IP and error */ 503 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 504 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 505 ring->rx_stats.csum_err++; 506 return; 507 } 508 509 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 510 return; 511 512 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 513 ring->rx_stats.csum_err++; 514 return; 515 } 516 517 /* It must be a TCP or UDP packet with a valid checksum */ 518 skb->ip_summed = CHECKSUM_UNNECESSARY; 519 } 520 521 /** 522 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 523 * @rx_ring: rx descriptor ring packet is being transacted on 524 * @rx_desc: pointer to the EOP Rx descriptor 525 * @skb: pointer to current skb being populated 526 * 527 * This function checks the ring, descriptor, and packet information in 528 * order to populate the checksum, VLAN, protocol, and other fields within 529 * the skb. 530 **/ 531 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 532 union ixgbe_adv_rx_desc *rx_desc, 533 struct sk_buff *skb) 534 { 535 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 536 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 537 538 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 539 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 540 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 541 542 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 543 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 544 } 545 546 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 547 } 548 549 /** 550 * ixgbevf_is_non_eop - process handling of non-EOP buffers 551 * @rx_ring: Rx ring being processed 552 * @rx_desc: Rx descriptor for current buffer 553 * @skb: current socket buffer containing buffer in progress 554 * 555 * This function updates next to clean. If the buffer is an EOP buffer 556 * this function exits returning false, otherwise it will place the 557 * sk_buff in the next buffer to be chained and return true indicating 558 * that this is in fact a non-EOP buffer. 559 **/ 560 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 561 union ixgbe_adv_rx_desc *rx_desc) 562 { 563 u32 ntc = rx_ring->next_to_clean + 1; 564 565 /* fetch, update, and store next to clean */ 566 ntc = (ntc < rx_ring->count) ? ntc : 0; 567 rx_ring->next_to_clean = ntc; 568 569 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 570 571 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 572 return false; 573 574 return true; 575 } 576 577 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 578 struct ixgbevf_rx_buffer *bi) 579 { 580 struct page *page = bi->page; 581 dma_addr_t dma = bi->dma; 582 583 /* since we are recycling buffers we should seldom need to alloc */ 584 if (likely(page)) 585 return true; 586 587 /* alloc new page for storage */ 588 page = dev_alloc_page(); 589 if (unlikely(!page)) { 590 rx_ring->rx_stats.alloc_rx_page_failed++; 591 return false; 592 } 593 594 /* map page for use */ 595 dma = dma_map_page(rx_ring->dev, page, 0, 596 PAGE_SIZE, DMA_FROM_DEVICE); 597 598 /* if mapping failed free memory back to system since 599 * there isn't much point in holding memory we can't use 600 */ 601 if (dma_mapping_error(rx_ring->dev, dma)) { 602 __free_page(page); 603 604 rx_ring->rx_stats.alloc_rx_buff_failed++; 605 return false; 606 } 607 608 bi->dma = dma; 609 bi->page = page; 610 bi->page_offset = 0; 611 612 return true; 613 } 614 615 /** 616 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 617 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 618 * @cleaned_count: number of buffers to replace 619 **/ 620 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 621 u16 cleaned_count) 622 { 623 union ixgbe_adv_rx_desc *rx_desc; 624 struct ixgbevf_rx_buffer *bi; 625 unsigned int i = rx_ring->next_to_use; 626 627 /* nothing to do or no valid netdev defined */ 628 if (!cleaned_count || !rx_ring->netdev) 629 return; 630 631 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 632 bi = &rx_ring->rx_buffer_info[i]; 633 i -= rx_ring->count; 634 635 do { 636 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 637 break; 638 639 /* Refresh the desc even if pkt_addr didn't change 640 * because each write-back erases this info. 641 */ 642 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 643 644 rx_desc++; 645 bi++; 646 i++; 647 if (unlikely(!i)) { 648 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 649 bi = rx_ring->rx_buffer_info; 650 i -= rx_ring->count; 651 } 652 653 /* clear the hdr_addr for the next_to_use descriptor */ 654 rx_desc->read.hdr_addr = 0; 655 656 cleaned_count--; 657 } while (cleaned_count); 658 659 i += rx_ring->count; 660 661 if (rx_ring->next_to_use != i) { 662 /* record the next descriptor to use */ 663 rx_ring->next_to_use = i; 664 665 /* update next to alloc since we have filled the ring */ 666 rx_ring->next_to_alloc = i; 667 668 /* Force memory writes to complete before letting h/w 669 * know there are new descriptors to fetch. (Only 670 * applicable for weak-ordered memory model archs, 671 * such as IA-64). 672 */ 673 wmb(); 674 ixgbevf_write_tail(rx_ring, i); 675 } 676 } 677 678 /** 679 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 680 * @rx_ring: rx descriptor ring packet is being transacted on 681 * @rx_desc: pointer to the EOP Rx descriptor 682 * @skb: pointer to current skb being fixed 683 * 684 * Check for corrupted packet headers caused by senders on the local L2 685 * embedded NIC switch not setting up their Tx Descriptors right. These 686 * should be very rare. 687 * 688 * Also address the case where we are pulling data in on pages only 689 * and as such no data is present in the skb header. 690 * 691 * In addition if skb is not at least 60 bytes we need to pad it so that 692 * it is large enough to qualify as a valid Ethernet frame. 693 * 694 * Returns true if an error was encountered and skb was freed. 695 **/ 696 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 697 union ixgbe_adv_rx_desc *rx_desc, 698 struct sk_buff *skb) 699 { 700 /* verify that the packet does not have any known errors */ 701 if (unlikely(ixgbevf_test_staterr(rx_desc, 702 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 703 struct net_device *netdev = rx_ring->netdev; 704 705 if (!(netdev->features & NETIF_F_RXALL)) { 706 dev_kfree_skb_any(skb); 707 return true; 708 } 709 } 710 711 /* if eth_skb_pad returns an error the skb was freed */ 712 if (eth_skb_pad(skb)) 713 return true; 714 715 return false; 716 } 717 718 /** 719 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 720 * @rx_ring: rx descriptor ring to store buffers on 721 * @old_buff: donor buffer to have page reused 722 * 723 * Synchronizes page for reuse by the adapter 724 **/ 725 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 726 struct ixgbevf_rx_buffer *old_buff) 727 { 728 struct ixgbevf_rx_buffer *new_buff; 729 u16 nta = rx_ring->next_to_alloc; 730 731 new_buff = &rx_ring->rx_buffer_info[nta]; 732 733 /* update, and store next to alloc */ 734 nta++; 735 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 736 737 /* transfer page from old buffer to new buffer */ 738 new_buff->page = old_buff->page; 739 new_buff->dma = old_buff->dma; 740 new_buff->page_offset = old_buff->page_offset; 741 742 /* sync the buffer for use by the device */ 743 dma_sync_single_range_for_device(rx_ring->dev, new_buff->dma, 744 new_buff->page_offset, 745 IXGBEVF_RX_BUFSZ, 746 DMA_FROM_DEVICE); 747 } 748 749 static inline bool ixgbevf_page_is_reserved(struct page *page) 750 { 751 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 752 } 753 754 /** 755 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 756 * @rx_ring: rx descriptor ring to transact packets on 757 * @rx_buffer: buffer containing page to add 758 * @rx_desc: descriptor containing length of buffer written by hardware 759 * @skb: sk_buff to place the data into 760 * 761 * This function will add the data contained in rx_buffer->page to the skb. 762 * This is done either through a direct copy if the data in the buffer is 763 * less than the skb header size, otherwise it will just attach the page as 764 * a frag to the skb. 765 * 766 * The function will then update the page offset if necessary and return 767 * true if the buffer can be reused by the adapter. 768 **/ 769 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 770 struct ixgbevf_rx_buffer *rx_buffer, 771 union ixgbe_adv_rx_desc *rx_desc, 772 struct sk_buff *skb) 773 { 774 struct page *page = rx_buffer->page; 775 unsigned char *va = page_address(page) + rx_buffer->page_offset; 776 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); 777 #if (PAGE_SIZE < 8192) 778 unsigned int truesize = IXGBEVF_RX_BUFSZ; 779 #else 780 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 781 #endif 782 unsigned int pull_len; 783 784 if (unlikely(skb_is_nonlinear(skb))) 785 goto add_tail_frag; 786 787 if (likely(size <= IXGBEVF_RX_HDR_SIZE)) { 788 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 789 790 /* page is not reserved, we can reuse buffer as is */ 791 if (likely(!ixgbevf_page_is_reserved(page))) 792 return true; 793 794 /* this page cannot be reused so discard it */ 795 put_page(page); 796 return false; 797 } 798 799 /* we need the header to contain the greater of either ETH_HLEN or 800 * 60 bytes if the skb->len is less than 60 for skb_pad. 801 */ 802 pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE); 803 804 /* align pull length to size of long to optimize memcpy performance */ 805 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); 806 807 /* update all of the pointers */ 808 va += pull_len; 809 size -= pull_len; 810 811 add_tail_frag: 812 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 813 (unsigned long)va & ~PAGE_MASK, size, truesize); 814 815 /* avoid re-using remote pages */ 816 if (unlikely(ixgbevf_page_is_reserved(page))) 817 return false; 818 819 #if (PAGE_SIZE < 8192) 820 /* if we are only owner of page we can reuse it */ 821 if (unlikely(page_count(page) != 1)) 822 return false; 823 824 /* flip page offset to other buffer */ 825 rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ; 826 827 #else 828 /* move offset up to the next cache line */ 829 rx_buffer->page_offset += truesize; 830 831 if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ)) 832 return false; 833 834 #endif 835 /* Even if we own the page, we are not allowed to use atomic_set() 836 * This would break get_page_unless_zero() users. 837 */ 838 atomic_inc(&page->_count); 839 840 return true; 841 } 842 843 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring, 844 union ixgbe_adv_rx_desc *rx_desc, 845 struct sk_buff *skb) 846 { 847 struct ixgbevf_rx_buffer *rx_buffer; 848 struct page *page; 849 850 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 851 page = rx_buffer->page; 852 prefetchw(page); 853 854 if (likely(!skb)) { 855 void *page_addr = page_address(page) + 856 rx_buffer->page_offset; 857 858 /* prefetch first cache line of first page */ 859 prefetch(page_addr); 860 #if L1_CACHE_BYTES < 128 861 prefetch(page_addr + L1_CACHE_BYTES); 862 #endif 863 864 /* allocate a skb to store the frags */ 865 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 866 IXGBEVF_RX_HDR_SIZE); 867 if (unlikely(!skb)) { 868 rx_ring->rx_stats.alloc_rx_buff_failed++; 869 return NULL; 870 } 871 872 /* we will be copying header into skb->data in 873 * pskb_may_pull so it is in our interest to prefetch 874 * it now to avoid a possible cache miss 875 */ 876 prefetchw(skb->data); 877 } 878 879 /* we are reusing so sync this buffer for CPU use */ 880 dma_sync_single_range_for_cpu(rx_ring->dev, 881 rx_buffer->dma, 882 rx_buffer->page_offset, 883 IXGBEVF_RX_BUFSZ, 884 DMA_FROM_DEVICE); 885 886 /* pull page into skb */ 887 if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) { 888 /* hand second half of page back to the ring */ 889 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 890 } else { 891 /* we are not reusing the buffer so unmap it */ 892 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 893 PAGE_SIZE, DMA_FROM_DEVICE); 894 } 895 896 /* clear contents of buffer_info */ 897 rx_buffer->dma = 0; 898 rx_buffer->page = NULL; 899 900 return skb; 901 } 902 903 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 904 u32 qmask) 905 { 906 struct ixgbe_hw *hw = &adapter->hw; 907 908 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 909 } 910 911 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 912 struct ixgbevf_ring *rx_ring, 913 int budget) 914 { 915 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 916 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 917 struct sk_buff *skb = rx_ring->skb; 918 919 while (likely(total_rx_packets < budget)) { 920 union ixgbe_adv_rx_desc *rx_desc; 921 922 /* return some buffers to hardware, one at a time is too slow */ 923 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 924 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 925 cleaned_count = 0; 926 } 927 928 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 929 930 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_DD)) 931 break; 932 933 /* This memory barrier is needed to keep us from reading 934 * any other fields out of the rx_desc until we know the 935 * RXD_STAT_DD bit is set 936 */ 937 rmb(); 938 939 /* retrieve a buffer from the ring */ 940 skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb); 941 942 /* exit if we failed to retrieve a buffer */ 943 if (!skb) 944 break; 945 946 cleaned_count++; 947 948 /* fetch next buffer in frame if non-eop */ 949 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 950 continue; 951 952 /* verify the packet layout is correct */ 953 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 954 skb = NULL; 955 continue; 956 } 957 958 /* probably a little skewed due to removing CRC */ 959 total_rx_bytes += skb->len; 960 961 /* Workaround hardware that can't do proper VEPA multicast 962 * source pruning. 