1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2024 Intel Corporation. */ 3 4 /****************************************************************************** 5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 6 ******************************************************************************/ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/types.h> 11 #include <linux/bitops.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/in.h> 18 #include <linux/ip.h> 19 #include <linux/tcp.h> 20 #include <linux/sctp.h> 21 #include <linux/ipv6.h> 22 #include <linux/slab.h> 23 #include <net/checksum.h> 24 #include <net/ip6_checksum.h> 25 #include <linux/ethtool.h> 26 #include <linux/if.h> 27 #include <linux/if_vlan.h> 28 #include <linux/prefetch.h> 29 #include <net/mpls.h> 30 #include <linux/bpf.h> 31 #include <linux/bpf_trace.h> 32 #include <linux/atomic.h> 33 #include <net/xfrm.h> 34 35 #include "ixgbevf.h" 36 37 const char ixgbevf_driver_name[] = "ixgbevf"; 38 static const char ixgbevf_driver_string[] = 39 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 40 41 static char ixgbevf_copyright[] = 42 "Copyright (c) 2009 - 2024 Intel Corporation."; 43 44 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 45 [board_82599_vf] = &ixgbevf_82599_vf_info, 46 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 47 [board_X540_vf] = &ixgbevf_X540_vf_info, 48 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 49 [board_X550_vf] = &ixgbevf_X550_vf_info, 50 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 51 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 52 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 53 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 54 [board_e610_vf] = &ixgbevf_e610_vf_info, 55 [board_e610_vf_hv] = &ixgbevf_e610_vf_hv_info, 56 }; 57 58 /* ixgbevf_pci_tbl - PCI Device ID Table 59 * 60 * Wildcard entries (PCI_ANY_ID) should come last 61 * Last entry must be all 0s 62 * 63 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 64 * Class, Class Mask, private data (not used) } 65 */ 66 static const struct pci_device_id ixgbevf_pci_tbl[] = { 67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 74 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 75 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 76 {PCI_VDEVICE_SUB(INTEL, IXGBE_DEV_ID_E610_VF, PCI_ANY_ID, 77 IXGBE_SUBDEV_ID_E610_VF_HV), board_e610_vf_hv}, 78 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_E610_VF), board_e610_vf}, 79 /* required last entry */ 80 {0, } 81 }; 82 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 83 84 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 85 MODULE_LICENSE("GPL v2"); 86 87 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 88 static int debug = -1; 89 module_param(debug, int, 0); 90 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 91 92 static struct workqueue_struct *ixgbevf_wq; 93 94 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 95 { 96 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 97 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 98 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 99 queue_work(ixgbevf_wq, &adapter->service_task); 100 } 101 102 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 103 { 104 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 105 106 /* flush memory to make sure state is correct before next watchdog */ 107 smp_mb__before_atomic(); 108 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 109 } 110 111 /* forward decls */ 112 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 113 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 114 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 115 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer); 116 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 117 struct ixgbevf_rx_buffer *old_buff); 118 119 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 120 { 121 struct ixgbevf_adapter *adapter = hw->back; 122 123 if (!hw->hw_addr) 124 return; 125 hw->hw_addr = NULL; 126 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 127 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 128 ixgbevf_service_event_schedule(adapter); 129 } 130 131 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 132 { 133 u32 value; 134 135 /* The following check not only optimizes a bit by not 136 * performing a read on the status register when the 137 * register just read was a status register read that 138 * returned IXGBE_FAILED_READ_REG. It also blocks any 139 * potential recursion. 140 */ 141 if (reg == IXGBE_VFSTATUS) { 142 ixgbevf_remove_adapter(hw); 143 return; 144 } 145 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 146 if (value == IXGBE_FAILED_READ_REG) 147 ixgbevf_remove_adapter(hw); 148 } 149 150 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 151 { 152 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 153 u32 value; 154 155 if (IXGBE_REMOVED(reg_addr)) 156 return IXGBE_FAILED_READ_REG; 157 value = readl(reg_addr + reg); 158 if (unlikely(value == IXGBE_FAILED_READ_REG)) 159 ixgbevf_check_remove(hw, reg); 160 return value; 161 } 162 163 /** 164 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 165 * @adapter: pointer to adapter struct 166 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 167 * @queue: queue to map the corresponding interrupt to 168 * @msix_vector: the vector to map to the corresponding queue 169 **/ 170 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 171 u8 queue, u8 msix_vector) 172 { 173 u32 ivar, index; 174 struct ixgbe_hw *hw = &adapter->hw; 175 176 if (direction == -1) { 177 /* other causes */ 178 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 179 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 180 ivar &= ~0xFF; 181 ivar |= msix_vector; 182 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 183 } else { 184 /* Tx or Rx causes */ 185 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 186 index = ((16 * (queue & 1)) + (8 * direction)); 187 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 188 ivar &= ~(0xFF << index); 189 ivar |= (msix_vector << index); 190 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 191 } 192 } 193 194 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 195 { 196 return ring->stats.packets; 197 } 198 199 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 200 { 201 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 202 struct ixgbe_hw *hw = &adapter->hw; 203 204 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 205 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 206 207 if (head != tail) 208 return (head < tail) ? 209 tail - head : (tail + ring->count - head); 210 211 return 0; 212 } 213 214 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 215 { 216 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 217 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 218 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 219 220 clear_check_for_tx_hang(tx_ring); 221 222 /* Check for a hung queue, but be thorough. This verifies 223 * that a transmit has been completed since the previous 224 * check AND there is at least one packet pending. The 225 * ARMED bit is set to indicate a potential hang. 226 */ 227 if ((tx_done_old == tx_done) && tx_pending) { 228 /* make sure it is true for two checks in a row */ 229 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 230 &tx_ring->state); 231 } 232 /* reset the countdown */ 233 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 234 235 /* update completed stats and continue */ 236 tx_ring->tx_stats.tx_done_old = tx_done; 237 238 return false; 239 } 240 241 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 242 { 243 /* Do the reset outside of interrupt context */ 244 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 245 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 246 ixgbevf_service_event_schedule(adapter); 247 } 248 } 249 250 /** 251 * ixgbevf_tx_timeout - Respond to a Tx Hang 252 * @netdev: network interface device structure 253 * @txqueue: transmit queue hanging (unused) 254 **/ 255 static void ixgbevf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) 256 { 257 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 258 259 ixgbevf_tx_timeout_reset(adapter); 260 } 261 262 /** 263 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 264 * @q_vector: board private structure 265 * @tx_ring: tx ring to clean 266 * @napi_budget: Used to determine if we are in netpoll 267 **/ 268 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 269 struct ixgbevf_ring *tx_ring, int napi_budget) 270 { 271 struct ixgbevf_adapter *adapter = q_vector->adapter; 272 struct ixgbevf_tx_buffer *tx_buffer; 273 union ixgbe_adv_tx_desc *tx_desc; 274 unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0; 275 unsigned int budget = tx_ring->count / 2; 276 unsigned int i = tx_ring->next_to_clean; 277 278 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 279 return true; 280 281 tx_buffer = &tx_ring->tx_buffer_info[i]; 282 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 283 i -= tx_ring->count; 284 285 do { 286 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 287 288 /* if next_to_watch is not set then there is no work pending */ 289 if (!eop_desc) 290 break; 291 292 /* prevent any other reads prior to eop_desc */ 293 smp_rmb(); 294 295 /* if DD is not set pending work has not been completed */ 296 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 297 break; 298 299 /* clear next_to_watch to prevent false hangs */ 300 tx_buffer->next_to_watch = NULL; 301 302 /* update the statistics for this packet */ 303 total_bytes += tx_buffer->bytecount; 304 total_packets += tx_buffer->gso_segs; 305 if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC) 306 total_ipsec++; 307 308 /* free the skb */ 309 if (ring_is_xdp(tx_ring)) 310 page_frag_free(tx_buffer->data); 311 else 312 napi_consume_skb(tx_buffer->skb, napi_budget); 313 314 /* unmap skb header data */ 315 dma_unmap_single(tx_ring->dev, 316 dma_unmap_addr(tx_buffer, dma), 317 dma_unmap_len(tx_buffer, len), 318 DMA_TO_DEVICE); 319 320 /* clear tx_buffer data */ 321 dma_unmap_len_set(tx_buffer, len, 0); 322 323 /* unmap remaining buffers */ 324 while (tx_desc != eop_desc) { 325 tx_buffer++; 326 tx_desc++; 327 i++; 328 if (unlikely(!i)) { 329 i -= tx_ring->count; 330 tx_buffer = tx_ring->tx_buffer_info; 331 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 332 } 333 334 /* unmap any remaining paged data */ 335 if (dma_unmap_len(tx_buffer, len)) { 336 dma_unmap_page(tx_ring->dev, 337 dma_unmap_addr(tx_buffer, dma), 338 dma_unmap_len(tx_buffer, len), 339 DMA_TO_DEVICE); 340 dma_unmap_len_set(tx_buffer, len, 0); 341 } 342 } 343 344 /* move us one more past the eop_desc for start of next pkt */ 345 tx_buffer++; 346 tx_desc++; 347 i++; 348 if (unlikely(!i)) { 349 i -= tx_ring->count; 350 tx_buffer = tx_ring->tx_buffer_info; 351 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 352 } 353 354 /* issue prefetch for next Tx descriptor */ 355 prefetch(tx_desc); 356 357 /* update budget accounting */ 358 budget--; 359 } while (likely(budget)); 360 361 i += tx_ring->count; 362 tx_ring->next_to_clean = i; 363 u64_stats_update_begin(&tx_ring->syncp); 364 tx_ring->stats.bytes += total_bytes; 365 tx_ring->stats.packets += total_packets; 366 u64_stats_update_end(&tx_ring->syncp); 367 q_vector->tx.total_bytes += total_bytes; 368 q_vector->tx.total_packets += total_packets; 369 adapter->tx_ipsec += total_ipsec; 370 371 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 372 struct ixgbe_hw *hw = &adapter->hw; 373 union ixgbe_adv_tx_desc *eop_desc; 374 375 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 376 377 pr_err("Detected Tx Unit Hang%s\n" 378 " Tx Queue <%d>\n" 379 " TDH, TDT <%x>, <%x>\n" 380 " next_to_use <%x>\n" 381 " next_to_clean <%x>\n" 382 "tx_buffer_info[next_to_clean]\n" 383 " next_to_watch <%p>\n" 384 " eop_desc->wb.status <%x>\n" 385 " time_stamp <%lx>\n" 386 " jiffies <%lx>\n", 387 ring_is_xdp(tx_ring) ? " XDP" : "", 388 tx_ring->queue_index, 389 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 390 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 391 tx_ring->next_to_use, i, 392 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 393 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 394 395 if (!ring_is_xdp(tx_ring)) 396 netif_stop_subqueue(tx_ring->netdev, 397 tx_ring->queue_index); 398 399 /* schedule immediate reset if we believe we hung */ 400 ixgbevf_tx_timeout_reset(adapter); 401 402 return true; 403 } 404 405 if (ring_is_xdp(tx_ring)) 406 return !!budget; 407 408 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 409 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 410 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 411 /* Make sure that anybody stopping the queue after this 412 * sees the new next_to_clean. 413 */ 414 smp_mb(); 415 416 if (__netif_subqueue_stopped(tx_ring->netdev, 417 tx_ring->queue_index) && 418 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 419 netif_wake_subqueue(tx_ring->netdev, 420 tx_ring->queue_index); 421 ++tx_ring->tx_stats.restart_queue; 422 } 423 } 424 425 return !!budget; 426 } 427 428 /** 429 * ixgbevf_rx_skb - Helper function to determine proper Rx method 430 * @q_vector: structure containing interrupt and ring information 431 * @skb: packet to send up 432 **/ 433 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 434 struct sk_buff *skb) 435 { 436 napi_gro_receive(&q_vector->napi, skb); 437 } 438 439 #define IXGBE_RSS_L4_TYPES_MASK \ 440 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 441 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 442 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 443 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 444 445 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 446 union ixgbe_adv_rx_desc *rx_desc, 447 struct sk_buff *skb) 448 { 449 u16 rss_type; 450 451 if (!