xref: /linux/drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c (revision a544684b790f3e9f75173b3b42d7dad1c89dd237)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /******************************************************************************
5  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
6 ******************************************************************************/
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/types.h>
11 #include <linux/bitops.h>
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/netdevice.h>
15 #include <linux/vmalloc.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/tcp.h>
20 #include <linux/sctp.h>
21 #include <linux/ipv6.h>
22 #include <linux/slab.h>
23 #include <net/checksum.h>
24 #include <net/ip6_checksum.h>
25 #include <linux/ethtool.h>
26 #include <linux/if.h>
27 #include <linux/if_vlan.h>
28 #include <linux/prefetch.h>
29 #include <net/mpls.h>
30 #include <linux/bpf.h>
31 #include <linux/bpf_trace.h>
32 #include <linux/atomic.h>
33 #include <net/xfrm.h>
34 
35 #include "ixgbevf.h"
36 
37 const char ixgbevf_driver_name[] = "ixgbevf";
38 static const char ixgbevf_driver_string[] =
39 	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
40 
41 static char ixgbevf_copyright[] =
42 	"Copyright (c) 2009 - 2018 Intel Corporation.";
43 
44 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
45 	[board_82599_vf]	= &ixgbevf_82599_vf_info,
46 	[board_82599_vf_hv]	= &ixgbevf_82599_vf_hv_info,
47 	[board_X540_vf]		= &ixgbevf_X540_vf_info,
48 	[board_X540_vf_hv]	= &ixgbevf_X540_vf_hv_info,
49 	[board_X550_vf]		= &ixgbevf_X550_vf_info,
50 	[board_X550_vf_hv]	= &ixgbevf_X550_vf_hv_info,
51 	[board_X550EM_x_vf]	= &ixgbevf_X550EM_x_vf_info,
52 	[board_X550EM_x_vf_hv]	= &ixgbevf_X550EM_x_vf_hv_info,
53 	[board_x550em_a_vf]	= &ixgbevf_x550em_a_vf_info,
54 };
55 
56 /* ixgbevf_pci_tbl - PCI Device ID Table
57  *
58  * Wildcard entries (PCI_ANY_ID) should come last
59  * Last entry must be all 0s
60  *
61  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
62  *   Class, Class Mask, private data (not used) }
63  */
64 static const struct pci_device_id ixgbevf_pci_tbl[] = {
65 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
66 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv },
67 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
68 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv },
69 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
70 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv },
71 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
72 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv},
73 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf },
74 	/* required last entry */
75 	{0, }
76 };
77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
78 
79 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
80 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
81 MODULE_LICENSE("GPL v2");
82 
83 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
84 static int debug = -1;
85 module_param(debug, int, 0);
86 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
87 
88 static struct workqueue_struct *ixgbevf_wq;
89 
90 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
91 {
92 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
93 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
94 	    !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
95 		queue_work(ixgbevf_wq, &adapter->service_task);
96 }
97 
98 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
99 {
100 	BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
101 
102 	/* flush memory to make sure state is correct before next watchdog */
103 	smp_mb__before_atomic();
104 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
105 }
106 
107 /* forward decls */
108 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
109 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
110 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
111 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer);
112 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
113 				  struct ixgbevf_rx_buffer *old_buff);
114 
115 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
116 {
117 	struct ixgbevf_adapter *adapter = hw->back;
118 
119 	if (!hw->hw_addr)
120 		return;
121 	hw->hw_addr = NULL;
122 	dev_err(&adapter->pdev->dev, "Adapter removed\n");
123 	if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
124 		ixgbevf_service_event_schedule(adapter);
125 }
126 
127 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
128 {
129 	u32 value;
130 
131 	/* The following check not only optimizes a bit by not
132 	 * performing a read on the status register when the
133 	 * register just read was a status register read that
134 	 * returned IXGBE_FAILED_READ_REG. It also blocks any
135 	 * potential recursion.
136 	 */
137 	if (reg == IXGBE_VFSTATUS) {
138 		ixgbevf_remove_adapter(hw);
139 		return;
140 	}
141 	value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
142 	if (value == IXGBE_FAILED_READ_REG)
143 		ixgbevf_remove_adapter(hw);
144 }
145 
146 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
147 {
148 	u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr);
149 	u32 value;
150 
151 	if (IXGBE_REMOVED(reg_addr))
152 		return IXGBE_FAILED_READ_REG;
153 	value = readl(reg_addr + reg);
154 	if (unlikely(value == IXGBE_FAILED_READ_REG))
155 		ixgbevf_check_remove(hw, reg);
156 	return value;
157 }
158 
159 /**
160  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
161  * @adapter: pointer to adapter struct
162  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
163  * @queue: queue to map the corresponding interrupt to
164  * @msix_vector: the vector to map to the corresponding queue
165  **/
166 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
167 			     u8 queue, u8 msix_vector)
168 {
169 	u32 ivar, index;
170 	struct ixgbe_hw *hw = &adapter->hw;
171 
172 	if (direction == -1) {
173 		/* other causes */
174 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
175 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
176 		ivar &= ~0xFF;
177 		ivar |= msix_vector;
178 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
179 	} else {
180 		/* Tx or Rx causes */
181 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
182 		index = ((16 * (queue & 1)) + (8 * direction));
183 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
184 		ivar &= ~(0xFF << index);
185 		ivar |= (msix_vector << index);
186 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
187 	}
188 }
189 
190 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
191 {
192 	return ring->stats.packets;
193 }
194 
195 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
196 {
197 	struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
198 	struct ixgbe_hw *hw = &adapter->hw;
199 
200 	u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
201 	u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
202 
203 	if (head != tail)
204 		return (head < tail) ?
205 			tail - head : (tail + ring->count - head);
206 
207 	return 0;
208 }
209 
210 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
211 {
212 	u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
213 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
214 	u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
215 
216 	clear_check_for_tx_hang(tx_ring);
217 
218 	/* Check for a hung queue, but be thorough. This verifies
219 	 * that a transmit has been completed since the previous
220 	 * check AND there is at least one packet pending. The
221 	 * ARMED bit is set to indicate a potential hang.
222 	 */
223 	if ((tx_done_old == tx_done) && tx_pending) {
224 		/* make sure it is true for two checks in a row */
225 		return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
226 					&tx_ring->state);
227 	}
228 	/* reset the countdown */
229 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
230 
231 	/* update completed stats and continue */
232 	tx_ring->tx_stats.tx_done_old = tx_done;
233 
234 	return false;
235 }
236 
237 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
238 {
239 	/* Do the reset outside of interrupt context */
240 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
241 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
242 		ixgbevf_service_event_schedule(adapter);
243 	}
244 }
245 
246 /**
247  * ixgbevf_tx_timeout - Respond to a Tx Hang
248  * @netdev: network interface device structure
249  * @txqueue: transmit queue hanging (unused)
250  **/
251 static void ixgbevf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
252 {
253 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
254 
255 	ixgbevf_tx_timeout_reset(adapter);
256 }
257 
258 /**
259  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
260  * @q_vector: board private structure
261  * @tx_ring: tx ring to clean
262  * @napi_budget: Used to determine if we are in netpoll
263  **/
264 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
265 				 struct ixgbevf_ring *tx_ring, int napi_budget)
266 {
267 	struct ixgbevf_adapter *adapter = q_vector->adapter;
268 	struct ixgbevf_tx_buffer *tx_buffer;
269 	union ixgbe_adv_tx_desc *tx_desc;
270 	unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0;
271 	unsigned int budget = tx_ring->count / 2;
272 	unsigned int i = tx_ring->next_to_clean;
273 
274 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
275 		return true;
276 
277 	tx_buffer = &tx_ring->tx_buffer_info[i];
278 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
279 	i -= tx_ring->count;
280 
281 	do {
282 		union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
283 
284 		/* if next_to_watch is not set then there is no work pending */
285 		if (!eop_desc)
286 			break;
287 
288 		/* prevent any other reads prior to eop_desc */
289 		smp_rmb();
290 
291 		/* if DD is not set pending work has not been completed */
292 		if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
293 			break;
294 
295 		/* clear next_to_watch to prevent false hangs */
296 		tx_buffer->next_to_watch = NULL;
297 
298 		/* update the statistics for this packet */
299 		total_bytes += tx_buffer->bytecount;
300 		total_packets += tx_buffer->gso_segs;
301 		if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC)
302 			total_ipsec++;
303 
304 		/* free the skb */
305 		if (ring_is_xdp(tx_ring))
306 			page_frag_free(tx_buffer->data);
307 		else
308 			napi_consume_skb(tx_buffer->skb, napi_budget);
309 
310 		/* unmap skb header data */
311 		dma_unmap_single(tx_ring->dev,
312 				 dma_unmap_addr(tx_buffer, dma),
313 				 dma_unmap_len(tx_buffer, len),
314 				 DMA_TO_DEVICE);
315 
316 		/* clear tx_buffer data */
317 		dma_unmap_len_set(tx_buffer, len, 0);
318 
319 		/* unmap remaining buffers */
320 		while (tx_desc != eop_desc) {
321 			tx_buffer++;
322 			tx_desc++;
323 			i++;
324 			if (unlikely(!i)) {
325 				i -= tx_ring->count;
326 				tx_buffer = tx_ring->tx_buffer_info;
327 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
328 			}
329 
330 			/* unmap any remaining paged data */
331 			if (dma_unmap_len(tx_buffer, len)) {
332 				dma_unmap_page(tx_ring->dev,
333 					       dma_unmap_addr(tx_buffer, dma),
334 					       dma_unmap_len(tx_buffer, len),
335 					       DMA_TO_DEVICE);
336 				dma_unmap_len_set(tx_buffer, len, 0);
337 			}
338 		}
339 
340 		/* move us one more past the eop_desc for start of next pkt */
341 		tx_buffer++;
342 		tx_desc++;
343 		i++;
344 		if (unlikely(!i)) {
345 			i -= tx_ring->count;
346 			tx_buffer = tx_ring->tx_buffer_info;
347 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
348 		}
349 
350 		/* issue prefetch for next Tx descriptor */
351 		prefetch(tx_desc);
352 
353 		/* update budget accounting */
354 		budget--;
355 	} while (likely(budget));
356 
357 	i += tx_ring->count;
358 	tx_ring->next_to_clean = i;
359 	u64_stats_update_begin(&tx_ring->syncp);
360 	tx_ring->stats.bytes += total_bytes;
361 	tx_ring->stats.packets += total_packets;
362 	u64_stats_update_end(&tx_ring->syncp);
363 	q_vector->tx.total_bytes += total_bytes;
364 	q_vector->tx.total_packets += total_packets;
365 	adapter->tx_ipsec += total_ipsec;
366 
367 	if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
368 		struct ixgbe_hw *hw = &adapter->hw;
369 		union ixgbe_adv_tx_desc *eop_desc;
370 
371 		eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
372 
373 		pr_err("Detected Tx Unit Hang%s\n"
374 		       "  Tx Queue             <%d>\n"
375 		       "  TDH, TDT             <%x>, <%x>\n"
376 		       "  next_to_use          <%x>\n"
377 		       "  next_to_clean        <%x>\n"
378 		       "tx_buffer_info[next_to_clean]\n"
379 		       "  next_to_watch        <%p>\n"
380 		       "  eop_desc->wb.status  <%x>\n"
381 		       "  time_stamp           <%lx>\n"
382 		       "  jiffies              <%lx>\n",
383 		       ring_is_xdp(tx_ring) ? " XDP" : "",
384 		       tx_ring->queue_index,
385 		       IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
386 		       IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
387 		       tx_ring->next_to_use, i,
388 		       eop_desc, (eop_desc ? eop_desc->wb.status : 0),
389 		       tx_ring->tx_buffer_info[i].time_stamp, jiffies);
390 
391 		if (!ring_is_xdp(tx_ring))
392 			netif_stop_subqueue(tx_ring->netdev,
393 					    tx_ring->queue_index);
394 
395 		/* schedule immediate reset if we believe we hung */
396 		ixgbevf_tx_timeout_reset(adapter);
397 
398 		return true;
399 	}
400 
401 	if (ring_is_xdp(tx_ring))
402 		return !!budget;
403 
404 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
405 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
406 		     (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
407 		/* Make sure that anybody stopping the queue after this
408 		 * sees the new next_to_clean.
409 		 */
410 		smp_mb();
411 
412 		if (__netif_subqueue_stopped(tx_ring->netdev,
413 					     tx_ring->queue_index) &&
414 		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
415 			netif_wake_subqueue(tx_ring->netdev,
416 					    tx_ring->queue_index);
417 			++tx_ring->tx_stats.restart_queue;
418 		}
419 	}
420 
421 	return !!budget;
422 }
423 
424 /**
425  * ixgbevf_rx_skb - Helper function to determine proper Rx method
426  * @q_vector: structure containing interrupt and ring information
427  * @skb: packet to send up
428  **/
429 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
430 			   struct sk_buff *skb)
431 {
432 	napi_gro_receive(&q_vector->napi, skb);
433 }
434 
435 #define IXGBE_RSS_L4_TYPES_MASK \
436 	((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
437 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
438 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
439 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
440 
441 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
442 				   union ixgbe_adv_rx_desc *rx_desc,
443 				   struct sk_buff *skb)
444 {
445 	u16 rss_type;
446 
447 	if (!(ring->netdev->features & NETIF_F_RXHASH))
448 		return;
449 
450 	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
451 		   IXGBE_RXDADV_RSSTYPE_MASK;
452 
453 	if (!rss_type)
454 		return;
455 
456 	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
457 		     (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
458 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
459 }
460 
461 /**
462  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
463  * @ring: structure containig ring specific data
464  * @rx_desc: current Rx descriptor being processed
465  * @skb: skb currently being received and modified
466  **/
467 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
468 				       union ixgbe_adv_rx_desc *rx_desc,
469 				       struct sk_buff *skb)
470 {
471 	skb_checksum_none_assert(skb);
472 
473 	/* Rx csum disabled */
474 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
475 		return;
476 
477 	/* if IP and error */
478 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
479 	    ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
480 		ring->rx_stats.csum_err++;
481 		return;
482 	}
483 
484 	if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
485 		return;
486 
487 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
488 		ring->rx_stats.csum_err++;
489 		return;
490 	}
491 
492 	/* It must be a TCP or UDP packet with a valid checksum */
493 	skb->ip_summed = CHECKSUM_UNNECESSARY;
494 }
495 
496 /**
497  * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
498  * @rx_ring: rx descriptor ring packet is being transacted on
499  * @rx_desc: pointer to the EOP Rx descriptor
500  * @skb: pointer to current skb being populated
501  *
502  * This function checks the ring, descriptor, and packet information in
503  * order to populate the checksum, VLAN, protocol, and other fields within
504  * the skb.
505  **/
506 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
507 				       union ixgbe_adv_rx_desc *rx_desc,
508 				       struct sk_buff *skb)
509 {
510 	ixgbevf_rx_hash(rx_ring, rx_desc, skb);
511 	ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
512 
513 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
514 		u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
515 		unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
516 
517 		if (test_bit(vid & VLAN_VID_MASK, active_vlans))
518 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
519 	}
520 
521 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP))
522 		ixgbevf_ipsec_rx(rx_ring, rx_desc, skb);
523 
524 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
525 }
526 
527 static
528 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring,
529 						const unsigned int size)
530 {
531 	struct ixgbevf_rx_buffer *rx_buffer;
532 
533 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
534 	prefetchw(rx_buffer->page);
535 
536 	/* we are reusing so sync this buffer for CPU use */
537 	dma_sync_single_range_for_cpu(rx_ring->dev,
538 				      rx_buffer->dma,
539 				      rx_buffer->page_offset,
540 				      size,
541 				      DMA_FROM_DEVICE);
542 
543 	rx_buffer->pagecnt_bias--;
544 
545 	return rx_buffer;
546 }
547 
548 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring,
549 				  struct ixgbevf_rx_buffer *rx_buffer,
550 				  struct sk_buff *skb)
551 {
552 	if (ixgbevf_can_reuse_rx_page(rx_buffer)) {
553 		/* hand second half of page back to the ring */
554 		ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
555 	} else {
556 		if (IS_ERR(skb))
557 			/* We are not reusing the buffer so unmap it and free
558 			 * any references we are holding to it
559 			 */
560 			dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
561 					     ixgbevf_rx_pg_size(rx_ring),
562 					     DMA_FROM_DEVICE,
563 					     IXGBEVF_RX_DMA_ATTR);
564 		__page_frag_cache_drain(rx_buffer->page,
565 					rx_buffer->pagecnt_bias);
566 	}
567 
568 	/* clear contents of rx_buffer */
569 	rx_buffer->page = NULL;
570 }
571 
572 /**
573  * ixgbevf_is_non_eop - process handling of non-EOP buffers
574  * @rx_ring: Rx ring being processed
575  * @rx_desc: Rx descriptor for current buffer
576  *
577  * This function updates next to clean.  If the buffer is an EOP buffer
578  * this function exits returning false, otherwise it will place the
579  * sk_buff in the next buffer to be chained and return true indicating
580  * that this is in fact a non-EOP buffer.
581  **/
582 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
583 			       union ixgbe_adv_rx_desc *rx_desc)
584 {
585 	u32 ntc = rx_ring->next_to_clean + 1;
586 
587 	/* fetch, update, and store next to clean */
588 	ntc = (ntc < rx_ring->count) ? ntc : 0;
589 	rx_ring->next_to_clean = ntc;
590 
591 	prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
592 
593 	if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
594 		return false;
595 
596 	return true;
597 }
598 
599 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring)
600 {
601 	return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0;
602 }
603 
604 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
605 				      struct ixgbevf_rx_buffer *bi)
606 {
607 	struct page *page = bi->page;
608 	dma_addr_t dma;
609 
610 	/* since we are recycling buffers we should seldom need to alloc */
611 	if (likely(page))
612 		return true;
613 
614 	/* alloc new page for storage */
615 	page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring));
616 	if (unlikely(!page)) {
617 		rx_ring->rx_stats.alloc_rx_page_failed++;
618 		return false;
619 	}
620 
621 	/* map page for use */
622 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
623 				 ixgbevf_rx_pg_size(rx_ring),
624 				 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR);
625 
626 	/* if mapping failed free memory back to system since
627 	 * there isn't much point in holding memory we can't use
628 	 */
629 	if (dma_mapping_error(rx_ring->dev, dma)) {
630 		__free_pages(page, ixgbevf_rx_pg_order(rx_ring));
631 
632 		rx_ring->rx_stats.alloc_rx_page_failed++;
633 		return false;
634 	}
635 
636 	bi->dma = dma;
637 	bi->page = page;
638 	bi->page_offset = ixgbevf_rx_offset(rx_ring);
639 	bi->pagecnt_bias = 1;
640 	rx_ring->rx_stats.alloc_rx_page++;
641 
642 	return true;
643 }
644 
645 /**
646  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
647  * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
648  * @cleaned_count: number of buffers to replace
649  **/
650 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
651 				     u16 cleaned_count)
652 {
653 	union ixgbe_adv_rx_desc *rx_desc;
654 	struct ixgbevf_rx_buffer *bi;
655 	unsigned int i = rx_ring->next_to_use;
656 
657 	/* nothing to do or no valid netdev defined */
658 	if (!cleaned_count || !rx_ring->netdev)
659 		return;
660 
661 	rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
662 	bi = &rx_ring->rx_buffer_info[i];
663 	i -= rx_ring->count;
664 
665 	do {
666 		if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
667 			break;
668 
669 		/* sync the buffer for use by the device */
670 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
671 						 bi->page_offset,
672 						 ixgbevf_rx_bufsz(rx_ring),
673 						 DMA_FROM_DEVICE);
674 
675 		/* Refresh the desc even if pkt_addr didn't change
676 		 * because each write-back erases this info.