963 */ 964 if ((skb->pkt_type == PACKET_BROADCAST || 965 skb->pkt_type == PACKET_MULTICAST) && 966 ether_addr_equal(rx_ring->netdev->dev_addr, 967 eth_hdr(skb)->h_source)) { 968 dev_kfree_skb_irq(skb); 969 continue; 970 } 971 972 /* populate checksum, VLAN, and protocol */ 973 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 974 975 ixgbevf_rx_skb(q_vector, skb); 976 977 /* reset skb pointer */ 978 skb = NULL; 979 980 /* update budget accounting */ 981 total_rx_packets++; 982 } 983 984 /* place incomplete frames back on ring for completion */ 985 rx_ring->skb = skb; 986 987 u64_stats_update_begin(&rx_ring->syncp); 988 rx_ring->stats.packets += total_rx_packets; 989 rx_ring->stats.bytes += total_rx_bytes; 990 u64_stats_update_end(&rx_ring->syncp); 991 q_vector->rx.total_packets += total_rx_packets; 992 q_vector->rx.total_bytes += total_rx_bytes; 993 994 return total_rx_packets; 995 } 996 997 /** 998 * ixgbevf_poll - NAPI polling calback 999 * @napi: napi struct with our devices info in it 1000 * @budget: amount of work driver is allowed to do this pass, in packets 1001 * 1002 * This function will clean more than one or more rings associated with a 1003 * q_vector. 1004 **/ 1005 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1006 { 1007 struct ixgbevf_q_vector *q_vector = 1008 container_of(napi, struct ixgbevf_q_vector, napi); 1009 struct ixgbevf_adapter *adapter = q_vector->adapter; 1010 struct ixgbevf_ring *ring; 1011 int per_ring_budget; 1012 bool clean_complete = true; 1013 1014 ixgbevf_for_each_ring(ring, q_vector->tx) 1015 clean_complete &= ixgbevf_clean_tx_irq(q_vector, ring); 1016 1017 #ifdef CONFIG_NET_RX_BUSY_POLL 1018 if (!ixgbevf_qv_lock_napi(q_vector)) 1019 return budget; 1020 #endif 1021 1022 /* attempt to distribute budget to each queue fairly, but don't allow 1023 * the budget to go below 1 because we'll exit polling 1024 */ 1025 if (q_vector->rx.count > 1) 1026 per_ring_budget = max(budget/q_vector->rx.count, 1); 1027 else 1028 per_ring_budget = budget; 1029 1030 ixgbevf_for_each_ring(ring, q_vector->rx) 1031 clean_complete &= (ixgbevf_clean_rx_irq(q_vector, ring, 1032 per_ring_budget) 1033 < per_ring_budget); 1034 1035 #ifdef CONFIG_NET_RX_BUSY_POLL 1036 ixgbevf_qv_unlock_napi(q_vector); 1037 #endif 1038 1039 /* If all work not completed, return budget and keep polling */ 1040 if (!clean_complete) 1041 return budget; 1042 /* all work done, exit the polling mode */ 1043 napi_complete(napi); 1044 if (adapter->rx_itr_setting & 1) 1045 ixgbevf_set_itr(q_vector); 1046 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1047 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1048 ixgbevf_irq_enable_queues(adapter, 1049 1 << q_vector->v_idx); 1050 1051 return 0; 1052 } 1053 1054 /** 1055 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1056 * @q_vector: structure containing interrupt and ring information 1057 **/ 1058 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1059 { 1060 struct ixgbevf_adapter *adapter = q_vector->adapter; 1061 struct ixgbe_hw *hw = &adapter->hw; 1062 int v_idx = q_vector->v_idx; 1063 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1064 1065 /* set the WDIS bit to not clear the timer bits and cause an 1066 * immediate assertion of the interrupt 1067 */ 1068 itr_reg |= IXGBE_EITR_CNT_WDIS; 1069 1070 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1071 } 1072 1073 #ifdef CONFIG_NET_RX_BUSY_POLL 1074 /* must be called with local_bh_disable()d */ 1075 static int ixgbevf_busy_poll_recv(struct napi_struct *napi) 1076 { 1077 struct ixgbevf_q_vector *q_vector = 1078 container_of(napi, struct ixgbevf_q_vector, napi); 1079 struct ixgbevf_adapter *adapter = q_vector->adapter; 1080 struct ixgbevf_ring *ring; 1081 int found = 0; 1082 1083 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 1084 return LL_FLUSH_FAILED; 1085 1086 if (!ixgbevf_qv_lock_poll(q_vector)) 1087 return LL_FLUSH_BUSY; 1088 1089 ixgbevf_for_each_ring(ring, q_vector->rx) { 1090 found = ixgbevf_clean_rx_irq(q_vector, ring, 4); 1091 #ifdef BP_EXTENDED_STATS 1092 if (found) 1093 ring->stats.cleaned += found; 1094 else 1095 ring->stats.misses++; 1096 #endif 1097 if (found) 1098 break; 1099 } 1100 1101 ixgbevf_qv_unlock_poll(q_vector); 1102 1103 return found; 1104 } 1105 #endif /* CONFIG_NET_RX_BUSY_POLL */ 1106 1107 /** 1108 * ixgbevf_configure_msix - Configure MSI-X hardware 1109 * @adapter: board private structure 1110 * 1111 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1112 * interrupts. 1113 **/ 1114 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1115 { 1116 struct ixgbevf_q_vector *q_vector; 1117 int q_vectors, v_idx; 1118 1119 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1120 adapter->eims_enable_mask = 0; 1121 1122 /* Populate the IVAR table and set the ITR values to the 1123 * corresponding register. 1124 */ 1125 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1126 struct ixgbevf_ring *ring; 1127 1128 q_vector = adapter->q_vector[v_idx]; 1129 1130 ixgbevf_for_each_ring(ring, q_vector->rx) 1131 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1132 1133 ixgbevf_for_each_ring(ring, q_vector->tx) 1134 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1135 1136 if (q_vector->tx.ring && !q_vector->rx.ring) { 1137 /* Tx only vector */ 1138 if (adapter->tx_itr_setting == 1) 1139 q_vector->itr = IXGBE_10K_ITR; 1140 else 1141 q_vector->itr = adapter->tx_itr_setting; 1142 } else { 1143 /* Rx or Rx/Tx vector */ 1144 if (adapter->rx_itr_setting == 1) 1145 q_vector->itr = IXGBE_20K_ITR; 1146 else 1147 q_vector->itr = adapter->rx_itr_setting; 1148 } 1149 1150 /* add q_vector eims value to global eims_enable_mask */ 1151 adapter->eims_enable_mask |= 1 << v_idx; 1152 1153 ixgbevf_write_eitr(q_vector); 1154 } 1155 1156 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1157 /* setup eims_other and add value to global eims_enable_mask */ 1158 adapter->eims_other = 1 << v_idx; 1159 adapter->eims_enable_mask |= adapter->eims_other; 1160 } 1161 1162 enum latency_range { 1163 lowest_latency = 0, 1164 low_latency = 1, 1165 bulk_latency = 2, 1166 latency_invalid = 255 1167 }; 1168 1169 /** 1170 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1171 * @q_vector: structure containing interrupt and ring information 1172 * @ring_container: structure containing ring performance data 1173 * 1174 * Stores a new ITR value based on packets and byte 1175 * counts during the last interrupt. The advantage of per interrupt 1176 * computation is faster updates and more accurate ITR for the current 1177 * traffic pattern. Constants in this function were computed 1178 * based on theoretical maximum wire speed and thresholds were set based 1179 * on testing data as well as attempting to minimize response time 1180 * while increasing bulk throughput. 1181 **/ 1182 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1183 struct ixgbevf_ring_container *ring_container) 1184 { 1185 int bytes = ring_container->total_bytes; 1186 int packets = ring_container->total_packets; 1187 u32 timepassed_us; 1188 u64 bytes_perint; 1189 u8 itr_setting = ring_container->itr; 1190 1191 if (packets == 0) 1192 return; 1193 1194 /* simple throttle rate management 1195 * 0-20MB/s lowest (100000 ints/s) 1196 * 20-100MB/s low (20000 ints/s) 1197 * 100-1249MB/s bulk (8000 ints/s) 1198 */ 1199 /* what was last interrupt timeslice? */ 1200 timepassed_us = q_vector->itr >> 2; 1201 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1202 1203 switch (itr_setting) { 1204 case lowest_latency: 1205 if (bytes_perint > 10) 1206 itr_setting = low_latency; 1207 break; 1208 case low_latency: 1209 if (bytes_perint > 20) 1210 itr_setting = bulk_latency; 1211 else if (bytes_perint <= 10) 1212 itr_setting = lowest_latency; 1213 break; 1214 case bulk_latency: 1215 if (bytes_perint <= 20) 1216 itr_setting = low_latency; 1217 break; 1218 } 1219 1220 /* clear work counters since we have the values we need */ 1221 ring_container->total_bytes = 0; 1222 ring_container->total_packets = 0; 1223 1224 /* write updated itr to ring container */ 1225 ring_container->itr = itr_setting; 1226 } 1227 1228 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1229 { 1230 u32 new_itr = q_vector->itr; 1231 u8 current_itr; 1232 1233 ixgbevf_update_itr(q_vector, &q_vector->tx); 1234 ixgbevf_update_itr(q_vector, &q_vector->rx); 1235 1236 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1237 1238 switch (current_itr) { 1239 /* counts and packets in update_itr are dependent on these numbers */ 1240 case lowest_latency: 1241 new_itr = IXGBE_100K_ITR; 1242 break; 1243 case low_latency: 1244 new_itr = IXGBE_20K_ITR; 1245 break; 1246 case bulk_latency: 1247 default: 1248 new_itr = IXGBE_8K_ITR; 1249 break; 1250 } 1251 1252 if (new_itr != q_vector->itr) { 1253 /* do an exponential smoothing */ 1254 new_itr = (10 * new_itr * q_vector->itr) / 1255 ((9 * new_itr) + q_vector->itr); 1256 1257 /* save the algorithm value here */ 1258 q_vector->itr = new_itr; 1259 1260 ixgbevf_write_eitr(q_vector); 1261 } 1262 } 1263 1264 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1265 { 1266 struct ixgbevf_adapter *adapter = data; 1267 struct ixgbe_hw *hw = &adapter->hw; 1268 1269 hw->mac.get_link_status = 1; 1270 1271 ixgbevf_service_event_schedule(adapter); 1272 1273 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1274 1275 return IRQ_HANDLED; 1276 } 1277 1278 /** 1279 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1280 * @irq: unused 1281 * @data: pointer to our q_vector struct for this interrupt vector 1282 **/ 1283 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1284 { 1285 struct ixgbevf_q_vector *q_vector = data; 1286 1287 /* EIAM disabled interrupts (on this vector) for us */ 1288 if (q_vector->rx.ring || q_vector->tx.ring) 1289 napi_schedule(&q_vector->napi); 1290 1291 return IRQ_HANDLED; 1292 } 1293 1294 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx, 1295 int r_idx) 1296 { 1297 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx]; 1298 1299 a->rx_ring[r_idx]->next = q_vector->rx.ring; 1300 q_vector->rx.ring = a->rx_ring[r_idx]; 1301 q_vector->rx.count++; 1302 } 1303 1304 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx, 1305 int t_idx) 1306 { 1307 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx]; 1308 1309 a->tx_ring[t_idx]->next = q_vector->tx.ring; 1310 q_vector->tx.ring = a->tx_ring[t_idx]; 1311 q_vector->tx.count++; 1312 } 1313 1314 /** 1315 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors 1316 * @adapter: board private structure to initialize 1317 * 1318 * This function maps descriptor rings to the queue-specific vectors 1319 * we were allotted through the MSI-X enabling code. Ideally, we'd have 1320 * one vector per ring/queue, but on a constrained vector budget, we 1321 * group the rings as "efficiently" as possible. You would add new 1322 * mapping configurations in here. 1323 **/ 1324 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter) 1325 { 1326 int q_vectors; 1327 int v_start = 0; 1328 int rxr_idx = 0, txr_idx = 0; 1329 int rxr_remaining = adapter->num_rx_queues; 1330 int txr_remaining = adapter->num_tx_queues; 1331 int i, j; 1332 int rqpv, tqpv; 1333 int err = 0; 1334 1335 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1336 1337 /* The ideal configuration... 1338 * We have enough vectors to map one per queue. 1339 */ 1340 if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) { 1341 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++) 1342 map_vector_to_rxq(adapter, v_start, rxr_idx); 1343 1344 for (; txr_idx < txr_remaining; v_start++, txr_idx++) 1345 map_vector_to_txq(adapter, v_start, txr_idx); 1346 goto out; 1347 } 1348 1349 /* If we don't have enough vectors for a 1-to-1 1350 * mapping, we'll have to group them so there are 1351 * multiple queues per vector. 1352 */ 1353 /* Re-adjusting *qpv takes care of the remainder. */ 1354 for (i = v_start; i < q_vectors; i++) { 1355 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i); 1356 for (j = 0; j < rqpv; j++) { 1357 map_vector_to_rxq(adapter, i, rxr_idx); 1358 rxr_idx++; 1359 rxr_remaining--; 1360 } 1361 } 1362 for (i = v_start; i < q_vectors; i++) { 1363 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i); 1364 for (j = 0; j < tqpv; j++) { 1365 map_vector_to_txq(adapter, i, txr_idx); 1366 txr_idx++; 1367 txr_remaining--; 1368 } 1369 } 1370 1371 out: 1372 return err; 1373 } 1374 1375 /** 1376 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1377 * @adapter: board private structure 1378 * 1379 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1380 * interrupts from the kernel. 1381 **/ 1382 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1383 { 1384 struct net_device *netdev = adapter->netdev; 1385 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1386 int vector, err; 1387 int ri = 0, ti = 0; 1388 1389 for (vector = 0; vector < q_vectors; vector++) { 1390 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1391 struct msix_entry *entry = &adapter->msix_entries[vector]; 1392 1393 if (q_vector->tx.ring && q_vector->rx.ring) { 1394 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1395 "%s-%s-%d", netdev->name, "TxRx", ri++); 1396 ti++; 1397 } else if (q_vector->rx.ring) { 1398 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1399 "%s-%s-%d", netdev->name, "rx", ri++); 1400 } else if (q_vector->tx.ring) { 1401 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1402 "%s-%s-%d", netdev->name, "tx", ti++); 1403 } else { 1404 /* skip this unused q_vector */ 1405 continue; 1406 } 1407 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1408 q_vector->name, q_vector); 1409 if (err) { 1410 hw_dbg(&adapter->hw, 1411 "request_irq failed for MSIX interrupt Error: %d\n", 1412 err); 1413 goto free_queue_irqs; 1414 } 1415 } 1416 1417 err = request_irq(adapter->msix_entries[vector].vector, 1418 &ixgbevf_msix_other, 0, netdev->name, adapter); 1419 if (err) { 1420 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1421 err); 1422 goto free_queue_irqs; 1423 } 1424 1425 return 0; 1426 1427 free_queue_irqs: 1428 while (vector) { 1429 vector--; 1430 free_irq(adapter->msix_entries[vector].vector, 1431 adapter->q_vector[vector]); 1432 } 1433 /* This failure is non-recoverable - it indicates the system is 1434 * out of MSIX vector resources and the VF driver cannot run 1435 * without them. Set the number of msix vectors to zero 1436 * indicating that not enough can be allocated. The error 1437 * will be returned to the user indicating device open failed. 