(ring->netdev->features & NETIF_F_RXHASH)) 452 return; 453 454 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 455 IXGBE_RXDADV_RSSTYPE_MASK; 456 457 if (!rss_type) 458 return; 459 460 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 461 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 462 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 463 } 464 465 /** 466 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 467 * @ring: structure containig ring specific data 468 * @rx_desc: current Rx descriptor being processed 469 * @skb: skb currently being received and modified 470 **/ 471 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 472 union ixgbe_adv_rx_desc *rx_desc, 473 struct sk_buff *skb) 474 { 475 skb_checksum_none_assert(skb); 476 477 /* Rx csum disabled */ 478 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 479 return; 480 481 /* if IP and error */ 482 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 483 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 484 ring->rx_stats.csum_err++; 485 return; 486 } 487 488 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 489 return; 490 491 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 492 ring->rx_stats.csum_err++; 493 return; 494 } 495 496 /* It must be a TCP or UDP packet with a valid checksum */ 497 skb->ip_summed = CHECKSUM_UNNECESSARY; 498 } 499 500 /** 501 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 502 * @rx_ring: rx descriptor ring packet is being transacted on 503 * @rx_desc: pointer to the EOP Rx descriptor 504 * @skb: pointer to current skb being populated 505 * 506 * This function checks the ring, descriptor, and packet information in 507 * order to populate the checksum, VLAN, protocol, and other fields within 508 * the skb. 509 **/ 510 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 511 union ixgbe_adv_rx_desc *rx_desc, 512 struct sk_buff *skb) 513 { 514 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 515 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 516 517 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 518 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 519 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 520 521 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 522 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 523 } 524 525 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP)) 526 ixgbevf_ipsec_rx(rx_ring, rx_desc, skb); 527 528 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 529 } 530 531 static 532 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring, 533 const unsigned int size) 534 { 535 struct ixgbevf_rx_buffer *rx_buffer; 536 537 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 538 prefetchw(rx_buffer->page); 539 540 /* we are reusing so sync this buffer for CPU use */ 541 dma_sync_single_range_for_cpu(rx_ring->dev, 542 rx_buffer->dma, 543 rx_buffer->page_offset, 544 size, 545 DMA_FROM_DEVICE); 546 547 rx_buffer->pagecnt_bias--; 548 549 return rx_buffer; 550 } 551 552 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring, 553 struct ixgbevf_rx_buffer *rx_buffer, 554 struct sk_buff *skb) 555 { 556 if (ixgbevf_can_reuse_rx_page(rx_buffer)) { 557 /* hand second half of page back to the ring */ 558 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 559 } else { 560 if (IS_ERR(skb)) 561 /* We are not reusing the buffer so unmap it and free 562 * any references we are holding to it 563 */ 564 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 565 ixgbevf_rx_pg_size(rx_ring), 566 DMA_FROM_DEVICE, 567 IXGBEVF_RX_DMA_ATTR); 568 __page_frag_cache_drain(rx_buffer->page, 569 rx_buffer->pagecnt_bias); 570 } 571 572 /* clear contents of rx_buffer */ 573 rx_buffer->page = NULL; 574 } 575 576 /** 577 * ixgbevf_is_non_eop - process handling of non-EOP buffers 578 * @rx_ring: Rx ring being processed 579 * @rx_desc: Rx descriptor for current buffer 580 * 581 * This function updates next to clean. If the buffer is an EOP buffer 582 * this function exits returning false, otherwise it will place the 583 * sk_buff in the next buffer to be chained and return true indicating 584 * that this is in fact a non-EOP buffer. 585 **/ 586 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 587 union ixgbe_adv_rx_desc *rx_desc) 588 { 589 u32 ntc = rx_ring->next_to_clean + 1; 590 591 /* fetch, update, and store next to clean */ 592 ntc = (ntc < rx_ring->count) ? ntc : 0; 593 rx_ring->next_to_clean = ntc; 594 595 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 596 597 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 598 return false; 599 600 return true; 601 } 602 603 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring) 604 { 605 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0; 606 } 607 608 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 609 struct ixgbevf_rx_buffer *bi) 610 { 611 struct page *page = bi->page; 612 dma_addr_t dma; 613 614 /* since we are recycling buffers we should seldom need to alloc */ 615 if (likely(page)) 616 return true; 617 618 /* alloc new page for storage */ 619 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring)); 620 if (unlikely(!page)) { 621 rx_ring->rx_stats.alloc_rx_page_failed++; 622 return false; 623 } 624 625 /* map page for use */ 626 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 627 ixgbevf_rx_pg_size(rx_ring), 628 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); 629 630 /* if mapping failed free memory back to system since 631 * there isn't much point in holding memory we can't use 632 */ 633 if (dma_mapping_error(rx_ring->dev, dma)) { 634 __free_pages(page, ixgbevf_rx_pg_order(rx_ring)); 635 636 rx_ring->rx_stats.alloc_rx_page_failed++; 637 return false; 638 } 639 640 bi->dma = dma; 641 bi->page = page; 642 bi->page_offset = ixgbevf_rx_offset(rx_ring); 643 bi->pagecnt_bias = 1; 644 rx_ring->rx_stats.alloc_rx_page++; 645 646 return true; 647 } 648 649 /** 650 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 651 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 652 * @cleaned_count: number of buffers to replace 653 **/ 654 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 655 u16 cleaned_count) 656 { 657 union ixgbe_adv_rx_desc *rx_desc; 658 struct ixgbevf_rx_buffer *bi; 659 unsigned int i = rx_ring->next_to_use; 660 661 /* nothing to do or no valid netdev defined */ 662 if (!cleaned_count || !rx_ring->netdev) 663 return; 664 665 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 666 bi = &rx_ring->rx_buffer_info[i]; 667 i -= rx_ring->count; 668 669 do { 670 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 671 break; 672 673 /* sync the buffer for use by the device */ 674 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 675 bi->page_offset, 676 ixgbevf_rx_bufsz(rx_ring), 677 DMA_FROM_DEVICE); 678 679 /* Refresh the desc even if pkt_addr didn't change 680 * because each write-back erases this info. 681 */ 682 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 683 684 rx_desc++; 685 bi++; 686 i++; 687 if (unlikely(!i)) { 688 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 689 bi = rx_ring->rx_buffer_info; 690 i -= rx_ring->count; 691 } 692 693 /* clear the length for the next_to_use descriptor */ 694 rx_desc->wb.upper.length = 0; 695 696 cleaned_count--; 697 } while (cleaned_count); 698 699 i += rx_ring->count; 700 701 if (rx_ring->next_to_use != i) { 702 /* record the next descriptor to use */ 703 rx_ring->next_to_use = i; 704 705 /* update next to alloc since we have filled the ring */ 706 rx_ring->next_to_alloc = i; 707 708 /* Force memory writes to complete before letting h/w 709 * know there are new descriptors to fetch. (Only 710 * applicable for weak-ordered memory model archs, 711 * such as IA-64). 712 */ 713 wmb(); 714 ixgbevf_write_tail(rx_ring, i); 715 } 716 } 717 718 /** 719 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 720 * @rx_ring: rx descriptor ring packet is being transacted on 721 * @rx_desc: pointer to the EOP Rx descriptor 722 * @skb: pointer to current skb being fixed 723 * 724 * Check for corrupted packet headers caused by senders on the local L2 725 * embedded NIC switch not setting up their Tx Descriptors right. These 726 * should be very rare. 727 * 728 * Also address the case where we are pulling data in on pages only 729 * and as such no data is present in the skb header. 730 * 731 * In addition if skb is not at least 60 bytes we need to pad it so that 732 * it is large enough to qualify as a valid Ethernet frame. 733 * 734 * Returns true if an error was encountered and skb was freed. 735 **/ 736 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 737 union ixgbe_adv_rx_desc *rx_desc, 738 struct sk_buff *skb) 739 { 740 /* XDP packets use error pointer so abort at this point */ 741 if (IS_ERR(skb)) 742 return true; 743 744 /* verify that the packet does not have any known errors */ 745 if (unlikely(ixgbevf_test_staterr(rx_desc, 746 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 747 struct net_device *netdev = rx_ring->netdev; 748 749 if (!(netdev->features & NETIF_F_RXALL)) { 750 dev_kfree_skb_any(skb); 751 return true; 752 } 753 } 754 755 /* if eth_skb_pad returns an error the skb was freed */ 756 if (eth_skb_pad(skb)) 757 return true; 758 759 return false; 760 } 761 762 /** 763 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 764 * @rx_ring: rx descriptor ring to store buffers on 765 * @old_buff: donor buffer to have page reused 766 * 767 * Synchronizes page for reuse by the adapter 768 **/ 769 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 770 struct ixgbevf_rx_buffer *old_buff) 771 { 772 struct ixgbevf_rx_buffer *new_buff; 773 u16 nta = rx_ring->next_to_alloc; 774 775 new_buff = &rx_ring->rx_buffer_info[nta]; 776 777 /* update, and store next to alloc */ 778 nta++; 779 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 780 781 /* transfer page from old buffer to new buffer */ 782 new_buff->page = old_buff->page; 783 new_buff->dma = old_buff->dma; 784 new_buff->page_offset = old_buff->page_offset; 785 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 786 } 787 788 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer) 789 { 790 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 791 struct page *page = rx_buffer->page; 792 793 /* avoid re-using remote and pfmemalloc pages */ 794 if (!dev_page_is_reusable(page)) 795 return false; 796 797 #if (PAGE_SIZE < 8192) 798 /* if we are only owner of page we can reuse it */ 799 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 800 return false; 801 #else 802 #define IXGBEVF_LAST_OFFSET \ 803 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048) 804 805 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET) 806 return false; 807 808 #endif 809 810 /* If we have drained the page fragment pool we need to update 811 * the pagecnt_bias and page count so that we fully restock the 812 * number of references the driver holds. 813 */ 814 if (unlikely(!pagecnt_bias)) { 815 page_ref_add(page, USHRT_MAX); 816 rx_buffer->pagecnt_bias = USHRT_MAX; 817 } 818 819 return true; 820 } 821 822 /** 823 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 824 * @rx_ring: rx descriptor ring to transact packets on 825 * @rx_buffer: buffer containing page to add 826 * @skb: sk_buff to place the data into 827 * @size: size of buffer to be added 828 * 829 * This function will add the data contained in rx_buffer->page to the skb. 830 **/ 831 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 832 struct ixgbevf_rx_buffer *rx_buffer, 833 struct sk_buff *skb, 834 unsigned int size) 835 { 836 #if (PAGE_SIZE < 8192) 837 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 838 #else 839 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 840 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 841 SKB_DATA_ALIGN(size); 842 #endif 843 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 844 rx_buffer->page_offset, size, truesize); 845 #if (PAGE_SIZE < 8192) 846 rx_buffer->page_offset ^= truesize; 847 #else 848 rx_buffer->page_offset += truesize; 849 #endif 850 } 851 852 static 853 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring, 854 struct ixgbevf_rx_buffer *rx_buffer, 855 struct xdp_buff *xdp, 856 union ixgbe_adv_rx_desc *rx_desc) 857 { 858 unsigned int size = xdp->data_end - xdp->data; 859 #if (PAGE_SIZE < 8192) 860 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 861 #else 862 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 863 xdp->data_hard_start); 864 #endif 865 unsigned int headlen; 866 struct sk_buff *skb; 867 868 /* prefetch first cache line of first page */ 869 net_prefetch(xdp->data); 870 871 /* Note, we get here by enabling legacy-rx via: 872 * 873 * ethtool --set-priv-flags <dev> legacy-rx on 874 * 875 * In this mode, we currently get 0 extra XDP headroom as 876 * opposed to having legacy-rx off, where we process XDP 877 * packets going to stack via ixgbevf_build_skb(). 878 * 879 * For ixgbevf_construct_skb() mode it means that the 880 * xdp->data_meta will always point to xdp->data, since 881 * the helper cannot expand the head. Should this ever 882 * changed in future for legacy-rx mode on, then lets also 883 * add xdp->data_meta handling here. 884 */ 885 886 /* allocate a skb to store the frags */ 887 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE); 888 if (unlikely(!skb)) 889 return NULL; 890 891 /* Determine available headroom for copy */ 892 headlen = size; 893 if (headlen > IXGBEVF_RX_HDR_SIZE) 894 headlen = eth_get_headlen(skb->dev, xdp->data, 895 IXGBEVF_RX_HDR_SIZE); 896 897 /* align pull length to size of long to optimize memcpy performance */ 898 memcpy(__skb_put(skb, headlen), xdp->data, 899 ALIGN(headlen, sizeof(long))); 900 901 /* update all of the pointers */ 902 size -= headlen; 903 if (size) { 904 skb_add_rx_frag(skb, 0, rx_buffer->page, 905 (xdp->data + headlen) - 906 page_address(rx_buffer->page), 907 size, truesize); 908 #if (PAGE_SIZE < 8192) 909 rx_buffer->page_offset ^= truesize; 910 #else 911 rx_buffer->page_offset += truesize; 912 #endif 913 } else { 914 rx_buffer->pagecnt_bias++; 915 } 916 917 return skb; 918 } 919 920 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 921 u32 qmask) 922 { 923 struct ixgbe_hw *hw = &adapter->hw; 924 925 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 926 } 927 928 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring, 929 struct ixgbevf_rx_buffer *rx_buffer, 930 struct xdp_buff *xdp, 931 union ixgbe_adv_rx_desc *rx_desc) 932 { 933 unsigned int metasize = xdp->data - xdp->data_meta; 934 #if (PAGE_SIZE < 8192) 935 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 936 #else 937 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 938 SKB_DATA_ALIGN(xdp->data_end - 939 xdp->data_hard_start); 940 #endif 941 struct sk_buff *skb; 942 943 /* Prefetch first cache line of first page. If xdp->data_meta 944 * is unused, this points to xdp->data, otherwise, we likely 945 * have a consumer accessing first few bytes of meta data, 946 * and then actual data. 947 */ 948 net_prefetch(xdp->data_meta); 949 950 /* build an skb around the page buffer */ 951 skb = napi_build_skb(xdp->data_hard_start, truesize); 952 if (unlikely(!skb)) 953 return NULL; 954 955 /* update pointers within the skb to store the data */ 956 skb_reserve(skb, xdp->data - xdp->data_hard_start); 957 __skb_put(skb, xdp->data_end - xdp->data); 958 if (metasize) 959 skb_metadata_set(skb, metasize); 960 961 /* update buffer offset */ 962 #if (PAGE_SIZE < 8192) 963 rx_buffer->page_offset ^= truesize; 964 #else 965 rx_buffer->page_offset += truesize; 966 #endif 967 968 return skb; 969 } 970 971 #define IXGBEVF_XDP_PASS 0 972 #define IXGBEVF_XDP_CONSUMED 1 973 #define IXGBEVF_XDP_TX 2 974 975 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring, 976 struct xdp_buff *xdp) 977 { 978 struct ixgbevf_tx_buffer *tx_buffer; 979 union ixgbe_adv_tx_desc *tx_desc; 980 u32 len, cmd_type; 981 dma_addr_t dma; 982 u16 i; 983 984 len = xdp->data_end - xdp->data; 985 986 if (unlikely(!ixgbevf_desc_unused(ring))) 987 return IXGBEVF_XDP_CONSUMED; 988 989 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE); 990 if (dma_mapping_error(ring->dev, dma)) 991 return IXGBEVF_XDP_CONSUMED; 992 993 /* record the location of the first descriptor for this packet */ 994 i = ring->next_to_use; 995 tx_buffer = &ring->tx_buffer_info[i]; 996 997 dma_unmap_len_set(tx_buffer, len, len); 998 dma_unmap_addr_set(tx_buffer, dma, dma); 999 tx_buffer->data = xdp->data; 1000 tx_buffer->bytecount = len; 1001 tx_buffer->gso_segs = 1; 1002 tx_buffer->protocol = 0; 1003 1004 /* Populate minimal context descriptor that will provide for the 1005 * fact that we are expected to process Ethernet frames. 