xref: /linux/drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c (revision a3a02a52bcfcbcc4a637d4b68bf1bc391c9fad02)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /******************************************************************************
5  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
6 ******************************************************************************/
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/types.h>
11 #include <linux/bitops.h>
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/netdevice.h>
15 #include <linux/vmalloc.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/tcp.h>
20 #include <linux/sctp.h>
21 #include <linux/ipv6.h>
22 #include <linux/slab.h>
23 #include <net/checksum.h>
24 #include <net/ip6_checksum.h>
25 #include <linux/ethtool.h>
26 #include <linux/if.h>
27 #include <linux/if_vlan.h>
28 #include <linux/prefetch.h>
29 #include <net/mpls.h>
30 #include <linux/bpf.h>
31 #include <linux/bpf_trace.h>
32 #include <linux/atomic.h>
33 #include <net/xfrm.h>
34 
35 #include "ixgbevf.h"
36 
37 const char ixgbevf_driver_name[] = "ixgbevf";
38 static const char ixgbevf_driver_string[] =
39 	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
40 
41 static char ixgbevf_copyright[] =
42 	"Copyright (c) 2009 - 2018 Intel Corporation.";
43 
44 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
45 	[board_82599_vf]	= &ixgbevf_82599_vf_info,
46 	[board_82599_vf_hv]	= &ixgbevf_82599_vf_hv_info,
47 	[board_X540_vf]		= &ixgbevf_X540_vf_info,
48 	[board_X540_vf_hv]	= &ixgbevf_X540_vf_hv_info,
49 	[board_X550_vf]		= &ixgbevf_X550_vf_info,
50 	[board_X550_vf_hv]	= &ixgbevf_X550_vf_hv_info,
51 	[board_X550EM_x_vf]	= &ixgbevf_X550EM_x_vf_info,
52 	[board_X550EM_x_vf_hv]	= &ixgbevf_X550EM_x_vf_hv_info,
53 	[board_x550em_a_vf]	= &ixgbevf_x550em_a_vf_info,
54 };
55 
56 /* ixgbevf_pci_tbl - PCI Device ID Table
57  *
58  * Wildcard entries (PCI_ANY_ID) should come last
59  * Last entry must be all 0s
60  *
61  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
62  *   Class, Class Mask, private data (not used) }
63  */
64 static const struct pci_device_id ixgbevf_pci_tbl[] = {
65 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
66 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv },
67 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
68 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv },
69 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
70 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv },
71 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
72 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv},
73 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf },
74 	/* required last entry */
75 	{0, }
76 };
77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
78 
79 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
80 MODULE_LICENSE("GPL v2");
81 
82 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
83 static int debug = -1;
84 module_param(debug, int, 0);
85 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
86 
87 static struct workqueue_struct *ixgbevf_wq;
88 
89 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
90 {
91 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
92 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
93 	    !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
94 		queue_work(ixgbevf_wq, &adapter->service_task);
95 }
96 
97 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
98 {
99 	BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
100 
101 	/* flush memory to make sure state is correct before next watchdog */
102 	smp_mb__before_atomic();
103 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
104 }
105 
106 /* forward decls */
107 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
108 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
109 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
110 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer);
111 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
112 				  struct ixgbevf_rx_buffer *old_buff);
113 
114 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
115 {
116 	struct ixgbevf_adapter *adapter = hw->back;
117 
118 	if (!hw->hw_addr)
119 		return;
120 	hw->hw_addr = NULL;
121 	dev_err(&adapter->pdev->dev, "Adapter removed\n");
122 	if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
123 		ixgbevf_service_event_schedule(adapter);
124 }
125 
126 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
127 {
128 	u32 value;
129 
130 	/* The following check not only optimizes a bit by not
131 	 * performing a read on the status register when the
132 	 * register just read was a status register read that
133 	 * returned IXGBE_FAILED_READ_REG. It also blocks any
134 	 * potential recursion.
135 	 */
136 	if (reg == IXGBE_VFSTATUS) {
137 		ixgbevf_remove_adapter(hw);
138 		return;
139 	}
140 	value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
141 	if (value == IXGBE_FAILED_READ_REG)
142 		ixgbevf_remove_adapter(hw);
143 }
144 
145 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
146 {
147 	u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr);
148 	u32 value;
149 
150 	if (IXGBE_REMOVED(reg_addr))
151 		return IXGBE_FAILED_READ_REG;
152 	value = readl(reg_addr + reg);
153 	if (unlikely(value == IXGBE_FAILED_READ_REG))
154 		ixgbevf_check_remove(hw, reg);
155 	return value;
156 }
157 
158 /**
159  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
160  * @adapter: pointer to adapter struct
161  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
162  * @queue: queue to map the corresponding interrupt to
163  * @msix_vector: the vector to map to the corresponding queue
164  **/
165 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
166 			     u8 queue, u8 msix_vector)
167 {
168 	u32 ivar, index;
169 	struct ixgbe_hw *hw = &adapter->hw;
170 
171 	if (direction == -1) {
172 		/* other causes */
173 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
174 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
175 		ivar &= ~0xFF;
176 		ivar |= msix_vector;
177 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
178 	} else {
179 		/* Tx or Rx causes */
180 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
181 		index = ((16 * (queue & 1)) + (8 * direction));
182 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
183 		ivar &= ~(0xFF << index);
184 		ivar |= (msix_vector << index);
185 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
186 	}
187 }
188 
189 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
190 {
191 	return ring->stats.packets;
192 }
193 
194 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
195 {
196 	struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
197 	struct ixgbe_hw *hw = &adapter->hw;
198 
199 	u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
200 	u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
201 
202 	if (head != tail)
203 		return (head < tail) ?
204 			tail - head : (tail + ring->count - head);
205 
206 	return 0;
207 }
208 
209 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
210 {
211 	u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
212 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
213 	u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
214 
215 	clear_check_for_tx_hang(tx_ring);
216 
217 	/* Check for a hung queue, but be thorough. This verifies
218 	 * that a transmit has been completed since the previous
219 	 * check AND there is at least one packet pending. The
220 	 * ARMED bit is set to indicate a potential hang.
221 	 */
222 	if ((tx_done_old == tx_done) && tx_pending) {
223 		/* make sure it is true for two checks in a row */
224 		return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
225 					&tx_ring->state);
226 	}
227 	/* reset the countdown */
228 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
229 
230 	/* update completed stats and continue */
231 	tx_ring->tx_stats.tx_done_old = tx_done;
232 
233 	return false;
234 }
235 
236 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
237 {
238 	/* Do the reset outside of interrupt context */
239 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
240 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
241 		ixgbevf_service_event_schedule(adapter);
242 	}
243 }
244 
245 /**
246  * ixgbevf_tx_timeout - Respond to a Tx Hang
247  * @netdev: network interface device structure
248  * @txqueue: transmit queue hanging (unused)
249  **/
250 static void ixgbevf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
251 {
252 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
253 
254 	ixgbevf_tx_timeout_reset(adapter);
255 }
256 
257 /**
258  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
259  * @q_vector: board private structure
260  * @tx_ring: tx ring to clean
261  * @napi_budget: Used to determine if we are in netpoll
262  **/
263 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
264 				 struct ixgbevf_ring *tx_ring, int napi_budget)
265 {
266 	struct ixgbevf_adapter *adapter = q_vector->adapter;
267 	struct ixgbevf_tx_buffer *tx_buffer;
268 	union ixgbe_adv_tx_desc *tx_desc;
269 	unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0;
270 	unsigned int budget = tx_ring->count / 2;
271 	unsigned int i = tx_ring->next_to_clean;
272 
273 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
274 		return true;
275 
276 	tx_buffer = &tx_ring->tx_buffer_info[i];
277 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
278 	i -= tx_ring->count;
279 
280 	do {
281 		union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
282 
283 		/* if next_to_watch is not set then there is no work pending */
284 		if (!eop_desc)
285 			break;
286 
287 		/* prevent any other reads prior to eop_desc */
288 		smp_rmb();
289 
290 		/* if DD is not set pending work has not been completed */
291 		if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
292 			break;
293 
294 		/* clear next_to_watch to prevent false hangs */
295 		tx_buffer->next_to_watch = NULL;
296 
297 		/* update the statistics for this packet */
298 		total_bytes += tx_buffer->bytecount;
299 		total_packets += tx_buffer->gso_segs;
300 		if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC)
301 			total_ipsec++;
302 
303 		/* free the skb */
304 		if (ring_is_xdp(tx_ring))
305 			page_frag_free(tx_buffer->data);
306 		else
307 			napi_consume_skb(tx_buffer->skb, napi_budget);
308 
309 		/* unmap skb header data */
310 		dma_unmap_single(tx_ring->dev,
311 				 dma_unmap_addr(tx_buffer, dma),
312 				 dma_unmap_len(tx_buffer, len),
313 				 DMA_TO_DEVICE);
314 
315 		/* clear tx_buffer data */
316 		dma_unmap_len_set(tx_buffer, len, 0);
317 
318 		/* unmap remaining buffers */
319 		while (tx_desc != eop_desc) {
320 			tx_buffer++;
321 			tx_desc++;
322 			i++;
323 			if (unlikely(!i)) {
324 				i -= tx_ring->count;
325 				tx_buffer = tx_ring->tx_buffer_info;
326 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
327 			}
328 
329 			/* unmap any remaining paged data */
330 			if (dma_unmap_len(tx_buffer, len)) {
331 				dma_unmap_page(tx_ring->dev,
332 					       dma_unmap_addr(tx_buffer, dma),
333 					       dma_unmap_len(tx_buffer, len),
334 					       DMA_TO_DEVICE);
335 				dma_unmap_len_set(tx_buffer, len, 0);
336 			}
337 		}
338 
339 		/* move us one more past the eop_desc for start of next pkt */
340 		tx_buffer++;
341 		tx_desc++;
342 		i++;
343 		if (unlikely(!i)) {
344 			i -= tx_ring->count;
345 			tx_buffer = tx_ring->tx_buffer_info;
346 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
347 		}
348 
349 		/* issue prefetch for next Tx descriptor */
350 		prefetch(tx_desc);
351 
352 		/* update budget accounting */
353 		budget--;
354 	} while (likely(budget));
355 
356 	i += tx_ring->count;
357 	tx_ring->next_to_clean = i;
358 	u64_stats_update_begin(&tx_ring->syncp);
359 	tx_ring->stats.bytes += total_bytes;
360 	tx_ring->stats.packets += total_packets;
361 	u64_stats_update_end(&tx_ring->syncp);
362 	q_vector->tx.total_bytes += total_bytes;
363 	q_vector->tx.total_packets += total_packets;
364 	adapter->tx_ipsec += total_ipsec;
365 
366 	if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
367 		struct ixgbe_hw *hw = &adapter->hw;
368 		union ixgbe_adv_tx_desc *eop_desc;
369 
370 		eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
371 
372 		pr_err("Detected Tx Unit Hang%s\n"
373 		       "  Tx Queue             <%d>\n"
374 		       "  TDH, TDT             <%x>, <%x>\n"
375 		       "  next_to_use          <%x>\n"
376 		       "  next_to_clean        <%x>\n"
377 		       "tx_buffer_info[next_to_clean]\n"
378 		       "  next_to_watch        <%p>\n"
379 		       "  eop_desc->wb.status  <%x>\n"
380 		       "  time_stamp           <%lx>\n"
381 		       "  jiffies              <%lx>\n",
382 		       ring_is_xdp(tx_ring) ? " XDP" : "",
383 		       tx_ring->queue_index,
384 		       IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
385 		       IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
386 		       tx_ring->next_to_use, i,
387 		       eop_desc, (eop_desc ? eop_desc->wb.status : 0),
388 		       tx_ring->tx_buffer_info[i].time_stamp, jiffies);
389 
390 		if (!ring_is_xdp(tx_ring))
391 			netif_stop_subqueue(tx_ring->netdev,
392 					    tx_ring->queue_index);
393 
394 		/* schedule immediate reset if we believe we hung */
395 		ixgbevf_tx_timeout_reset(adapter);
396 
397 		return true;
398 	}
399 
400 	if (ring_is_xdp(tx_ring))
401 		return !!budget;
402 
403 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
404 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
405 		     (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
406 		/* Make sure that anybody stopping the queue after this
407 		 * sees the new next_to_clean.
408 		 */
409 		smp_mb();
410 
411 		if (__netif_subqueue_stopped(tx_ring->netdev,
412 					     tx_ring->queue_index) &&
413 		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
414 			netif_wake_subqueue(tx_ring->netdev,
415 					    tx_ring->queue_index);
416 			++tx_ring->tx_stats.restart_queue;
417 		}
418 	}
419 
420 	return !!budget;
421 }
422 
423 /**
424  * ixgbevf_rx_skb - Helper function to determine proper Rx method
425  * @q_vector: structure containing interrupt and ring information
426  * @skb: packet to send up
427  **/
428 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
429 			   struct sk_buff *skb)
430 {
431 	napi_gro_receive(&q_vector->napi, skb);
432 }
433 
434 #define IXGBE_RSS_L4_TYPES_MASK \
435 	((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
436 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
437 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
438 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
439 
440 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
441 				   union ixgbe_adv_rx_desc *rx_desc,
442 				   struct sk_buff *skb)
443 {
444 	u16 rss_type;
445 
446 	if (!(ring->netdev->features & NETIF_F_RXHASH))
447 		return;
448 
449 	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
450 		   IXGBE_RXDADV_RSSTYPE_MASK;
451 
452 	if (!rss_type)
453 		return;
454 
455 	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
456 		     (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
457 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
458 }
459 
460 /**
461  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
462  * @ring: structure containig ring specific data
463  * @rx_desc: current Rx descriptor being processed
464  * @skb: skb currently being received and modified
465  **/
466 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
467 				       union ixgbe_adv_rx_desc *rx_desc,
468 				       struct sk_buff *skb)
469 {
470 	skb_checksum_none_assert(skb);
471 
472 	/* Rx csum disabled */
473 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
474 		return;
475 
476 	/* if IP and error */
477 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
478 	    ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
479 		ring->rx_stats.csum_err++;
480 		return;
481 	}
482 
483 	if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
484 		return;
485 
486 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
487 		ring->rx_stats.csum_err++;
488 		return;
489 	}
490 
491 	/* It must be a TCP or UDP packet with a valid checksum */
492 	skb->ip_summed = CHECKSUM_UNNECESSARY;
493 }
494 
495 /**
496  * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
497  * @rx_ring: rx descriptor ring packet is being transacted on
498  * @rx_desc: pointer to the EOP Rx descriptor
499  * @skb: pointer to current skb being populated
500  *
501  * This function checks the ring, descriptor, and packet information in
502  * order to populate the checksum, VLAN, protocol, and other fields within
503  * the skb.
504  **/
505 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
506 				       union ixgbe_adv_rx_desc *rx_desc,
507 				       struct sk_buff *skb)
508 {
509 	ixgbevf_rx_hash(rx_ring, rx_desc, skb);
510 	ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
511 
512 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
513 		u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
514 		unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
515 
516 		if (test_bit(vid & VLAN_VID_MASK, active_vlans))
517 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
518 	}
519 
520 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP))
521 		ixgbevf_ipsec_rx(rx_ring, rx_desc, skb);
522 
523 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
524 }
525 
526 static
527 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring,
528 						const unsigned int size)
529 {
530 	struct ixgbevf_rx_buffer *rx_buffer;
531 
532 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
533 	prefetchw(rx_buffer->page);
534 
535 	/* we are reusing so sync this buffer for CPU use */
536 	dma_sync_single_range_for_cpu(rx_ring->dev,
537 				      rx_buffer->dma,
538 				      rx_buffer->page_offset,
539 				      size,
540 				      DMA_FROM_DEVICE);
541 
542 	rx_buffer->pagecnt_bias--;
543 
544 	return rx_buffer;
545 }
546 
547 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring,
548 				  struct ixgbevf_rx_buffer *rx_buffer,
549 				  struct sk_buff *skb)
550 {
551 	if (ixgbevf_can_reuse_rx_page(rx_buffer)) {
552 		/* hand second half of page back to the ring */
553 		ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
554 	} else {
555 		if (IS_ERR(skb))
556 			/* We are not reusing the buffer so unmap it and free
557 			 * any references we are holding to it
558 			 */
559 			dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
560 					     ixgbevf_rx_pg_size(rx_ring),
561 					     DMA_FROM_DEVICE,
562 					     IXGBEVF_RX_DMA_ATTR);
563 		__page_frag_cache_drain(rx_buffer->page,
564 					rx_buffer->pagecnt_bias);
565 	}
566 
567 	/* clear contents of rx_buffer */
568 	rx_buffer->page = NULL;
569 }
570 
571 /**
572  * ixgbevf_is_non_eop - process handling of non-EOP buffers
573  * @rx_ring: Rx ring being processed
574  * @rx_desc: Rx descriptor for current buffer
575  *
576  * This function updates next to clean.  If the buffer is an EOP buffer
577  * this function exits returning false, otherwise it will place the
578  * sk_buff in the next buffer to be chained and return true indicating
579  * that this is in fact a non-EOP buffer.
580  **/
581 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
582 			       union ixgbe_adv_rx_desc *rx_desc)
583 {
584 	u32 ntc = rx_ring->next_to_clean + 1;
585 
586 	/* fetch, update, and store next to clean */
587 	ntc = (ntc < rx_ring->count) ? ntc : 0;
588 	rx_ring->next_to_clean = ntc;
589 
590 	prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
591 
592 	if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
593 		return false;
594 
595 	return true;
596 }
597 
598 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring)
599 {
600 	return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0;
601 }
602 
603 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
604 				      struct ixgbevf_rx_buffer *bi)
605 {
606 	struct page *page = bi->page;
607 	dma_addr_t dma;
608 
609 	/* since we are recycling buffers we should seldom need to alloc */
610 	if (likely(page))
611 		return true;
612 
613 	/* alloc new page for storage */
614 	page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring));
615 	if (unlikely(!page)) {
616 		rx_ring->rx_stats.alloc_rx_page_failed++;
617 		return false;
618 	}
619 
620 	/* map page for use */
621 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
622 				 ixgbevf_rx_pg_size(rx_ring),
623 				 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR);
624 
625 	/* if mapping failed free memory back to system since
626 	 * there isn't much point in holding memory we can't use
627 	 */
628 	if (dma_mapping_error(rx_ring->dev, dma)) {
629 		__free_pages(page, ixgbevf_rx_pg_order(rx_ring));
630 
631 		rx_ring->rx_stats.alloc_rx_page_failed++;
632 		return false;
633 	}
634 
635 	bi->dma = dma;
636 	bi->page = page;
637 	bi->page_offset = ixgbevf_rx_offset(rx_ring);
638 	bi->pagecnt_bias = 1;
639 	rx_ring->rx_stats.alloc_rx_page++;
640 
641 	return true;
642 }
643 
644 /**
645  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
646  * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
647  * @cleaned_count: number of buffers to replace
648  **/
649 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
650 				     u16 cleaned_count)
651 {
652 	union ixgbe_adv_rx_desc *rx_desc;
653 	struct ixgbevf_rx_buffer *bi;
654 	unsigned int i = rx_ring->next_to_use;
655 
656 	/* nothing to do or no valid netdev defined */
657 	if (!cleaned_count || !rx_ring->netdev)
658 		return;
659 
660 	rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
661 	bi = &rx_ring->rx_buffer_info[i];
662 	i -= rx_ring->count;
663 
664 	do {
665 		if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
666 			break;
667 
668 		/* sync the buffer for use by the device */
669 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
670 						 bi->page_offset,
671 						 ixgbevf_rx_bufsz(rx_ring),
672 						 DMA_FROM_DEVICE);
673 
674 		/* Refresh the desc even if pkt_addr didn't change
675 		 * because each write-back erases this info.