1438 * Any further attempts to force the driver to open will also 1439 * fail. The only way to recover is to unload the driver and 1440 * reload it again. If the system has recovered some MSIX 1441 * vectors then it may succeed. 1442 */ 1443 adapter->num_msix_vectors = 0; 1444 return err; 1445 } 1446 1447 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter) 1448 { 1449 int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1450 1451 for (i = 0; i < q_vectors; i++) { 1452 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i]; 1453 1454 q_vector->rx.ring = NULL; 1455 q_vector->tx.ring = NULL; 1456 q_vector->rx.count = 0; 1457 q_vector->tx.count = 0; 1458 } 1459 } 1460 1461 /** 1462 * ixgbevf_request_irq - initialize interrupts 1463 * @adapter: board private structure 1464 * 1465 * Attempts to configure interrupts using the best available 1466 * capabilities of the hardware and kernel. 1467 **/ 1468 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1469 { 1470 int err = 0; 1471 1472 err = ixgbevf_request_msix_irqs(adapter); 1473 1474 if (err) 1475 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1476 1477 return err; 1478 } 1479 1480 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1481 { 1482 int i, q_vectors; 1483 1484 q_vectors = adapter->num_msix_vectors; 1485 i = q_vectors - 1; 1486 1487 free_irq(adapter->msix_entries[i].vector, adapter); 1488 i--; 1489 1490 for (; i >= 0; i--) { 1491 /* free only the irqs that were actually requested */ 1492 if (!adapter->q_vector[i]->rx.ring && 1493 !adapter->q_vector[i]->tx.ring) 1494 continue; 1495 1496 free_irq(adapter->msix_entries[i].vector, 1497 adapter->q_vector[i]); 1498 } 1499 1500 ixgbevf_reset_q_vectors(adapter); 1501 } 1502 1503 /** 1504 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1505 * @adapter: board private structure 1506 **/ 1507 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1508 { 1509 struct ixgbe_hw *hw = &adapter->hw; 1510 int i; 1511 1512 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1513 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1514 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1515 1516 IXGBE_WRITE_FLUSH(hw); 1517 1518 for (i = 0; i < adapter->num_msix_vectors; i++) 1519 synchronize_irq(adapter->msix_entries[i].vector); 1520 } 1521 1522 /** 1523 * ixgbevf_irq_enable - Enable default interrupt generation settings 1524 * @adapter: board private structure 1525 **/ 1526 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1527 { 1528 struct ixgbe_hw *hw = &adapter->hw; 1529 1530 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1531 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1532 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1533 } 1534 1535 /** 1536 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1537 * @adapter: board private structure 1538 * @ring: structure containing ring specific data 1539 * 1540 * Configure the Tx descriptor ring after a reset. 1541 **/ 1542 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1543 struct ixgbevf_ring *ring) 1544 { 1545 struct ixgbe_hw *hw = &adapter->hw; 1546 u64 tdba = ring->dma; 1547 int wait_loop = 10; 1548 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1549 u8 reg_idx = ring->reg_idx; 1550 1551 /* disable queue to avoid issues while updating state */ 1552 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1553 IXGBE_WRITE_FLUSH(hw); 1554 1555 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1556 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1557 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1558 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1559 1560 /* disable head writeback */ 1561 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1562 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1563 1564 /* enable relaxed ordering */ 1565 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1566 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1567 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1568 1569 /* reset head and tail pointers */ 1570 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1571 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1572 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1573 1574 /* reset ntu and ntc to place SW in sync with hardwdare */ 1575 ring->next_to_clean = 0; 1576 ring->next_to_use = 0; 1577 1578 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1579 * to or less than the number of on chip descriptors, which is 1580 * currently 40. 1581 */ 1582 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1583 1584 /* Setting PTHRESH to 32 both improves performance */ 1585 txdctl |= (1 << 8) | /* HTHRESH = 1 */ 1586 32; /* PTHRESH = 32 */ 1587 1588 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1589 1590 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1591 1592 /* poll to verify queue is enabled */ 1593 do { 1594 usleep_range(1000, 2000); 1595 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1596 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1597 if (!wait_loop) 1598 pr_err("Could not enable Tx Queue %d\n", reg_idx); 1599 } 1600 1601 /** 1602 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1603 * @adapter: board private structure 1604 * 1605 * Configure the Tx unit of the MAC after a reset. 1606 **/ 1607 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1608 { 1609 u32 i; 1610 1611 /* Setup the HW Tx Head and Tail descriptor pointers */ 1612 for (i = 0; i < adapter->num_tx_queues; i++) 1613 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1614 } 1615 1616 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1617 1618 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index) 1619 { 1620 struct ixgbe_hw *hw = &adapter->hw; 1621 u32 srrctl; 1622 1623 srrctl = IXGBE_SRRCTL_DROP_EN; 1624 1625 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1626 srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1627 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1628 1629 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1630 } 1631 1632 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1633 { 1634 struct ixgbe_hw *hw = &adapter->hw; 1635 1636 /* PSRTYPE must be initialized in 82599 */ 1637 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1638 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1639 IXGBE_PSRTYPE_L2HDR; 1640 1641 if (adapter->num_rx_queues > 1) 1642 psrtype |= 1 << 29; 1643 1644 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1645 } 1646 1647 #define IXGBEVF_MAX_RX_DESC_POLL 10 1648 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1649 struct ixgbevf_ring *ring) 1650 { 1651 struct ixgbe_hw *hw = &adapter->hw; 1652 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1653 u32 rxdctl; 1654 u8 reg_idx = ring->reg_idx; 1655 1656 if (IXGBE_REMOVED(hw->hw_addr)) 1657 return; 1658 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1659 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1660 1661 /* write value back with RXDCTL.ENABLE bit cleared */ 1662 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1663 1664 /* the hardware may take up to 100us to really disable the Rx queue */ 1665 do { 1666 udelay(10); 1667 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1668 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1669 1670 if (!wait_loop) 1671 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1672 reg_idx); 1673 } 1674 1675 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1676 struct ixgbevf_ring *ring) 1677 { 1678 struct ixgbe_hw *hw = &adapter->hw; 1679 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1680 u32 rxdctl; 1681 u8 reg_idx = ring->reg_idx; 1682 1683 if (IXGBE_REMOVED(hw->hw_addr)) 1684 return; 1685 do { 1686 usleep_range(1000, 2000); 1687 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1688 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1689 1690 if (!wait_loop) 1691 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1692 reg_idx); 1693 } 1694 1695 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1696 { 1697 struct ixgbe_hw *hw = &adapter->hw; 1698 u32 vfmrqc = 0, vfreta = 0; 1699 u16 rss_i = adapter->num_rx_queues; 1700 u8 i, j; 1701 1702 /* Fill out hash function seeds */ 1703 netdev_rss_key_fill(adapter->rss_key, sizeof(adapter->rss_key)); 1704 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1705 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), adapter->rss_key[i]); 1706 1707 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1708 if (j == rss_i) 1709 j = 0; 1710 1711 adapter->rss_indir_tbl[i] = j; 1712 1713 vfreta |= j << (i & 0x3) * 8; 1714 if ((i & 3) == 3) { 1715 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1716 vfreta = 0; 1717 } 1718 } 1719 1720 /* Perform hash on these packet types */ 1721 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1722 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1723 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1724 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1725 1726 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1727 1728 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1729 } 1730 1731 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1732 struct ixgbevf_ring *ring) 1733 { 1734 struct ixgbe_hw *hw = &adapter->hw; 1735 u64 rdba = ring->dma; 1736 u32 rxdctl; 1737 u8 reg_idx = ring->reg_idx; 1738 1739 /* disable queue to avoid issues while updating state */ 1740 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1741 ixgbevf_disable_rx_queue(adapter, ring); 1742 1743 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1744 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1745 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1746 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1747 1748 /* enable relaxed ordering */ 1749 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1750 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1751 1752 /* reset head and tail pointers */ 1753 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1754 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1755 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1756 1757 /* reset ntu and ntc to place SW in sync with hardwdare */ 1758 ring->next_to_clean = 0; 1759 ring->next_to_use = 0; 1760 ring->next_to_alloc = 0; 1761 1762 ixgbevf_configure_srrctl(adapter, reg_idx); 1763 1764 /* allow any size packet since we can handle overflow */ 1765 rxdctl &= ~IXGBE_RXDCTL_RLPML_EN; 1766 1767 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1768 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1769 1770 ixgbevf_rx_desc_queue_enable(adapter, ring); 1771 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1772 } 1773 1774 /** 1775 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 1776 * @adapter: board private structure 1777 * 1778 * Configure the Rx unit of the MAC after a reset. 1779 **/ 1780 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 1781 { 1782 int i; 1783 struct ixgbe_hw *hw = &adapter->hw; 1784 struct net_device *netdev = adapter->netdev; 1785 1786 ixgbevf_setup_psrtype(adapter); 1787 if (hw->mac.type >= ixgbe_mac_X550_vf) 1788 ixgbevf_setup_vfmrqc(adapter); 1789 1790 /* notify the PF of our intent to use this size of frame */ 1791 ixgbevf_rlpml_set_vf(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 1792 1793 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1794 * the Base and Length of the Rx Descriptor Ring 1795 */ 1796 for (i = 0; i < adapter->num_rx_queues; i++) 1797 ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]); 1798 } 1799 1800 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 1801 __be16 proto, u16 vid) 1802 { 1803 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1804 struct ixgbe_hw *hw = &adapter->hw; 1805 int err; 1806 1807 spin_lock_bh(&adapter->mbx_lock); 1808 1809 /* add VID to filter table */ 1810 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 1811 1812 spin_unlock_bh(&adapter->mbx_lock); 1813 1814 /* translate error return types so error makes sense */ 1815 if (err == IXGBE_ERR_MBX) 1816 return -EIO; 1817 1818 if (err == IXGBE_ERR_INVALID_ARGUMENT) 1819 return -EACCES; 1820 1821 set_bit(vid, adapter->active_vlans); 1822 1823 return err; 1824 } 1825 1826 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 1827 __be16 proto, u16 vid) 1828 { 1829 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1830 struct ixgbe_hw *hw = &adapter->hw; 1831 int err = -EOPNOTSUPP; 1832 1833 spin_lock_bh(&adapter->mbx_lock); 1834 1835 /* remove VID from filter table */ 1836 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 1837 1838 spin_unlock_bh(&adapter->mbx_lock); 1839 1840 clear_bit(vid, adapter->active_vlans); 1841 1842 return err; 1843 } 1844 1845 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 1846 { 1847 u16 vid; 1848 1849 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 1850 ixgbevf_vlan_rx_add_vid(adapter->netdev, 1851 htons(ETH_P_8021Q), vid); 1852 } 1853 1854 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 1855 { 1856 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1857 struct ixgbe_hw *hw = &adapter->hw; 1858 int count = 0; 1859 1860 if ((netdev_uc_count(netdev)) > 10) { 1861 pr_err("Too many unicast filters - No Space\n"); 1862 return -ENOSPC; 1863 } 1864 1865 if (!netdev_uc_empty(netdev)) { 1866 struct netdev_hw_addr *ha; 1867 1868 netdev_for_each_uc_addr(ha, netdev) { 1869 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 1870 udelay(200); 1871 } 1872 } else { 1873 /* If the list is empty then send message to PF driver to 1874 * clear all MAC VLANs on this VF. 1875 */ 1876 hw->mac.ops.set_uc_addr(hw, 0, NULL); 1877 } 1878 1879 return count; 1880 } 1881 1882 /** 1883 * ixgbevf_set_rx_mode - Multicast and unicast set 1884 * @netdev: network interface device structure 1885 * 1886 * The set_rx_method entry point is called whenever the multicast address 1887 * list, unicast address list or the network interface flags are updated. 