1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /****************************************************************************** 5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 6 ******************************************************************************/ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/types.h> 11 #include <linux/bitops.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/in.h> 18 #include <linux/ip.h> 19 #include <linux/tcp.h> 20 #include <linux/sctp.h> 21 #include <linux/ipv6.h> 22 #include <linux/slab.h> 23 #include <net/checksum.h> 24 #include <net/ip6_checksum.h> 25 #include <linux/ethtool.h> 26 #include <linux/if.h> 27 #include <linux/if_vlan.h> 28 #include <linux/prefetch.h> 29 #include <net/mpls.h> 30 #include <linux/bpf.h> 31 #include <linux/bpf_trace.h> 32 #include <linux/atomic.h> 33 #include <net/xfrm.h> 34 35 #include "ixgbevf.h" 36 37 const char ixgbevf_driver_name[] = "ixgbevf"; 38 static const char ixgbevf_driver_string[] = 39 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 40 41 static char ixgbevf_copyright[] = 42 "Copyright (c) 2009 - 2018 Intel Corporation."; 43 44 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 45 [board_82599_vf] = &ixgbevf_82599_vf_info, 46 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 47 [board_X540_vf] = &ixgbevf_X540_vf_info, 48 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 49 [board_X550_vf] = &ixgbevf_X550_vf_info, 50 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 51 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 52 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 53 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 54 }; 55 56 /* ixgbevf_pci_tbl - PCI Device ID Table 57 * 58 * Wildcard entries (PCI_ANY_ID) should come last 59 * Last entry must be all 0s 60 * 61 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 62 * Class, Class Mask, private data (not used) } 63 */ 64 static const struct pci_device_id ixgbevf_pci_tbl[] = { 65 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 66 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 74 /* required last entry */ 75 {0, } 76 }; 77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 78 79 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 80 MODULE_LICENSE("GPL v2"); 81 82 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 83 static int debug = -1; 84 module_param(debug, int, 0); 85 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 86 87 static struct workqueue_struct *ixgbevf_wq; 88 89 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 90 { 91 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 92 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 93 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 94 queue_work(ixgbevf_wq, &adapter->service_task); 95 } 96 97 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 98 { 99 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 100 101 /* flush memory to make sure state is correct before next watchdog */ 102 smp_mb__before_atomic(); 103 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 104 } 105 106 /* forward decls */ 107 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 108 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 109 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 110 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer); 111 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 112 struct ixgbevf_rx_buffer *old_buff); 113 114 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 115 { 116 struct ixgbevf_adapter *adapter = hw->back; 117 118 if (!hw->hw_addr) 119 return; 120 hw->hw_addr = NULL; 121 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 122 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 123 ixgbevf_service_event_schedule(adapter); 124 } 125 126 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 127 { 128 u32 value; 129 130 /* The following check not only optimizes a bit by not 131 * performing a read on the status register when the 132 * register just read was a status register read that 133 * returned IXGBE_FAILED_READ_REG. It also blocks any 134 * potential recursion. 135 */ 136 if (reg == IXGBE_VFSTATUS) { 137 ixgbevf_remove_adapter(hw); 138 return; 139 } 140 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 141 if (value == IXGBE_FAILED_READ_REG) 142 ixgbevf_remove_adapter(hw); 143 } 144 145 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 146 { 147 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 148 u32 value; 149 150 if (IXGBE_REMOVED(reg_addr)) 151 return IXGBE_FAILED_READ_REG; 152 value = readl(reg_addr + reg); 153 if (unlikely(value == IXGBE_FAILED_READ_REG)) 154 ixgbevf_check_remove(hw, reg); 155 return value; 156 } 157 158 /** 159 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 160 * @adapter: pointer to adapter struct 161 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 162 * @queue: queue to map the corresponding interrupt to 163 * @msix_vector: the vector to map to the corresponding queue 164 **/ 165 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 166 u8 queue, u8 msix_vector) 167 { 168 u32 ivar, index; 169 struct ixgbe_hw *hw = &adapter->hw; 170 171 if (direction == -1) { 172 /* other causes */ 173 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 174 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 175 ivar &= ~0xFF; 176 ivar |= msix_vector; 177 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 178 } else { 179 /* Tx or Rx causes */ 180 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 181 index = ((16 * (queue & 1)) + (8 * direction)); 182 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 183 ivar &= ~(0xFF << index); 184 ivar |= (msix_vector << index); 185 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 186 } 187 } 188 189 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 190 { 191 return ring->stats.packets; 192 } 193 194 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 195 { 196 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 197 struct ixgbe_hw *hw = &adapter->hw; 198 199 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 200 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 201 202 if (head != tail) 203 return (head < tail) ? 204 tail - head : (tail + ring->count - head); 205 206 return 0; 207 } 208 209 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 210 { 211 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 212 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 213 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 214 215 clear_check_for_tx_hang(tx_ring); 216 217 /* Check for a hung queue, but be thorough. This verifies 218 * that a transmit has been completed since the previous 219 * check AND there is at least one packet pending. The 220 * ARMED bit is set to indicate a potential hang. 221 */ 222 if ((tx_done_old == tx_done) && tx_pending) { 223 /* make sure it is true for two checks in a row */ 224 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 225 &tx_ring->state); 226 } 227 /* reset the countdown */ 228 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 229 230 /* update completed stats and continue */ 231 tx_ring->tx_stats.tx_done_old = tx_done; 232 233 return false; 234 } 235 236 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 237 { 238 /* Do the reset outside of interrupt context */ 239 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 240 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 241 ixgbevf_service_event_schedule(adapter); 242 } 243 } 244 245 /** 246 * ixgbevf_tx_timeout - Respond to a Tx Hang 247 * @netdev: network interface device structure 248 * @txqueue: transmit queue hanging (unused) 249 **/ 250 static void ixgbevf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) 251 { 252 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 253 254 ixgbevf_tx_timeout_reset(adapter); 255 } 256 257 /** 258 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 259 * @q_vector: board private structure 260 * @tx_ring: tx ring to clean 261 * @napi_budget: Used to determine if we are in netpoll 262 **/ 263 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 264 struct ixgbevf_ring *tx_ring, int napi_budget) 265 { 266 struct ixgbevf_adapter *adapter = q_vector->adapter; 267 struct ixgbevf_tx_buffer *tx_buffer; 268 union ixgbe_adv_tx_desc *tx_desc; 269 unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0; 270 unsigned int budget = tx_ring->count / 2; 271 unsigned int i = tx_ring->next_to_clean; 272 273 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 274 return true; 275 276 tx_buffer = &tx_ring->tx_buffer_info[i]; 277 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 278 i -= tx_ring->count; 279 280 do { 281 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 282 283 /* if next_to_watch is not set then there is no work pending */ 284 if (!eop_desc) 285 break; 286 287 /* prevent any other reads prior to eop_desc */ 288 smp_rmb(); 289 290 /* if DD is not set pending work has not been completed */ 291 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 292 break; 293 294 /* clear next_to_watch to prevent false hangs */ 295 tx_buffer->next_to_watch = NULL; 296 297 /* update the statistics for this packet */ 298 total_bytes += tx_buffer->bytecount; 299 total_packets += tx_buffer->gso_segs; 300 if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC) 301 total_ipsec++; 302 303 /* free the skb */ 304 if (ring_is_xdp(tx_ring)) 305 page_frag_free(tx_buffer->data); 306 else 307 napi_consume_skb(tx_buffer->skb, napi_budget); 308 309 /* unmap skb header data */ 310 dma_unmap_single(tx_ring->dev, 311 dma_unmap_addr(tx_buffer, dma), 312 dma_unmap_len(tx_buffer, len), 313 DMA_TO_DEVICE); 314 315 /* clear tx_buffer data */ 316 dma_unmap_len_set(tx_buffer, len, 0); 317 318 /* unmap remaining buffers */ 319 while (tx_desc != eop_desc) { 320 tx_buffer++; 321 tx_desc++; 322 i++; 323 if (unlikely(!i)) { 324 i -= tx_ring->count; 325 tx_buffer = tx_ring->tx_buffer_info; 326 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 327 } 328 329 /* unmap any remaining paged data */ 330 if (dma_unmap_len(tx_buffer, len)) { 331 dma_unmap_page(tx_ring->dev, 332 dma_unmap_addr(tx_buffer, dma), 333 dma_unmap_len(tx_buffer, len), 334 DMA_TO_DEVICE); 335 dma_unmap_len_set(tx_buffer, len, 0); 336 } 337 } 338 339 /* move us one more past the eop_desc for start of next pkt */ 340 tx_buffer++; 341 tx_desc++; 342 i++; 343 if (unlikely(!i)) { 344 i -= tx_ring->count; 345 tx_buffer = tx_ring->tx_buffer_info; 346 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 347 } 348 349 /* issue prefetch for next Tx descriptor */ 350 prefetch(tx_desc); 351 352 /* update budget accounting */ 353 budget--; 354 } while (likely(budget)); 355 356 i += tx_ring->count; 357 tx_ring->next_to_clean = i; 358 u64_stats_update_begin(&tx_ring->syncp); 359 tx_ring->stats.bytes += total_bytes; 360 tx_ring->stats.packets += total_packets; 361 u64_stats_update_end(&tx_ring->syncp); 362 q_vector->tx.total_bytes += total_bytes; 363 q_vector->tx.total_packets += total_packets; 364 adapter->tx_ipsec += total_ipsec; 365 366 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 367 struct ixgbe_hw *hw = &adapter->hw; 368 union ixgbe_adv_tx_desc *eop_desc; 369 370 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 371 372 pr_err("Detected Tx Unit Hang%s\n" 373 " Tx Queue <%d>\n" 374 " TDH, TDT <%x>, <%x>\n" 375 " next_to_use <%x>\n" 376 " next_to_clean <%x>\n" 377 "tx_buffer_info[next_to_clean]\n" 378 " next_to_watch <%p>\n" 379 " eop_desc->wb.status <%x>\n" 380 " time_stamp <%lx>\n" 381 " jiffies <%lx>\n", 382 ring_is_xdp(tx_ring) ? " XDP" : "", 383 tx_ring->queue_index, 384 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 385 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 386 tx_ring->next_to_use, i, 387 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 388 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 389 390 if (!ring_is_xdp(tx_ring)) 391 netif_stop_subqueue(tx_ring->netdev, 392 tx_ring->queue_index); 393 394 /* schedule immediate reset if we believe we hung */ 395 ixgbevf_tx_timeout_reset(adapter); 396 397 return true; 398 } 399 400 if (ring_is_xdp(tx_ring)) 401 return !!budget; 402 403 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 404 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 405 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 406 /* Make sure that anybody stopping the queue after this 407 * sees the new next_to_clean. 408 */ 409 smp_mb(); 410 411 if (__netif_subqueue_stopped(tx_ring->netdev, 412 tx_ring->queue_index) && 413 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 414 netif_wake_subqueue(tx_ring->netdev, 415 tx_ring->queue_index); 416 ++tx_ring->tx_stats.restart_queue; 417 } 418 } 419 420 return !!budget; 421 } 422 423 /** 424 * ixgbevf_rx_skb - Helper function to determine proper Rx method 425 * @q_vector: structure containing interrupt and ring information 426 * @skb: packet to send up 427 **/ 428 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 429 struct sk_buff *skb) 430 { 431 napi_gro_receive(&q_vector->napi, skb); 432 } 433 434 #define IXGBE_RSS_L4_TYPES_MASK \ 435 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 436 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 437 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 438 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 439 440 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 441 union ixgbe_adv_rx_desc *rx_desc, 442 struct sk_buff *skb) 443 { 444 u16 rss_type; 445 446 if (!(ring->netdev->features & NETIF_F_RXHASH)) 447 return; 448 449 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 450 IXGBE_RXDADV_RSSTYPE_MASK; 451 452 if (!rss_type) 453 return; 454 455 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 456 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 457 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 458 } 459 460 /** 461 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 462 * @ring: structure containig ring specific data 463 * @rx_desc: current Rx descriptor being processed 464 * @skb: skb currently being received and modified 465 **/ 466 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 467 union ixgbe_adv_rx_desc *rx_desc, 468 struct sk_buff *skb) 469 { 470 skb_checksum_none_assert(skb); 471 472 /* Rx csum disabled */ 473 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 474 return; 475 476 /* if IP and error */ 477 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 478 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 479 ring->rx_stats.csum_err++; 480 return; 481 } 482 483 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 484 return; 485 486 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 487 ring->rx_stats.csum_err++; 488 return; 489 } 490 491 /* It must be a TCP or UDP packet with a valid checksum */ 492 skb->ip_summed = CHECKSUM_UNNECESSARY; 493 } 494 495 /** 496 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 497 * @rx_ring: rx descriptor ring packet is being transacted on 498 * @rx_desc: pointer to the EOP Rx descriptor 499 * @skb: pointer to current skb being populated 500 * 501 * This function checks the ring, descriptor, and packet information in 502 * order to populate the checksum, VLAN, protocol, and other fields within 503 * the skb. 504 **/ 505 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 506 union ixgbe_adv_rx_desc *rx_desc, 507 struct sk_buff *skb) 508 { 509 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 510 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 511 512 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 513 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 514 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 515 516 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 517 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 518 } 519 520 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP)) 521 ixgbevf_ipsec_rx(rx_ring, rx_desc, skb); 522 523 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 524 } 525 526 static 527 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring, 528 const unsigned int size) 529 { 530 struct ixgbevf_rx_buffer *rx_buffer; 531 532 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 533 prefetchw(rx_buffer->page); 534 535 /* we are reusing so sync this buffer for CPU use */ 536 dma_sync_single_range_for_cpu(rx_ring->dev, 537 rx_buffer->dma, 538 rx_buffer->page_offset, 539 size, 540 DMA_FROM_DEVICE); 541 542 rx_buffer->pagecnt_bias--; 543 544 return rx_buffer; 545 } 546 547 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring, 548 struct ixgbevf_rx_buffer *rx_buffer, 549 struct sk_buff *skb) 550 { 551 if (ixgbevf_can_reuse_rx_page(rx_buffer)) { 552 /* hand second half of page back to the ring */ 553 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 554 } else { 555 if (IS_ERR(skb)) 556 /* We are not reusing the buffer so unmap it and free 557 * any references we are holding to it 558 */ 559 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 560 ixgbevf_rx_pg_size(rx_ring), 561 DMA_FROM_DEVICE, 562 IXGBEVF_RX_DMA_ATTR); 563 __page_frag_cache_drain(rx_buffer->page, 564 rx_buffer->pagecnt_bias); 565 } 566 567 /* clear contents of rx_buffer */ 568 rx_buffer->page = NULL; 569 } 570 571 /** 572 * ixgbevf_is_non_eop - process handling of non-EOP buffers 573 * @rx_ring: Rx ring being processed 574 * @rx_desc: Rx descriptor for current buffer 575 * 576 * This function updates next to clean. If the buffer is an EOP buffer 577 * this function exits returning false, otherwise it will place the 578 * sk_buff in the next buffer to be chained and return true indicating 579 * that this is in fact a non-EOP buffer. 