1006 */ 1007 if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) { 1008 struct ixgbe_adv_tx_context_desc *context_desc; 1009 1010 set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1011 1012 context_desc = IXGBEVF_TX_CTXTDESC(ring, 0); 1013 context_desc->vlan_macip_lens = 1014 cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT); 1015 context_desc->fceof_saidx = 0; 1016 context_desc->type_tucmd_mlhl = 1017 cpu_to_le32(IXGBE_TXD_CMD_DEXT | 1018 IXGBE_ADVTXD_DTYP_CTXT); 1019 context_desc->mss_l4len_idx = 0; 1020 1021 i = 1; 1022 } 1023 1024 /* put descriptor type bits */ 1025 cmd_type = IXGBE_ADVTXD_DTYP_DATA | 1026 IXGBE_ADVTXD_DCMD_DEXT | 1027 IXGBE_ADVTXD_DCMD_IFCS; 1028 cmd_type |= len | IXGBE_TXD_CMD; 1029 1030 tx_desc = IXGBEVF_TX_DESC(ring, i); 1031 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1032 1033 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1034 tx_desc->read.olinfo_status = 1035 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) | 1036 IXGBE_ADVTXD_CC); 1037 1038 /* Avoid any potential race with cleanup */ 1039 smp_wmb(); 1040 1041 /* set next_to_watch value indicating a packet is present */ 1042 i++; 1043 if (i == ring->count) 1044 i = 0; 1045 1046 tx_buffer->next_to_watch = tx_desc; 1047 ring->next_to_use = i; 1048 1049 return IXGBEVF_XDP_TX; 1050 } 1051 1052 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter, 1053 struct ixgbevf_ring *rx_ring, 1054 struct xdp_buff *xdp) 1055 { 1056 int result = IXGBEVF_XDP_PASS; 1057 struct ixgbevf_ring *xdp_ring; 1058 struct bpf_prog *xdp_prog; 1059 u32 act; 1060 1061 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1062 1063 if (!xdp_prog) 1064 goto xdp_out; 1065 1066 act = bpf_prog_run_xdp(xdp_prog, xdp); 1067 switch (act) { 1068 case XDP_PASS: 1069 break; 1070 case XDP_TX: 1071 xdp_ring = adapter->xdp_ring[rx_ring->queue_index]; 1072 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp); 1073 if (result == IXGBEVF_XDP_CONSUMED) 1074 goto out_failure; 1075 break; 1076 default: 1077 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 1078 fallthrough; 1079 case XDP_ABORTED: 1080 out_failure: 1081 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 1082 fallthrough; /* handle aborts by dropping packet */ 1083 case XDP_DROP: 1084 result = IXGBEVF_XDP_CONSUMED; 1085 break; 1086 } 1087 xdp_out: 1088 return ERR_PTR(-result); 1089 } 1090 1091 static unsigned int ixgbevf_rx_frame_truesize(struct ixgbevf_ring *rx_ring, 1092 unsigned int size) 1093 { 1094 unsigned int truesize; 1095 1096 #if (PAGE_SIZE < 8192) 1097 truesize = ixgbevf_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 1098 #else 1099 truesize = ring_uses_build_skb(rx_ring) ? 1100 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) + 1101 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 1102 SKB_DATA_ALIGN(size); 1103 #endif 1104 return truesize; 1105 } 1106 1107 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring, 1108 struct ixgbevf_rx_buffer *rx_buffer, 1109 unsigned int size) 1110 { 1111 unsigned int truesize = ixgbevf_rx_frame_truesize(rx_ring, size); 1112 1113 #if (PAGE_SIZE < 8192) 1114 rx_buffer->page_offset ^= truesize; 1115 #else 1116 rx_buffer->page_offset += truesize; 1117 #endif 1118 } 1119 1120 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 1121 struct ixgbevf_ring *rx_ring, 1122 int budget) 1123 { 1124 unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0; 1125 struct ixgbevf_adapter *adapter = q_vector->adapter; 1126 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 1127 struct sk_buff *skb = rx_ring->skb; 1128 bool xdp_xmit = false; 1129 struct xdp_buff xdp; 1130 1131 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1132 #if (PAGE_SIZE < 8192) 1133 frame_sz = ixgbevf_rx_frame_truesize(rx_ring, 0); 1134 #endif 1135 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 1136 1137 while (likely(total_rx_packets < budget)) { 1138 struct ixgbevf_rx_buffer *rx_buffer; 1139 union ixgbe_adv_rx_desc *rx_desc; 1140 unsigned int size; 1141 1142 /* return some buffers to hardware, one at a time is too slow */ 1143 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 1144 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 1145 cleaned_count = 0; 1146 } 1147 1148 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1149 size = le16_to_cpu(rx_desc->wb.upper.length); 1150 if (!size) 1151 break; 1152 1153 /* This memory barrier is needed to keep us from reading 1154 * any other fields out of the rx_desc until we know the 1155 * RXD_STAT_DD bit is set 1156 */ 1157 rmb(); 1158 1159 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size); 1160 1161 /* retrieve a buffer from the ring */ 1162 if (!skb) { 1163 unsigned int offset = ixgbevf_rx_offset(rx_ring); 1164 unsigned char *hard_start; 1165 1166 hard_start = page_address(rx_buffer->page) + 1167 rx_buffer->page_offset - offset; 1168 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 1169 #if (PAGE_SIZE > 4096) 1170 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1171 xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, size); 1172 #endif 1173 skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp); 1174 } 1175 1176 if (IS_ERR(skb)) { 1177 if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) { 1178 xdp_xmit = true; 1179 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer, 1180 size); 1181 } else { 1182 rx_buffer->pagecnt_bias++; 1183 } 1184 total_rx_packets++; 1185 total_rx_bytes += size; 1186 } else if (skb) { 1187 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1188 } else if (ring_uses_build_skb(rx_ring)) { 1189 skb = ixgbevf_build_skb(rx_ring, rx_buffer, 1190 &xdp, rx_desc); 1191 } else { 1192 skb = ixgbevf_construct_skb(rx_ring, rx_buffer, 1193 &xdp, rx_desc); 1194 } 1195 1196 /* exit if we failed to retrieve a buffer */ 1197 if (!skb) { 1198 rx_ring->rx_stats.alloc_rx_buff_failed++; 1199 rx_buffer->pagecnt_bias++; 1200 break; 1201 } 1202 1203 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb); 1204 cleaned_count++; 1205 1206 /* fetch next buffer in frame if non-eop */ 1207 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 1208 continue; 1209 1210 /* verify the packet layout is correct */ 1211 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 1212 skb = NULL; 1213 continue; 1214 } 1215 1216 /* probably a little skewed due to removing CRC */ 1217 total_rx_bytes += skb->len; 1218 1219 /* Workaround hardware that can't do proper VEPA multicast 1220 * source pruning. 1221 */ 1222 if ((skb->pkt_type == PACKET_BROADCAST || 1223 skb->pkt_type == PACKET_MULTICAST) && 1224 ether_addr_equal(rx_ring->netdev->dev_addr, 1225 eth_hdr(skb)->h_source)) { 1226 dev_kfree_skb_irq(skb); 1227 continue; 1228 } 1229 1230 /* populate checksum, VLAN, and protocol */ 1231 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 1232 1233 ixgbevf_rx_skb(q_vector, skb); 1234 1235 /* reset skb pointer */ 1236 skb = NULL; 1237 1238 /* update budget accounting */ 1239 total_rx_packets++; 1240 } 1241 1242 /* place incomplete frames back on ring for completion */ 1243 rx_ring->skb = skb; 1244 1245 if (xdp_xmit) { 1246 struct ixgbevf_ring *xdp_ring = 1247 adapter->xdp_ring[rx_ring->queue_index]; 1248 1249 /* Force memory writes to complete before letting h/w 1250 * know there are new descriptors to fetch. 1251 */ 1252 wmb(); 1253 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use); 1254 } 1255 1256 u64_stats_update_begin(&rx_ring->syncp); 1257 rx_ring->stats.packets += total_rx_packets; 1258 rx_ring->stats.bytes += total_rx_bytes; 1259 u64_stats_update_end(&rx_ring->syncp); 1260 q_vector->rx.total_packets += total_rx_packets; 1261 q_vector->rx.total_bytes += total_rx_bytes; 1262 1263 return total_rx_packets; 1264 } 1265 1266 /** 1267 * ixgbevf_poll - NAPI polling calback 1268 * @napi: napi struct with our devices info in it 1269 * @budget: amount of work driver is allowed to do this pass, in packets 1270 * 1271 * This function will clean more than one or more rings associated with a 1272 * q_vector. 1273 **/ 1274 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1275 { 1276 struct ixgbevf_q_vector *q_vector = 1277 container_of(napi, struct ixgbevf_q_vector, napi); 1278 struct ixgbevf_adapter *adapter = q_vector->adapter; 1279 struct ixgbevf_ring *ring; 1280 int per_ring_budget, work_done = 0; 1281 bool clean_complete = true; 1282 1283 ixgbevf_for_each_ring(ring, q_vector->tx) { 1284 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1285 clean_complete = false; 1286 } 1287 1288 if (budget <= 0) 1289 return budget; 1290 1291 /* attempt to distribute budget to each queue fairly, but don't allow 1292 * the budget to go below 1 because we'll exit polling 1293 */ 1294 if (q_vector->rx.count > 1) 1295 per_ring_budget = max(budget/q_vector->rx.count, 1); 1296 else 1297 per_ring_budget = budget; 1298 1299 ixgbevf_for_each_ring(ring, q_vector->rx) { 1300 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1301 per_ring_budget); 1302 work_done += cleaned; 1303 if (cleaned >= per_ring_budget) 1304 clean_complete = false; 1305 } 1306 1307 /* If all work not completed, return budget and keep polling */ 1308 if (!clean_complete) 1309 return budget; 1310 1311 /* Exit the polling mode, but don't re-enable interrupts if stack might 1312 * poll us due to busy-polling 1313 */ 1314 if (likely(napi_complete_done(napi, work_done))) { 1315 if (adapter->rx_itr_setting == 1) 1316 ixgbevf_set_itr(q_vector); 1317 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1318 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1319 ixgbevf_irq_enable_queues(adapter, 1320 BIT(q_vector->v_idx)); 1321 } 1322 1323 return min(work_done, budget - 1); 1324 } 1325 1326 /** 1327 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1328 * @q_vector: structure containing interrupt and ring information 1329 **/ 1330 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1331 { 1332 struct ixgbevf_adapter *adapter = q_vector->adapter; 1333 struct ixgbe_hw *hw = &adapter->hw; 1334 int v_idx = q_vector->v_idx; 1335 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1336 1337 /* set the WDIS bit to not clear the timer bits and cause an 1338 * immediate assertion of the interrupt 1339 */ 1340 itr_reg |= IXGBE_EITR_CNT_WDIS; 1341 1342 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1343 } 1344 1345 /** 1346 * ixgbevf_configure_msix - Configure MSI-X hardware 1347 * @adapter: board private structure 1348 * 1349 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1350 * interrupts. 1351 **/ 1352 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1353 { 1354 struct ixgbevf_q_vector *q_vector; 1355 int q_vectors, v_idx; 1356 1357 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1358 adapter->eims_enable_mask = 0; 1359 1360 /* Populate the IVAR table and set the ITR values to the 1361 * corresponding register. 1362 */ 1363 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1364 struct ixgbevf_ring *ring; 1365 1366 q_vector = adapter->q_vector[v_idx]; 1367 1368 ixgbevf_for_each_ring(ring, q_vector->rx) 1369 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1370 1371 ixgbevf_for_each_ring(ring, q_vector->tx) 1372 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1373 1374 if (q_vector->tx.ring && !q_vector->rx.ring) { 1375 /* Tx only vector */ 1376 if (adapter->tx_itr_setting == 1) 1377 q_vector->itr = IXGBE_12K_ITR; 1378 else 1379 q_vector->itr = adapter->tx_itr_setting; 1380 } else { 1381 /* Rx or Rx/Tx vector */ 1382 if (adapter->rx_itr_setting == 1) 1383 q_vector->itr = IXGBE_20K_ITR; 1384 else 1385 q_vector->itr = adapter->rx_itr_setting; 1386 } 1387 1388 /* add q_vector eims value to global eims_enable_mask */ 1389 adapter->eims_enable_mask |= BIT(v_idx); 1390 1391 ixgbevf_write_eitr(q_vector); 1392 } 1393 1394 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1395 /* setup eims_other and add value to global eims_enable_mask */ 1396 adapter->eims_other = BIT(v_idx); 1397 adapter->eims_enable_mask |= adapter->eims_other; 1398 } 1399 1400 enum latency_range { 1401 lowest_latency = 0, 1402 low_latency = 1, 1403 bulk_latency = 2, 1404 latency_invalid = 255 1405 }; 1406 1407 /** 1408 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1409 * @q_vector: structure containing interrupt and ring information 1410 * @ring_container: structure containing ring performance data 1411 * 1412 * Stores a new ITR value based on packets and byte 1413 * counts during the last interrupt. The advantage of per interrupt 1414 * computation is faster updates and more accurate ITR for the current 1415 * traffic pattern. Constants in this function were computed 1416 * based on theoretical maximum wire speed and thresholds were set based 1417 * on testing data as well as attempting to minimize response time 1418 * while increasing bulk throughput. 1419 **/ 1420 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1421 struct ixgbevf_ring_container *ring_container) 1422 { 1423 int bytes = ring_container->total_bytes; 1424 int packets = ring_container->total_packets; 1425 u32 timepassed_us; 1426 u64 bytes_perint; 1427 u8 itr_setting = ring_container->itr; 1428 1429 if (packets == 0) 1430 return; 1431 1432 /* simple throttle rate management 1433 * 0-20MB/s lowest (100000 ints/s) 1434 * 20-100MB/s low (20000 ints/s) 1435 * 100-1249MB/s bulk (12000 ints/s) 1436 */ 1437 /* what was last interrupt timeslice? */ 1438 timepassed_us = q_vector->itr >> 2; 1439 if (timepassed_us == 0) 1440 return; 1441 1442 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1443 1444 switch (itr_setting) { 1445 case lowest_latency: 1446 if (bytes_perint > 10) 1447 itr_setting = low_latency; 1448 break; 1449 case low_latency: 1450 if (bytes_perint > 20) 1451 itr_setting = bulk_latency; 1452 else if (bytes_perint <= 10) 1453 itr_setting = lowest_latency; 1454 break; 1455 case bulk_latency: 1456 if (bytes_perint <= 20) 1457 itr_setting = low_latency; 1458 break; 1459 } 1460 1461 /* clear work counters since we have the values we need */ 1462 ring_container->total_bytes = 0; 1463 ring_container->total_packets = 0; 1464 1465 /* write updated itr to ring container */ 1466 ring_container->itr = itr_setting; 1467 } 1468 1469 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1470 { 1471 u32 new_itr = q_vector->itr; 1472 u8 current_itr; 1473 1474 ixgbevf_update_itr(q_vector, &q_vector->tx); 1475 ixgbevf_update_itr(q_vector, &q_vector->rx); 1476 1477 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1478 1479 switch (current_itr) { 1480 /* counts and packets in update_itr are dependent on these numbers */ 1481 case lowest_latency: 1482 new_itr = IXGBE_100K_ITR; 1483 break; 1484 case low_latency: 1485 new_itr = IXGBE_20K_ITR; 1486 break; 1487 case bulk_latency: 1488 new_itr = IXGBE_12K_ITR; 1489 break; 1490 default: 1491 break; 1492 } 1493 1494 if (new_itr != q_vector->itr) { 1495 /* do an exponential smoothing */ 1496 new_itr = (10 * new_itr * q_vector->itr) / 1497 ((9 * new_itr) + q_vector->itr); 1498 1499 /* save the algorithm value here */ 1500 q_vector->itr = new_itr; 1501 1502 ixgbevf_write_eitr(q_vector); 1503 } 1504 } 1505 1506 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1507 { 1508 struct ixgbevf_adapter *adapter = data; 1509 struct ixgbe_hw *hw = &adapter->hw; 1510 1511 hw->mac.get_link_status = 1; 1512 1513 ixgbevf_service_event_schedule(adapter); 1514 1515 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1516 1517 return IRQ_HANDLED; 1518 } 1519 1520 /** 1521 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1522 * @irq: unused 1523 * @data: pointer to our q_vector struct for this interrupt vector 1524 **/ 1525 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1526 { 1527 struct ixgbevf_q_vector *q_vector = data; 1528 1529 /* EIAM disabled interrupts (on this vector) for us */ 1530 if (q_vector->rx.ring || q_vector->tx.ring) 1531 napi_schedule_irqoff(&q_vector->napi); 1532 1533 return IRQ_HANDLED; 1534 } 1535 1536 /** 1537 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1538 * @adapter: board private structure 1539 * 1540 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1541 * interrupts from the kernel. 