1888 * This routine is responsible for configuring the hardware for proper 1889 * multicast mode and configuring requested unicast filters. 1890 **/ 1891 static void ixgbevf_set_rx_mode(struct net_device *netdev) 1892 { 1893 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1894 struct ixgbe_hw *hw = &adapter->hw; 1895 1896 spin_lock_bh(&adapter->mbx_lock); 1897 1898 /* reprogram multicast list */ 1899 hw->mac.ops.update_mc_addr_list(hw, netdev); 1900 1901 ixgbevf_write_uc_addr_list(netdev); 1902 1903 spin_unlock_bh(&adapter->mbx_lock); 1904 } 1905 1906 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 1907 { 1908 int q_idx; 1909 struct ixgbevf_q_vector *q_vector; 1910 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1911 1912 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1913 q_vector = adapter->q_vector[q_idx]; 1914 #ifdef CONFIG_NET_RX_BUSY_POLL 1915 ixgbevf_qv_init_lock(adapter->q_vector[q_idx]); 1916 #endif 1917 napi_enable(&q_vector->napi); 1918 } 1919 } 1920 1921 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 1922 { 1923 int q_idx; 1924 struct ixgbevf_q_vector *q_vector; 1925 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1926 1927 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1928 q_vector = adapter->q_vector[q_idx]; 1929 napi_disable(&q_vector->napi); 1930 #ifdef CONFIG_NET_RX_BUSY_POLL 1931 while (!ixgbevf_qv_disable(adapter->q_vector[q_idx])) { 1932 pr_info("QV %d locked\n", q_idx); 1933 usleep_range(1000, 20000); 1934 } 1935 #endif /* CONFIG_NET_RX_BUSY_POLL */ 1936 } 1937 } 1938 1939 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 1940 { 1941 struct ixgbe_hw *hw = &adapter->hw; 1942 unsigned int def_q = 0; 1943 unsigned int num_tcs = 0; 1944 unsigned int num_rx_queues = adapter->num_rx_queues; 1945 unsigned int num_tx_queues = adapter->num_tx_queues; 1946 int err; 1947 1948 spin_lock_bh(&adapter->mbx_lock); 1949 1950 /* fetch queue configuration from the PF */ 1951 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 1952 1953 spin_unlock_bh(&adapter->mbx_lock); 1954 1955 if (err) 1956 return err; 1957 1958 if (num_tcs > 1) { 1959 /* we need only one Tx queue */ 1960 num_tx_queues = 1; 1961 1962 /* update default Tx ring register index */ 1963 adapter->tx_ring[0]->reg_idx = def_q; 1964 1965 /* we need as many queues as traffic classes */ 1966 num_rx_queues = num_tcs; 1967 } 1968 1969 /* if we have a bad config abort request queue reset */ 1970 if ((adapter->num_rx_queues != num_rx_queues) || 1971 (adapter->num_tx_queues != num_tx_queues)) { 1972 /* force mailbox timeout to prevent further messages */ 1973 hw->mbx.timeout = 0; 1974 1975 /* wait for watchdog to come around and bail us out */ 1976 adapter->flags |= IXGBEVF_FLAG_QUEUE_RESET_REQUESTED; 1977 } 1978 1979 return 0; 1980 } 1981 1982 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 1983 { 1984 ixgbevf_configure_dcb(adapter); 1985 1986 ixgbevf_set_rx_mode(adapter->netdev); 1987 1988 ixgbevf_restore_vlan(adapter); 1989 1990 ixgbevf_configure_tx(adapter); 1991 ixgbevf_configure_rx(adapter); 1992 } 1993 1994 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 1995 { 1996 /* Only save pre-reset stats if there are some */ 1997 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 1998 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 1999 adapter->stats.base_vfgprc; 2000 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2001 adapter->stats.base_vfgptc; 2002 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2003 adapter->stats.base_vfgorc; 2004 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2005 adapter->stats.base_vfgotc; 2006 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2007 adapter->stats.base_vfmprc; 2008 } 2009 } 2010 2011 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2012 { 2013 struct ixgbe_hw *hw = &adapter->hw; 2014 2015 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2016 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2017 adapter->stats.last_vfgorc |= 2018 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2019 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2020 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2021 adapter->stats.last_vfgotc |= 2022 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2023 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2024 2025 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2026 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2027 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2028 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2029 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2030 } 2031 2032 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2033 { 2034 struct ixgbe_hw *hw = &adapter->hw; 2035 int api[] = { ixgbe_mbox_api_12, 2036 ixgbe_mbox_api_11, 2037 ixgbe_mbox_api_10, 2038 ixgbe_mbox_api_unknown }; 2039 int err = 0, idx = 0; 2040 2041 spin_lock_bh(&adapter->mbx_lock); 2042 2043 while (api[idx] != ixgbe_mbox_api_unknown) { 2044 err = ixgbevf_negotiate_api_version(hw, api[idx]); 2045 if (!err) 2046 break; 2047 idx++; 2048 } 2049 2050 spin_unlock_bh(&adapter->mbx_lock); 2051 } 2052 2053 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2054 { 2055 struct net_device *netdev = adapter->netdev; 2056 struct ixgbe_hw *hw = &adapter->hw; 2057 2058 ixgbevf_configure_msix(adapter); 2059 2060 spin_lock_bh(&adapter->mbx_lock); 2061 2062 if (is_valid_ether_addr(hw->mac.addr)) 2063 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2064 else 2065 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2066 2067 spin_unlock_bh(&adapter->mbx_lock); 2068 2069 smp_mb__before_atomic(); 2070 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2071 ixgbevf_napi_enable_all(adapter); 2072 2073 /* clear any pending interrupts, may auto mask */ 2074 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2075 ixgbevf_irq_enable(adapter); 2076 2077 /* enable transmits */ 2078 netif_tx_start_all_queues(netdev); 2079 2080 ixgbevf_save_reset_stats(adapter); 2081 ixgbevf_init_last_counter_stats(adapter); 2082 2083 hw->mac.get_link_status = 1; 2084 mod_timer(&adapter->service_timer, jiffies); 2085 } 2086 2087 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2088 { 2089 ixgbevf_configure(adapter); 2090 2091 ixgbevf_up_complete(adapter); 2092 } 2093 2094 /** 2095 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2096 * @rx_ring: ring to free buffers from 2097 **/ 2098 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2099 { 2100 struct device *dev = rx_ring->dev; 2101 unsigned long size; 2102 unsigned int i; 2103 2104 /* Free Rx ring sk_buff */ 2105 if (rx_ring->skb) { 2106 dev_kfree_skb(rx_ring->skb); 2107 rx_ring->skb = NULL; 2108 } 2109 2110 /* ring already cleared, nothing to do */ 2111 if (!rx_ring->rx_buffer_info) 2112 return; 2113 2114 /* Free all the Rx ring pages */ 2115 for (i = 0; i < rx_ring->count; i++) { 2116 struct ixgbevf_rx_buffer *rx_buffer; 2117 2118 rx_buffer = &rx_ring->rx_buffer_info[i]; 2119 if (rx_buffer->dma) 2120 dma_unmap_page(dev, rx_buffer->dma, 2121 PAGE_SIZE, DMA_FROM_DEVICE); 2122 rx_buffer->dma = 0; 2123 if (rx_buffer->page) 2124 __free_page(rx_buffer->page); 2125 rx_buffer->page = NULL; 2126 } 2127 2128 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 2129 memset(rx_ring->rx_buffer_info, 0, size); 2130 2131 /* Zero out the descriptor ring */ 2132 memset(rx_ring->desc, 0, rx_ring->size); 2133 } 2134 2135 /** 2136 * ixgbevf_clean_tx_ring - Free Tx Buffers 2137 * @tx_ring: ring to be cleaned 2138 **/ 2139 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2140 { 2141 struct ixgbevf_tx_buffer *tx_buffer_info; 2142 unsigned long size; 2143 unsigned int i; 2144 2145 if (!tx_ring->tx_buffer_info) 2146 return; 2147 2148 /* Free all the Tx ring sk_buffs */ 2149 for (i = 0; i < tx_ring->count; i++) { 2150 tx_buffer_info = &tx_ring->tx_buffer_info[i]; 2151 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info); 2152 } 2153 2154 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 2155 memset(tx_ring->tx_buffer_info, 0, size); 2156 2157 memset(tx_ring->desc, 0, tx_ring->size); 2158 } 2159 2160 /** 2161 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2162 * @adapter: board private structure 2163 **/ 2164 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2165 { 2166 int i; 2167 2168 for (i = 0; i < adapter->num_rx_queues; i++) 2169 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2170 } 2171 2172 /** 2173 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2174 * @adapter: board private structure 2175 **/ 2176 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2177 { 2178 int i; 2179 2180 for (i = 0; i < adapter->num_tx_queues; i++) 2181 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2182 } 2183 2184 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2185 { 2186 struct net_device *netdev = adapter->netdev; 2187 struct ixgbe_hw *hw = &adapter->hw; 2188 int i; 2189 2190 /* signal that we are down to the interrupt handler */ 2191 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2192 return; /* do nothing if already down */ 2193 2194 /* disable all enabled Rx queues */ 2195 for (i = 0; i < adapter->num_rx_queues; i++) 2196 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2197 2198 usleep_range(10000, 20000); 2199 2200 netif_tx_stop_all_queues(netdev); 2201 2202 /* call carrier off first to avoid false dev_watchdog timeouts */ 2203 netif_carrier_off(netdev); 2204 netif_tx_disable(netdev); 2205 2206 ixgbevf_irq_disable(adapter); 2207 2208 ixgbevf_napi_disable_all(adapter); 2209 2210 del_timer_sync(&adapter->service_timer); 2211 2212 /* disable transmits in the hardware now that interrupts are off */ 2213 for (i = 0; i < adapter->num_tx_queues; i++) { 2214 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2215 2216 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2217 IXGBE_TXDCTL_SWFLSH); 2218 } 2219 2220 if (!pci_channel_offline(adapter->pdev)) 2221 ixgbevf_reset(adapter); 2222 2223 ixgbevf_clean_all_tx_rings(adapter); 2224 ixgbevf_clean_all_rx_rings(adapter); 2225 } 2226 2227 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2228 { 2229 WARN_ON(in_interrupt()); 2230 2231 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2232 msleep(1); 2233 2234 ixgbevf_down(adapter); 2235 ixgbevf_up(adapter); 2236 2237 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2238 } 2239 2240 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2241 { 2242 struct ixgbe_hw *hw = &adapter->hw; 2243 struct net_device *netdev = adapter->netdev; 2244 2245 if (hw->mac.ops.reset_hw(hw)) { 2246 hw_dbg(hw, "PF still resetting\n"); 2247 } else { 2248 hw->mac.ops.init_hw(hw); 2249 ixgbevf_negotiate_api(adapter); 2250 } 2251 2252 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2253 memcpy(netdev->dev_addr, adapter->hw.mac.addr, 2254 netdev->addr_len); 2255 memcpy(netdev->perm_addr, adapter->hw.mac.addr, 2256 netdev->addr_len); 2257 } 2258 2259 adapter->last_reset = jiffies; 2260 } 2261 2262 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2263 int vectors) 2264 { 2265 int vector_threshold; 2266 2267 /* We'll want at least 2 (vector_threshold): 2268 * 1) TxQ[0] + RxQ[0] handler 2269 * 2) Other (Link Status Change, etc.) 2270 */ 2271 vector_threshold = MIN_MSIX_COUNT; 2272 2273 /* The more we get, the more we will assign to Tx/Rx Cleanup 2274 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2275 * Right now, we simply care about how many we'll get; we'll 2276 * set them up later while requesting irq's. 2277 */ 2278 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2279 vector_threshold, vectors); 2280 2281 if (vectors < 0) { 2282 dev_err(&adapter->pdev->dev, 2283 "Unable to allocate MSI-X interrupts\n"); 2284 kfree(adapter->msix_entries); 2285 adapter->msix_entries = NULL; 2286 return vectors; 2287 } 2288 2289 /* Adjust for only the vectors we'll use, which is minimum 2290 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2291 * vectors we were allocated. 2292 */ 2293 adapter->num_msix_vectors = vectors; 2294 2295 return 0; 2296 } 2297 2298 /** 2299 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2300 * @adapter: board private structure to initialize 2301 * 2302 * This is the top level queue allocation routine. The order here is very 2303 * important, starting with the "most" number of features turned on at once, 2304 * and ending with the smallest set of features. This way large combinations 2305 * can be allocated if they're turned on, and smaller combinations are the 2306 * fallthrough conditions. 2307 * 2308 **/ 2309 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2310 { 2311 struct ixgbe_hw *hw = &adapter->hw; 2312 unsigned int def_q = 0; 2313 unsigned int num_tcs = 0; 2314 int err; 2315 2316 /* Start with base case */ 2317 adapter->num_rx_queues = 1; 2318 adapter->num_tx_queues = 1; 2319 2320 spin_lock_bh(&adapter->mbx_lock); 2321 2322 /* fetch queue configuration from the PF */ 2323 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2324 2325 spin_unlock_bh(&adapter->mbx_lock); 2326 2327 if (err) 2328 return; 2329 2330 /* we need as many queues as traffic classes */ 2331 if (num_tcs > 1) { 2332 adapter->num_rx_queues = num_tcs; 2333 } else { 2334 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2335 2336 switch (hw->api_version) { 2337 case ixgbe_mbox_api_11: 2338 case ixgbe_mbox_api_12: 2339 adapter->num_rx_queues = rss; 2340 adapter->num_tx_queues = rss; 2341 default: 2342 break; 2343 } 2344 } 2345 } 2346 2347 /** 2348 * ixgbevf_alloc_queues - Allocate memory for all rings 2349 * @adapter: board private structure to initialize 2350 * 2351 * We allocate one ring per queue at run-time since we don't know the 2352 * number of queues at compile-time. The polling_netdev array is 2353 * intended for Multiqueue, but should work fine with a single queue. 