677 		 */
678 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
679 
680 		rx_desc++;
681 		bi++;
682 		i++;
683 		if (unlikely(!i)) {
684 			rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
685 			bi = rx_ring->rx_buffer_info;
686 			i -= rx_ring->count;
687 		}
688 
689 		/* clear the length for the next_to_use descriptor */
690 		rx_desc->wb.upper.length = 0;
691 
692 		cleaned_count--;
693 	} while (cleaned_count);
694 
695 	i += rx_ring->count;
696 
697 	if (rx_ring->next_to_use != i) {
698 		/* record the next descriptor to use */
699 		rx_ring->next_to_use = i;
700 
701 		/* update next to alloc since we have filled the ring */
702 		rx_ring->next_to_alloc = i;
703 
704 		/* Force memory writes to complete before letting h/w
705 		 * know there are new descriptors to fetch.  (Only
706 		 * applicable for weak-ordered memory model archs,
707 		 * such as IA-64).
708 		 */
709 		wmb();
710 		ixgbevf_write_tail(rx_ring, i);
711 	}
712 }
713 
714 /**
715  * ixgbevf_cleanup_headers - Correct corrupted or empty headers
716  * @rx_ring: rx descriptor ring packet is being transacted on
717  * @rx_desc: pointer to the EOP Rx descriptor
718  * @skb: pointer to current skb being fixed
719  *
720  * Check for corrupted packet headers caused by senders on the local L2
721  * embedded NIC switch not setting up their Tx Descriptors right.  These
722  * should be very rare.
723  *
724  * Also address the case where we are pulling data in on pages only
725  * and as such no data is present in the skb header.
726  *
727  * In addition if skb is not at least 60 bytes we need to pad it so that
728  * it is large enough to qualify as a valid Ethernet frame.
729  *
730  * Returns true if an error was encountered and skb was freed.
731  **/
732 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
733 				    union ixgbe_adv_rx_desc *rx_desc,
734 				    struct sk_buff *skb)
735 {
736 	/* XDP packets use error pointer so abort at this point */
737 	if (IS_ERR(skb))
738 		return true;
739 
740 	/* verify that the packet does not have any known errors */
741 	if (unlikely(ixgbevf_test_staterr(rx_desc,
742 					  IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
743 		struct net_device *netdev = rx_ring->netdev;
744 
745 		if (!(netdev->features & NETIF_F_RXALL)) {
746 			dev_kfree_skb_any(skb);
747 			return true;
748 		}
749 	}
750 
751 	/* if eth_skb_pad returns an error the skb was freed */
752 	if (eth_skb_pad(skb))
753 		return true;
754 
755 	return false;
756 }
757 
758 /**
759  * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
760  * @rx_ring: rx descriptor ring to store buffers on
761  * @old_buff: donor buffer to have page reused
762  *
763  * Synchronizes page for reuse by the adapter
764  **/
765 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
766 				  struct ixgbevf_rx_buffer *old_buff)
767 {
768 	struct ixgbevf_rx_buffer *new_buff;
769 	u16 nta = rx_ring->next_to_alloc;
770 
771 	new_buff = &rx_ring->rx_buffer_info[nta];
772 
773 	/* update, and store next to alloc */
774 	nta++;
775 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
776 
777 	/* transfer page from old buffer to new buffer */
778 	new_buff->page = old_buff->page;
779 	new_buff->dma = old_buff->dma;
780 	new_buff->page_offset = old_buff->page_offset;
781 	new_buff->pagecnt_bias = old_buff->pagecnt_bias;
782 }
783 
784 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer)
785 {
786 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
787 	struct page *page = rx_buffer->page;
788 
789 	/* avoid re-using remote and pfmemalloc pages */
790 	if (!dev_page_is_reusable(page))
791 		return false;
792 
793 #if (PAGE_SIZE < 8192)
794 	/* if we are only owner of page we can reuse it */
795 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
796 		return false;
797 #else
798 #define IXGBEVF_LAST_OFFSET \
799 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048)
800 
801 	if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET)
802 		return false;
803 
804 #endif
805 
806 	/* If we have drained the page fragment pool we need to update
807 	 * the pagecnt_bias and page count so that we fully restock the
808 	 * number of references the driver holds.
809 	 */
810 	if (unlikely(!pagecnt_bias)) {
811 		page_ref_add(page, USHRT_MAX);
812 		rx_buffer->pagecnt_bias = USHRT_MAX;
813 	}
814 
815 	return true;
816 }
817 
818 /**
819  * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
820  * @rx_ring: rx descriptor ring to transact packets on
821  * @rx_buffer: buffer containing page to add
822  * @skb: sk_buff to place the data into
823  * @size: size of buffer to be added
824  *
825  * This function will add the data contained in rx_buffer->page to the skb.
826  **/
827 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
828 				struct ixgbevf_rx_buffer *rx_buffer,
829 				struct sk_buff *skb,
830 				unsigned int size)
831 {
832 #if (PAGE_SIZE < 8192)
833 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
834 #else
835 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
836 				SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) :
837 				SKB_DATA_ALIGN(size);
838 #endif
839 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
840 			rx_buffer->page_offset, size, truesize);
841 #if (PAGE_SIZE < 8192)
842 	rx_buffer->page_offset ^= truesize;
843 #else
844 	rx_buffer->page_offset += truesize;
845 #endif
846 }
847 
848 static
849 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring,
850 				      struct ixgbevf_rx_buffer *rx_buffer,
851 				      struct xdp_buff *xdp,
852 				      union ixgbe_adv_rx_desc *rx_desc)
853 {
854 	unsigned int size = xdp->data_end - xdp->data;
855 #if (PAGE_SIZE < 8192)
856 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
857 #else
858 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
859 					       xdp->data_hard_start);
860 #endif
861 	unsigned int headlen;
862 	struct sk_buff *skb;
863 
864 	/* prefetch first cache line of first page */
865 	net_prefetch(xdp->data);
866 
867 	/* Note, we get here by enabling legacy-rx via:
868 	 *
869 	 *    ethtool --set-priv-flags <dev> legacy-rx on
870 	 *
871 	 * In this mode, we currently get 0 extra XDP headroom as
872 	 * opposed to having legacy-rx off, where we process XDP
873 	 * packets going to stack via ixgbevf_build_skb().
874 	 *
875 	 * For ixgbevf_construct_skb() mode it means that the
876 	 * xdp->data_meta will always point to xdp->data, since
877 	 * the helper cannot expand the head. Should this ever
878 	 * changed in future for legacy-rx mode on, then lets also
879 	 * add xdp->data_meta handling here.
880 	 */
881 
882 	/* allocate a skb to store the frags */
883 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE);
884 	if (unlikely(!skb))
885 		return NULL;
886 
887 	/* Determine available headroom for copy */
888 	headlen = size;
889 	if (headlen > IXGBEVF_RX_HDR_SIZE)
890 		headlen = eth_get_headlen(skb->dev, xdp->data,
891 					  IXGBEVF_RX_HDR_SIZE);
892 
893 	/* align pull length to size of long to optimize memcpy performance */
894 	memcpy(__skb_put(skb, headlen), xdp->data,
895 	       ALIGN(headlen, sizeof(long)));
896 
897 	/* update all of the pointers */
898 	size -= headlen;
899 	if (size) {
900 		skb_add_rx_frag(skb, 0, rx_buffer->page,
901 				(xdp->data + headlen) -
902 					page_address(rx_buffer->page),
903 				size, truesize);
904 #if (PAGE_SIZE < 8192)
905 		rx_buffer->page_offset ^= truesize;
906 #else
907 		rx_buffer->page_offset += truesize;
908 #endif
909 	} else {
910 		rx_buffer->pagecnt_bias++;
911 	}
912 
913 	return skb;
914 }
915 
916 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
917 					     u32 qmask)
918 {
919 	struct ixgbe_hw *hw = &adapter->hw;
920 
921 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
922 }
923 
924 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring,
925 					 struct ixgbevf_rx_buffer *rx_buffer,
926 					 struct xdp_buff *xdp,
927 					 union ixgbe_adv_rx_desc *rx_desc)
928 {
929 	unsigned int metasize = xdp->data - xdp->data_meta;
930 #if (PAGE_SIZE < 8192)
931 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
932 #else
933 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
934 				SKB_DATA_ALIGN(xdp->data_end -
935 					       xdp->data_hard_start);
936 #endif
937 	struct sk_buff *skb;
938 
939 	/* Prefetch first cache line of first page. If xdp->data_meta
940 	 * is unused, this points to xdp->data, otherwise, we likely
941 	 * have a consumer accessing first few bytes of meta data,
942 	 * and then actual data.
943 	 */
944 	net_prefetch(xdp->data_meta);
945 
946 	/* build an skb around the page buffer */
947 	skb = napi_build_skb(xdp->data_hard_start, truesize);
948 	if (unlikely(!skb))
949 		return NULL;
950 
951 	/* update pointers within the skb to store the data */
952 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
953 	__skb_put(skb, xdp->data_end - xdp->data);
954 	if (metasize)
955 		skb_metadata_set(skb, metasize);
956 
957 	/* update buffer offset */
958 #if (PAGE_SIZE < 8192)
959 	rx_buffer->page_offset ^= truesize;
960 #else
961 	rx_buffer->page_offset += truesize;
962 #endif
963 
964 	return skb;
965 }
966 
967 #define IXGBEVF_XDP_PASS 0
968 #define IXGBEVF_XDP_CONSUMED 1
969 #define IXGBEVF_XDP_TX 2
970 
971 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring,
972 				 struct xdp_buff *xdp)
973 {
974 	struct ixgbevf_tx_buffer *tx_buffer;
975 	union ixgbe_adv_tx_desc *tx_desc;
976 	u32 len, cmd_type;
977 	dma_addr_t dma;
978 	u16 i;
979 
980 	len = xdp->data_end - xdp->data;
981 
982 	if (unlikely(!ixgbevf_desc_unused(ring)))
983 		return IXGBEVF_XDP_CONSUMED;
984 
985 	dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE);
986 	if (dma_mapping_error(ring->dev, dma))
987 		return IXGBEVF_XDP_CONSUMED;
988 
989 	/* record the location of the first descriptor for this packet */
990 	i = ring->next_to_use;
991 	tx_buffer = &ring->tx_buffer_info[i];
992 
993 	dma_unmap_len_set(tx_buffer, len, len);
994 	dma_unmap_addr_set(tx_buffer, dma, dma);
995 	tx_buffer->data = xdp->data;
996 	tx_buffer->bytecount = len;
997 	tx_buffer->gso_segs = 1;
998 	tx_buffer->protocol = 0;
999 
1000 	/* Populate minimal context descriptor that will provide for the
1001 	 * fact that we are expected to process Ethernet frames.
1002 	 */
1003 	if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) {
1004 		struct ixgbe_adv_tx_context_desc *context_desc;
1005 
1006 		set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
1007 
1008 		context_desc = IXGBEVF_TX_CTXTDESC(ring, 0);
1009 		context_desc->vlan_macip_lens	=
1010 			cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT);
1011 		context_desc->fceof_saidx	= 0;
1012 		context_desc->type_tucmd_mlhl	=
1013 			cpu_to_le32(IXGBE_TXD_CMD_DEXT |
1014 				    IXGBE_ADVTXD_DTYP_CTXT);
1015 		context_desc->mss_l4len_idx	= 0;
1016 
1017 		i = 1;
1018 	}
1019 
1020 	/* put descriptor type bits */
1021 	cmd_type = IXGBE_ADVTXD_DTYP_DATA |
1022 		   IXGBE_ADVTXD_DCMD_DEXT |
1023 		   IXGBE_ADVTXD_DCMD_IFCS;
1024 	cmd_type |= len | IXGBE_TXD_CMD;
1025 
1026 	tx_desc = IXGBEVF_TX_DESC(ring, i);
1027 	tx_desc->read.buffer_addr = cpu_to_le64(dma);
1028 
1029 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1030 	tx_desc->read.olinfo_status =
1031 			cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) |
1032 				    IXGBE_ADVTXD_CC);
1033 
1034 	/* Avoid any potential race with cleanup */
1035 	smp_wmb();
1036 
1037 	/* set next_to_watch value indicating a packet is present */
1038 	i++;
1039 	if (i == ring->count)
1040 		i = 0;
1041 
1042 	tx_buffer->next_to_watch = tx_desc;
1043 	ring->next_to_use = i;
1044 
1045 	return IXGBEVF_XDP_TX;
1046 }
1047 
1048 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter,
1049 				       struct ixgbevf_ring  *rx_ring,
1050 				       struct xdp_buff *xdp)
1051 {
1052 	int result = IXGBEVF_XDP_PASS;
1053 	struct ixgbevf_ring *xdp_ring;
1054 	struct bpf_prog *xdp_prog;
1055 	u32 act;
1056 
1057 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1058 
1059 	if (!xdp_prog)
1060 		goto xdp_out;
1061 
1062 	act = bpf_prog_run_xdp(xdp_prog, xdp);
1063 	switch (act) {
1064 	case XDP_PASS:
1065 		break;
1066 	case XDP_TX:
1067 		xdp_ring = adapter->xdp_ring[rx_ring->queue_index];
1068 		result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp);
1069 		if (result == IXGBEVF_XDP_CONSUMED)
1070 			goto out_failure;
1071 		break;
1072 	default:
1073 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
1074 		fallthrough;
1075 	case XDP_ABORTED:
1076 out_failure:
1077 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
1078 		fallthrough; /* handle aborts by dropping packet */
1079 	case XDP_DROP:
1080 		result = IXGBEVF_XDP_CONSUMED;
1081 		break;
1082 	}
1083 xdp_out:
1084 	return ERR_PTR(-result);
1085 }
1086 
1087 static unsigned int ixgbevf_rx_frame_truesize(struct ixgbevf_ring *rx_ring,
1088 					      unsigned int size)
1089 {
1090 	unsigned int truesize;
1091 
1092 #if (PAGE_SIZE < 8192)
1093 	truesize = ixgbevf_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1094 #else
1095 	truesize = ring_uses_build_skb(rx_ring) ?
1096 		SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) +
1097 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1098 		SKB_DATA_ALIGN(size);
1099 #endif
1100 	return truesize;
1101 }
1102 
1103 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring,
1104 				   struct ixgbevf_rx_buffer *rx_buffer,
1105 				   unsigned int size)
1106 {
1107 	unsigned int truesize = ixgbevf_rx_frame_truesize(rx_ring, size);
1108 
1109 #if (PAGE_SIZE < 8192)
1110 	rx_buffer->page_offset ^= truesize;
1111 #else
1112 	rx_buffer->page_offset += truesize;
1113 #endif
1114 }
1115 
1116 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
1117 				struct ixgbevf_ring *rx_ring,
1118 				int budget)
1119 {
1120 	unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0;
1121 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1122 	u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
1123 	struct sk_buff *skb = rx_ring->skb;
1124 	bool xdp_xmit = false;
1125 	struct xdp_buff xdp;
1126 
1127 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1128 #if (PAGE_SIZE < 8192)
1129 	frame_sz = ixgbevf_rx_frame_truesize(rx_ring, 0);
1130 #endif
1131 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
1132 
1133 	while (likely(total_rx_packets < budget)) {
1134 		struct ixgbevf_rx_buffer *rx_buffer;
1135 		union ixgbe_adv_rx_desc *rx_desc;
1136 		unsigned int size;
1137 
1138 		/* return some buffers to hardware, one at a time is too slow */
1139 		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
1140 			ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
1141 			cleaned_count = 0;
1142 		}
1143 
1144 		rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1145 		size = le16_to_cpu(rx_desc->wb.upper.length);
1146 		if (!size)
1147 			break;
1148 
1149 		/* This memory barrier is needed to keep us from reading
1150 		 * any other fields out of the rx_desc until we know the
1151 		 * RXD_STAT_DD bit is set
1152 		 */
1153 		rmb();
1154 
1155 		rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size);
1156 
1157 		/* retrieve a buffer from the ring */
1158 		if (!skb) {
1159 			unsigned int offset = ixgbevf_rx_offset(rx_ring);
1160 			unsigned char *hard_start;
1161 
1162 			hard_start = page_address(rx_buffer->page) +
1163 				     rx_buffer->page_offset - offset;
1164 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
1165 #if (PAGE_SIZE > 4096)
1166 			/* At larger PAGE_SIZE, frame_sz depend on len size */
1167 			xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, size);
1168 #endif
1169 			skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp);
1170 		}
1171 
1172 		if (IS_ERR(skb)) {
1173 			if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) {
1174 				xdp_xmit = true;
1175 				ixgbevf_rx_buffer_flip(rx_ring, rx_buffer,
1176 						       size);
1177 			} else {
1178 				rx_buffer->pagecnt_bias++;
1179 			}
1180 			total_rx_packets++;
1181 			total_rx_bytes += size;
1182 		} else if (skb) {
1183 			ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1184 		} else if (ring_uses_build_skb(rx_ring)) {
1185 			skb = ixgbevf_build_skb(rx_ring, rx_buffer,
1186 						&xdp, rx_desc);
1187 		} else {
1188 			skb = ixgbevf_construct_skb(rx_ring, rx_buffer,
1189 						    &xdp, rx_desc);
1190 		}
1191 
1192 		/* exit if we failed to retrieve a buffer */
1193 		if (!skb) {
1194 			rx_ring->rx_stats.alloc_rx_buff_failed++;
1195 			rx_buffer->pagecnt_bias++;
1196 			break;
1197 		}
1198 
1199 		ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb);
1200 		cleaned_count++;
1201 
1202 		/* fetch next buffer in frame if non-eop */
1203 		if (ixgbevf_is_non_eop(rx_ring, rx_desc))
1204 			continue;
1205 
1206 		/* verify the packet layout is correct */
1207 		if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
1208 			skb = NULL;
1209 			continue;
1210 		}
1211 
1212 		/* probably a little skewed due to removing CRC */
1213 		total_rx_bytes += skb->len;
1214 
1215 		/* Workaround hardware that can't do proper VEPA multicast
1216 		 * source pruning.
1217 		 */
1218 		if ((skb->pkt_type == PACKET_BROADCAST ||
1219 		     skb->pkt_type == PACKET_MULTICAST) &&
1220 		    ether_addr_equal(rx_ring->netdev->dev_addr,
1221 				     eth_hdr(skb)->h_source)) {
1222 			dev_kfree_skb_irq(skb);
1223 			continue;
1224 		}
1225 
1226 		/* populate checksum, VLAN, and protocol */
1227 		ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
1228 
1229 		ixgbevf_rx_skb(q_vector, skb);
1230 
1231 		/* reset skb pointer */
1232 		skb = NULL;
1233 
1234 		/* update budget accounting */
1235 		total_rx_packets++;
1236 	}
1237 
1238 	/* place incomplete frames back on ring for completion */
1239 	rx_ring->skb = skb;
1240 
1241 	if (xdp_xmit) {
1242 		struct ixgbevf_ring *xdp_ring =
1243 			adapter->xdp_ring[rx_ring->queue_index];
1244 
1245 		/* Force memory writes to complete before letting h/w
1246 		 * know there are new descriptors to fetch.