580 **/ 581 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 582 union ixgbe_adv_rx_desc *rx_desc) 583 { 584 u32 ntc = rx_ring->next_to_clean + 1; 585 586 /* fetch, update, and store next to clean */ 587 ntc = (ntc < rx_ring->count) ? ntc : 0; 588 rx_ring->next_to_clean = ntc; 589 590 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 591 592 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 593 return false; 594 595 return true; 596 } 597 598 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring) 599 { 600 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0; 601 } 602 603 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 604 struct ixgbevf_rx_buffer *bi) 605 { 606 struct page *page = bi->page; 607 dma_addr_t dma; 608 609 /* since we are recycling buffers we should seldom need to alloc */ 610 if (likely(page)) 611 return true; 612 613 /* alloc new page for storage */ 614 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring)); 615 if (unlikely(!page)) { 616 rx_ring->rx_stats.alloc_rx_page_failed++; 617 return false; 618 } 619 620 /* map page for use */ 621 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 622 ixgbevf_rx_pg_size(rx_ring), 623 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); 624 625 /* if mapping failed free memory back to system since 626 * there isn't much point in holding memory we can't use 627 */ 628 if (dma_mapping_error(rx_ring->dev, dma)) { 629 __free_pages(page, ixgbevf_rx_pg_order(rx_ring)); 630 631 rx_ring->rx_stats.alloc_rx_page_failed++; 632 return false; 633 } 634 635 bi->dma = dma; 636 bi->page = page; 637 bi->page_offset = ixgbevf_rx_offset(rx_ring); 638 bi->pagecnt_bias = 1; 639 rx_ring->rx_stats.alloc_rx_page++; 640 641 return true; 642 } 643 644 /** 645 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 646 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 647 * @cleaned_count: number of buffers to replace 648 **/ 649 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 650 u16 cleaned_count) 651 { 652 union ixgbe_adv_rx_desc *rx_desc; 653 struct ixgbevf_rx_buffer *bi; 654 unsigned int i = rx_ring->next_to_use; 655 656 /* nothing to do or no valid netdev defined */ 657 if (!cleaned_count || !rx_ring->netdev) 658 return; 659 660 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 661 bi = &rx_ring->rx_buffer_info[i]; 662 i -= rx_ring->count; 663 664 do { 665 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 666 break; 667 668 /* sync the buffer for use by the device */ 669 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 670 bi->page_offset, 671 ixgbevf_rx_bufsz(rx_ring), 672 DMA_FROM_DEVICE); 673 674 /* Refresh the desc even if pkt_addr didn't change 675 * because each write-back erases this info. 676 */ 677 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 678 679 rx_desc++; 680 bi++; 681 i++; 682 if (unlikely(!i)) { 683 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 684 bi = rx_ring->rx_buffer_info; 685 i -= rx_ring->count; 686 } 687 688 /* clear the length for the next_to_use descriptor */ 689 rx_desc->wb.upper.length = 0; 690 691 cleaned_count--; 692 } while (cleaned_count); 693 694 i += rx_ring->count; 695 696 if (rx_ring->next_to_use != i) { 697 /* record the next descriptor to use */ 698 rx_ring->next_to_use = i; 699 700 /* update next to alloc since we have filled the ring */ 701 rx_ring->next_to_alloc = i; 702 703 /* Force memory writes to complete before letting h/w 704 * know there are new descriptors to fetch. (Only 705 * applicable for weak-ordered memory model archs, 706 * such as IA-64). 707 */ 708 wmb(); 709 ixgbevf_write_tail(rx_ring, i); 710 } 711 } 712 713 /** 714 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 715 * @rx_ring: rx descriptor ring packet is being transacted on 716 * @rx_desc: pointer to the EOP Rx descriptor 717 * @skb: pointer to current skb being fixed 718 * 719 * Check for corrupted packet headers caused by senders on the local L2 720 * embedded NIC switch not setting up their Tx Descriptors right. These 721 * should be very rare. 722 * 723 * Also address the case where we are pulling data in on pages only 724 * and as such no data is present in the skb header. 725 * 726 * In addition if skb is not at least 60 bytes we need to pad it so that 727 * it is large enough to qualify as a valid Ethernet frame. 728 * 729 * Returns true if an error was encountered and skb was freed. 730 **/ 731 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 732 union ixgbe_adv_rx_desc *rx_desc, 733 struct sk_buff *skb) 734 { 735 /* XDP packets use error pointer so abort at this point */ 736 if (IS_ERR(skb)) 737 return true; 738 739 /* verify that the packet does not have any known errors */ 740 if (unlikely(ixgbevf_test_staterr(rx_desc, 741 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 742 struct net_device *netdev = rx_ring->netdev; 743 744 if (!(netdev->features & NETIF_F_RXALL)) { 745 dev_kfree_skb_any(skb); 746 return true; 747 } 748 } 749 750 /* if eth_skb_pad returns an error the skb was freed */ 751 if (eth_skb_pad(skb)) 752 return true; 753 754 return false; 755 } 756 757 /** 758 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 759 * @rx_ring: rx descriptor ring to store buffers on 760 * @old_buff: donor buffer to have page reused 761 * 762 * Synchronizes page for reuse by the adapter 763 **/ 764 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 765 struct ixgbevf_rx_buffer *old_buff) 766 { 767 struct ixgbevf_rx_buffer *new_buff; 768 u16 nta = rx_ring->next_to_alloc; 769 770 new_buff = &rx_ring->rx_buffer_info[nta]; 771 772 /* update, and store next to alloc */ 773 nta++; 774 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 775 776 /* transfer page from old buffer to new buffer */ 777 new_buff->page = old_buff->page; 778 new_buff->dma = old_buff->dma; 779 new_buff->page_offset = old_buff->page_offset; 780 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 781 } 782 783 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer) 784 { 785 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 786 struct page *page = rx_buffer->page; 787 788 /* avoid re-using remote and pfmemalloc pages */ 789 if (!dev_page_is_reusable(page)) 790 return false; 791 792 #if (PAGE_SIZE < 8192) 793 /* if we are only owner of page we can reuse it */ 794 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 795 return false; 796 #else 797 #define IXGBEVF_LAST_OFFSET \ 798 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048) 799 800 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET) 801 return false; 802 803 #endif 804 805 /* If we have drained the page fragment pool we need to update 806 * the pagecnt_bias and page count so that we fully restock the 807 * number of references the driver holds. 808 */ 809 if (unlikely(!pagecnt_bias)) { 810 page_ref_add(page, USHRT_MAX); 811 rx_buffer->pagecnt_bias = USHRT_MAX; 812 } 813 814 return true; 815 } 816 817 /** 818 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 819 * @rx_ring: rx descriptor ring to transact packets on 820 * @rx_buffer: buffer containing page to add 821 * @skb: sk_buff to place the data into 822 * @size: size of buffer to be added 823 * 824 * This function will add the data contained in rx_buffer->page to the skb. 825 **/ 826 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 827 struct ixgbevf_rx_buffer *rx_buffer, 828 struct sk_buff *skb, 829 unsigned int size) 830 { 831 #if (PAGE_SIZE < 8192) 832 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 833 #else 834 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 835 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 836 SKB_DATA_ALIGN(size); 837 #endif 838 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 839 rx_buffer->page_offset, size, truesize); 840 #if (PAGE_SIZE < 8192) 841 rx_buffer->page_offset ^= truesize; 842 #else 843 rx_buffer->page_offset += truesize; 844 #endif 845 } 846 847 static 848 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring, 849 struct ixgbevf_rx_buffer *rx_buffer, 850 struct xdp_buff *xdp, 851 union ixgbe_adv_rx_desc *rx_desc) 852 { 853 unsigned int size = xdp->data_end - xdp->data; 854 #if (PAGE_SIZE < 8192) 855 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 856 #else 857 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 858 xdp->data_hard_start); 859 #endif 860 unsigned int headlen; 861 struct sk_buff *skb; 862 863 /* prefetch first cache line of first page */ 864 net_prefetch(xdp->data); 865 866 /* Note, we get here by enabling legacy-rx via: 867 * 868 * ethtool --set-priv-flags <dev> legacy-rx on 869 * 870 * In this mode, we currently get 0 extra XDP headroom as 871 * opposed to having legacy-rx off, where we process XDP 872 * packets going to stack via ixgbevf_build_skb(). 873 * 874 * For ixgbevf_construct_skb() mode it means that the 875 * xdp->data_meta will always point to xdp->data, since 876 * the helper cannot expand the head. Should this ever 877 * changed in future for legacy-rx mode on, then lets also 878 * add xdp->data_meta handling here. 879 */ 880 881 /* allocate a skb to store the frags */ 882 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE); 883 if (unlikely(!skb)) 884 return NULL; 885 886 /* Determine available headroom for copy */ 887 headlen = size; 888 if (headlen > IXGBEVF_RX_HDR_SIZE) 889 headlen = eth_get_headlen(skb->dev, xdp->data, 890 IXGBEVF_RX_HDR_SIZE); 891 892 /* align pull length to size of long to optimize memcpy performance */ 893 memcpy(__skb_put(skb, headlen), xdp->data, 894 ALIGN(headlen, sizeof(long))); 895 896 /* update all of the pointers */ 897 size -= headlen; 898 if (size) { 899 skb_add_rx_frag(skb, 0, rx_buffer->page, 900 (xdp->data + headlen) - 901 page_address(rx_buffer->page), 902 size, truesize); 903 #if (PAGE_SIZE < 8192) 904 rx_buffer->page_offset ^= truesize; 905 #else 906 rx_buffer->page_offset += truesize; 907 #endif 908 } else { 909 rx_buffer->pagecnt_bias++; 910 } 911 912 return skb; 913 } 914 915 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 916 u32 qmask) 917 { 918 struct ixgbe_hw *hw = &adapter->hw; 919 920 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 921 } 922 923 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring, 924 struct ixgbevf_rx_buffer *rx_buffer, 925 struct xdp_buff *xdp, 926 union ixgbe_adv_rx_desc *rx_desc) 927 { 928 unsigned int metasize = xdp->data - xdp->data_meta; 929 #if (PAGE_SIZE < 8192) 930 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 931 #else 932 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 933 SKB_DATA_ALIGN(xdp->data_end - 934 xdp->data_hard_start); 935 #endif 936 struct sk_buff *skb; 937 938 /* Prefetch first cache line of first page. If xdp->data_meta 939 * is unused, this points to xdp->data, otherwise, we likely 940 * have a consumer accessing first few bytes of meta data, 941 * and then actual data. 942 */ 943 net_prefetch(xdp->data_meta); 944 945 /* build an skb around the page buffer */ 946 skb = napi_build_skb(xdp->data_hard_start, truesize); 947 if (unlikely(!skb)) 948 return NULL; 949 950 /* update pointers within the skb to store the data */ 951 skb_reserve(skb, xdp->data - xdp->data_hard_start); 952 __skb_put(skb, xdp->data_end - xdp->data); 953 if (metasize) 954 skb_metadata_set(skb, metasize); 955 956 /* update buffer offset */ 957 #if (PAGE_SIZE < 8192) 958 rx_buffer->page_offset ^= truesize; 959 #else 960 rx_buffer->page_offset += truesize; 961 #endif 962 963 return skb; 964 } 965 966 #define IXGBEVF_XDP_PASS 0 967 #define IXGBEVF_XDP_CONSUMED 1 968 #define IXGBEVF_XDP_TX 2 969 970 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring, 971 struct xdp_buff *xdp) 972 { 973 struct ixgbevf_tx_buffer *tx_buffer; 974 union ixgbe_adv_tx_desc *tx_desc; 975 u32 len, cmd_type; 976 dma_addr_t dma; 977 u16 i; 978 979 len = xdp->data_end - xdp->data; 980 981 if (unlikely(!ixgbevf_desc_unused(ring))) 982 return IXGBEVF_XDP_CONSUMED; 983 984 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE); 985 if (dma_mapping_error(ring->dev, dma)) 986 return IXGBEVF_XDP_CONSUMED; 987 988 /* record the location of the first descriptor for this packet */ 989 i = ring->next_to_use; 990 tx_buffer = &ring->tx_buffer_info[i]; 991 992 dma_unmap_len_set(tx_buffer, len, len); 993 dma_unmap_addr_set(tx_buffer, dma, dma); 994 tx_buffer->data = xdp->data; 995 tx_buffer->bytecount = len; 996 tx_buffer->gso_segs = 1; 997 tx_buffer->protocol = 0; 998 999 /* Populate minimal context descriptor that will provide for the 1000 * fact that we are expected to process Ethernet frames. 1001 */ 1002 if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) { 1003 struct ixgbe_adv_tx_context_desc *context_desc; 1004 1005 set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1006 1007 context_desc = IXGBEVF_TX_CTXTDESC(ring, 0); 1008 context_desc->vlan_macip_lens = 1009 cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT); 1010 context_desc->fceof_saidx = 0; 1011 context_desc->type_tucmd_mlhl = 1012 cpu_to_le32(IXGBE_TXD_CMD_DEXT | 1013 IXGBE_ADVTXD_DTYP_CTXT); 1014 context_desc->mss_l4len_idx = 0; 1015 1016 i = 1; 1017 } 1018 1019 /* put descriptor type bits */ 1020 cmd_type = IXGBE_ADVTXD_DTYP_DATA | 1021 IXGBE_ADVTXD_DCMD_DEXT | 1022 IXGBE_ADVTXD_DCMD_IFCS; 1023 cmd_type |= len | IXGBE_TXD_CMD; 1024 1025 tx_desc = IXGBEVF_TX_DESC(ring, i); 1026 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1027 1028 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1029 tx_desc->read.olinfo_status = 1030 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) | 1031 IXGBE_ADVTXD_CC); 1032 1033 /* Avoid any potential race with cleanup */ 1034 smp_wmb(); 1035 1036 /* set next_to_watch value indicating a packet is present */ 1037 i++; 1038 if (i == ring->count) 1039 i = 0; 1040 1041 tx_buffer->next_to_watch = tx_desc; 1042 ring->next_to_use = i; 1043 1044 return IXGBEVF_XDP_TX; 1045 } 1046 1047 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter, 1048 struct ixgbevf_ring *rx_ring, 1049 struct xdp_buff *xdp) 1050 { 1051 int result = IXGBEVF_XDP_PASS; 1052 struct ixgbevf_ring *xdp_ring; 1053 struct bpf_prog *xdp_prog; 1054 u32 act; 1055 1056 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1057 1058 if (!xdp_prog) 1059 goto xdp_out; 1060 1061 act = bpf_prog_run_xdp(xdp_prog, xdp); 1062 switch (act) { 1063 case XDP_PASS: 1064 break; 1065 case XDP_TX: 1066 xdp_ring = adapter->xdp_ring[rx_ring->queue_index]; 1067 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp); 1068 if (result == IXGBEVF_XDP_CONSUMED) 1069 goto out_failure; 1070 break; 1071 default: 1072 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 1073 fallthrough; 1074 case XDP_ABORTED: 1075 out_failure: 1076 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 1077 fallthrough; /* handle aborts by dropping packet */ 1078 case XDP_DROP: 1079 result = IXGBEVF_XDP_CONSUMED; 1080 break; 1081 } 1082 xdp_out: 1083 return ERR_PTR(-result); 1084 } 1085 1086 static unsigned int ixgbevf_rx_frame_truesize(struct ixgbevf_ring *rx_ring, 1087 unsigned int size) 1088 { 1089 unsigned int truesize; 1090 1091 #if (PAGE_SIZE < 8192) 1092 truesize = ixgbevf_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 1093 #else 1094 truesize = ring_uses_build_skb(rx_ring) ? 1095 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) + 1096 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 1097 SKB_DATA_ALIGN(size); 1098 #endif 1099 return truesize; 1100 } 1101 1102 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring, 1103 struct ixgbevf_rx_buffer *rx_buffer, 1104 unsigned int size) 1105 { 1106 unsigned int truesize = ixgbevf_rx_frame_truesize(rx_ring, size); 1107 1108 #if (PAGE_SIZE < 8192) 1109 rx_buffer->page_offset ^= truesize; 1110 #else 1111 rx_buffer->page_offset += truesize; 1112 #endif 1113 } 1114 1115 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 1116 struct ixgbevf_ring *rx_ring, 1117 int budget) 1118 { 1119 unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0; 1120 struct ixgbevf_adapter *adapter = q_vector->adapter; 1121 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 1122 struct sk_buff *skb = rx_ring->skb; 1123 bool xdp_xmit = false; 1124 struct xdp_buff xdp; 1125 1126 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1127 #if (PAGE_SIZE < 8192) 1128 frame_sz = ixgbevf_rx_frame_truesize(rx_ring, 0); 1129 #endif 1130 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 1131 1132 while (likely(total_rx_packets < budget)) { 1133 struct ixgbevf_rx_buffer *rx_buffer; 1134 union ixgbe_adv_rx_desc *rx_desc; 1135 unsigned int size; 1136 1137 /* return some buffers to hardware, one at a time is too slow */ 1138 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 1139 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 1140 cleaned_count = 0; 1141 } 1142 1143 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1144 size = le16_to_cpu(rx_desc->wb.upper.length); 1145 if (!size) 1146 break; 1147 1148 /* This memory barrier is needed to keep us from reading 1149 * any other fields out of the rx_desc until we know the 1150 * RXD_STAT_DD bit is set 1151 */ 1152 rmb(); 1153 1154 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size); 1155 1156 /* retrieve a buffer from the ring */ 1157 if (!skb) { 1158 unsigned int offset = ixgbevf_rx_offset(rx_ring); 1159 unsigned char *hard_start; 1160 1161 hard_start = page_address(rx_buffer->page) + 1162 rx_buffer->page_offset - offset; 1163 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 1164 #if (PAGE_SIZE > 4096) 1165 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1166 xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, size); 1167 #endif 1168 skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp); 1169 } 1170 1171 if (IS_ERR(skb)) { 1172 if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) { 1173 xdp_xmit = true; 1174 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer, 1175 size); 1176 } else { 1177 rx_buffer->pagecnt_bias++; 1178 } 1179 total_rx_packets++; 1180 total_rx_bytes += size; 1181 } else if (skb) { 1182 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1183 } else if (ring_uses_build_skb(rx_ring)) { 1184 skb = ixgbevf_build_skb(rx_ring, rx_buffer, 1185 &xdp, rx_desc); 1186 } else { 1187 skb = ixgbevf_construct_skb(rx_ring, rx_buffer, 1188 &xdp, rx_desc); 1189 } 1190 1191 /* exit if we failed to retrieve a buffer */ 1192 if (!skb) { 1193 rx_ring->rx_stats.alloc_rx_buff_failed++; 1194 rx_buffer->pagecnt_bias++; 1195 break; 1196 } 1197 1198 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb); 1199 cleaned_count++; 1200 1201 /* fetch next buffer in frame if non-eop */ 1202 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 1203 continue; 1204 1205 /* verify the packet layout is correct */ 1206 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 1207 skb = NULL; 1208 continue; 1209 } 1210 1211 /* probably a little skewed due to removing CRC */ 1212 total_rx_bytes += skb->len; 1213 1214 /* Workaround hardware that can't do proper VEPA multicast 1215 * source pruning. 