676 		 */
677 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
678 
679 		rx_desc++;
680 		bi++;
681 		i++;
682 		if (unlikely(!i)) {
683 			rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
684 			bi = rx_ring->rx_buffer_info;
685 			i -= rx_ring->count;
686 		}
687 
688 		/* clear the length for the next_to_use descriptor */
689 		rx_desc->wb.upper.length = 0;
690 
691 		cleaned_count--;
692 	} while (cleaned_count);
693 
694 	i += rx_ring->count;
695 
696 	if (rx_ring->next_to_use != i) {
697 		/* record the next descriptor to use */
698 		rx_ring->next_to_use = i;
699 
700 		/* update next to alloc since we have filled the ring */
701 		rx_ring->next_to_alloc = i;
702 
703 		/* Force memory writes to complete before letting h/w
704 		 * know there are new descriptors to fetch.  (Only
705 		 * applicable for weak-ordered memory model archs,
706 		 * such as IA-64).
707 		 */
708 		wmb();
709 		ixgbevf_write_tail(rx_ring, i);
710 	}
711 }
712 
713 /**
714  * ixgbevf_cleanup_headers - Correct corrupted or empty headers
715  * @rx_ring: rx descriptor ring packet is being transacted on
716  * @rx_desc: pointer to the EOP Rx descriptor
717  * @skb: pointer to current skb being fixed
718  *
719  * Check for corrupted packet headers caused by senders on the local L2
720  * embedded NIC switch not setting up their Tx Descriptors right.  These
721  * should be very rare.
722  *
723  * Also address the case where we are pulling data in on pages only
724  * and as such no data is present in the skb header.
725  *
726  * In addition if skb is not at least 60 bytes we need to pad it so that
727  * it is large enough to qualify as a valid Ethernet frame.
728  *
729  * Returns true if an error was encountered and skb was freed.
730  **/
731 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
732 				    union ixgbe_adv_rx_desc *rx_desc,
733 				    struct sk_buff *skb)
734 {
735 	/* XDP packets use error pointer so abort at this point */
736 	if (IS_ERR(skb))
737 		return true;
738 
739 	/* verify that the packet does not have any known errors */
740 	if (unlikely(ixgbevf_test_staterr(rx_desc,
741 					  IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
742 		struct net_device *netdev = rx_ring->netdev;
743 
744 		if (!(netdev->features & NETIF_F_RXALL)) {
745 			dev_kfree_skb_any(skb);
746 			return true;
747 		}
748 	}
749 
750 	/* if eth_skb_pad returns an error the skb was freed */
751 	if (eth_skb_pad(skb))
752 		return true;
753 
754 	return false;
755 }
756 
757 /**
758  * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
759  * @rx_ring: rx descriptor ring to store buffers on
760  * @old_buff: donor buffer to have page reused
761  *
762  * Synchronizes page for reuse by the adapter
763  **/
764 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
765 				  struct ixgbevf_rx_buffer *old_buff)
766 {
767 	struct ixgbevf_rx_buffer *new_buff;
768 	u16 nta = rx_ring->next_to_alloc;
769 
770 	new_buff = &rx_ring->rx_buffer_info[nta];
771 
772 	/* update, and store next to alloc */
773 	nta++;
774 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
775 
776 	/* transfer page from old buffer to new buffer */
777 	new_buff->page = old_buff->page;
778 	new_buff->dma = old_buff->dma;
779 	new_buff->page_offset = old_buff->page_offset;
780 	new_buff->pagecnt_bias = old_buff->pagecnt_bias;
781 }
782 
783 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer)
784 {
785 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
786 	struct page *page = rx_buffer->page;
787 
788 	/* avoid re-using remote and pfmemalloc pages */
789 	if (!dev_page_is_reusable(page))
790 		return false;
791 
792 #if (PAGE_SIZE < 8192)
793 	/* if we are only owner of page we can reuse it */
794 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
795 		return false;
796 #else
797 #define IXGBEVF_LAST_OFFSET \
798 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048)
799 
800 	if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET)
801 		return false;
802 
803 #endif
804 
805 	/* If we have drained the page fragment pool we need to update
806 	 * the pagecnt_bias and page count so that we fully restock the
807 	 * number of references the driver holds.
808 	 */
809 	if (unlikely(!pagecnt_bias)) {
810 		page_ref_add(page, USHRT_MAX);
811 		rx_buffer->pagecnt_bias = USHRT_MAX;
812 	}
813 
814 	return true;
815 }
816 
817 /**
818  * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
819  * @rx_ring: rx descriptor ring to transact packets on
820  * @rx_buffer: buffer containing page to add
821  * @skb: sk_buff to place the data into
822  * @size: size of buffer to be added
823  *
824  * This function will add the data contained in rx_buffer->page to the skb.
825  **/
826 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
827 				struct ixgbevf_rx_buffer *rx_buffer,
828 				struct sk_buff *skb,
829 				unsigned int size)
830 {
831 #if (PAGE_SIZE < 8192)
832 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
833 #else
834 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
835 				SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) :
836 				SKB_DATA_ALIGN(size);
837 #endif
838 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
839 			rx_buffer->page_offset, size, truesize);
840 #if (PAGE_SIZE < 8192)
841 	rx_buffer->page_offset ^= truesize;
842 #else
843 	rx_buffer->page_offset += truesize;
844 #endif
845 }
846 
847 static
848 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring,
849 				      struct ixgbevf_rx_buffer *rx_buffer,
850 				      struct xdp_buff *xdp,
851 				      union ixgbe_adv_rx_desc *rx_desc)
852 {
853 	unsigned int size = xdp->data_end - xdp->data;
854 #if (PAGE_SIZE < 8192)
855 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
856 #else
857 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
858 					       xdp->data_hard_start);
859 #endif
860 	unsigned int headlen;
861 	struct sk_buff *skb;
862 
863 	/* prefetch first cache line of first page */
864 	net_prefetch(xdp->data);
865 
866 	/* Note, we get here by enabling legacy-rx via:
867 	 *
868 	 *    ethtool --set-priv-flags <dev> legacy-rx on
869 	 *
870 	 * In this mode, we currently get 0 extra XDP headroom as
871 	 * opposed to having legacy-rx off, where we process XDP
872 	 * packets going to stack via ixgbevf_build_skb().
873 	 *
874 	 * For ixgbevf_construct_skb() mode it means that the
875 	 * xdp->data_meta will always point to xdp->data, since
876 	 * the helper cannot expand the head. Should this ever
877 	 * changed in future for legacy-rx mode on, then lets also
878 	 * add xdp->data_meta handling here.
879 	 */
880 
881 	/* allocate a skb to store the frags */
882 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE);
883 	if (unlikely(!skb))
884 		return NULL;
885 
886 	/* Determine available headroom for copy */
887 	headlen = size;
888 	if (headlen > IXGBEVF_RX_HDR_SIZE)
889 		headlen = eth_get_headlen(skb->dev, xdp->data,
890 					  IXGBEVF_RX_HDR_SIZE);
891 
892 	/* align pull length to size of long to optimize memcpy performance */
893 	memcpy(__skb_put(skb, headlen), xdp->data,
894 	       ALIGN(headlen, sizeof(long)));
895 
896 	/* update all of the pointers */
897 	size -= headlen;
898 	if (size) {
899 		skb_add_rx_frag(skb, 0, rx_buffer->page,
900 				(xdp->data + headlen) -
901 					page_address(rx_buffer->page),
902 				size, truesize);
903 #if (PAGE_SIZE < 8192)
904 		rx_buffer->page_offset ^= truesize;
905 #else
906 		rx_buffer->page_offset += truesize;
907 #endif
908 	} else {
909 		rx_buffer->pagecnt_bias++;
910 	}
911 
912 	return skb;
913 }
914 
915 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
916 					     u32 qmask)
917 {
918 	struct ixgbe_hw *hw = &adapter->hw;
919 
920 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
921 }
922 
923 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring,
924 					 struct ixgbevf_rx_buffer *rx_buffer,
925 					 struct xdp_buff *xdp,
926 					 union ixgbe_adv_rx_desc *rx_desc)
927 {
928 	unsigned int metasize = xdp->data - xdp->data_meta;
929 #if (PAGE_SIZE < 8192)
930 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
931 #else
932 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
933 				SKB_DATA_ALIGN(xdp->data_end -
934 					       xdp->data_hard_start);
935 #endif
936 	struct sk_buff *skb;
937 
938 	/* Prefetch first cache line of first page. If xdp->data_meta
939 	 * is unused, this points to xdp->data, otherwise, we likely
940 	 * have a consumer accessing first few bytes of meta data,
941 	 * and then actual data.
942 	 */
943 	net_prefetch(xdp->data_meta);
944 
945 	/* build an skb around the page buffer */
946 	skb = napi_build_skb(xdp->data_hard_start, truesize);
947 	if (unlikely(!skb))
948 		return NULL;
949 
950 	/* update pointers within the skb to store the data */
951 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
952 	__skb_put(skb, xdp->data_end - xdp->data);
953 	if (metasize)
954 		skb_metadata_set(skb, metasize);
955 
956 	/* update buffer offset */
957 #if (PAGE_SIZE < 8192)
958 	rx_buffer->page_offset ^= truesize;
959 #else
960 	rx_buffer->page_offset += truesize;
961 #endif
962 
963 	return skb;
964 }
965 
966 #define IXGBEVF_XDP_PASS 0
967 #define IXGBEVF_XDP_CONSUMED 1
968 #define IXGBEVF_XDP_TX 2
969 
970 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring,
971 				 struct xdp_buff *xdp)
972 {
973 	struct ixgbevf_tx_buffer *tx_buffer;
974 	union ixgbe_adv_tx_desc *tx_desc;
975 	u32 len, cmd_type;
976 	dma_addr_t dma;
977 	u16 i;
978 
979 	len = xdp->data_end - xdp->data;
980 
981 	if (unlikely(!ixgbevf_desc_unused(ring)))
982 		return IXGBEVF_XDP_CONSUMED;
983 
984 	dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE);
985 	if (dma_mapping_error(ring->dev, dma))
986 		return IXGBEVF_XDP_CONSUMED;
987 
988 	/* record the location of the first descriptor for this packet */
989 	i = ring->next_to_use;
990 	tx_buffer = &ring->tx_buffer_info[i];
991 
992 	dma_unmap_len_set(tx_buffer, len, len);
993 	dma_unmap_addr_set(tx_buffer, dma, dma);
994 	tx_buffer->data = xdp->data;
995 	tx_buffer->bytecount = len;
996 	tx_buffer->gso_segs = 1;
997 	tx_buffer->protocol = 0;
998 
999 	/* Populate minimal context descriptor that will provide for the
1000 	 * fact that we are expected to process Ethernet frames.
1001 	 */
1002 	if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) {
1003 		struct ixgbe_adv_tx_context_desc *context_desc;
1004 
1005 		set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
1006 
1007 		context_desc = IXGBEVF_TX_CTXTDESC(ring, 0);
1008 		context_desc->vlan_macip_lens	=
1009 			cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT);
1010 		context_desc->fceof_saidx	= 0;
1011 		context_desc->type_tucmd_mlhl	=
1012 			cpu_to_le32(IXGBE_TXD_CMD_DEXT |
1013 				    IXGBE_ADVTXD_DTYP_CTXT);
1014 		context_desc->mss_l4len_idx	= 0;
1015 
1016 		i = 1;
1017 	}
1018 
1019 	/* put descriptor type bits */
1020 	cmd_type = IXGBE_ADVTXD_DTYP_DATA |
1021 		   IXGBE_ADVTXD_DCMD_DEXT |
1022 		   IXGBE_ADVTXD_DCMD_IFCS;
1023 	cmd_type |= len | IXGBE_TXD_CMD;
1024 
1025 	tx_desc = IXGBEVF_TX_DESC(ring, i);
1026 	tx_desc->read.buffer_addr = cpu_to_le64(dma);
1027 
1028 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1029 	tx_desc->read.olinfo_status =
1030 			cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) |
1031 				    IXGBE_ADVTXD_CC);
1032 
1033 	/* Avoid any potential race with cleanup */
1034 	smp_wmb();
1035 
1036 	/* set next_to_watch value indicating a packet is present */
1037 	i++;
1038 	if (i == ring->count)
1039 		i = 0;
1040 
1041 	tx_buffer->next_to_watch = tx_desc;
1042 	ring->next_to_use = i;
1043 
1044 	return IXGBEVF_XDP_TX;
1045 }
1046 
1047 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter,
1048 				       struct ixgbevf_ring  *rx_ring,
1049 				       struct xdp_buff *xdp)
1050 {
1051 	int result = IXGBEVF_XDP_PASS;
1052 	struct ixgbevf_ring *xdp_ring;
1053 	struct bpf_prog *xdp_prog;
1054 	u32 act;
1055 
1056 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1057 
1058 	if (!xdp_prog)
1059 		goto xdp_out;
1060 
1061 	act = bpf_prog_run_xdp(xdp_prog, xdp);
1062 	switch (act) {
1063 	case XDP_PASS:
1064 		break;
1065 	case XDP_TX:
1066 		xdp_ring = adapter->xdp_ring[rx_ring->queue_index];
1067 		result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp);
1068 		if (result == IXGBEVF_XDP_CONSUMED)
1069 			goto out_failure;
1070 		break;
1071 	default:
1072 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
1073 		fallthrough;
1074 	case XDP_ABORTED:
1075 out_failure:
1076 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
1077 		fallthrough; /* handle aborts by dropping packet */
1078 	case XDP_DROP:
1079 		result = IXGBEVF_XDP_CONSUMED;
1080 		break;
1081 	}
1082 xdp_out:
1083 	return ERR_PTR(-result);
1084 }
1085 
1086 static unsigned int ixgbevf_rx_frame_truesize(struct ixgbevf_ring *rx_ring,
1087 					      unsigned int size)
1088 {
1089 	unsigned int truesize;
1090 
1091 #if (PAGE_SIZE < 8192)
1092 	truesize = ixgbevf_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1093 #else
1094 	truesize = ring_uses_build_skb(rx_ring) ?
1095 		SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) +
1096 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1097 		SKB_DATA_ALIGN(size);
1098 #endif
1099 	return truesize;
1100 }
1101 
1102 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring,
1103 				   struct ixgbevf_rx_buffer *rx_buffer,
1104 				   unsigned int size)
1105 {
1106 	unsigned int truesize = ixgbevf_rx_frame_truesize(rx_ring, size);
1107 
1108 #if (PAGE_SIZE < 8192)
1109 	rx_buffer->page_offset ^= truesize;
1110 #else
1111 	rx_buffer->page_offset += truesize;
1112 #endif
1113 }
1114 
1115 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
1116 				struct ixgbevf_ring *rx_ring,
1117 				int budget)
1118 {
1119 	unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0;
1120 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1121 	u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
1122 	struct sk_buff *skb = rx_ring->skb;
1123 	bool xdp_xmit = false;
1124 	struct xdp_buff xdp;
1125 
1126 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1127 #if (PAGE_SIZE < 8192)
1128 	frame_sz = ixgbevf_rx_frame_truesize(rx_ring, 0);
1129 #endif
1130 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
1131 
1132 	while (likely(total_rx_packets < budget)) {
1133 		struct ixgbevf_rx_buffer *rx_buffer;
1134 		union ixgbe_adv_rx_desc *rx_desc;
1135 		unsigned int size;
1136 
1137 		/* return some buffers to hardware, one at a time is too slow */
1138 		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
1139 			ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
1140 			cleaned_count = 0;
1141 		}
1142 
1143 		rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1144 		size = le16_to_cpu(rx_desc->wb.upper.length);
1145 		if (!size)
1146 			break;
1147 
1148 		/* This memory barrier is needed to keep us from reading
1149 		 * any other fields out of the rx_desc until we know the
1150 		 * RXD_STAT_DD bit is set
1151 		 */
1152 		rmb();
1153 
1154 		rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size);
1155 
1156 		/* retrieve a buffer from the ring */
1157 		if (!skb) {
1158 			unsigned int offset = ixgbevf_rx_offset(rx_ring);
1159 			unsigned char *hard_start;
1160 
1161 			hard_start = page_address(rx_buffer->page) +
1162 				     rx_buffer->page_offset - offset;
1163 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
1164 #if (PAGE_SIZE > 4096)
1165 			/* At larger PAGE_SIZE, frame_sz depend on len size */
1166 			xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, size);
1167 #endif
1168 			skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp);
1169 		}
1170 
1171 		if (IS_ERR(skb)) {
1172 			if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) {
1173 				xdp_xmit = true;
1174 				ixgbevf_rx_buffer_flip(rx_ring, rx_buffer,
1175 						       size);
1176 			} else {
1177 				rx_buffer->pagecnt_bias++;
1178 			}
1179 			total_rx_packets++;
1180 			total_rx_bytes += size;
1181 		} else if (skb) {
1182 			ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1183 		} else if (ring_uses_build_skb(rx_ring)) {
1184 			skb = ixgbevf_build_skb(rx_ring, rx_buffer,
1185 						&xdp, rx_desc);
1186 		} else {
1187 			skb = ixgbevf_construct_skb(rx_ring, rx_buffer,
1188 						    &xdp, rx_desc);
1189 		}
1190 
1191 		/* exit if we failed to retrieve a buffer */
1192 		if (!skb) {
1193 			rx_ring->rx_stats.alloc_rx_buff_failed++;
1194 			rx_buffer->pagecnt_bias++;
1195 			break;
1196 		}
1197 
1198 		ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb);
1199 		cleaned_count++;
1200 
1201 		/* fetch next buffer in frame if non-eop */
1202 		if (ixgbevf_is_non_eop(rx_ring, rx_desc))
1203 			continue;
1204 
1205 		/* verify the packet layout is correct */
1206 		if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
1207 			skb = NULL;
1208 			continue;
1209 		}
1210 
1211 		/* probably a little skewed due to removing CRC */
1212 		total_rx_bytes += skb->len;
1213 
1214 		/* Workaround hardware that can't do proper VEPA multicast
1215 		 * source pruning.
1216 		 */
1217 		if ((skb->pkt_type == PACKET_BROADCAST ||
1218 		     skb->pkt_type == PACKET_MULTICAST) &&
1219 		    ether_addr_equal(rx_ring->netdev->dev_addr,
1220 				     eth_hdr(skb)->h_source)) {
1221 			dev_kfree_skb_irq(skb);
1222 			continue;
1223 		}
1224 
1225 		/* populate checksum, VLAN, and protocol */
1226 		ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
1227 
1228 		ixgbevf_rx_skb(q_vector, skb);
1229 
1230 		/* reset skb pointer */
1231 		skb = NULL;
1232 
1233 		/* update budget accounting */
1234 		total_rx_packets++;
1235 	}
1236 
1237 	/* place incomplete frames back on ring for completion */
1238 	rx_ring->skb = skb;
1239 
1240 	if (xdp_xmit) {
1241 		struct ixgbevf_ring *xdp_ring =
1242 			adapter->xdp_ring[rx_ring->queue_index];
1243 
1244 		/* Force memory writes to complete before letting h/w
1245 		 * know there are new descriptors to fetch.
1246 		 */
1247 		wmb();
1248 		ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use);
1249 	}
1250 
1251 	u64_stats_update_begin(&rx_ring->syncp);
1252 	rx_ring->stats.packets += total_rx_packets;
1253 	rx_ring->stats.bytes += total_rx_bytes;
1254 	u64_stats_update_end(&rx_ring->syncp);
1255 	q_vector->rx.total_packets += total_rx_packets;
1256 	q_vector->rx.total_bytes += total_rx_bytes;
1257 
1258 	return total_rx_packets;
1259 }
1260 
1261 /**
1262  * ixgbevf_poll - NAPI polling calback
1263  * @napi: napi struct with our devices info in it
1264  * @budget: amount of work driver is allowed to do this pass, in packets
1265  *
1266  * This function will clean more than one or more rings associated with a
1267  * q_vector.