1247 		 */
1248 		wmb();
1249 		ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use);
1250 	}
1251 
1252 	u64_stats_update_begin(&rx_ring->syncp);
1253 	rx_ring->stats.packets += total_rx_packets;
1254 	rx_ring->stats.bytes += total_rx_bytes;
1255 	u64_stats_update_end(&rx_ring->syncp);
1256 	q_vector->rx.total_packets += total_rx_packets;
1257 	q_vector->rx.total_bytes += total_rx_bytes;
1258 
1259 	return total_rx_packets;
1260 }
1261 
1262 /**
1263  * ixgbevf_poll - NAPI polling calback
1264  * @napi: napi struct with our devices info in it
1265  * @budget: amount of work driver is allowed to do this pass, in packets
1266  *
1267  * This function will clean more than one or more rings associated with a
1268  * q_vector.
1269  **/
1270 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1271 {
1272 	struct ixgbevf_q_vector *q_vector =
1273 		container_of(napi, struct ixgbevf_q_vector, napi);
1274 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1275 	struct ixgbevf_ring *ring;
1276 	int per_ring_budget, work_done = 0;
1277 	bool clean_complete = true;
1278 
1279 	ixgbevf_for_each_ring(ring, q_vector->tx) {
1280 		if (!ixgbevf_clean_tx_irq(q_vector, ring, budget))
1281 			clean_complete = false;
1282 	}
1283 
1284 	if (budget <= 0)
1285 		return budget;
1286 
1287 	/* attempt to distribute budget to each queue fairly, but don't allow
1288 	 * the budget to go below 1 because we'll exit polling
1289 	 */
1290 	if (q_vector->rx.count > 1)
1291 		per_ring_budget = max(budget/q_vector->rx.count, 1);
1292 	else
1293 		per_ring_budget = budget;
1294 
1295 	ixgbevf_for_each_ring(ring, q_vector->rx) {
1296 		int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1297 						   per_ring_budget);
1298 		work_done += cleaned;
1299 		if (cleaned >= per_ring_budget)
1300 			clean_complete = false;
1301 	}
1302 
1303 	/* If all work not completed, return budget and keep polling */
1304 	if (!clean_complete)
1305 		return budget;
1306 
1307 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1308 	 * poll us due to busy-polling
1309 	 */
1310 	if (likely(napi_complete_done(napi, work_done))) {
1311 		if (adapter->rx_itr_setting == 1)
1312 			ixgbevf_set_itr(q_vector);
1313 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1314 		    !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1315 			ixgbevf_irq_enable_queues(adapter,
1316 						  BIT(q_vector->v_idx));
1317 	}
1318 
1319 	return min(work_done, budget - 1);
1320 }
1321 
1322 /**
1323  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1324  * @q_vector: structure containing interrupt and ring information
1325  **/
1326 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1327 {
1328 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1329 	struct ixgbe_hw *hw = &adapter->hw;
1330 	int v_idx = q_vector->v_idx;
1331 	u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1332 
1333 	/* set the WDIS bit to not clear the timer bits and cause an
1334 	 * immediate assertion of the interrupt
1335 	 */
1336 	itr_reg |= IXGBE_EITR_CNT_WDIS;
1337 
1338 	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1339 }
1340 
1341 /**
1342  * ixgbevf_configure_msix - Configure MSI-X hardware
1343  * @adapter: board private structure
1344  *
1345  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1346  * interrupts.
1347  **/
1348 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1349 {
1350 	struct ixgbevf_q_vector *q_vector;
1351 	int q_vectors, v_idx;
1352 
1353 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1354 	adapter->eims_enable_mask = 0;
1355 
1356 	/* Populate the IVAR table and set the ITR values to the
1357 	 * corresponding register.
1358 	 */
1359 	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1360 		struct ixgbevf_ring *ring;
1361 
1362 		q_vector = adapter->q_vector[v_idx];
1363 
1364 		ixgbevf_for_each_ring(ring, q_vector->rx)
1365 			ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1366 
1367 		ixgbevf_for_each_ring(ring, q_vector->tx)
1368 			ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1369 
1370 		if (q_vector->tx.ring && !q_vector->rx.ring) {
1371 			/* Tx only vector */
1372 			if (adapter->tx_itr_setting == 1)
1373 				q_vector->itr = IXGBE_12K_ITR;
1374 			else
1375 				q_vector->itr = adapter->tx_itr_setting;
1376 		} else {
1377 			/* Rx or Rx/Tx vector */
1378 			if (adapter->rx_itr_setting == 1)
1379 				q_vector->itr = IXGBE_20K_ITR;
1380 			else
1381 				q_vector->itr = adapter->rx_itr_setting;
1382 		}
1383 
1384 		/* add q_vector eims value to global eims_enable_mask */
1385 		adapter->eims_enable_mask |= BIT(v_idx);
1386 
1387 		ixgbevf_write_eitr(q_vector);
1388 	}
1389 
1390 	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1391 	/* setup eims_other and add value to global eims_enable_mask */
1392 	adapter->eims_other = BIT(v_idx);
1393 	adapter->eims_enable_mask |= adapter->eims_other;
1394 }
1395 
1396 enum latency_range {
1397 	lowest_latency = 0,
1398 	low_latency = 1,
1399 	bulk_latency = 2,
1400 	latency_invalid = 255
1401 };
1402 
1403 /**
1404  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1405  * @q_vector: structure containing interrupt and ring information
1406  * @ring_container: structure containing ring performance data
1407  *
1408  * Stores a new ITR value based on packets and byte
1409  * counts during the last interrupt.  The advantage of per interrupt
1410  * computation is faster updates and more accurate ITR for the current
1411  * traffic pattern.  Constants in this function were computed
1412  * based on theoretical maximum wire speed and thresholds were set based
1413  * on testing data as well as attempting to minimize response time
1414  * while increasing bulk throughput.
1415  **/
1416 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1417 			       struct ixgbevf_ring_container *ring_container)
1418 {
1419 	int bytes = ring_container->total_bytes;
1420 	int packets = ring_container->total_packets;
1421 	u32 timepassed_us;
1422 	u64 bytes_perint;
1423 	u8 itr_setting = ring_container->itr;
1424 
1425 	if (packets == 0)
1426 		return;
1427 
1428 	/* simple throttle rate management
1429 	 *    0-20MB/s lowest (100000 ints/s)
1430 	 *   20-100MB/s low   (20000 ints/s)
1431 	 *  100-1249MB/s bulk (12000 ints/s)
1432 	 */
1433 	/* what was last interrupt timeslice? */
1434 	timepassed_us = q_vector->itr >> 2;
1435 	if (timepassed_us == 0)
1436 		return;
1437 
1438 	bytes_perint = bytes / timepassed_us; /* bytes/usec */
1439 
1440 	switch (itr_setting) {
1441 	case lowest_latency:
1442 		if (bytes_perint > 10)
1443 			itr_setting = low_latency;
1444 		break;
1445 	case low_latency:
1446 		if (bytes_perint > 20)
1447 			itr_setting = bulk_latency;
1448 		else if (bytes_perint <= 10)
1449 			itr_setting = lowest_latency;
1450 		break;
1451 	case bulk_latency:
1452 		if (bytes_perint <= 20)
1453 			itr_setting = low_latency;
1454 		break;
1455 	}
1456 
1457 	/* clear work counters since we have the values we need */
1458 	ring_container->total_bytes = 0;
1459 	ring_container->total_packets = 0;
1460 
1461 	/* write updated itr to ring container */
1462 	ring_container->itr = itr_setting;
1463 }
1464 
1465 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1466 {
1467 	u32 new_itr = q_vector->itr;
1468 	u8 current_itr;
1469 
1470 	ixgbevf_update_itr(q_vector, &q_vector->tx);
1471 	ixgbevf_update_itr(q_vector, &q_vector->rx);
1472 
1473 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1474 
1475 	switch (current_itr) {
1476 	/* counts and packets in update_itr are dependent on these numbers */
1477 	case lowest_latency:
1478 		new_itr = IXGBE_100K_ITR;
1479 		break;
1480 	case low_latency:
1481 		new_itr = IXGBE_20K_ITR;
1482 		break;
1483 	case bulk_latency:
1484 		new_itr = IXGBE_12K_ITR;
1485 		break;
1486 	default:
1487 		break;
1488 	}
1489 
1490 	if (new_itr != q_vector->itr) {
1491 		/* do an exponential smoothing */
1492 		new_itr = (10 * new_itr * q_vector->itr) /
1493 			  ((9 * new_itr) + q_vector->itr);
1494 
1495 		/* save the algorithm value here */
1496 		q_vector->itr = new_itr;
1497 
1498 		ixgbevf_write_eitr(q_vector);
1499 	}
1500 }
1501 
1502 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1503 {
1504 	struct ixgbevf_adapter *adapter = data;
1505 	struct ixgbe_hw *hw = &adapter->hw;
1506 
1507 	hw->mac.get_link_status = 1;
1508 
1509 	ixgbevf_service_event_schedule(adapter);
1510 
1511 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1512 
1513 	return IRQ_HANDLED;
1514 }
1515 
1516 /**
1517  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1518  * @irq: unused
1519  * @data: pointer to our q_vector struct for this interrupt vector
1520  **/
1521 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1522 {
1523 	struct ixgbevf_q_vector *q_vector = data;
1524 
1525 	/* EIAM disabled interrupts (on this vector) for us */
1526 	if (q_vector->rx.ring || q_vector->tx.ring)
1527 		napi_schedule_irqoff(&q_vector->napi);
1528 
1529 	return IRQ_HANDLED;
1530 }
1531 
1532 /**
1533  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1534  * @adapter: board private structure
1535  *
1536  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1537  * interrupts from the kernel.
1538  **/
1539 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1540 {
1541 	struct net_device *netdev = adapter->netdev;
1542 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1543 	unsigned int ri = 0, ti = 0;
1544 	int vector, err;
1545 
1546 	for (vector = 0; vector < q_vectors; vector++) {
1547 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1548 		struct msix_entry *entry = &adapter->msix_entries[vector];
1549 
1550 		if (q_vector->tx.ring && q_vector->rx.ring) {
1551 			snprintf(q_vector->name, sizeof(q_vector->name),
1552 				 "%s-TxRx-%u", netdev->name, ri++);
1553 			ti++;
1554 		} else if (q_vector->rx.ring) {
1555 			snprintf(q_vector->name, sizeof(q_vector->name),
1556 				 "%s-rx-%u", netdev->name, ri++);
1557 		} else if (q_vector->tx.ring) {
1558 			snprintf(q_vector->name, sizeof(q_vector->name),
1559 				 "%s-tx-%u", netdev->name, ti++);
1560 		} else {
1561 			/* skip this unused q_vector */
1562 			continue;
1563 		}
1564 		err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1565 				  q_vector->name, q_vector);
1566 		if (err) {
1567 			hw_dbg(&adapter->hw,
1568 			       "request_irq failed for MSIX interrupt Error: %d\n",
1569 			       err);
1570 			goto free_queue_irqs;
1571 		}
1572 	}
1573 
1574 	err = request_irq(adapter->msix_entries[vector].vector,
1575 			  &ixgbevf_msix_other, 0, netdev->name, adapter);
1576 	if (err) {
1577 		hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1578 		       err);
1579 		goto free_queue_irqs;
1580 	}
1581 
1582 	return 0;
1583 
1584 free_queue_irqs:
1585 	while (vector) {
1586 		vector--;
1587 		free_irq(adapter->msix_entries[vector].vector,
1588 			 adapter->q_vector[vector]);
1589 	}
1590 	/* This failure is non-recoverable - it indicates the system is
1591 	 * out of MSIX vector resources and the VF driver cannot run
1592 	 * without them.  Set the number of msix vectors to zero
1593 	 * indicating that not enough can be allocated.  The error
1594 	 * will be returned to the user indicating device open failed.
1595 	 * Any further attempts to force the driver to open will also
1596 	 * fail.  The only way to recover is to unload the driver and
1597 	 * reload it again.  If the system has recovered some MSIX
1598 	 * vectors then it may succeed.
1599 	 */
1600 	adapter->num_msix_vectors = 0;
1601 	return err;
1602 }
1603 
1604 /**
1605  * ixgbevf_request_irq - initialize interrupts
1606  * @adapter: board private structure
1607  *
1608  * Attempts to configure interrupts using the best available
1609  * capabilities of the hardware and kernel.
1610  **/
1611 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1612 {
1613 	int err = ixgbevf_request_msix_irqs(adapter);
1614 
1615 	if (err)
1616 		hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1617 
1618 	return err;
1619 }
1620 
1621 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1622 {
1623 	int i, q_vectors;
1624 
1625 	if (!adapter->msix_entries)
1626 		return;
1627 
1628 	q_vectors = adapter->num_msix_vectors;
1629 	i = q_vectors - 1;
1630 
1631 	free_irq(adapter->msix_entries[i].vector, adapter);
1632 	i--;
1633 
1634 	for (; i >= 0; i--) {
1635 		/* free only the irqs that were actually requested */
1636 		if (!adapter->q_vector[i]->rx.ring &&
1637 		    !adapter->q_vector[i]->tx.ring)
1638 			continue;
1639 
1640 		free_irq(adapter->msix_entries[i].vector,
1641 			 adapter->q_vector[i]);
1642 	}
1643 }
1644 
1645 /**
1646  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1647  * @adapter: board private structure
1648  **/
1649 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1650 {
1651 	struct ixgbe_hw *hw = &adapter->hw;
1652 	int i;
1653 
1654 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1655 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1656 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1657 
1658 	IXGBE_WRITE_FLUSH(hw);
1659 
1660 	for (i = 0; i < adapter->num_msix_vectors; i++)
1661 		synchronize_irq(adapter->msix_entries[i].vector);
1662 }
1663 
1664 /**
1665  * ixgbevf_irq_enable - Enable default interrupt generation settings
1666  * @adapter: board private structure
1667  **/
1668 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1669 {
1670 	struct ixgbe_hw *hw = &adapter->hw;
1671 
1672 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1673 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1674 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1675 }
1676 
1677 /**
1678  * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1679  * @adapter: board private structure
1680  * @ring: structure containing ring specific data
1681  *
1682  * Configure the Tx descriptor ring after a reset.
1683  **/
1684 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1685 				      struct ixgbevf_ring *ring)
1686 {
1687 	struct ixgbe_hw *hw = &adapter->hw;
1688 	u64 tdba = ring->dma;
1689 	int wait_loop = 10;
1690 	u32 txdctl = IXGBE_TXDCTL_ENABLE;
1691 	u8 reg_idx = ring->reg_idx;
1692 
1693 	/* disable queue to avoid issues while updating state */
1694 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1695 	IXGBE_WRITE_FLUSH(hw);
1696 
1697 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1698 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1699 	IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1700 			ring->count * sizeof(union ixgbe_adv_tx_desc));
1701 
1702 	/* disable head writeback */
1703 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1704 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1705 
1706 	/* enable relaxed ordering */
1707 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1708 			(IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1709 			 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1710 
1711 	/* reset head and tail pointers */
1712 	IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1713 	IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1714 	ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1715 
1716 	/* reset ntu and ntc to place SW in sync with hardwdare */
1717 	ring->next_to_clean = 0;
1718 	ring->next_to_use = 0;
1719 
1720 	/* In order to avoid issues WTHRESH + PTHRESH should always be equal
1721 	 * to or less than the number of on chip descriptors, which is
1722 	 * currently 40.
1723 	 */
1724 	txdctl |= (8 << 16);    /* WTHRESH = 8 */
1725 
1726 	/* Setting PTHRESH to 32 both improves performance */
1727 	txdctl |= (1u << 8) |    /* HTHRESH = 1 */
1728 		   32;           /* PTHRESH = 32 */
1729 
1730 	/* reinitialize tx_buffer_info */
1731 	memset(ring->tx_buffer_info, 0,
1732 	       sizeof(struct ixgbevf_tx_buffer) * ring->count);
1733 
1734 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1735 	clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
1736 
1737 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1738 
1739 	/* poll to verify queue is enabled */
1740 	do {
1741 		usleep_range(1000, 2000);
1742 		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1743 	}  while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1744 	if (!wait_loop)
1745 		hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx);
1746 }
1747 
1748 /**
1749  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1750  * @adapter: board private structure
1751  *
1752  * Configure the Tx unit of the MAC after a reset.
1753  **/
1754 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1755 {
1756 	u32 i;
1757 
1758 	/* Setup the HW Tx Head and Tail descriptor pointers */
1759 	for (i = 0; i < adapter->num_tx_queues; i++)
1760 		ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1761 	for (i = 0; i < adapter->num_xdp_queues; i++)
1762 		ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]);
1763 }
1764 
1765 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1766 
1767 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter,
1768 				     struct ixgbevf_ring *ring, int index)
1769 {
1770 	struct ixgbe_hw *hw = &adapter->hw;
1771 	u32 srrctl;
1772 
1773 	srrctl = IXGBE_SRRCTL_DROP_EN;
1774 
1775 	srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1776 	if (ring_uses_large_buffer(ring))
1777 		srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1778 	else
1779 		srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1780 	srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1781 
1782 	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1783 }
1784 
1785 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1786 {
1787 	struct ixgbe_hw *hw = &adapter->hw;
1788 
1789 	/* PSRTYPE must be initialized in 82599 */
1790 	u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1791 		      IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1792 		      IXGBE_PSRTYPE_L2HDR;
1793 
1794 	if (adapter->num_rx_queues > 1)
1795 		psrtype |= BIT(29);
1796 
1797 	IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1798 }
1799 
1800 #define IXGBEVF_MAX_RX_DESC_POLL 10
1801 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1802 				     struct ixgbevf_ring *ring)
1803 {
1804 	struct ixgbe_hw *hw = &adapter->hw;
1805 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1806 	u32 rxdctl;
1807 	u8 reg_idx = ring->reg_idx;
1808 
1809 	if (IXGBE_REMOVED(hw->hw_addr))
1810 		return;
1811 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1812 	rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1813 
1814 	/* write value back with RXDCTL.ENABLE bit cleared */
1815 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1816 
1817 	/* the hardware may take up to 100us to really disable the Rx queue */
1818 	do {
1819 		udelay(10);
1820 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1821 	} while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1822 
1823 	if (!wait_loop)
1824 		pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1825 		       reg_idx);
1826 }
1827 
1828 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1829 					 struct ixgbevf_ring *ring)
1830 {
1831 	struct ixgbe_hw *hw = &adapter->hw;
1832 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1833 	u32 rxdctl;
1834 	u8 reg_idx = ring->reg_idx;
1835 
1836 	if (IXGBE_REMOVED(hw->hw_addr))
1837 		return;
1838 	do {
1839 		usleep_range(1000, 2000);
1840 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1841 	} while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1842 
1843 	if (!wait_loop)
1844 		pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1845 		       reg_idx);
1846 }
1847 
1848 /**
1849  * ixgbevf_init_rss_key - Initialize adapter RSS key
1850  * @adapter: device handle
1851  *
1852  * Allocates and initializes the RSS key if it is not allocated.