1216 */ 1217 if ((skb->pkt_type == PACKET_BROADCAST || 1218 skb->pkt_type == PACKET_MULTICAST) && 1219 ether_addr_equal(rx_ring->netdev->dev_addr, 1220 eth_hdr(skb)->h_source)) { 1221 dev_kfree_skb_irq(skb); 1222 continue; 1223 } 1224 1225 /* populate checksum, VLAN, and protocol */ 1226 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 1227 1228 ixgbevf_rx_skb(q_vector, skb); 1229 1230 /* reset skb pointer */ 1231 skb = NULL; 1232 1233 /* update budget accounting */ 1234 total_rx_packets++; 1235 } 1236 1237 /* place incomplete frames back on ring for completion */ 1238 rx_ring->skb = skb; 1239 1240 if (xdp_xmit) { 1241 struct ixgbevf_ring *xdp_ring = 1242 adapter->xdp_ring[rx_ring->queue_index]; 1243 1244 /* Force memory writes to complete before letting h/w 1245 * know there are new descriptors to fetch. 1246 */ 1247 wmb(); 1248 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use); 1249 } 1250 1251 u64_stats_update_begin(&rx_ring->syncp); 1252 rx_ring->stats.packets += total_rx_packets; 1253 rx_ring->stats.bytes += total_rx_bytes; 1254 u64_stats_update_end(&rx_ring->syncp); 1255 q_vector->rx.total_packets += total_rx_packets; 1256 q_vector->rx.total_bytes += total_rx_bytes; 1257 1258 return total_rx_packets; 1259 } 1260 1261 /** 1262 * ixgbevf_poll - NAPI polling calback 1263 * @napi: napi struct with our devices info in it 1264 * @budget: amount of work driver is allowed to do this pass, in packets 1265 * 1266 * This function will clean more than one or more rings associated with a 1267 * q_vector. 1268 **/ 1269 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1270 { 1271 struct ixgbevf_q_vector *q_vector = 1272 container_of(napi, struct ixgbevf_q_vector, napi); 1273 struct ixgbevf_adapter *adapter = q_vector->adapter; 1274 struct ixgbevf_ring *ring; 1275 int per_ring_budget, work_done = 0; 1276 bool clean_complete = true; 1277 1278 ixgbevf_for_each_ring(ring, q_vector->tx) { 1279 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1280 clean_complete = false; 1281 } 1282 1283 if (budget <= 0) 1284 return budget; 1285 1286 /* attempt to distribute budget to each queue fairly, but don't allow 1287 * the budget to go below 1 because we'll exit polling 1288 */ 1289 if (q_vector->rx.count > 1) 1290 per_ring_budget = max(budget/q_vector->rx.count, 1); 1291 else 1292 per_ring_budget = budget; 1293 1294 ixgbevf_for_each_ring(ring, q_vector->rx) { 1295 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1296 per_ring_budget); 1297 work_done += cleaned; 1298 if (cleaned >= per_ring_budget) 1299 clean_complete = false; 1300 } 1301 1302 /* If all work not completed, return budget and keep polling */ 1303 if (!clean_complete) 1304 return budget; 1305 1306 /* Exit the polling mode, but don't re-enable interrupts if stack might 1307 * poll us due to busy-polling 1308 */ 1309 if (likely(napi_complete_done(napi, work_done))) { 1310 if (adapter->rx_itr_setting == 1) 1311 ixgbevf_set_itr(q_vector); 1312 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1313 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1314 ixgbevf_irq_enable_queues(adapter, 1315 BIT(q_vector->v_idx)); 1316 } 1317 1318 return min(work_done, budget - 1); 1319 } 1320 1321 /** 1322 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1323 * @q_vector: structure containing interrupt and ring information 1324 **/ 1325 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1326 { 1327 struct ixgbevf_adapter *adapter = q_vector->adapter; 1328 struct ixgbe_hw *hw = &adapter->hw; 1329 int v_idx = q_vector->v_idx; 1330 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1331 1332 /* set the WDIS bit to not clear the timer bits and cause an 1333 * immediate assertion of the interrupt 1334 */ 1335 itr_reg |= IXGBE_EITR_CNT_WDIS; 1336 1337 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1338 } 1339 1340 /** 1341 * ixgbevf_configure_msix - Configure MSI-X hardware 1342 * @adapter: board private structure 1343 * 1344 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1345 * interrupts. 1346 **/ 1347 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1348 { 1349 struct ixgbevf_q_vector *q_vector; 1350 int q_vectors, v_idx; 1351 1352 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1353 adapter->eims_enable_mask = 0; 1354 1355 /* Populate the IVAR table and set the ITR values to the 1356 * corresponding register. 1357 */ 1358 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1359 struct ixgbevf_ring *ring; 1360 1361 q_vector = adapter->q_vector[v_idx]; 1362 1363 ixgbevf_for_each_ring(ring, q_vector->rx) 1364 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1365 1366 ixgbevf_for_each_ring(ring, q_vector->tx) 1367 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1368 1369 if (q_vector->tx.ring && !q_vector->rx.ring) { 1370 /* Tx only vector */ 1371 if (adapter->tx_itr_setting == 1) 1372 q_vector->itr = IXGBE_12K_ITR; 1373 else 1374 q_vector->itr = adapter->tx_itr_setting; 1375 } else { 1376 /* Rx or Rx/Tx vector */ 1377 if (adapter->rx_itr_setting == 1) 1378 q_vector->itr = IXGBE_20K_ITR; 1379 else 1380 q_vector->itr = adapter->rx_itr_setting; 1381 } 1382 1383 /* add q_vector eims value to global eims_enable_mask */ 1384 adapter->eims_enable_mask |= BIT(v_idx); 1385 1386 ixgbevf_write_eitr(q_vector); 1387 } 1388 1389 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1390 /* setup eims_other and add value to global eims_enable_mask */ 1391 adapter->eims_other = BIT(v_idx); 1392 adapter->eims_enable_mask |= adapter->eims_other; 1393 } 1394 1395 enum latency_range { 1396 lowest_latency = 0, 1397 low_latency = 1, 1398 bulk_latency = 2, 1399 latency_invalid = 255 1400 }; 1401 1402 /** 1403 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1404 * @q_vector: structure containing interrupt and ring information 1405 * @ring_container: structure containing ring performance data 1406 * 1407 * Stores a new ITR value based on packets and byte 1408 * counts during the last interrupt. The advantage of per interrupt 1409 * computation is faster updates and more accurate ITR for the current 1410 * traffic pattern. Constants in this function were computed 1411 * based on theoretical maximum wire speed and thresholds were set based 1412 * on testing data as well as attempting to minimize response time 1413 * while increasing bulk throughput. 1414 **/ 1415 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1416 struct ixgbevf_ring_container *ring_container) 1417 { 1418 int bytes = ring_container->total_bytes; 1419 int packets = ring_container->total_packets; 1420 u32 timepassed_us; 1421 u64 bytes_perint; 1422 u8 itr_setting = ring_container->itr; 1423 1424 if (packets == 0) 1425 return; 1426 1427 /* simple throttle rate management 1428 * 0-20MB/s lowest (100000 ints/s) 1429 * 20-100MB/s low (20000 ints/s) 1430 * 100-1249MB/s bulk (12000 ints/s) 1431 */ 1432 /* what was last interrupt timeslice? */ 1433 timepassed_us = q_vector->itr >> 2; 1434 if (timepassed_us == 0) 1435 return; 1436 1437 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1438 1439 switch (itr_setting) { 1440 case lowest_latency: 1441 if (bytes_perint > 10) 1442 itr_setting = low_latency; 1443 break; 1444 case low_latency: 1445 if (bytes_perint > 20) 1446 itr_setting = bulk_latency; 1447 else if (bytes_perint <= 10) 1448 itr_setting = lowest_latency; 1449 break; 1450 case bulk_latency: 1451 if (bytes_perint <= 20) 1452 itr_setting = low_latency; 1453 break; 1454 } 1455 1456 /* clear work counters since we have the values we need */ 1457 ring_container->total_bytes = 0; 1458 ring_container->total_packets = 0; 1459 1460 /* write updated itr to ring container */ 1461 ring_container->itr = itr_setting; 1462 } 1463 1464 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1465 { 1466 u32 new_itr = q_vector->itr; 1467 u8 current_itr; 1468 1469 ixgbevf_update_itr(q_vector, &q_vector->tx); 1470 ixgbevf_update_itr(q_vector, &q_vector->rx); 1471 1472 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1473 1474 switch (current_itr) { 1475 /* counts and packets in update_itr are dependent on these numbers */ 1476 case lowest_latency: 1477 new_itr = IXGBE_100K_ITR; 1478 break; 1479 case low_latency: 1480 new_itr = IXGBE_20K_ITR; 1481 break; 1482 case bulk_latency: 1483 new_itr = IXGBE_12K_ITR; 1484 break; 1485 default: 1486 break; 1487 } 1488 1489 if (new_itr != q_vector->itr) { 1490 /* do an exponential smoothing */ 1491 new_itr = (10 * new_itr * q_vector->itr) / 1492 ((9 * new_itr) + q_vector->itr); 1493 1494 /* save the algorithm value here */ 1495 q_vector->itr = new_itr; 1496 1497 ixgbevf_write_eitr(q_vector); 1498 } 1499 } 1500 1501 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1502 { 1503 struct ixgbevf_adapter *adapter = data; 1504 struct ixgbe_hw *hw = &adapter->hw; 1505 1506 hw->mac.get_link_status = 1; 1507 1508 ixgbevf_service_event_schedule(adapter); 1509 1510 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1511 1512 return IRQ_HANDLED; 1513 } 1514 1515 /** 1516 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1517 * @irq: unused 1518 * @data: pointer to our q_vector struct for this interrupt vector 1519 **/ 1520 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1521 { 1522 struct ixgbevf_q_vector *q_vector = data; 1523 1524 /* EIAM disabled interrupts (on this vector) for us */ 1525 if (q_vector->rx.ring || q_vector->tx.ring) 1526 napi_schedule_irqoff(&q_vector->napi); 1527 1528 return IRQ_HANDLED; 1529 } 1530 1531 /** 1532 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1533 * @adapter: board private structure 1534 * 1535 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1536 * interrupts from the kernel. 1537 **/ 1538 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1539 { 1540 struct net_device *netdev = adapter->netdev; 1541 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1542 unsigned int ri = 0, ti = 0; 1543 int vector, err; 1544 1545 for (vector = 0; vector < q_vectors; vector++) { 1546 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1547 struct msix_entry *entry = &adapter->msix_entries[vector]; 1548 1549 if (q_vector->tx.ring && q_vector->rx.ring) { 1550 snprintf(q_vector->name, sizeof(q_vector->name), 1551 "%s-TxRx-%u", netdev->name, ri++); 1552 ti++; 1553 } else if (q_vector->rx.ring) { 1554 snprintf(q_vector->name, sizeof(q_vector->name), 1555 "%s-rx-%u", netdev->name, ri++); 1556 } else if (q_vector->tx.ring) { 1557 snprintf(q_vector->name, sizeof(q_vector->name), 1558 "%s-tx-%u", netdev->name, ti++); 1559 } else { 1560 /* skip this unused q_vector */ 1561 continue; 1562 } 1563 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1564 q_vector->name, q_vector); 1565 if (err) { 1566 hw_dbg(&adapter->hw, 1567 "request_irq failed for MSIX interrupt Error: %d\n", 1568 err); 1569 goto free_queue_irqs; 1570 } 1571 } 1572 1573 err = request_irq(adapter->msix_entries[vector].vector, 1574 &ixgbevf_msix_other, 0, netdev->name, adapter); 1575 if (err) { 1576 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1577 err); 1578 goto free_queue_irqs; 1579 } 1580 1581 return 0; 1582 1583 free_queue_irqs: 1584 while (vector) { 1585 vector--; 1586 free_irq(adapter->msix_entries[vector].vector, 1587 adapter->q_vector[vector]); 1588 } 1589 /* This failure is non-recoverable - it indicates the system is 1590 * out of MSIX vector resources and the VF driver cannot run 1591 * without them. Set the number of msix vectors to zero 1592 * indicating that not enough can be allocated. The error 1593 * will be returned to the user indicating device open failed. 1594 * Any further attempts to force the driver to open will also 1595 * fail. The only way to recover is to unload the driver and 1596 * reload it again. If the system has recovered some MSIX 1597 * vectors then it may succeed. 1598 */ 1599 adapter->num_msix_vectors = 0; 1600 return err; 1601 } 1602 1603 /** 1604 * ixgbevf_request_irq - initialize interrupts 1605 * @adapter: board private structure 1606 * 1607 * Attempts to configure interrupts using the best available 1608 * capabilities of the hardware and kernel. 1609 **/ 1610 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1611 { 1612 int err = ixgbevf_request_msix_irqs(adapter); 1613 1614 if (err) 1615 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1616 1617 return err; 1618 } 1619 1620 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1621 { 1622 int i, q_vectors; 1623 1624 if (!adapter->msix_entries) 1625 return; 1626 1627 q_vectors = adapter->num_msix_vectors; 1628 i = q_vectors - 1; 1629 1630 free_irq(adapter->msix_entries[i].vector, adapter); 1631 i--; 1632 1633 for (; i >= 0; i--) { 1634 /* free only the irqs that were actually requested */ 1635 if (!adapter->q_vector[i]->rx.ring && 1636 !adapter->q_vector[i]->tx.ring) 1637 continue; 1638 1639 free_irq(adapter->msix_entries[i].vector, 1640 adapter->q_vector[i]); 1641 } 1642 } 1643 1644 /** 1645 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1646 * @adapter: board private structure 1647 **/ 1648 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1649 { 1650 struct ixgbe_hw *hw = &adapter->hw; 1651 int i; 1652 1653 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1654 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1655 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1656 1657 IXGBE_WRITE_FLUSH(hw); 1658 1659 for (i = 0; i < adapter->num_msix_vectors; i++) 1660 synchronize_irq(adapter->msix_entries[i].vector); 1661 } 1662 1663 /** 1664 * ixgbevf_irq_enable - Enable default interrupt generation settings 1665 * @adapter: board private structure 1666 **/ 1667 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1668 { 1669 struct ixgbe_hw *hw = &adapter->hw; 1670 1671 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1672 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1673 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1674 } 1675 1676 /** 1677 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1678 * @adapter: board private structure 1679 * @ring: structure containing ring specific data 1680 * 1681 * Configure the Tx descriptor ring after a reset. 1682 **/ 1683 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1684 struct ixgbevf_ring *ring) 1685 { 1686 struct ixgbe_hw *hw = &adapter->hw; 1687 u64 tdba = ring->dma; 1688 int wait_loop = 10; 1689 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1690 u8 reg_idx = ring->reg_idx; 1691 1692 /* disable queue to avoid issues while updating state */ 1693 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1694 IXGBE_WRITE_FLUSH(hw); 1695 1696 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1697 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1698 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1699 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1700 1701 /* disable head writeback */ 1702 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1703 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1704 1705 /* enable relaxed ordering */ 1706 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1707 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1708 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1709 1710 /* reset head and tail pointers */ 1711 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1712 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1713 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1714 1715 /* reset ntu and ntc to place SW in sync with hardwdare */ 1716 ring->next_to_clean = 0; 1717 ring->next_to_use = 0; 1718 1719 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1720 * to or less than the number of on chip descriptors, which is 1721 * currently 40. 1722 */ 1723 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1724 1725 /* Setting PTHRESH to 32 both improves performance */ 1726 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1727 32; /* PTHRESH = 32 */ 1728 1729 /* reinitialize tx_buffer_info */ 1730 memset(ring->tx_buffer_info, 0, 1731 sizeof(struct ixgbevf_tx_buffer) * ring->count); 1732 1733 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1734 clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1735 1736 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1737 1738 /* poll to verify queue is enabled */ 1739 do { 1740 usleep_range(1000, 2000); 1741 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1742 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1743 if (!wait_loop) 1744 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1745 } 1746 1747 /** 1748 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1749 * @adapter: board private structure 1750 * 1751 * Configure the Tx unit of the MAC after a reset. 1752 **/ 1753 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1754 { 1755 u32 i; 1756 1757 /* Setup the HW Tx Head and Tail descriptor pointers */ 1758 for (i = 0; i < adapter->num_tx_queues; i++) 1759 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1760 for (i = 0; i < adapter->num_xdp_queues; i++) 1761 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]); 1762 } 1763 1764 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1765 1766 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, 1767 struct ixgbevf_ring *ring, int index) 1768 { 1769 struct ixgbe_hw *hw = &adapter->hw; 1770 u32 srrctl; 1771 1772 srrctl = IXGBE_SRRCTL_DROP_EN; 1773 1774 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1775 if (ring_uses_large_buffer(ring)) 1776 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1777 else 1778 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1779 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1780 1781 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1782 } 1783 1784 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1785 { 1786 struct ixgbe_hw *hw = &adapter->hw; 1787 1788 /* PSRTYPE must be initialized in 82599 */ 1789 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1790 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1791 IXGBE_PSRTYPE_L2HDR; 1792 1793 if (adapter->num_rx_queues > 1) 1794 psrtype |= BIT(29); 1795 1796 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1797 } 1798 1799 #define IXGBEVF_MAX_RX_DESC_POLL 10 1800 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1801 struct ixgbevf_ring *ring) 1802 { 1803 struct ixgbe_hw *hw = &adapter->hw; 1804 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1805 u32 rxdctl; 1806 u8 reg_idx = ring->reg_idx; 1807 1808 if (IXGBE_REMOVED(hw->hw_addr)) 1809 return; 1810 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1811 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1812 1813 /* write value back with RXDCTL.ENABLE bit cleared */ 1814 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1815 1816 /* the hardware may take up to 100us to really disable the Rx queue */ 1817 do { 1818 udelay(10); 1819 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1820 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1821 1822 if (!wait_loop) 1823 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1824 reg_idx); 1825 } 1826 1827 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1828 struct ixgbevf_ring *ring) 1829 { 1830 struct ixgbe_hw *hw = &adapter->hw; 1831 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1832 u32 rxdctl; 1833 u8 reg_idx = ring->reg_idx; 1834 1835 if (IXGBE_REMOVED(hw->hw_addr)) 1836 return; 1837 do { 1838 usleep_range(1000, 2000); 1839 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1840 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1841 1842 if (!wait_loop) 1843 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1844 reg_idx); 1845 } 1846 1847 /** 1848 * ixgbevf_init_rss_key - Initialize adapter RSS key 1849 * @adapter: device handle 1850 * 1851 * Allocates and initializes the RSS key if it is not allocated. 