1268  **/
1269 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1270 {
1271 	struct ixgbevf_q_vector *q_vector =
1272 		container_of(napi, struct ixgbevf_q_vector, napi);
1273 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1274 	struct ixgbevf_ring *ring;
1275 	int per_ring_budget, work_done = 0;
1276 	bool clean_complete = true;
1277 
1278 	ixgbevf_for_each_ring(ring, q_vector->tx) {
1279 		if (!ixgbevf_clean_tx_irq(q_vector, ring, budget))
1280 			clean_complete = false;
1281 	}
1282 
1283 	if (budget <= 0)
1284 		return budget;
1285 
1286 	/* attempt to distribute budget to each queue fairly, but don't allow
1287 	 * the budget to go below 1 because we'll exit polling
1288 	 */
1289 	if (q_vector->rx.count > 1)
1290 		per_ring_budget = max(budget/q_vector->rx.count, 1);
1291 	else
1292 		per_ring_budget = budget;
1293 
1294 	ixgbevf_for_each_ring(ring, q_vector->rx) {
1295 		int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1296 						   per_ring_budget);
1297 		work_done += cleaned;
1298 		if (cleaned >= per_ring_budget)
1299 			clean_complete = false;
1300 	}
1301 
1302 	/* If all work not completed, return budget and keep polling */
1303 	if (!clean_complete)
1304 		return budget;
1305 
1306 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1307 	 * poll us due to busy-polling
1308 	 */
1309 	if (likely(napi_complete_done(napi, work_done))) {
1310 		if (adapter->rx_itr_setting == 1)
1311 			ixgbevf_set_itr(q_vector);
1312 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1313 		    !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1314 			ixgbevf_irq_enable_queues(adapter,
1315 						  BIT(q_vector->v_idx));
1316 	}
1317 
1318 	return min(work_done, budget - 1);
1319 }
1320 
1321 /**
1322  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1323  * @q_vector: structure containing interrupt and ring information
1324  **/
1325 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1326 {
1327 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1328 	struct ixgbe_hw *hw = &adapter->hw;
1329 	int v_idx = q_vector->v_idx;
1330 	u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1331 
1332 	/* set the WDIS bit to not clear the timer bits and cause an
1333 	 * immediate assertion of the interrupt
1334 	 */
1335 	itr_reg |= IXGBE_EITR_CNT_WDIS;
1336 
1337 	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1338 }
1339 
1340 /**
1341  * ixgbevf_configure_msix - Configure MSI-X hardware
1342  * @adapter: board private structure
1343  *
1344  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1345  * interrupts.
1346  **/
1347 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1348 {
1349 	struct ixgbevf_q_vector *q_vector;
1350 	int q_vectors, v_idx;
1351 
1352 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1353 	adapter->eims_enable_mask = 0;
1354 
1355 	/* Populate the IVAR table and set the ITR values to the
1356 	 * corresponding register.
1357 	 */
1358 	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1359 		struct ixgbevf_ring *ring;
1360 
1361 		q_vector = adapter->q_vector[v_idx];
1362 
1363 		ixgbevf_for_each_ring(ring, q_vector->rx)
1364 			ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1365 
1366 		ixgbevf_for_each_ring(ring, q_vector->tx)
1367 			ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1368 
1369 		if (q_vector->tx.ring && !q_vector->rx.ring) {
1370 			/* Tx only vector */
1371 			if (adapter->tx_itr_setting == 1)
1372 				q_vector->itr = IXGBE_12K_ITR;
1373 			else
1374 				q_vector->itr = adapter->tx_itr_setting;
1375 		} else {
1376 			/* Rx or Rx/Tx vector */
1377 			if (adapter->rx_itr_setting == 1)
1378 				q_vector->itr = IXGBE_20K_ITR;
1379 			else
1380 				q_vector->itr = adapter->rx_itr_setting;
1381 		}
1382 
1383 		/* add q_vector eims value to global eims_enable_mask */
1384 		adapter->eims_enable_mask |= BIT(v_idx);
1385 
1386 		ixgbevf_write_eitr(q_vector);
1387 	}
1388 
1389 	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1390 	/* setup eims_other and add value to global eims_enable_mask */
1391 	adapter->eims_other = BIT(v_idx);
1392 	adapter->eims_enable_mask |= adapter->eims_other;
1393 }
1394 
1395 enum latency_range {
1396 	lowest_latency = 0,
1397 	low_latency = 1,
1398 	bulk_latency = 2,
1399 	latency_invalid = 255
1400 };
1401 
1402 /**
1403  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1404  * @q_vector: structure containing interrupt and ring information
1405  * @ring_container: structure containing ring performance data
1406  *
1407  * Stores a new ITR value based on packets and byte
1408  * counts during the last interrupt.  The advantage of per interrupt
1409  * computation is faster updates and more accurate ITR for the current
1410  * traffic pattern.  Constants in this function were computed
1411  * based on theoretical maximum wire speed and thresholds were set based
1412  * on testing data as well as attempting to minimize response time
1413  * while increasing bulk throughput.
1414  **/
1415 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1416 			       struct ixgbevf_ring_container *ring_container)
1417 {
1418 	int bytes = ring_container->total_bytes;
1419 	int packets = ring_container->total_packets;
1420 	u32 timepassed_us;
1421 	u64 bytes_perint;
1422 	u8 itr_setting = ring_container->itr;
1423 
1424 	if (packets == 0)
1425 		return;
1426 
1427 	/* simple throttle rate management
1428 	 *    0-20MB/s lowest (100000 ints/s)
1429 	 *   20-100MB/s low   (20000 ints/s)
1430 	 *  100-1249MB/s bulk (12000 ints/s)
1431 	 */
1432 	/* what was last interrupt timeslice? */
1433 	timepassed_us = q_vector->itr >> 2;
1434 	if (timepassed_us == 0)
1435 		return;
1436 
1437 	bytes_perint = bytes / timepassed_us; /* bytes/usec */
1438 
1439 	switch (itr_setting) {
1440 	case lowest_latency:
1441 		if (bytes_perint > 10)
1442 			itr_setting = low_latency;
1443 		break;
1444 	case low_latency:
1445 		if (bytes_perint > 20)
1446 			itr_setting = bulk_latency;
1447 		else if (bytes_perint <= 10)
1448 			itr_setting = lowest_latency;
1449 		break;
1450 	case bulk_latency:
1451 		if (bytes_perint <= 20)
1452 			itr_setting = low_latency;
1453 		break;
1454 	}
1455 
1456 	/* clear work counters since we have the values we need */
1457 	ring_container->total_bytes = 0;
1458 	ring_container->total_packets = 0;
1459 
1460 	/* write updated itr to ring container */
1461 	ring_container->itr = itr_setting;
1462 }
1463 
1464 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1465 {
1466 	u32 new_itr = q_vector->itr;
1467 	u8 current_itr;
1468 
1469 	ixgbevf_update_itr(q_vector, &q_vector->tx);
1470 	ixgbevf_update_itr(q_vector, &q_vector->rx);
1471 
1472 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1473 
1474 	switch (current_itr) {
1475 	/* counts and packets in update_itr are dependent on these numbers */
1476 	case lowest_latency:
1477 		new_itr = IXGBE_100K_ITR;
1478 		break;
1479 	case low_latency:
1480 		new_itr = IXGBE_20K_ITR;
1481 		break;
1482 	case bulk_latency:
1483 		new_itr = IXGBE_12K_ITR;
1484 		break;
1485 	default:
1486 		break;
1487 	}
1488 
1489 	if (new_itr != q_vector->itr) {
1490 		/* do an exponential smoothing */
1491 		new_itr = (10 * new_itr * q_vector->itr) /
1492 			  ((9 * new_itr) + q_vector->itr);
1493 
1494 		/* save the algorithm value here */
1495 		q_vector->itr = new_itr;
1496 
1497 		ixgbevf_write_eitr(q_vector);
1498 	}
1499 }
1500 
1501 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1502 {
1503 	struct ixgbevf_adapter *adapter = data;
1504 	struct ixgbe_hw *hw = &adapter->hw;
1505 
1506 	hw->mac.get_link_status = 1;
1507 
1508 	ixgbevf_service_event_schedule(adapter);
1509 
1510 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1511 
1512 	return IRQ_HANDLED;
1513 }
1514 
1515 /**
1516  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1517  * @irq: unused
1518  * @data: pointer to our q_vector struct for this interrupt vector
1519  **/
1520 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1521 {
1522 	struct ixgbevf_q_vector *q_vector = data;
1523 
1524 	/* EIAM disabled interrupts (on this vector) for us */
1525 	if (q_vector->rx.ring || q_vector->tx.ring)
1526 		napi_schedule_irqoff(&q_vector->napi);
1527 
1528 	return IRQ_HANDLED;
1529 }
1530 
1531 /**
1532  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1533  * @adapter: board private structure
1534  *
1535  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1536  * interrupts from the kernel.
1537  **/
1538 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1539 {
1540 	struct net_device *netdev = adapter->netdev;
1541 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1542 	unsigned int ri = 0, ti = 0;
1543 	int vector, err;
1544 
1545 	for (vector = 0; vector < q_vectors; vector++) {
1546 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1547 		struct msix_entry *entry = &adapter->msix_entries[vector];
1548 
1549 		if (q_vector->tx.ring && q_vector->rx.ring) {
1550 			snprintf(q_vector->name, sizeof(q_vector->name),
1551 				 "%s-TxRx-%u", netdev->name, ri++);
1552 			ti++;
1553 		} else if (q_vector->rx.ring) {
1554 			snprintf(q_vector->name, sizeof(q_vector->name),
1555 				 "%s-rx-%u", netdev->name, ri++);
1556 		} else if (q_vector->tx.ring) {
1557 			snprintf(q_vector->name, sizeof(q_vector->name),
1558 				 "%s-tx-%u", netdev->name, ti++);
1559 		} else {
1560 			/* skip this unused q_vector */
1561 			continue;
1562 		}
1563 		err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1564 				  q_vector->name, q_vector);
1565 		if (err) {
1566 			hw_dbg(&adapter->hw,
1567 			       "request_irq failed for MSIX interrupt Error: %d\n",
1568 			       err);
1569 			goto free_queue_irqs;
1570 		}
1571 	}
1572 
1573 	err = request_irq(adapter->msix_entries[vector].vector,
1574 			  &ixgbevf_msix_other, 0, netdev->name, adapter);
1575 	if (err) {
1576 		hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1577 		       err);
1578 		goto free_queue_irqs;
1579 	}
1580 
1581 	return 0;
1582 
1583 free_queue_irqs:
1584 	while (vector) {
1585 		vector--;
1586 		free_irq(adapter->msix_entries[vector].vector,
1587 			 adapter->q_vector[vector]);
1588 	}
1589 	/* This failure is non-recoverable - it indicates the system is
1590 	 * out of MSIX vector resources and the VF driver cannot run
1591 	 * without them.  Set the number of msix vectors to zero
1592 	 * indicating that not enough can be allocated.  The error
1593 	 * will be returned to the user indicating device open failed.
1594 	 * Any further attempts to force the driver to open will also
1595 	 * fail.  The only way to recover is to unload the driver and
1596 	 * reload it again.  If the system has recovered some MSIX
1597 	 * vectors then it may succeed.
1598 	 */
1599 	adapter->num_msix_vectors = 0;
1600 	return err;
1601 }
1602 
1603 /**
1604  * ixgbevf_request_irq - initialize interrupts
1605  * @adapter: board private structure
1606  *
1607  * Attempts to configure interrupts using the best available
1608  * capabilities of the hardware and kernel.
1609  **/
1610 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1611 {
1612 	int err = ixgbevf_request_msix_irqs(adapter);
1613 
1614 	if (err)
1615 		hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1616 
1617 	return err;
1618 }
1619 
1620 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1621 {
1622 	int i, q_vectors;
1623 
1624 	if (!adapter->msix_entries)
1625 		return;
1626 
1627 	q_vectors = adapter->num_msix_vectors;
1628 	i = q_vectors - 1;
1629 
1630 	free_irq(adapter->msix_entries[i].vector, adapter);
1631 	i--;
1632 
1633 	for (; i >= 0; i--) {
1634 		/* free only the irqs that were actually requested */
1635 		if (!adapter->q_vector[i]->rx.ring &&
1636 		    !adapter->q_vector[i]->tx.ring)
1637 			continue;
1638 
1639 		free_irq(adapter->msix_entries[i].vector,
1640 			 adapter->q_vector[i]);
1641 	}
1642 }
1643 
1644 /**
1645  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1646  * @adapter: board private structure
1647  **/
1648 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1649 {
1650 	struct ixgbe_hw *hw = &adapter->hw;
1651 	int i;
1652 
1653 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1654 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1655 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1656 
1657 	IXGBE_WRITE_FLUSH(hw);
1658 
1659 	for (i = 0; i < adapter->num_msix_vectors; i++)
1660 		synchronize_irq(adapter->msix_entries[i].vector);
1661 }
1662 
1663 /**
1664  * ixgbevf_irq_enable - Enable default interrupt generation settings
1665  * @adapter: board private structure
1666  **/
1667 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1668 {
1669 	struct ixgbe_hw *hw = &adapter->hw;
1670 
1671 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1672 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1673 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1674 }
1675 
1676 /**
1677  * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1678  * @adapter: board private structure
1679  * @ring: structure containing ring specific data
1680  *
1681  * Configure the Tx descriptor ring after a reset.
1682  **/
1683 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1684 				      struct ixgbevf_ring *ring)
1685 {
1686 	struct ixgbe_hw *hw = &adapter->hw;
1687 	u64 tdba = ring->dma;
1688 	int wait_loop = 10;
1689 	u32 txdctl = IXGBE_TXDCTL_ENABLE;
1690 	u8 reg_idx = ring->reg_idx;
1691 
1692 	/* disable queue to avoid issues while updating state */
1693 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1694 	IXGBE_WRITE_FLUSH(hw);
1695 
1696 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1697 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1698 	IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1699 			ring->count * sizeof(union ixgbe_adv_tx_desc));
1700 
1701 	/* disable head writeback */
1702 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1703 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1704 
1705 	/* enable relaxed ordering */
1706 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1707 			(IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1708 			 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1709 
1710 	/* reset head and tail pointers */
1711 	IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1712 	IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1713 	ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1714 
1715 	/* reset ntu and ntc to place SW in sync with hardwdare */
1716 	ring->next_to_clean = 0;
1717 	ring->next_to_use = 0;
1718 
1719 	/* In order to avoid issues WTHRESH + PTHRESH should always be equal
1720 	 * to or less than the number of on chip descriptors, which is
1721 	 * currently 40.
1722 	 */
1723 	txdctl |= (8 << 16);    /* WTHRESH = 8 */
1724 
1725 	/* Setting PTHRESH to 32 both improves performance */
1726 	txdctl |= (1u << 8) |    /* HTHRESH = 1 */
1727 		   32;           /* PTHRESH = 32 */
1728 
1729 	/* reinitialize tx_buffer_info */
1730 	memset(ring->tx_buffer_info, 0,
1731 	       sizeof(struct ixgbevf_tx_buffer) * ring->count);
1732 
1733 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1734 	clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
1735 
1736 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1737 
1738 	/* poll to verify queue is enabled */
1739 	do {
1740 		usleep_range(1000, 2000);
1741 		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1742 	}  while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1743 	if (!wait_loop)
1744 		hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx);
1745 }
1746 
1747 /**
1748  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1749  * @adapter: board private structure
1750  *
1751  * Configure the Tx unit of the MAC after a reset.
1752  **/
1753 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1754 {
1755 	u32 i;
1756 
1757 	/* Setup the HW Tx Head and Tail descriptor pointers */
1758 	for (i = 0; i < adapter->num_tx_queues; i++)
1759 		ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1760 	for (i = 0; i < adapter->num_xdp_queues; i++)
1761 		ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]);
1762 }
1763 
1764 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1765 
1766 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter,
1767 				     struct ixgbevf_ring *ring, int index)
1768 {
1769 	struct ixgbe_hw *hw = &adapter->hw;
1770 	u32 srrctl;
1771 
1772 	srrctl = IXGBE_SRRCTL_DROP_EN;
1773 
1774 	srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1775 	if (ring_uses_large_buffer(ring))
1776 		srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1777 	else
1778 		srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1779 	srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1780 
1781 	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1782 }
1783 
1784 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1785 {
1786 	struct ixgbe_hw *hw = &adapter->hw;
1787 
1788 	/* PSRTYPE must be initialized in 82599 */
1789 	u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1790 		      IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1791 		      IXGBE_PSRTYPE_L2HDR;
1792 
1793 	if (adapter->num_rx_queues > 1)
1794 		psrtype |= BIT(29);
1795 
1796 	IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1797 }
1798 
1799 #define IXGBEVF_MAX_RX_DESC_POLL 10
1800 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1801 				     struct ixgbevf_ring *ring)
1802 {
1803 	struct ixgbe_hw *hw = &adapter->hw;
1804 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1805 	u32 rxdctl;
1806 	u8 reg_idx = ring->reg_idx;
1807 
1808 	if (IXGBE_REMOVED(hw->hw_addr))
1809 		return;
1810 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1811 	rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1812 
1813 	/* write value back with RXDCTL.ENABLE bit cleared */
1814 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1815 
1816 	/* the hardware may take up to 100us to really disable the Rx queue */
1817 	do {
1818 		udelay(10);
1819 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1820 	} while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1821 
1822 	if (!wait_loop)
1823 		pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1824 		       reg_idx);
1825 }
1826 
1827 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1828 					 struct ixgbevf_ring *ring)
1829 {
1830 	struct ixgbe_hw *hw = &adapter->hw;
1831 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1832 	u32 rxdctl;
1833 	u8 reg_idx = ring->reg_idx;
1834 
1835 	if (IXGBE_REMOVED(hw->hw_addr))
1836 		return;
1837 	do {
1838 		usleep_range(1000, 2000);
1839 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1840 	} while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1841 
1842 	if (!wait_loop)
1843 		pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1844 		       reg_idx);
1845 }
1846 
1847 /**
1848  * ixgbevf_init_rss_key - Initialize adapter RSS key
1849  * @adapter: device handle
1850  *
1851  * Allocates and initializes the RSS key if it is not allocated.