1853  **/
1854 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter)
1855 {
1856 	u32 *rss_key;
1857 
1858 	if (!adapter->rss_key) {
1859 		rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL);
1860 		if (unlikely(!rss_key))
1861 			return -ENOMEM;
1862 
1863 		netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE);
1864 		adapter->rss_key = rss_key;
1865 	}
1866 
1867 	return 0;
1868 }
1869 
1870 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1871 {
1872 	struct ixgbe_hw *hw = &adapter->hw;
1873 	u32 vfmrqc = 0, vfreta = 0;
1874 	u16 rss_i = adapter->num_rx_queues;
1875 	u8 i, j;
1876 
1877 	/* Fill out hash function seeds */
1878 	for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1879 		IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i));
1880 
1881 	for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1882 		if (j == rss_i)
1883 			j = 0;
1884 
1885 		adapter->rss_indir_tbl[i] = j;
1886 
1887 		vfreta |= j << (i & 0x3) * 8;
1888 		if ((i & 3) == 3) {
1889 			IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1890 			vfreta = 0;
1891 		}
1892 	}
1893 
1894 	/* Perform hash on these packet types */
1895 	vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1896 		IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1897 		IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1898 		IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1899 
1900 	vfmrqc |= IXGBE_VFMRQC_RSSEN;
1901 
1902 	IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1903 }
1904 
1905 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1906 				      struct ixgbevf_ring *ring)
1907 {
1908 	struct ixgbe_hw *hw = &adapter->hw;
1909 	union ixgbe_adv_rx_desc *rx_desc;
1910 	u64 rdba = ring->dma;
1911 	u32 rxdctl;
1912 	u8 reg_idx = ring->reg_idx;
1913 
1914 	/* disable queue to avoid issues while updating state */
1915 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1916 	ixgbevf_disable_rx_queue(adapter, ring);
1917 
1918 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1919 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1920 	IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1921 			ring->count * sizeof(union ixgbe_adv_rx_desc));
1922 
1923 #ifndef CONFIG_SPARC
1924 	/* enable relaxed ordering */
1925 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1926 			IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1927 #else
1928 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1929 			IXGBE_DCA_RXCTRL_DESC_RRO_EN |
1930 			IXGBE_DCA_RXCTRL_DATA_WRO_EN);
1931 #endif
1932 
1933 	/* reset head and tail pointers */
1934 	IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1935 	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1936 	ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1937 
1938 	/* initialize rx_buffer_info */
1939 	memset(ring->rx_buffer_info, 0,
1940 	       sizeof(struct ixgbevf_rx_buffer) * ring->count);
1941 
1942 	/* initialize Rx descriptor 0 */
1943 	rx_desc = IXGBEVF_RX_DESC(ring, 0);
1944 	rx_desc->wb.upper.length = 0;
1945 
1946 	/* reset ntu and ntc to place SW in sync with hardwdare */
1947 	ring->next_to_clean = 0;
1948 	ring->next_to_use = 0;
1949 	ring->next_to_alloc = 0;
1950 
1951 	ixgbevf_configure_srrctl(adapter, ring, reg_idx);
1952 
1953 	/* RXDCTL.RLPML does not work on 82599 */
1954 	if (adapter->hw.mac.type != ixgbe_mac_82599_vf) {
1955 		rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK |
1956 			    IXGBE_RXDCTL_RLPML_EN);
1957 
1958 #if (PAGE_SIZE < 8192)
1959 		/* Limit the maximum frame size so we don't overrun the skb */
1960 		if (ring_uses_build_skb(ring) &&
1961 		    !ring_uses_large_buffer(ring))
1962 			rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB |
1963 				  IXGBE_RXDCTL_RLPML_EN;
1964 #endif
1965 	}
1966 
1967 	rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1968 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1969 
1970 	ixgbevf_rx_desc_queue_enable(adapter, ring);
1971 	ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1972 }
1973 
1974 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter,
1975 				      struct ixgbevf_ring *rx_ring)
1976 {
1977 	struct net_device *netdev = adapter->netdev;
1978 	unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1979 
1980 	/* set build_skb and buffer size flags */
1981 	clear_ring_build_skb_enabled(rx_ring);
1982 	clear_ring_uses_large_buffer(rx_ring);
1983 
1984 	if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX)
1985 		return;
1986 
1987 	set_ring_build_skb_enabled(rx_ring);
1988 
1989 	if (PAGE_SIZE < 8192) {
1990 		if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB)
1991 			return;
1992 
1993 		set_ring_uses_large_buffer(rx_ring);
1994 	}
1995 }
1996 
1997 /**
1998  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1999  * @adapter: board private structure
2000  *
2001  * Configure the Rx unit of the MAC after a reset.
2002  **/
2003 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
2004 {
2005 	struct ixgbe_hw *hw = &adapter->hw;
2006 	struct net_device *netdev = adapter->netdev;
2007 	int i, ret;
2008 
2009 	ixgbevf_setup_psrtype(adapter);
2010 	if (hw->mac.type >= ixgbe_mac_X550_vf)
2011 		ixgbevf_setup_vfmrqc(adapter);
2012 
2013 	spin_lock_bh(&adapter->mbx_lock);
2014 	/* notify the PF of our intent to use this size of frame */
2015 	ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
2016 	spin_unlock_bh(&adapter->mbx_lock);
2017 	if (ret)
2018 		dev_err(&adapter->pdev->dev,
2019 			"Failed to set MTU at %d\n", netdev->mtu);
2020 
2021 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
2022 	 * the Base and Length of the Rx Descriptor Ring
2023 	 */
2024 	for (i = 0; i < adapter->num_rx_queues; i++) {
2025 		struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
2026 
2027 		ixgbevf_set_rx_buffer_len(adapter, rx_ring);
2028 		ixgbevf_configure_rx_ring(adapter, rx_ring);
2029 	}
2030 }
2031 
2032 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
2033 				   __be16 proto, u16 vid)
2034 {
2035 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2036 	struct ixgbe_hw *hw = &adapter->hw;
2037 	int err;
2038 
2039 	spin_lock_bh(&adapter->mbx_lock);
2040 
2041 	/* add VID to filter table */
2042 	err = hw->mac.ops.set_vfta(hw, vid, 0, true);
2043 
2044 	spin_unlock_bh(&adapter->mbx_lock);
2045 
2046 	/* translate error return types so error makes sense */
2047 	if (err == IXGBE_ERR_MBX)
2048 		return -EIO;
2049 
2050 	if (err == IXGBE_ERR_INVALID_ARGUMENT)
2051 		return -EACCES;
2052 
2053 	set_bit(vid, adapter->active_vlans);
2054 
2055 	return err;
2056 }
2057 
2058 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
2059 				    __be16 proto, u16 vid)
2060 {
2061 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2062 	struct ixgbe_hw *hw = &adapter->hw;
2063 	int err;
2064 
2065 	spin_lock_bh(&adapter->mbx_lock);
2066 
2067 	/* remove VID from filter table */
2068 	err = hw->mac.ops.set_vfta(hw, vid, 0, false);
2069 
2070 	spin_unlock_bh(&adapter->mbx_lock);
2071 
2072 	clear_bit(vid, adapter->active_vlans);
2073 
2074 	return err;
2075 }
2076 
2077 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
2078 {
2079 	u16 vid;
2080 
2081 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2082 		ixgbevf_vlan_rx_add_vid(adapter->netdev,
2083 					htons(ETH_P_8021Q), vid);
2084 }
2085 
2086 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
2087 {
2088 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2089 	struct ixgbe_hw *hw = &adapter->hw;
2090 	int count = 0;
2091 
2092 	if (!netdev_uc_empty(netdev)) {
2093 		struct netdev_hw_addr *ha;
2094 
2095 		netdev_for_each_uc_addr(ha, netdev) {
2096 			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
2097 			udelay(200);
2098 		}
2099 	} else {
2100 		/* If the list is empty then send message to PF driver to
2101 		 * clear all MAC VLANs on this VF.
2102 		 */
2103 		hw->mac.ops.set_uc_addr(hw, 0, NULL);
2104 	}
2105 
2106 	return count;
2107 }
2108 
2109 /**
2110  * ixgbevf_set_rx_mode - Multicast and unicast set
2111  * @netdev: network interface device structure
2112  *
2113  * The set_rx_method entry point is called whenever the multicast address
2114  * list, unicast address list or the network interface flags are updated.
2115  * This routine is responsible for configuring the hardware for proper
2116  * multicast mode and configuring requested unicast filters.
2117  **/
2118 static void ixgbevf_set_rx_mode(struct net_device *netdev)
2119 {
2120 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2121 	struct ixgbe_hw *hw = &adapter->hw;
2122 	unsigned int flags = netdev->flags;
2123 	int xcast_mode;
2124 
2125 	/* request the most inclusive mode we need */
2126 	if (flags & IFF_PROMISC)
2127 		xcast_mode = IXGBEVF_XCAST_MODE_PROMISC;
2128 	else if (flags & IFF_ALLMULTI)
2129 		xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI;
2130 	else if (flags & (IFF_BROADCAST | IFF_MULTICAST))
2131 		xcast_mode = IXGBEVF_XCAST_MODE_MULTI;
2132 	else
2133 		xcast_mode = IXGBEVF_XCAST_MODE_NONE;
2134 
2135 	spin_lock_bh(&adapter->mbx_lock);
2136 
2137 	hw->mac.ops.update_xcast_mode(hw, xcast_mode);
2138 
2139 	/* reprogram multicast list */
2140 	hw->mac.ops.update_mc_addr_list(hw, netdev);
2141 
2142 	ixgbevf_write_uc_addr_list(netdev);
2143 
2144 	spin_unlock_bh(&adapter->mbx_lock);
2145 }
2146 
2147 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
2148 {
2149 	int q_idx;
2150 	struct ixgbevf_q_vector *q_vector;
2151 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2152 
2153 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2154 		q_vector = adapter->q_vector[q_idx];
2155 		napi_enable(&q_vector->napi);
2156 	}
2157 }
2158 
2159 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
2160 {
2161 	int q_idx;
2162 	struct ixgbevf_q_vector *q_vector;
2163 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2164 
2165 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2166 		q_vector = adapter->q_vector[q_idx];
2167 		napi_disable(&q_vector->napi);
2168 	}
2169 }
2170 
2171 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
2172 {
2173 	struct ixgbe_hw *hw = &adapter->hw;
2174 	unsigned int def_q = 0;
2175 	unsigned int num_tcs = 0;
2176 	unsigned int num_rx_queues = adapter->num_rx_queues;
2177 	unsigned int num_tx_queues = adapter->num_tx_queues;
2178 	int err;
2179 
2180 	spin_lock_bh(&adapter->mbx_lock);
2181 
2182 	/* fetch queue configuration from the PF */
2183 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2184 
2185 	spin_unlock_bh(&adapter->mbx_lock);
2186 
2187 	if (err)
2188 		return err;
2189 
2190 	if (num_tcs > 1) {
2191 		/* we need only one Tx queue */
2192 		num_tx_queues = 1;
2193 
2194 		/* update default Tx ring register index */
2195 		adapter->tx_ring[0]->reg_idx = def_q;
2196 
2197 		/* we need as many queues as traffic classes */
2198 		num_rx_queues = num_tcs;
2199 	}
2200 
2201 	/* if we have a bad config abort request queue reset */
2202 	if ((adapter->num_rx_queues != num_rx_queues) ||
2203 	    (adapter->num_tx_queues != num_tx_queues)) {
2204 		/* force mailbox timeout to prevent further messages */
2205 		hw->mbx.timeout = 0;
2206 
2207 		/* wait for watchdog to come around and bail us out */
2208 		set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state);
2209 	}
2210 
2211 	return 0;
2212 }
2213 
2214 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
2215 {
2216 	ixgbevf_configure_dcb(adapter);
2217 
2218 	ixgbevf_set_rx_mode(adapter->netdev);
2219 
2220 	ixgbevf_restore_vlan(adapter);
2221 	ixgbevf_ipsec_restore(adapter);
2222 
2223 	ixgbevf_configure_tx(adapter);
2224 	ixgbevf_configure_rx(adapter);
2225 }
2226 
2227 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2228 {
2229 	/* Only save pre-reset stats if there are some */
2230 	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2231 		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2232 			adapter->stats.base_vfgprc;
2233 		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2234 			adapter->stats.base_vfgptc;
2235 		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2236 			adapter->stats.base_vfgorc;
2237 		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2238 			adapter->stats.base_vfgotc;
2239 		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2240 			adapter->stats.base_vfmprc;
2241 	}
2242 }
2243 
2244 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2245 {
2246 	struct ixgbe_hw *hw = &adapter->hw;
2247 
2248 	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2249 	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2250 	adapter->stats.last_vfgorc |=
2251 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2252 	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2253 	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2254 	adapter->stats.last_vfgotc |=
2255 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2256 	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2257 
2258 	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2259 	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2260 	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2261 	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2262 	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2263 }
2264 
2265 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2266 {
2267 	struct ixgbe_hw *hw = &adapter->hw;
2268 	static const int api[] = {
2269 		ixgbe_mbox_api_15,
2270 		ixgbe_mbox_api_14,
2271 		ixgbe_mbox_api_13,
2272 		ixgbe_mbox_api_12,
2273 		ixgbe_mbox_api_11,
2274 		ixgbe_mbox_api_10,
2275 		ixgbe_mbox_api_unknown
2276 	};
2277 	int err, idx = 0;
2278 
2279 	spin_lock_bh(&adapter->mbx_lock);
2280 
2281 	while (api[idx] != ixgbe_mbox_api_unknown) {
2282 		err = hw->mac.ops.negotiate_api_version(hw, api[idx]);
2283 		if (!err)
2284 			break;
2285 		idx++;
2286 	}
2287 
2288 	if (hw->api_version >= ixgbe_mbox_api_15) {
2289 		hw->mbx.ops.init_params(hw);
2290 		memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
2291 		       sizeof(struct ixgbe_mbx_operations));
2292 	}
2293 
2294 	spin_unlock_bh(&adapter->mbx_lock);
2295 }
2296 
2297 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2298 {
2299 	struct net_device *netdev = adapter->netdev;
2300 	struct ixgbe_hw *hw = &adapter->hw;
2301 
2302 	ixgbevf_configure_msix(adapter);
2303 
2304 	spin_lock_bh(&adapter->mbx_lock);
2305 
2306 	if (is_valid_ether_addr(hw->mac.addr))
2307 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2308 	else
2309 		hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2310 
2311 	spin_unlock_bh(&adapter->mbx_lock);
2312 
2313 	smp_mb__before_atomic();
2314 	clear_bit(__IXGBEVF_DOWN, &adapter->state);
2315 	ixgbevf_napi_enable_all(adapter);
2316 
2317 	/* clear any pending interrupts, may auto mask */
2318 	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2319 	ixgbevf_irq_enable(adapter);
2320 
2321 	/* enable transmits */
2322 	netif_tx_start_all_queues(netdev);
2323 
2324 	ixgbevf_save_reset_stats(adapter);
2325 	ixgbevf_init_last_counter_stats(adapter);
2326 
2327 	hw->mac.get_link_status = 1;
2328 	mod_timer(&adapter->service_timer, jiffies);
2329 }
2330 
2331 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2332 {
2333 	ixgbevf_configure(adapter);
2334 
2335 	ixgbevf_up_complete(adapter);
2336 }
2337 
2338 /**
2339  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2340  * @rx_ring: ring to free buffers from
2341  **/
2342 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2343 {
2344 	u16 i = rx_ring->next_to_clean;
2345 
2346 	/* Free Rx ring sk_buff */
2347 	if (rx_ring->skb) {
2348 		dev_kfree_skb(rx_ring->skb);
2349 		rx_ring->skb = NULL;
2350 	}
2351 
2352 	/* Free all the Rx ring pages */
2353 	while (i != rx_ring->next_to_alloc) {
2354 		struct ixgbevf_rx_buffer *rx_buffer;
2355 
2356 		rx_buffer = &rx_ring->rx_buffer_info[i];
2357 
2358 		/* Invalidate cache lines that may have been written to by
2359 		 * device so that we avoid corrupting memory.
2360 		 */
2361 		dma_sync_single_range_for_cpu(rx_ring->dev,
2362 					      rx_buffer->dma,
2363 					      rx_buffer->page_offset,
2364 					      ixgbevf_rx_bufsz(rx_ring),
2365 					      DMA_FROM_DEVICE);
2366 
2367 		/* free resources associated with mapping */
2368 		dma_unmap_page_attrs(rx_ring->dev,
2369 				     rx_buffer->dma,
2370 				     ixgbevf_rx_pg_size(rx_ring),
2371 				     DMA_FROM_DEVICE,
2372 				     IXGBEVF_RX_DMA_ATTR);
2373 
2374 		__page_frag_cache_drain(rx_buffer->page,
2375 					rx_buffer->pagecnt_bias);
2376 
2377 		i++;
2378 		if (i == rx_ring->count)
2379 			i = 0;
2380 	}
2381 
2382 	rx_ring->next_to_alloc = 0;
2383 	rx_ring->next_to_clean = 0;
2384 	rx_ring->next_to_use = 0;
2385 }
2386 
2387 /**
2388  * ixgbevf_clean_tx_ring - Free Tx Buffers
2389  * @tx_ring: ring to be cleaned
2390  **/
2391 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2392 {
2393 	u16 i = tx_ring->next_to_clean;
2394 	struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
2395 
2396 	while (i != tx_ring->next_to_use) {
2397 		union ixgbe_adv_tx_desc *eop_desc, *tx_desc;
2398 
2399 		/* Free all the Tx ring sk_buffs */
2400 		if (ring_is_xdp(tx_ring))
2401 			page_frag_free(tx_buffer->data);
2402 		else
2403 			dev_kfree_skb_any(tx_buffer->skb);
2404 
2405 		/* unmap skb header data */
2406 		dma_unmap_single(tx_ring->dev,
2407 				 dma_unmap_addr(tx_buffer, dma),
2408 				 dma_unmap_len(tx_buffer, len),
2409 				 DMA_TO_DEVICE);
2410 
2411 		/* check for eop_desc to determine the end of the packet */
2412 		eop_desc = tx_buffer->next_to_watch;
2413 		tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
2414 
2415 		/* unmap remaining buffers */
2416 		while (tx_desc != eop_desc) {
2417 			tx_buffer++;
2418 			tx_desc++;
2419 			i++;
2420 			if (unlikely(i == tx_ring->count)) {
2421 				i = 0;
2422 				tx_buffer = tx_ring->tx_buffer_info;
2423 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
2424 			}
2425 
2426 			/* unmap any remaining paged data */
2427 			if (dma_unmap_len(tx_buffer, len))
2428 				dma_unmap_page(tx_ring->dev,
2429 					       dma_unmap_addr(tx_buffer, dma),
2430 					       dma_unmap_len(tx_buffer, len),
2431 					       DMA_TO_DEVICE);
2432 		}
2433 
2434 		/* move us one more past the eop_desc for start of next pkt */
2435 		tx_buffer++;
2436 		i++;
2437 		if (unlikely(i == tx_ring->count)) {
2438 			i = 0;
2439 			tx_buffer = tx_ring->tx_buffer_info;
2440 		}
2441 	}
2442 
2443 	/* reset next_to_use and next_to_clean */
2444 	tx_ring->next_to_use = 0;
2445 	tx_ring->next_to_clean = 0;
2446 
2447 }
2448 
2449 /**
2450  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2451  * @adapter: board private structure
2452  **/
2453 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2454 {
2455 	int i;
2456 
2457 	for (i = 0; i < adapter->num_rx_queues; i++)
2458 		ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2459 }
2460 
2461 /**
2462  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2463  * @adapter: board private structure
2464  **/
2465 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2466 {
2467 	int i;
2468 
2469 	for (i = 0; i < adapter->num_tx_queues; i++)
2470 		ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2471 	for (i = 0; i < adapter->num_xdp_queues; i++)
2472 		ixgbevf_clean_tx_ring(adapter->xdp_ring[i]);
2473 }
2474 
2475 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2476 {
2477 	struct net_device *netdev = adapter->netdev;
2478 	struct ixgbe_hw *hw = &adapter->hw;
2479 	int i;
2480 
2481 	/* signal that we are down to the interrupt handler */
2482 	if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2483 		return; /* do nothing if already down */
2484 
2485 	/* disable all enabled Rx queues */
2486 	for (i = 0; i < adapter->num_rx_queues; i++)
2487 		ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2488 
2489 	usleep_range(10000, 20000);
2490 
2491 	netif_tx_stop_all_queues(netdev);
2492 
2493 	/* call carrier off first to avoid false dev_watchdog timeouts */
2494 	netif_carrier_off(netdev);
2495 	netif_tx_disable(netdev);
2496 
2497 	ixgbevf_irq_disable(adapter);
2498 
2499 	ixgbevf_napi_disable_all(adapter);
2500 
2501 	del_timer_sync(&adapter->service_timer);
2502 
2503 	/* disable transmits in the hardware now that interrupts are off */
2504 	for (i = 0; i < adapter->num_tx_queues; i++) {
2505 		u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2506 
2507 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2508 				IXGBE_TXDCTL_SWFLSH);
2509 	}
2510 
2511 	for (i = 0; i < adapter->num_xdp_queues; i++) {
2512 		u8 reg_idx = adapter->xdp_ring[i]->reg_idx;
2513 
2514 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2515 				IXGBE_TXDCTL_SWFLSH);
2516 	}
2517 
2518 	if (!pci_channel_offline(adapter->pdev))
2519 		ixgbevf_reset(adapter);
2520 
2521 	ixgbevf_clean_all_tx_rings(adapter);
2522 	ixgbevf_clean_all_rx_rings(adapter);
2523 }
2524 
2525 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2526 {
2527 	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2528 		msleep(1);
2529 
2530 	ixgbevf_down(adapter);
2531 	pci_set_master(adapter->pdev);
2532 	ixgbevf_up(adapter);
2533 
2534 	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2535 }
2536 
2537 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2538 {
2539 	struct ixgbe_hw *hw = &adapter->hw;
2540 	struct net_device *netdev = adapter->netdev;
2541 
2542 	if (hw->mac.ops.reset_hw(hw)) {
2543 		hw_dbg(hw, "PF still resetting\n");
2544 	} else {
2545 		hw->mac.ops.init_hw(hw);
2546 		ixgbevf_negotiate_api(adapter);
2547 	}
2548 
2549 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2550 		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2551 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2552 	}
2553 
2554 	adapter->last_reset = jiffies;
2555 }
2556 
2557 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2558 					int vectors)
2559 {
2560 	int vector_threshold;
2561 
2562 	/* We'll want at least 2 (vector_threshold):
2563 	 * 1) TxQ[0] + RxQ[0] handler
2564 	 * 2) Other (Link Status Change, etc.)