1852 **/ 1853 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1854 { 1855 u32 *rss_key; 1856 1857 if (!adapter->rss_key) { 1858 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1859 if (unlikely(!rss_key)) 1860 return -ENOMEM; 1861 1862 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1863 adapter->rss_key = rss_key; 1864 } 1865 1866 return 0; 1867 } 1868 1869 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1870 { 1871 struct ixgbe_hw *hw = &adapter->hw; 1872 u32 vfmrqc = 0, vfreta = 0; 1873 u16 rss_i = adapter->num_rx_queues; 1874 u8 i, j; 1875 1876 /* Fill out hash function seeds */ 1877 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1878 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1879 1880 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1881 if (j == rss_i) 1882 j = 0; 1883 1884 adapter->rss_indir_tbl[i] = j; 1885 1886 vfreta |= j << (i & 0x3) * 8; 1887 if ((i & 3) == 3) { 1888 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1889 vfreta = 0; 1890 } 1891 } 1892 1893 /* Perform hash on these packet types */ 1894 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1895 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1896 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1897 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1898 1899 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1900 1901 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1902 } 1903 1904 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1905 struct ixgbevf_ring *ring) 1906 { 1907 struct ixgbe_hw *hw = &adapter->hw; 1908 union ixgbe_adv_rx_desc *rx_desc; 1909 u64 rdba = ring->dma; 1910 u32 rxdctl; 1911 u8 reg_idx = ring->reg_idx; 1912 1913 /* disable queue to avoid issues while updating state */ 1914 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1915 ixgbevf_disable_rx_queue(adapter, ring); 1916 1917 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1918 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1919 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1920 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1921 1922 #ifndef CONFIG_SPARC 1923 /* enable relaxed ordering */ 1924 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1925 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1926 #else 1927 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1928 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1929 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1930 #endif 1931 1932 /* reset head and tail pointers */ 1933 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1934 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1935 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1936 1937 /* initialize rx_buffer_info */ 1938 memset(ring->rx_buffer_info, 0, 1939 sizeof(struct ixgbevf_rx_buffer) * ring->count); 1940 1941 /* initialize Rx descriptor 0 */ 1942 rx_desc = IXGBEVF_RX_DESC(ring, 0); 1943 rx_desc->wb.upper.length = 0; 1944 1945 /* reset ntu and ntc to place SW in sync with hardwdare */ 1946 ring->next_to_clean = 0; 1947 ring->next_to_use = 0; 1948 ring->next_to_alloc = 0; 1949 1950 ixgbevf_configure_srrctl(adapter, ring, reg_idx); 1951 1952 /* RXDCTL.RLPML does not work on 82599 */ 1953 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) { 1954 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK | 1955 IXGBE_RXDCTL_RLPML_EN); 1956 1957 #if (PAGE_SIZE < 8192) 1958 /* Limit the maximum frame size so we don't overrun the skb */ 1959 if (ring_uses_build_skb(ring) && 1960 !ring_uses_large_buffer(ring)) 1961 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB | 1962 IXGBE_RXDCTL_RLPML_EN; 1963 #endif 1964 } 1965 1966 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1967 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1968 1969 ixgbevf_rx_desc_queue_enable(adapter, ring); 1970 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1971 } 1972 1973 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter, 1974 struct ixgbevf_ring *rx_ring) 1975 { 1976 struct net_device *netdev = adapter->netdev; 1977 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1978 1979 /* set build_skb and buffer size flags */ 1980 clear_ring_build_skb_enabled(rx_ring); 1981 clear_ring_uses_large_buffer(rx_ring); 1982 1983 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX) 1984 return; 1985 1986 if (PAGE_SIZE < 8192) 1987 if (max_frame > IXGBEVF_MAX_FRAME_BUILD_SKB) 1988 set_ring_uses_large_buffer(rx_ring); 1989 1990 /* 82599 can't rely on RXDCTL.RLPML to restrict the size of the frame */ 1991 if (adapter->hw.mac.type == ixgbe_mac_82599_vf && !ring_uses_large_buffer(rx_ring)) 1992 return; 1993 1994 set_ring_build_skb_enabled(rx_ring); 1995 } 1996 1997 /** 1998 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 1999 * @adapter: board private structure 2000 * 2001 * Configure the Rx unit of the MAC after a reset. 2002 **/ 2003 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 2004 { 2005 struct ixgbe_hw *hw = &adapter->hw; 2006 struct net_device *netdev = adapter->netdev; 2007 int i, ret; 2008 2009 ixgbevf_setup_psrtype(adapter); 2010 if (hw->mac.type >= ixgbe_mac_X550_vf) 2011 ixgbevf_setup_vfmrqc(adapter); 2012 2013 spin_lock_bh(&adapter->mbx_lock); 2014 /* notify the PF of our intent to use this size of frame */ 2015 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 2016 spin_unlock_bh(&adapter->mbx_lock); 2017 if (ret) 2018 dev_err(&adapter->pdev->dev, 2019 "Failed to set MTU at %d\n", netdev->mtu); 2020 2021 /* Setup the HW Rx Head and Tail Descriptor Pointers and 2022 * the Base and Length of the Rx Descriptor Ring 2023 */ 2024 for (i = 0; i < adapter->num_rx_queues; i++) { 2025 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 2026 2027 ixgbevf_set_rx_buffer_len(adapter, rx_ring); 2028 ixgbevf_configure_rx_ring(adapter, rx_ring); 2029 } 2030 } 2031 2032 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 2033 __be16 proto, u16 vid) 2034 { 2035 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2036 struct ixgbe_hw *hw = &adapter->hw; 2037 int err; 2038 2039 spin_lock_bh(&adapter->mbx_lock); 2040 2041 /* add VID to filter table */ 2042 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 2043 2044 spin_unlock_bh(&adapter->mbx_lock); 2045 2046 if (err) { 2047 netdev_err(netdev, "VF could not set VLAN %d\n", vid); 2048 2049 /* translate error return types so error makes sense */ 2050 if (err == IXGBE_ERR_MBX) 2051 return -EIO; 2052 2053 if (err == IXGBE_ERR_INVALID_ARGUMENT) 2054 return -EACCES; 2055 } 2056 2057 set_bit(vid, adapter->active_vlans); 2058 2059 return err; 2060 } 2061 2062 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 2063 __be16 proto, u16 vid) 2064 { 2065 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2066 struct ixgbe_hw *hw = &adapter->hw; 2067 int err; 2068 2069 spin_lock_bh(&adapter->mbx_lock); 2070 2071 /* remove VID from filter table */ 2072 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 2073 2074 spin_unlock_bh(&adapter->mbx_lock); 2075 2076 if (err) 2077 netdev_err(netdev, "Could not remove VLAN %d\n", vid); 2078 2079 clear_bit(vid, adapter->active_vlans); 2080 2081 return err; 2082 } 2083 2084 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 2085 { 2086 u16 vid; 2087 2088 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2089 ixgbevf_vlan_rx_add_vid(adapter->netdev, 2090 htons(ETH_P_8021Q), vid); 2091 } 2092 2093 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 2094 { 2095 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2096 struct ixgbe_hw *hw = &adapter->hw; 2097 int count = 0; 2098 2099 if (!netdev_uc_empty(netdev)) { 2100 struct netdev_hw_addr *ha; 2101 2102 netdev_for_each_uc_addr(ha, netdev) { 2103 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 2104 udelay(200); 2105 } 2106 } else { 2107 /* If the list is empty then send message to PF driver to 2108 * clear all MAC VLANs on this VF. 2109 */ 2110 hw->mac.ops.set_uc_addr(hw, 0, NULL); 2111 } 2112 2113 return count; 2114 } 2115 2116 /** 2117 * ixgbevf_set_rx_mode - Multicast and unicast set 2118 * @netdev: network interface device structure 2119 * 2120 * The set_rx_method entry point is called whenever the multicast address 2121 * list, unicast address list or the network interface flags are updated. 2122 * This routine is responsible for configuring the hardware for proper 2123 * multicast mode and configuring requested unicast filters. 2124 **/ 2125 static void ixgbevf_set_rx_mode(struct net_device *netdev) 2126 { 2127 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2128 struct ixgbe_hw *hw = &adapter->hw; 2129 unsigned int flags = netdev->flags; 2130 int xcast_mode; 2131 2132 /* request the most inclusive mode we need */ 2133 if (flags & IFF_PROMISC) 2134 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 2135 else if (flags & IFF_ALLMULTI) 2136 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 2137 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 2138 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 2139 else 2140 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 2141 2142 spin_lock_bh(&adapter->mbx_lock); 2143 2144 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 2145 2146 /* reprogram multicast list */ 2147 hw->mac.ops.update_mc_addr_list(hw, netdev); 2148 2149 ixgbevf_write_uc_addr_list(netdev); 2150 2151 spin_unlock_bh(&adapter->mbx_lock); 2152 } 2153 2154 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 2155 { 2156 int q_idx; 2157 struct ixgbevf_q_vector *q_vector; 2158 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2159 2160 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2161 q_vector = adapter->q_vector[q_idx]; 2162 napi_enable(&q_vector->napi); 2163 } 2164 } 2165 2166 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 2167 { 2168 int q_idx; 2169 struct ixgbevf_q_vector *q_vector; 2170 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2171 2172 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2173 q_vector = adapter->q_vector[q_idx]; 2174 napi_disable(&q_vector->napi); 2175 } 2176 } 2177 2178 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 2179 { 2180 struct ixgbe_hw *hw = &adapter->hw; 2181 unsigned int def_q = 0; 2182 unsigned int num_tcs = 0; 2183 unsigned int num_rx_queues = adapter->num_rx_queues; 2184 unsigned int num_tx_queues = adapter->num_tx_queues; 2185 int err; 2186 2187 spin_lock_bh(&adapter->mbx_lock); 2188 2189 /* fetch queue configuration from the PF */ 2190 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2191 2192 spin_unlock_bh(&adapter->mbx_lock); 2193 2194 if (err) 2195 return err; 2196 2197 if (num_tcs > 1) { 2198 /* we need only one Tx queue */ 2199 num_tx_queues = 1; 2200 2201 /* update default Tx ring register index */ 2202 adapter->tx_ring[0]->reg_idx = def_q; 2203 2204 /* we need as many queues as traffic classes */ 2205 num_rx_queues = num_tcs; 2206 } 2207 2208 /* if we have a bad config abort request queue reset */ 2209 if ((adapter->num_rx_queues != num_rx_queues) || 2210 (adapter->num_tx_queues != num_tx_queues)) { 2211 /* force mailbox timeout to prevent further messages */ 2212 hw->mbx.timeout = 0; 2213 2214 /* wait for watchdog to come around and bail us out */ 2215 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2216 } 2217 2218 return 0; 2219 } 2220 2221 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2222 { 2223 ixgbevf_configure_dcb(adapter); 2224 2225 ixgbevf_set_rx_mode(adapter->netdev); 2226 2227 ixgbevf_restore_vlan(adapter); 2228 ixgbevf_ipsec_restore(adapter); 2229 2230 ixgbevf_configure_tx(adapter); 2231 ixgbevf_configure_rx(adapter); 2232 } 2233 2234 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2235 { 2236 /* Only save pre-reset stats if there are some */ 2237 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2238 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2239 adapter->stats.base_vfgprc; 2240 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2241 adapter->stats.base_vfgptc; 2242 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2243 adapter->stats.base_vfgorc; 2244 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2245 adapter->stats.base_vfgotc; 2246 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2247 adapter->stats.base_vfmprc; 2248 } 2249 } 2250 2251 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2252 { 2253 struct ixgbe_hw *hw = &adapter->hw; 2254 2255 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2256 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2257 adapter->stats.last_vfgorc |= 2258 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2259 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2260 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2261 adapter->stats.last_vfgotc |= 2262 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2263 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2264 2265 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2266 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2267 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2268 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2269 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2270 } 2271 2272 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2273 { 2274 struct ixgbe_hw *hw = &adapter->hw; 2275 static const int api[] = { 2276 ixgbe_mbox_api_15, 2277 ixgbe_mbox_api_14, 2278 ixgbe_mbox_api_13, 2279 ixgbe_mbox_api_12, 2280 ixgbe_mbox_api_11, 2281 ixgbe_mbox_api_10, 2282 ixgbe_mbox_api_unknown 2283 }; 2284 int err, idx = 0; 2285 2286 spin_lock_bh(&adapter->mbx_lock); 2287 2288 while (api[idx] != ixgbe_mbox_api_unknown) { 2289 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2290 if (!err) 2291 break; 2292 idx++; 2293 } 2294 2295 if (hw->api_version >= ixgbe_mbox_api_15) { 2296 hw->mbx.ops.init_params(hw); 2297 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 2298 sizeof(struct ixgbe_mbx_operations)); 2299 } 2300 2301 spin_unlock_bh(&adapter->mbx_lock); 2302 } 2303 2304 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2305 { 2306 struct net_device *netdev = adapter->netdev; 2307 struct pci_dev *pdev = adapter->pdev; 2308 struct ixgbe_hw *hw = &adapter->hw; 2309 bool state; 2310 2311 ixgbevf_configure_msix(adapter); 2312 2313 spin_lock_bh(&adapter->mbx_lock); 2314 2315 if (is_valid_ether_addr(hw->mac.addr)) 2316 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2317 else 2318 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2319 2320 spin_unlock_bh(&adapter->mbx_lock); 2321 2322 state = adapter->link_state; 2323 hw->mac.ops.get_link_state(hw, &adapter->link_state); 2324 if (state && state != adapter->link_state) 2325 dev_info(&pdev->dev, "VF is administratively disabled\n"); 2326 2327 smp_mb__before_atomic(); 2328 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2329 ixgbevf_napi_enable_all(adapter); 2330 2331 /* clear any pending interrupts, may auto mask */ 2332 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2333 ixgbevf_irq_enable(adapter); 2334 2335 /* enable transmits */ 2336 netif_tx_start_all_queues(netdev); 2337 2338 ixgbevf_save_reset_stats(adapter); 2339 ixgbevf_init_last_counter_stats(adapter); 2340 2341 hw->mac.get_link_status = 1; 2342 mod_timer(&adapter->service_timer, jiffies); 2343 } 2344 2345 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2346 { 2347 ixgbevf_configure(adapter); 2348 2349 ixgbevf_up_complete(adapter); 2350 } 2351 2352 /** 2353 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2354 * @rx_ring: ring to free buffers from 2355 **/ 2356 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2357 { 2358 u16 i = rx_ring->next_to_clean; 2359 2360 /* Free Rx ring sk_buff */ 2361 if (rx_ring->skb) { 2362 dev_kfree_skb(rx_ring->skb); 2363 rx_ring->skb = NULL; 2364 } 2365 2366 /* Free all the Rx ring pages */ 2367 while (i != rx_ring->next_to_alloc) { 2368 struct ixgbevf_rx_buffer *rx_buffer; 2369 2370 rx_buffer = &rx_ring->rx_buffer_info[i]; 2371 2372 /* Invalidate cache lines that may have been written to by 2373 * device so that we avoid corrupting memory. 