1852  **/
1853 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter)
1854 {
1855 	u32 *rss_key;
1856 
1857 	if (!adapter->rss_key) {
1858 		rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL);
1859 		if (unlikely(!rss_key))
1860 			return -ENOMEM;
1861 
1862 		netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE);
1863 		adapter->rss_key = rss_key;
1864 	}
1865 
1866 	return 0;
1867 }
1868 
1869 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1870 {
1871 	struct ixgbe_hw *hw = &adapter->hw;
1872 	u32 vfmrqc = 0, vfreta = 0;
1873 	u16 rss_i = adapter->num_rx_queues;
1874 	u8 i, j;
1875 
1876 	/* Fill out hash function seeds */
1877 	for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1878 		IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i));
1879 
1880 	for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1881 		if (j == rss_i)
1882 			j = 0;
1883 
1884 		adapter->rss_indir_tbl[i] = j;
1885 
1886 		vfreta |= j << (i & 0x3) * 8;
1887 		if ((i & 3) == 3) {
1888 			IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1889 			vfreta = 0;
1890 		}
1891 	}
1892 
1893 	/* Perform hash on these packet types */
1894 	vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1895 		IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1896 		IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1897 		IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1898 
1899 	vfmrqc |= IXGBE_VFMRQC_RSSEN;
1900 
1901 	IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1902 }
1903 
1904 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1905 				      struct ixgbevf_ring *ring)
1906 {
1907 	struct ixgbe_hw *hw = &adapter->hw;
1908 	union ixgbe_adv_rx_desc *rx_desc;
1909 	u64 rdba = ring->dma;
1910 	u32 rxdctl;
1911 	u8 reg_idx = ring->reg_idx;
1912 
1913 	/* disable queue to avoid issues while updating state */
1914 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1915 	ixgbevf_disable_rx_queue(adapter, ring);
1916 
1917 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1918 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1919 	IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1920 			ring->count * sizeof(union ixgbe_adv_rx_desc));
1921 
1922 #ifndef CONFIG_SPARC
1923 	/* enable relaxed ordering */
1924 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1925 			IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1926 #else
1927 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1928 			IXGBE_DCA_RXCTRL_DESC_RRO_EN |
1929 			IXGBE_DCA_RXCTRL_DATA_WRO_EN);
1930 #endif
1931 
1932 	/* reset head and tail pointers */
1933 	IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1934 	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1935 	ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1936 
1937 	/* initialize rx_buffer_info */
1938 	memset(ring->rx_buffer_info, 0,
1939 	       sizeof(struct ixgbevf_rx_buffer) * ring->count);
1940 
1941 	/* initialize Rx descriptor 0 */
1942 	rx_desc = IXGBEVF_RX_DESC(ring, 0);
1943 	rx_desc->wb.upper.length = 0;
1944 
1945 	/* reset ntu and ntc to place SW in sync with hardwdare */
1946 	ring->next_to_clean = 0;
1947 	ring->next_to_use = 0;
1948 	ring->next_to_alloc = 0;
1949 
1950 	ixgbevf_configure_srrctl(adapter, ring, reg_idx);
1951 
1952 	/* RXDCTL.RLPML does not work on 82599 */
1953 	if (adapter->hw.mac.type != ixgbe_mac_82599_vf) {
1954 		rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK |
1955 			    IXGBE_RXDCTL_RLPML_EN);
1956 
1957 #if (PAGE_SIZE < 8192)
1958 		/* Limit the maximum frame size so we don't overrun the skb */
1959 		if (ring_uses_build_skb(ring) &&
1960 		    !ring_uses_large_buffer(ring))
1961 			rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB |
1962 				  IXGBE_RXDCTL_RLPML_EN;
1963 #endif
1964 	}
1965 
1966 	rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1967 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1968 
1969 	ixgbevf_rx_desc_queue_enable(adapter, ring);
1970 	ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1971 }
1972 
1973 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter,
1974 				      struct ixgbevf_ring *rx_ring)
1975 {
1976 	struct net_device *netdev = adapter->netdev;
1977 	unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1978 
1979 	/* set build_skb and buffer size flags */
1980 	clear_ring_build_skb_enabled(rx_ring);
1981 	clear_ring_uses_large_buffer(rx_ring);
1982 
1983 	if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX)
1984 		return;
1985 
1986 	if (PAGE_SIZE < 8192)
1987 		if (max_frame > IXGBEVF_MAX_FRAME_BUILD_SKB)
1988 			set_ring_uses_large_buffer(rx_ring);
1989 
1990 	/* 82599 can't rely on RXDCTL.RLPML to restrict the size of the frame */
1991 	if (adapter->hw.mac.type == ixgbe_mac_82599_vf && !ring_uses_large_buffer(rx_ring))
1992 		return;
1993 
1994 	set_ring_build_skb_enabled(rx_ring);
1995 }
1996 
1997 /**
1998  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1999  * @adapter: board private structure
2000  *
2001  * Configure the Rx unit of the MAC after a reset.
2002  **/
2003 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
2004 {
2005 	struct ixgbe_hw *hw = &adapter->hw;
2006 	struct net_device *netdev = adapter->netdev;
2007 	int i, ret;
2008 
2009 	ixgbevf_setup_psrtype(adapter);
2010 	if (hw->mac.type >= ixgbe_mac_X550_vf)
2011 		ixgbevf_setup_vfmrqc(adapter);
2012 
2013 	spin_lock_bh(&adapter->mbx_lock);
2014 	/* notify the PF of our intent to use this size of frame */
2015 	ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
2016 	spin_unlock_bh(&adapter->mbx_lock);
2017 	if (ret)
2018 		dev_err(&adapter->pdev->dev,
2019 			"Failed to set MTU at %d\n", netdev->mtu);
2020 
2021 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
2022 	 * the Base and Length of the Rx Descriptor Ring
2023 	 */
2024 	for (i = 0; i < adapter->num_rx_queues; i++) {
2025 		struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
2026 
2027 		ixgbevf_set_rx_buffer_len(adapter, rx_ring);
2028 		ixgbevf_configure_rx_ring(adapter, rx_ring);
2029 	}
2030 }
2031 
2032 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
2033 				   __be16 proto, u16 vid)
2034 {
2035 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2036 	struct ixgbe_hw *hw = &adapter->hw;
2037 	int err;
2038 
2039 	spin_lock_bh(&adapter->mbx_lock);
2040 
2041 	/* add VID to filter table */
2042 	err = hw->mac.ops.set_vfta(hw, vid, 0, true);
2043 
2044 	spin_unlock_bh(&adapter->mbx_lock);
2045 
2046 	if (err) {
2047 		netdev_err(netdev, "VF could not set VLAN %d\n", vid);
2048 
2049 		/* translate error return types so error makes sense */
2050 		if (err == IXGBE_ERR_MBX)
2051 			return -EIO;
2052 
2053 		if (err == IXGBE_ERR_INVALID_ARGUMENT)
2054 			return -EACCES;
2055 	}
2056 
2057 	set_bit(vid, adapter->active_vlans);
2058 
2059 	return err;
2060 }
2061 
2062 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
2063 				    __be16 proto, u16 vid)
2064 {
2065 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2066 	struct ixgbe_hw *hw = &adapter->hw;
2067 	int err;
2068 
2069 	spin_lock_bh(&adapter->mbx_lock);
2070 
2071 	/* remove VID from filter table */
2072 	err = hw->mac.ops.set_vfta(hw, vid, 0, false);
2073 
2074 	spin_unlock_bh(&adapter->mbx_lock);
2075 
2076 	if (err)
2077 		netdev_err(netdev, "Could not remove VLAN %d\n", vid);
2078 
2079 	clear_bit(vid, adapter->active_vlans);
2080 
2081 	return err;
2082 }
2083 
2084 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
2085 {
2086 	u16 vid;
2087 
2088 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2089 		ixgbevf_vlan_rx_add_vid(adapter->netdev,
2090 					htons(ETH_P_8021Q), vid);
2091 }
2092 
2093 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
2094 {
2095 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2096 	struct ixgbe_hw *hw = &adapter->hw;
2097 	int count = 0;
2098 
2099 	if (!netdev_uc_empty(netdev)) {
2100 		struct netdev_hw_addr *ha;
2101 
2102 		netdev_for_each_uc_addr(ha, netdev) {
2103 			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
2104 			udelay(200);
2105 		}
2106 	} else {
2107 		/* If the list is empty then send message to PF driver to
2108 		 * clear all MAC VLANs on this VF.
2109 		 */
2110 		hw->mac.ops.set_uc_addr(hw, 0, NULL);
2111 	}
2112 
2113 	return count;
2114 }
2115 
2116 /**
2117  * ixgbevf_set_rx_mode - Multicast and unicast set
2118  * @netdev: network interface device structure
2119  *
2120  * The set_rx_method entry point is called whenever the multicast address
2121  * list, unicast address list or the network interface flags are updated.
2122  * This routine is responsible for configuring the hardware for proper
2123  * multicast mode and configuring requested unicast filters.
2124  **/
2125 static void ixgbevf_set_rx_mode(struct net_device *netdev)
2126 {
2127 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2128 	struct ixgbe_hw *hw = &adapter->hw;
2129 	unsigned int flags = netdev->flags;
2130 	int xcast_mode;
2131 
2132 	/* request the most inclusive mode we need */
2133 	if (flags & IFF_PROMISC)
2134 		xcast_mode = IXGBEVF_XCAST_MODE_PROMISC;
2135 	else if (flags & IFF_ALLMULTI)
2136 		xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI;
2137 	else if (flags & (IFF_BROADCAST | IFF_MULTICAST))
2138 		xcast_mode = IXGBEVF_XCAST_MODE_MULTI;
2139 	else
2140 		xcast_mode = IXGBEVF_XCAST_MODE_NONE;
2141 
2142 	spin_lock_bh(&adapter->mbx_lock);
2143 
2144 	hw->mac.ops.update_xcast_mode(hw, xcast_mode);
2145 
2146 	/* reprogram multicast list */
2147 	hw->mac.ops.update_mc_addr_list(hw, netdev);
2148 
2149 	ixgbevf_write_uc_addr_list(netdev);
2150 
2151 	spin_unlock_bh(&adapter->mbx_lock);
2152 }
2153 
2154 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
2155 {
2156 	int q_idx;
2157 	struct ixgbevf_q_vector *q_vector;
2158 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2159 
2160 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2161 		q_vector = adapter->q_vector[q_idx];
2162 		napi_enable(&q_vector->napi);
2163 	}
2164 }
2165 
2166 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
2167 {
2168 	int q_idx;
2169 	struct ixgbevf_q_vector *q_vector;
2170 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2171 
2172 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2173 		q_vector = adapter->q_vector[q_idx];
2174 		napi_disable(&q_vector->napi);
2175 	}
2176 }
2177 
2178 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
2179 {
2180 	struct ixgbe_hw *hw = &adapter->hw;
2181 	unsigned int def_q = 0;
2182 	unsigned int num_tcs = 0;
2183 	unsigned int num_rx_queues = adapter->num_rx_queues;
2184 	unsigned int num_tx_queues = adapter->num_tx_queues;
2185 	int err;
2186 
2187 	spin_lock_bh(&adapter->mbx_lock);
2188 
2189 	/* fetch queue configuration from the PF */
2190 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2191 
2192 	spin_unlock_bh(&adapter->mbx_lock);
2193 
2194 	if (err)
2195 		return err;
2196 
2197 	if (num_tcs > 1) {
2198 		/* we need only one Tx queue */
2199 		num_tx_queues = 1;
2200 
2201 		/* update default Tx ring register index */
2202 		adapter->tx_ring[0]->reg_idx = def_q;
2203 
2204 		/* we need as many queues as traffic classes */
2205 		num_rx_queues = num_tcs;
2206 	}
2207 
2208 	/* if we have a bad config abort request queue reset */
2209 	if ((adapter->num_rx_queues != num_rx_queues) ||
2210 	    (adapter->num_tx_queues != num_tx_queues)) {
2211 		/* force mailbox timeout to prevent further messages */
2212 		hw->mbx.timeout = 0;
2213 
2214 		/* wait for watchdog to come around and bail us out */
2215 		set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state);
2216 	}
2217 
2218 	return 0;
2219 }
2220 
2221 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
2222 {
2223 	ixgbevf_configure_dcb(adapter);
2224 
2225 	ixgbevf_set_rx_mode(adapter->netdev);
2226 
2227 	ixgbevf_restore_vlan(adapter);
2228 	ixgbevf_ipsec_restore(adapter);
2229 
2230 	ixgbevf_configure_tx(adapter);
2231 	ixgbevf_configure_rx(adapter);
2232 }
2233 
2234 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2235 {
2236 	/* Only save pre-reset stats if there are some */
2237 	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2238 		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2239 			adapter->stats.base_vfgprc;
2240 		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2241 			adapter->stats.base_vfgptc;
2242 		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2243 			adapter->stats.base_vfgorc;
2244 		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2245 			adapter->stats.base_vfgotc;
2246 		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2247 			adapter->stats.base_vfmprc;
2248 	}
2249 }
2250 
2251 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2252 {
2253 	struct ixgbe_hw *hw = &adapter->hw;
2254 
2255 	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2256 	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2257 	adapter->stats.last_vfgorc |=
2258 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2259 	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2260 	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2261 	adapter->stats.last_vfgotc |=
2262 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2263 	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2264 
2265 	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2266 	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2267 	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2268 	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2269 	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2270 }
2271 
2272 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2273 {
2274 	struct ixgbe_hw *hw = &adapter->hw;
2275 	static const int api[] = {
2276 		ixgbe_mbox_api_15,
2277 		ixgbe_mbox_api_14,
2278 		ixgbe_mbox_api_13,
2279 		ixgbe_mbox_api_12,
2280 		ixgbe_mbox_api_11,
2281 		ixgbe_mbox_api_10,
2282 		ixgbe_mbox_api_unknown
2283 	};
2284 	int err, idx = 0;
2285 
2286 	spin_lock_bh(&adapter->mbx_lock);
2287 
2288 	while (api[idx] != ixgbe_mbox_api_unknown) {
2289 		err = hw->mac.ops.negotiate_api_version(hw, api[idx]);
2290 		if (!err)
2291 			break;
2292 		idx++;
2293 	}
2294 
2295 	if (hw->api_version >= ixgbe_mbox_api_15) {
2296 		hw->mbx.ops.init_params(hw);
2297 		memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
2298 		       sizeof(struct ixgbe_mbx_operations));
2299 	}
2300 
2301 	spin_unlock_bh(&adapter->mbx_lock);
2302 }
2303 
2304 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2305 {
2306 	struct net_device *netdev = adapter->netdev;
2307 	struct pci_dev *pdev = adapter->pdev;
2308 	struct ixgbe_hw *hw = &adapter->hw;
2309 	bool state;
2310 
2311 	ixgbevf_configure_msix(adapter);
2312 
2313 	spin_lock_bh(&adapter->mbx_lock);
2314 
2315 	if (is_valid_ether_addr(hw->mac.addr))
2316 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2317 	else
2318 		hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2319 
2320 	spin_unlock_bh(&adapter->mbx_lock);
2321 
2322 	state = adapter->link_state;
2323 	hw->mac.ops.get_link_state(hw, &adapter->link_state);
2324 	if (state && state != adapter->link_state)
2325 		dev_info(&pdev->dev, "VF is administratively disabled\n");
2326 
2327 	smp_mb__before_atomic();
2328 	clear_bit(__IXGBEVF_DOWN, &adapter->state);
2329 	ixgbevf_napi_enable_all(adapter);
2330 
2331 	/* clear any pending interrupts, may auto mask */
2332 	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2333 	ixgbevf_irq_enable(adapter);
2334 
2335 	/* enable transmits */
2336 	netif_tx_start_all_queues(netdev);
2337 
2338 	ixgbevf_save_reset_stats(adapter);
2339 	ixgbevf_init_last_counter_stats(adapter);
2340 
2341 	hw->mac.get_link_status = 1;
2342 	mod_timer(&adapter->service_timer, jiffies);
2343 }
2344 
2345 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2346 {
2347 	ixgbevf_configure(adapter);
2348 
2349 	ixgbevf_up_complete(adapter);
2350 }
2351 
2352 /**
2353  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2354  * @rx_ring: ring to free buffers from
2355  **/
2356 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2357 {
2358 	u16 i = rx_ring->next_to_clean;
2359 
2360 	/* Free Rx ring sk_buff */
2361 	if (rx_ring->skb) {
2362 		dev_kfree_skb(rx_ring->skb);
2363 		rx_ring->skb = NULL;
2364 	}
2365 
2366 	/* Free all the Rx ring pages */
2367 	while (i != rx_ring->next_to_alloc) {
2368 		struct ixgbevf_rx_buffer *rx_buffer;
2369 
2370 		rx_buffer = &rx_ring->rx_buffer_info[i];
2371 
2372 		/* Invalidate cache lines that may have been written to by
2373 		 * device so that we avoid corrupting memory.
2374 		 */
2375 		dma_sync_single_range_for_cpu(rx_ring->dev,
2376 					      rx_buffer->dma,
2377 					      rx_buffer->page_offset,
2378 					      ixgbevf_rx_bufsz(rx_ring),
2379 					      DMA_FROM_DEVICE);
2380 
2381 		/* free resources associated with mapping */
2382 		dma_unmap_page_attrs(rx_ring->dev,
2383 				     rx_buffer->dma,
2384 				     ixgbevf_rx_pg_size(rx_ring),
2385 				     DMA_FROM_DEVICE,
2386 				     IXGBEVF_RX_DMA_ATTR);
2387 
2388 		__page_frag_cache_drain(rx_buffer->page,
2389 					rx_buffer->pagecnt_bias);
2390 
2391 		i++;
2392 		if (i == rx_ring->count)
2393 			i = 0;
2394 	}
2395 
2396 	rx_ring->next_to_alloc = 0;
2397 	rx_ring->next_to_clean = 0;
2398 	rx_ring->next_to_use = 0;
2399 }
2400 
2401 /**
2402  * ixgbevf_clean_tx_ring - Free Tx Buffers
2403  * @tx_ring: ring to be cleaned
2404  **/
2405 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2406 {
2407 	u16 i = tx_ring->next_to_clean;
2408 	struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
2409 
2410 	while (i != tx_ring->next_to_use) {
2411 		union ixgbe_adv_tx_desc *eop_desc, *tx_desc;
2412 
2413 		/* Free all the Tx ring sk_buffs */
2414 		if (ring_is_xdp(tx_ring))
2415 			page_frag_free(tx_buffer->data);
2416 		else
2417 			dev_kfree_skb_any(tx_buffer->skb);
2418 
2419 		/* unmap skb header data */
2420 		dma_unmap_single(tx_ring->dev,
2421 				 dma_unmap_addr(tx_buffer, dma),
2422 				 dma_unmap_len(tx_buffer, len),
2423 				 DMA_TO_DEVICE);
2424 
2425 		/* check for eop_desc to determine the end of the packet */
2426 		eop_desc = tx_buffer->next_to_watch;
2427 		tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
2428 
2429 		/* unmap remaining buffers */
2430 		while (tx_desc != eop_desc) {
2431 			tx_buffer++;
2432 			tx_desc++;
2433 			i++;
2434 			if (unlikely(i == tx_ring->count)) {
2435 				i = 0;
2436 				tx_buffer = tx_ring->tx_buffer_info;
2437 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
2438 			}
2439 
2440 			/* unmap any remaining paged data */
2441 			if (dma_unmap_len(tx_buffer, len))
2442 				dma_unmap_page(tx_ring->dev,
2443 					       dma_unmap_addr(tx_buffer, dma),
2444 					       dma_unmap_len(tx_buffer, len),
2445 					       DMA_TO_DEVICE);
2446 		}
2447 
2448 		/* move us one more past the eop_desc for start of next pkt */
2449 		tx_buffer++;
2450 		i++;
2451 		if (unlikely(i == tx_ring->count)) {
2452 			i = 0;
2453 			tx_buffer = tx_ring->tx_buffer_info;
2454 		}
2455 	}
2456 
2457 	/* reset next_to_use and next_to_clean */
2458 	tx_ring->next_to_use = 0;
2459 	tx_ring->next_to_clean = 0;
2460 
2461 }
2462 
2463 /**
2464  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2465  * @adapter: board private structure
2466  **/
2467 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2468 {
2469 	int i;
2470 
2471 	for (i = 0; i < adapter->num_rx_queues; i++)
2472 		ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2473 }
2474 
2475 /**
2476  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2477  * @adapter: board private structure
2478  **/
2479 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2480 {
2481 	int i;
2482 
2483 	for (i = 0; i < adapter->num_tx_queues; i++)
2484 		ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2485 	for (i = 0; i < adapter->num_xdp_queues; i++)
2486 		ixgbevf_clean_tx_ring(adapter->xdp_ring[i]);
2487 }
2488 
2489 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2490 {
2491 	struct net_device *netdev = adapter->netdev;
2492 	struct ixgbe_hw *hw = &adapter->hw;
2493 	int i;
2494 
2495 	/* signal that we are down to the interrupt handler */
2496 	if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2497 		return; /* do nothing if already down */
2498 
2499 	/* disable all enabled Rx queues */
2500 	for (i = 0; i < adapter->num_rx_queues; i++)
2501 		ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2502 
2503 	usleep_range(10000, 20000);
2504 
2505 	netif_tx_stop_all_queues(netdev);
2506 
2507 	/* call carrier off first to avoid false dev_watchdog timeouts */
2508 	netif_carrier_off(netdev);
2509 	netif_tx_disable(netdev);
2510 
2511 	ixgbevf_irq_disable(adapter);
2512 
2513 	ixgbevf_napi_disable_all(adapter);
2514 
2515 	del_timer_sync(&adapter->service_timer);
2516 
2517 	/* disable transmits in the hardware now that interrupts are off */
2518 	for (i = 0; i < adapter->num_tx_queues; i++) {
2519 		u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2520 
2521 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2522 				IXGBE_TXDCTL_SWFLSH);
2523 	}
2524 
2525 	for (i = 0; i < adapter->num_xdp_queues; i++) {
2526 		u8 reg_idx = adapter->xdp_ring[i]->reg_idx;
2527 
2528 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2529 				IXGBE_TXDCTL_SWFLSH);
2530 	}
2531 
2532 	if (!pci_channel_offline(adapter->pdev))
2533 		ixgbevf_reset(adapter);
2534 
2535 	ixgbevf_clean_all_tx_rings(adapter);
2536 	ixgbevf_clean_all_rx_rings(adapter);
2537 }
2538 
2539 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2540 {
2541 	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2542 		msleep(1);
2543 
2544 	ixgbevf_down(adapter);
2545 	pci_set_master(adapter->pdev);
2546 	ixgbevf_up(adapter);
2547 
2548 	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2549 }
2550 
2551 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2552 {
2553 	struct ixgbe_hw *hw = &adapter->hw;
2554 	struct net_device *netdev = adapter->netdev;
2555 
2556 	if (hw->mac.ops.reset_hw(hw)) {
2557 		hw_dbg(hw, "PF still resetting\n");
2558 	} else {
2559 		hw->mac.ops.init_hw(hw);
2560 		ixgbevf_negotiate_api(adapter);
2561 	}
2562 
2563 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2564 		eth_hw_addr_set(netdev, adapter->hw.mac.addr);
2565 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2566 	}
2567 
2568 	adapter->last_reset = jiffies;
2569 }
2570 
2571 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2572 					int vectors)
2573 {
2574 	int vector_threshold;
2575 
2576 	/* We'll want at least 2 (vector_threshold):
2577 	 * 1) TxQ[0] + RxQ[0] handler
2578 	 * 2) Other (Link Status Change, etc.)