2354 **/ 2355 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter) 2356 { 2357 struct ixgbevf_ring *ring; 2358 int rx = 0, tx = 0; 2359 2360 for (; tx < adapter->num_tx_queues; tx++) { 2361 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 2362 if (!ring) 2363 goto err_allocation; 2364 2365 ring->dev = &adapter->pdev->dev; 2366 ring->netdev = adapter->netdev; 2367 ring->count = adapter->tx_ring_count; 2368 ring->queue_index = tx; 2369 ring->reg_idx = tx; 2370 2371 adapter->tx_ring[tx] = ring; 2372 } 2373 2374 for (; rx < adapter->num_rx_queues; rx++) { 2375 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 2376 if (!ring) 2377 goto err_allocation; 2378 2379 ring->dev = &adapter->pdev->dev; 2380 ring->netdev = adapter->netdev; 2381 2382 ring->count = adapter->rx_ring_count; 2383 ring->queue_index = rx; 2384 ring->reg_idx = rx; 2385 2386 adapter->rx_ring[rx] = ring; 2387 } 2388 2389 return 0; 2390 2391 err_allocation: 2392 while (tx) { 2393 kfree(adapter->tx_ring[--tx]); 2394 adapter->tx_ring[tx] = NULL; 2395 } 2396 2397 while (rx) { 2398 kfree(adapter->rx_ring[--rx]); 2399 adapter->rx_ring[rx] = NULL; 2400 } 2401 return -ENOMEM; 2402 } 2403 2404 /** 2405 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2406 * @adapter: board private structure to initialize 2407 * 2408 * Attempt to configure the interrupts using the best available 2409 * capabilities of the hardware and the kernel. 2410 **/ 2411 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2412 { 2413 struct net_device *netdev = adapter->netdev; 2414 int err = 0; 2415 int vector, v_budget; 2416 2417 /* It's easy to be greedy for MSI-X vectors, but it really 2418 * doesn't do us much good if we have a lot more vectors 2419 * than CPU's. So let's be conservative and only ask for 2420 * (roughly) the same number of vectors as there are CPU's. 2421 * The default is to use pairs of vectors. 2422 */ 2423 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2424 v_budget = min_t(int, v_budget, num_online_cpus()); 2425 v_budget += NON_Q_VECTORS; 2426 2427 /* A failure in MSI-X entry allocation isn't fatal, but it does 2428 * mean we disable MSI-X capabilities of the adapter. 2429 */ 2430 adapter->msix_entries = kcalloc(v_budget, 2431 sizeof(struct msix_entry), GFP_KERNEL); 2432 if (!adapter->msix_entries) { 2433 err = -ENOMEM; 2434 goto out; 2435 } 2436 2437 for (vector = 0; vector < v_budget; vector++) 2438 adapter->msix_entries[vector].entry = vector; 2439 2440 err = ixgbevf_acquire_msix_vectors(adapter, v_budget); 2441 if (err) 2442 goto out; 2443 2444 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 2445 if (err) 2446 goto out; 2447 2448 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 2449 2450 out: 2451 return err; 2452 } 2453 2454 /** 2455 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2456 * @adapter: board private structure to initialize 2457 * 2458 * We allocate one q_vector per queue interrupt. If allocation fails we 2459 * return -ENOMEM. 2460 **/ 2461 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2462 { 2463 int q_idx, num_q_vectors; 2464 struct ixgbevf_q_vector *q_vector; 2465 2466 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2467 2468 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 2469 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL); 2470 if (!q_vector) 2471 goto err_out; 2472 q_vector->adapter = adapter; 2473 q_vector->v_idx = q_idx; 2474 netif_napi_add(adapter->netdev, &q_vector->napi, 2475 ixgbevf_poll, 64); 2476 #ifdef CONFIG_NET_RX_BUSY_POLL 2477 napi_hash_add(&q_vector->napi); 2478 #endif 2479 adapter->q_vector[q_idx] = q_vector; 2480 } 2481 2482 return 0; 2483 2484 err_out: 2485 while (q_idx) { 2486 q_idx--; 2487 q_vector = adapter->q_vector[q_idx]; 2488 #ifdef CONFIG_NET_RX_BUSY_POLL 2489 napi_hash_del(&q_vector->napi); 2490 #endif 2491 netif_napi_del(&q_vector->napi); 2492 kfree(q_vector); 2493 adapter->q_vector[q_idx] = NULL; 2494 } 2495 return -ENOMEM; 2496 } 2497 2498 /** 2499 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2500 * @adapter: board private structure to initialize 2501 * 2502 * This function frees the memory allocated to the q_vectors. In addition if 2503 * NAPI is enabled it will delete any references to the NAPI struct prior 2504 * to freeing the q_vector. 2505 **/ 2506 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2507 { 2508 int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2509 2510 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 2511 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx]; 2512 2513 adapter->q_vector[q_idx] = NULL; 2514 #ifdef CONFIG_NET_RX_BUSY_POLL 2515 napi_hash_del(&q_vector->napi); 2516 #endif 2517 netif_napi_del(&q_vector->napi); 2518 kfree(q_vector); 2519 } 2520 } 2521 2522 /** 2523 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2524 * @adapter: board private structure 2525 * 2526 **/ 2527 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2528 { 2529 pci_disable_msix(adapter->pdev); 2530 kfree(adapter->msix_entries); 2531 adapter->msix_entries = NULL; 2532 } 2533 2534 /** 2535 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2536 * @adapter: board private structure to initialize 2537 * 2538 **/ 2539 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2540 { 2541 int err; 2542 2543 /* Number of supported queues */ 2544 ixgbevf_set_num_queues(adapter); 2545 2546 err = ixgbevf_set_interrupt_capability(adapter); 2547 if (err) { 2548 hw_dbg(&adapter->hw, 2549 "Unable to setup interrupt capabilities\n"); 2550 goto err_set_interrupt; 2551 } 2552 2553 err = ixgbevf_alloc_q_vectors(adapter); 2554 if (err) { 2555 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2556 goto err_alloc_q_vectors; 2557 } 2558 2559 err = ixgbevf_alloc_queues(adapter); 2560 if (err) { 2561 pr_err("Unable to allocate memory for queues\n"); 2562 goto err_alloc_queues; 2563 } 2564 2565 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n", 2566 (adapter->num_rx_queues > 1) ? "Enabled" : 2567 "Disabled", adapter->num_rx_queues, adapter->num_tx_queues); 2568 2569 set_bit(__IXGBEVF_DOWN, &adapter->state); 2570 2571 return 0; 2572 err_alloc_queues: 2573 ixgbevf_free_q_vectors(adapter); 2574 err_alloc_q_vectors: 2575 ixgbevf_reset_interrupt_capability(adapter); 2576 err_set_interrupt: 2577 return err; 2578 } 2579 2580 /** 2581 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2582 * @adapter: board private structure to clear interrupt scheme on 2583 * 2584 * We go through and clear interrupt specific resources and reset the structure 2585 * to pre-load conditions 2586 **/ 2587 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 2588 { 2589 int i; 2590 2591 for (i = 0; i < adapter->num_tx_queues; i++) { 2592 kfree(adapter->tx_ring[i]); 2593 adapter->tx_ring[i] = NULL; 2594 } 2595 for (i = 0; i < adapter->num_rx_queues; i++) { 2596 kfree(adapter->rx_ring[i]); 2597 adapter->rx_ring[i] = NULL; 2598 } 2599 2600 adapter->num_tx_queues = 0; 2601 adapter->num_rx_queues = 0; 2602 2603 ixgbevf_free_q_vectors(adapter); 2604 ixgbevf_reset_interrupt_capability(adapter); 2605 } 2606 2607 /** 2608 * ixgbevf_sw_init - Initialize general software structures 2609 * @adapter: board private structure to initialize 2610 * 2611 * ixgbevf_sw_init initializes the Adapter private data structure. 2612 * Fields are initialized based on PCI device information and 2613 * OS network device settings (MTU size). 2614 **/ 2615 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 2616 { 2617 struct ixgbe_hw *hw = &adapter->hw; 2618 struct pci_dev *pdev = adapter->pdev; 2619 struct net_device *netdev = adapter->netdev; 2620 int err; 2621 2622 /* PCI config space info */ 2623 hw->vendor_id = pdev->vendor; 2624 hw->device_id = pdev->device; 2625 hw->revision_id = pdev->revision; 2626 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2627 hw->subsystem_device_id = pdev->subsystem_device; 2628 2629 hw->mbx.ops.init_params(hw); 2630 2631 /* assume legacy case in which PF would only give VF 2 queues */ 2632 hw->mac.max_tx_queues = 2; 2633 hw->mac.max_rx_queues = 2; 2634 2635 /* lock to protect mailbox accesses */ 2636 spin_lock_init(&adapter->mbx_lock); 2637 2638 err = hw->mac.ops.reset_hw(hw); 2639 if (err) { 2640 dev_info(&pdev->dev, 2641 "PF still in reset state. Is the PF interface up?\n"); 2642 } else { 2643 err = hw->mac.ops.init_hw(hw); 2644 if (err) { 2645 pr_err("init_shared_code failed: %d\n", err); 2646 goto out; 2647 } 2648 ixgbevf_negotiate_api(adapter); 2649 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 2650 if (err) 2651 dev_info(&pdev->dev, "Error reading MAC address\n"); 2652 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 2653 dev_info(&pdev->dev, 2654 "MAC address not assigned by administrator.\n"); 2655 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); 2656 } 2657 2658 if (!is_valid_ether_addr(netdev->dev_addr)) { 2659 dev_info(&pdev->dev, "Assigning random MAC address\n"); 2660 eth_hw_addr_random(netdev); 2661 memcpy(hw->mac.addr, netdev->dev_addr, netdev->addr_len); 2662 } 2663 2664 /* Enable dynamic interrupt throttling rates */ 2665 adapter->rx_itr_setting = 1; 2666 adapter->tx_itr_setting = 1; 2667 2668 /* set default ring sizes */ 2669 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 2670 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 2671 2672 set_bit(__IXGBEVF_DOWN, &adapter->state); 2673 return 0; 2674 2675 out: 2676 return err; 2677 } 2678 2679 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 2680 { \ 2681 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 2682 if (current_counter < last_counter) \ 2683 counter += 0x100000000LL; \ 2684 last_counter = current_counter; \ 2685 counter &= 0xFFFFFFFF00000000LL; \ 2686 counter |= current_counter; \ 2687 } 2688 2689 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 2690 { \ 2691 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 2692 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 2693 u64 current_counter = (current_counter_msb << 32) | \ 2694 current_counter_lsb; \ 2695 if (current_counter < last_counter) \ 2696 counter += 0x1000000000LL; \ 2697 last_counter = current_counter; \ 2698 counter &= 0xFFFFFFF000000000LL; \ 2699 counter |= current_counter; \ 2700 } 2701 /** 2702 * ixgbevf_update_stats - Update the board statistics counters. 2703 * @adapter: board private structure 2704 **/ 2705 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 2706 { 2707 struct ixgbe_hw *hw = &adapter->hw; 2708 int i; 2709 2710 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2711 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2712 return; 2713 2714 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 2715 adapter->stats.vfgprc); 2716 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 2717 adapter->stats.vfgptc); 2718 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 2719 adapter->stats.last_vfgorc, 2720 adapter->stats.vfgorc); 2721 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 2722 adapter->stats.last_vfgotc, 2723 adapter->stats.vfgotc); 2724 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 2725 adapter->stats.vfmprc); 2726 2727 for (i = 0; i < adapter->num_rx_queues; i++) { 2728 adapter->hw_csum_rx_error += 2729 adapter->rx_ring[i]->hw_csum_rx_error; 2730 adapter->rx_ring[i]->hw_csum_rx_error = 0; 2731 } 2732 } 2733 2734 /** 2735 * ixgbevf_service_timer - Timer Call-back 2736 * @data: pointer to adapter cast into an unsigned long 2737 **/ 2738 static void ixgbevf_service_timer(unsigned long data) 2739 { 2740 struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data; 2741 2742 /* Reset the timer */ 2743 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 2744 2745 ixgbevf_service_event_schedule(adapter); 2746 } 2747 2748 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 2749 { 2750 if (!(adapter->flags & IXGBEVF_FLAG_RESET_REQUESTED)) 2751 return; 2752 2753 adapter->flags &= ~IXGBEVF_FLAG_RESET_REQUESTED; 2754 2755 /* If we're already down or resetting, just bail */ 2756 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2757 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2758 return; 2759 2760 adapter->tx_timeout_count++; 2761 2762 ixgbevf_reinit_locked(adapter); 2763 } 2764 2765 /** 2766 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 2767 * @adapter: pointer to the device adapter structure 2768 * 2769 * This function serves two purposes. First it strobes the interrupt lines 2770 * in order to make certain interrupts are occurring. Secondly it sets the 2771 * bits needed to check for TX hangs. As a result we should immediately 2772 * determine if a hang has occurred. 