1542 **/ 1543 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1544 { 1545 struct net_device *netdev = adapter->netdev; 1546 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1547 unsigned int ri = 0, ti = 0; 1548 int vector, err; 1549 1550 for (vector = 0; vector < q_vectors; vector++) { 1551 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1552 struct msix_entry *entry = &adapter->msix_entries[vector]; 1553 1554 if (q_vector->tx.ring && q_vector->rx.ring) { 1555 snprintf(q_vector->name, sizeof(q_vector->name), 1556 "%s-TxRx-%u", netdev->name, ri++); 1557 ti++; 1558 } else if (q_vector->rx.ring) { 1559 snprintf(q_vector->name, sizeof(q_vector->name), 1560 "%s-rx-%u", netdev->name, ri++); 1561 } else if (q_vector->tx.ring) { 1562 snprintf(q_vector->name, sizeof(q_vector->name), 1563 "%s-tx-%u", netdev->name, ti++); 1564 } else { 1565 /* skip this unused q_vector */ 1566 continue; 1567 } 1568 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1569 q_vector->name, q_vector); 1570 if (err) { 1571 hw_dbg(&adapter->hw, 1572 "request_irq failed for MSIX interrupt Error: %d\n", 1573 err); 1574 goto free_queue_irqs; 1575 } 1576 } 1577 1578 err = request_irq(adapter->msix_entries[vector].vector, 1579 &ixgbevf_msix_other, 0, netdev->name, adapter); 1580 if (err) { 1581 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1582 err); 1583 goto free_queue_irqs; 1584 } 1585 1586 return 0; 1587 1588 free_queue_irqs: 1589 while (vector) { 1590 vector--; 1591 free_irq(adapter->msix_entries[vector].vector, 1592 adapter->q_vector[vector]); 1593 } 1594 /* This failure is non-recoverable - it indicates the system is 1595 * out of MSIX vector resources and the VF driver cannot run 1596 * without them. Set the number of msix vectors to zero 1597 * indicating that not enough can be allocated. The error 1598 * will be returned to the user indicating device open failed. 1599 * Any further attempts to force the driver to open will also 1600 * fail. The only way to recover is to unload the driver and 1601 * reload it again. If the system has recovered some MSIX 1602 * vectors then it may succeed. 1603 */ 1604 adapter->num_msix_vectors = 0; 1605 return err; 1606 } 1607 1608 /** 1609 * ixgbevf_request_irq - initialize interrupts 1610 * @adapter: board private structure 1611 * 1612 * Attempts to configure interrupts using the best available 1613 * capabilities of the hardware and kernel. 1614 **/ 1615 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1616 { 1617 int err = ixgbevf_request_msix_irqs(adapter); 1618 1619 if (err) 1620 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1621 1622 return err; 1623 } 1624 1625 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1626 { 1627 int i, q_vectors; 1628 1629 if (!adapter->msix_entries) 1630 return; 1631 1632 q_vectors = adapter->num_msix_vectors; 1633 i = q_vectors - 1; 1634 1635 free_irq(adapter->msix_entries[i].vector, adapter); 1636 i--; 1637 1638 for (; i >= 0; i--) { 1639 /* free only the irqs that were actually requested */ 1640 if (!adapter->q_vector[i]->rx.ring && 1641 !adapter->q_vector[i]->tx.ring) 1642 continue; 1643 1644 free_irq(adapter->msix_entries[i].vector, 1645 adapter->q_vector[i]); 1646 } 1647 } 1648 1649 /** 1650 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1651 * @adapter: board private structure 1652 **/ 1653 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1654 { 1655 struct ixgbe_hw *hw = &adapter->hw; 1656 int i; 1657 1658 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1659 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1660 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1661 1662 IXGBE_WRITE_FLUSH(hw); 1663 1664 for (i = 0; i < adapter->num_msix_vectors; i++) 1665 synchronize_irq(adapter->msix_entries[i].vector); 1666 } 1667 1668 /** 1669 * ixgbevf_irq_enable - Enable default interrupt generation settings 1670 * @adapter: board private structure 1671 **/ 1672 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1673 { 1674 struct ixgbe_hw *hw = &adapter->hw; 1675 1676 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1677 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1678 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1679 } 1680 1681 /** 1682 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1683 * @adapter: board private structure 1684 * @ring: structure containing ring specific data 1685 * 1686 * Configure the Tx descriptor ring after a reset. 1687 **/ 1688 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1689 struct ixgbevf_ring *ring) 1690 { 1691 struct ixgbe_hw *hw = &adapter->hw; 1692 u64 tdba = ring->dma; 1693 int wait_loop = 10; 1694 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1695 u8 reg_idx = ring->reg_idx; 1696 1697 /* disable queue to avoid issues while updating state */ 1698 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1699 IXGBE_WRITE_FLUSH(hw); 1700 1701 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1702 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1703 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1704 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1705 1706 /* disable head writeback */ 1707 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1708 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1709 1710 /* enable relaxed ordering */ 1711 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1712 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1713 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1714 1715 /* reset head and tail pointers */ 1716 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1717 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1718 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1719 1720 /* reset ntu and ntc to place SW in sync with hardwdare */ 1721 ring->next_to_clean = 0; 1722 ring->next_to_use = 0; 1723 1724 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1725 * to or less than the number of on chip descriptors, which is 1726 * currently 40. 1727 */ 1728 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1729 1730 /* Setting PTHRESH to 32 both improves performance */ 1731 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1732 32; /* PTHRESH = 32 */ 1733 1734 /* reinitialize tx_buffer_info */ 1735 memset(ring->tx_buffer_info, 0, 1736 sizeof(struct ixgbevf_tx_buffer) * ring->count); 1737 1738 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1739 clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1740 1741 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1742 1743 /* poll to verify queue is enabled */ 1744 do { 1745 usleep_range(1000, 2000); 1746 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1747 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1748 if (!wait_loop) 1749 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1750 } 1751 1752 /** 1753 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1754 * @adapter: board private structure 1755 * 1756 * Configure the Tx unit of the MAC after a reset. 1757 **/ 1758 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1759 { 1760 u32 i; 1761 1762 /* Setup the HW Tx Head and Tail descriptor pointers */ 1763 for (i = 0; i < adapter->num_tx_queues; i++) 1764 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1765 for (i = 0; i < adapter->num_xdp_queues; i++) 1766 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]); 1767 } 1768 1769 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1770 1771 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, 1772 struct ixgbevf_ring *ring, int index) 1773 { 1774 struct ixgbe_hw *hw = &adapter->hw; 1775 u32 srrctl; 1776 1777 srrctl = IXGBE_SRRCTL_DROP_EN; 1778 1779 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1780 if (ring_uses_large_buffer(ring)) 1781 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1782 else 1783 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1784 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1785 1786 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1787 } 1788 1789 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1790 { 1791 struct ixgbe_hw *hw = &adapter->hw; 1792 1793 /* PSRTYPE must be initialized in 82599 */ 1794 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1795 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1796 IXGBE_PSRTYPE_L2HDR; 1797 1798 if (adapter->num_rx_queues > 1) 1799 psrtype |= BIT(29); 1800 1801 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1802 } 1803 1804 #define IXGBEVF_MAX_RX_DESC_POLL 10 1805 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1806 struct ixgbevf_ring *ring) 1807 { 1808 struct ixgbe_hw *hw = &adapter->hw; 1809 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1810 u32 rxdctl; 1811 u8 reg_idx = ring->reg_idx; 1812 1813 if (IXGBE_REMOVED(hw->hw_addr)) 1814 return; 1815 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1816 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1817 1818 /* write value back with RXDCTL.ENABLE bit cleared */ 1819 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1820 1821 /* the hardware may take up to 100us to really disable the Rx queue */ 1822 do { 1823 udelay(10); 1824 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1825 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1826 1827 if (!wait_loop) 1828 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1829 reg_idx); 1830 } 1831 1832 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1833 struct ixgbevf_ring *ring) 1834 { 1835 struct ixgbe_hw *hw = &adapter->hw; 1836 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1837 u32 rxdctl; 1838 u8 reg_idx = ring->reg_idx; 1839 1840 if (IXGBE_REMOVED(hw->hw_addr)) 1841 return; 1842 do { 1843 usleep_range(1000, 2000); 1844 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1845 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1846 1847 if (!wait_loop) 1848 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1849 reg_idx); 1850 } 1851 1852 /** 1853 * ixgbevf_init_rss_key - Initialize adapter RSS key 1854 * @adapter: device handle 1855 * 1856 * Allocates and initializes the RSS key if it is not allocated. 1857 **/ 1858 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1859 { 1860 u32 *rss_key; 1861 1862 if (!adapter->rss_key) { 1863 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1864 if (unlikely(!rss_key)) 1865 return -ENOMEM; 1866 1867 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1868 adapter->rss_key = rss_key; 1869 } 1870 1871 return 0; 1872 } 1873 1874 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1875 { 1876 struct ixgbe_hw *hw = &adapter->hw; 1877 u32 vfmrqc = 0, vfreta = 0; 1878 u16 rss_i = adapter->num_rx_queues; 1879 u8 i, j; 1880 1881 /* Fill out hash function seeds */ 1882 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1883 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1884 1885 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1886 if (j == rss_i) 1887 j = 0; 1888 1889 adapter->rss_indir_tbl[i] = j; 1890 1891 vfreta |= j << (i & 0x3) * 8; 1892 if ((i & 3) == 3) { 1893 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1894 vfreta = 0; 1895 } 1896 } 1897 1898 /* Perform hash on these packet types */ 1899 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1900 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1901 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1902 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1903 1904 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1905 1906 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1907 } 1908 1909 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1910 struct ixgbevf_ring *ring) 1911 { 1912 struct ixgbe_hw *hw = &adapter->hw; 1913 union ixgbe_adv_rx_desc *rx_desc; 1914 u64 rdba = ring->dma; 1915 u32 rxdctl; 1916 u8 reg_idx = ring->reg_idx; 1917 1918 /* disable queue to avoid issues while updating state */ 1919 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1920 ixgbevf_disable_rx_queue(adapter, ring); 1921 1922 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1923 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1924 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1925 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1926 1927 #ifndef CONFIG_SPARC 1928 /* enable relaxed ordering */ 1929 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1930 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1931 #else 1932 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1933 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1934 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1935 #endif 1936 1937 /* reset head and tail pointers */ 1938 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1939 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1940 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1941 1942 /* initialize rx_buffer_info */ 1943 memset(ring->rx_buffer_info, 0, 1944 sizeof(struct ixgbevf_rx_buffer) * ring->count); 1945 1946 /* initialize Rx descriptor 0 */ 1947 rx_desc = IXGBEVF_RX_DESC(ring, 0); 1948 rx_desc->wb.upper.length = 0; 1949 1950 /* reset ntu and ntc to place SW in sync with hardwdare */ 1951 ring->next_to_clean = 0; 1952 ring->next_to_use = 0; 1953 ring->next_to_alloc = 0; 1954 1955 ixgbevf_configure_srrctl(adapter, ring, reg_idx); 1956 1957 /* RXDCTL.RLPML does not work on 82599 */ 1958 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) { 1959 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK | 1960 IXGBE_RXDCTL_RLPML_EN); 1961 1962 #if (PAGE_SIZE < 8192) 1963 /* Limit the maximum frame size so we don't overrun the skb */ 1964 if (ring_uses_build_skb(ring) && 1965 !ring_uses_large_buffer(ring)) 1966 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB | 1967 IXGBE_RXDCTL_RLPML_EN; 1968 #endif 1969 } 1970 1971 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1972 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1973 1974 ixgbevf_rx_desc_queue_enable(adapter, ring); 1975 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1976 } 1977 1978 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter, 1979 struct ixgbevf_ring *rx_ring) 1980 { 1981 struct net_device *netdev = adapter->netdev; 1982 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1983 1984 /* set build_skb and buffer size flags */ 1985 clear_ring_build_skb_enabled(rx_ring); 1986 clear_ring_uses_large_buffer(rx_ring); 1987 1988 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX) 1989 return; 1990 1991 if (PAGE_SIZE < 8192) 1992 if (max_frame > IXGBEVF_MAX_FRAME_BUILD_SKB) 1993 set_ring_uses_large_buffer(rx_ring); 1994 1995 /* 82599 can't rely on RXDCTL.RLPML to restrict the size of the frame */ 1996 if (adapter->hw.mac.type == ixgbe_mac_82599_vf && !ring_uses_large_buffer(rx_ring)) 1997 return; 1998 1999 set_ring_build_skb_enabled(rx_ring); 2000 } 2001 2002 /** 2003 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 2004 * @adapter: board private structure 2005 * 2006 * Configure the Rx unit of the MAC after a reset. 