2565 	 */
2566 	vector_threshold = MIN_MSIX_COUNT;
2567 
2568 	/* The more we get, the more we will assign to Tx/Rx Cleanup
2569 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2570 	 * Right now, we simply care about how many we'll get; we'll
2571 	 * set them up later while requesting irq's.
2572 	 */
2573 	vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2574 					vector_threshold, vectors);
2575 
2576 	if (vectors < 0) {
2577 		dev_err(&adapter->pdev->dev,
2578 			"Unable to allocate MSI-X interrupts\n");
2579 		kfree(adapter->msix_entries);
2580 		adapter->msix_entries = NULL;
2581 		return vectors;
2582 	}
2583 
2584 	/* Adjust for only the vectors we'll use, which is minimum
2585 	 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2586 	 * vectors we were allocated.
2587 	 */
2588 	adapter->num_msix_vectors = vectors;
2589 
2590 	return 0;
2591 }
2592 
2593 /**
2594  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2595  * @adapter: board private structure to initialize
2596  *
2597  * This is the top level queue allocation routine.  The order here is very
2598  * important, starting with the "most" number of features turned on at once,
2599  * and ending with the smallest set of features.  This way large combinations
2600  * can be allocated if they're turned on, and smaller combinations are the
2601  * fall through conditions.
2602  *
2603  **/
2604 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2605 {
2606 	struct ixgbe_hw *hw = &adapter->hw;
2607 	unsigned int def_q = 0;
2608 	unsigned int num_tcs = 0;
2609 	int err;
2610 
2611 	/* Start with base case */
2612 	adapter->num_rx_queues = 1;
2613 	adapter->num_tx_queues = 1;
2614 	adapter->num_xdp_queues = 0;
2615 
2616 	spin_lock_bh(&adapter->mbx_lock);
2617 
2618 	/* fetch queue configuration from the PF */
2619 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2620 
2621 	spin_unlock_bh(&adapter->mbx_lock);
2622 
2623 	if (err)
2624 		return;
2625 
2626 	/* we need as many queues as traffic classes */
2627 	if (num_tcs > 1) {
2628 		adapter->num_rx_queues = num_tcs;
2629 	} else {
2630 		u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2631 
2632 		switch (hw->api_version) {
2633 		case ixgbe_mbox_api_11:
2634 		case ixgbe_mbox_api_12:
2635 		case ixgbe_mbox_api_13:
2636 		case ixgbe_mbox_api_14:
2637 		case ixgbe_mbox_api_15:
2638 			if (adapter->xdp_prog &&
2639 			    hw->mac.max_tx_queues == rss)
2640 				rss = rss > 3 ? 2 : 1;
2641 
2642 			adapter->num_rx_queues = rss;
2643 			adapter->num_tx_queues = rss;
2644 			adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0;
2645 			break;
2646 		default:
2647 			break;
2648 		}
2649 	}
2650 }
2651 
2652 /**
2653  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2654  * @adapter: board private structure to initialize
2655  *
2656  * Attempt to configure the interrupts using the best available
2657  * capabilities of the hardware and the kernel.
2658  **/
2659 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2660 {
2661 	int vector, v_budget;
2662 
2663 	/* It's easy to be greedy for MSI-X vectors, but it really
2664 	 * doesn't do us much good if we have a lot more vectors
2665 	 * than CPU's.  So let's be conservative and only ask for
2666 	 * (roughly) the same number of vectors as there are CPU's.
2667 	 * The default is to use pairs of vectors.
2668 	 */
2669 	v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2670 	v_budget = min_t(int, v_budget, num_online_cpus());
2671 	v_budget += NON_Q_VECTORS;
2672 
2673 	adapter->msix_entries = kcalloc(v_budget,
2674 					sizeof(struct msix_entry), GFP_KERNEL);
2675 	if (!adapter->msix_entries)
2676 		return -ENOMEM;
2677 
2678 	for (vector = 0; vector < v_budget; vector++)
2679 		adapter->msix_entries[vector].entry = vector;
2680 
2681 	/* A failure in MSI-X entry allocation isn't fatal, but the VF driver
2682 	 * does not support any other modes, so we will simply fail here. Note
2683 	 * that we clean up the msix_entries pointer else-where.
2684 	 */
2685 	return ixgbevf_acquire_msix_vectors(adapter, v_budget);
2686 }
2687 
2688 static void ixgbevf_add_ring(struct ixgbevf_ring *ring,
2689 			     struct ixgbevf_ring_container *head)
2690 {
2691 	ring->next = head->ring;
2692 	head->ring = ring;
2693 	head->count++;
2694 }
2695 
2696 /**
2697  * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector
2698  * @adapter: board private structure to initialize
2699  * @v_idx: index of vector in adapter struct
2700  * @txr_count: number of Tx rings for q vector
2701  * @txr_idx: index of first Tx ring to assign
2702  * @xdp_count: total number of XDP rings to allocate
2703  * @xdp_idx: index of first XDP ring to allocate
2704  * @rxr_count: number of Rx rings for q vector
2705  * @rxr_idx: index of first Rx ring to assign
2706  *
2707  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
2708  **/
2709 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx,
2710 				  int txr_count, int txr_idx,
2711 				  int xdp_count, int xdp_idx,
2712 				  int rxr_count, int rxr_idx)
2713 {
2714 	struct ixgbevf_q_vector *q_vector;
2715 	int reg_idx = txr_idx + xdp_idx;
2716 	struct ixgbevf_ring *ring;
2717 	int ring_count, size;
2718 
2719 	ring_count = txr_count + xdp_count + rxr_count;
2720 	size = sizeof(*q_vector) + (sizeof(*ring) * ring_count);
2721 
2722 	/* allocate q_vector and rings */
2723 	q_vector = kzalloc(size, GFP_KERNEL);
2724 	if (!q_vector)
2725 		return -ENOMEM;
2726 
2727 	/* initialize NAPI */
2728 	netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64);
2729 
2730 	/* tie q_vector and adapter together */
2731 	adapter->q_vector[v_idx] = q_vector;
2732 	q_vector->adapter = adapter;
2733 	q_vector->v_idx = v_idx;
2734 
2735 	/* initialize pointer to rings */
2736 	ring = q_vector->ring;
2737 
2738 	while (txr_count) {
2739 		/* assign generic ring traits */
2740 		ring->dev = &adapter->pdev->dev;
2741 		ring->netdev = adapter->netdev;
2742 
2743 		/* configure backlink on ring */
2744 		ring->q_vector = q_vector;
2745 
2746 		/* update q_vector Tx values */
2747 		ixgbevf_add_ring(ring, &q_vector->tx);
2748 
2749 		/* apply Tx specific ring traits */
2750 		ring->count = adapter->tx_ring_count;
2751 		ring->queue_index = txr_idx;
2752 		ring->reg_idx = reg_idx;
2753 
2754 		/* assign ring to adapter */
2755 		 adapter->tx_ring[txr_idx] = ring;
2756 
2757 		/* update count and index */
2758 		txr_count--;
2759 		txr_idx++;
2760 		reg_idx++;
2761 
2762 		/* push pointer to next ring */
2763 		ring++;
2764 	}
2765 
2766 	while (xdp_count) {
2767 		/* assign generic ring traits */
2768 		ring->dev = &adapter->pdev->dev;
2769 		ring->netdev = adapter->netdev;
2770 
2771 		/* configure backlink on ring */
2772 		ring->q_vector = q_vector;
2773 
2774 		/* update q_vector Tx values */
2775 		ixgbevf_add_ring(ring, &q_vector->tx);
2776 
2777 		/* apply Tx specific ring traits */
2778 		ring->count = adapter->tx_ring_count;
2779 		ring->queue_index = xdp_idx;
2780 		ring->reg_idx = reg_idx;
2781 		set_ring_xdp(ring);
2782 
2783 		/* assign ring to adapter */
2784 		adapter->xdp_ring[xdp_idx] = ring;
2785 
2786 		/* update count and index */
2787 		xdp_count--;
2788 		xdp_idx++;
2789 		reg_idx++;
2790 
2791 		/* push pointer to next ring */
2792 		ring++;
2793 	}
2794 
2795 	while (rxr_count) {
2796 		/* assign generic ring traits */
2797 		ring->dev = &adapter->pdev->dev;
2798 		ring->netdev = adapter->netdev;
2799 
2800 		/* configure backlink on ring */
2801 		ring->q_vector = q_vector;
2802 
2803 		/* update q_vector Rx values */
2804 		ixgbevf_add_ring(ring, &q_vector->rx);
2805 
2806 		/* apply Rx specific ring traits */
2807 		ring->count = adapter->rx_ring_count;
2808 		ring->queue_index = rxr_idx;
2809 		ring->reg_idx = rxr_idx;
2810 
2811 		/* assign ring to adapter */
2812 		adapter->rx_ring[rxr_idx] = ring;
2813 
2814 		/* update count and index */
2815 		rxr_count--;
2816 		rxr_idx++;
2817 
2818 		/* push pointer to next ring */
2819 		ring++;
2820 	}
2821 
2822 	return 0;
2823 }
2824 
2825 /**
2826  * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector
2827  * @adapter: board private structure to initialize
2828  * @v_idx: index of vector in adapter struct
2829  *
2830  * This function frees the memory allocated to the q_vector.  In addition if
2831  * NAPI is enabled it will delete any references to the NAPI struct prior
2832  * to freeing the q_vector.
2833  **/
2834 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx)
2835 {
2836 	struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx];
2837 	struct ixgbevf_ring *ring;
2838 
2839 	ixgbevf_for_each_ring(ring, q_vector->tx) {
2840 		if (ring_is_xdp(ring))
2841 			adapter->xdp_ring[ring->queue_index] = NULL;
2842 		else
2843 			adapter->tx_ring[ring->queue_index] = NULL;
2844 	}
2845 
2846 	ixgbevf_for_each_ring(ring, q_vector->rx)
2847 		adapter->rx_ring[ring->queue_index] = NULL;
2848 
2849 	adapter->q_vector[v_idx] = NULL;
2850 	netif_napi_del(&q_vector->napi);
2851 
2852 	/* ixgbevf_get_stats() might access the rings on this vector,
2853 	 * we must wait a grace period before freeing it.
2854 	 */
2855 	kfree_rcu(q_vector, rcu);
2856 }
2857 
2858 /**
2859  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2860  * @adapter: board private structure to initialize
2861  *
2862  * We allocate one q_vector per queue interrupt.  If allocation fails we
2863  * return -ENOMEM.
2864  **/
2865 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2866 {
2867 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2868 	int rxr_remaining = adapter->num_rx_queues;
2869 	int txr_remaining = adapter->num_tx_queues;
2870 	int xdp_remaining = adapter->num_xdp_queues;
2871 	int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0;
2872 	int err;
2873 
2874 	if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) {
2875 		for (; rxr_remaining; v_idx++, q_vectors--) {
2876 			int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2877 
2878 			err = ixgbevf_alloc_q_vector(adapter, v_idx,
2879 						     0, 0, 0, 0, rqpv, rxr_idx);
2880 			if (err)
2881 				goto err_out;
2882 
2883 			/* update counts and index */
2884 			rxr_remaining -= rqpv;
2885 			rxr_idx += rqpv;
2886 		}
2887 	}
2888 
2889 	for (; q_vectors; v_idx++, q_vectors--) {
2890 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2891 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors);
2892 		int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors);
2893 
2894 		err = ixgbevf_alloc_q_vector(adapter, v_idx,
2895 					     tqpv, txr_idx,
2896 					     xqpv, xdp_idx,
2897 					     rqpv, rxr_idx);
2898 
2899 		if (err)
2900 			goto err_out;
2901 
2902 		/* update counts and index */
2903 		rxr_remaining -= rqpv;
2904 		rxr_idx += rqpv;
2905 		txr_remaining -= tqpv;
2906 		txr_idx += tqpv;
2907 		xdp_remaining -= xqpv;
2908 		xdp_idx += xqpv;
2909 	}
2910 
2911 	return 0;
2912 
2913 err_out:
2914 	while (v_idx) {
2915 		v_idx--;
2916 		ixgbevf_free_q_vector(adapter, v_idx);
2917 	}
2918 
2919 	return -ENOMEM;
2920 }
2921 
2922 /**
2923  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2924  * @adapter: board private structure to initialize
2925  *
2926  * This function frees the memory allocated to the q_vectors.  In addition if
2927  * NAPI is enabled it will delete any references to the NAPI struct prior
2928  * to freeing the q_vector.
2929  **/
2930 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2931 {
2932 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2933 
2934 	while (q_vectors) {
2935 		q_vectors--;
2936 		ixgbevf_free_q_vector(adapter, q_vectors);
2937 	}
2938 }
2939 
2940 /**
2941  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2942  * @adapter: board private structure
2943  *
2944  **/
2945 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2946 {
2947 	if (!adapter->msix_entries)
2948 		return;
2949 
2950 	pci_disable_msix(adapter->pdev);
2951 	kfree(adapter->msix_entries);
2952 	adapter->msix_entries = NULL;
2953 }
2954 
2955 /**
2956  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2957  * @adapter: board private structure to initialize
2958  *
2959  **/
2960 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2961 {
2962 	int err;
2963 
2964 	/* Number of supported queues */
2965 	ixgbevf_set_num_queues(adapter);
2966 
2967 	err = ixgbevf_set_interrupt_capability(adapter);
2968 	if (err) {
2969 		hw_dbg(&adapter->hw,
2970 		       "Unable to setup interrupt capabilities\n");
2971 		goto err_set_interrupt;
2972 	}
2973 
2974 	err = ixgbevf_alloc_q_vectors(adapter);
2975 	if (err) {
2976 		hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2977 		goto err_alloc_q_vectors;
2978 	}
2979 
2980 	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n",
2981 	       (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled",
2982 	       adapter->num_rx_queues, adapter->num_tx_queues,
2983 	       adapter->num_xdp_queues);
2984 
2985 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2986 
2987 	return 0;
2988 err_alloc_q_vectors:
2989 	ixgbevf_reset_interrupt_capability(adapter);
2990 err_set_interrupt:
2991 	return err;
2992 }
2993 
2994 /**
2995  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2996  * @adapter: board private structure to clear interrupt scheme on
2997  *
2998  * We go through and clear interrupt specific resources and reset the structure
2999  * to pre-load conditions
3000  **/
3001 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
3002 {
3003 	adapter->num_tx_queues = 0;
3004 	adapter->num_xdp_queues = 0;
3005 	adapter->num_rx_queues = 0;
3006 
3007 	ixgbevf_free_q_vectors(adapter);
3008 	ixgbevf_reset_interrupt_capability(adapter);
3009 }
3010 
3011 /**
3012  * ixgbevf_sw_init - Initialize general software structures
3013  * @adapter: board private structure to initialize
3014  *
3015  * ixgbevf_sw_init initializes the Adapter private data structure.
3016  * Fields are initialized based on PCI device information and
3017  * OS network device settings (MTU size).
3018  **/
3019 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
3020 {
3021 	struct ixgbe_hw *hw = &adapter->hw;
3022 	struct pci_dev *pdev = adapter->pdev;
3023 	struct net_device *netdev = adapter->netdev;
3024 	int err;
3025 
3026 	/* PCI config space info */
3027 	hw->vendor_id = pdev->vendor;
3028 	hw->device_id = pdev->device;
3029 	hw->revision_id = pdev->revision;
3030 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3031 	hw->subsystem_device_id = pdev->subsystem_device;
3032 
3033 	hw->mbx.ops.init_params(hw);
3034 
3035 	if (hw->mac.type >= ixgbe_mac_X550_vf) {
3036 		err = ixgbevf_init_rss_key(adapter);
3037 		if (err)
3038 			goto out;
3039 	}
3040 
3041 	/* assume legacy case in which PF would only give VF 2 queues */
3042 	hw->mac.max_tx_queues = 2;
3043 	hw->mac.max_rx_queues = 2;
3044 
3045 	/* lock to protect mailbox accesses */
3046 	spin_lock_init(&adapter->mbx_lock);
3047 
3048 	err = hw->mac.ops.reset_hw(hw);
3049 	if (err) {
3050 		dev_info(&pdev->dev,
3051 			 "PF still in reset state.  Is the PF interface up?\n");
3052 	} else {
3053 		err = hw->mac.ops.init_hw(hw);
3054 		if (err) {
3055 			pr_err("init_shared_code failed: %d\n", err);
3056 			goto out;
3057 		}
3058 		ixgbevf_negotiate_api(adapter);
3059 		err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
3060 		if (err)
3061 			dev_info(&pdev->dev, "Error reading MAC address\n");
3062 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
3063 			dev_info(&pdev->dev,
3064 				 "MAC address not assigned by administrator.\n");
3065 		eth_hw_addr_set(netdev, hw->mac.addr);
3066 	}
3067 
3068 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3069 		dev_info(&pdev->dev, "Assigning random MAC address\n");
3070 		eth_hw_addr_random(netdev);
3071 		ether_addr_copy(hw->mac.addr, netdev->dev_addr);
3072 		ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
3073 	}
3074 
3075 	/* Enable dynamic interrupt throttling rates */
3076 	adapter->rx_itr_setting = 1;
3077 	adapter->tx_itr_setting = 1;
3078 
3079 	/* set default ring sizes */
3080 	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
3081 	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
3082 
3083 	set_bit(__IXGBEVF_DOWN, &adapter->state);
3084 	return 0;
3085 
3086 out:
3087 	return err;
3088 }
3089 
3090 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
3091 	{							\
3092 		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
3093 		if (current_counter < last_counter)		\
3094 			counter += 0x100000000LL;		\
3095 		last_counter = current_counter;			\
3096 		counter &= 0xFFFFFFFF00000000LL;		\
3097 		counter |= current_counter;			\
3098 	}
3099 
3100 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
3101 	{								 \
3102 		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
3103 		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
3104 		u64 current_counter = (current_counter_msb << 32) |	 \
3105 			current_counter_lsb;				 \
3106 		if (current_counter < last_counter)			 \
3107 			counter += 0x1000000000LL;			 \
3108 		last_counter = current_counter;				 \
3109 		counter &= 0xFFFFFFF000000000LL;			 \
3110 		counter |= current_counter;				 \
3111 	}
3112 /**
3113  * ixgbevf_update_stats - Update the board statistics counters.