2579 	 */
2580 	vector_threshold = MIN_MSIX_COUNT;
2581 
2582 	/* The more we get, the more we will assign to Tx/Rx Cleanup
2583 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2584 	 * Right now, we simply care about how many we'll get; we'll
2585 	 * set them up later while requesting irq's.
2586 	 */
2587 	vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2588 					vector_threshold, vectors);
2589 
2590 	if (vectors < 0) {
2591 		dev_err(&adapter->pdev->dev,
2592 			"Unable to allocate MSI-X interrupts\n");
2593 		kfree(adapter->msix_entries);
2594 		adapter->msix_entries = NULL;
2595 		return vectors;
2596 	}
2597 
2598 	/* Adjust for only the vectors we'll use, which is minimum
2599 	 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2600 	 * vectors we were allocated.
2601 	 */
2602 	adapter->num_msix_vectors = vectors;
2603 
2604 	return 0;
2605 }
2606 
2607 /**
2608  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2609  * @adapter: board private structure to initialize
2610  *
2611  * This is the top level queue allocation routine.  The order here is very
2612  * important, starting with the "most" number of features turned on at once,
2613  * and ending with the smallest set of features.  This way large combinations
2614  * can be allocated if they're turned on, and smaller combinations are the
2615  * fall through conditions.
2616  *
2617  **/
2618 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2619 {
2620 	struct ixgbe_hw *hw = &adapter->hw;
2621 	unsigned int def_q = 0;
2622 	unsigned int num_tcs = 0;
2623 	int err;
2624 
2625 	/* Start with base case */
2626 	adapter->num_rx_queues = 1;
2627 	adapter->num_tx_queues = 1;
2628 	adapter->num_xdp_queues = 0;
2629 
2630 	spin_lock_bh(&adapter->mbx_lock);
2631 
2632 	/* fetch queue configuration from the PF */
2633 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2634 
2635 	spin_unlock_bh(&adapter->mbx_lock);
2636 
2637 	if (err)
2638 		return;
2639 
2640 	/* we need as many queues as traffic classes */
2641 	if (num_tcs > 1) {
2642 		adapter->num_rx_queues = num_tcs;
2643 	} else {
2644 		u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2645 
2646 		switch (hw->api_version) {
2647 		case ixgbe_mbox_api_11:
2648 		case ixgbe_mbox_api_12:
2649 		case ixgbe_mbox_api_13:
2650 		case ixgbe_mbox_api_14:
2651 		case ixgbe_mbox_api_15:
2652 			if (adapter->xdp_prog &&
2653 			    hw->mac.max_tx_queues == rss)
2654 				rss = rss > 3 ? 2 : 1;
2655 
2656 			adapter->num_rx_queues = rss;
2657 			adapter->num_tx_queues = rss;
2658 			adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0;
2659 			break;
2660 		default:
2661 			break;
2662 		}
2663 	}
2664 }
2665 
2666 /**
2667  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2668  * @adapter: board private structure to initialize
2669  *
2670  * Attempt to configure the interrupts using the best available
2671  * capabilities of the hardware and the kernel.
2672  **/
2673 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2674 {
2675 	int vector, v_budget;
2676 
2677 	/* It's easy to be greedy for MSI-X vectors, but it really
2678 	 * doesn't do us much good if we have a lot more vectors
2679 	 * than CPU's.  So let's be conservative and only ask for
2680 	 * (roughly) the same number of vectors as there are CPU's.
2681 	 * The default is to use pairs of vectors.
2682 	 */
2683 	v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2684 	v_budget = min_t(int, v_budget, num_online_cpus());
2685 	v_budget += NON_Q_VECTORS;
2686 
2687 	adapter->msix_entries = kcalloc(v_budget,
2688 					sizeof(struct msix_entry), GFP_KERNEL);
2689 	if (!adapter->msix_entries)
2690 		return -ENOMEM;
2691 
2692 	for (vector = 0; vector < v_budget; vector++)
2693 		adapter->msix_entries[vector].entry = vector;
2694 
2695 	/* A failure in MSI-X entry allocation isn't fatal, but the VF driver
2696 	 * does not support any other modes, so we will simply fail here. Note
2697 	 * that we clean up the msix_entries pointer else-where.
2698 	 */
2699 	return ixgbevf_acquire_msix_vectors(adapter, v_budget);
2700 }
2701 
2702 static void ixgbevf_add_ring(struct ixgbevf_ring *ring,
2703 			     struct ixgbevf_ring_container *head)
2704 {
2705 	ring->next = head->ring;
2706 	head->ring = ring;
2707 	head->count++;
2708 }
2709 
2710 /**
2711  * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector
2712  * @adapter: board private structure to initialize
2713  * @v_idx: index of vector in adapter struct
2714  * @txr_count: number of Tx rings for q vector
2715  * @txr_idx: index of first Tx ring to assign
2716  * @xdp_count: total number of XDP rings to allocate
2717  * @xdp_idx: index of first XDP ring to allocate
2718  * @rxr_count: number of Rx rings for q vector
2719  * @rxr_idx: index of first Rx ring to assign
2720  *
2721  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
2722  **/
2723 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx,
2724 				  int txr_count, int txr_idx,
2725 				  int xdp_count, int xdp_idx,
2726 				  int rxr_count, int rxr_idx)
2727 {
2728 	struct ixgbevf_q_vector *q_vector;
2729 	int reg_idx = txr_idx + xdp_idx;
2730 	struct ixgbevf_ring *ring;
2731 	int ring_count, size;
2732 
2733 	ring_count = txr_count + xdp_count + rxr_count;
2734 	size = sizeof(*q_vector) + (sizeof(*ring) * ring_count);
2735 
2736 	/* allocate q_vector and rings */
2737 	q_vector = kzalloc(size, GFP_KERNEL);
2738 	if (!q_vector)
2739 		return -ENOMEM;
2740 
2741 	/* initialize NAPI */
2742 	netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll);
2743 
2744 	/* tie q_vector and adapter together */
2745 	adapter->q_vector[v_idx] = q_vector;
2746 	q_vector->adapter = adapter;
2747 	q_vector->v_idx = v_idx;
2748 
2749 	/* initialize pointer to rings */
2750 	ring = q_vector->ring;
2751 
2752 	while (txr_count) {
2753 		/* assign generic ring traits */
2754 		ring->dev = &adapter->pdev->dev;
2755 		ring->netdev = adapter->netdev;
2756 
2757 		/* configure backlink on ring */
2758 		ring->q_vector = q_vector;
2759 
2760 		/* update q_vector Tx values */
2761 		ixgbevf_add_ring(ring, &q_vector->tx);
2762 
2763 		/* apply Tx specific ring traits */
2764 		ring->count = adapter->tx_ring_count;
2765 		ring->queue_index = txr_idx;
2766 		ring->reg_idx = reg_idx;
2767 
2768 		/* assign ring to adapter */
2769 		adapter->tx_ring[txr_idx] = ring;
2770 
2771 		/* update count and index */
2772 		txr_count--;
2773 		txr_idx++;
2774 		reg_idx++;
2775 
2776 		/* push pointer to next ring */
2777 		ring++;
2778 	}
2779 
2780 	while (xdp_count) {
2781 		/* assign generic ring traits */
2782 		ring->dev = &adapter->pdev->dev;
2783 		ring->netdev = adapter->netdev;
2784 
2785 		/* configure backlink on ring */
2786 		ring->q_vector = q_vector;
2787 
2788 		/* update q_vector Tx values */
2789 		ixgbevf_add_ring(ring, &q_vector->tx);
2790 
2791 		/* apply Tx specific ring traits */
2792 		ring->count = adapter->tx_ring_count;
2793 		ring->queue_index = xdp_idx;
2794 		ring->reg_idx = reg_idx;
2795 		set_ring_xdp(ring);
2796 
2797 		/* assign ring to adapter */
2798 		adapter->xdp_ring[xdp_idx] = ring;
2799 
2800 		/* update count and index */
2801 		xdp_count--;
2802 		xdp_idx++;
2803 		reg_idx++;
2804 
2805 		/* push pointer to next ring */
2806 		ring++;
2807 	}
2808 
2809 	while (rxr_count) {
2810 		/* assign generic ring traits */
2811 		ring->dev = &adapter->pdev->dev;
2812 		ring->netdev = adapter->netdev;
2813 
2814 		/* configure backlink on ring */
2815 		ring->q_vector = q_vector;
2816 
2817 		/* update q_vector Rx values */
2818 		ixgbevf_add_ring(ring, &q_vector->rx);
2819 
2820 		/* apply Rx specific ring traits */
2821 		ring->count = adapter->rx_ring_count;
2822 		ring->queue_index = rxr_idx;
2823 		ring->reg_idx = rxr_idx;
2824 
2825 		/* assign ring to adapter */
2826 		adapter->rx_ring[rxr_idx] = ring;
2827 
2828 		/* update count and index */
2829 		rxr_count--;
2830 		rxr_idx++;
2831 
2832 		/* push pointer to next ring */
2833 		ring++;
2834 	}
2835 
2836 	return 0;
2837 }
2838 
2839 /**
2840  * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector
2841  * @adapter: board private structure to initialize
2842  * @v_idx: index of vector in adapter struct
2843  *
2844  * This function frees the memory allocated to the q_vector.  In addition if
2845  * NAPI is enabled it will delete any references to the NAPI struct prior
2846  * to freeing the q_vector.
2847  **/
2848 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx)
2849 {
2850 	struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx];
2851 	struct ixgbevf_ring *ring;
2852 
2853 	ixgbevf_for_each_ring(ring, q_vector->tx) {
2854 		if (ring_is_xdp(ring))
2855 			adapter->xdp_ring[ring->queue_index] = NULL;
2856 		else
2857 			adapter->tx_ring[ring->queue_index] = NULL;
2858 	}
2859 
2860 	ixgbevf_for_each_ring(ring, q_vector->rx)
2861 		adapter->rx_ring[ring->queue_index] = NULL;
2862 
2863 	adapter->q_vector[v_idx] = NULL;
2864 	netif_napi_del(&q_vector->napi);
2865 
2866 	/* ixgbevf_get_stats() might access the rings on this vector,
2867 	 * we must wait a grace period before freeing it.
2868 	 */
2869 	kfree_rcu(q_vector, rcu);
2870 }
2871 
2872 /**
2873  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2874  * @adapter: board private structure to initialize
2875  *
2876  * We allocate one q_vector per queue interrupt.  If allocation fails we
2877  * return -ENOMEM.
2878  **/
2879 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2880 {
2881 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2882 	int rxr_remaining = adapter->num_rx_queues;
2883 	int txr_remaining = adapter->num_tx_queues;
2884 	int xdp_remaining = adapter->num_xdp_queues;
2885 	int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0;
2886 	int err;
2887 
2888 	if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) {
2889 		for (; rxr_remaining; v_idx++, q_vectors--) {
2890 			int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2891 
2892 			err = ixgbevf_alloc_q_vector(adapter, v_idx,
2893 						     0, 0, 0, 0, rqpv, rxr_idx);
2894 			if (err)
2895 				goto err_out;
2896 
2897 			/* update counts and index */
2898 			rxr_remaining -= rqpv;
2899 			rxr_idx += rqpv;
2900 		}
2901 	}
2902 
2903 	for (; q_vectors; v_idx++, q_vectors--) {
2904 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2905 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors);
2906 		int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors);
2907 
2908 		err = ixgbevf_alloc_q_vector(adapter, v_idx,
2909 					     tqpv, txr_idx,
2910 					     xqpv, xdp_idx,
2911 					     rqpv, rxr_idx);
2912 
2913 		if (err)
2914 			goto err_out;
2915 
2916 		/* update counts and index */
2917 		rxr_remaining -= rqpv;
2918 		rxr_idx += rqpv;
2919 		txr_remaining -= tqpv;
2920 		txr_idx += tqpv;
2921 		xdp_remaining -= xqpv;
2922 		xdp_idx += xqpv;
2923 	}
2924 
2925 	return 0;
2926 
2927 err_out:
2928 	while (v_idx) {
2929 		v_idx--;
2930 		ixgbevf_free_q_vector(adapter, v_idx);
2931 	}
2932 
2933 	return -ENOMEM;
2934 }
2935 
2936 /**
2937  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2938  * @adapter: board private structure to initialize
2939  *
2940  * This function frees the memory allocated to the q_vectors.  In addition if
2941  * NAPI is enabled it will delete any references to the NAPI struct prior
2942  * to freeing the q_vector.
2943  **/
2944 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2945 {
2946 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2947 
2948 	while (q_vectors) {
2949 		q_vectors--;
2950 		ixgbevf_free_q_vector(adapter, q_vectors);
2951 	}
2952 }
2953 
2954 /**
2955  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2956  * @adapter: board private structure
2957  *
2958  **/
2959 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2960 {
2961 	if (!adapter->msix_entries)
2962 		return;
2963 
2964 	pci_disable_msix(adapter->pdev);
2965 	kfree(adapter->msix_entries);
2966 	adapter->msix_entries = NULL;
2967 }
2968 
2969 /**
2970  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2971  * @adapter: board private structure to initialize
2972  *
2973  **/
2974 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2975 {
2976 	int err;
2977 
2978 	/* Number of supported queues */
2979 	ixgbevf_set_num_queues(adapter);
2980 
2981 	err = ixgbevf_set_interrupt_capability(adapter);
2982 	if (err) {
2983 		hw_dbg(&adapter->hw,
2984 		       "Unable to setup interrupt capabilities\n");
2985 		goto err_set_interrupt;
2986 	}
2987 
2988 	err = ixgbevf_alloc_q_vectors(adapter);
2989 	if (err) {
2990 		hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2991 		goto err_alloc_q_vectors;
2992 	}
2993 
2994 	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n",
2995 	       (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled",
2996 	       adapter->num_rx_queues, adapter->num_tx_queues,
2997 	       adapter->num_xdp_queues);
2998 
2999 	set_bit(__IXGBEVF_DOWN, &adapter->state);
3000 
3001 	return 0;
3002 err_alloc_q_vectors:
3003 	ixgbevf_reset_interrupt_capability(adapter);
3004 err_set_interrupt:
3005 	return err;
3006 }
3007 
3008 /**
3009  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
3010  * @adapter: board private structure to clear interrupt scheme on
3011  *
3012  * We go through and clear interrupt specific resources and reset the structure
3013  * to pre-load conditions
3014  **/
3015 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
3016 {
3017 	adapter->num_tx_queues = 0;
3018 	adapter->num_xdp_queues = 0;
3019 	adapter->num_rx_queues = 0;
3020 
3021 	ixgbevf_free_q_vectors(adapter);
3022 	ixgbevf_reset_interrupt_capability(adapter);
3023 }
3024 
3025 /**
3026  * ixgbevf_sw_init - Initialize general software structures
3027  * @adapter: board private structure to initialize
3028  *
3029  * ixgbevf_sw_init initializes the Adapter private data structure.
3030  * Fields are initialized based on PCI device information and
3031  * OS network device settings (MTU size).
3032  **/
3033 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
3034 {
3035 	struct ixgbe_hw *hw = &adapter->hw;
3036 	struct pci_dev *pdev = adapter->pdev;
3037 	struct net_device *netdev = adapter->netdev;
3038 	int err;
3039 
3040 	/* PCI config space info */
3041 	hw->vendor_id = pdev->vendor;
3042 	hw->device_id = pdev->device;
3043 	hw->revision_id = pdev->revision;
3044 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3045 	hw->subsystem_device_id = pdev->subsystem_device;
3046 
3047 	hw->mbx.ops.init_params(hw);
3048 
3049 	if (hw->mac.type >= ixgbe_mac_X550_vf) {
3050 		err = ixgbevf_init_rss_key(adapter);
3051 		if (err)
3052 			goto out;
3053 	}
3054 
3055 	/* assume legacy case in which PF would only give VF 2 queues */
3056 	hw->mac.max_tx_queues = 2;
3057 	hw->mac.max_rx_queues = 2;
3058 
3059 	/* lock to protect mailbox accesses */
3060 	spin_lock_init(&adapter->mbx_lock);
3061 
3062 	err = hw->mac.ops.reset_hw(hw);
3063 	if (err) {
3064 		dev_info(&pdev->dev,
3065 			 "PF still in reset state.  Is the PF interface up?\n");
3066 	} else {
3067 		err = hw->mac.ops.init_hw(hw);
3068 		if (err) {
3069 			pr_err("init_shared_code failed: %d\n", err);
3070 			goto out;
3071 		}
3072 		ixgbevf_negotiate_api(adapter);
3073 		err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
3074 		if (err)
3075 			dev_info(&pdev->dev, "Error reading MAC address\n");
3076 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
3077 			dev_info(&pdev->dev,
3078 				 "MAC address not assigned by administrator.\n");
3079 		eth_hw_addr_set(netdev, hw->mac.addr);
3080 	}
3081 
3082 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3083 		dev_info(&pdev->dev, "Assigning random MAC address\n");
3084 		eth_hw_addr_random(netdev);
3085 		ether_addr_copy(hw->mac.addr, netdev->dev_addr);
3086 		ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
3087 	}
3088 
3089 	/* Enable dynamic interrupt throttling rates */
3090 	adapter->rx_itr_setting = 1;
3091 	adapter->tx_itr_setting = 1;
3092 
3093 	/* set default ring sizes */
3094 	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
3095 	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
3096 
3097 	adapter->link_state = true;
3098 
3099 	set_bit(__IXGBEVF_DOWN, &adapter->state);
3100 	return 0;
3101 
3102 out:
3103 	return err;
3104 }
3105 
3106 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
3107 	{							\
3108 		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
3109 		if (current_counter < last_counter)		\
3110 			counter += 0x100000000LL;		\
3111 		last_counter = current_counter;			\
3112 		counter &= 0xFFFFFFFF00000000LL;		\
3113 		counter |= current_counter;			\
3114 	}
3115 
3116 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
3117 	{								 \
3118 		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
3119 		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
3120 		u64 current_counter = (current_counter_msb << 32) |	 \
3121 			current_counter_lsb;				 \
3122 		if (current_counter < last_counter)			 \
3123 			counter += 0x1000000000LL;			 \
3124 		last_counter = current_counter;				 \
3125 		counter &= 0xFFFFFFF000000000LL;			 \
3126 		counter |= current_counter;				 \
3127 	}
3128 /**
3129  * ixgbevf_update_stats - Update the board statistics counters.