2007 **/ 2008 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 2009 { 2010 struct ixgbe_hw *hw = &adapter->hw; 2011 struct net_device *netdev = adapter->netdev; 2012 int i, ret; 2013 2014 ixgbevf_setup_psrtype(adapter); 2015 if (hw->mac.type >= ixgbe_mac_X550_vf) 2016 ixgbevf_setup_vfmrqc(adapter); 2017 2018 spin_lock_bh(&adapter->mbx_lock); 2019 /* notify the PF of our intent to use this size of frame */ 2020 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 2021 spin_unlock_bh(&adapter->mbx_lock); 2022 if (ret) 2023 dev_err(&adapter->pdev->dev, 2024 "Failed to set MTU at %d\n", netdev->mtu); 2025 2026 /* Setup the HW Rx Head and Tail Descriptor Pointers and 2027 * the Base and Length of the Rx Descriptor Ring 2028 */ 2029 for (i = 0; i < adapter->num_rx_queues; i++) { 2030 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 2031 2032 ixgbevf_set_rx_buffer_len(adapter, rx_ring); 2033 ixgbevf_configure_rx_ring(adapter, rx_ring); 2034 } 2035 } 2036 2037 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 2038 __be16 proto, u16 vid) 2039 { 2040 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2041 struct ixgbe_hw *hw = &adapter->hw; 2042 int err; 2043 2044 spin_lock_bh(&adapter->mbx_lock); 2045 2046 /* add VID to filter table */ 2047 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 2048 2049 spin_unlock_bh(&adapter->mbx_lock); 2050 2051 if (err) { 2052 netdev_err(netdev, "VF could not set VLAN %d\n", vid); 2053 2054 /* translate error return types so error makes sense */ 2055 if (err == IXGBE_ERR_MBX) 2056 return -EIO; 2057 2058 if (err == IXGBE_ERR_INVALID_ARGUMENT) 2059 return -EACCES; 2060 } 2061 2062 set_bit(vid, adapter->active_vlans); 2063 2064 return err; 2065 } 2066 2067 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 2068 __be16 proto, u16 vid) 2069 { 2070 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2071 struct ixgbe_hw *hw = &adapter->hw; 2072 int err; 2073 2074 spin_lock_bh(&adapter->mbx_lock); 2075 2076 /* remove VID from filter table */ 2077 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 2078 2079 spin_unlock_bh(&adapter->mbx_lock); 2080 2081 if (err) 2082 netdev_err(netdev, "Could not remove VLAN %d\n", vid); 2083 2084 clear_bit(vid, adapter->active_vlans); 2085 2086 return err; 2087 } 2088 2089 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 2090 { 2091 u16 vid; 2092 2093 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2094 ixgbevf_vlan_rx_add_vid(adapter->netdev, 2095 htons(ETH_P_8021Q), vid); 2096 } 2097 2098 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 2099 { 2100 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2101 struct ixgbe_hw *hw = &adapter->hw; 2102 int count = 0; 2103 2104 if (!netdev_uc_empty(netdev)) { 2105 struct netdev_hw_addr *ha; 2106 2107 netdev_for_each_uc_addr(ha, netdev) { 2108 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 2109 udelay(200); 2110 } 2111 } else { 2112 /* If the list is empty then send message to PF driver to 2113 * clear all MAC VLANs on this VF. 2114 */ 2115 hw->mac.ops.set_uc_addr(hw, 0, NULL); 2116 } 2117 2118 return count; 2119 } 2120 2121 /** 2122 * ixgbevf_set_rx_mode - Multicast and unicast set 2123 * @netdev: network interface device structure 2124 * 2125 * The set_rx_method entry point is called whenever the multicast address 2126 * list, unicast address list or the network interface flags are updated. 2127 * This routine is responsible for configuring the hardware for proper 2128 * multicast mode and configuring requested unicast filters. 2129 **/ 2130 static void ixgbevf_set_rx_mode(struct net_device *netdev) 2131 { 2132 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2133 struct ixgbe_hw *hw = &adapter->hw; 2134 unsigned int flags = netdev->flags; 2135 int xcast_mode; 2136 2137 /* request the most inclusive mode we need */ 2138 if (flags & IFF_PROMISC) 2139 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 2140 else if (flags & IFF_ALLMULTI) 2141 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 2142 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 2143 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 2144 else 2145 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 2146 2147 spin_lock_bh(&adapter->mbx_lock); 2148 2149 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 2150 2151 /* reprogram multicast list */ 2152 hw->mac.ops.update_mc_addr_list(hw, netdev); 2153 2154 ixgbevf_write_uc_addr_list(netdev); 2155 2156 spin_unlock_bh(&adapter->mbx_lock); 2157 } 2158 2159 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 2160 { 2161 int q_idx; 2162 struct ixgbevf_q_vector *q_vector; 2163 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2164 2165 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2166 q_vector = adapter->q_vector[q_idx]; 2167 napi_enable(&q_vector->napi); 2168 } 2169 } 2170 2171 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 2172 { 2173 int q_idx; 2174 struct ixgbevf_q_vector *q_vector; 2175 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2176 2177 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2178 q_vector = adapter->q_vector[q_idx]; 2179 napi_disable(&q_vector->napi); 2180 } 2181 } 2182 2183 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 2184 { 2185 struct ixgbe_hw *hw = &adapter->hw; 2186 unsigned int def_q = 0; 2187 unsigned int num_tcs = 0; 2188 unsigned int num_rx_queues = adapter->num_rx_queues; 2189 unsigned int num_tx_queues = adapter->num_tx_queues; 2190 int err; 2191 2192 spin_lock_bh(&adapter->mbx_lock); 2193 2194 /* fetch queue configuration from the PF */ 2195 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2196 2197 spin_unlock_bh(&adapter->mbx_lock); 2198 2199 if (err) 2200 return err; 2201 2202 if (num_tcs > 1) { 2203 /* we need only one Tx queue */ 2204 num_tx_queues = 1; 2205 2206 /* update default Tx ring register index */ 2207 adapter->tx_ring[0]->reg_idx = def_q; 2208 2209 /* we need as many queues as traffic classes */ 2210 num_rx_queues = num_tcs; 2211 } 2212 2213 /* if we have a bad config abort request queue reset */ 2214 if ((adapter->num_rx_queues != num_rx_queues) || 2215 (adapter->num_tx_queues != num_tx_queues)) { 2216 /* force mailbox timeout to prevent further messages */ 2217 hw->mbx.timeout = 0; 2218 2219 /* wait for watchdog to come around and bail us out */ 2220 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2221 } 2222 2223 return 0; 2224 } 2225 2226 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2227 { 2228 ixgbevf_configure_dcb(adapter); 2229 2230 ixgbevf_set_rx_mode(adapter->netdev); 2231 2232 ixgbevf_restore_vlan(adapter); 2233 ixgbevf_ipsec_restore(adapter); 2234 2235 ixgbevf_configure_tx(adapter); 2236 ixgbevf_configure_rx(adapter); 2237 } 2238 2239 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2240 { 2241 /* Only save pre-reset stats if there are some */ 2242 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2243 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2244 adapter->stats.base_vfgprc; 2245 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2246 adapter->stats.base_vfgptc; 2247 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2248 adapter->stats.base_vfgorc; 2249 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2250 adapter->stats.base_vfgotc; 2251 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2252 adapter->stats.base_vfmprc; 2253 } 2254 } 2255 2256 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2257 { 2258 struct ixgbe_hw *hw = &adapter->hw; 2259 2260 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2261 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2262 adapter->stats.last_vfgorc |= 2263 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2264 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2265 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2266 adapter->stats.last_vfgotc |= 2267 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2268 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2269 2270 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2271 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2272 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2273 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2274 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2275 } 2276 2277 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2278 { 2279 struct ixgbe_hw *hw = &adapter->hw; 2280 static const int api[] = { 2281 ixgbe_mbox_api_15, 2282 ixgbe_mbox_api_14, 2283 ixgbe_mbox_api_13, 2284 ixgbe_mbox_api_12, 2285 ixgbe_mbox_api_11, 2286 ixgbe_mbox_api_10, 2287 ixgbe_mbox_api_unknown 2288 }; 2289 int err, idx = 0; 2290 2291 spin_lock_bh(&adapter->mbx_lock); 2292 2293 while (api[idx] != ixgbe_mbox_api_unknown) { 2294 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2295 if (!err) 2296 break; 2297 idx++; 2298 } 2299 2300 if (hw->api_version >= ixgbe_mbox_api_15) { 2301 hw->mbx.ops.init_params(hw); 2302 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 2303 sizeof(struct ixgbe_mbx_operations)); 2304 } 2305 2306 spin_unlock_bh(&adapter->mbx_lock); 2307 } 2308 2309 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2310 { 2311 struct net_device *netdev = adapter->netdev; 2312 struct pci_dev *pdev = adapter->pdev; 2313 struct ixgbe_hw *hw = &adapter->hw; 2314 bool state; 2315 2316 ixgbevf_configure_msix(adapter); 2317 2318 spin_lock_bh(&adapter->mbx_lock); 2319 2320 if (is_valid_ether_addr(hw->mac.addr)) 2321 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2322 else 2323 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2324 2325 spin_unlock_bh(&adapter->mbx_lock); 2326 2327 state = adapter->link_state; 2328 hw->mac.ops.get_link_state(hw, &adapter->link_state); 2329 if (state && state != adapter->link_state) 2330 dev_info(&pdev->dev, "VF is administratively disabled\n"); 2331 2332 smp_mb__before_atomic(); 2333 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2334 ixgbevf_napi_enable_all(adapter); 2335 2336 /* clear any pending interrupts, may auto mask */ 2337 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2338 ixgbevf_irq_enable(adapter); 2339 2340 /* enable transmits */ 2341 netif_tx_start_all_queues(netdev); 2342 2343 ixgbevf_save_reset_stats(adapter); 2344 ixgbevf_init_last_counter_stats(adapter); 2345 2346 hw->mac.get_link_status = 1; 2347 mod_timer(&adapter->service_timer, jiffies); 2348 } 2349 2350 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2351 { 2352 ixgbevf_configure(adapter); 2353 2354 ixgbevf_up_complete(adapter); 2355 } 2356 2357 /** 2358 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2359 * @rx_ring: ring to free buffers from 2360 **/ 2361 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2362 { 2363 u16 i = rx_ring->next_to_clean; 2364 2365 /* Free Rx ring sk_buff */ 2366 if (rx_ring->skb) { 2367 dev_kfree_skb(rx_ring->skb); 2368 rx_ring->skb = NULL; 2369 } 2370 2371 /* Free all the Rx ring pages */ 2372 while (i != rx_ring->next_to_alloc) { 2373 struct ixgbevf_rx_buffer *rx_buffer; 2374 2375 rx_buffer = &rx_ring->rx_buffer_info[i]; 2376 2377 /* Invalidate cache lines that may have been written to by 2378 * device so that we avoid corrupting memory. 2379 */ 2380 dma_sync_single_range_for_cpu(rx_ring->dev, 2381 rx_buffer->dma, 2382 rx_buffer->page_offset, 2383 ixgbevf_rx_bufsz(rx_ring), 2384 DMA_FROM_DEVICE); 2385 2386 /* free resources associated with mapping */ 2387 dma_unmap_page_attrs(rx_ring->dev, 2388 rx_buffer->dma, 2389 ixgbevf_rx_pg_size(rx_ring), 2390 DMA_FROM_DEVICE, 2391 IXGBEVF_RX_DMA_ATTR); 2392 2393 __page_frag_cache_drain(rx_buffer->page, 2394 rx_buffer->pagecnt_bias); 2395 2396 i++; 2397 if (i == rx_ring->count) 2398 i = 0; 2399 } 2400 2401 rx_ring->next_to_alloc = 0; 2402 rx_ring->next_to_clean = 0; 2403 rx_ring->next_to_use = 0; 2404 } 2405 2406 /** 2407 * ixgbevf_clean_tx_ring - Free Tx Buffers 2408 * @tx_ring: ring to be cleaned 2409 **/ 2410 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2411 { 2412 u16 i = tx_ring->next_to_clean; 2413 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 2414 2415 while (i != tx_ring->next_to_use) { 2416 union ixgbe_adv_tx_desc *eop_desc, *tx_desc; 2417 2418 /* Free all the Tx ring sk_buffs */ 2419 if (ring_is_xdp(tx_ring)) 2420 page_frag_free(tx_buffer->data); 2421 else 2422 dev_kfree_skb_any(tx_buffer->skb); 2423 2424 /* unmap skb header data */ 2425 dma_unmap_single(tx_ring->dev, 2426 dma_unmap_addr(tx_buffer, dma), 2427 dma_unmap_len(tx_buffer, len), 2428 DMA_TO_DEVICE); 2429 2430 /* check for eop_desc to determine the end of the packet */ 2431 eop_desc = tx_buffer->next_to_watch; 2432 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 2433 2434 /* unmap remaining buffers */ 2435 while (tx_desc != eop_desc) { 2436 tx_buffer++; 2437 tx_desc++; 2438 i++; 2439 if (unlikely(i == tx_ring->count)) { 2440 i = 0; 2441 tx_buffer = tx_ring->tx_buffer_info; 2442 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 2443 } 2444 2445 /* unmap any remaining paged data */ 2446 if (dma_unmap_len(tx_buffer, len)) 2447 dma_unmap_page(tx_ring->dev, 2448 dma_unmap_addr(tx_buffer, dma), 2449 dma_unmap_len(tx_buffer, len), 2450 DMA_TO_DEVICE); 2451 } 2452 2453 /* move us one more past the eop_desc for start of next pkt */ 2454 tx_buffer++; 2455 i++; 2456 if (unlikely(i == tx_ring->count)) { 2457 i = 0; 2458 tx_buffer = tx_ring->tx_buffer_info; 2459 } 2460 } 2461 2462 /* reset next_to_use and next_to_clean */ 2463 tx_ring->next_to_use = 0; 2464 tx_ring->next_to_clean = 0; 2465 2466 } 2467 2468 /** 2469 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2470 * @adapter: board private structure 2471 **/ 2472 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2473 { 2474 int i; 2475 2476 for (i = 0; i < adapter->num_rx_queues; i++) 2477 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2478 } 2479 2480 /** 2481 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2482 * @adapter: board private structure 2483 **/ 2484 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2485 { 2486 int i; 2487 2488 for (i = 0; i < adapter->num_tx_queues; i++) 2489 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2490 for (i = 0; i < adapter->num_xdp_queues; i++) 2491 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]); 2492 } 2493 2494 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2495 { 2496 struct net_device *netdev = adapter->netdev; 2497 struct ixgbe_hw *hw = &adapter->hw; 2498 int i; 2499 2500 /* signal that we are down to the interrupt handler */ 2501 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2502 return; /* do nothing if already down */ 2503 2504 /* disable all enabled Rx queues */ 2505 for (i = 0; i < adapter->num_rx_queues; i++) 2506 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2507 2508 usleep_range(10000, 20000); 2509 2510 netif_tx_stop_all_queues(netdev); 2511 2512 /* call carrier off first to avoid false dev_watchdog timeouts */ 2513 netif_carrier_off(netdev); 2514 netif_tx_disable(netdev); 2515 2516 ixgbevf_irq_disable(adapter); 2517 2518 ixgbevf_napi_disable_all(adapter); 2519 2520 del_timer_sync(&adapter->service_timer); 2521 2522 /* disable transmits in the hardware now that interrupts are off */ 2523 for (i = 0; i < adapter->num_tx_queues; i++) { 2524 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2525 2526 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2527 IXGBE_TXDCTL_SWFLSH); 2528 } 2529 2530 for (i = 0; i < adapter->num_xdp_queues; i++) { 2531 u8 reg_idx = adapter->xdp_ring[i]->reg_idx; 2532 2533 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2534 IXGBE_TXDCTL_SWFLSH); 2535 } 2536 2537 if (!pci_channel_offline(adapter->pdev)) 2538 ixgbevf_reset(adapter); 2539 2540 ixgbevf_clean_all_tx_rings(adapter); 2541 ixgbevf_clean_all_rx_rings(adapter); 2542 } 2543 2544 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2545 { 2546 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2547 msleep(1); 2548 2549 ixgbevf_down(adapter); 2550 pci_set_master(adapter->pdev); 2551 ixgbevf_up(adapter); 2552 2553 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2554 } 2555 2556 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2557 { 2558 struct ixgbe_hw *hw = &adapter->hw; 2559 struct net_device *netdev = adapter->netdev; 2560 2561 if (hw->mac.ops.reset_hw(hw)) { 2562 hw_dbg(hw, "PF still resetting\n"); 2563 } else { 2564 hw->mac.ops.init_hw(hw); 2565 ixgbevf_negotiate_api(adapter); 2566 } 2567 2568 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2569 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2570 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2571 } 2572 2573 adapter->last_reset = jiffies; 2574 } 2575 2576 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2577 int vectors) 2578 { 2579 int vector_threshold; 2580 2581 /* We'll want at least 2 (vector_threshold): 2582 * 1) TxQ[0] + RxQ[0] handler 2583 * 2) Other (Link Status Change, etc.) 2584 */ 2585 vector_threshold = MIN_MSIX_COUNT; 2586 2587 /* The more we get, the more we will assign to Tx/Rx Cleanup 2588 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2589 * Right now, we simply care about how many we'll get; we'll 2590 * set them up later while requesting irq's. 2591 */ 2592 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2593 vector_threshold, vectors); 2594 2595 if (vectors < 0) { 2596 dev_err(&adapter->pdev->dev, 2597 "Unable to allocate MSI-X interrupts\n"); 2598 kfree(adapter->msix_entries); 2599 adapter->msix_entries = NULL; 2600 return vectors; 2601 } 2602 2603 /* Adjust for only the vectors we'll use, which is minimum 2604 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2605 * vectors we were allocated. 2606 */ 2607 adapter->num_msix_vectors = vectors; 2608 2609 return 0; 2610 } 2611 2612 /** 2613 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2614 * @adapter: board private structure to initialize 2615 * 2616 * This is the top level queue allocation routine. The order here is very 2617 * important, starting with the "most" number of features turned on at once, 2618 * and ending with the smallest set of features. This way large combinations 2619 * can be allocated if they're turned on, and smaller combinations are the 2620 * fall through conditions. 2621 * 2622 **/ 2623 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2624 { 2625 struct ixgbe_hw *hw = &adapter->hw; 2626 unsigned int def_q = 0; 2627 unsigned int num_tcs = 0; 2628 int err; 2629 2630 /* Start with base case */ 2631 adapter->num_rx_queues = 1; 2632 adapter->num_tx_queues = 1; 2633 adapter->num_xdp_queues = 0; 2634 2635 spin_lock_bh(&adapter->mbx_lock); 2636 2637 /* fetch queue configuration from the PF */ 2638 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2639 2640 spin_unlock_bh(&adapter->mbx_lock); 2641 2642 if (err) 2643 return; 2644 2645 /* we need as many queues as traffic classes */ 2646 if (num_tcs > 1) { 2647 adapter->num_rx_queues = num_tcs; 2648 } else { 2649 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2650 2651 switch (hw->api_version) { 2652 case ixgbe_mbox_api_11: 2653 case ixgbe_mbox_api_12: 2654 case ixgbe_mbox_api_13: 2655 case ixgbe_mbox_api_14: 2656 case ixgbe_mbox_api_15: 2657 if (adapter->xdp_prog && 2658 hw->mac.max_tx_queues == rss) 2659 rss = rss > 3 ? 2 : 1; 2660 2661 adapter->num_rx_queues = rss; 2662 adapter->num_tx_queues = rss; 2663 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0; 2664 break; 2665 default: 2666 break; 2667 } 2668 } 2669 } 2670 2671 /** 2672 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2673 * @adapter: board private structure to initialize 2674 * 2675 * Attempt to configure the interrupts using the best available 2676 * capabilities of the hardware and the kernel. 2677 **/ 2678 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2679 { 2680 int vector, v_budget; 2681 2682 /* It's easy to be greedy for MSI-X vectors, but it really 2683 * doesn't do us much good if we have a lot more vectors 2684 * than CPU's. So let's be conservative and only ask for 2685 * (roughly) the same number of vectors as there are CPU's. 2686 * The default is to use pairs of vectors. 2687 */ 2688 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2689 v_budget = min_t(int, v_budget, num_online_cpus()); 2690 v_budget += NON_Q_VECTORS; 2691 2692 adapter->msix_entries = kcalloc(v_budget, 2693 sizeof(struct msix_entry), GFP_KERNEL); 2694 if (!adapter->msix_entries) 2695 return -ENOMEM; 2696 2697 for (vector = 0; vector < v_budget; vector++) 2698 adapter->msix_entries[vector].entry = vector; 2699 2700 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver 2701 * does not support any other modes, so we will simply fail here. Note 2702 * that we clean up the msix_entries pointer else-where. 2703 */ 2704 return ixgbevf_acquire_msix_vectors(adapter, v_budget); 2705 } 2706 2707 static void ixgbevf_add_ring(struct ixgbevf_ring *ring, 2708 struct ixgbevf_ring_container *head) 2709 { 2710 ring->next = head->ring; 2711 head->ring = ring; 2712 head->count++; 2713 } 2714 2715 /** 2716 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector 2717 * @adapter: board private structure to initialize 2718 * @v_idx: index of vector in adapter struct 2719 * @txr_count: number of Tx rings for q vector 2720 * @txr_idx: index of first Tx ring to assign 2721 * @xdp_count: total number of XDP rings to allocate 2722 * @xdp_idx: index of first XDP ring to allocate 2723 * @rxr_count: number of Rx rings for q vector 2724 * @rxr_idx: index of first Rx ring to assign 2725 * 2726 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2727 **/ 2728 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx, 2729 int txr_count, int txr_idx, 2730 int xdp_count, int xdp_idx, 2731 int rxr_count, int rxr_idx) 2732 { 2733 struct ixgbevf_q_vector *q_vector; 2734 int reg_idx = txr_idx + xdp_idx; 2735 struct ixgbevf_ring *ring; 2736 int ring_count, size; 2737 2738 ring_count = txr_count + xdp_count + rxr_count; 2739 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count); 2740 2741 /* allocate q_vector and rings */ 2742 q_vector = kzalloc(size, GFP_KERNEL); 2743 if (!q_vector) 2744 return -ENOMEM; 2745 2746 /* initialize NAPI */ 2747 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll); 2748 2749 /* tie q_vector and adapter together */ 2750 adapter->q_vector[v_idx] = q_vector; 2751 q_vector->adapter = adapter; 2752 q_vector->v_idx = v_idx; 2753 2754 /* initialize pointer to rings */ 2755 ring = q_vector->ring; 2756 2757 while (txr_count) { 2758 /* assign generic ring traits */ 2759 ring->dev = &adapter->pdev->dev; 2760 ring->netdev = adapter->netdev; 2761 2762 /* configure backlink on ring */ 2763 ring->q_vector = q_vector; 2764 2765 /* update q_vector Tx values */ 2766 ixgbevf_add_ring(ring, &q_vector->tx); 2767 2768 /* apply Tx specific ring traits */ 2769 ring->count = adapter->tx_ring_count; 2770 ring->queue_index = txr_idx; 2771 ring->reg_idx = reg_idx; 2772 2773 /* assign ring to adapter */ 2774 adapter->tx_ring[txr_idx] = ring; 2775 2776 /* update count and index */ 2777 txr_count--; 2778 txr_idx++; 2779 reg_idx++; 2780 2781 /* push pointer to next ring */ 2782 ring++; 2783 } 2784 2785 while (xdp_count) { 2786 /* assign generic ring traits */ 2787 ring->dev = &adapter->pdev->dev; 2788 ring->netdev = adapter->netdev; 2789 2790 /* configure backlink on ring */ 2791 ring->q_vector = q_vector; 2792 2793 /* update q_vector Tx values */ 2794 ixgbevf_add_ring(ring, &q_vector->tx); 2795 2796 /* apply Tx specific ring traits */ 2797 ring->count = adapter->tx_ring_count; 2798 ring->queue_index = xdp_idx; 2799 ring->reg_idx = reg_idx; 2800 set_ring_xdp(ring); 2801 2802 /* assign ring to adapter */ 2803 adapter->xdp_ring[xdp_idx] = ring; 2804 2805 /* update count and index */ 2806 xdp_count--; 2807 xdp_idx++; 2808 reg_idx++; 2809 2810 /* push pointer to next ring */ 2811 ring++; 2812 } 2813 2814 while (rxr_count) { 2815 /* assign generic ring traits */ 2816 ring->dev = &adapter->pdev->dev; 2817 ring->netdev = adapter->netdev; 2818 2819 /* configure backlink on ring */ 2820 ring->q_vector = q_vector; 2821 2822 /* update q_vector Rx values */ 2823 ixgbevf_add_ring(ring, &q_vector->rx); 2824 2825 /* apply Rx specific ring traits */ 2826 ring->count = adapter->rx_ring_count; 2827 ring->queue_index = rxr_idx; 2828 ring->reg_idx = rxr_idx; 2829 2830 /* assign ring to adapter */ 2831 adapter->rx_ring[rxr_idx] = ring; 2832 2833 /* update count and index */ 2834 rxr_count--; 2835 rxr_idx++; 2836 2837 /* push pointer to next ring */ 2838 ring++; 2839 } 2840 2841 return 0; 2842 } 2843 2844 /** 2845 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector 2846 * @adapter: board private structure to initialize 2847 * @v_idx: index of vector in adapter struct 2848 * 2849 * This function frees the memory allocated to the q_vector. In addition if 2850 * NAPI is enabled it will delete any references to the NAPI struct prior 2851 * to freeing the q_vector. 2852 **/ 2853 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx) 2854 { 2855 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx]; 2856 struct ixgbevf_ring *ring; 2857 2858 ixgbevf_for_each_ring(ring, q_vector->tx) { 2859 if (ring_is_xdp(ring)) 2860 adapter->xdp_ring[ring->queue_index] = NULL; 2861 else 2862 adapter->tx_ring[ring->queue_index] = NULL; 2863 } 2864 2865 ixgbevf_for_each_ring(ring, q_vector->rx) 2866 adapter->rx_ring[ring->queue_index] = NULL; 2867 2868 adapter->q_vector[v_idx] = NULL; 2869 netif_napi_del(&q_vector->napi); 2870 2871 /* ixgbevf_get_stats() might access the rings on this vector, 2872 * we must wait a grace period before freeing it. 2873 */ 2874 kfree_rcu(q_vector, rcu); 2875 } 2876 2877 /** 2878 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2879 * @adapter: board private structure to initialize 2880 * 2881 * We allocate one q_vector per queue interrupt. If allocation fails we 2882 * return -ENOMEM. 2883 **/ 2884 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2885 { 2886 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2887 int rxr_remaining = adapter->num_rx_queues; 2888 int txr_remaining = adapter->num_tx_queues; 2889 int xdp_remaining = adapter->num_xdp_queues; 2890 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0; 2891 int err; 2892 2893 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) { 2894 for (; rxr_remaining; v_idx++, q_vectors--) { 2895 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2896 2897 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2898 0, 0, 0, 0, rqpv, rxr_idx); 2899 if (err) 2900 goto err_out; 2901 2902 /* update counts and index */ 2903 rxr_remaining -= rqpv; 2904 rxr_idx += rqpv; 2905 } 2906 } 2907 2908 for (; q_vectors; v_idx++, q_vectors--) { 2909 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2910 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors); 2911 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors); 2912 2913 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2914 tqpv, txr_idx, 2915 xqpv, xdp_idx, 2916 rqpv, rxr_idx); 2917 2918 if (err) 2919 goto err_out; 2920 2921 /* update counts and index */ 2922 rxr_remaining -= rqpv; 2923 rxr_idx += rqpv; 2924 txr_remaining -= tqpv; 2925 txr_idx += tqpv; 2926 xdp_remaining -= xqpv; 2927 xdp_idx += xqpv; 2928 } 2929 2930 return 0; 2931 2932 err_out: 2933 while (v_idx) { 2934 v_idx--; 2935 ixgbevf_free_q_vector(adapter, v_idx); 2936 } 2937 2938 return -ENOMEM; 2939 } 2940 2941 /** 2942 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2943 * @adapter: board private structure to initialize 2944 * 2945 * This function frees the memory allocated to the q_vectors. In addition if 2946 * NAPI is enabled it will delete any references to the NAPI struct prior 2947 * to freeing the q_vector. 2948 **/ 2949 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2950 { 2951 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2952 2953 while (q_vectors) { 2954 q_vectors--; 2955 ixgbevf_free_q_vector(adapter, q_vectors); 2956 } 2957 } 2958 2959 /** 2960 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2961 * @adapter: board private structure 2962 * 2963 **/ 2964 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2965 { 2966 if (!adapter->msix_entries) 2967 return; 2968 2969 pci_disable_msix(adapter->pdev); 2970 kfree(adapter->msix_entries); 2971 adapter->msix_entries = NULL; 2972 } 2973 2974 /** 2975 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2976 * @adapter: board private structure to initialize 2977 * 2978 **/ 2979 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2980 { 2981 int err; 2982 2983 /* Number of supported queues */ 2984 ixgbevf_set_num_queues(adapter); 2985 2986 err = ixgbevf_set_interrupt_capability(adapter); 2987 if (err) { 2988 hw_dbg(&adapter->hw, 2989 "Unable to setup interrupt capabilities\n"); 2990 goto err_set_interrupt; 2991 } 2992 2993 err = ixgbevf_alloc_q_vectors(adapter); 2994 if (err) { 2995 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2996 goto err_alloc_q_vectors; 2997 } 2998 2999 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n", 3000 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled", 3001 adapter->num_rx_queues, adapter->num_tx_queues, 3002 adapter->num_xdp_queues); 3003 3004 set_bit(__IXGBEVF_DOWN, &adapter->state); 3005 3006 return 0; 3007 err_alloc_q_vectors: 3008 ixgbevf_reset_interrupt_capability(adapter); 3009 err_set_interrupt: 3010 return err; 3011 } 3012 3013 /** 3014 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 3015 * @adapter: board private structure to clear interrupt scheme on 3016 * 3017 * We go through and clear interrupt specific resources and reset the structure 3018 * to pre-load conditions 3019 **/ 3020 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 3021 { 3022 adapter->num_tx_queues = 0; 3023 adapter->num_xdp_queues = 0; 3024 adapter->num_rx_queues = 0; 3025 3026 ixgbevf_free_q_vectors(adapter); 3027 ixgbevf_reset_interrupt_capability(adapter); 3028 } 3029 3030 /** 3031 * ixgbevf_sw_init - Initialize general software structures 3032 * @adapter: board private structure to initialize 3033 * 3034 * ixgbevf_sw_init initializes the Adapter private data structure. 