3114  * @adapter: board private structure
3115  **/
3116 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
3117 {
3118 	struct ixgbe_hw *hw = &adapter->hw;
3119 	u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0;
3120 	u64 alloc_rx_page = 0, hw_csum_rx_error = 0;
3121 	int i;
3122 
3123 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3124 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3125 		return;
3126 
3127 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
3128 				adapter->stats.vfgprc);
3129 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
3130 				adapter->stats.vfgptc);
3131 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
3132 				adapter->stats.last_vfgorc,
3133 				adapter->stats.vfgorc);
3134 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
3135 				adapter->stats.last_vfgotc,
3136 				adapter->stats.vfgotc);
3137 	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
3138 				adapter->stats.vfmprc);
3139 
3140 	for (i = 0;  i  < adapter->num_rx_queues;  i++) {
3141 		struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
3142 
3143 		hw_csum_rx_error += rx_ring->rx_stats.csum_err;
3144 		alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed;
3145 		alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
3146 		alloc_rx_page += rx_ring->rx_stats.alloc_rx_page;
3147 	}
3148 
3149 	adapter->hw_csum_rx_error = hw_csum_rx_error;
3150 	adapter->alloc_rx_page_failed = alloc_rx_page_failed;
3151 	adapter->alloc_rx_buff_failed = alloc_rx_buff_failed;
3152 	adapter->alloc_rx_page = alloc_rx_page;
3153 }
3154 
3155 /**
3156  * ixgbevf_service_timer - Timer Call-back
3157  * @t: pointer to timer_list struct
3158  **/
3159 static void ixgbevf_service_timer(struct timer_list *t)
3160 {
3161 	struct ixgbevf_adapter *adapter = from_timer(adapter, t,
3162 						     service_timer);
3163 
3164 	/* Reset the timer */
3165 	mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
3166 
3167 	ixgbevf_service_event_schedule(adapter);
3168 }
3169 
3170 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
3171 {
3172 	if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state))
3173 		return;
3174 
3175 	rtnl_lock();
3176 	/* If we're already down or resetting, just bail */
3177 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3178 	    test_bit(__IXGBEVF_REMOVING, &adapter->state) ||
3179 	    test_bit(__IXGBEVF_RESETTING, &adapter->state)) {
3180 		rtnl_unlock();
3181 		return;
3182 	}
3183 
3184 	adapter->tx_timeout_count++;
3185 
3186 	ixgbevf_reinit_locked(adapter);
3187 	rtnl_unlock();
3188 }
3189 
3190 /**
3191  * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
3192  * @adapter: pointer to the device adapter structure
3193  *
3194  * This function serves two purposes.  First it strobes the interrupt lines
3195  * in order to make certain interrupts are occurring.  Secondly it sets the
3196  * bits needed to check for TX hangs.  As a result we should immediately
3197  * determine if a hang has occurred.
3198  **/
3199 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
3200 {
3201 	struct ixgbe_hw *hw = &adapter->hw;
3202 	u32 eics = 0;
3203 	int i;
3204 
3205 	/* If we're down or resetting, just bail */
3206 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3207 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3208 		return;
3209 
3210 	/* Force detection of hung controller */
3211 	if (netif_carrier_ok(adapter->netdev)) {
3212 		for (i = 0; i < adapter->num_tx_queues; i++)
3213 			set_check_for_tx_hang(adapter->tx_ring[i]);
3214 		for (i = 0; i < adapter->num_xdp_queues; i++)
3215 			set_check_for_tx_hang(adapter->xdp_ring[i]);
3216 	}
3217 
3218 	/* get one bit for every active Tx/Rx interrupt vector */
3219 	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
3220 		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
3221 
3222 		if (qv->rx.ring || qv->tx.ring)
3223 			eics |= BIT(i);
3224 	}
3225 
3226 	/* Cause software interrupt to ensure rings are cleaned */
3227 	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
3228 }
3229 
3230 /**
3231  * ixgbevf_watchdog_update_link - update the link status
3232  * @adapter: pointer to the device adapter structure
3233  **/
3234 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
3235 {
3236 	struct ixgbe_hw *hw = &adapter->hw;
3237 	u32 link_speed = adapter->link_speed;
3238 	bool link_up = adapter->link_up;
3239 	s32 err;
3240 
3241 	spin_lock_bh(&adapter->mbx_lock);
3242 
3243 	err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
3244 
3245 	spin_unlock_bh(&adapter->mbx_lock);
3246 
3247 	/* if check for link returns error we will need to reset */
3248 	if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
3249 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
3250 		link_up = false;
3251 	}
3252 
3253 	adapter->link_up = link_up;
3254 	adapter->link_speed = link_speed;
3255 }
3256 
3257 /**
3258  * ixgbevf_watchdog_link_is_up - update netif_carrier status and
3259  *				 print link up message
3260  * @adapter: pointer to the device adapter structure
3261  **/
3262 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
3263 {
3264 	struct net_device *netdev = adapter->netdev;
3265 
3266 	/* only continue if link was previously down */
3267 	if (netif_carrier_ok(netdev))
3268 		return;
3269 
3270 	dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
3271 		 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
3272 		 "10 Gbps" :
3273 		 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
3274 		 "1 Gbps" :
3275 		 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
3276 		 "100 Mbps" :
3277 		 "unknown speed");
3278 
3279 	netif_carrier_on(netdev);
3280 }
3281 
3282 /**
3283  * ixgbevf_watchdog_link_is_down - update netif_carrier status and
3284  *				   print link down message
3285  * @adapter: pointer to the adapter structure
3286  **/
3287 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
3288 {
3289 	struct net_device *netdev = adapter->netdev;
3290 
3291 	adapter->link_speed = 0;
3292 
3293 	/* only continue if link was up previously */
3294 	if (!netif_carrier_ok(netdev))
3295 		return;
3296 
3297 	dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
3298 
3299 	netif_carrier_off(netdev);
3300 }
3301 
3302 /**
3303  * ixgbevf_watchdog_subtask - worker thread to bring link up
3304  * @adapter: board private structure
3305  **/
3306 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
3307 {
3308 	/* if interface is down do nothing */
3309 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3310 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3311 		return;
3312 
3313 	ixgbevf_watchdog_update_link(adapter);
3314 
3315 	if (adapter->link_up)
3316 		ixgbevf_watchdog_link_is_up(adapter);
3317 	else
3318 		ixgbevf_watchdog_link_is_down(adapter);
3319 
3320 	ixgbevf_update_stats(adapter);
3321 }
3322 
3323 /**
3324  * ixgbevf_service_task - manages and runs subtasks
3325  * @work: pointer to work_struct containing our data
3326  **/
3327 static void ixgbevf_service_task(struct work_struct *work)
3328 {
3329 	struct ixgbevf_adapter *adapter = container_of(work,
3330 						       struct ixgbevf_adapter,
3331 						       service_task);
3332 	struct ixgbe_hw *hw = &adapter->hw;
3333 
3334 	if (IXGBE_REMOVED(hw->hw_addr)) {
3335 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
3336 			rtnl_lock();
3337 			ixgbevf_down(adapter);
3338 			rtnl_unlock();
3339 		}
3340 		return;
3341 	}
3342 
3343 	ixgbevf_queue_reset_subtask(adapter);
3344 	ixgbevf_reset_subtask(adapter);
3345 	ixgbevf_watchdog_subtask(adapter);
3346 	ixgbevf_check_hang_subtask(adapter);
3347 
3348 	ixgbevf_service_event_complete(adapter);
3349 }
3350 
3351 /**
3352  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
3353  * @tx_ring: Tx descriptor ring for a specific queue
3354  *
3355  * Free all transmit software resources
3356  **/
3357 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
3358 {
3359 	ixgbevf_clean_tx_ring(tx_ring);
3360 
3361 	vfree(tx_ring->tx_buffer_info);
3362 	tx_ring->tx_buffer_info = NULL;
3363 
3364 	/* if not set, then don't free */
3365 	if (!tx_ring->desc)
3366 		return;
3367 
3368 	dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
3369 			  tx_ring->dma);
3370 
3371 	tx_ring->desc = NULL;
3372 }
3373 
3374 /**
3375  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
3376  * @adapter: board private structure
3377  *
3378  * Free all transmit software resources
3379  **/
3380 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
3381 {
3382 	int i;
3383 
3384 	for (i = 0; i < adapter->num_tx_queues; i++)
3385 		if (adapter->tx_ring[i]->desc)
3386 			ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3387 	for (i = 0; i < adapter->num_xdp_queues; i++)
3388 		if (adapter->xdp_ring[i]->desc)
3389 			ixgbevf_free_tx_resources(adapter->xdp_ring[i]);
3390 }
3391 
3392 /**
3393  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
3394  * @tx_ring: Tx descriptor ring (for a specific queue) to setup
3395  *
3396  * Return 0 on success, negative on failure
3397  **/
3398 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
3399 {
3400 	struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
3401 	int size;
3402 
3403 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
3404 	tx_ring->tx_buffer_info = vmalloc(size);
3405 	if (!tx_ring->tx_buffer_info)
3406 		goto err;
3407 
3408 	u64_stats_init(&tx_ring->syncp);
3409 
3410 	/* round up to nearest 4K */
3411 	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
3412 	tx_ring->size = ALIGN(tx_ring->size, 4096);
3413 
3414 	tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
3415 					   &tx_ring->dma, GFP_KERNEL);
3416 	if (!tx_ring->desc)
3417 		goto err;
3418 
3419 	return 0;
3420 
3421 err:
3422 	vfree(tx_ring->tx_buffer_info);
3423 	tx_ring->tx_buffer_info = NULL;
3424 	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3425 	return -ENOMEM;
3426 }
3427 
3428 /**
3429  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3430  * @adapter: board private structure
3431  *
3432  * If this function returns with an error, then it's possible one or
3433  * more of the rings is populated (while the rest are not).  It is the
3434  * callers duty to clean those orphaned rings.
3435  *
3436  * Return 0 on success, negative on failure
3437  **/
3438 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3439 {
3440 	int i, j = 0, err = 0;
3441 
3442 	for (i = 0; i < adapter->num_tx_queues; i++) {
3443 		err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3444 		if (!err)
3445 			continue;
3446 		hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3447 		goto err_setup_tx;
3448 	}
3449 
3450 	for (j = 0; j < adapter->num_xdp_queues; j++) {
3451 		err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]);
3452 		if (!err)
3453 			continue;
3454 		hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j);
3455 		goto err_setup_tx;
3456 	}
3457 
3458 	return 0;
3459 err_setup_tx:
3460 	/* rewind the index freeing the rings as we go */
3461 	while (j--)
3462 		ixgbevf_free_tx_resources(adapter->xdp_ring[j]);
3463 	while (i--)
3464 		ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3465 
3466 	return err;
3467 }
3468 
3469 /**
3470  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3471  * @adapter: board private structure
3472  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3473  *
3474  * Returns 0 on success, negative on failure
3475  **/
3476 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
3477 			       struct ixgbevf_ring *rx_ring)
3478 {
3479 	int size;
3480 
3481 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3482 	rx_ring->rx_buffer_info = vmalloc(size);
3483 	if (!rx_ring->rx_buffer_info)
3484 		goto err;
3485 
3486 	u64_stats_init(&rx_ring->syncp);
3487 
3488 	/* Round up to nearest 4K */
3489 	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3490 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3491 
3492 	rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3493 					   &rx_ring->dma, GFP_KERNEL);
3494 
3495 	if (!rx_ring->desc)
3496 		goto err;
3497 
3498 	/* XDP RX-queue info */
3499 	if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev,
3500 			     rx_ring->queue_index, 0) < 0)
3501 		goto err;
3502 
3503 	rx_ring->xdp_prog = adapter->xdp_prog;
3504 
3505 	return 0;
3506 err:
3507 	vfree(rx_ring->rx_buffer_info);
3508 	rx_ring->rx_buffer_info = NULL;
3509 	dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3510 	return -ENOMEM;
3511 }
3512 
3513 /**
3514  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3515  * @adapter: board private structure
3516  *
3517  * If this function returns with an error, then it's possible one or
3518  * more of the rings is populated (while the rest are not).  It is the
3519  * callers duty to clean those orphaned rings.
3520  *
3521  * Return 0 on success, negative on failure
3522  **/
3523 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3524 {
3525 	int i, err = 0;
3526 
3527 	for (i = 0; i < adapter->num_rx_queues; i++) {
3528 		err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]);
3529 		if (!err)
3530 			continue;
3531 		hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3532 		goto err_setup_rx;
3533 	}
3534 
3535 	return 0;
3536 err_setup_rx:
3537 	/* rewind the index freeing the rings as we go */
3538 	while (i--)
3539 		ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3540 	return err;
3541 }
3542 
3543 /**
3544  * ixgbevf_free_rx_resources - Free Rx Resources
3545  * @rx_ring: ring to clean the resources from
3546  *
3547  * Free all receive software resources
3548  **/
3549 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3550 {
3551 	ixgbevf_clean_rx_ring(rx_ring);
3552 
3553 	rx_ring->xdp_prog = NULL;
3554 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
3555 	vfree(rx_ring->rx_buffer_info);
3556 	rx_ring->rx_buffer_info = NULL;
3557 
3558 	dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3559 			  rx_ring->dma);
3560 
3561 	rx_ring->desc = NULL;
3562 }
3563 
3564 /**
3565  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3566  * @adapter: board private structure
3567  *
3568  * Free all receive software resources
3569  **/
3570 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3571 {
3572 	int i;
3573 
3574 	for (i = 0; i < adapter->num_rx_queues; i++)
3575 		if (adapter->rx_ring[i]->desc)
3576 			ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3577 }
3578 
3579 /**
3580  * ixgbevf_open - Called when a network interface is made active
3581  * @netdev: network interface device structure
3582  *
3583  * Returns 0 on success, negative value on failure
3584  *
3585  * The open entry point is called when a network interface is made
3586  * active by the system (IFF_UP).  At this point all resources needed
3587  * for transmit and receive operations are allocated, the interrupt
3588  * handler is registered with the OS, the watchdog timer is started,
3589  * and the stack is notified that the interface is ready.
3590  **/
3591 int ixgbevf_open(struct net_device *netdev)
3592 {
3593 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3594 	struct ixgbe_hw *hw = &adapter->hw;
3595 	int err;
3596 
3597 	/* A previous failure to open the device because of a lack of
3598 	 * available MSIX vector resources may have reset the number
3599 	 * of msix vectors variable to zero.  The only way to recover
3600 	 * is to unload/reload the driver and hope that the system has
3601 	 * been able to recover some MSIX vector resources.
3602 	 */
3603 	if (!adapter->num_msix_vectors)
3604 		return -ENOMEM;
3605 
3606 	if (hw->adapter_stopped) {
3607 		ixgbevf_reset(adapter);
3608 		/* if adapter is still stopped then PF isn't up and
3609 		 * the VF can't start.
3610 		 */
3611 		if (hw->adapter_stopped) {
3612 			err = IXGBE_ERR_MBX;
3613 			pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3614 			goto err_setup_reset;
3615 		}
3616 	}
3617 
3618 	/* disallow open during test */
3619 	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3620 		return -EBUSY;
3621 
3622 	netif_carrier_off(netdev);
3623 
3624 	/* allocate transmit descriptors */
3625 	err = ixgbevf_setup_all_tx_resources(adapter);
3626 	if (err)
3627 		goto err_setup_tx;
3628 
3629 	/* allocate receive descriptors */
3630 	err = ixgbevf_setup_all_rx_resources(adapter);
3631 	if (err)
3632 		goto err_setup_rx;
3633 
3634 	ixgbevf_configure(adapter);
3635 
3636 	err = ixgbevf_request_irq(adapter);
3637 	if (err)
3638 		goto err_req_irq;
3639 
3640 	/* Notify the stack of the actual queue counts. */
3641 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3642 	if (err)
3643 		goto err_set_queues;
3644 
3645 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3646 	if (err)
3647 		goto err_set_queues;
3648 
3649 	ixgbevf_up_complete(adapter);
3650 
3651 	return 0;
3652 
3653 err_set_queues:
3654 	ixgbevf_free_irq(adapter);
3655 err_req_irq:
3656 	ixgbevf_free_all_rx_resources(adapter);
3657 err_setup_rx:
3658 	ixgbevf_free_all_tx_resources(adapter);
3659 err_setup_tx:
3660 	ixgbevf_reset(adapter);
3661 err_setup_reset:
3662 
3663 	return err;
3664 }
3665 
3666 /**
3667  * ixgbevf_close_suspend - actions necessary to both suspend and close flows
3668  * @adapter: the private adapter struct
3669  *
3670  * This function should contain the necessary work common to both suspending
3671  * and closing of the device.
3672  */
3673 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter)
3674 {
3675 	ixgbevf_down(adapter);
3676 	ixgbevf_free_irq(adapter);
3677 	ixgbevf_free_all_tx_resources(adapter);
3678 	ixgbevf_free_all_rx_resources(adapter);
3679 }
3680 
3681 /**
3682  * ixgbevf_close - Disables a network interface
3683  * @netdev: network interface device structure
3684  *
3685  * Returns 0, this is not allowed to fail
3686  *
3687  * The close entry point is called when an interface is de-activated
3688  * by the OS.  The hardware is still under the drivers control, but
3689  * needs to be disabled.  A global MAC reset is issued to stop the
3690  * hardware, and all transmit and receive resources are freed.
3691  **/
3692 int ixgbevf_close(struct net_device *netdev)
3693 {
3694 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3695 
3696 	if (netif_device_present(netdev))
3697 		ixgbevf_close_suspend(adapter);
3698 
3699 	return 0;
3700 }
3701 
3702 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3703 {
3704 	struct net_device *dev = adapter->netdev;
3705 
3706 	if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED,
3707 				&adapter->state))
3708 		return;
3709 
3710 	/* if interface is down do nothing */
3711 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3712 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3713 		return;
3714 
3715 	/* Hardware has to reinitialize queues and interrupts to
3716 	 * match packet buffer alignment. Unfortunately, the
3717 	 * hardware is not flexible enough to do this dynamically.