2374 */ 2375 dma_sync_single_range_for_cpu(rx_ring->dev, 2376 rx_buffer->dma, 2377 rx_buffer->page_offset, 2378 ixgbevf_rx_bufsz(rx_ring), 2379 DMA_FROM_DEVICE); 2380 2381 /* free resources associated with mapping */ 2382 dma_unmap_page_attrs(rx_ring->dev, 2383 rx_buffer->dma, 2384 ixgbevf_rx_pg_size(rx_ring), 2385 DMA_FROM_DEVICE, 2386 IXGBEVF_RX_DMA_ATTR); 2387 2388 __page_frag_cache_drain(rx_buffer->page, 2389 rx_buffer->pagecnt_bias); 2390 2391 i++; 2392 if (i == rx_ring->count) 2393 i = 0; 2394 } 2395 2396 rx_ring->next_to_alloc = 0; 2397 rx_ring->next_to_clean = 0; 2398 rx_ring->next_to_use = 0; 2399 } 2400 2401 /** 2402 * ixgbevf_clean_tx_ring - Free Tx Buffers 2403 * @tx_ring: ring to be cleaned 2404 **/ 2405 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2406 { 2407 u16 i = tx_ring->next_to_clean; 2408 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 2409 2410 while (i != tx_ring->next_to_use) { 2411 union ixgbe_adv_tx_desc *eop_desc, *tx_desc; 2412 2413 /* Free all the Tx ring sk_buffs */ 2414 if (ring_is_xdp(tx_ring)) 2415 page_frag_free(tx_buffer->data); 2416 else 2417 dev_kfree_skb_any(tx_buffer->skb); 2418 2419 /* unmap skb header data */ 2420 dma_unmap_single(tx_ring->dev, 2421 dma_unmap_addr(tx_buffer, dma), 2422 dma_unmap_len(tx_buffer, len), 2423 DMA_TO_DEVICE); 2424 2425 /* check for eop_desc to determine the end of the packet */ 2426 eop_desc = tx_buffer->next_to_watch; 2427 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 2428 2429 /* unmap remaining buffers */ 2430 while (tx_desc != eop_desc) { 2431 tx_buffer++; 2432 tx_desc++; 2433 i++; 2434 if (unlikely(i == tx_ring->count)) { 2435 i = 0; 2436 tx_buffer = tx_ring->tx_buffer_info; 2437 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 2438 } 2439 2440 /* unmap any remaining paged data */ 2441 if (dma_unmap_len(tx_buffer, len)) 2442 dma_unmap_page(tx_ring->dev, 2443 dma_unmap_addr(tx_buffer, dma), 2444 dma_unmap_len(tx_buffer, len), 2445 DMA_TO_DEVICE); 2446 } 2447 2448 /* move us one more past the eop_desc for start of next pkt */ 2449 tx_buffer++; 2450 i++; 2451 if (unlikely(i == tx_ring->count)) { 2452 i = 0; 2453 tx_buffer = tx_ring->tx_buffer_info; 2454 } 2455 } 2456 2457 /* reset next_to_use and next_to_clean */ 2458 tx_ring->next_to_use = 0; 2459 tx_ring->next_to_clean = 0; 2460 2461 } 2462 2463 /** 2464 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2465 * @adapter: board private structure 2466 **/ 2467 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2468 { 2469 int i; 2470 2471 for (i = 0; i < adapter->num_rx_queues; i++) 2472 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2473 } 2474 2475 /** 2476 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2477 * @adapter: board private structure 2478 **/ 2479 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2480 { 2481 int i; 2482 2483 for (i = 0; i < adapter->num_tx_queues; i++) 2484 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2485 for (i = 0; i < adapter->num_xdp_queues; i++) 2486 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]); 2487 } 2488 2489 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2490 { 2491 struct net_device *netdev = adapter->netdev; 2492 struct ixgbe_hw *hw = &adapter->hw; 2493 int i; 2494 2495 /* signal that we are down to the interrupt handler */ 2496 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2497 return; /* do nothing if already down */ 2498 2499 /* disable all enabled Rx queues */ 2500 for (i = 0; i < adapter->num_rx_queues; i++) 2501 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2502 2503 usleep_range(10000, 20000); 2504 2505 netif_tx_stop_all_queues(netdev); 2506 2507 /* call carrier off first to avoid false dev_watchdog timeouts */ 2508 netif_carrier_off(netdev); 2509 netif_tx_disable(netdev); 2510 2511 ixgbevf_irq_disable(adapter); 2512 2513 ixgbevf_napi_disable_all(adapter); 2514 2515 del_timer_sync(&adapter->service_timer); 2516 2517 /* disable transmits in the hardware now that interrupts are off */ 2518 for (i = 0; i < adapter->num_tx_queues; i++) { 2519 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2520 2521 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2522 IXGBE_TXDCTL_SWFLSH); 2523 } 2524 2525 for (i = 0; i < adapter->num_xdp_queues; i++) { 2526 u8 reg_idx = adapter->xdp_ring[i]->reg_idx; 2527 2528 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2529 IXGBE_TXDCTL_SWFLSH); 2530 } 2531 2532 if (!pci_channel_offline(adapter->pdev)) 2533 ixgbevf_reset(adapter); 2534 2535 ixgbevf_clean_all_tx_rings(adapter); 2536 ixgbevf_clean_all_rx_rings(adapter); 2537 } 2538 2539 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2540 { 2541 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2542 msleep(1); 2543 2544 ixgbevf_down(adapter); 2545 pci_set_master(adapter->pdev); 2546 ixgbevf_up(adapter); 2547 2548 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2549 } 2550 2551 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2552 { 2553 struct ixgbe_hw *hw = &adapter->hw; 2554 struct net_device *netdev = adapter->netdev; 2555 2556 if (hw->mac.ops.reset_hw(hw)) { 2557 hw_dbg(hw, "PF still resetting\n"); 2558 } else { 2559 hw->mac.ops.init_hw(hw); 2560 ixgbevf_negotiate_api(adapter); 2561 } 2562 2563 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2564 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2565 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2566 } 2567 2568 adapter->last_reset = jiffies; 2569 } 2570 2571 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2572 int vectors) 2573 { 2574 int vector_threshold; 2575 2576 /* We'll want at least 2 (vector_threshold): 2577 * 1) TxQ[0] + RxQ[0] handler 2578 * 2) Other (Link Status Change, etc.) 2579 */ 2580 vector_threshold = MIN_MSIX_COUNT; 2581 2582 /* The more we get, the more we will assign to Tx/Rx Cleanup 2583 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2584 * Right now, we simply care about how many we'll get; we'll 2585 * set them up later while requesting irq's. 2586 */ 2587 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2588 vector_threshold, vectors); 2589 2590 if (vectors < 0) { 2591 dev_err(&adapter->pdev->dev, 2592 "Unable to allocate MSI-X interrupts\n"); 2593 kfree(adapter->msix_entries); 2594 adapter->msix_entries = NULL; 2595 return vectors; 2596 } 2597 2598 /* Adjust for only the vectors we'll use, which is minimum 2599 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2600 * vectors we were allocated. 2601 */ 2602 adapter->num_msix_vectors = vectors; 2603 2604 return 0; 2605 } 2606 2607 /** 2608 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2609 * @adapter: board private structure to initialize 2610 * 2611 * This is the top level queue allocation routine. The order here is very 2612 * important, starting with the "most" number of features turned on at once, 2613 * and ending with the smallest set of features. This way large combinations 2614 * can be allocated if they're turned on, and smaller combinations are the 2615 * fall through conditions. 2616 * 2617 **/ 2618 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2619 { 2620 struct ixgbe_hw *hw = &adapter->hw; 2621 unsigned int def_q = 0; 2622 unsigned int num_tcs = 0; 2623 int err; 2624 2625 /* Start with base case */ 2626 adapter->num_rx_queues = 1; 2627 adapter->num_tx_queues = 1; 2628 adapter->num_xdp_queues = 0; 2629 2630 spin_lock_bh(&adapter->mbx_lock); 2631 2632 /* fetch queue configuration from the PF */ 2633 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2634 2635 spin_unlock_bh(&adapter->mbx_lock); 2636 2637 if (err) 2638 return; 2639 2640 /* we need as many queues as traffic classes */ 2641 if (num_tcs > 1) { 2642 adapter->num_rx_queues = num_tcs; 2643 } else { 2644 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2645 2646 switch (hw->api_version) { 2647 case ixgbe_mbox_api_11: 2648 case ixgbe_mbox_api_12: 2649 case ixgbe_mbox_api_13: 2650 case ixgbe_mbox_api_14: 2651 case ixgbe_mbox_api_15: 2652 if (adapter->xdp_prog && 2653 hw->mac.max_tx_queues == rss) 2654 rss = rss > 3 ? 2 : 1; 2655 2656 adapter->num_rx_queues = rss; 2657 adapter->num_tx_queues = rss; 2658 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0; 2659 break; 2660 default: 2661 break; 2662 } 2663 } 2664 } 2665 2666 /** 2667 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2668 * @adapter: board private structure to initialize 2669 * 2670 * Attempt to configure the interrupts using the best available 2671 * capabilities of the hardware and the kernel. 2672 **/ 2673 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2674 { 2675 int vector, v_budget; 2676 2677 /* It's easy to be greedy for MSI-X vectors, but it really 2678 * doesn't do us much good if we have a lot more vectors 2679 * than CPU's. So let's be conservative and only ask for 2680 * (roughly) the same number of vectors as there are CPU's. 2681 * The default is to use pairs of vectors. 2682 */ 2683 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2684 v_budget = min_t(int, v_budget, num_online_cpus()); 2685 v_budget += NON_Q_VECTORS; 2686 2687 adapter->msix_entries = kcalloc(v_budget, 2688 sizeof(struct msix_entry), GFP_KERNEL); 2689 if (!adapter->msix_entries) 2690 return -ENOMEM; 2691 2692 for (vector = 0; vector < v_budget; vector++) 2693 adapter->msix_entries[vector].entry = vector; 2694 2695 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver 2696 * does not support any other modes, so we will simply fail here. Note 2697 * that we clean up the msix_entries pointer else-where. 2698 */ 2699 return ixgbevf_acquire_msix_vectors(adapter, v_budget); 2700 } 2701 2702 static void ixgbevf_add_ring(struct ixgbevf_ring *ring, 2703 struct ixgbevf_ring_container *head) 2704 { 2705 ring->next = head->ring; 2706 head->ring = ring; 2707 head->count++; 2708 } 2709 2710 /** 2711 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector 2712 * @adapter: board private structure to initialize 2713 * @v_idx: index of vector in adapter struct 2714 * @txr_count: number of Tx rings for q vector 2715 * @txr_idx: index of first Tx ring to assign 2716 * @xdp_count: total number of XDP rings to allocate 2717 * @xdp_idx: index of first XDP ring to allocate 2718 * @rxr_count: number of Rx rings for q vector 2719 * @rxr_idx: index of first Rx ring to assign 2720 * 2721 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2722 **/ 2723 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx, 2724 int txr_count, int txr_idx, 2725 int xdp_count, int xdp_idx, 2726 int rxr_count, int rxr_idx) 2727 { 2728 struct ixgbevf_q_vector *q_vector; 2729 int reg_idx = txr_idx + xdp_idx; 2730 struct ixgbevf_ring *ring; 2731 int ring_count, size; 2732 2733 ring_count = txr_count + xdp_count + rxr_count; 2734 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count); 2735 2736 /* allocate q_vector and rings */ 2737 q_vector = kzalloc(size, GFP_KERNEL); 2738 if (!q_vector) 2739 return -ENOMEM; 2740 2741 /* initialize NAPI */ 2742 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll); 2743 2744 /* tie q_vector and adapter together */ 2745 adapter->q_vector[v_idx] = q_vector; 2746 q_vector->adapter = adapter; 2747 q_vector->v_idx = v_idx; 2748 2749 /* initialize pointer to rings */ 2750 ring = q_vector->ring; 2751 2752 while (txr_count) { 2753 /* assign generic ring traits */ 2754 ring->dev = &adapter->pdev->dev; 2755 ring->netdev = adapter->netdev; 2756 2757 /* configure backlink on ring */ 2758 ring->q_vector = q_vector; 2759 2760 /* update q_vector Tx values */ 2761 ixgbevf_add_ring(ring, &q_vector->tx); 2762 2763 /* apply Tx specific ring traits */ 2764 ring->count = adapter->tx_ring_count; 2765 ring->queue_index = txr_idx; 2766 ring->reg_idx = reg_idx; 2767 2768 /* assign ring to adapter */ 2769 adapter->tx_ring[txr_idx] = ring; 2770 2771 /* update count and index */ 2772 txr_count--; 2773 txr_idx++; 2774 reg_idx++; 2775 2776 /* push pointer to next ring */ 2777 ring++; 2778 } 2779 2780 while (xdp_count) { 2781 /* assign generic ring traits */ 2782 ring->dev = &adapter->pdev->dev; 2783 ring->netdev = adapter->netdev; 2784 2785 /* configure backlink on ring */ 2786 ring->q_vector = q_vector; 2787 2788 /* update q_vector Tx values */ 2789 ixgbevf_add_ring(ring, &q_vector->tx); 2790 2791 /* apply Tx specific ring traits */ 2792 ring->count = adapter->tx_ring_count; 2793 ring->queue_index = xdp_idx; 2794 ring->reg_idx = reg_idx; 2795 set_ring_xdp(ring); 2796 2797 /* assign ring to adapter */ 2798 adapter->xdp_ring[xdp_idx] = ring; 2799 2800 /* update count and index */ 2801 xdp_count--; 2802 xdp_idx++; 2803 reg_idx++; 2804 2805 /* push pointer to next ring */ 2806 ring++; 2807 } 2808 2809 while (rxr_count) { 2810 /* assign generic ring traits */ 2811 ring->dev = &adapter->pdev->dev; 2812 ring->netdev = adapter->netdev; 2813 2814 /* configure backlink on ring */ 2815 ring->q_vector = q_vector; 2816 2817 /* update q_vector Rx values */ 2818 ixgbevf_add_ring(ring, &q_vector->rx); 2819 2820 /* apply Rx specific ring traits */ 2821 ring->count = adapter->rx_ring_count; 2822 ring->queue_index = rxr_idx; 2823 ring->reg_idx = rxr_idx; 2824 2825 /* assign ring to adapter */ 2826 adapter->rx_ring[rxr_idx] = ring; 2827 2828 /* update count and index */ 2829 rxr_count--; 2830 rxr_idx++; 2831 2832 /* push pointer to next ring */ 2833 ring++; 2834 } 2835 2836 return 0; 2837 } 2838 2839 /** 2840 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector 2841 * @adapter: board private structure to initialize 2842 * @v_idx: index of vector in adapter struct 2843 * 2844 * This function frees the memory allocated to the q_vector. In addition if 2845 * NAPI is enabled it will delete any references to the NAPI struct prior 2846 * to freeing the q_vector. 2847 **/ 2848 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx) 2849 { 2850 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx]; 2851 struct ixgbevf_ring *ring; 2852 2853 ixgbevf_for_each_ring(ring, q_vector->tx) { 2854 if (ring_is_xdp(ring)) 2855 adapter->xdp_ring[ring->queue_index] = NULL; 2856 else 2857 adapter->tx_ring[ring->queue_index] = NULL; 2858 } 2859 2860 ixgbevf_for_each_ring(ring, q_vector->rx) 2861 adapter->rx_ring[ring->queue_index] = NULL; 2862 2863 adapter->q_vector[v_idx] = NULL; 2864 netif_napi_del(&q_vector->napi); 2865 2866 /* ixgbevf_get_stats() might access the rings on this vector, 2867 * we must wait a grace period before freeing it. 2868 */ 2869 kfree_rcu(q_vector, rcu); 2870 } 2871 2872 /** 2873 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2874 * @adapter: board private structure to initialize 2875 * 2876 * We allocate one q_vector per queue interrupt. If allocation fails we 2877 * return -ENOMEM. 2878 **/ 2879 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2880 { 2881 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2882 int rxr_remaining = adapter->num_rx_queues; 2883 int txr_remaining = adapter->num_tx_queues; 2884 int xdp_remaining = adapter->num_xdp_queues; 2885 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0; 2886 int err; 2887 2888 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) { 2889 for (; rxr_remaining; v_idx++, q_vectors--) { 2890 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2891 2892 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2893 0, 0, 0, 0, rqpv, rxr_idx); 2894 if (err) 2895 goto err_out; 2896 2897 /* update counts and index */ 2898 rxr_remaining -= rqpv; 2899 rxr_idx += rqpv; 2900 } 2901 } 2902 2903 for (; q_vectors; v_idx++, q_vectors--) { 2904 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2905 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors); 2906 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors); 2907 2908 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2909 tqpv, txr_idx, 2910 xqpv, xdp_idx, 2911 rqpv, rxr_idx); 2912 2913 if (err) 2914 goto err_out; 2915 2916 /* update counts and index */ 2917 rxr_remaining -= rqpv; 2918 rxr_idx += rqpv; 2919 txr_remaining -= tqpv; 2920 txr_idx += tqpv; 2921 xdp_remaining -= xqpv; 2922 xdp_idx += xqpv; 2923 } 2924 2925 return 0; 2926 2927 err_out: 2928 while (v_idx) { 2929 v_idx--; 2930 ixgbevf_free_q_vector(adapter, v_idx); 2931 } 2932 2933 return -ENOMEM; 2934 } 2935 2936 /** 2937 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2938 * @adapter: board private structure to initialize 2939 * 2940 * This function frees the memory allocated to the q_vectors. In addition if 2941 * NAPI is enabled it will delete any references to the NAPI struct prior 2942 * to freeing the q_vector. 2943 **/ 2944 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2945 { 2946 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2947 2948 while (q_vectors) { 2949 q_vectors--; 2950 ixgbevf_free_q_vector(adapter, q_vectors); 2951 } 2952 } 2953 2954 /** 2955 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2956 * @adapter: board private structure 2957 * 2958 **/ 2959 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2960 { 2961 if (!adapter->msix_entries) 2962 return; 2963 2964 pci_disable_msix(adapter->pdev); 2965 kfree(adapter->msix_entries); 2966 adapter->msix_entries = NULL; 2967 } 2968 2969 /** 2970 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2971 * @adapter: board private structure to initialize 2972 * 2973 **/ 2974 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2975 { 2976 int err; 2977 2978 /* Number of supported queues */ 2979 ixgbevf_set_num_queues(adapter); 2980 2981 err = ixgbevf_set_interrupt_capability(adapter); 2982 if (err) { 2983 hw_dbg(&adapter->hw, 2984 "Unable to setup interrupt capabilities\n"); 2985 goto err_set_interrupt; 2986 } 2987 2988 err = ixgbevf_alloc_q_vectors(adapter); 2989 if (err) { 2990 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2991 goto err_alloc_q_vectors; 2992 } 2993 2994 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n", 2995 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled", 2996 adapter->num_rx_queues, adapter->num_tx_queues, 2997 adapter->num_xdp_queues); 2998 2999 set_bit(__IXGBEVF_DOWN, &adapter->state); 3000 3001 return 0; 3002 err_alloc_q_vectors: 3003 ixgbevf_reset_interrupt_capability(adapter); 3004 err_set_interrupt: 3005 return err; 3006 } 3007 3008 /** 3009 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 3010 * @adapter: board private structure to clear interrupt scheme on 3011 * 3012 * We go through and clear interrupt specific resources and reset the structure 3013 * to pre-load conditions 3014 **/ 3015 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 3016 { 3017 adapter->num_tx_queues = 0; 3018 adapter->num_xdp_queues = 0; 3019 adapter->num_rx_queues = 0; 3020 3021 ixgbevf_free_q_vectors(adapter); 3022 ixgbevf_reset_interrupt_capability(adapter); 3023 } 3024 3025 /** 3026 * ixgbevf_sw_init - Initialize general software structures 3027 * @adapter: board private structure to initialize 3028 * 3029 * ixgbevf_sw_init initializes the Adapter private data structure. 3030 * Fields are initialized based on PCI device information and 3031 * OS network device settings (MTU size). 3032 **/ 3033 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 3034 { 3035 struct ixgbe_hw *hw = &adapter->hw; 3036 struct pci_dev *pdev = adapter->pdev; 3037 struct net_device *netdev = adapter->netdev; 3038 int err; 3039 3040 /* PCI config space info */ 3041 hw->vendor_id = pdev->vendor; 3042 hw->device_id = pdev->device; 3043 hw->revision_id = pdev->revision; 3044 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3045 hw->subsystem_device_id = pdev->subsystem_device; 3046 3047 hw->mbx.ops.init_params(hw); 3048 3049 if (hw->mac.type >= ixgbe_mac_X550_vf) { 3050 err = ixgbevf_init_rss_key(adapter); 3051 if (err) 3052 goto out; 3053 } 3054 3055 /* assume legacy case in which PF would only give VF 2 queues */ 3056 hw->mac.max_tx_queues = 2; 3057 hw->mac.max_rx_queues = 2; 3058 3059 /* lock to protect mailbox accesses */ 3060 spin_lock_init(&adapter->mbx_lock); 3061 3062 err = hw->mac.ops.reset_hw(hw); 3063 if (err) { 3064 dev_info(&pdev->dev, 3065 "PF still in reset state. Is the PF interface up?