2773 **/ 2774 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 2775 { 2776 struct ixgbe_hw *hw = &adapter->hw; 2777 u32 eics = 0; 2778 int i; 2779 2780 /* If we're down or resetting, just bail */ 2781 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2782 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2783 return; 2784 2785 /* Force detection of hung controller */ 2786 if (netif_carrier_ok(adapter->netdev)) { 2787 for (i = 0; i < adapter->num_tx_queues; i++) 2788 set_check_for_tx_hang(adapter->tx_ring[i]); 2789 } 2790 2791 /* get one bit for every active Tx/Rx interrupt vector */ 2792 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 2793 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 2794 2795 if (qv->rx.ring || qv->tx.ring) 2796 eics |= 1 << i; 2797 } 2798 2799 /* Cause software interrupt to ensure rings are cleaned */ 2800 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 2801 } 2802 2803 /** 2804 * ixgbevf_watchdog_update_link - update the link status 2805 * @adapter: pointer to the device adapter structure 2806 **/ 2807 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 2808 { 2809 struct ixgbe_hw *hw = &adapter->hw; 2810 u32 link_speed = adapter->link_speed; 2811 bool link_up = adapter->link_up; 2812 s32 err; 2813 2814 spin_lock_bh(&adapter->mbx_lock); 2815 2816 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 2817 2818 spin_unlock_bh(&adapter->mbx_lock); 2819 2820 /* if check for link returns error we will need to reset */ 2821 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 2822 adapter->flags |= IXGBEVF_FLAG_RESET_REQUESTED; 2823 link_up = false; 2824 } 2825 2826 adapter->link_up = link_up; 2827 adapter->link_speed = link_speed; 2828 } 2829 2830 /** 2831 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 2832 * print link up message 2833 * @adapter: pointer to the device adapter structure 2834 **/ 2835 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 2836 { 2837 struct net_device *netdev = adapter->netdev; 2838 2839 /* only continue if link was previously down */ 2840 if (netif_carrier_ok(netdev)) 2841 return; 2842 2843 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 2844 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 2845 "10 Gbps" : 2846 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 2847 "1 Gbps" : 2848 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 2849 "100 Mbps" : 2850 "unknown speed"); 2851 2852 netif_carrier_on(netdev); 2853 } 2854 2855 /** 2856 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 2857 * print link down message 2858 * @adapter: pointer to the adapter structure 2859 **/ 2860 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 2861 { 2862 struct net_device *netdev = adapter->netdev; 2863 2864 adapter->link_speed = 0; 2865 2866 /* only continue if link was up previously */ 2867 if (!netif_carrier_ok(netdev)) 2868 return; 2869 2870 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 2871 2872 netif_carrier_off(netdev); 2873 } 2874 2875 /** 2876 * ixgbevf_watchdog_subtask - worker thread to bring link up 2877 * @work: pointer to work_struct containing our data 2878 **/ 2879 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 2880 { 2881 /* if interface is down do nothing */ 2882 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2883 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2884 return; 2885 2886 ixgbevf_watchdog_update_link(adapter); 2887 2888 if (adapter->link_up) 2889 ixgbevf_watchdog_link_is_up(adapter); 2890 else 2891 ixgbevf_watchdog_link_is_down(adapter); 2892 2893 ixgbevf_update_stats(adapter); 2894 } 2895 2896 /** 2897 * ixgbevf_service_task - manages and runs subtasks 2898 * @work: pointer to work_struct containing our data 2899 **/ 2900 static void ixgbevf_service_task(struct work_struct *work) 2901 { 2902 struct ixgbevf_adapter *adapter = container_of(work, 2903 struct ixgbevf_adapter, 2904 service_task); 2905 struct ixgbe_hw *hw = &adapter->hw; 2906 2907 if (IXGBE_REMOVED(hw->hw_addr)) { 2908 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 2909 rtnl_lock(); 2910 ixgbevf_down(adapter); 2911 rtnl_unlock(); 2912 } 2913 return; 2914 } 2915 2916 ixgbevf_queue_reset_subtask(adapter); 2917 ixgbevf_reset_subtask(adapter); 2918 ixgbevf_watchdog_subtask(adapter); 2919 ixgbevf_check_hang_subtask(adapter); 2920 2921 ixgbevf_service_event_complete(adapter); 2922 } 2923 2924 /** 2925 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 2926 * @tx_ring: Tx descriptor ring for a specific queue 2927 * 2928 * Free all transmit software resources 2929 **/ 2930 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 2931 { 2932 ixgbevf_clean_tx_ring(tx_ring); 2933 2934 vfree(tx_ring->tx_buffer_info); 2935 tx_ring->tx_buffer_info = NULL; 2936 2937 /* if not set, then don't free */ 2938 if (!tx_ring->desc) 2939 return; 2940 2941 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 2942 tx_ring->dma); 2943 2944 tx_ring->desc = NULL; 2945 } 2946 2947 /** 2948 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 2949 * @adapter: board private structure 2950 * 2951 * Free all transmit software resources 2952 **/ 2953 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 2954 { 2955 int i; 2956 2957 for (i = 0; i < adapter->num_tx_queues; i++) 2958 if (adapter->tx_ring[i]->desc) 2959 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 2960 } 2961 2962 /** 2963 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 2964 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 2965 * 2966 * Return 0 on success, negative on failure 2967 **/ 2968 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 2969 { 2970 int size; 2971 2972 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 2973 tx_ring->tx_buffer_info = vzalloc(size); 2974 if (!tx_ring->tx_buffer_info) 2975 goto err; 2976 2977 /* round up to nearest 4K */ 2978 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 2979 tx_ring->size = ALIGN(tx_ring->size, 4096); 2980 2981 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 2982 &tx_ring->dma, GFP_KERNEL); 2983 if (!tx_ring->desc) 2984 goto err; 2985 2986 return 0; 2987 2988 err: 2989 vfree(tx_ring->tx_buffer_info); 2990 tx_ring->tx_buffer_info = NULL; 2991 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 2992 return -ENOMEM; 2993 } 2994 2995 /** 2996 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 2997 * @adapter: board private structure 2998 * 2999 * If this function returns with an error, then it's possible one or 3000 * more of the rings is populated (while the rest are not). It is the 3001 * callers duty to clean those orphaned rings. 3002 * 3003 * Return 0 on success, negative on failure 3004 **/ 3005 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3006 { 3007 int i, err = 0; 3008 3009 for (i = 0; i < adapter->num_tx_queues; i++) { 3010 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3011 if (!err) 3012 continue; 3013 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3014 break; 3015 } 3016 3017 return err; 3018 } 3019 3020 /** 3021 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3022 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3023 * 3024 * Returns 0 on success, negative on failure 3025 **/ 3026 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring) 3027 { 3028 int size; 3029 3030 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3031 rx_ring->rx_buffer_info = vzalloc(size); 3032 if (!rx_ring->rx_buffer_info) 3033 goto err; 3034 3035 /* Round up to nearest 4K */ 3036 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3037 rx_ring->size = ALIGN(rx_ring->size, 4096); 3038 3039 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3040 &rx_ring->dma, GFP_KERNEL); 3041 3042 if (!rx_ring->desc) 3043 goto err; 3044 3045 return 0; 3046 err: 3047 vfree(rx_ring->rx_buffer_info); 3048 rx_ring->rx_buffer_info = NULL; 3049 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3050 return -ENOMEM; 3051 } 3052 3053 /** 3054 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3055 * @adapter: board private structure 3056 * 3057 * If this function returns with an error, then it's possible one or 3058 * more of the rings is populated (while the rest are not). It is the 3059 * callers duty to clean those orphaned rings. 3060 * 3061 * Return 0 on success, negative on failure 3062 **/ 3063 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3064 { 3065 int i, err = 0; 3066 3067 for (i = 0; i < adapter->num_rx_queues; i++) { 3068 err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]); 3069 if (!err) 3070 continue; 3071 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3072 break; 3073 } 3074 return err; 3075 } 3076 3077 /** 3078 * ixgbevf_free_rx_resources - Free Rx Resources 3079 * @rx_ring: ring to clean the resources from 3080 * 3081 * Free all receive software resources 3082 **/ 3083 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3084 { 3085 ixgbevf_clean_rx_ring(rx_ring); 3086 3087 vfree(rx_ring->rx_buffer_info); 3088 rx_ring->rx_buffer_info = NULL; 3089 3090 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3091 rx_ring->dma); 3092 3093 rx_ring->desc = NULL; 3094 } 3095 3096 /** 3097 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3098 * @adapter: board private structure 3099 * 3100 * Free all receive software resources 3101 **/ 3102 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3103 { 3104 int i; 3105 3106 for (i = 0; i < adapter->num_rx_queues; i++) 3107 if (adapter->rx_ring[i]->desc) 3108 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3109 } 3110 3111 /** 3112 * ixgbevf_open - Called when a network interface is made active 3113 * @netdev: network interface device structure 3114 * 3115 * Returns 0 on success, negative value on failure 3116 * 3117 * The open entry point is called when a network interface is made 3118 * active by the system (IFF_UP). At this point all resources needed 3119 * for transmit and receive operations are allocated, the interrupt 3120 * handler is registered with the OS, the watchdog timer is started, 3121 * and the stack is notified that the interface is ready. 3122 **/ 3123 static int ixgbevf_open(struct net_device *netdev) 3124 { 3125 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3126 struct ixgbe_hw *hw = &adapter->hw; 3127 int err; 3128 3129 /* A previous failure to open the device because of a lack of 3130 * available MSIX vector resources may have reset the number 3131 * of msix vectors variable to zero. The only way to recover 3132 * is to unload/reload the driver and hope that the system has 3133 * been able to recover some MSIX vector resources. 3134 */ 3135 if (!adapter->num_msix_vectors) 3136 return -ENOMEM; 3137 3138 if (hw->adapter_stopped) { 3139 ixgbevf_reset(adapter); 3140 /* if adapter is still stopped then PF isn't up and 3141 * the VF can't start. 3142 */ 3143 if (hw->adapter_stopped) { 3144 err = IXGBE_ERR_MBX; 3145 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3146 goto err_setup_reset; 3147 } 3148 } 3149 3150 /* disallow open during test */ 3151 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3152 return -EBUSY; 3153 3154 netif_carrier_off(netdev); 3155 3156 /* allocate transmit descriptors */ 3157 err = ixgbevf_setup_all_tx_resources(adapter); 3158 if (err) 3159 goto err_setup_tx; 3160 3161 /* allocate receive descriptors */ 3162 err = ixgbevf_setup_all_rx_resources(adapter); 3163 if (err) 3164 goto err_setup_rx; 3165 3166 ixgbevf_configure(adapter); 3167 3168 /* Map the Tx/Rx rings to the vectors we were allotted. 3169 * if request_irq will be called in this function map_rings 3170 * must be called *before* up_complete 3171 */ 3172 ixgbevf_map_rings_to_vectors(adapter); 3173 3174 err = ixgbevf_request_irq(adapter); 3175 if (err) 3176 goto err_req_irq; 3177 3178 ixgbevf_up_complete(adapter); 3179 3180 return 0; 3181 3182 err_req_irq: 3183 ixgbevf_down(adapter); 3184 err_setup_rx: 3185 ixgbevf_free_all_rx_resources(adapter); 3186 err_setup_tx: 3187 ixgbevf_free_all_tx_resources(adapter); 3188 ixgbevf_reset(adapter); 3189 3190 err_setup_reset: 3191 3192 return err; 3193 } 3194 3195 /** 3196 * ixgbevf_close - Disables a network interface 3197 * @netdev: network interface device structure 3198 * 3199 * Returns 0, this is not allowed to fail 3200 * 3201 * The close entry point is called when an interface is de-activated 3202 * by the OS. The hardware is still under the drivers control, but 3203 * needs to be disabled. A global MAC reset is issued to stop the 3204 * hardware, and all transmit and receive resources are freed. 3205 **/ 3206 static int ixgbevf_close(struct net_device *netdev) 3207 { 3208 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3209 3210 ixgbevf_down(adapter); 3211 ixgbevf_free_irq(adapter); 3212 3213 ixgbevf_free_all_tx_resources(adapter); 3214 ixgbevf_free_all_rx_resources(adapter); 3215 3216 return 0; 3217 } 3218 3219 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3220 { 3221 struct net_device *dev = adapter->netdev; 3222 3223 if (!(adapter->flags & IXGBEVF_FLAG_QUEUE_RESET_REQUESTED)) 3224 return; 3225 3226 adapter->flags &= ~IXGBEVF_FLAG_QUEUE_RESET_REQUESTED; 3227 3228 /* if interface is down do nothing */ 3229 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3230 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3231 return; 3232 3233 /* Hardware has to reinitialize queues and interrupts to 3234 * match packet buffer alignment. Unfortunately, the 3235 * hardware is not flexible enough to do this dynamically. 3236 */ 3237 if (netif_running(dev)) 3238 ixgbevf_close(dev); 3239 3240 ixgbevf_clear_interrupt_scheme(adapter); 3241 ixgbevf_init_interrupt_scheme(adapter); 3242 3243 if (netif_running(dev)) 3244 ixgbevf_open(dev); 3245 } 3246 3247 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3248 u32 vlan_macip_lens, u32 type_tucmd, 3249 u32 mss_l4len_idx) 3250 { 3251 struct ixgbe_adv_tx_context_desc *context_desc; 3252 u16 i = tx_ring->next_to_use; 3253 3254 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3255 3256 i++; 3257 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3258 3259 /* set bits to identify this as an advanced context descriptor */ 3260 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3261 3262 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3263 context_desc->seqnum_seed = 0; 3264 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3265 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3266 } 3267 3268 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3269 struct ixgbevf_tx_buffer *first, 3270 u8 *hdr_len) 3271 { 3272 struct sk_buff *skb = first->skb; 3273 u32 vlan_macip_lens, type_tucmd; 3274 u32 mss_l4len_idx, l4len; 3275 int err; 3276 3277 if (skb->ip_summed != CHECKSUM_PARTIAL) 3278 return 0; 3279 3280 if (!skb_is_gso(skb)) 3281 return 0; 3282 3283 err = skb_cow_head(skb, 0); 3284 if (err < 0) 3285 return err; 3286 3287 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3288 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3289 3290 if (first->protocol == htons(ETH_P_IP)) { 3291 struct iphdr *iph = ip_hdr(skb); 3292 3293 iph->tot_len = 0; 3294 iph->check = 0; 3295 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 3296 iph->daddr, 0, 3297 IPPROTO_TCP, 3298 0); 3299 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3300 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3301 IXGBE_TX_FLAGS_CSUM | 3302 IXGBE_TX_FLAGS_IPV4; 3303 } else if (skb_is_gso_v6(skb)) { 3304 ipv6_hdr(skb)->payload_len = 0; 3305 tcp_hdr(skb)->check = 3306 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3307 &ipv6_hdr(skb)->daddr, 3308 0, IPPROTO_TCP, 0); 3309 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3310 IXGBE_TX_FLAGS_CSUM; 3311 } 3312 3313 /* compute header lengths */ 3314 l4len = tcp_hdrlen(skb); 3315 *hdr_len += l4len; 3316 *hdr_len = skb_transport_offset(skb) + l4len; 3317 3318 /* update GSO size and bytecount with header size */ 3319 first->gso_segs = skb_shinfo(skb)->gso_segs; 3320 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3321 3322 /* mss_l4len_id: use 1 as index for TSO */ 3323 mss_l4len_idx = l4len << IXGBE_ADVTXD_L4LEN_SHIFT; 3324 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3325 mss_l4len_idx |= 1 << IXGBE_ADVTXD_IDX_SHIFT; 3326 3327 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3328 vlan_macip_lens = skb_network_header_len(skb); 3329 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3330 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3331 3332 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3333 type_tucmd, mss_l4len_idx); 3334 3335 return 1; 3336 } 3337 3338 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3339 struct ixgbevf_tx_buffer *first) 3340 { 3341 struct sk_buff *skb = first->skb; 3342 u32 vlan_macip_lens = 0; 3343 u32 mss_l4len_idx = 0; 3344 u32 type_tucmd = 0; 3345 3346 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3347 u8 l4_hdr = 0; 3348 3349 switch (first->protocol) { 3350 case htons(ETH_P_IP): 3351 vlan_macip_lens |= skb_network_header_len(skb); 3352 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3353 l4_hdr = ip_hdr(skb)->protocol; 3354 break; 3355 case htons(ETH_P_IPV6): 3356 vlan_macip_lens |= skb_network_header_len(skb); 3357 l4_hdr = ipv6_hdr(skb)->nexthdr; 3358 break; 3359 default: 3360 if (unlikely(net_ratelimit())) { 3361 dev_warn(tx_ring->dev, 3362 "partial checksum but proto=%x!