3035 * Fields are initialized based on PCI device information and 3036 * OS network device settings (MTU size). 3037 **/ 3038 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 3039 { 3040 struct ixgbe_hw *hw = &adapter->hw; 3041 struct pci_dev *pdev = adapter->pdev; 3042 struct net_device *netdev = adapter->netdev; 3043 int err; 3044 3045 /* PCI config space info */ 3046 hw->vendor_id = pdev->vendor; 3047 hw->device_id = pdev->device; 3048 hw->revision_id = pdev->revision; 3049 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3050 hw->subsystem_device_id = pdev->subsystem_device; 3051 3052 hw->mbx.ops.init_params(hw); 3053 3054 if (hw->mac.type >= ixgbe_mac_X550_vf) { 3055 err = ixgbevf_init_rss_key(adapter); 3056 if (err) 3057 goto out; 3058 } 3059 3060 /* assume legacy case in which PF would only give VF 2 queues */ 3061 hw->mac.max_tx_queues = 2; 3062 hw->mac.max_rx_queues = 2; 3063 3064 /* lock to protect mailbox accesses */ 3065 spin_lock_init(&adapter->mbx_lock); 3066 3067 err = hw->mac.ops.reset_hw(hw); 3068 if (err) { 3069 dev_info(&pdev->dev, 3070 "PF still in reset state. Is the PF interface up?\n"); 3071 } else { 3072 err = hw->mac.ops.init_hw(hw); 3073 if (err) { 3074 pr_err("init_shared_code failed: %d\n", err); 3075 goto out; 3076 } 3077 ixgbevf_negotiate_api(adapter); 3078 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 3079 if (err) 3080 dev_info(&pdev->dev, "Error reading MAC address\n"); 3081 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 3082 dev_info(&pdev->dev, 3083 "MAC address not assigned by administrator.\n"); 3084 eth_hw_addr_set(netdev, hw->mac.addr); 3085 } 3086 3087 if (!is_valid_ether_addr(netdev->dev_addr)) { 3088 dev_info(&pdev->dev, "Assigning random MAC address\n"); 3089 eth_hw_addr_random(netdev); 3090 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 3091 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 3092 } 3093 3094 /* Enable dynamic interrupt throttling rates */ 3095 adapter->rx_itr_setting = 1; 3096 adapter->tx_itr_setting = 1; 3097 3098 /* set default ring sizes */ 3099 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 3100 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 3101 3102 adapter->link_state = true; 3103 3104 set_bit(__IXGBEVF_DOWN, &adapter->state); 3105 return 0; 3106 3107 out: 3108 return err; 3109 } 3110 3111 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 3112 { \ 3113 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 3114 if (current_counter < last_counter) \ 3115 counter += 0x100000000LL; \ 3116 last_counter = current_counter; \ 3117 counter &= 0xFFFFFFFF00000000LL; \ 3118 counter |= current_counter; \ 3119 } 3120 3121 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 3122 { \ 3123 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 3124 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 3125 u64 current_counter = (current_counter_msb << 32) | \ 3126 current_counter_lsb; \ 3127 if (current_counter < last_counter) \ 3128 counter += 0x1000000000LL; \ 3129 last_counter = current_counter; \ 3130 counter &= 0xFFFFFFF000000000LL; \ 3131 counter |= current_counter; \ 3132 } 3133 /** 3134 * ixgbevf_update_stats - Update the board statistics counters. 3135 * @adapter: board private structure 3136 **/ 3137 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 3138 { 3139 struct ixgbe_hw *hw = &adapter->hw; 3140 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; 3141 u64 alloc_rx_page = 0, hw_csum_rx_error = 0; 3142 int i; 3143 3144 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3145 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3146 return; 3147 3148 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 3149 adapter->stats.vfgprc); 3150 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 3151 adapter->stats.vfgptc); 3152 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 3153 adapter->stats.last_vfgorc, 3154 adapter->stats.vfgorc); 3155 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 3156 adapter->stats.last_vfgotc, 3157 adapter->stats.vfgotc); 3158 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 3159 adapter->stats.vfmprc); 3160 3161 for (i = 0; i < adapter->num_rx_queues; i++) { 3162 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 3163 3164 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 3165 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; 3166 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 3167 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; 3168 } 3169 3170 adapter->hw_csum_rx_error = hw_csum_rx_error; 3171 adapter->alloc_rx_page_failed = alloc_rx_page_failed; 3172 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; 3173 adapter->alloc_rx_page = alloc_rx_page; 3174 } 3175 3176 /** 3177 * ixgbevf_service_timer - Timer Call-back 3178 * @t: pointer to timer_list struct 3179 **/ 3180 static void ixgbevf_service_timer(struct timer_list *t) 3181 { 3182 struct ixgbevf_adapter *adapter = from_timer(adapter, t, 3183 service_timer); 3184 3185 /* Reset the timer */ 3186 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 3187 3188 ixgbevf_service_event_schedule(adapter); 3189 } 3190 3191 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 3192 { 3193 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 3194 return; 3195 3196 rtnl_lock(); 3197 /* If we're already down or resetting, just bail */ 3198 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3199 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 3200 test_bit(__IXGBEVF_RESETTING, &adapter->state)) { 3201 rtnl_unlock(); 3202 return; 3203 } 3204 3205 adapter->tx_timeout_count++; 3206 3207 ixgbevf_reinit_locked(adapter); 3208 rtnl_unlock(); 3209 } 3210 3211 /** 3212 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 3213 * @adapter: pointer to the device adapter structure 3214 * 3215 * This function serves two purposes. First it strobes the interrupt lines 3216 * in order to make certain interrupts are occurring. Secondly it sets the 3217 * bits needed to check for TX hangs. As a result we should immediately 3218 * determine if a hang has occurred. 3219 **/ 3220 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 3221 { 3222 struct ixgbe_hw *hw = &adapter->hw; 3223 u32 eics = 0; 3224 int i; 3225 3226 /* If we're down or resetting, just bail */ 3227 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3228 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3229 return; 3230 3231 /* Force detection of hung controller */ 3232 if (netif_carrier_ok(adapter->netdev)) { 3233 for (i = 0; i < adapter->num_tx_queues; i++) 3234 set_check_for_tx_hang(adapter->tx_ring[i]); 3235 for (i = 0; i < adapter->num_xdp_queues; i++) 3236 set_check_for_tx_hang(adapter->xdp_ring[i]); 3237 } 3238 3239 /* get one bit for every active Tx/Rx interrupt vector */ 3240 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 3241 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 3242 3243 if (qv->rx.ring || qv->tx.ring) 3244 eics |= BIT(i); 3245 } 3246 3247 /* Cause software interrupt to ensure rings are cleaned */ 3248 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 3249 } 3250 3251 /** 3252 * ixgbevf_watchdog_update_link - update the link status 3253 * @adapter: pointer to the device adapter structure 3254 **/ 3255 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 3256 { 3257 struct ixgbe_hw *hw = &adapter->hw; 3258 u32 link_speed = adapter->link_speed; 3259 bool link_up = adapter->link_up; 3260 s32 err; 3261 3262 spin_lock_bh(&adapter->mbx_lock); 3263 3264 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 3265 3266 spin_unlock_bh(&adapter->mbx_lock); 3267 3268 /* if check for link returns error we will need to reset */ 3269 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 3270 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 3271 link_up = false; 3272 } 3273 3274 adapter->link_up = link_up; 3275 adapter->link_speed = link_speed; 3276 } 3277 3278 /** 3279 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 3280 * print link up message 3281 * @adapter: pointer to the device adapter structure 3282 **/ 3283 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 3284 { 3285 struct net_device *netdev = adapter->netdev; 3286 3287 /* only continue if link was previously down */ 3288 if (netif_carrier_ok(netdev)) 3289 return; 3290 3291 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 3292 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 3293 "10 Gbps" : 3294 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 3295 "1 Gbps" : 3296 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 3297 "100 Mbps" : 3298 "unknown speed"); 3299 3300 netif_carrier_on(netdev); 3301 } 3302 3303 /** 3304 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 3305 * print link down message 3306 * @adapter: pointer to the adapter structure 3307 **/ 3308 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 3309 { 3310 struct net_device *netdev = adapter->netdev; 3311 3312 adapter->link_speed = 0; 3313 3314 /* only continue if link was up previously */ 3315 if (!netif_carrier_ok(netdev)) 3316 return; 3317 3318 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 3319 3320 netif_carrier_off(netdev); 3321 } 3322 3323 /** 3324 * ixgbevf_watchdog_subtask - worker thread to bring link up 3325 * @adapter: board private structure 3326 **/ 3327 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 3328 { 3329 /* if interface is down do nothing */ 3330 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3331 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3332 return; 3333 3334 ixgbevf_watchdog_update_link(adapter); 3335 3336 if (adapter->link_up && adapter->link_state) 3337 ixgbevf_watchdog_link_is_up(adapter); 3338 else 3339 ixgbevf_watchdog_link_is_down(adapter); 3340 3341 ixgbevf_update_stats(adapter); 3342 } 3343 3344 /** 3345 * ixgbevf_service_task - manages and runs subtasks 3346 * @work: pointer to work_struct containing our data 3347 **/ 3348 static void ixgbevf_service_task(struct work_struct *work) 3349 { 3350 struct ixgbevf_adapter *adapter = container_of(work, 3351 struct ixgbevf_adapter, 3352 service_task); 3353 struct ixgbe_hw *hw = &adapter->hw; 3354 3355 if (IXGBE_REMOVED(hw->hw_addr)) { 3356 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 3357 rtnl_lock(); 3358 ixgbevf_down(adapter); 3359 rtnl_unlock(); 3360 } 3361 return; 3362 } 3363 3364 ixgbevf_queue_reset_subtask(adapter); 3365 ixgbevf_reset_subtask(adapter); 3366 ixgbevf_watchdog_subtask(adapter); 3367 ixgbevf_check_hang_subtask(adapter); 3368 3369 ixgbevf_service_event_complete(adapter); 3370 } 3371 3372 /** 3373 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 3374 * @tx_ring: Tx descriptor ring for a specific queue 3375 * 3376 * Free all transmit software resources 3377 **/ 3378 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 3379 { 3380 ixgbevf_clean_tx_ring(tx_ring); 3381 3382 vfree(tx_ring->tx_buffer_info); 3383 tx_ring->tx_buffer_info = NULL; 3384 3385 /* if not set, then don't free */ 3386 if (!tx_ring->desc) 3387 return; 3388 3389 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 3390 tx_ring->dma); 3391 3392 tx_ring->desc = NULL; 3393 } 3394 3395 /** 3396 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 3397 * @adapter: board private structure 3398 * 3399 * Free all transmit software resources 3400 **/ 3401 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 3402 { 3403 int i; 3404 3405 for (i = 0; i < adapter->num_tx_queues; i++) 3406 if (adapter->tx_ring[i]->desc) 3407 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3408 for (i = 0; i < adapter->num_xdp_queues; i++) 3409 if (adapter->xdp_ring[i]->desc) 3410 ixgbevf_free_tx_resources(adapter->xdp_ring[i]); 3411 } 3412 3413 /** 3414 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 3415 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 3416 * 3417 * Return 0 on success, negative on failure 3418 **/ 3419 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3420 { 3421 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3422 int size; 3423 3424 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3425 tx_ring->tx_buffer_info = vmalloc(size); 3426 if (!tx_ring->tx_buffer_info) 3427 goto err; 3428 3429 u64_stats_init(&tx_ring->syncp); 3430 3431 /* round up to nearest 4K */ 3432 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3433 tx_ring->size = ALIGN(tx_ring->size, 4096); 3434 3435 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3436 &tx_ring->dma, GFP_KERNEL); 3437 if (!tx_ring->desc) 3438 goto err; 3439 3440 return 0; 3441 3442 err: 3443 vfree(tx_ring->tx_buffer_info); 3444 tx_ring->tx_buffer_info = NULL; 3445 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3446 return -ENOMEM; 3447 } 3448 3449 /** 3450 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3451 * @adapter: board private structure 3452 * 3453 * If this function returns with an error, then it's possible one or 3454 * more of the rings is populated (while the rest are not). It is the 3455 * callers duty to clean those orphaned rings. 3456 * 3457 * Return 0 on success, negative on failure 3458 **/ 3459 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3460 { 3461 int i, j = 0, err = 0; 3462 3463 for (i = 0; i < adapter->num_tx_queues; i++) { 3464 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3465 if (!err) 3466 continue; 3467 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3468 goto err_setup_tx; 3469 } 3470 3471 for (j = 0; j < adapter->num_xdp_queues; j++) { 3472 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]); 3473 if (!err) 3474 continue; 3475 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j); 3476 goto err_setup_tx; 3477 } 3478 3479 return 0; 3480 err_setup_tx: 3481 /* rewind the index freeing the rings as we go */ 3482 while (j--) 3483 ixgbevf_free_tx_resources(adapter->xdp_ring[j]); 3484 while (i--) 3485 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3486 3487 return err; 3488 } 3489 3490 /** 3491 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3492 * @adapter: board private structure 3493 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3494 * 3495 * Returns 0 on success, negative on failure 3496 **/ 3497 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter, 3498 struct ixgbevf_ring *rx_ring) 3499 { 3500 int size; 3501 3502 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3503 rx_ring->rx_buffer_info = vmalloc(size); 3504 if (!rx_ring->rx_buffer_info) 3505 goto err; 3506 3507 u64_stats_init(&rx_ring->syncp); 3508 3509 /* Round up to nearest 4K */ 3510 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3511 rx_ring->size = ALIGN(rx_ring->size, 4096); 3512 3513 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3514 &rx_ring->dma, GFP_KERNEL); 3515 3516 if (!rx_ring->desc) 3517 goto err; 3518 3519 /* XDP RX-queue info */ 3520 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev, 3521 rx_ring->queue_index, 0) < 0) 3522 goto err; 3523 3524 rx_ring->xdp_prog = adapter->xdp_prog; 3525 3526 return 0; 3527 err: 3528 vfree(rx_ring->rx_buffer_info); 3529 rx_ring->rx_buffer_info = NULL; 3530 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3531 return -ENOMEM; 3532 } 3533 3534 /** 3535 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3536 * @adapter: board private structure 3537 * 3538 * If this function returns with an error, then it's possible one or 3539 * more of the rings is populated (while the rest are not). It is the 3540 * callers duty to clean those orphaned rings. 