\n"); 3066 } else { 3067 err = hw->mac.ops.init_hw(hw); 3068 if (err) { 3069 pr_err("init_shared_code failed: %d\n", err); 3070 goto out; 3071 } 3072 ixgbevf_negotiate_api(adapter); 3073 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 3074 if (err) 3075 dev_info(&pdev->dev, "Error reading MAC address\n"); 3076 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 3077 dev_info(&pdev->dev, 3078 "MAC address not assigned by administrator.\n"); 3079 eth_hw_addr_set(netdev, hw->mac.addr); 3080 } 3081 3082 if (!is_valid_ether_addr(netdev->dev_addr)) { 3083 dev_info(&pdev->dev, "Assigning random MAC address\n"); 3084 eth_hw_addr_random(netdev); 3085 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 3086 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 3087 } 3088 3089 /* Enable dynamic interrupt throttling rates */ 3090 adapter->rx_itr_setting = 1; 3091 adapter->tx_itr_setting = 1; 3092 3093 /* set default ring sizes */ 3094 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 3095 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 3096 3097 adapter->link_state = true; 3098 3099 set_bit(__IXGBEVF_DOWN, &adapter->state); 3100 return 0; 3101 3102 out: 3103 return err; 3104 } 3105 3106 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 3107 { \ 3108 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 3109 if (current_counter < last_counter) \ 3110 counter += 0x100000000LL; \ 3111 last_counter = current_counter; \ 3112 counter &= 0xFFFFFFFF00000000LL; \ 3113 counter |= current_counter; \ 3114 } 3115 3116 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 3117 { \ 3118 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 3119 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 3120 u64 current_counter = (current_counter_msb << 32) | \ 3121 current_counter_lsb; \ 3122 if (current_counter < last_counter) \ 3123 counter += 0x1000000000LL; \ 3124 last_counter = current_counter; \ 3125 counter &= 0xFFFFFFF000000000LL; \ 3126 counter |= current_counter; \ 3127 } 3128 /** 3129 * ixgbevf_update_stats - Update the board statistics counters. 3130 * @adapter: board private structure 3131 **/ 3132 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 3133 { 3134 struct ixgbe_hw *hw = &adapter->hw; 3135 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; 3136 u64 alloc_rx_page = 0, hw_csum_rx_error = 0; 3137 int i; 3138 3139 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3140 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3141 return; 3142 3143 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 3144 adapter->stats.vfgprc); 3145 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 3146 adapter->stats.vfgptc); 3147 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 3148 adapter->stats.last_vfgorc, 3149 adapter->stats.vfgorc); 3150 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 3151 adapter->stats.last_vfgotc, 3152 adapter->stats.vfgotc); 3153 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 3154 adapter->stats.vfmprc); 3155 3156 for (i = 0; i < adapter->num_rx_queues; i++) { 3157 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 3158 3159 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 3160 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; 3161 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 3162 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; 3163 } 3164 3165 adapter->hw_csum_rx_error = hw_csum_rx_error; 3166 adapter->alloc_rx_page_failed = alloc_rx_page_failed; 3167 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; 3168 adapter->alloc_rx_page = alloc_rx_page; 3169 } 3170 3171 /** 3172 * ixgbevf_service_timer - Timer Call-back 3173 * @t: pointer to timer_list struct 3174 **/ 3175 static void ixgbevf_service_timer(struct timer_list *t) 3176 { 3177 struct ixgbevf_adapter *adapter = from_timer(adapter, t, 3178 service_timer); 3179 3180 /* Reset the timer */ 3181 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 3182 3183 ixgbevf_service_event_schedule(adapter); 3184 } 3185 3186 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 3187 { 3188 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 3189 return; 3190 3191 rtnl_lock(); 3192 /* If we're already down or resetting, just bail */ 3193 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3194 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 3195 test_bit(__IXGBEVF_RESETTING, &adapter->state)) { 3196 rtnl_unlock(); 3197 return; 3198 } 3199 3200 adapter->tx_timeout_count++; 3201 3202 ixgbevf_reinit_locked(adapter); 3203 rtnl_unlock(); 3204 } 3205 3206 /** 3207 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 3208 * @adapter: pointer to the device adapter structure 3209 * 3210 * This function serves two purposes. First it strobes the interrupt lines 3211 * in order to make certain interrupts are occurring. Secondly it sets the 3212 * bits needed to check for TX hangs. As a result we should immediately 3213 * determine if a hang has occurred. 3214 **/ 3215 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 3216 { 3217 struct ixgbe_hw *hw = &adapter->hw; 3218 u32 eics = 0; 3219 int i; 3220 3221 /* If we're down or resetting, just bail */ 3222 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3223 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3224 return; 3225 3226 /* Force detection of hung controller */ 3227 if (netif_carrier_ok(adapter->netdev)) { 3228 for (i = 0; i < adapter->num_tx_queues; i++) 3229 set_check_for_tx_hang(adapter->tx_ring[i]); 3230 for (i = 0; i < adapter->num_xdp_queues; i++) 3231 set_check_for_tx_hang(adapter->xdp_ring[i]); 3232 } 3233 3234 /* get one bit for every active Tx/Rx interrupt vector */ 3235 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 3236 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 3237 3238 if (qv->rx.ring || qv->tx.ring) 3239 eics |= BIT(i); 3240 } 3241 3242 /* Cause software interrupt to ensure rings are cleaned */ 3243 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 3244 } 3245 3246 /** 3247 * ixgbevf_watchdog_update_link - update the link status 3248 * @adapter: pointer to the device adapter structure 3249 **/ 3250 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 3251 { 3252 struct ixgbe_hw *hw = &adapter->hw; 3253 u32 link_speed = adapter->link_speed; 3254 bool link_up = adapter->link_up; 3255 s32 err; 3256 3257 spin_lock_bh(&adapter->mbx_lock); 3258 3259 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 3260 3261 spin_unlock_bh(&adapter->mbx_lock); 3262 3263 /* if check for link returns error we will need to reset */ 3264 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 3265 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 3266 link_up = false; 3267 } 3268 3269 adapter->link_up = link_up; 3270 adapter->link_speed = link_speed; 3271 } 3272 3273 /** 3274 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 3275 * print link up message 3276 * @adapter: pointer to the device adapter structure 3277 **/ 3278 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 3279 { 3280 struct net_device *netdev = adapter->netdev; 3281 3282 /* only continue if link was previously down */ 3283 if (netif_carrier_ok(netdev)) 3284 return; 3285 3286 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 3287 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 3288 "10 Gbps" : 3289 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 3290 "1 Gbps" : 3291 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 3292 "100 Mbps" : 3293 "unknown speed"); 3294 3295 netif_carrier_on(netdev); 3296 } 3297 3298 /** 3299 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 3300 * print link down message 3301 * @adapter: pointer to the adapter structure 3302 **/ 3303 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 3304 { 3305 struct net_device *netdev = adapter->netdev; 3306 3307 adapter->link_speed = 0; 3308 3309 /* only continue if link was up previously */ 3310 if (!netif_carrier_ok(netdev)) 3311 return; 3312 3313 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 3314 3315 netif_carrier_off(netdev); 3316 } 3317 3318 /** 3319 * ixgbevf_watchdog_subtask - worker thread to bring link up 3320 * @adapter: board private structure 3321 **/ 3322 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 3323 { 3324 /* if interface is down do nothing */ 3325 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3326 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3327 return; 3328 3329 ixgbevf_watchdog_update_link(adapter); 3330 3331 if (adapter->link_up && adapter->link_state) 3332 ixgbevf_watchdog_link_is_up(adapter); 3333 else 3334 ixgbevf_watchdog_link_is_down(adapter); 3335 3336 ixgbevf_update_stats(adapter); 3337 } 3338 3339 /** 3340 * ixgbevf_service_task - manages and runs subtasks 3341 * @work: pointer to work_struct containing our data 3342 **/ 3343 static void ixgbevf_service_task(struct work_struct *work) 3344 { 3345 struct ixgbevf_adapter *adapter = container_of(work, 3346 struct ixgbevf_adapter, 3347 service_task); 3348 struct ixgbe_hw *hw = &adapter->hw; 3349 3350 if (IXGBE_REMOVED(hw->hw_addr)) { 3351 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 3352 rtnl_lock(); 3353 ixgbevf_down(adapter); 3354 rtnl_unlock(); 3355 } 3356 return; 3357 } 3358 3359 ixgbevf_queue_reset_subtask(adapter); 3360 ixgbevf_reset_subtask(adapter); 3361 ixgbevf_watchdog_subtask(adapter); 3362 ixgbevf_check_hang_subtask(adapter); 3363 3364 ixgbevf_service_event_complete(adapter); 3365 } 3366 3367 /** 3368 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 3369 * @tx_ring: Tx descriptor ring for a specific queue 3370 * 3371 * Free all transmit software resources 3372 **/ 3373 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 3374 { 3375 ixgbevf_clean_tx_ring(tx_ring); 3376 3377 vfree(tx_ring->tx_buffer_info); 3378 tx_ring->tx_buffer_info = NULL; 3379 3380 /* if not set, then don't free */ 3381 if (!tx_ring->desc) 3382 return; 3383 3384 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 3385 tx_ring->dma); 3386 3387 tx_ring->desc = NULL; 3388 } 3389 3390 /** 3391 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 3392 * @adapter: board private structure 3393 * 3394 * Free all transmit software resources 3395 **/ 3396 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 3397 { 3398 int i; 3399 3400 for (i = 0; i < adapter->num_tx_queues; i++) 3401 if (adapter->tx_ring[i]->desc) 3402 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3403 for (i = 0; i < adapter->num_xdp_queues; i++) 3404 if (adapter->xdp_ring[i]->desc) 3405 ixgbevf_free_tx_resources(adapter->xdp_ring[i]); 3406 } 3407 3408 /** 3409 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 3410 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 3411 * 3412 * Return 0 on success, negative on failure 3413 **/ 3414 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3415 { 3416 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3417 int size; 3418 3419 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3420 tx_ring->tx_buffer_info = vmalloc(size); 3421 if (!tx_ring->tx_buffer_info) 3422 goto err; 3423 3424 u64_stats_init(&tx_ring->syncp); 3425 3426 /* round up to nearest 4K */ 3427 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3428 tx_ring->size = ALIGN(tx_ring->size, 4096); 3429 3430 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3431 &tx_ring->dma, GFP_KERNEL); 3432 if (!tx_ring->desc) 3433 goto err; 3434 3435 return 0; 3436 3437 err: 3438 vfree(tx_ring->tx_buffer_info); 3439 tx_ring->tx_buffer_info = NULL; 3440 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3441 return -ENOMEM; 3442 } 3443 3444 /** 3445 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3446 * @adapter: board private structure 3447 * 3448 * If this function returns with an error, then it's possible one or 3449 * more of the rings is populated (while the rest are not). It is the 3450 * callers duty to clean those orphaned rings. 3451 * 3452 * Return 0 on success, negative on failure 3453 **/ 3454 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3455 { 3456 int i, j = 0, err = 0; 3457 3458 for (i = 0; i < adapter->num_tx_queues; i++) { 3459 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3460 if (!err) 3461 continue; 3462 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3463 goto err_setup_tx; 3464 } 3465 3466 for (j = 0; j < adapter->num_xdp_queues; j++) { 3467 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]); 3468 if (!err) 3469 continue; 3470 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j); 3471 goto err_setup_tx; 3472 } 3473 3474 return 0; 3475 err_setup_tx: 3476 /* rewind the index freeing the rings as we go */ 3477 while (j--) 3478 ixgbevf_free_tx_resources(adapter->xdp_ring[j]); 3479 while (i--) 3480 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3481 3482 return err; 3483 } 3484 3485 /** 3486 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3487 * @adapter: board private structure 3488 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3489 * 3490 * Returns 0 on success, negative on failure 3491 **/ 3492 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter, 3493 struct ixgbevf_ring *rx_ring) 3494 { 3495 int size; 3496 3497 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3498 rx_ring->rx_buffer_info = vmalloc(size); 3499 if (!rx_ring->rx_buffer_info) 3500 goto err; 3501 3502 u64_stats_init(&rx_ring->syncp); 3503 3504 /* Round up to nearest 4K */ 3505 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3506 rx_ring->size = ALIGN(rx_ring->size, 4096); 3507 3508 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3509 &rx_ring->dma, GFP_KERNEL); 3510 3511 if (!rx_ring->desc) 3512 goto err; 3513 3514 /* XDP RX-queue info */ 3515 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev, 3516 rx_ring->queue_index, 0) < 0) 3517 goto err; 3518 3519 rx_ring->xdp_prog = adapter->xdp_prog; 3520 3521 return 0; 3522 err: 3523 vfree(rx_ring->rx_buffer_info); 3524 rx_ring->rx_buffer_info = NULL; 3525 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3526 return -ENOMEM; 3527 } 3528 3529 /** 3530 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3531 * @adapter: board private structure 3532 * 3533 * If this function returns with an error, then it's possible one or 3534 * more of the rings is populated (while the rest are not). It is the 3535 * callers duty to clean those orphaned rings. 3536 * 3537 * Return 0 on success, negative on failure 3538 **/ 3539 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3540 { 3541 int i, err = 0; 3542 3543 for (i = 0; i < adapter->num_rx_queues; i++) { 3544 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]); 3545 if (!err) 3546 continue; 3547 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3548 goto err_setup_rx; 3549 } 3550 3551 return 0; 3552 err_setup_rx: 3553 /* rewind the index freeing the rings as we go */ 3554 while (i--) 3555 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3556 return err; 3557 } 3558 3559 /** 3560 * ixgbevf_free_rx_resources - Free Rx Resources 3561 * @rx_ring: ring to clean the resources from 3562 * 3563 * Free all receive software resources 3564 **/ 3565 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3566 { 3567 ixgbevf_clean_rx_ring(rx_ring); 3568 3569 rx_ring->xdp_prog = NULL; 3570 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 3571 vfree(rx_ring->rx_buffer_info); 3572 rx_ring->rx_buffer_info = NULL; 3573 3574 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3575 rx_ring->dma); 3576 3577 rx_ring->desc = NULL; 3578 } 3579 3580 /** 3581 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3582 * @adapter: board private structure 3583 * 3584 * Free all receive software resources 3585 **/ 3586 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3587 { 3588 int i; 3589 3590 for (i = 0; i < adapter->num_rx_queues; i++) 3591 if (adapter->rx_ring[i]->desc) 3592 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3593 } 3594 3595 /** 3596 * ixgbevf_open - Called when a network interface is made active 3597 * @netdev: network interface device structure 3598 * 3599 * Returns 0 on success, negative value on failure 3600 * 3601 * The open entry point is called when a network interface is made 3602 * active by the system (IFF_UP). At this point all resources needed 3603 * for transmit and receive operations are allocated, the interrupt 3604 * handler is registered with the OS, the watchdog timer is started, 3605 * and the stack is notified that the interface is ready. 3606 **/ 3607 int ixgbevf_open(struct net_device *netdev) 3608 { 3609 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3610 struct ixgbe_hw *hw = &adapter->hw; 3611 int err; 3612 3613 /* A previous failure to open the device because of a lack of 3614 * available MSIX vector resources may have reset the number 3615 * of msix vectors variable to zero. The only way to recover 3616 * is to unload/reload the driver and hope that the system has 3617 * been able to recover some MSIX vector resources. 3618 */ 3619 if (!adapter->num_msix_vectors) 3620 return -ENOMEM; 3621 3622 if (hw->adapter_stopped) { 3623 ixgbevf_reset(adapter); 3624 /* if adapter is still stopped then PF isn't up and 3625 * the VF can't start. 3626 */ 3627 if (hw->adapter_stopped) { 3628 err = IXGBE_ERR_MBX; 3629 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3630 goto err_setup_reset; 3631 } 3632 } 3633 3634 /* disallow open during test */ 3635 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3636 return -EBUSY; 3637 3638 netif_carrier_off(netdev); 3639 3640 /* allocate transmit descriptors */ 3641 err = ixgbevf_setup_all_tx_resources(adapter); 3642 if (err) 3643 goto err_setup_tx; 3644 3645 /* allocate receive descriptors */ 3646 err = ixgbevf_setup_all_rx_resources(adapter); 3647 if (err) 3648 goto err_setup_rx; 3649 3650 ixgbevf_configure(adapter); 3651 3652 err = ixgbevf_request_irq(adapter); 3653 if (err) 3654 goto err_req_irq; 3655 3656 /* Notify the stack of the actual queue counts. */ 3657 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3658 if (err) 3659 goto err_set_queues; 3660 3661 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3662 if (err) 3663 goto err_set_queues; 3664 3665 ixgbevf_up_complete(adapter); 3666 3667 return 0; 3668 3669 err_set_queues: 3670 ixgbevf_free_irq(adapter); 3671 err_req_irq: 3672 ixgbevf_free_all_rx_resources(adapter); 3673 err_setup_rx: 3674 ixgbevf_free_all_tx_resources(adapter); 3675 err_setup_tx: 3676 ixgbevf_reset(adapter); 3677 err_setup_reset: 3678 3679 return err; 3680 } 3681 3682 /** 3683 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3684 * @adapter: the private adapter struct 3685 * 3686 * This function should contain the necessary work common to both suspending 3687 * and closing of the device. 