3718 	 */
3719 	rtnl_lock();
3720 
3721 	if (netif_running(dev))
3722 		ixgbevf_close(dev);
3723 
3724 	ixgbevf_clear_interrupt_scheme(adapter);
3725 	ixgbevf_init_interrupt_scheme(adapter);
3726 
3727 	if (netif_running(dev))
3728 		ixgbevf_open(dev);
3729 
3730 	rtnl_unlock();
3731 }
3732 
3733 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3734 				u32 vlan_macip_lens, u32 fceof_saidx,
3735 				u32 type_tucmd, u32 mss_l4len_idx)
3736 {
3737 	struct ixgbe_adv_tx_context_desc *context_desc;
3738 	u16 i = tx_ring->next_to_use;
3739 
3740 	context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3741 
3742 	i++;
3743 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3744 
3745 	/* set bits to identify this as an advanced context descriptor */
3746 	type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3747 
3748 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
3749 	context_desc->fceof_saidx	= cpu_to_le32(fceof_saidx);
3750 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
3751 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
3752 }
3753 
3754 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3755 		       struct ixgbevf_tx_buffer *first,
3756 		       u8 *hdr_len,
3757 		       struct ixgbevf_ipsec_tx_data *itd)
3758 {
3759 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
3760 	struct sk_buff *skb = first->skb;
3761 	union {
3762 		struct iphdr *v4;
3763 		struct ipv6hdr *v6;
3764 		unsigned char *hdr;
3765 	} ip;
3766 	union {
3767 		struct tcphdr *tcp;
3768 		unsigned char *hdr;
3769 	} l4;
3770 	u32 paylen, l4_offset;
3771 	u32 fceof_saidx = 0;
3772 	int err;
3773 
3774 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3775 		return 0;
3776 
3777 	if (!skb_is_gso(skb))
3778 		return 0;
3779 
3780 	err = skb_cow_head(skb, 0);
3781 	if (err < 0)
3782 		return err;
3783 
3784 	if (eth_p_mpls(first->protocol))
3785 		ip.hdr = skb_inner_network_header(skb);
3786 	else
3787 		ip.hdr = skb_network_header(skb);
3788 	l4.hdr = skb_checksum_start(skb);
3789 
3790 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3791 	type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3792 
3793 	/* initialize outer IP header fields */
3794 	if (ip.v4->version == 4) {
3795 		unsigned char *csum_start = skb_checksum_start(skb);
3796 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
3797 		int len = csum_start - trans_start;
3798 
3799 		/* IP header will have to cancel out any data that
3800 		 * is not a part of the outer IP header, so set to
3801 		 * a reverse csum if needed, else init check to 0.
3802 		 */
3803 		ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ?
3804 					   csum_fold(csum_partial(trans_start,
3805 								  len, 0)) : 0;
3806 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3807 
3808 		ip.v4->tot_len = 0;
3809 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3810 				   IXGBE_TX_FLAGS_CSUM |
3811 				   IXGBE_TX_FLAGS_IPV4;
3812 	} else {
3813 		ip.v6->payload_len = 0;
3814 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3815 				   IXGBE_TX_FLAGS_CSUM;
3816 	}
3817 
3818 	/* determine offset of inner transport header */
3819 	l4_offset = l4.hdr - skb->data;
3820 
3821 	/* compute length of segmentation header */
3822 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3823 
3824 	/* remove payload length from inner checksum */
3825 	paylen = skb->len - l4_offset;
3826 	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3827 
3828 	/* update gso size and bytecount with header size */
3829 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3830 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3831 
3832 	/* mss_l4len_id: use 1 as index for TSO */
3833 	mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT;
3834 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3835 	mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT);
3836 
3837 	fceof_saidx |= itd->pfsa;
3838 	type_tucmd |= itd->flags | itd->trailer_len;
3839 
3840 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3841 	vlan_macip_lens = l4.hdr - ip.hdr;
3842 	vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT;
3843 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3844 
3845 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd,
3846 			    mss_l4len_idx);
3847 
3848 	return 1;
3849 }
3850 
3851 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3852 			    struct ixgbevf_tx_buffer *first,
3853 			    struct ixgbevf_ipsec_tx_data *itd)
3854 {
3855 	struct sk_buff *skb = first->skb;
3856 	u32 vlan_macip_lens = 0;
3857 	u32 fceof_saidx = 0;
3858 	u32 type_tucmd = 0;
3859 
3860 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3861 		goto no_csum;
3862 
3863 	switch (skb->csum_offset) {
3864 	case offsetof(struct tcphdr, check):
3865 		type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3866 		fallthrough;
3867 	case offsetof(struct udphdr, check):
3868 		break;
3869 	case offsetof(struct sctphdr, checksum):
3870 		/* validate that this is actually an SCTP request */
3871 		if (skb_csum_is_sctp(skb)) {
3872 			type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3873 			break;
3874 		}
3875 		fallthrough;
3876 	default:
3877 		skb_checksum_help(skb);
3878 		goto no_csum;
3879 	}
3880 
3881 	if (first->protocol == htons(ETH_P_IP))
3882 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3883 
3884 	/* update TX checksum flag */
3885 	first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3886 	vlan_macip_lens = skb_checksum_start_offset(skb) -
3887 			  skb_network_offset(skb);
3888 no_csum:
3889 	/* vlan_macip_lens: MACLEN, VLAN tag */
3890 	vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3891 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3892 
3893 	fceof_saidx |= itd->pfsa;
3894 	type_tucmd |= itd->flags | itd->trailer_len;
3895 
3896 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3897 			    fceof_saidx, type_tucmd, 0);
3898 }
3899 
3900 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3901 {
3902 	/* set type for advanced descriptor with frame checksum insertion */
3903 	__le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3904 				      IXGBE_ADVTXD_DCMD_IFCS |
3905 				      IXGBE_ADVTXD_DCMD_DEXT);
3906 
3907 	/* set HW VLAN bit if VLAN is present */
3908 	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3909 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3910 
3911 	/* set segmentation enable bits for TSO/FSO */
3912 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3913 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3914 
3915 	return cmd_type;
3916 }
3917 
3918 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3919 				     u32 tx_flags, unsigned int paylen)
3920 {
3921 	__le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3922 
3923 	/* enable L4 checksum for TSO and TX checksum offload */
3924 	if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3925 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3926 
3927 	/* enble IPv4 checksum for TSO */
3928 	if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3929 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3930 
3931 	/* enable IPsec */
3932 	if (tx_flags & IXGBE_TX_FLAGS_IPSEC)
3933 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC);
3934 
3935 	/* use index 1 context for TSO/FSO/FCOE/IPSEC */
3936 	if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC))
3937 		olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT);
3938 
3939 	/* Check Context must be set if Tx switch is enabled, which it
3940 	 * always is for case where virtual functions are running
3941 	 */
3942 	olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3943 
3944 	tx_desc->read.olinfo_status = olinfo_status;
3945 }
3946 
3947 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3948 			   struct ixgbevf_tx_buffer *first,
3949 			   const u8 hdr_len)
3950 {
3951 	struct sk_buff *skb = first->skb;
3952 	struct ixgbevf_tx_buffer *tx_buffer;
3953 	union ixgbe_adv_tx_desc *tx_desc;
3954 	skb_frag_t *frag;
3955 	dma_addr_t dma;
3956 	unsigned int data_len, size;
3957 	u32 tx_flags = first->tx_flags;
3958 	__le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3959 	u16 i = tx_ring->next_to_use;
3960 
3961 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3962 
3963 	ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
3964 
3965 	size = skb_headlen(skb);
3966 	data_len = skb->data_len;
3967 
3968 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3969 
3970 	tx_buffer = first;
3971 
3972 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3973 		if (dma_mapping_error(tx_ring->dev, dma))
3974 			goto dma_error;
3975 
3976 		/* record length, and DMA address */
3977 		dma_unmap_len_set(tx_buffer, len, size);
3978 		dma_unmap_addr_set(tx_buffer, dma, dma);
3979 
3980 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3981 
3982 		while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3983 			tx_desc->read.cmd_type_len =
3984 				cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3985 
3986 			i++;
3987 			tx_desc++;
3988 			if (i == tx_ring->count) {
3989 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3990 				i = 0;
3991 			}
3992 			tx_desc->read.olinfo_status = 0;
3993 
3994 			dma += IXGBE_MAX_DATA_PER_TXD;
3995 			size -= IXGBE_MAX_DATA_PER_TXD;
3996 
3997 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
3998 		}
3999 
4000 		if (likely(!data_len))
4001 			break;
4002 
4003 		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4004 
4005 		i++;
4006 		tx_desc++;
4007 		if (i == tx_ring->count) {
4008 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
4009 			i = 0;
4010 		}
4011 		tx_desc->read.olinfo_status = 0;
4012 
4013 		size = skb_frag_size(frag);
4014 		data_len -= size;
4015 
4016 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
4017 				       DMA_TO_DEVICE);
4018 
4019 		tx_buffer = &tx_ring->tx_buffer_info[i];
4020 	}
4021 
4022 	/* write last descriptor with RS and EOP bits */
4023 	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
4024 	tx_desc->read.cmd_type_len = cmd_type;
4025 
4026 	/* set the timestamp */
4027 	first->time_stamp = jiffies;
4028 
4029 	skb_tx_timestamp(skb);
4030 
4031 	/* Force memory writes to complete before letting h/w know there
4032 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4033 	 * memory model archs, such as IA-64).
4034 	 *
4035 	 * We also need this memory barrier (wmb) to make certain all of the
4036 	 * status bits have been updated before next_to_watch is written.
4037 	 */
4038 	wmb();
4039 
4040 	/* set next_to_watch value indicating a packet is present */
4041 	first->next_to_watch = tx_desc;
4042 
4043 	i++;
4044 	if (i == tx_ring->count)
4045 		i = 0;
4046 
4047 	tx_ring->next_to_use = i;
4048 
4049 	/* notify HW of packet */
4050 	ixgbevf_write_tail(tx_ring, i);
4051 
4052 	return;
4053 dma_error:
4054 	dev_err(tx_ring->dev, "TX DMA map failed\n");
4055 	tx_buffer = &tx_ring->tx_buffer_info[i];
4056 
4057 	/* clear dma mappings for failed tx_buffer_info map */
4058 	while (tx_buffer != first) {
4059 		if (dma_unmap_len(tx_buffer, len))
4060 			dma_unmap_page(tx_ring->dev,
4061 				       dma_unmap_addr(tx_buffer, dma),
4062 				       dma_unmap_len(tx_buffer, len),
4063 				       DMA_TO_DEVICE);
4064 		dma_unmap_len_set(tx_buffer, len, 0);
4065 
4066 		if (i-- == 0)
4067 			i += tx_ring->count;
4068 		tx_buffer = &tx_ring->tx_buffer_info[i];
4069 	}
4070 
4071 	if (dma_unmap_len(tx_buffer, len))
4072 		dma_unmap_single(tx_ring->dev,
4073 				 dma_unmap_addr(tx_buffer, dma),
4074 				 dma_unmap_len(tx_buffer, len),
4075 				 DMA_TO_DEVICE);
4076 	dma_unmap_len_set(tx_buffer, len, 0);
4077 
4078 	dev_kfree_skb_any(tx_buffer->skb);
4079 	tx_buffer->skb = NULL;
4080 
4081 	tx_ring->next_to_use = i;
4082 }
4083 
4084 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4085 {
4086 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
4087 	/* Herbert's original patch had:
4088 	 *  smp_mb__after_netif_stop_queue();
4089 	 * but since that doesn't exist yet, just open code it.
4090 	 */
4091 	smp_mb();
4092 
4093 	/* We need to check again in a case another CPU has just
4094 	 * made room available.
4095 	 */
4096 	if (likely(ixgbevf_desc_unused(tx_ring) < size))
4097 		return -EBUSY;
4098 
4099 	/* A reprieve! - use start_queue because it doesn't call schedule */
4100 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
4101 	++tx_ring->tx_stats.restart_queue;
4102 
4103 	return 0;
4104 }
4105 
4106 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4107 {
4108 	if (likely(ixgbevf_desc_unused(tx_ring) >= size))
4109 		return 0;
4110 	return __ixgbevf_maybe_stop_tx(tx_ring, size);
4111 }
4112 
4113 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb,
4114 				   struct ixgbevf_ring *tx_ring)
4115 {
4116 	struct ixgbevf_tx_buffer *first;
4117 	int tso;
4118 	u32 tx_flags = 0;
4119 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4120 	struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 };
4121 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4122 	unsigned short f;
4123 #endif
4124 	u8 hdr_len = 0;
4125 	u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
4126 
4127 	if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
4128 		dev_kfree_skb_any(skb);
4129 		return NETDEV_TX_OK;
4130 	}
4131 
4132 	/* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
4133 	 *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
4134 	 *       + 2 desc gap to keep tail from touching head,
4135 	 *       + 1 desc for context descriptor,
4136 	 * otherwise try next time
4137 	 */
4138 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4139 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
4140 		skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
4141 
4142 		count += TXD_USE_COUNT(skb_frag_size(frag));
4143 	}
4144 #else
4145 	count += skb_shinfo(skb)->nr_frags;
4146 #endif
4147 	if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
4148 		tx_ring->tx_stats.tx_busy++;
4149 		return NETDEV_TX_BUSY;
4150 	}
4151 
4152 	/* record the location of the first descriptor for this packet */
4153 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4154 	first->skb = skb;
4155 	first->bytecount = skb->len;
4156 	first->gso_segs = 1;
4157 
4158 	if (skb_vlan_tag_present(skb)) {
4159 		tx_flags |= skb_vlan_tag_get(skb);
4160 		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
4161 		tx_flags |= IXGBE_TX_FLAGS_VLAN;
4162 	}
4163 
4164 	/* record initial flags and protocol */
4165 	first->tx_flags = tx_flags;
4166 	first->protocol = vlan_get_protocol(skb);
4167 
4168 #ifdef CONFIG_IXGBEVF_IPSEC
4169 	if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx))
4170 		goto out_drop;
4171 #endif
4172 	tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx);
4173 	if (tso < 0)
4174 		goto out_drop;
4175 	else if (!tso)
4176 		ixgbevf_tx_csum(tx_ring, first, &ipsec_tx);
4177 
4178 	ixgbevf_tx_map(tx_ring, first, hdr_len);
4179 
4180 	ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
4181 
4182 	return NETDEV_TX_OK;
4183 
4184 out_drop:
4185 	dev_kfree_skb_any(first->skb);
4186 	first->skb = NULL;
4187 
4188 	return NETDEV_TX_OK;
4189 }
4190 
4191 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4192 {
4193 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4194 	struct ixgbevf_ring *tx_ring;
4195 
4196 	if (skb->len <= 0) {
4197 		dev_kfree_skb_any(skb);
4198 		return NETDEV_TX_OK;
4199 	}
4200 
4201 	/* The minimum packet size for olinfo paylen is 17 so pad the skb
4202 	 * in order to meet this minimum size requirement.
4203 	 */
4204 	if (skb->len < 17) {
4205 		if (skb_padto(skb, 17))
4206 			return NETDEV_TX_OK;
4207 		skb->len = 17;
4208 	}
4209 
4210 	tx_ring = adapter->tx_ring[skb->queue_mapping];
4211 	return ixgbevf_xmit_frame_ring(skb, tx_ring);
4212 }
4213 
4214 /**
4215  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
4216  * @netdev: network interface device structure
4217  * @p: pointer to an address structure
4218  *
4219  * Returns 0 on success, negative on failure
4220  **/
4221 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
4222 {
4223 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4224 	struct ixgbe_hw *hw = &adapter->hw;
4225 	struct sockaddr *addr = p;
4226 	int err;
4227 
4228 	if (!is_valid_ether_addr(addr->sa_data))
4229 		return -EADDRNOTAVAIL;
4230 
4231 	spin_lock_bh(&adapter->mbx_lock);
4232 
4233 	err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0);
4234 
4235 	spin_unlock_bh(&adapter->mbx_lock);
4236 
4237 	if (err)
4238 		return -EPERM;
4239 
4240 	ether_addr_copy(hw->mac.addr, addr->sa_data);
4241 	ether_addr_copy(hw->mac.perm_addr, addr->sa_data);
4242 	eth_hw_addr_set(netdev, addr->sa_data);
4243 
4244 	return 0;
4245 }
4246 
4247 /**
4248  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
4249  * @netdev: network interface device structure
4250  * @new_mtu: new value for maximum frame size
4251  *
4252  * Returns 0 on success, negative on failure
4253  **/
4254 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
4255 {
4256 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4257 	struct ixgbe_hw *hw = &adapter->hw;
4258 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4259 	int ret;
4260 
4261 	/* prevent MTU being changed to a size unsupported by XDP */
4262 	if (adapter->xdp_prog) {
4263 		dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n");
4264 		return -EPERM;
4265 	}
4266 
4267 	spin_lock_bh(&adapter->mbx_lock);
4268 	/* notify the PF of our intent to use this size of frame */
4269 	ret = hw->mac.ops.set_rlpml(hw, max_frame);
4270 	spin_unlock_bh(&adapter->mbx_lock);
4271 	if (ret)
4272 		return -EINVAL;
4273 
4274 	hw_dbg(hw, "changing MTU from %d to %d\n",
4275 	       netdev->mtu, new_mtu);
4276 
4277 	/* must set new MTU before calling down or up */
4278 	netdev->mtu = new_mtu;
4279 
4280 	if (netif_running(netdev))
4281 		ixgbevf_reinit_locked(adapter);
4282 
4283 	return 0;
4284 }
4285 
4286 static int __maybe_unused ixgbevf_suspend(struct device *dev_d)
4287 {
4288 	struct net_device *netdev = dev_get_drvdata(dev_d);
4289 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4290 
4291 	rtnl_lock();
4292 	netif_device_detach(netdev);
4293 
4294 	if (netif_running(netdev))
4295 		ixgbevf_close_suspend(adapter);
4296 
4297 	ixgbevf_clear_interrupt_scheme(adapter);
4298 	rtnl_unlock();
4299 
4300 	return 0;
4301 }
4302 
4303 static int __maybe_unused ixgbevf_resume(struct device *dev_d)
4304 {
4305 	struct pci_dev *pdev = to_pci_dev(dev_d);
4306 	struct net_device *netdev = pci_get_drvdata(pdev);
4307 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4308 	u32 err;
4309 
4310 	adapter->hw.hw_addr = adapter->io_addr;
4311 	smp_mb__before_atomic();
4312 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4313 	pci_set_master(pdev);
4314 
4315 	ixgbevf_reset(adapter);
4316 
4317 	rtnl_lock();
4318 	err = ixgbevf_init_interrupt_scheme(adapter);
4319 	if (!err && netif_running(netdev))
4320 		err = ixgbevf_open(netdev);
4321 	rtnl_unlock();
4322 	if (err)
4323 		return err;
4324 
4325 	netif_device_attach(netdev);
4326 
4327 	return err;
4328 }
4329 
4330 static void ixgbevf_shutdown(struct pci_dev *pdev)
4331 {
4332 	ixgbevf_suspend(&pdev->dev);
4333 }
4334 
4335 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats,
4336 				      const struct ixgbevf_ring *ring)
4337 {
4338 	u64 bytes, packets;
4339 	unsigned int start;
4340 
4341 	if (ring) {
4342 		do {
4343 			start = u64_stats_fetch_begin_irq(&ring->syncp);
4344 			bytes = ring->stats.bytes;
4345 			packets = ring->stats.packets;
4346 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4347 		stats->tx_bytes += bytes;
4348 		stats->tx_packets += packets;
4349 	}
4350 }
4351 
4352 static void ixgbevf_get_stats(struct net_device *netdev,
4353 			      struct rtnl_link_stats64 *stats)
4354 {
4355 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4356 	unsigned int start;
4357 	u64 bytes, packets;
4358 	const struct ixgbevf_ring *ring;
4359 	int i;
4360 
4361 	ixgbevf_update_stats(adapter);
4362 
4363 	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
4364 
4365 	rcu_read_lock();
4366 	for (i = 0; i < adapter->num_rx_queues; i++) {
4367 		ring = adapter->rx_ring[i];
4368 		do {
4369 			start = u64_stats_fetch_begin_irq(&ring->syncp);
4370 			bytes = ring->stats.bytes;
4371 			packets = ring->stats.packets;
4372 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4373 		stats->rx_bytes += bytes;
4374 		stats->rx_packets += packets;
4375 	}
4376 
4377 	for (i = 0; i < adapter->num_tx_queues; i++) {
4378 		ring = adapter->tx_ring[i];
4379 		ixgbevf_get_tx_ring_stats(stats, ring);
4380 	}
4381 
4382 	for (i = 0; i < adapter->num_xdp_queues; i++) {
4383 		ring = adapter->xdp_ring[i];
4384 		ixgbevf_get_tx_ring_stats(stats, ring);
4385 	}
4386 	rcu_read_unlock();
4387 }
4388 
4389 #define IXGBEVF_MAX_MAC_HDR_LEN		127
4390 #define IXGBEVF_MAX_NETWORK_HDR_LEN	511
4391 
4392 static netdev_features_t
4393 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev,
4394 		       netdev_features_t features)
4395 {
4396 	unsigned int network_hdr_len, mac_hdr_len;
4397 
4398 	/* Make certain the headers can be described by a context descriptor */
4399 	mac_hdr_len = skb_network_header(skb) - skb->data;
4400 	if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN))
4401 		return features & ~(NETIF_F_HW_CSUM |
4402 				    NETIF_F_SCTP_CRC |
4403 				    NETIF_F_HW_VLAN_CTAG_TX |
4404 				    NETIF_F_TSO |
4405 				    NETIF_F_TSO6);
4406 
4407 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4408 	if (unlikely(network_hdr_len >  IXGBEVF_MAX_NETWORK_HDR_LEN))
4409 		return features & ~(NETIF_F_HW_CSUM |
4410 				    NETIF_F_SCTP_CRC |
4411 				    NETIF_F_TSO |
4412 				    NETIF_F_TSO6);
4413 
4414 	/* We can only support IPV4 TSO in tunnels if we can mangle the
4415 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4416 	 */
4417 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4418 		features &= ~NETIF_F_TSO;
4419 
4420 	return features;
4421 }
4422 
4423 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog)
4424 {
4425 	int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4426 	struct ixgbevf_adapter *adapter = netdev_priv(dev);
4427 	struct bpf_prog *old_prog;
4428 
4429 	/* verify ixgbevf ring attributes are sufficient for XDP */
4430 	for (i = 0; i < adapter->num_rx_queues; i++) {
4431 		struct ixgbevf_ring *ring = adapter->rx_ring[i];
4432 
4433 		if (frame_size > ixgbevf_rx_bufsz(ring))
4434 			return -EINVAL;
4435 	}
4436 
4437 	old_prog = xchg(&adapter->xdp_prog, prog);
4438 
4439 	/* If transitioning XDP modes reconfigure rings */
4440 	if (!!prog != !!old_prog) {
4441 		/* Hardware has to reinitialize queues and interrupts to
4442 		 * match packet buffer alignment. Unfortunately, the
4443 		 * hardware is not flexible enough to do this dynamically.