\n", 3363 first->protocol); 3364 } 3365 break; 3366 } 3367 3368 switch (l4_hdr) { 3369 case IPPROTO_TCP: 3370 type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_TCP; 3371 mss_l4len_idx = tcp_hdrlen(skb) << 3372 IXGBE_ADVTXD_L4LEN_SHIFT; 3373 break; 3374 case IPPROTO_SCTP: 3375 type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3376 mss_l4len_idx = sizeof(struct sctphdr) << 3377 IXGBE_ADVTXD_L4LEN_SHIFT; 3378 break; 3379 case IPPROTO_UDP: 3380 mss_l4len_idx = sizeof(struct udphdr) << 3381 IXGBE_ADVTXD_L4LEN_SHIFT; 3382 break; 3383 default: 3384 if (unlikely(net_ratelimit())) { 3385 dev_warn(tx_ring->dev, 3386 "partial checksum but l4 proto=%x!\n", 3387 l4_hdr); 3388 } 3389 break; 3390 } 3391 3392 /* update TX checksum flag */ 3393 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3394 } 3395 3396 /* vlan_macip_lens: MACLEN, VLAN tag */ 3397 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3398 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3399 3400 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3401 type_tucmd, mss_l4len_idx); 3402 } 3403 3404 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3405 { 3406 /* set type for advanced descriptor with frame checksum insertion */ 3407 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3408 IXGBE_ADVTXD_DCMD_IFCS | 3409 IXGBE_ADVTXD_DCMD_DEXT); 3410 3411 /* set HW VLAN bit if VLAN is present */ 3412 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3413 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3414 3415 /* set segmentation enable bits for TSO/FSO */ 3416 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3417 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3418 3419 return cmd_type; 3420 } 3421 3422 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3423 u32 tx_flags, unsigned int paylen) 3424 { 3425 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3426 3427 /* enable L4 checksum for TSO and TX checksum offload */ 3428 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3429 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3430 3431 /* enble IPv4 checksum for TSO */ 3432 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3433 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3434 3435 /* use index 1 context for TSO/FSO/FCOE */ 3436 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3437 olinfo_status |= cpu_to_le32(1 << IXGBE_ADVTXD_IDX_SHIFT); 3438 3439 /* Check Context must be set if Tx switch is enabled, which it 3440 * always is for case where virtual functions are running 3441 */ 3442 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3443 3444 tx_desc->read.olinfo_status = olinfo_status; 3445 } 3446 3447 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3448 struct ixgbevf_tx_buffer *first, 3449 const u8 hdr_len) 3450 { 3451 dma_addr_t dma; 3452 struct sk_buff *skb = first->skb; 3453 struct ixgbevf_tx_buffer *tx_buffer; 3454 union ixgbe_adv_tx_desc *tx_desc; 3455 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; 3456 unsigned int data_len = skb->data_len; 3457 unsigned int size = skb_headlen(skb); 3458 unsigned int paylen = skb->len - hdr_len; 3459 u32 tx_flags = first->tx_flags; 3460 __le32 cmd_type; 3461 u16 i = tx_ring->next_to_use; 3462 3463 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3464 3465 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen); 3466 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3467 3468 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3469 if (dma_mapping_error(tx_ring->dev, dma)) 3470 goto dma_error; 3471 3472 /* record length, and DMA address */ 3473 dma_unmap_len_set(first, len, size); 3474 dma_unmap_addr_set(first, dma, dma); 3475 3476 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3477 3478 for (;;) { 3479 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3480 tx_desc->read.cmd_type_len = 3481 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3482 3483 i++; 3484 tx_desc++; 3485 if (i == tx_ring->count) { 3486 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3487 i = 0; 3488 } 3489 3490 dma += IXGBE_MAX_DATA_PER_TXD; 3491 size -= IXGBE_MAX_DATA_PER_TXD; 3492 3493 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3494 tx_desc->read.olinfo_status = 0; 3495 } 3496 3497 if (likely(!data_len)) 3498 break; 3499 3500 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 3501 3502 i++; 3503 tx_desc++; 3504 if (i == tx_ring->count) { 3505 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3506 i = 0; 3507 } 3508 3509 size = skb_frag_size(frag); 3510 data_len -= size; 3511 3512 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3513 DMA_TO_DEVICE); 3514 if (dma_mapping_error(tx_ring->dev, dma)) 3515 goto dma_error; 3516 3517 tx_buffer = &tx_ring->tx_buffer_info[i]; 3518 dma_unmap_len_set(tx_buffer, len, size); 3519 dma_unmap_addr_set(tx_buffer, dma, dma); 3520 3521 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3522 tx_desc->read.olinfo_status = 0; 3523 3524 frag++; 3525 } 3526 3527 /* write last descriptor with RS and EOP bits */ 3528 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 3529 tx_desc->read.cmd_type_len = cmd_type; 3530 3531 /* set the timestamp */ 3532 first->time_stamp = jiffies; 3533 3534 /* Force memory writes to complete before letting h/w know there 3535 * are new descriptors to fetch. (Only applicable for weak-ordered 3536 * memory model archs, such as IA-64). 3537 * 3538 * We also need this memory barrier (wmb) to make certain all of the 3539 * status bits have been updated before next_to_watch is written. 3540 */ 3541 wmb(); 3542 3543 /* set next_to_watch value indicating a packet is present */ 3544 first->next_to_watch = tx_desc; 3545 3546 i++; 3547 if (i == tx_ring->count) 3548 i = 0; 3549 3550 tx_ring->next_to_use = i; 3551 3552 /* notify HW of packet */ 3553 ixgbevf_write_tail(tx_ring, i); 3554 3555 return; 3556 dma_error: 3557 dev_err(tx_ring->dev, "TX DMA map failed\n"); 3558 3559 /* clear dma mappings for failed tx_buffer_info map */ 3560 for (;;) { 3561 tx_buffer = &tx_ring->tx_buffer_info[i]; 3562 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer); 3563 if (tx_buffer == first) 3564 break; 3565 if (i == 0) 3566 i = tx_ring->count; 3567 i--; 3568 } 3569 3570 tx_ring->next_to_use = i; 3571 } 3572 3573 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 3574 { 3575 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 3576 /* Herbert's original patch had: 3577 * smp_mb__after_netif_stop_queue(); 3578 * but since that doesn't exist yet, just open code it. 3579 */ 3580 smp_mb(); 3581 3582 /* We need to check again in a case another CPU has just 3583 * made room available. 3584 */ 3585 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 3586 return -EBUSY; 3587 3588 /* A reprieve! - use start_queue because it doesn't call schedule */ 3589 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 3590 ++tx_ring->tx_stats.restart_queue; 3591 3592 return 0; 3593 } 3594 3595 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 3596 { 3597 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 3598 return 0; 3599 return __ixgbevf_maybe_stop_tx(tx_ring, size); 3600 } 3601 3602 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3603 { 3604 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3605 struct ixgbevf_tx_buffer *first; 3606 struct ixgbevf_ring *tx_ring; 3607 int tso; 3608 u32 tx_flags = 0; 3609 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 3610 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 3611 unsigned short f; 3612 #endif 3613 u8 hdr_len = 0; 3614 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 3615 3616 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 3617 dev_kfree_skb_any(skb); 3618 return NETDEV_TX_OK; 3619 } 3620 3621 tx_ring = adapter->tx_ring[skb->queue_mapping]; 3622 3623 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 3624 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 3625 * + 2 desc gap to keep tail from touching head, 3626 * + 1 desc for context descriptor, 3627 * otherwise try next time 3628 */ 3629 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 3630 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 3631 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 3632 #else 3633 count += skb_shinfo(skb)->nr_frags; 3634 #endif 3635 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 3636 tx_ring->tx_stats.tx_busy++; 3637 return NETDEV_TX_BUSY; 3638 } 3639 3640 /* record the location of the first descriptor for this packet */ 3641 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 3642 first->skb = skb; 3643 first->bytecount = skb->len; 3644 first->gso_segs = 1; 3645 3646 if (skb_vlan_tag_present(skb)) { 3647 tx_flags |= skb_vlan_tag_get(skb); 3648 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 3649 tx_flags |= IXGBE_TX_FLAGS_VLAN; 3650 } 3651 3652 /* record initial flags and protocol */ 3653 first->tx_flags = tx_flags; 3654 first->protocol = vlan_get_protocol(skb); 3655 3656 tso = ixgbevf_tso(tx_ring, first, &hdr_len); 3657 if (tso < 0) 3658 goto out_drop; 3659 else if (!tso) 3660 ixgbevf_tx_csum(tx_ring, first); 3661 3662 ixgbevf_tx_map(tx_ring, first, hdr_len); 3663 3664 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 3665 3666 return NETDEV_TX_OK; 3667 3668 out_drop: 3669 dev_kfree_skb_any(first->skb); 3670 first->skb = NULL; 3671 3672 return NETDEV_TX_OK; 3673 } 3674 3675 /** 3676 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 3677 * @netdev: network interface device structure 3678 * @p: pointer to an address structure 3679 * 3680 * Returns 0 on success, negative on failure 3681 **/ 3682 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 3683 { 3684 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3685 struct ixgbe_hw *hw = &adapter->hw; 3686 struct sockaddr *addr = p; 3687 3688 if (!is_valid_ether_addr(addr->sa_data)) 3689 return -EADDRNOTAVAIL; 3690 3691 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 3692 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 3693 3694 spin_lock_bh(&adapter->mbx_lock); 3695 3696 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 3697 3698 spin_unlock_bh(&adapter->mbx_lock); 3699 3700 return 0; 3701 } 3702 3703 /** 3704 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 3705 * @netdev: network interface device structure 3706 * @new_mtu: new value for maximum frame size 3707 * 3708 * Returns 0 on success, negative on failure 3709 **/ 3710 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 3711 { 3712 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3713 struct ixgbe_hw *hw = &adapter->hw; 3714 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3715 int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE; 3716 3717 switch (adapter->hw.api_version) { 3718 case ixgbe_mbox_api_11: 3719 case ixgbe_mbox_api_12: 3720 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE; 3721 break; 3722 default: 3723 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 3724 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE; 3725 break; 3726 } 3727 3728 /* MTU < 68 is an error and causes problems on some kernels */ 3729 if ((new_mtu < 68) || (max_frame > max_possible_frame)) 3730 return -EINVAL; 3731 3732 hw_dbg(hw, "changing MTU from %d to %d\n", 3733 netdev->mtu, new_mtu); 3734 /* must set new MTU before calling down or up */ 3735 netdev->mtu = new_mtu; 3736 3737 /* notify the PF of our intent to use this size of frame */ 3738 ixgbevf_rlpml_set_vf(hw, max_frame); 3739 3740 return 0; 3741 } 3742 3743 #ifdef CONFIG_NET_POLL_CONTROLLER 3744 /* Polling 'interrupt' - used by things like netconsole to send skbs 3745 * without having to re-enable interrupts. It's not called while 3746 * the interrupt routine is executing. 