3688 */ 3689 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3690 { 3691 ixgbevf_down(adapter); 3692 ixgbevf_free_irq(adapter); 3693 ixgbevf_free_all_tx_resources(adapter); 3694 ixgbevf_free_all_rx_resources(adapter); 3695 } 3696 3697 /** 3698 * ixgbevf_close - Disables a network interface 3699 * @netdev: network interface device structure 3700 * 3701 * Returns 0, this is not allowed to fail 3702 * 3703 * The close entry point is called when an interface is de-activated 3704 * by the OS. The hardware is still under the drivers control, but 3705 * needs to be disabled. A global MAC reset is issued to stop the 3706 * hardware, and all transmit and receive resources are freed. 3707 **/ 3708 int ixgbevf_close(struct net_device *netdev) 3709 { 3710 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3711 3712 if (netif_device_present(netdev)) 3713 ixgbevf_close_suspend(adapter); 3714 3715 return 0; 3716 } 3717 3718 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3719 { 3720 struct net_device *dev = adapter->netdev; 3721 3722 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3723 &adapter->state)) 3724 return; 3725 3726 /* if interface is down do nothing */ 3727 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3728 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3729 return; 3730 3731 /* Hardware has to reinitialize queues and interrupts to 3732 * match packet buffer alignment. Unfortunately, the 3733 * hardware is not flexible enough to do this dynamically. 3734 */ 3735 rtnl_lock(); 3736 3737 if (netif_running(dev)) 3738 ixgbevf_close(dev); 3739 3740 ixgbevf_clear_interrupt_scheme(adapter); 3741 ixgbevf_init_interrupt_scheme(adapter); 3742 3743 if (netif_running(dev)) 3744 ixgbevf_open(dev); 3745 3746 rtnl_unlock(); 3747 } 3748 3749 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3750 u32 vlan_macip_lens, u32 fceof_saidx, 3751 u32 type_tucmd, u32 mss_l4len_idx) 3752 { 3753 struct ixgbe_adv_tx_context_desc *context_desc; 3754 u16 i = tx_ring->next_to_use; 3755 3756 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3757 3758 i++; 3759 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3760 3761 /* set bits to identify this as an advanced context descriptor */ 3762 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3763 3764 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3765 context_desc->fceof_saidx = cpu_to_le32(fceof_saidx); 3766 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3767 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3768 } 3769 3770 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3771 struct ixgbevf_tx_buffer *first, 3772 u8 *hdr_len, 3773 struct ixgbevf_ipsec_tx_data *itd) 3774 { 3775 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3776 struct sk_buff *skb = first->skb; 3777 union { 3778 struct iphdr *v4; 3779 struct ipv6hdr *v6; 3780 unsigned char *hdr; 3781 } ip; 3782 union { 3783 struct tcphdr *tcp; 3784 unsigned char *hdr; 3785 } l4; 3786 u32 paylen, l4_offset; 3787 u32 fceof_saidx = 0; 3788 int err; 3789 3790 if (skb->ip_summed != CHECKSUM_PARTIAL) 3791 return 0; 3792 3793 if (!skb_is_gso(skb)) 3794 return 0; 3795 3796 err = skb_cow_head(skb, 0); 3797 if (err < 0) 3798 return err; 3799 3800 if (eth_p_mpls(first->protocol)) 3801 ip.hdr = skb_inner_network_header(skb); 3802 else 3803 ip.hdr = skb_network_header(skb); 3804 l4.hdr = skb_checksum_start(skb); 3805 3806 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3807 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3808 3809 /* initialize outer IP header fields */ 3810 if (ip.v4->version == 4) { 3811 unsigned char *csum_start = skb_checksum_start(skb); 3812 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3813 int len = csum_start - trans_start; 3814 3815 /* IP header will have to cancel out any data that 3816 * is not a part of the outer IP header, so set to 3817 * a reverse csum if needed, else init check to 0. 3818 */ 3819 ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ? 3820 csum_fold(csum_partial(trans_start, 3821 len, 0)) : 0; 3822 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3823 3824 ip.v4->tot_len = 0; 3825 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3826 IXGBE_TX_FLAGS_CSUM | 3827 IXGBE_TX_FLAGS_IPV4; 3828 } else { 3829 ip.v6->payload_len = 0; 3830 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3831 IXGBE_TX_FLAGS_CSUM; 3832 } 3833 3834 /* determine offset of inner transport header */ 3835 l4_offset = l4.hdr - skb->data; 3836 3837 /* compute length of segmentation header */ 3838 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3839 3840 /* remove payload length from inner checksum */ 3841 paylen = skb->len - l4_offset; 3842 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 3843 3844 /* update gso size and bytecount with header size */ 3845 first->gso_segs = skb_shinfo(skb)->gso_segs; 3846 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3847 3848 /* mss_l4len_id: use 1 as index for TSO */ 3849 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3850 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3851 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3852 3853 fceof_saidx |= itd->pfsa; 3854 type_tucmd |= itd->flags | itd->trailer_len; 3855 3856 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3857 vlan_macip_lens = l4.hdr - ip.hdr; 3858 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3859 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3860 3861 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd, 3862 mss_l4len_idx); 3863 3864 return 1; 3865 } 3866 3867 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3868 struct ixgbevf_tx_buffer *first, 3869 struct ixgbevf_ipsec_tx_data *itd) 3870 { 3871 struct sk_buff *skb = first->skb; 3872 u32 vlan_macip_lens = 0; 3873 u32 fceof_saidx = 0; 3874 u32 type_tucmd = 0; 3875 3876 if (skb->ip_summed != CHECKSUM_PARTIAL) 3877 goto no_csum; 3878 3879 switch (skb->csum_offset) { 3880 case offsetof(struct tcphdr, check): 3881 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3882 fallthrough; 3883 case offsetof(struct udphdr, check): 3884 break; 3885 case offsetof(struct sctphdr, checksum): 3886 /* validate that this is actually an SCTP request */ 3887 if (skb_csum_is_sctp(skb)) { 3888 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3889 break; 3890 } 3891 fallthrough; 3892 default: 3893 skb_checksum_help(skb); 3894 goto no_csum; 3895 } 3896 3897 if (first->protocol == htons(ETH_P_IP)) 3898 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3899 3900 /* update TX checksum flag */ 3901 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3902 vlan_macip_lens = skb_checksum_start_offset(skb) - 3903 skb_network_offset(skb); 3904 no_csum: 3905 /* vlan_macip_lens: MACLEN, VLAN tag */ 3906 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3907 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3908 3909 fceof_saidx |= itd->pfsa; 3910 type_tucmd |= itd->flags | itd->trailer_len; 3911 3912 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3913 fceof_saidx, type_tucmd, 0); 3914 } 3915 3916 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3917 { 3918 /* set type for advanced descriptor with frame checksum insertion */ 3919 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3920 IXGBE_ADVTXD_DCMD_IFCS | 3921 IXGBE_ADVTXD_DCMD_DEXT); 3922 3923 /* set HW VLAN bit if VLAN is present */ 3924 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3925 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3926 3927 /* set segmentation enable bits for TSO/FSO */ 3928 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3929 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3930 3931 return cmd_type; 3932 } 3933 3934 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3935 u32 tx_flags, unsigned int paylen) 3936 { 3937 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3938 3939 /* enable L4 checksum for TSO and TX checksum offload */ 3940 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3941 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3942 3943 /* enble IPv4 checksum for TSO */ 3944 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3945 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3946 3947 /* enable IPsec */ 3948 if (tx_flags & IXGBE_TX_FLAGS_IPSEC) 3949 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC); 3950 3951 /* use index 1 context for TSO/FSO/FCOE/IPSEC */ 3952 if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC)) 3953 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3954 3955 /* Check Context must be set if Tx switch is enabled, which it 3956 * always is for case where virtual functions are running 3957 */ 3958 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3959 3960 tx_desc->read.olinfo_status = olinfo_status; 3961 } 3962 3963 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3964 struct ixgbevf_tx_buffer *first, 3965 const u8 hdr_len) 3966 { 3967 struct sk_buff *skb = first->skb; 3968 struct ixgbevf_tx_buffer *tx_buffer; 3969 union ixgbe_adv_tx_desc *tx_desc; 3970 skb_frag_t *frag; 3971 dma_addr_t dma; 3972 unsigned int data_len, size; 3973 u32 tx_flags = first->tx_flags; 3974 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3975 u16 i = tx_ring->next_to_use; 3976 3977 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3978 3979 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 3980 3981 size = skb_headlen(skb); 3982 data_len = skb->data_len; 3983 3984 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3985 3986 tx_buffer = first; 3987 3988 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3989 if (dma_mapping_error(tx_ring->dev, dma)) 3990 goto dma_error; 3991 3992 /* record length, and DMA address */ 3993 dma_unmap_len_set(tx_buffer, len, size); 3994 dma_unmap_addr_set(tx_buffer, dma, dma); 3995 3996 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3997 3998 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3999 tx_desc->read.cmd_type_len = 4000 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 4001 4002 i++; 4003 tx_desc++; 4004 if (i == tx_ring->count) { 4005 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4006 i = 0; 4007 } 4008 tx_desc->read.olinfo_status = 0; 4009 4010 dma += IXGBE_MAX_DATA_PER_TXD; 4011 size -= IXGBE_MAX_DATA_PER_TXD; 4012 4013 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4014 } 4015 4016 if (likely(!data_len)) 4017 break; 4018 4019 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 4020 4021 i++; 4022 tx_desc++; 4023 if (i == tx_ring->count) { 4024 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4025 i = 0; 4026 } 4027 tx_desc->read.olinfo_status = 0; 4028 4029 size = skb_frag_size(frag); 4030 data_len -= size; 4031 4032 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 4033 DMA_TO_DEVICE); 4034 4035 tx_buffer = &tx_ring->tx_buffer_info[i]; 4036 } 4037 4038 /* write last descriptor with RS and EOP bits */ 4039 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 4040 tx_desc->read.cmd_type_len = cmd_type; 4041 4042 /* set the timestamp */ 4043 first->time_stamp = jiffies; 4044 4045 skb_tx_timestamp(skb); 4046 4047 /* Force memory writes to complete before letting h/w know there 4048 * are new descriptors to fetch. (Only applicable for weak-ordered 4049 * memory model archs, such as IA-64). 4050 * 4051 * We also need this memory barrier (wmb) to make certain all of the 4052 * status bits have been updated before next_to_watch is written. 4053 */ 4054 wmb(); 4055 4056 /* set next_to_watch value indicating a packet is present */ 4057 first->next_to_watch = tx_desc; 4058 4059 i++; 4060 if (i == tx_ring->count) 4061 i = 0; 4062 4063 tx_ring->next_to_use = i; 4064 4065 /* notify HW of packet */ 4066 ixgbevf_write_tail(tx_ring, i); 4067 4068 return; 4069 dma_error: 4070 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4071 tx_buffer = &tx_ring->tx_buffer_info[i]; 4072 4073 /* clear dma mappings for failed tx_buffer_info map */ 4074 while (tx_buffer != first) { 4075 if (dma_unmap_len(tx_buffer, len)) 4076 dma_unmap_page(tx_ring->dev, 4077 dma_unmap_addr(tx_buffer, dma), 4078 dma_unmap_len(tx_buffer, len), 4079 DMA_TO_DEVICE); 4080 dma_unmap_len_set(tx_buffer, len, 0); 4081 4082 if (i-- == 0) 4083 i += tx_ring->count; 4084 tx_buffer = &tx_ring->tx_buffer_info[i]; 4085 } 4086 4087 if (dma_unmap_len(tx_buffer, len)) 4088 dma_unmap_single(tx_ring->dev, 4089 dma_unmap_addr(tx_buffer, dma), 4090 dma_unmap_len(tx_buffer, len), 4091 DMA_TO_DEVICE); 4092 dma_unmap_len_set(tx_buffer, len, 0); 4093 4094 dev_kfree_skb_any(tx_buffer->skb); 4095 tx_buffer->skb = NULL; 4096 4097 tx_ring->next_to_use = i; 4098 } 4099 4100 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4101 { 4102 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 4103 /* Herbert's original patch had: 4104 * smp_mb__after_netif_stop_queue(); 4105 * but since that doesn't exist yet, just open code it. 4106 */ 4107 smp_mb(); 4108 4109 /* We need to check again in a case another CPU has just 4110 * made room available. 4111 */ 4112 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 4113 return -EBUSY; 4114 4115 /* A reprieve! - use start_queue because it doesn't call schedule */ 4116 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 4117 ++tx_ring->tx_stats.restart_queue; 4118 4119 return 0; 4120 } 4121 4122 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4123 { 4124 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 4125 return 0; 4126 return __ixgbevf_maybe_stop_tx(tx_ring, size); 4127 } 4128 4129 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb, 4130 struct ixgbevf_ring *tx_ring) 4131 { 4132 struct ixgbevf_tx_buffer *first; 4133 int tso; 4134 u32 tx_flags = 0; 4135 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4136 struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 }; 4137 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4138 unsigned short f; 4139 #endif 4140 u8 hdr_len = 0; 4141 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 4142 4143 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 4144 dev_kfree_skb_any(skb); 4145 return NETDEV_TX_OK; 4146 } 4147 4148 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 4149 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 4150 * + 2 desc gap to keep tail from touching head, 4151 * + 1 desc for context descriptor, 4152 * otherwise try next time 4153 */ 4154 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4155 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 4156 skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 4157 4158 count += TXD_USE_COUNT(skb_frag_size(frag)); 4159 } 4160 #else 4161 count += skb_shinfo(skb)->nr_frags; 4162 #endif 4163 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 4164 tx_ring->tx_stats.tx_busy++; 4165 return NETDEV_TX_BUSY; 4166 } 4167 4168 /* record the location of the first descriptor for this packet */ 4169 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4170 first->skb = skb; 4171 first->bytecount = skb->len; 4172 first->gso_segs = 1; 4173 4174 if (skb_vlan_tag_present(skb)) { 4175 tx_flags |= skb_vlan_tag_get(skb); 4176 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 4177 tx_flags |= IXGBE_TX_FLAGS_VLAN; 4178 } 4179 4180 /* record initial flags and protocol */ 4181 first->tx_flags = tx_flags; 4182 first->protocol = vlan_get_protocol(skb); 4183 4184 #ifdef CONFIG_IXGBEVF_IPSEC 4185 if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx)) 4186 goto out_drop; 4187 #endif 4188 tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx); 4189 if (tso < 0) 4190 goto out_drop; 4191 else if (!tso) 4192 ixgbevf_tx_csum(tx_ring, first, &ipsec_tx); 4193 4194 ixgbevf_tx_map(tx_ring, first, hdr_len); 4195 4196 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 4197 4198 return NETDEV_TX_OK; 4199 4200 out_drop: 4201 dev_kfree_skb_any(first->skb); 4202 first->skb = NULL; 4203 4204 return NETDEV_TX_OK; 4205 } 4206 4207 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 4208 { 4209 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4210 struct ixgbevf_ring *tx_ring; 4211 4212 if (skb->len <= 0) { 4213 dev_kfree_skb_any(skb); 4214 return NETDEV_TX_OK; 4215 } 4216 4217 /* The minimum packet size for olinfo paylen is 17 so pad the skb 4218 * in order to meet this minimum size requirement. 