4444 		 */
4445 		if (netif_running(dev))
4446 			ixgbevf_close(dev);
4447 
4448 		ixgbevf_clear_interrupt_scheme(adapter);
4449 		ixgbevf_init_interrupt_scheme(adapter);
4450 
4451 		if (netif_running(dev))
4452 			ixgbevf_open(dev);
4453 	} else {
4454 		for (i = 0; i < adapter->num_rx_queues; i++)
4455 			xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog);
4456 	}
4457 
4458 	if (old_prog)
4459 		bpf_prog_put(old_prog);
4460 
4461 	return 0;
4462 }
4463 
4464 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4465 {
4466 	switch (xdp->command) {
4467 	case XDP_SETUP_PROG:
4468 		return ixgbevf_xdp_setup(dev, xdp->prog);
4469 	default:
4470 		return -EINVAL;
4471 	}
4472 }
4473 
4474 static const struct net_device_ops ixgbevf_netdev_ops = {
4475 	.ndo_open		= ixgbevf_open,
4476 	.ndo_stop		= ixgbevf_close,
4477 	.ndo_start_xmit		= ixgbevf_xmit_frame,
4478 	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
4479 	.ndo_get_stats64	= ixgbevf_get_stats,
4480 	.ndo_validate_addr	= eth_validate_addr,
4481 	.ndo_set_mac_address	= ixgbevf_set_mac,
4482 	.ndo_change_mtu		= ixgbevf_change_mtu,
4483 	.ndo_tx_timeout		= ixgbevf_tx_timeout,
4484 	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
4485 	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
4486 	.ndo_features_check	= ixgbevf_features_check,
4487 	.ndo_bpf		= ixgbevf_xdp,
4488 };
4489 
4490 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
4491 {
4492 	dev->netdev_ops = &ixgbevf_netdev_ops;
4493 	ixgbevf_set_ethtool_ops(dev);
4494 	dev->watchdog_timeo = 5 * HZ;
4495 }
4496 
4497 /**
4498  * ixgbevf_probe - Device Initialization Routine
4499  * @pdev: PCI device information struct
4500  * @ent: entry in ixgbevf_pci_tbl
4501  *
4502  * Returns 0 on success, negative on failure
4503  *
4504  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
4505  * The OS initialization, configuring of the adapter private structure,
4506  * and a hardware reset occur.
4507  **/
4508 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4509 {
4510 	struct net_device *netdev;
4511 	struct ixgbevf_adapter *adapter = NULL;
4512 	struct ixgbe_hw *hw = NULL;
4513 	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
4514 	int err, pci_using_dac;
4515 	bool disable_dev = false;
4516 
4517 	err = pci_enable_device(pdev);
4518 	if (err)
4519 		return err;
4520 
4521 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
4522 		pci_using_dac = 1;
4523 	} else {
4524 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4525 		if (err) {
4526 			dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4527 			goto err_dma;
4528 		}
4529 		pci_using_dac = 0;
4530 	}
4531 
4532 	err = pci_request_regions(pdev, ixgbevf_driver_name);
4533 	if (err) {
4534 		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
4535 		goto err_pci_reg;
4536 	}
4537 
4538 	pci_set_master(pdev);
4539 
4540 	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
4541 				   MAX_TX_QUEUES);
4542 	if (!netdev) {
4543 		err = -ENOMEM;
4544 		goto err_alloc_etherdev;
4545 	}
4546 
4547 	SET_NETDEV_DEV(netdev, &pdev->dev);
4548 
4549 	adapter = netdev_priv(netdev);
4550 
4551 	adapter->netdev = netdev;
4552 	adapter->pdev = pdev;
4553 	hw = &adapter->hw;
4554 	hw->back = adapter;
4555 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4556 
4557 	/* call save state here in standalone driver because it relies on
4558 	 * adapter struct to exist, and needs to call netdev_priv
4559 	 */
4560 	pci_save_state(pdev);
4561 
4562 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4563 			      pci_resource_len(pdev, 0));
4564 	adapter->io_addr = hw->hw_addr;
4565 	if (!hw->hw_addr) {
4566 		err = -EIO;
4567 		goto err_ioremap;
4568 	}
4569 
4570 	ixgbevf_assign_netdev_ops(netdev);
4571 
4572 	/* Setup HW API */
4573 	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
4574 	hw->mac.type  = ii->mac;
4575 
4576 	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops_legacy,
4577 	       sizeof(struct ixgbe_mbx_operations));
4578 
4579 	/* setup the private structure */
4580 	err = ixgbevf_sw_init(adapter);
4581 	if (err)
4582 		goto err_sw_init;
4583 
4584 	/* The HW MAC address was set and/or determined in sw_init */
4585 	if (!is_valid_ether_addr(netdev->dev_addr)) {
4586 		pr_err("invalid MAC address\n");
4587 		err = -EIO;
4588 		goto err_sw_init;
4589 	}
4590 
4591 	netdev->hw_features = NETIF_F_SG |
4592 			      NETIF_F_TSO |
4593 			      NETIF_F_TSO6 |
4594 			      NETIF_F_RXCSUM |
4595 			      NETIF_F_HW_CSUM |
4596 			      NETIF_F_SCTP_CRC;
4597 
4598 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
4599 				      NETIF_F_GSO_GRE_CSUM | \
4600 				      NETIF_F_GSO_IPXIP4 | \
4601 				      NETIF_F_GSO_IPXIP6 | \
4602 				      NETIF_F_GSO_UDP_TUNNEL | \
4603 				      NETIF_F_GSO_UDP_TUNNEL_CSUM)
4604 
4605 	netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES;
4606 	netdev->hw_features |= NETIF_F_GSO_PARTIAL |
4607 			       IXGBEVF_GSO_PARTIAL_FEATURES;
4608 
4609 	netdev->features = netdev->hw_features;
4610 
4611 	if (pci_using_dac)
4612 		netdev->features |= NETIF_F_HIGHDMA;
4613 
4614 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
4615 	netdev->mpls_features |= NETIF_F_SG |
4616 				 NETIF_F_TSO |
4617 				 NETIF_F_TSO6 |
4618 				 NETIF_F_HW_CSUM;
4619 	netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES;
4620 	netdev->hw_enc_features |= netdev->vlan_features;
4621 
4622 	/* set this bit last since it cannot be part of vlan_features */
4623 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4624 			    NETIF_F_HW_VLAN_CTAG_RX |
4625 			    NETIF_F_HW_VLAN_CTAG_TX;
4626 
4627 	netdev->priv_flags |= IFF_UNICAST_FLT;
4628 
4629 	/* MTU range: 68 - 1504 or 9710 */
4630 	netdev->min_mtu = ETH_MIN_MTU;
4631 	switch (adapter->hw.api_version) {
4632 	case ixgbe_mbox_api_11:
4633 	case ixgbe_mbox_api_12:
4634 	case ixgbe_mbox_api_13:
4635 	case ixgbe_mbox_api_14:
4636 	case ixgbe_mbox_api_15:
4637 		netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4638 				  (ETH_HLEN + ETH_FCS_LEN);
4639 		break;
4640 	default:
4641 		if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
4642 			netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4643 					  (ETH_HLEN + ETH_FCS_LEN);
4644 		else
4645 			netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN;
4646 		break;
4647 	}
4648 
4649 	if (IXGBE_REMOVED(hw->hw_addr)) {
4650 		err = -EIO;
4651 		goto err_sw_init;
4652 	}
4653 
4654 	timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0);
4655 
4656 	INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4657 	set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4658 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4659 
4660 	err = ixgbevf_init_interrupt_scheme(adapter);
4661 	if (err)
4662 		goto err_sw_init;
4663 
4664 	strcpy(netdev->name, "eth%d");
4665 
4666 	err = register_netdev(netdev);
4667 	if (err)
4668 		goto err_register;
4669 
4670 	pci_set_drvdata(pdev, netdev);
4671 	netif_carrier_off(netdev);
4672 	ixgbevf_init_ipsec_offload(adapter);
4673 
4674 	ixgbevf_init_last_counter_stats(adapter);
4675 
4676 	/* print the VF info */
4677 	dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4678 	dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4679 
4680 	switch (hw->mac.type) {
4681 	case ixgbe_mac_X550_vf:
4682 		dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4683 		break;
4684 	case ixgbe_mac_X540_vf:
4685 		dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4686 		break;
4687 	case ixgbe_mac_82599_vf:
4688 	default:
4689 		dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4690 		break;
4691 	}
4692 
4693 	return 0;
4694 
4695 err_register:
4696 	ixgbevf_clear_interrupt_scheme(adapter);
4697 err_sw_init:
4698 	ixgbevf_reset_interrupt_capability(adapter);
4699 	iounmap(adapter->io_addr);
4700 	kfree(adapter->rss_key);
4701 err_ioremap:
4702 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4703 	free_netdev(netdev);
4704 err_alloc_etherdev:
4705 	pci_release_regions(pdev);
4706 err_pci_reg:
4707 err_dma:
4708 	if (!adapter || disable_dev)
4709 		pci_disable_device(pdev);
4710 	return err;
4711 }
4712 
4713 /**
4714  * ixgbevf_remove - Device Removal Routine
4715  * @pdev: PCI device information struct
4716  *
4717  * ixgbevf_remove is called by the PCI subsystem to alert the driver
4718  * that it should release a PCI device.  The could be caused by a
4719  * Hot-Plug event, or because the driver is going to be removed from
4720  * memory.
4721  **/
4722 static void ixgbevf_remove(struct pci_dev *pdev)
4723 {
4724 	struct net_device *netdev = pci_get_drvdata(pdev);
4725 	struct ixgbevf_adapter *adapter;
4726 	bool disable_dev;
4727 
4728 	if (!netdev)
4729 		return;
4730 
4731 	adapter = netdev_priv(netdev);
4732 
4733 	set_bit(__IXGBEVF_REMOVING, &adapter->state);
4734 	cancel_work_sync(&adapter->service_task);
4735 
4736 	if (netdev->reg_state == NETREG_REGISTERED)
4737 		unregister_netdev(netdev);
4738 
4739 	ixgbevf_stop_ipsec_offload(adapter);
4740 	ixgbevf_clear_interrupt_scheme(adapter);
4741 	ixgbevf_reset_interrupt_capability(adapter);
4742 
4743 	iounmap(adapter->io_addr);
4744 	pci_release_regions(pdev);
4745 
4746 	hw_dbg(&adapter->hw, "Remove complete\n");
4747 
4748 	kfree(adapter->rss_key);
4749 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4750 	free_netdev(netdev);
4751 
4752 	if (disable_dev)
4753 		pci_disable_device(pdev);
4754 }
4755 
4756 /**
4757  * ixgbevf_io_error_detected - called when PCI error is detected
4758  * @pdev: Pointer to PCI device
4759  * @state: The current pci connection state
4760  *
4761  * This function is called after a PCI bus error affecting
4762  * this device has been detected.
4763  **/
4764 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4765 						  pci_channel_state_t state)
4766 {
4767 	struct net_device *netdev = pci_get_drvdata(pdev);
4768 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4769 
4770 	if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4771 		return PCI_ERS_RESULT_DISCONNECT;
4772 
4773 	rtnl_lock();
4774 	netif_device_detach(netdev);
4775 
4776 	if (netif_running(netdev))
4777 		ixgbevf_close_suspend(adapter);
4778 
4779 	if (state == pci_channel_io_perm_failure) {
4780 		rtnl_unlock();
4781 		return PCI_ERS_RESULT_DISCONNECT;
4782 	}
4783 
4784 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4785 		pci_disable_device(pdev);
4786 	rtnl_unlock();
4787 
4788 	/* Request a slot slot reset. */
4789 	return PCI_ERS_RESULT_NEED_RESET;
4790 }
4791 
4792 /**
4793  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4794  * @pdev: Pointer to PCI device
4795  *
4796  * Restart the card from scratch, as if from a cold-boot. Implementation
4797  * resembles the first-half of the ixgbevf_resume routine.
4798  **/
4799 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4800 {
4801 	struct net_device *netdev = pci_get_drvdata(pdev);
4802 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4803 
4804 	if (pci_enable_device_mem(pdev)) {
4805 		dev_err(&pdev->dev,
4806 			"Cannot re-enable PCI device after reset.\n");
4807 		return PCI_ERS_RESULT_DISCONNECT;
4808 	}
4809 
4810 	adapter->hw.hw_addr = adapter->io_addr;
4811 	smp_mb__before_atomic();
4812 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4813 	pci_set_master(pdev);
4814 
4815 	ixgbevf_reset(adapter);
4816 
4817 	return PCI_ERS_RESULT_RECOVERED;
4818 }
4819 
4820 /**
4821  * ixgbevf_io_resume - called when traffic can start flowing again.
4822  * @pdev: Pointer to PCI device
4823  *
4824  * This callback is called when the error recovery driver tells us that
4825  * its OK to resume normal operation. Implementation resembles the
4826  * second-half of the ixgbevf_resume routine.
4827  **/
4828 static void ixgbevf_io_resume(struct pci_dev *pdev)
4829 {
4830 	struct net_device *netdev = pci_get_drvdata(pdev);
4831 
4832 	rtnl_lock();
4833 	if (netif_running(netdev))
4834 		ixgbevf_open(netdev);
4835 
4836 	netif_device_attach(netdev);
4837 	rtnl_unlock();
4838 }
4839 
4840 /* PCI Error Recovery (ERS) */
4841 static const struct pci_error_handlers ixgbevf_err_handler = {
4842 	.error_detected = ixgbevf_io_error_detected,
4843 	.slot_reset = ixgbevf_io_slot_reset,
4844 	.resume = ixgbevf_io_resume,
4845 };
4846 
4847 static SIMPLE_DEV_PM_OPS(ixgbevf_pm_ops, ixgbevf_suspend, ixgbevf_resume);
4848 
4849 static struct pci_driver ixgbevf_driver = {
4850 	.name		= ixgbevf_driver_name,
4851 	.id_table	= ixgbevf_pci_tbl,
4852 	.probe		= ixgbevf_probe,
4853 	.remove		= ixgbevf_remove,
4854 
4855 	/* Power Management Hooks */
4856 	.driver.pm	= &ixgbevf_pm_ops,
4857 
4858 	.shutdown	= ixgbevf_shutdown,
4859 	.err_handler	= &ixgbevf_err_handler
4860 };
4861 
4862 /**
4863  * ixgbevf_init_module - Driver Registration Routine
4864  *
4865  * ixgbevf_init_module is the first routine called when the driver is
4866  * loaded. All it does is register with the PCI subsystem.
4867  **/
4868 static int __init ixgbevf_init_module(void)
4869 {
4870 	pr_info("%s\n", ixgbevf_driver_string);
4871 	pr_info("%s\n", ixgbevf_copyright);
4872 	ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4873 	if (!ixgbevf_wq) {
4874 		pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4875 		return -ENOMEM;
4876 	}
4877 
4878 	return pci_register_driver(&ixgbevf_driver);
4879 }
4880 
4881 module_init(ixgbevf_init_module);
4882 
4883 /**
4884  * ixgbevf_exit_module - Driver Exit Cleanup Routine
4885  *
4886  * ixgbevf_exit_module is called just before the driver is removed
4887  * from memory.
4888  **/
4889 static void __exit ixgbevf_exit_module(void)
4890 {
4891 	pci_unregister_driver(&ixgbevf_driver);
4892 	if (ixgbevf_wq) {
4893 		destroy_workqueue(ixgbevf_wq);
4894 		ixgbevf_wq = NULL;
4895 	}
4896 }
4897 
4898 #ifdef DEBUG
4899 /**
4900  * ixgbevf_get_hw_dev_name - return device name string
4901  * used by hardware layer to print debugging information
4902  * @hw: pointer to private hardware struct
4903  **/
4904 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4905 {
4906 	struct ixgbevf_adapter *adapter = hw->back;
4907 
4908 	return adapter->netdev->name;
4909 }
4910 
4911 #endif
4912 module_exit(ixgbevf_exit_module);
4913 
4914 /* ixgbevf_main.c */
4915