3130  * @adapter: board private structure
3131  **/
3132 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
3133 {
3134 	struct ixgbe_hw *hw = &adapter->hw;
3135 	u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0;
3136 	u64 alloc_rx_page = 0, hw_csum_rx_error = 0;
3137 	int i;
3138 
3139 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3140 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3141 		return;
3142 
3143 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
3144 				adapter->stats.vfgprc);
3145 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
3146 				adapter->stats.vfgptc);
3147 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
3148 				adapter->stats.last_vfgorc,
3149 				adapter->stats.vfgorc);
3150 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
3151 				adapter->stats.last_vfgotc,
3152 				adapter->stats.vfgotc);
3153 	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
3154 				adapter->stats.vfmprc);
3155 
3156 	for (i = 0;  i  < adapter->num_rx_queues;  i++) {
3157 		struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
3158 
3159 		hw_csum_rx_error += rx_ring->rx_stats.csum_err;
3160 		alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed;
3161 		alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
3162 		alloc_rx_page += rx_ring->rx_stats.alloc_rx_page;
3163 	}
3164 
3165 	adapter->hw_csum_rx_error = hw_csum_rx_error;
3166 	adapter->alloc_rx_page_failed = alloc_rx_page_failed;
3167 	adapter->alloc_rx_buff_failed = alloc_rx_buff_failed;
3168 	adapter->alloc_rx_page = alloc_rx_page;
3169 }
3170 
3171 /**
3172  * ixgbevf_service_timer - Timer Call-back
3173  * @t: pointer to timer_list struct
3174  **/
3175 static void ixgbevf_service_timer(struct timer_list *t)
3176 {
3177 	struct ixgbevf_adapter *adapter = from_timer(adapter, t,
3178 						     service_timer);
3179 
3180 	/* Reset the timer */
3181 	mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
3182 
3183 	ixgbevf_service_event_schedule(adapter);
3184 }
3185 
3186 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
3187 {
3188 	if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state))
3189 		return;
3190 
3191 	rtnl_lock();
3192 	/* If we're already down or resetting, just bail */
3193 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3194 	    test_bit(__IXGBEVF_REMOVING, &adapter->state) ||
3195 	    test_bit(__IXGBEVF_RESETTING, &adapter->state)) {
3196 		rtnl_unlock();
3197 		return;
3198 	}
3199 
3200 	adapter->tx_timeout_count++;
3201 
3202 	ixgbevf_reinit_locked(adapter);
3203 	rtnl_unlock();
3204 }
3205 
3206 /**
3207  * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
3208  * @adapter: pointer to the device adapter structure
3209  *
3210  * This function serves two purposes.  First it strobes the interrupt lines
3211  * in order to make certain interrupts are occurring.  Secondly it sets the
3212  * bits needed to check for TX hangs.  As a result we should immediately
3213  * determine if a hang has occurred.
3214  **/
3215 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
3216 {
3217 	struct ixgbe_hw *hw = &adapter->hw;
3218 	u32 eics = 0;
3219 	int i;
3220 
3221 	/* If we're down or resetting, just bail */
3222 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3223 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3224 		return;
3225 
3226 	/* Force detection of hung controller */
3227 	if (netif_carrier_ok(adapter->netdev)) {
3228 		for (i = 0; i < adapter->num_tx_queues; i++)
3229 			set_check_for_tx_hang(adapter->tx_ring[i]);
3230 		for (i = 0; i < adapter->num_xdp_queues; i++)
3231 			set_check_for_tx_hang(adapter->xdp_ring[i]);
3232 	}
3233 
3234 	/* get one bit for every active Tx/Rx interrupt vector */
3235 	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
3236 		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
3237 
3238 		if (qv->rx.ring || qv->tx.ring)
3239 			eics |= BIT(i);
3240 	}
3241 
3242 	/* Cause software interrupt to ensure rings are cleaned */
3243 	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
3244 }
3245 
3246 /**
3247  * ixgbevf_watchdog_update_link - update the link status
3248  * @adapter: pointer to the device adapter structure
3249  **/
3250 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
3251 {
3252 	struct ixgbe_hw *hw = &adapter->hw;
3253 	u32 link_speed = adapter->link_speed;
3254 	bool link_up = adapter->link_up;
3255 	s32 err;
3256 
3257 	spin_lock_bh(&adapter->mbx_lock);
3258 
3259 	err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
3260 
3261 	spin_unlock_bh(&adapter->mbx_lock);
3262 
3263 	/* if check for link returns error we will need to reset */
3264 	if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
3265 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
3266 		link_up = false;
3267 	}
3268 
3269 	adapter->link_up = link_up;
3270 	adapter->link_speed = link_speed;
3271 }
3272 
3273 /**
3274  * ixgbevf_watchdog_link_is_up - update netif_carrier status and
3275  *				 print link up message
3276  * @adapter: pointer to the device adapter structure
3277  **/
3278 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
3279 {
3280 	struct net_device *netdev = adapter->netdev;
3281 
3282 	/* only continue if link was previously down */
3283 	if (netif_carrier_ok(netdev))
3284 		return;
3285 
3286 	dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
3287 		 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
3288 		 "10 Gbps" :
3289 		 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
3290 		 "1 Gbps" :
3291 		 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
3292 		 "100 Mbps" :
3293 		 "unknown speed");
3294 
3295 	netif_carrier_on(netdev);
3296 }
3297 
3298 /**
3299  * ixgbevf_watchdog_link_is_down - update netif_carrier status and
3300  *				   print link down message
3301  * @adapter: pointer to the adapter structure
3302  **/
3303 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
3304 {
3305 	struct net_device *netdev = adapter->netdev;
3306 
3307 	adapter->link_speed = 0;
3308 
3309 	/* only continue if link was up previously */
3310 	if (!netif_carrier_ok(netdev))
3311 		return;
3312 
3313 	dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
3314 
3315 	netif_carrier_off(netdev);
3316 }
3317 
3318 /**
3319  * ixgbevf_watchdog_subtask - worker thread to bring link up
3320  * @adapter: board private structure
3321  **/
3322 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
3323 {
3324 	/* if interface is down do nothing */
3325 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3326 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3327 		return;
3328 
3329 	ixgbevf_watchdog_update_link(adapter);
3330 
3331 	if (adapter->link_up && adapter->link_state)
3332 		ixgbevf_watchdog_link_is_up(adapter);
3333 	else
3334 		ixgbevf_watchdog_link_is_down(adapter);
3335 
3336 	ixgbevf_update_stats(adapter);
3337 }
3338 
3339 /**
3340  * ixgbevf_service_task - manages and runs subtasks
3341  * @work: pointer to work_struct containing our data
3342  **/
3343 static void ixgbevf_service_task(struct work_struct *work)
3344 {
3345 	struct ixgbevf_adapter *adapter = container_of(work,
3346 						       struct ixgbevf_adapter,
3347 						       service_task);
3348 	struct ixgbe_hw *hw = &adapter->hw;
3349 
3350 	if (IXGBE_REMOVED(hw->hw_addr)) {
3351 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
3352 			rtnl_lock();
3353 			ixgbevf_down(adapter);
3354 			rtnl_unlock();
3355 		}
3356 		return;
3357 	}
3358 
3359 	ixgbevf_queue_reset_subtask(adapter);
3360 	ixgbevf_reset_subtask(adapter);
3361 	ixgbevf_watchdog_subtask(adapter);
3362 	ixgbevf_check_hang_subtask(adapter);
3363 
3364 	ixgbevf_service_event_complete(adapter);
3365 }
3366 
3367 /**
3368  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
3369  * @tx_ring: Tx descriptor ring for a specific queue
3370  *
3371  * Free all transmit software resources
3372  **/
3373 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
3374 {
3375 	ixgbevf_clean_tx_ring(tx_ring);
3376 
3377 	vfree(tx_ring->tx_buffer_info);
3378 	tx_ring->tx_buffer_info = NULL;
3379 
3380 	/* if not set, then don't free */
3381 	if (!tx_ring->desc)
3382 		return;
3383 
3384 	dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
3385 			  tx_ring->dma);
3386 
3387 	tx_ring->desc = NULL;
3388 }
3389 
3390 /**
3391  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
3392  * @adapter: board private structure
3393  *
3394  * Free all transmit software resources
3395  **/
3396 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
3397 {
3398 	int i;
3399 
3400 	for (i = 0; i < adapter->num_tx_queues; i++)
3401 		if (adapter->tx_ring[i]->desc)
3402 			ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3403 	for (i = 0; i < adapter->num_xdp_queues; i++)
3404 		if (adapter->xdp_ring[i]->desc)
3405 			ixgbevf_free_tx_resources(adapter->xdp_ring[i]);
3406 }
3407 
3408 /**
3409  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
3410  * @tx_ring: Tx descriptor ring (for a specific queue) to setup
3411  *
3412  * Return 0 on success, negative on failure
3413  **/
3414 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
3415 {
3416 	struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
3417 	int size;
3418 
3419 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
3420 	tx_ring->tx_buffer_info = vmalloc(size);
3421 	if (!tx_ring->tx_buffer_info)
3422 		goto err;
3423 
3424 	u64_stats_init(&tx_ring->syncp);
3425 
3426 	/* round up to nearest 4K */
3427 	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
3428 	tx_ring->size = ALIGN(tx_ring->size, 4096);
3429 
3430 	tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
3431 					   &tx_ring->dma, GFP_KERNEL);
3432 	if (!tx_ring->desc)
3433 		goto err;
3434 
3435 	return 0;
3436 
3437 err:
3438 	vfree(tx_ring->tx_buffer_info);
3439 	tx_ring->tx_buffer_info = NULL;
3440 	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3441 	return -ENOMEM;
3442 }
3443 
3444 /**
3445  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3446  * @adapter: board private structure
3447  *
3448  * If this function returns with an error, then it's possible one or
3449  * more of the rings is populated (while the rest are not).  It is the
3450  * callers duty to clean those orphaned rings.
3451  *
3452  * Return 0 on success, negative on failure
3453  **/
3454 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3455 {
3456 	int i, j = 0, err = 0;
3457 
3458 	for (i = 0; i < adapter->num_tx_queues; i++) {
3459 		err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3460 		if (!err)
3461 			continue;
3462 		hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3463 		goto err_setup_tx;
3464 	}
3465 
3466 	for (j = 0; j < adapter->num_xdp_queues; j++) {
3467 		err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]);
3468 		if (!err)
3469 			continue;
3470 		hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j);
3471 		goto err_setup_tx;
3472 	}
3473 
3474 	return 0;
3475 err_setup_tx:
3476 	/* rewind the index freeing the rings as we go */
3477 	while (j--)
3478 		ixgbevf_free_tx_resources(adapter->xdp_ring[j]);
3479 	while (i--)
3480 		ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3481 
3482 	return err;
3483 }
3484 
3485 /**
3486  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3487  * @adapter: board private structure
3488  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3489  *
3490  * Returns 0 on success, negative on failure
3491  **/
3492 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
3493 			       struct ixgbevf_ring *rx_ring)
3494 {
3495 	int size;
3496 
3497 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3498 	rx_ring->rx_buffer_info = vmalloc(size);
3499 	if (!rx_ring->rx_buffer_info)
3500 		goto err;
3501 
3502 	u64_stats_init(&rx_ring->syncp);
3503 
3504 	/* Round up to nearest 4K */
3505 	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3506 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3507 
3508 	rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3509 					   &rx_ring->dma, GFP_KERNEL);
3510 
3511 	if (!rx_ring->desc)
3512 		goto err;
3513 
3514 	/* XDP RX-queue info */
3515 	if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev,
3516 			     rx_ring->queue_index, 0) < 0)
3517 		goto err;
3518 
3519 	rx_ring->xdp_prog = adapter->xdp_prog;
3520 
3521 	return 0;
3522 err:
3523 	vfree(rx_ring->rx_buffer_info);
3524 	rx_ring->rx_buffer_info = NULL;
3525 	dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3526 	return -ENOMEM;
3527 }
3528 
3529 /**
3530  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3531  * @adapter: board private structure
3532  *
3533  * If this function returns with an error, then it's possible one or
3534  * more of the rings is populated (while the rest are not).  It is the
3535  * callers duty to clean those orphaned rings.
3536  *
3537  * Return 0 on success, negative on failure
3538  **/
3539 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3540 {
3541 	int i, err = 0;
3542 
3543 	for (i = 0; i < adapter->num_rx_queues; i++) {
3544 		err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]);
3545 		if (!err)
3546 			continue;
3547 		hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3548 		goto err_setup_rx;
3549 	}
3550 
3551 	return 0;
3552 err_setup_rx:
3553 	/* rewind the index freeing the rings as we go */
3554 	while (i--)
3555 		ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3556 	return err;
3557 }
3558 
3559 /**
3560  * ixgbevf_free_rx_resources - Free Rx Resources
3561  * @rx_ring: ring to clean the resources from
3562  *
3563  * Free all receive software resources
3564  **/
3565 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3566 {
3567 	ixgbevf_clean_rx_ring(rx_ring);
3568 
3569 	rx_ring->xdp_prog = NULL;
3570 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
3571 	vfree(rx_ring->rx_buffer_info);
3572 	rx_ring->rx_buffer_info = NULL;
3573 
3574 	dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3575 			  rx_ring->dma);
3576 
3577 	rx_ring->desc = NULL;
3578 }
3579 
3580 /**
3581  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3582  * @adapter: board private structure
3583  *
3584  * Free all receive software resources
3585  **/
3586 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3587 {
3588 	int i;
3589 
3590 	for (i = 0; i < adapter->num_rx_queues; i++)
3591 		if (adapter->rx_ring[i]->desc)
3592 			ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3593 }
3594 
3595 /**
3596  * ixgbevf_open - Called when a network interface is made active
3597  * @netdev: network interface device structure
3598  *
3599  * Returns 0 on success, negative value on failure
3600  *
3601  * The open entry point is called when a network interface is made
3602  * active by the system (IFF_UP).  At this point all resources needed
3603  * for transmit and receive operations are allocated, the interrupt
3604  * handler is registered with the OS, the watchdog timer is started,
3605  * and the stack is notified that the interface is ready.
3606  **/
3607 int ixgbevf_open(struct net_device *netdev)
3608 {
3609 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3610 	struct ixgbe_hw *hw = &adapter->hw;
3611 	int err;
3612 
3613 	/* A previous failure to open the device because of a lack of
3614 	 * available MSIX vector resources may have reset the number
3615 	 * of msix vectors variable to zero.  The only way to recover
3616 	 * is to unload/reload the driver and hope that the system has
3617 	 * been able to recover some MSIX vector resources.
3618 	 */
3619 	if (!adapter->num_msix_vectors)
3620 		return -ENOMEM;
3621 
3622 	if (hw->adapter_stopped) {
3623 		ixgbevf_reset(adapter);
3624 		/* if adapter is still stopped then PF isn't up and
3625 		 * the VF can't start.
3626 		 */
3627 		if (hw->adapter_stopped) {
3628 			err = IXGBE_ERR_MBX;
3629 			pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3630 			goto err_setup_reset;
3631 		}
3632 	}
3633 
3634 	/* disallow open during test */
3635 	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3636 		return -EBUSY;
3637 
3638 	netif_carrier_off(netdev);
3639 
3640 	/* allocate transmit descriptors */
3641 	err = ixgbevf_setup_all_tx_resources(adapter);
3642 	if (err)
3643 		goto err_setup_tx;
3644 
3645 	/* allocate receive descriptors */
3646 	err = ixgbevf_setup_all_rx_resources(adapter);
3647 	if (err)
3648 		goto err_setup_rx;
3649 
3650 	ixgbevf_configure(adapter);
3651 
3652 	err = ixgbevf_request_irq(adapter);
3653 	if (err)
3654 		goto err_req_irq;
3655 
3656 	/* Notify the stack of the actual queue counts. */
3657 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3658 	if (err)
3659 		goto err_set_queues;
3660 
3661 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3662 	if (err)
3663 		goto err_set_queues;
3664 
3665 	ixgbevf_up_complete(adapter);
3666 
3667 	return 0;
3668 
3669 err_set_queues:
3670 	ixgbevf_free_irq(adapter);
3671 err_req_irq:
3672 	ixgbevf_free_all_rx_resources(adapter);
3673 err_setup_rx:
3674 	ixgbevf_free_all_tx_resources(adapter);
3675 err_setup_tx:
3676 	ixgbevf_reset(adapter);
3677 err_setup_reset:
3678 
3679 	return err;
3680 }
3681 
3682 /**
3683  * ixgbevf_close_suspend - actions necessary to both suspend and close flows
3684  * @adapter: the private adapter struct
3685  *
3686  * This function should contain the necessary work common to both suspending
3687  * and closing of the device.
3688  */
3689 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter)
3690 {
3691 	ixgbevf_down(adapter);
3692 	ixgbevf_free_irq(adapter);
3693 	ixgbevf_free_all_tx_resources(adapter);
3694 	ixgbevf_free_all_rx_resources(adapter);
3695 }
3696 
3697 /**
3698  * ixgbevf_close - Disables a network interface
3699  * @netdev: network interface device structure
3700  *
3701  * Returns 0, this is not allowed to fail
3702  *
3703  * The close entry point is called when an interface is de-activated
3704  * by the OS.  The hardware is still under the drivers control, but
3705  * needs to be disabled.  A global MAC reset is issued to stop the
3706  * hardware, and all transmit and receive resources are freed.
3707  **/
3708 int ixgbevf_close(struct net_device *netdev)
3709 {
3710 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3711 
3712 	if (netif_device_present(netdev))
3713 		ixgbevf_close_suspend(adapter);
3714 
3715 	return 0;
3716 }
3717 
3718 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3719 {
3720 	struct net_device *dev = adapter->netdev;
3721 
3722 	if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED,
3723 				&adapter->state))
3724 		return;
3725 
3726 	/* if interface is down do nothing */
3727 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3728 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3729 		return;
3730 
3731 	/* Hardware has to reinitialize queues and interrupts to
3732 	 * match packet buffer alignment. Unfortunately, the
3733 	 * hardware is not flexible enough to do this dynamically.