3747 */ 3748 static void ixgbevf_netpoll(struct net_device *netdev) 3749 { 3750 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3751 int i; 3752 3753 /* if interface is down do nothing */ 3754 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 3755 return; 3756 for (i = 0; i < adapter->num_rx_queues; i++) 3757 ixgbevf_msix_clean_rings(0, adapter->q_vector[i]); 3758 } 3759 #endif /* CONFIG_NET_POLL_CONTROLLER */ 3760 3761 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state) 3762 { 3763 struct net_device *netdev = pci_get_drvdata(pdev); 3764 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3765 #ifdef CONFIG_PM 3766 int retval = 0; 3767 #endif 3768 3769 netif_device_detach(netdev); 3770 3771 if (netif_running(netdev)) { 3772 rtnl_lock(); 3773 ixgbevf_down(adapter); 3774 ixgbevf_free_irq(adapter); 3775 ixgbevf_free_all_tx_resources(adapter); 3776 ixgbevf_free_all_rx_resources(adapter); 3777 rtnl_unlock(); 3778 } 3779 3780 ixgbevf_clear_interrupt_scheme(adapter); 3781 3782 #ifdef CONFIG_PM 3783 retval = pci_save_state(pdev); 3784 if (retval) 3785 return retval; 3786 3787 #endif 3788 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 3789 pci_disable_device(pdev); 3790 3791 return 0; 3792 } 3793 3794 #ifdef CONFIG_PM 3795 static int ixgbevf_resume(struct pci_dev *pdev) 3796 { 3797 struct net_device *netdev = pci_get_drvdata(pdev); 3798 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3799 u32 err; 3800 3801 pci_restore_state(pdev); 3802 /* pci_restore_state clears dev->state_saved so call 3803 * pci_save_state to restore it. 3804 */ 3805 pci_save_state(pdev); 3806 3807 err = pci_enable_device_mem(pdev); 3808 if (err) { 3809 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 3810 return err; 3811 } 3812 smp_mb__before_atomic(); 3813 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 3814 pci_set_master(pdev); 3815 3816 ixgbevf_reset(adapter); 3817 3818 rtnl_lock(); 3819 err = ixgbevf_init_interrupt_scheme(adapter); 3820 rtnl_unlock(); 3821 if (err) { 3822 dev_err(&pdev->dev, "Cannot initialize interrupts\n"); 3823 return err; 3824 } 3825 3826 if (netif_running(netdev)) { 3827 err = ixgbevf_open(netdev); 3828 if (err) 3829 return err; 3830 } 3831 3832 netif_device_attach(netdev); 3833 3834 return err; 3835 } 3836 3837 #endif /* CONFIG_PM */ 3838 static void ixgbevf_shutdown(struct pci_dev *pdev) 3839 { 3840 ixgbevf_suspend(pdev, PMSG_SUSPEND); 3841 } 3842 3843 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev, 3844 struct rtnl_link_stats64 *stats) 3845 { 3846 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3847 unsigned int start; 3848 u64 bytes, packets; 3849 const struct ixgbevf_ring *ring; 3850 int i; 3851 3852 ixgbevf_update_stats(adapter); 3853 3854 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 3855 3856 for (i = 0; i < adapter->num_rx_queues; i++) { 3857 ring = adapter->rx_ring[i]; 3858 do { 3859 start = u64_stats_fetch_begin_irq(&ring->syncp); 3860 bytes = ring->stats.bytes; 3861 packets = ring->stats.packets; 3862 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 3863 stats->rx_bytes += bytes; 3864 stats->rx_packets += packets; 3865 } 3866 3867 for (i = 0; i < adapter->num_tx_queues; i++) { 3868 ring = adapter->tx_ring[i]; 3869 do { 3870 start = u64_stats_fetch_begin_irq(&ring->syncp); 3871 bytes = ring->stats.bytes; 3872 packets = ring->stats.packets; 3873 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 3874 stats->tx_bytes += bytes; 3875 stats->tx_packets += packets; 3876 } 3877 3878 return stats; 3879 } 3880 3881 static const struct net_device_ops ixgbevf_netdev_ops = { 3882 .ndo_open = ixgbevf_open, 3883 .ndo_stop = ixgbevf_close, 3884 .ndo_start_xmit = ixgbevf_xmit_frame, 3885 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 3886 .ndo_get_stats64 = ixgbevf_get_stats, 3887 .ndo_validate_addr = eth_validate_addr, 3888 .ndo_set_mac_address = ixgbevf_set_mac, 3889 .ndo_change_mtu = ixgbevf_change_mtu, 3890 .ndo_tx_timeout = ixgbevf_tx_timeout, 3891 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 3892 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 3893 #ifdef CONFIG_NET_RX_BUSY_POLL 3894 .ndo_busy_poll = ixgbevf_busy_poll_recv, 3895 #endif 3896 #ifdef CONFIG_NET_POLL_CONTROLLER 3897 .ndo_poll_controller = ixgbevf_netpoll, 3898 #endif 3899 }; 3900 3901 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 3902 { 3903 dev->netdev_ops = &ixgbevf_netdev_ops; 3904 ixgbevf_set_ethtool_ops(dev); 3905 dev->watchdog_timeo = 5 * HZ; 3906 } 3907 3908 /** 3909 * ixgbevf_probe - Device Initialization Routine 3910 * @pdev: PCI device information struct 3911 * @ent: entry in ixgbevf_pci_tbl 3912 * 3913 * Returns 0 on success, negative on failure 3914 * 3915 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 3916 * The OS initialization, configuring of the adapter private structure, 3917 * and a hardware reset occur. 3918 **/ 3919 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3920 { 3921 struct net_device *netdev; 3922 struct ixgbevf_adapter *adapter = NULL; 3923 struct ixgbe_hw *hw = NULL; 3924 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 3925 int err, pci_using_dac; 3926 bool disable_dev = false; 3927 3928 err = pci_enable_device(pdev); 3929 if (err) 3930 return err; 3931 3932 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 3933 pci_using_dac = 1; 3934 } else { 3935 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 3936 if (err) { 3937 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 3938 goto err_dma; 3939 } 3940 pci_using_dac = 0; 3941 } 3942 3943 err = pci_request_regions(pdev, ixgbevf_driver_name); 3944 if (err) { 3945 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 3946 goto err_pci_reg; 3947 } 3948 3949 pci_set_master(pdev); 3950 3951 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 3952 MAX_TX_QUEUES); 3953 if (!netdev) { 3954 err = -ENOMEM; 3955 goto err_alloc_etherdev; 3956 } 3957 3958 SET_NETDEV_DEV(netdev, &pdev->dev); 3959 3960 adapter = netdev_priv(netdev); 3961 3962 adapter->netdev = netdev; 3963 adapter->pdev = pdev; 3964 hw = &adapter->hw; 3965 hw->back = adapter; 3966 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 3967 3968 /* call save state here in standalone driver because it relies on 3969 * adapter struct to exist, and needs to call netdev_priv 3970 */ 3971 pci_save_state(pdev); 3972 3973 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 3974 pci_resource_len(pdev, 0)); 3975 adapter->io_addr = hw->hw_addr; 3976 if (!hw->hw_addr) { 3977 err = -EIO; 3978 goto err_ioremap; 3979 } 3980 3981 ixgbevf_assign_netdev_ops(netdev); 3982 3983 /* Setup HW API */ 3984 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 3985 hw->mac.type = ii->mac; 3986 3987 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 3988 sizeof(struct ixgbe_mbx_operations)); 3989 3990 /* setup the private structure */ 3991 err = ixgbevf_sw_init(adapter); 3992 if (err) 3993 goto err_sw_init; 3994 3995 /* The HW MAC address was set and/or determined in sw_init */ 3996 if (!is_valid_ether_addr(netdev->dev_addr)) { 3997 pr_err("invalid MAC address\n"); 3998 err = -EIO; 3999 goto err_sw_init; 4000 } 4001 4002 netdev->hw_features = NETIF_F_SG | 4003 NETIF_F_IP_CSUM | 4004 NETIF_F_IPV6_CSUM | 4005 NETIF_F_TSO | 4006 NETIF_F_TSO6 | 4007 NETIF_F_RXCSUM; 4008 4009 netdev->features = netdev->hw_features | 4010 NETIF_F_HW_VLAN_CTAG_TX | 4011 NETIF_F_HW_VLAN_CTAG_RX | 4012 NETIF_F_HW_VLAN_CTAG_FILTER; 4013 4014 netdev->vlan_features |= NETIF_F_TSO | 4015 NETIF_F_TSO6 | 4016 NETIF_F_IP_CSUM | 4017 NETIF_F_IPV6_CSUM | 4018 NETIF_F_SG; 4019 4020 if (pci_using_dac) 4021 netdev->features |= NETIF_F_HIGHDMA; 4022 4023 netdev->priv_flags |= IFF_UNICAST_FLT; 4024 4025 if (IXGBE_REMOVED(hw->hw_addr)) { 4026 err = -EIO; 4027 goto err_sw_init; 4028 } 4029 4030 setup_timer(&adapter->service_timer, &ixgbevf_service_timer, 4031 (unsigned long)adapter); 4032 4033 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4034 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4035 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4036 4037 err = ixgbevf_init_interrupt_scheme(adapter); 4038 if (err) 4039 goto err_sw_init; 4040 4041 strcpy(netdev->name, "eth%d"); 4042 4043 err = register_netdev(netdev); 4044 if (err) 4045 goto err_register; 4046 4047 pci_set_drvdata(pdev, netdev); 4048 netif_carrier_off(netdev); 4049 4050 ixgbevf_init_last_counter_stats(adapter); 4051 4052 /* print the VF info */ 4053 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4054 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4055 4056 switch (hw->mac.type) { 4057 case ixgbe_mac_X550_vf: 4058 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4059 break; 4060 case ixgbe_mac_X540_vf: 4061 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4062 break; 4063 case ixgbe_mac_82599_vf: 4064 default: 4065 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4066 break; 4067 } 4068 4069 return 0; 4070 4071 err_register: 4072 ixgbevf_clear_interrupt_scheme(adapter); 4073 err_sw_init: 4074 ixgbevf_reset_interrupt_capability(adapter); 4075 iounmap(adapter->io_addr); 4076 err_ioremap: 4077 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4078 free_netdev(netdev); 4079 err_alloc_etherdev: 4080 pci_release_regions(pdev); 4081 err_pci_reg: 4082 err_dma: 4083 if (!adapter || disable_dev) 4084 pci_disable_device(pdev); 4085 return err; 4086 } 4087 4088 /** 4089 * ixgbevf_remove - Device Removal Routine 4090 * @pdev: PCI device information struct 4091 * 4092 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4093 * that it should release a PCI device. The could be caused by a 4094 * Hot-Plug event, or because the driver is going to be removed from 4095 * memory. 4096 **/ 4097 static void ixgbevf_remove(struct pci_dev *pdev) 4098 { 4099 struct net_device *netdev = pci_get_drvdata(pdev); 4100 struct ixgbevf_adapter *adapter; 4101 bool disable_dev; 4102 4103 if (!netdev) 4104 return; 4105 4106 adapter = netdev_priv(netdev); 4107 4108 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4109 cancel_work_sync(&adapter->service_task); 4110 4111 if (netdev->reg_state == NETREG_REGISTERED) 4112 unregister_netdev(netdev); 4113 4114 ixgbevf_clear_interrupt_scheme(adapter); 4115 ixgbevf_reset_interrupt_capability(adapter); 4116 4117 iounmap(adapter->io_addr); 4118 pci_release_regions(pdev); 4119 4120 hw_dbg(&adapter->hw, "Remove complete\n"); 4121 4122 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4123 free_netdev(netdev); 4124 4125 if (disable_dev) 4126 pci_disable_device(pdev); 4127 } 4128 4129 /** 4130 * ixgbevf_io_error_detected - called when PCI error is detected 4131 * @pdev: Pointer to PCI device 4132 * @state: The current pci connection state 4133 * 4134 * This function is called after a PCI bus error affecting 4135 * this device has been detected. 4136 **/ 4137 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4138 pci_channel_state_t state) 4139 { 4140 struct net_device *netdev = pci_get_drvdata(pdev); 4141 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4142 4143 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4144 return PCI_ERS_RESULT_DISCONNECT; 4145 4146 rtnl_lock(); 4147 netif_device_detach(netdev); 4148 4149 if (state == pci_channel_io_perm_failure) { 4150 rtnl_unlock(); 4151 return PCI_ERS_RESULT_DISCONNECT; 4152 } 4153 4154 if (netif_running(netdev)) 4155 ixgbevf_down(adapter); 4156 4157 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4158 pci_disable_device(pdev); 4159 rtnl_unlock(); 4160 4161 /* Request a slot slot reset. */ 4162 return PCI_ERS_RESULT_NEED_RESET; 4163 } 4164 4165 /** 4166 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4167 * @pdev: Pointer to PCI device 4168 * 4169 * Restart the card from scratch, as if from a cold-boot. Implementation 4170 * resembles the first-half of the ixgbevf_resume routine. 4171 **/ 4172 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4173 { 4174 struct net_device *netdev = pci_get_drvdata(pdev); 4175 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4176 4177 if (pci_enable_device_mem(pdev)) { 4178 dev_err(&pdev->dev, 4179 "Cannot re-enable PCI device after reset.\n"); 4180 return PCI_ERS_RESULT_DISCONNECT; 4181 } 4182 4183 smp_mb__before_atomic(); 4184 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4185 pci_set_master(pdev); 4186 4187 ixgbevf_reset(adapter); 4188 4189 return PCI_ERS_RESULT_RECOVERED; 4190 } 4191 4192 /** 4193 * ixgbevf_io_resume - called when traffic can start flowing again. 4194 * @pdev: Pointer to PCI device 4195 * 4196 * This callback is called when the error recovery driver tells us that 4197 * its OK to resume normal operation. Implementation resembles the 4198 * second-half of the ixgbevf_resume routine. 4199 **/ 4200 static void ixgbevf_io_resume(struct pci_dev *pdev) 4201 { 4202 struct net_device *netdev = pci_get_drvdata(pdev); 4203 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4204 4205 if (netif_running(netdev)) 4206 ixgbevf_up(adapter); 4207 4208 netif_device_attach(netdev); 4209 } 4210 4211 /* PCI Error Recovery (ERS) */ 4212 static const struct pci_error_handlers ixgbevf_err_handler = { 4213 .error_detected = ixgbevf_io_error_detected, 4214 .slot_reset = ixgbevf_io_slot_reset, 4215 .resume = ixgbevf_io_resume, 4216 }; 4217 4218 static struct pci_driver ixgbevf_driver = { 4219 .name = ixgbevf_driver_name, 4220 .id_table = ixgbevf_pci_tbl, 4221 .probe = ixgbevf_probe, 4222 .remove = ixgbevf_remove, 4223 #ifdef CONFIG_PM 4224 /* Power Management Hooks */ 4225 .suspend = ixgbevf_suspend, 4226 .resume = ixgbevf_resume, 4227 #endif 4228 .shutdown = ixgbevf_shutdown, 4229 .err_handler = &ixgbevf_err_handler 4230 }; 4231 4232 /** 4233 * ixgbevf_init_module - Driver Registration Routine 4234 * 4235 * ixgbevf_init_module is the first routine called when the driver is 4236 * loaded. All it does is register with the PCI subsystem. 4237 **/ 4238 static int __init ixgbevf_init_module(void) 4239 { 4240 int ret; 4241 4242 pr_info("%s - version %s\n", ixgbevf_driver_string, 4243 ixgbevf_driver_version); 4244 4245 pr_info("%s\n", ixgbevf_copyright); 4246 4247 ret = pci_register_driver(&ixgbevf_driver); 4248 return ret; 4249 } 4250 4251 module_init(ixgbevf_init_module); 4252 4253 /** 4254 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4255 * 4256 * ixgbevf_exit_module is called just before the driver is removed 4257 * from memory. 4258 **/ 4259 static void __exit ixgbevf_exit_module(void) 4260 { 4261 pci_unregister_driver(&ixgbevf_driver); 4262 } 4263 4264 #ifdef DEBUG 4265 /** 4266 * ixgbevf_get_hw_dev_name - return device name string 4267 * used by hardware layer to print debugging information 4268 **/ 4269 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4270 { 4271 struct ixgbevf_adapter *adapter = hw->back; 4272 4273 return adapter->netdev->name; 4274 } 4275 4276 #endif 4277 module_exit(ixgbevf_exit_module); 4278 4279 /* ixgbevf_main.c */ 4280