4219 */ 4220 if (skb->len < 17) { 4221 if (skb_padto(skb, 17)) 4222 return NETDEV_TX_OK; 4223 skb->len = 17; 4224 } 4225 4226 tx_ring = adapter->tx_ring[skb->queue_mapping]; 4227 return ixgbevf_xmit_frame_ring(skb, tx_ring); 4228 } 4229 4230 /** 4231 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 4232 * @netdev: network interface device structure 4233 * @p: pointer to an address structure 4234 * 4235 * Returns 0 on success, negative on failure 4236 **/ 4237 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 4238 { 4239 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4240 struct ixgbe_hw *hw = &adapter->hw; 4241 struct sockaddr *addr = p; 4242 int err; 4243 4244 if (!is_valid_ether_addr(addr->sa_data)) 4245 return -EADDRNOTAVAIL; 4246 4247 spin_lock_bh(&adapter->mbx_lock); 4248 4249 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 4250 4251 spin_unlock_bh(&adapter->mbx_lock); 4252 4253 if (err) 4254 return -EPERM; 4255 4256 ether_addr_copy(hw->mac.addr, addr->sa_data); 4257 ether_addr_copy(hw->mac.perm_addr, addr->sa_data); 4258 eth_hw_addr_set(netdev, addr->sa_data); 4259 4260 return 0; 4261 } 4262 4263 /** 4264 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 4265 * @netdev: network interface device structure 4266 * @new_mtu: new value for maximum frame size 4267 * 4268 * Returns 0 on success, negative on failure 4269 **/ 4270 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 4271 { 4272 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4273 struct ixgbe_hw *hw = &adapter->hw; 4274 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 4275 int ret; 4276 4277 /* prevent MTU being changed to a size unsupported by XDP */ 4278 if (adapter->xdp_prog) { 4279 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n"); 4280 return -EPERM; 4281 } 4282 4283 spin_lock_bh(&adapter->mbx_lock); 4284 /* notify the PF of our intent to use this size of frame */ 4285 ret = hw->mac.ops.set_rlpml(hw, max_frame); 4286 spin_unlock_bh(&adapter->mbx_lock); 4287 if (ret) 4288 return -EINVAL; 4289 4290 hw_dbg(hw, "changing MTU from %d to %d\n", 4291 netdev->mtu, new_mtu); 4292 4293 /* must set new MTU before calling down or up */ 4294 WRITE_ONCE(netdev->mtu, new_mtu); 4295 4296 if (netif_running(netdev)) 4297 ixgbevf_reinit_locked(adapter); 4298 4299 return 0; 4300 } 4301 4302 static int ixgbevf_suspend(struct device *dev_d) 4303 { 4304 struct net_device *netdev = dev_get_drvdata(dev_d); 4305 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4306 4307 rtnl_lock(); 4308 netif_device_detach(netdev); 4309 4310 if (netif_running(netdev)) 4311 ixgbevf_close_suspend(adapter); 4312 4313 ixgbevf_clear_interrupt_scheme(adapter); 4314 rtnl_unlock(); 4315 4316 return 0; 4317 } 4318 4319 static int ixgbevf_resume(struct device *dev_d) 4320 { 4321 struct pci_dev *pdev = to_pci_dev(dev_d); 4322 struct net_device *netdev = pci_get_drvdata(pdev); 4323 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4324 u32 err; 4325 4326 adapter->hw.hw_addr = adapter->io_addr; 4327 smp_mb__before_atomic(); 4328 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4329 pci_set_master(pdev); 4330 4331 ixgbevf_reset(adapter); 4332 4333 rtnl_lock(); 4334 err = ixgbevf_init_interrupt_scheme(adapter); 4335 if (!err && netif_running(netdev)) 4336 err = ixgbevf_open(netdev); 4337 rtnl_unlock(); 4338 if (err) 4339 return err; 4340 4341 netif_device_attach(netdev); 4342 4343 return err; 4344 } 4345 4346 static void ixgbevf_shutdown(struct pci_dev *pdev) 4347 { 4348 ixgbevf_suspend(&pdev->dev); 4349 } 4350 4351 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats, 4352 const struct ixgbevf_ring *ring) 4353 { 4354 u64 bytes, packets; 4355 unsigned int start; 4356 4357 if (ring) { 4358 do { 4359 start = u64_stats_fetch_begin(&ring->syncp); 4360 bytes = ring->stats.bytes; 4361 packets = ring->stats.packets; 4362 } while (u64_stats_fetch_retry(&ring->syncp, start)); 4363 stats->tx_bytes += bytes; 4364 stats->tx_packets += packets; 4365 } 4366 } 4367 4368 static void ixgbevf_get_stats(struct net_device *netdev, 4369 struct rtnl_link_stats64 *stats) 4370 { 4371 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4372 unsigned int start; 4373 u64 bytes, packets; 4374 const struct ixgbevf_ring *ring; 4375 int i; 4376 4377 ixgbevf_update_stats(adapter); 4378 4379 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 4380 4381 rcu_read_lock(); 4382 for (i = 0; i < adapter->num_rx_queues; i++) { 4383 ring = adapter->rx_ring[i]; 4384 do { 4385 start = u64_stats_fetch_begin(&ring->syncp); 4386 bytes = ring->stats.bytes; 4387 packets = ring->stats.packets; 4388 } while (u64_stats_fetch_retry(&ring->syncp, start)); 4389 stats->rx_bytes += bytes; 4390 stats->rx_packets += packets; 4391 } 4392 4393 for (i = 0; i < adapter->num_tx_queues; i++) { 4394 ring = adapter->tx_ring[i]; 4395 ixgbevf_get_tx_ring_stats(stats, ring); 4396 } 4397 4398 for (i = 0; i < adapter->num_xdp_queues; i++) { 4399 ring = adapter->xdp_ring[i]; 4400 ixgbevf_get_tx_ring_stats(stats, ring); 4401 } 4402 rcu_read_unlock(); 4403 } 4404 4405 #define IXGBEVF_MAX_MAC_HDR_LEN 127 4406 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 4407 4408 static netdev_features_t 4409 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 4410 netdev_features_t features) 4411 { 4412 unsigned int network_hdr_len, mac_hdr_len; 4413 4414 /* Make certain the headers can be described by a context descriptor */ 4415 mac_hdr_len = skb_network_offset(skb); 4416 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 4417 return features & ~(NETIF_F_HW_CSUM | 4418 NETIF_F_SCTP_CRC | 4419 NETIF_F_HW_VLAN_CTAG_TX | 4420 NETIF_F_TSO | 4421 NETIF_F_TSO6); 4422 4423 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4424 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 4425 return features & ~(NETIF_F_HW_CSUM | 4426 NETIF_F_SCTP_CRC | 4427 NETIF_F_TSO | 4428 NETIF_F_TSO6); 4429 4430 /* We can only support IPV4 TSO in tunnels if we can mangle the 4431 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4432 */ 4433 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4434 features &= ~NETIF_F_TSO; 4435 4436 return features; 4437 } 4438 4439 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog) 4440 { 4441 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4442 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4443 struct bpf_prog *old_prog; 4444 4445 /* verify ixgbevf ring attributes are sufficient for XDP */ 4446 for (i = 0; i < adapter->num_rx_queues; i++) { 4447 struct ixgbevf_ring *ring = adapter->rx_ring[i]; 4448 4449 if (frame_size > ixgbevf_rx_bufsz(ring)) 4450 return -EINVAL; 4451 } 4452 4453 old_prog = xchg(&adapter->xdp_prog, prog); 4454 4455 /* If transitioning XDP modes reconfigure rings */ 4456 if (!!prog != !!old_prog) { 4457 /* Hardware has to reinitialize queues and interrupts to 4458 * match packet buffer alignment. Unfortunately, the 4459 * hardware is not flexible enough to do this dynamically. 4460 */ 4461 if (netif_running(dev)) 4462 ixgbevf_close(dev); 4463 4464 ixgbevf_clear_interrupt_scheme(adapter); 4465 ixgbevf_init_interrupt_scheme(adapter); 4466 4467 if (netif_running(dev)) 4468 ixgbevf_open(dev); 4469 } else { 4470 for (i = 0; i < adapter->num_rx_queues; i++) 4471 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog); 4472 } 4473 4474 if (old_prog) 4475 bpf_prog_put(old_prog); 4476 4477 return 0; 4478 } 4479 4480 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4481 { 4482 switch (xdp->command) { 4483 case XDP_SETUP_PROG: 4484 return ixgbevf_xdp_setup(dev, xdp->prog); 4485 default: 4486 return -EINVAL; 4487 } 4488 } 4489 4490 static const struct net_device_ops ixgbevf_netdev_ops = { 4491 .ndo_open = ixgbevf_open, 4492 .ndo_stop = ixgbevf_close, 4493 .ndo_start_xmit = ixgbevf_xmit_frame, 4494 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 4495 .ndo_get_stats64 = ixgbevf_get_stats, 4496 .ndo_validate_addr = eth_validate_addr, 4497 .ndo_set_mac_address = ixgbevf_set_mac, 4498 .ndo_change_mtu = ixgbevf_change_mtu, 4499 .ndo_tx_timeout = ixgbevf_tx_timeout, 4500 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 4501 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 4502 .ndo_features_check = ixgbevf_features_check, 4503 .ndo_bpf = ixgbevf_xdp, 4504 }; 4505 4506 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 4507 { 4508 dev->netdev_ops = &ixgbevf_netdev_ops; 4509 ixgbevf_set_ethtool_ops(dev); 4510 dev->watchdog_timeo = 5 * HZ; 4511 } 4512 4513 /** 4514 * ixgbevf_probe - Device Initialization Routine 4515 * @pdev: PCI device information struct 4516 * @ent: entry in ixgbevf_pci_tbl 4517 * 4518 * Returns 0 on success, negative on failure 4519 * 4520 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 4521 * The OS initialization, configuring of the adapter private structure, 4522 * and a hardware reset occur. 4523 **/ 4524 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4525 { 4526 struct net_device *netdev; 4527 struct ixgbevf_adapter *adapter = NULL; 4528 struct ixgbe_hw *hw = NULL; 4529 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 4530 bool disable_dev = false; 4531 int err; 4532 4533 err = pci_enable_device(pdev); 4534 if (err) 4535 return err; 4536 4537 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4538 if (err) { 4539 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4540 goto err_dma; 4541 } 4542 4543 err = pci_request_regions(pdev, ixgbevf_driver_name); 4544 if (err) { 4545 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4546 goto err_pci_reg; 4547 } 4548 4549 pci_set_master(pdev); 4550 4551 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4552 MAX_TX_QUEUES); 4553 if (!netdev) { 4554 err = -ENOMEM; 4555 goto err_alloc_etherdev; 4556 } 4557 4558 SET_NETDEV_DEV(netdev, &pdev->dev); 4559 4560 adapter = netdev_priv(netdev); 4561 4562 adapter->netdev = netdev; 4563 adapter->pdev = pdev; 4564 hw = &adapter->hw; 4565 hw->back = adapter; 4566 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4567 4568 /* call save state here in standalone driver because it relies on 4569 * adapter struct to exist, and needs to call netdev_priv 4570 */ 4571 pci_save_state(pdev); 4572 4573 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4574 pci_resource_len(pdev, 0)); 4575 adapter->io_addr = hw->hw_addr; 4576 if (!hw->hw_addr) { 4577 err = -EIO; 4578 goto err_ioremap; 4579 } 4580 4581 ixgbevf_assign_netdev_ops(netdev); 4582 4583 /* Setup HW API */ 4584 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4585 hw->mac.type = ii->mac; 4586 4587 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops_legacy, 4588 sizeof(struct ixgbe_mbx_operations)); 4589 4590 /* setup the private structure */ 4591 err = ixgbevf_sw_init(adapter); 4592 if (err) 4593 goto err_sw_init; 4594 4595 /* The HW MAC address was set and/or determined in sw_init */ 4596 if (!is_valid_ether_addr(netdev->dev_addr)) { 4597 pr_err("invalid MAC address\n"); 4598 err = -EIO; 4599 goto err_sw_init; 4600 } 4601 4602 netdev->hw_features = NETIF_F_SG | 4603 NETIF_F_TSO | 4604 NETIF_F_TSO6 | 4605 NETIF_F_RXCSUM | 4606 NETIF_F_HW_CSUM | 4607 NETIF_F_SCTP_CRC; 4608 4609 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4610 NETIF_F_GSO_GRE_CSUM | \ 4611 NETIF_F_GSO_IPXIP4 | \ 4612 NETIF_F_GSO_IPXIP6 | \ 4613 NETIF_F_GSO_UDP_TUNNEL | \ 4614 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4615 4616 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4617 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4618 IXGBEVF_GSO_PARTIAL_FEATURES; 4619 4620 netdev->features = netdev->hw_features | NETIF_F_HIGHDMA; 4621 4622 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4623 netdev->mpls_features |= NETIF_F_SG | 4624 NETIF_F_TSO | 4625 NETIF_F_TSO6 | 4626 NETIF_F_HW_CSUM; 4627 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4628 netdev->hw_enc_features |= netdev->vlan_features; 4629 4630 /* set this bit last since it cannot be part of vlan_features */ 4631 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4632 NETIF_F_HW_VLAN_CTAG_RX | 4633 NETIF_F_HW_VLAN_CTAG_TX; 4634 4635 netdev->priv_flags |= IFF_UNICAST_FLT; 4636 netdev->xdp_features = NETDEV_XDP_ACT_BASIC; 4637 4638 /* MTU range: 68 - 1504 or 9710 */ 4639 netdev->min_mtu = ETH_MIN_MTU; 4640 switch (adapter->hw.api_version) { 4641 case ixgbe_mbox_api_11: 4642 case ixgbe_mbox_api_12: 4643 case ixgbe_mbox_api_13: 4644 case ixgbe_mbox_api_14: 4645 case ixgbe_mbox_api_15: 4646 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4647 (ETH_HLEN + ETH_FCS_LEN); 4648 break; 4649 default: 4650 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4651 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4652 (ETH_HLEN + ETH_FCS_LEN); 4653 else 4654 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4655 break; 4656 } 4657 4658 if (IXGBE_REMOVED(hw->hw_addr)) { 4659 err = -EIO; 4660 goto err_sw_init; 4661 } 4662 4663 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); 4664 4665 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4666 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4667 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4668 4669 err = ixgbevf_init_interrupt_scheme(adapter); 4670 if (err) 4671 goto err_sw_init; 4672 4673 strcpy(netdev->name, "eth%d"); 4674 4675 err = register_netdev(netdev); 4676 if (err) 4677 goto err_register; 4678 4679 pci_set_drvdata(pdev, netdev); 4680 netif_carrier_off(netdev); 4681 ixgbevf_init_ipsec_offload(adapter); 4682 4683 ixgbevf_init_last_counter_stats(adapter); 4684 4685 /* print the VF info */ 4686 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4687 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4688 4689 switch (hw->mac.type) { 4690 case ixgbe_mac_X550_vf: 4691 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4692 break; 4693 case ixgbe_mac_X540_vf: 4694 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4695 break; 4696 case ixgbe_mac_82599_vf: 4697 default: 4698 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4699 break; 4700 } 4701 4702 return 0; 4703 4704 err_register: 4705 ixgbevf_clear_interrupt_scheme(adapter); 4706 err_sw_init: 4707 ixgbevf_reset_interrupt_capability(adapter); 4708 iounmap(adapter->io_addr); 4709 kfree(adapter->rss_key); 4710 err_ioremap: 4711 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4712 free_netdev(netdev); 4713 err_alloc_etherdev: 4714 pci_release_regions(pdev); 4715 err_pci_reg: 4716 err_dma: 4717 if (!adapter || disable_dev) 4718 pci_disable_device(pdev); 4719 return err; 4720 } 4721 4722 /** 4723 * ixgbevf_remove - Device Removal Routine 4724 * @pdev: PCI device information struct 4725 * 4726 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4727 * that it should release a PCI device. The could be caused by a 4728 * Hot-Plug event, or because the driver is going to be removed from 4729 * memory. 4730 **/ 4731 static void ixgbevf_remove(struct pci_dev *pdev) 4732 { 4733 struct net_device *netdev = pci_get_drvdata(pdev); 4734 struct ixgbevf_adapter *adapter; 4735 bool disable_dev; 4736 4737 if (!netdev) 4738 return; 4739 4740 adapter = netdev_priv(netdev); 4741 4742 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4743 cancel_work_sync(&adapter->service_task); 4744 4745 if (netdev->reg_state == NETREG_REGISTERED) 4746 unregister_netdev(netdev); 4747 4748 ixgbevf_stop_ipsec_offload(adapter); 4749 ixgbevf_clear_interrupt_scheme(adapter); 4750 ixgbevf_reset_interrupt_capability(adapter); 4751 4752 iounmap(adapter->io_addr); 4753 pci_release_regions(pdev); 4754 4755 hw_dbg(&adapter->hw, "Remove complete\n"); 4756 4757 kfree(adapter->rss_key); 4758 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4759 free_netdev(netdev); 4760 4761 if (disable_dev) 4762 pci_disable_device(pdev); 4763 } 4764 4765 /** 4766 * ixgbevf_io_error_detected - called when PCI error is detected 4767 * @pdev: Pointer to PCI device 4768 * @state: The current pci connection state 4769 * 4770 * This function is called after a PCI bus error affecting 4771 * this device has been detected. 4772 **/ 4773 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4774 pci_channel_state_t state) 4775 { 4776 struct net_device *netdev = pci_get_drvdata(pdev); 4777 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4778 4779 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4780 return PCI_ERS_RESULT_DISCONNECT; 4781 4782 rtnl_lock(); 4783 netif_device_detach(netdev); 4784 4785 if (netif_running(netdev)) 4786 ixgbevf_close_suspend(adapter); 4787 4788 if (state == pci_channel_io_perm_failure) { 4789 rtnl_unlock(); 4790 return PCI_ERS_RESULT_DISCONNECT; 4791 } 4792 4793 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4794 pci_disable_device(pdev); 4795 rtnl_unlock(); 4796 4797 /* Request a slot reset. */ 4798 return PCI_ERS_RESULT_NEED_RESET; 4799 } 4800 4801 /** 4802 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4803 * @pdev: Pointer to PCI device 4804 * 4805 * Restart the card from scratch, as if from a cold-boot. Implementation 4806 * resembles the first-half of the ixgbevf_resume routine. 4807 **/ 4808 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4809 { 4810 struct net_device *netdev = pci_get_drvdata(pdev); 4811 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4812 4813 if (pci_enable_device_mem(pdev)) { 4814 dev_err(&pdev->dev, 4815 "Cannot re-enable PCI device after reset.\n"); 4816 return PCI_ERS_RESULT_DISCONNECT; 4817 } 4818 4819 adapter->hw.hw_addr = adapter->io_addr; 4820 smp_mb__before_atomic(); 4821 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4822 pci_set_master(pdev); 4823 4824 ixgbevf_reset(adapter); 4825 4826 return PCI_ERS_RESULT_RECOVERED; 4827 } 4828 4829 /** 4830 * ixgbevf_io_resume - called when traffic can start flowing again. 4831 * @pdev: Pointer to PCI device 4832 * 4833 * This callback is called when the error recovery driver tells us that 4834 * its OK to resume normal operation. Implementation resembles the 4835 * second-half of the ixgbevf_resume routine. 4836 **/ 4837 static void ixgbevf_io_resume(struct pci_dev *pdev) 4838 { 4839 struct net_device *netdev = pci_get_drvdata(pdev); 4840 4841 rtnl_lock(); 4842 if (netif_running(netdev)) 4843 ixgbevf_open(netdev); 4844 4845 netif_device_attach(netdev); 4846 rtnl_unlock(); 4847 } 4848 4849 /* PCI Error Recovery (ERS) */ 4850 static const struct pci_error_handlers ixgbevf_err_handler = { 4851 .error_detected = ixgbevf_io_error_detected, 4852 .slot_reset = ixgbevf_io_slot_reset, 4853 .resume = ixgbevf_io_resume, 4854 }; 4855 4856 static DEFINE_SIMPLE_DEV_PM_OPS(ixgbevf_pm_ops, ixgbevf_suspend, ixgbevf_resume); 4857 4858 static struct pci_driver ixgbevf_driver = { 4859 .name = ixgbevf_driver_name, 4860 .id_table = ixgbevf_pci_tbl, 4861 .probe = ixgbevf_probe, 4862 .remove = ixgbevf_remove, 4863 4864 /* Power Management Hooks */ 4865 .driver.pm = pm_sleep_ptr(&ixgbevf_pm_ops), 4866 4867 .shutdown = ixgbevf_shutdown, 4868 .err_handler = &ixgbevf_err_handler 4869 }; 4870 4871 /** 4872 * ixgbevf_init_module - Driver Registration Routine 4873 * 4874 * ixgbevf_init_module is the first routine called when the driver is 4875 * loaded. All it does is register with the PCI subsystem. 4876 **/ 4877 static int __init ixgbevf_init_module(void) 4878 { 4879 int err; 4880 4881 pr_info("%s\n", ixgbevf_driver_string); 4882 pr_info("%s\n", ixgbevf_copyright); 4883 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4884 if (!ixgbevf_wq) { 4885 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4886 return -ENOMEM; 4887 } 4888 4889 err = pci_register_driver(&ixgbevf_driver); 4890 if (err) { 4891 destroy_workqueue(ixgbevf_wq); 4892 return err; 4893 } 4894 4895 return 0; 4896 } 4897 4898 module_init(ixgbevf_init_module); 4899 4900 /** 4901 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4902 * 4903 * ixgbevf_exit_module is called just before the driver is removed 4904 * from memory. 4905 **/ 4906 static void __exit ixgbevf_exit_module(void) 4907 { 4908 pci_unregister_driver(&ixgbevf_driver); 4909 if (ixgbevf_wq) { 4910 destroy_workqueue(ixgbevf_wq); 4911 ixgbevf_wq = NULL; 4912 } 4913 } 4914 4915 #ifdef DEBUG 4916 /** 4917 * ixgbevf_get_hw_dev_name - return device name string 4918 * used by hardware layer to print debugging information 4919 * @hw: pointer to private hardware struct 4920 **/ 4921 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4922 { 4923 struct ixgbevf_adapter *adapter = hw->back; 4924 4925 return adapter->netdev->name; 4926 } 4927 4928 #endif 4929 module_exit(ixgbevf_exit_module); 4930 4931 /* ixgbevf_main.c */ 4932