3734 	 */
3735 	rtnl_lock();
3736 
3737 	if (netif_running(dev))
3738 		ixgbevf_close(dev);
3739 
3740 	ixgbevf_clear_interrupt_scheme(adapter);
3741 	ixgbevf_init_interrupt_scheme(adapter);
3742 
3743 	if (netif_running(dev))
3744 		ixgbevf_open(dev);
3745 
3746 	rtnl_unlock();
3747 }
3748 
3749 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3750 				u32 vlan_macip_lens, u32 fceof_saidx,
3751 				u32 type_tucmd, u32 mss_l4len_idx)
3752 {
3753 	struct ixgbe_adv_tx_context_desc *context_desc;
3754 	u16 i = tx_ring->next_to_use;
3755 
3756 	context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3757 
3758 	i++;
3759 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3760 
3761 	/* set bits to identify this as an advanced context descriptor */
3762 	type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3763 
3764 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
3765 	context_desc->fceof_saidx	= cpu_to_le32(fceof_saidx);
3766 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
3767 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
3768 }
3769 
3770 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3771 		       struct ixgbevf_tx_buffer *first,
3772 		       u8 *hdr_len,
3773 		       struct ixgbevf_ipsec_tx_data *itd)
3774 {
3775 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
3776 	struct sk_buff *skb = first->skb;
3777 	union {
3778 		struct iphdr *v4;
3779 		struct ipv6hdr *v6;
3780 		unsigned char *hdr;
3781 	} ip;
3782 	union {
3783 		struct tcphdr *tcp;
3784 		unsigned char *hdr;
3785 	} l4;
3786 	u32 paylen, l4_offset;
3787 	u32 fceof_saidx = 0;
3788 	int err;
3789 
3790 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3791 		return 0;
3792 
3793 	if (!skb_is_gso(skb))
3794 		return 0;
3795 
3796 	err = skb_cow_head(skb, 0);
3797 	if (err < 0)
3798 		return err;
3799 
3800 	if (eth_p_mpls(first->protocol))
3801 		ip.hdr = skb_inner_network_header(skb);
3802 	else
3803 		ip.hdr = skb_network_header(skb);
3804 	l4.hdr = skb_checksum_start(skb);
3805 
3806 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3807 	type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3808 
3809 	/* initialize outer IP header fields */
3810 	if (ip.v4->version == 4) {
3811 		unsigned char *csum_start = skb_checksum_start(skb);
3812 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
3813 		int len = csum_start - trans_start;
3814 
3815 		/* IP header will have to cancel out any data that
3816 		 * is not a part of the outer IP header, so set to
3817 		 * a reverse csum if needed, else init check to 0.
3818 		 */
3819 		ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ?
3820 					   csum_fold(csum_partial(trans_start,
3821 								  len, 0)) : 0;
3822 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3823 
3824 		ip.v4->tot_len = 0;
3825 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3826 				   IXGBE_TX_FLAGS_CSUM |
3827 				   IXGBE_TX_FLAGS_IPV4;
3828 	} else {
3829 		ip.v6->payload_len = 0;
3830 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3831 				   IXGBE_TX_FLAGS_CSUM;
3832 	}
3833 
3834 	/* determine offset of inner transport header */
3835 	l4_offset = l4.hdr - skb->data;
3836 
3837 	/* compute length of segmentation header */
3838 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3839 
3840 	/* remove payload length from inner checksum */
3841 	paylen = skb->len - l4_offset;
3842 	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3843 
3844 	/* update gso size and bytecount with header size */
3845 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3846 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3847 
3848 	/* mss_l4len_id: use 1 as index for TSO */
3849 	mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT;
3850 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3851 	mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT);
3852 
3853 	fceof_saidx |= itd->pfsa;
3854 	type_tucmd |= itd->flags | itd->trailer_len;
3855 
3856 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3857 	vlan_macip_lens = l4.hdr - ip.hdr;
3858 	vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT;
3859 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3860 
3861 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd,
3862 			    mss_l4len_idx);
3863 
3864 	return 1;
3865 }
3866 
3867 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3868 			    struct ixgbevf_tx_buffer *first,
3869 			    struct ixgbevf_ipsec_tx_data *itd)
3870 {
3871 	struct sk_buff *skb = first->skb;
3872 	u32 vlan_macip_lens = 0;
3873 	u32 fceof_saidx = 0;
3874 	u32 type_tucmd = 0;
3875 
3876 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3877 		goto no_csum;
3878 
3879 	switch (skb->csum_offset) {
3880 	case offsetof(struct tcphdr, check):
3881 		type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3882 		fallthrough;
3883 	case offsetof(struct udphdr, check):
3884 		break;
3885 	case offsetof(struct sctphdr, checksum):
3886 		/* validate that this is actually an SCTP request */
3887 		if (skb_csum_is_sctp(skb)) {
3888 			type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3889 			break;
3890 		}
3891 		fallthrough;
3892 	default:
3893 		skb_checksum_help(skb);
3894 		goto no_csum;
3895 	}
3896 
3897 	if (first->protocol == htons(ETH_P_IP))
3898 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3899 
3900 	/* update TX checksum flag */
3901 	first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3902 	vlan_macip_lens = skb_checksum_start_offset(skb) -
3903 			  skb_network_offset(skb);
3904 no_csum:
3905 	/* vlan_macip_lens: MACLEN, VLAN tag */
3906 	vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3907 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3908 
3909 	fceof_saidx |= itd->pfsa;
3910 	type_tucmd |= itd->flags | itd->trailer_len;
3911 
3912 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3913 			    fceof_saidx, type_tucmd, 0);
3914 }
3915 
3916 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3917 {
3918 	/* set type for advanced descriptor with frame checksum insertion */
3919 	__le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3920 				      IXGBE_ADVTXD_DCMD_IFCS |
3921 				      IXGBE_ADVTXD_DCMD_DEXT);
3922 
3923 	/* set HW VLAN bit if VLAN is present */
3924 	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3925 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3926 
3927 	/* set segmentation enable bits for TSO/FSO */
3928 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3929 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3930 
3931 	return cmd_type;
3932 }
3933 
3934 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3935 				     u32 tx_flags, unsigned int paylen)
3936 {
3937 	__le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3938 
3939 	/* enable L4 checksum for TSO and TX checksum offload */
3940 	if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3941 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3942 
3943 	/* enble IPv4 checksum for TSO */
3944 	if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3945 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3946 
3947 	/* enable IPsec */
3948 	if (tx_flags & IXGBE_TX_FLAGS_IPSEC)
3949 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC);
3950 
3951 	/* use index 1 context for TSO/FSO/FCOE/IPSEC */
3952 	if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC))
3953 		olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT);
3954 
3955 	/* Check Context must be set if Tx switch is enabled, which it
3956 	 * always is for case where virtual functions are running
3957 	 */
3958 	olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3959 
3960 	tx_desc->read.olinfo_status = olinfo_status;
3961 }
3962 
3963 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3964 			   struct ixgbevf_tx_buffer *first,
3965 			   const u8 hdr_len)
3966 {
3967 	struct sk_buff *skb = first->skb;
3968 	struct ixgbevf_tx_buffer *tx_buffer;
3969 	union ixgbe_adv_tx_desc *tx_desc;
3970 	skb_frag_t *frag;
3971 	dma_addr_t dma;
3972 	unsigned int data_len, size;
3973 	u32 tx_flags = first->tx_flags;
3974 	__le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3975 	u16 i = tx_ring->next_to_use;
3976 
3977 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3978 
3979 	ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
3980 
3981 	size = skb_headlen(skb);
3982 	data_len = skb->data_len;
3983 
3984 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3985 
3986 	tx_buffer = first;
3987 
3988 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3989 		if (dma_mapping_error(tx_ring->dev, dma))
3990 			goto dma_error;
3991 
3992 		/* record length, and DMA address */
3993 		dma_unmap_len_set(tx_buffer, len, size);
3994 		dma_unmap_addr_set(tx_buffer, dma, dma);
3995 
3996 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3997 
3998 		while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3999 			tx_desc->read.cmd_type_len =
4000 				cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
4001 
4002 			i++;
4003 			tx_desc++;
4004 			if (i == tx_ring->count) {
4005 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
4006 				i = 0;
4007 			}
4008 			tx_desc->read.olinfo_status = 0;
4009 
4010 			dma += IXGBE_MAX_DATA_PER_TXD;
4011 			size -= IXGBE_MAX_DATA_PER_TXD;
4012 
4013 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4014 		}
4015 
4016 		if (likely(!data_len))
4017 			break;
4018 
4019 		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4020 
4021 		i++;
4022 		tx_desc++;
4023 		if (i == tx_ring->count) {
4024 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
4025 			i = 0;
4026 		}
4027 		tx_desc->read.olinfo_status = 0;
4028 
4029 		size = skb_frag_size(frag);
4030 		data_len -= size;
4031 
4032 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
4033 				       DMA_TO_DEVICE);
4034 
4035 		tx_buffer = &tx_ring->tx_buffer_info[i];
4036 	}
4037 
4038 	/* write last descriptor with RS and EOP bits */
4039 	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
4040 	tx_desc->read.cmd_type_len = cmd_type;
4041 
4042 	/* set the timestamp */
4043 	first->time_stamp = jiffies;
4044 
4045 	skb_tx_timestamp(skb);
4046 
4047 	/* Force memory writes to complete before letting h/w know there
4048 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4049 	 * memory model archs, such as IA-64).
4050 	 *
4051 	 * We also need this memory barrier (wmb) to make certain all of the
4052 	 * status bits have been updated before next_to_watch is written.
4053 	 */
4054 	wmb();
4055 
4056 	/* set next_to_watch value indicating a packet is present */
4057 	first->next_to_watch = tx_desc;
4058 
4059 	i++;
4060 	if (i == tx_ring->count)
4061 		i = 0;
4062 
4063 	tx_ring->next_to_use = i;
4064 
4065 	/* notify HW of packet */
4066 	ixgbevf_write_tail(tx_ring, i);
4067 
4068 	return;
4069 dma_error:
4070 	dev_err(tx_ring->dev, "TX DMA map failed\n");
4071 	tx_buffer = &tx_ring->tx_buffer_info[i];
4072 
4073 	/* clear dma mappings for failed tx_buffer_info map */
4074 	while (tx_buffer != first) {
4075 		if (dma_unmap_len(tx_buffer, len))
4076 			dma_unmap_page(tx_ring->dev,
4077 				       dma_unmap_addr(tx_buffer, dma),
4078 				       dma_unmap_len(tx_buffer, len),
4079 				       DMA_TO_DEVICE);
4080 		dma_unmap_len_set(tx_buffer, len, 0);
4081 
4082 		if (i-- == 0)
4083 			i += tx_ring->count;
4084 		tx_buffer = &tx_ring->tx_buffer_info[i];
4085 	}
4086 
4087 	if (dma_unmap_len(tx_buffer, len))
4088 		dma_unmap_single(tx_ring->dev,
4089 				 dma_unmap_addr(tx_buffer, dma),
4090 				 dma_unmap_len(tx_buffer, len),
4091 				 DMA_TO_DEVICE);
4092 	dma_unmap_len_set(tx_buffer, len, 0);
4093 
4094 	dev_kfree_skb_any(tx_buffer->skb);
4095 	tx_buffer->skb = NULL;
4096 
4097 	tx_ring->next_to_use = i;
4098 }
4099 
4100 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4101 {
4102 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
4103 	/* Herbert's original patch had:
4104 	 *  smp_mb__after_netif_stop_queue();
4105 	 * but since that doesn't exist yet, just open code it.
4106 	 */
4107 	smp_mb();
4108 
4109 	/* We need to check again in a case another CPU has just
4110 	 * made room available.
4111 	 */
4112 	if (likely(ixgbevf_desc_unused(tx_ring) < size))
4113 		return -EBUSY;
4114 
4115 	/* A reprieve! - use start_queue because it doesn't call schedule */
4116 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
4117 	++tx_ring->tx_stats.restart_queue;
4118 
4119 	return 0;
4120 }
4121 
4122 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4123 {
4124 	if (likely(ixgbevf_desc_unused(tx_ring) >= size))
4125 		return 0;
4126 	return __ixgbevf_maybe_stop_tx(tx_ring, size);
4127 }
4128 
4129 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb,
4130 				   struct ixgbevf_ring *tx_ring)
4131 {
4132 	struct ixgbevf_tx_buffer *first;
4133 	int tso;
4134 	u32 tx_flags = 0;
4135 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4136 	struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 };
4137 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4138 	unsigned short f;
4139 #endif
4140 	u8 hdr_len = 0;
4141 	u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
4142 
4143 	if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
4144 		dev_kfree_skb_any(skb);
4145 		return NETDEV_TX_OK;
4146 	}
4147 
4148 	/* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
4149 	 *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
4150 	 *       + 2 desc gap to keep tail from touching head,
4151 	 *       + 1 desc for context descriptor,
4152 	 * otherwise try next time
4153 	 */
4154 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4155 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
4156 		skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
4157 
4158 		count += TXD_USE_COUNT(skb_frag_size(frag));
4159 	}
4160 #else
4161 	count += skb_shinfo(skb)->nr_frags;
4162 #endif
4163 	if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
4164 		tx_ring->tx_stats.tx_busy++;
4165 		return NETDEV_TX_BUSY;
4166 	}
4167 
4168 	/* record the location of the first descriptor for this packet */
4169 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4170 	first->skb = skb;
4171 	first->bytecount = skb->len;
4172 	first->gso_segs = 1;
4173 
4174 	if (skb_vlan_tag_present(skb)) {
4175 		tx_flags |= skb_vlan_tag_get(skb);
4176 		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
4177 		tx_flags |= IXGBE_TX_FLAGS_VLAN;
4178 	}
4179 
4180 	/* record initial flags and protocol */
4181 	first->tx_flags = tx_flags;
4182 	first->protocol = vlan_get_protocol(skb);
4183 
4184 #ifdef CONFIG_IXGBEVF_IPSEC
4185 	if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx))
4186 		goto out_drop;
4187 #endif
4188 	tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx);
4189 	if (tso < 0)
4190 		goto out_drop;
4191 	else if (!tso)
4192 		ixgbevf_tx_csum(tx_ring, first, &ipsec_tx);
4193 
4194 	ixgbevf_tx_map(tx_ring, first, hdr_len);
4195 
4196 	ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
4197 
4198 	return NETDEV_TX_OK;
4199 
4200 out_drop:
4201 	dev_kfree_skb_any(first->skb);
4202 	first->skb = NULL;
4203 
4204 	return NETDEV_TX_OK;
4205 }
4206 
4207 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4208 {
4209 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4210 	struct ixgbevf_ring *tx_ring;
4211 
4212 	if (skb->len <= 0) {
4213 		dev_kfree_skb_any(skb);
4214 		return NETDEV_TX_OK;
4215 	}
4216 
4217 	/* The minimum packet size for olinfo paylen is 17 so pad the skb
4218 	 * in order to meet this minimum size requirement.
4219 	 */
4220 	if (skb->len < 17) {
4221 		if (skb_padto(skb, 17))
4222 			return NETDEV_TX_OK;
4223 		skb->len = 17;
4224 	}
4225 
4226 	tx_ring = adapter->tx_ring[skb->queue_mapping];
4227 	return ixgbevf_xmit_frame_ring(skb, tx_ring);
4228 }
4229 
4230 /**
4231  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
4232  * @netdev: network interface device structure
4233  * @p: pointer to an address structure
4234  *
4235  * Returns 0 on success, negative on failure
4236  **/
4237 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
4238 {
4239 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4240 	struct ixgbe_hw *hw = &adapter->hw;
4241 	struct sockaddr *addr = p;
4242 	int err;
4243 
4244 	if (!is_valid_ether_addr(addr->sa_data))
4245 		return -EADDRNOTAVAIL;
4246 
4247 	spin_lock_bh(&adapter->mbx_lock);
4248 
4249 	err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0);
4250 
4251 	spin_unlock_bh(&adapter->mbx_lock);
4252 
4253 	if (err)
4254 		return -EPERM;
4255 
4256 	ether_addr_copy(hw->mac.addr, addr->sa_data);
4257 	ether_addr_copy(hw->mac.perm_addr, addr->sa_data);
4258 	eth_hw_addr_set(netdev, addr->sa_data);
4259 
4260 	return 0;
4261 }
4262 
4263 /**
4264  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
4265  * @netdev: network interface device structure
4266  * @new_mtu: new value for maximum frame size
4267  *
4268  * Returns 0 on success, negative on failure
4269  **/
4270 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
4271 {
4272 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4273 	struct ixgbe_hw *hw = &adapter->hw;
4274 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4275 	int ret;
4276 
4277 	/* prevent MTU being changed to a size unsupported by XDP */
4278 	if (adapter->xdp_prog) {
4279 		dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n");
4280 		return -EPERM;
4281 	}
4282 
4283 	spin_lock_bh(&adapter->mbx_lock);
4284 	/* notify the PF of our intent to use this size of frame */
4285 	ret = hw->mac.ops.set_rlpml(hw, max_frame);
4286 	spin_unlock_bh(&adapter->mbx_lock);
4287 	if (ret)
4288 		return -EINVAL;
4289 
4290 	hw_dbg(hw, "changing MTU from %d to %d\n",
4291 	       netdev->mtu, new_mtu);
4292 
4293 	/* must set new MTU before calling down or up */
4294 	WRITE_ONCE(netdev->mtu, new_mtu);
4295 
4296 	if (netif_running(netdev))
4297 		ixgbevf_reinit_locked(adapter);
4298 
4299 	return 0;
4300 }
4301 
4302 static int ixgbevf_suspend(struct device *dev_d)
4303 {
4304 	struct net_device *netdev = dev_get_drvdata(dev_d);
4305 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4306 
4307 	rtnl_lock();
4308 	netif_device_detach(netdev);
4309 
4310 	if (netif_running(netdev))
4311 		ixgbevf_close_suspend(adapter);
4312 
4313 	ixgbevf_clear_interrupt_scheme(adapter);
4314 	rtnl_unlock();
4315 
4316 	return 0;
4317 }
4318 
4319 static int ixgbevf_resume(struct device *dev_d)
4320 {
4321 	struct pci_dev *pdev = to_pci_dev(dev_d);
4322 	struct net_device *netdev = pci_get_drvdata(pdev);
4323 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4324 	u32 err;
4325 
4326 	adapter->hw.hw_addr = adapter->io_addr;
4327 	smp_mb__before_atomic();
4328 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4329 	pci_set_master(pdev);
4330 
4331 	ixgbevf_reset(adapter);
4332 
4333 	rtnl_lock();
4334 	err = ixgbevf_init_interrupt_scheme(adapter);
4335 	if (!err && netif_running(netdev))
4336 		err = ixgbevf_open(netdev);
4337 	rtnl_unlock();
4338 	if (err)
4339 		return err;
4340 
4341 	netif_device_attach(netdev);
4342 
4343 	return err;
4344 }
4345 
4346 static void ixgbevf_shutdown(struct pci_dev *pdev)
4347 {
4348 	ixgbevf_suspend(&pdev->dev);
4349 }
4350 
4351 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats,
4352 				      const struct ixgbevf_ring *ring)
4353 {
4354 	u64 bytes, packets;
4355 	unsigned int start;
4356 
4357 	if (ring) {
4358 		do {
4359 			start = u64_stats_fetch_begin(&ring->syncp);
4360 			bytes = ring->stats.bytes;
4361 			packets = ring->stats.packets;
4362 		} while (u64_stats_fetch_retry(&ring->syncp, start));
4363 		stats->tx_bytes += bytes;
4364 		stats->tx_packets += packets;
4365 	}
4366 }
4367 
4368 static void ixgbevf_get_stats(struct net_device *netdev,
4369 			      struct rtnl_link_stats64 *stats)
4370 {
4371 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4372 	unsigned int start;
4373 	u64 bytes, packets;
4374 	const struct ixgbevf_ring *ring;
4375 	int i;
4376 
4377 	ixgbevf_update_stats(adapter);
4378 
4379 	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
4380 
4381 	rcu_read_lock();
4382 	for (i = 0; i < adapter->num_rx_queues; i++) {
4383 		ring = adapter->rx_ring[i];
4384 		do {
4385 			start = u64_stats_fetch_begin(&ring->syncp);
4386 			bytes = ring->stats.bytes;
4387 			packets = ring->stats.packets;
4388 		} while (u64_stats_fetch_retry(&ring->syncp, start));
4389 		stats->rx_bytes += bytes;
4390 		stats->rx_packets += packets;
4391 	}
4392 
4393 	for (i = 0; i < adapter->num_tx_queues; i++) {
4394 		ring = adapter->tx_ring[i];
4395 		ixgbevf_get_tx_ring_stats(stats, ring);
4396 	}
4397 
4398 	for (i = 0; i < adapter->num_xdp_queues; i++) {
4399 		ring = adapter->xdp_ring[i];
4400 		ixgbevf_get_tx_ring_stats(stats, ring);
4401 	}
4402 	rcu_read_unlock();
4403 }
4404 
4405 #define IXGBEVF_MAX_MAC_HDR_LEN		127
4406 #define IXGBEVF_MAX_NETWORK_HDR_LEN	511
4407 
4408 static netdev_features_t
4409 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev,
4410 		       netdev_features_t features)
4411 {
4412 	unsigned int network_hdr_len, mac_hdr_len;
4413 
4414 	/* Make certain the headers can be described by a context descriptor */
4415 	mac_hdr_len = skb_network_offset(skb);
4416 	if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN))
4417 		return features & ~(NETIF_F_HW_CSUM |
4418 				    NETIF_F_SCTP_CRC |
4419 				    NETIF_F_HW_VLAN_CTAG_TX |
4420 				    NETIF_F_TSO |
4421 				    NETIF_F_TSO6);
4422 
4423 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4424 	if (unlikely(network_hdr_len >  IXGBEVF_MAX_NETWORK_HDR_LEN))
4425 		return features & ~(NETIF_F_HW_CSUM |
4426 				    NETIF_F_SCTP_CRC |
4427 				    NETIF_F_TSO |
4428 				    NETIF_F_TSO6);
4429 
4430 	/* We can only support IPV4 TSO in tunnels if we can mangle the
4431 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4432 	 */
4433 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4434 		features &= ~NETIF_F_TSO;
4435 
4436 	return features;
4437 }
4438 
4439 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog)
4440 {
4441 	int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4442 	struct ixgbevf_adapter *adapter = netdev_priv(dev);
4443 	struct bpf_prog *old_prog;
4444 
4445 	/* verify ixgbevf ring attributes are sufficient for XDP */
4446 	for (i = 0; i < adapter->num_rx_queues; i++) {
4447 		struct ixgbevf_ring *ring = adapter->rx_ring[i];
4448 
4449 		if (frame_size > ixgbevf_rx_bufsz(ring))
4450 			return -EINVAL;
4451 	}
4452 
4453 	old_prog = xchg(&adapter->xdp_prog, prog);
4454 
4455 	/* If transitioning XDP modes reconfigure rings */
4456 	if (!!prog != !!old_prog) {
4457 		/* Hardware has to reinitialize queues and interrupts to
4458 		 * match packet buffer alignment. Unfortunately, the
4459 		 * hardware is not flexible enough to do this dynamically.
4460 		 */
4461 		if (netif_running(dev))
4462 			ixgbevf_close(dev);
4463 
4464 		ixgbevf_clear_interrupt_scheme(adapter);
4465 		ixgbevf_init_interrupt_scheme(adapter);
4466 
4467 		if (netif_running(dev))
4468 			ixgbevf_open(dev);
4469 	} else {
4470 		for (i = 0; i < adapter->num_rx_queues; i++)
4471 			xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog);
4472 	}
4473 
4474 	if (old_prog)
4475 		bpf_prog_put(old_prog);
4476 
4477 	return 0;
4478 }
4479 
4480 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4481 {
4482 	switch (xdp->command) {
4483 	case XDP_SETUP_PROG:
4484 		return ixgbevf_xdp_setup(dev, xdp->prog);
4485 	default:
4486 		return -EINVAL;
4487 	}
4488 }
4489 
4490 static const struct net_device_ops ixgbevf_netdev_ops = {
4491 	.ndo_open		= ixgbevf_open,
4492 	.ndo_stop		= ixgbevf_close,
4493 	.ndo_start_xmit		= ixgbevf_xmit_frame,
4494 	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
4495 	.ndo_get_stats64	= ixgbevf_get_stats,
4496 	.ndo_validate_addr	= eth_validate_addr,
4497 	.ndo_set_mac_address	= ixgbevf_set_mac,
4498 	.ndo_change_mtu		= ixgbevf_change_mtu,
4499 	.ndo_tx_timeout		= ixgbevf_tx_timeout,
4500 	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
4501 	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
4502 	.ndo_features_check	= ixgbevf_features_check,
4503 	.ndo_bpf		= ixgbevf_xdp,
4504 };
4505 
4506 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
4507 {
4508 	dev->netdev_ops = &ixgbevf_netdev_ops;
4509 	ixgbevf_set_ethtool_ops(dev);
4510 	dev->watchdog_timeo = 5 * HZ;
4511 }
4512 
4513 /**
4514  * ixgbevf_probe - Device Initialization Routine
4515  * @pdev: PCI device information struct
4516  * @ent: entry in ixgbevf_pci_tbl
4517  *
4518  * Returns 0 on success, negative on failure
4519  *
4520  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
4521  * The OS initialization, configuring of the adapter private structure,
4522  * and a hardware reset occur.
4523  **/
4524 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4525 {
4526 	struct net_device *netdev;
4527 	struct ixgbevf_adapter *adapter = NULL;
4528 	struct ixgbe_hw *hw = NULL;
4529 	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
4530 	bool disable_dev = false;
4531 	int err;
4532 
4533 	err = pci_enable_device(pdev);
4534 	if (err)
4535 		return err;
4536 
4537 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4538 	if (err) {
4539 		dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4540 		goto err_dma;
4541 	}
4542 
4543 	err = pci_request_regions(pdev, ixgbevf_driver_name);
4544 	if (err) {
4545 		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
4546 		goto err_pci_reg;
4547 	}
4548 
4549 	pci_set_master(pdev);
4550 
4551 	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
4552 				   MAX_TX_QUEUES);
4553 	if (!netdev) {
4554 		err = -ENOMEM;
4555 		goto err_alloc_etherdev;
4556 	}
4557 
4558 	SET_NETDEV_DEV(netdev, &pdev->dev);
4559 
4560 	adapter = netdev_priv(netdev);
4561 
4562 	adapter->netdev = netdev;
4563 	adapter->pdev = pdev;
4564 	hw = &adapter->hw;
4565 	hw->back = adapter;
4566 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4567 
4568 	/* call save state here in standalone driver because it relies on
4569 	 * adapter struct to exist, and needs to call netdev_priv
4570 	 */
4571 	pci_save_state(pdev);
4572 
4573 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4574 			      pci_resource_len(pdev, 0));
4575 	adapter->io_addr = hw->hw_addr;
4576 	if (!hw->hw_addr) {
4577 		err = -EIO;
4578 		goto err_ioremap;
4579 	}
4580 
4581 	ixgbevf_assign_netdev_ops(netdev);
4582 
4583 	/* Setup HW API */
4584 	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
4585 	hw->mac.type  = ii->mac;
4586 
4587 	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops_legacy,
4588 	       sizeof(struct ixgbe_mbx_operations));
4589 
4590 	/* setup the private structure */
4591 	err = ixgbevf_sw_init(adapter);
4592 	if (err)
4593 		goto err_sw_init;
4594 
4595 	/* The HW MAC address was set and/or determined in sw_init */
4596 	if (!is_valid_ether_addr(netdev->dev_addr)) {
4597 		pr_err("invalid MAC address\n");
4598 		err = -EIO;
4599 		goto err_sw_init;
4600 	}
4601 
4602 	netdev->hw_features = NETIF_F_SG |
4603 			      NETIF_F_TSO |
4604 			      NETIF_F_TSO6 |
4605 			      NETIF_F_RXCSUM |
4606 			      NETIF_F_HW_CSUM |
4607 			      NETIF_F_SCTP_CRC;
4608 
4609 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
4610 				      NETIF_F_GSO_GRE_CSUM | \
4611 				      NETIF_F_GSO_IPXIP4 | \
4612 				      NETIF_F_GSO_IPXIP6 | \
4613 				      NETIF_F_GSO_UDP_TUNNEL | \
4614 				      NETIF_F_GSO_UDP_TUNNEL_CSUM)
4615 
4616 	netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES;
4617 	netdev->hw_features |= NETIF_F_GSO_PARTIAL |
4618 			       IXGBEVF_GSO_PARTIAL_FEATURES;
4619 
4620 	netdev->features = netdev->hw_features | NETIF_F_HIGHDMA;
4621 
4622 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
4623 	netdev->mpls_features |= NETIF_F_SG |
4624 				 NETIF_F_TSO |
4625 				 NETIF_F_TSO6 |
4626 				 NETIF_F_HW_CSUM;
4627 	netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES;
4628 	netdev->hw_enc_features |= netdev->vlan_features;
4629 
4630 	/* set this bit last since it cannot be part of vlan_features */
4631 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4632 			    NETIF_F_HW_VLAN_CTAG_RX |
4633 			    NETIF_F_HW_VLAN_CTAG_TX;
4634 
4635 	netdev->priv_flags |= IFF_UNICAST_FLT;
4636 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC;
4637 
4638 	/* MTU range: 68 - 1504 or 9710 */
4639 	netdev->min_mtu = ETH_MIN_MTU;
4640 	switch (adapter->hw.api_version) {
4641 	case ixgbe_mbox_api_11:
4642 	case ixgbe_mbox_api_12:
4643 	case ixgbe_mbox_api_13:
4644 	case ixgbe_mbox_api_14:
4645 	case ixgbe_mbox_api_15:
4646 		netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4647 				  (ETH_HLEN + ETH_FCS_LEN);
4648 		break;
4649 	default:
4650 		if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
4651 			netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4652 					  (ETH_HLEN + ETH_FCS_LEN);
4653 		else
4654 			netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN;
4655 		break;
4656 	}
4657 
4658 	if (IXGBE_REMOVED(hw->hw_addr)) {
4659 		err = -EIO;
4660 		goto err_sw_init;
4661 	}
4662 
4663 	timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0);
4664 
4665 	INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4666 	set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4667 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4668 
4669 	err = ixgbevf_init_interrupt_scheme(adapter);
4670 	if (err)
4671 		goto err_sw_init;
4672 
4673 	strcpy(netdev->name, "eth%d");
4674 
4675 	err = register_netdev(netdev);
4676 	if (err)
4677 		goto err_register;
4678 
4679 	pci_set_drvdata(pdev, netdev);
4680 	netif_carrier_off(netdev);
4681 	ixgbevf_init_ipsec_offload(adapter);
4682 
4683 	ixgbevf_init_last_counter_stats(adapter);
4684 
4685 	/* print the VF info */
4686 	dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4687 	dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4688 
4689 	switch (hw->mac.type) {
4690 	case ixgbe_mac_X550_vf:
4691 		dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4692 		break;
4693 	case ixgbe_mac_X540_vf:
4694 		dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4695 		break;
4696 	case ixgbe_mac_82599_vf:
4697 	default:
4698 		dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4699 		break;
4700 	}
4701 
4702 	return 0;
4703 
4704 err_register:
4705 	ixgbevf_clear_interrupt_scheme(adapter);
4706 err_sw_init:
4707 	ixgbevf_reset_interrupt_capability(adapter);
4708 	iounmap(adapter->io_addr);
4709 	kfree(adapter->rss_key);
4710 err_ioremap:
4711 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4712 	free_netdev(netdev);
4713 err_alloc_etherdev:
4714 	pci_release_regions(pdev);
4715 err_pci_reg:
4716 err_dma:
4717 	if (!adapter || disable_dev)
4718 		pci_disable_device(pdev);
4719 	return err;
4720 }
4721 
4722 /**
4723  * ixgbevf_remove - Device Removal Routine
4724  * @pdev: PCI device information struct
4725  *
4726  * ixgbevf_remove is called by the PCI subsystem to alert the driver
4727  * that it should release a PCI device.  The could be caused by a
4728  * Hot-Plug event, or because the driver is going to be removed from
4729  * memory.
4730  **/
4731 static void ixgbevf_remove(struct pci_dev *pdev)
4732 {
4733 	struct net_device *netdev = pci_get_drvdata(pdev);
4734 	struct ixgbevf_adapter *adapter;
4735 	bool disable_dev;
4736 
4737 	if (!netdev)
4738 		return;
4739 
4740 	adapter = netdev_priv(netdev);
4741 
4742 	set_bit(__IXGBEVF_REMOVING, &adapter->state);
4743 	cancel_work_sync(&adapter->service_task);
4744 
4745 	if (netdev->reg_state == NETREG_REGISTERED)
4746 		unregister_netdev(netdev);
4747 
4748 	ixgbevf_stop_ipsec_offload(adapter);
4749 	ixgbevf_clear_interrupt_scheme(adapter);
4750 	ixgbevf_reset_interrupt_capability(adapter);
4751 
4752 	iounmap(adapter->io_addr);
4753 	pci_release_regions(pdev);
4754 
4755 	hw_dbg(&adapter->hw, "Remove complete\n");
4756 
4757 	kfree(adapter->rss_key);
4758 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4759 	free_netdev(netdev);
4760 
4761 	if (disable_dev)
4762 		pci_disable_device(pdev);
4763 }
4764 
4765 /**
4766  * ixgbevf_io_error_detected - called when PCI error is detected
4767  * @pdev: Pointer to PCI device
4768  * @state: The current pci connection state
4769  *
4770  * This function is called after a PCI bus error affecting
4771  * this device has been detected.
4772  **/
4773 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4774 						  pci_channel_state_t state)
4775 {
4776 	struct net_device *netdev = pci_get_drvdata(pdev);
4777 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4778 
4779 	if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4780 		return PCI_ERS_RESULT_DISCONNECT;
4781 
4782 	rtnl_lock();
4783 	netif_device_detach(netdev);
4784 
4785 	if (netif_running(netdev))
4786 		ixgbevf_close_suspend(adapter);
4787 
4788 	if (state == pci_channel_io_perm_failure) {
4789 		rtnl_unlock();
4790 		return PCI_ERS_RESULT_DISCONNECT;
4791 	}
4792 
4793 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4794 		pci_disable_device(pdev);
4795 	rtnl_unlock();
4796 
4797 	/* Request a slot reset. */
4798 	return PCI_ERS_RESULT_NEED_RESET;
4799 }
4800 
4801 /**
4802  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4803  * @pdev: Pointer to PCI device
4804  *
4805  * Restart the card from scratch, as if from a cold-boot. Implementation
4806  * resembles the first-half of the ixgbevf_resume routine.
4807  **/
4808 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4809 {
4810 	struct net_device *netdev = pci_get_drvdata(pdev);
4811 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4812 
4813 	if (pci_enable_device_mem(pdev)) {
4814 		dev_err(&pdev->dev,
4815 			"Cannot re-enable PCI device after reset.\n");
4816 		return PCI_ERS_RESULT_DISCONNECT;
4817 	}
4818 
4819 	adapter->hw.hw_addr = adapter->io_addr;
4820 	smp_mb__before_atomic();
4821 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4822 	pci_set_master(pdev);
4823 
4824 	ixgbevf_reset(adapter);
4825 
4826 	return PCI_ERS_RESULT_RECOVERED;
4827 }
4828 
4829 /**
4830  * ixgbevf_io_resume - called when traffic can start flowing again.
4831  * @pdev: Pointer to PCI device
4832  *
4833  * This callback is called when the error recovery driver tells us that
4834  * its OK to resume normal operation. Implementation resembles the
4835  * second-half of the ixgbevf_resume routine.
4836  **/
4837 static void ixgbevf_io_resume(struct pci_dev *pdev)
4838 {
4839 	struct net_device *netdev = pci_get_drvdata(pdev);
4840 
4841 	rtnl_lock();
4842 	if (netif_running(netdev))
4843 		ixgbevf_open(netdev);
4844 
4845 	netif_device_attach(netdev);
4846 	rtnl_unlock();
4847 }
4848 
4849 /* PCI Error Recovery (ERS) */
4850 static const struct pci_error_handlers ixgbevf_err_handler = {
4851 	.error_detected = ixgbevf_io_error_detected,
4852 	.slot_reset = ixgbevf_io_slot_reset,
4853 	.resume = ixgbevf_io_resume,
4854 };
4855 
4856 static DEFINE_SIMPLE_DEV_PM_OPS(ixgbevf_pm_ops, ixgbevf_suspend, ixgbevf_resume);
4857 
4858 static struct pci_driver ixgbevf_driver = {
4859 	.name		= ixgbevf_driver_name,
4860 	.id_table	= ixgbevf_pci_tbl,
4861 	.probe		= ixgbevf_probe,
4862 	.remove		= ixgbevf_remove,
4863 
4864 	/* Power Management Hooks */
4865 	.driver.pm	= pm_sleep_ptr(&ixgbevf_pm_ops),
4866 
4867 	.shutdown	= ixgbevf_shutdown,
4868 	.err_handler	= &ixgbevf_err_handler
4869 };
4870 
4871 /**
4872  * ixgbevf_init_module - Driver Registration Routine
4873  *
4874  * ixgbevf_init_module is the first routine called when the driver is
4875  * loaded. All it does is register with the PCI subsystem.
4876  **/
4877 static int __init ixgbevf_init_module(void)
4878 {
4879 	int err;
4880 
4881 	pr_info("%s\n", ixgbevf_driver_string);
4882 	pr_info("%s\n", ixgbevf_copyright);
4883 	ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4884 	if (!ixgbevf_wq) {
4885 		pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4886 		return -ENOMEM;
4887 	}
4888 
4889 	err = pci_register_driver(&ixgbevf_driver);
4890 	if (err) {
4891 		destroy_workqueue(ixgbevf_wq);
4892 		return err;
4893 	}
4894 
4895 	return 0;
4896 }
4897 
4898 module_init(ixgbevf_init_module);
4899 
4900 /**
4901  * ixgbevf_exit_module - Driver Exit Cleanup Routine
4902  *
4903  * ixgbevf_exit_module is called just before the driver is removed
4904  * from memory.
4905  **/
4906 static void __exit ixgbevf_exit_module(void)
4907 {
4908 	pci_unregister_driver(&ixgbevf_driver);
4909 	if (ixgbevf_wq) {
4910 		destroy_workqueue(ixgbevf_wq);
4911 		ixgbevf_wq = NULL;
4912 	}
4913 }
4914 
4915 #ifdef DEBUG
4916 /**
4917  * ixgbevf_get_hw_dev_name - return device name string
4918  * used by hardware layer to print debugging information
4919  * @hw: pointer to private hardware struct
4920  **/
4921 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4922 {
4923 	struct ixgbevf_adapter *adapter = hw->back;
4924 
4925 	return adapter->netdev->name;
4926 }
4927 
4928 #endif
4929 module_exit(ixgbevf_exit_module);
4930 
4931 /* ixgbevf_main.c */
4932