3541 * 3542 * Return 0 on success, negative on failure 3543 **/ 3544 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3545 { 3546 int i, err = 0; 3547 3548 for (i = 0; i < adapter->num_rx_queues; i++) { 3549 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]); 3550 if (!err) 3551 continue; 3552 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3553 goto err_setup_rx; 3554 } 3555 3556 return 0; 3557 err_setup_rx: 3558 /* rewind the index freeing the rings as we go */ 3559 while (i--) 3560 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3561 return err; 3562 } 3563 3564 /** 3565 * ixgbevf_free_rx_resources - Free Rx Resources 3566 * @rx_ring: ring to clean the resources from 3567 * 3568 * Free all receive software resources 3569 **/ 3570 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3571 { 3572 ixgbevf_clean_rx_ring(rx_ring); 3573 3574 rx_ring->xdp_prog = NULL; 3575 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 3576 vfree(rx_ring->rx_buffer_info); 3577 rx_ring->rx_buffer_info = NULL; 3578 3579 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3580 rx_ring->dma); 3581 3582 rx_ring->desc = NULL; 3583 } 3584 3585 /** 3586 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3587 * @adapter: board private structure 3588 * 3589 * Free all receive software resources 3590 **/ 3591 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3592 { 3593 int i; 3594 3595 for (i = 0; i < adapter->num_rx_queues; i++) 3596 if (adapter->rx_ring[i]->desc) 3597 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3598 } 3599 3600 /** 3601 * ixgbevf_open - Called when a network interface is made active 3602 * @netdev: network interface device structure 3603 * 3604 * Returns 0 on success, negative value on failure 3605 * 3606 * The open entry point is called when a network interface is made 3607 * active by the system (IFF_UP). At this point all resources needed 3608 * for transmit and receive operations are allocated, the interrupt 3609 * handler is registered with the OS, the watchdog timer is started, 3610 * and the stack is notified that the interface is ready. 3611 **/ 3612 int ixgbevf_open(struct net_device *netdev) 3613 { 3614 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3615 struct ixgbe_hw *hw = &adapter->hw; 3616 int err; 3617 3618 /* A previous failure to open the device because of a lack of 3619 * available MSIX vector resources may have reset the number 3620 * of msix vectors variable to zero. The only way to recover 3621 * is to unload/reload the driver and hope that the system has 3622 * been able to recover some MSIX vector resources. 3623 */ 3624 if (!adapter->num_msix_vectors) 3625 return -ENOMEM; 3626 3627 if (hw->adapter_stopped) { 3628 ixgbevf_reset(adapter); 3629 /* if adapter is still stopped then PF isn't up and 3630 * the VF can't start. 3631 */ 3632 if (hw->adapter_stopped) { 3633 err = IXGBE_ERR_MBX; 3634 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3635 goto err_setup_reset; 3636 } 3637 } 3638 3639 /* disallow open during test */ 3640 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3641 return -EBUSY; 3642 3643 netif_carrier_off(netdev); 3644 3645 /* allocate transmit descriptors */ 3646 err = ixgbevf_setup_all_tx_resources(adapter); 3647 if (err) 3648 goto err_setup_tx; 3649 3650 /* allocate receive descriptors */ 3651 err = ixgbevf_setup_all_rx_resources(adapter); 3652 if (err) 3653 goto err_setup_rx; 3654 3655 ixgbevf_configure(adapter); 3656 3657 err = ixgbevf_request_irq(adapter); 3658 if (err) 3659 goto err_req_irq; 3660 3661 /* Notify the stack of the actual queue counts. */ 3662 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3663 if (err) 3664 goto err_set_queues; 3665 3666 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3667 if (err) 3668 goto err_set_queues; 3669 3670 ixgbevf_up_complete(adapter); 3671 3672 return 0; 3673 3674 err_set_queues: 3675 ixgbevf_free_irq(adapter); 3676 err_req_irq: 3677 ixgbevf_free_all_rx_resources(adapter); 3678 err_setup_rx: 3679 ixgbevf_free_all_tx_resources(adapter); 3680 err_setup_tx: 3681 ixgbevf_reset(adapter); 3682 err_setup_reset: 3683 3684 return err; 3685 } 3686 3687 /** 3688 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3689 * @adapter: the private adapter struct 3690 * 3691 * This function should contain the necessary work common to both suspending 3692 * and closing of the device. 3693 */ 3694 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3695 { 3696 ixgbevf_down(adapter); 3697 ixgbevf_free_irq(adapter); 3698 ixgbevf_free_all_tx_resources(adapter); 3699 ixgbevf_free_all_rx_resources(adapter); 3700 } 3701 3702 /** 3703 * ixgbevf_close - Disables a network interface 3704 * @netdev: network interface device structure 3705 * 3706 * Returns 0, this is not allowed to fail 3707 * 3708 * The close entry point is called when an interface is de-activated 3709 * by the OS. The hardware is still under the drivers control, but 3710 * needs to be disabled. A global MAC reset is issued to stop the 3711 * hardware, and all transmit and receive resources are freed. 3712 **/ 3713 int ixgbevf_close(struct net_device *netdev) 3714 { 3715 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3716 3717 if (netif_device_present(netdev)) 3718 ixgbevf_close_suspend(adapter); 3719 3720 return 0; 3721 } 3722 3723 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3724 { 3725 struct net_device *dev = adapter->netdev; 3726 3727 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3728 &adapter->state)) 3729 return; 3730 3731 /* if interface is down do nothing */ 3732 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3733 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3734 return; 3735 3736 /* Hardware has to reinitialize queues and interrupts to 3737 * match packet buffer alignment. Unfortunately, the 3738 * hardware is not flexible enough to do this dynamically. 3739 */ 3740 rtnl_lock(); 3741 3742 if (netif_running(dev)) 3743 ixgbevf_close(dev); 3744 3745 ixgbevf_clear_interrupt_scheme(adapter); 3746 ixgbevf_init_interrupt_scheme(adapter); 3747 3748 if (netif_running(dev)) 3749 ixgbevf_open(dev); 3750 3751 rtnl_unlock(); 3752 } 3753 3754 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3755 u32 vlan_macip_lens, u32 fceof_saidx, 3756 u32 type_tucmd, u32 mss_l4len_idx) 3757 { 3758 struct ixgbe_adv_tx_context_desc *context_desc; 3759 u16 i = tx_ring->next_to_use; 3760 3761 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3762 3763 i++; 3764 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3765 3766 /* set bits to identify this as an advanced context descriptor */ 3767 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3768 3769 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3770 context_desc->fceof_saidx = cpu_to_le32(fceof_saidx); 3771 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3772 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3773 } 3774 3775 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3776 struct ixgbevf_tx_buffer *first, 3777 u8 *hdr_len, 3778 struct ixgbevf_ipsec_tx_data *itd) 3779 { 3780 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3781 struct sk_buff *skb = first->skb; 3782 union { 3783 struct iphdr *v4; 3784 struct ipv6hdr *v6; 3785 unsigned char *hdr; 3786 } ip; 3787 union { 3788 struct tcphdr *tcp; 3789 unsigned char *hdr; 3790 } l4; 3791 u32 paylen, l4_offset; 3792 u32 fceof_saidx = 0; 3793 int err; 3794 3795 if (skb->ip_summed != CHECKSUM_PARTIAL) 3796 return 0; 3797 3798 if (!skb_is_gso(skb)) 3799 return 0; 3800 3801 err = skb_cow_head(skb, 0); 3802 if (err < 0) 3803 return err; 3804 3805 if (eth_p_mpls(first->protocol)) 3806 ip.hdr = skb_inner_network_header(skb); 3807 else 3808 ip.hdr = skb_network_header(skb); 3809 l4.hdr = skb_checksum_start(skb); 3810 3811 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3812 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3813 3814 /* initialize outer IP header fields */ 3815 if (ip.v4->version == 4) { 3816 unsigned char *csum_start = skb_checksum_start(skb); 3817 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3818 int len = csum_start - trans_start; 3819 3820 /* IP header will have to cancel out any data that 3821 * is not a part of the outer IP header, so set to 3822 * a reverse csum if needed, else init check to 0. 3823 */ 3824 ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ? 3825 csum_fold(csum_partial(trans_start, 3826 len, 0)) : 0; 3827 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3828 3829 ip.v4->tot_len = 0; 3830 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3831 IXGBE_TX_FLAGS_CSUM | 3832 IXGBE_TX_FLAGS_IPV4; 3833 } else { 3834 ip.v6->payload_len = 0; 3835 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3836 IXGBE_TX_FLAGS_CSUM; 3837 } 3838 3839 /* determine offset of inner transport header */ 3840 l4_offset = l4.hdr - skb->data; 3841 3842 /* compute length of segmentation header */ 3843 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3844 3845 /* remove payload length from inner checksum */ 3846 paylen = skb->len - l4_offset; 3847 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 3848 3849 /* update gso size and bytecount with header size */ 3850 first->gso_segs = skb_shinfo(skb)->gso_segs; 3851 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3852 3853 /* mss_l4len_id: use 1 as index for TSO */ 3854 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3855 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3856 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3857 3858 fceof_saidx |= itd->pfsa; 3859 type_tucmd |= itd->flags | itd->trailer_len; 3860 3861 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3862 vlan_macip_lens = l4.hdr - ip.hdr; 3863 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3864 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3865 3866 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd, 3867 mss_l4len_idx); 3868 3869 return 1; 3870 } 3871 3872 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3873 struct ixgbevf_tx_buffer *first, 3874 struct ixgbevf_ipsec_tx_data *itd) 3875 { 3876 struct sk_buff *skb = first->skb; 3877 u32 vlan_macip_lens = 0; 3878 u32 fceof_saidx = 0; 3879 u32 type_tucmd = 0; 3880 3881 if (skb->ip_summed != CHECKSUM_PARTIAL) 3882 goto no_csum; 3883 3884 switch (skb->csum_offset) { 3885 case offsetof(struct tcphdr, check): 3886 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3887 fallthrough; 3888 case offsetof(struct udphdr, check): 3889 break; 3890 case offsetof(struct sctphdr, checksum): 3891 /* validate that this is actually an SCTP request */ 3892 if (skb_csum_is_sctp(skb)) { 3893 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3894 break; 3895 } 3896 fallthrough; 3897 default: 3898 skb_checksum_help(skb); 3899 goto no_csum; 3900 } 3901 3902 if (first->protocol == htons(ETH_P_IP)) 3903 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3904 3905 /* update TX checksum flag */ 3906 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3907 vlan_macip_lens = skb_checksum_start_offset(skb) - 3908 skb_network_offset(skb); 3909 no_csum: 3910 /* vlan_macip_lens: MACLEN, VLAN tag */ 3911 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3912 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3913 3914 fceof_saidx |= itd->pfsa; 3915 type_tucmd |= itd->flags | itd->trailer_len; 3916 3917 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3918 fceof_saidx, type_tucmd, 0); 3919 } 3920 3921 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3922 { 3923 /* set type for advanced descriptor with frame checksum insertion */ 3924 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3925 IXGBE_ADVTXD_DCMD_IFCS | 3926 IXGBE_ADVTXD_DCMD_DEXT); 3927 3928 /* set HW VLAN bit if VLAN is present */ 3929 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3930 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3931 3932 /* set segmentation enable bits for TSO/FSO */ 3933 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3934 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3935 3936 return cmd_type; 3937 } 3938 3939 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3940 u32 tx_flags, unsigned int paylen) 3941 { 3942 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3943 3944 /* enable L4 checksum for TSO and TX checksum offload */ 3945 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3946 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3947 3948 /* enble IPv4 checksum for TSO */ 3949 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3950 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3951 3952 /* enable IPsec */ 3953 if (tx_flags & IXGBE_TX_FLAGS_IPSEC) 3954 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC); 3955 3956 /* use index 1 context for TSO/FSO/FCOE/IPSEC */ 3957 if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC)) 3958 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3959 3960 /* Check Context must be set if Tx switch is enabled, which it 3961 * always is for case where virtual functions are running 3962 */ 3963 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3964 3965 tx_desc->read.olinfo_status = olinfo_status; 3966 } 3967 3968 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3969 struct ixgbevf_tx_buffer *first, 3970 const u8 hdr_len) 3971 { 3972 struct sk_buff *skb = first->skb; 3973 struct ixgbevf_tx_buffer *tx_buffer; 3974 union ixgbe_adv_tx_desc *tx_desc; 3975 skb_frag_t *frag; 3976 dma_addr_t dma; 3977 unsigned int data_len, size; 3978 u32 tx_flags = first->tx_flags; 3979 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3980 u16 i = tx_ring->next_to_use; 3981 3982 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3983 3984 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 3985 3986 size = skb_headlen(skb); 3987 data_len = skb->data_len; 3988 3989 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3990 3991 tx_buffer = first; 3992 3993 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3994 if (dma_mapping_error(tx_ring->dev, dma)) 3995 goto dma_error; 3996 3997 /* record length, and DMA address */ 3998 dma_unmap_len_set(tx_buffer, len, size); 3999 dma_unmap_addr_set(tx_buffer, dma, dma); 4000 4001 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4002 4003 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 4004 tx_desc->read.cmd_type_len = 4005 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 4006 4007 i++; 4008 tx_desc++; 4009 if (i == tx_ring->count) { 4010 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4011 i = 0; 4012 } 4013 tx_desc->read.olinfo_status = 0; 4014 4015 dma += IXGBE_MAX_DATA_PER_TXD; 4016 size -= IXGBE_MAX_DATA_PER_TXD; 4017 4018 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4019 } 4020 4021 if (likely(!data_len)) 4022 break; 4023 4024 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 4025 4026 i++; 4027 tx_desc++; 4028 if (i == tx_ring->count) { 4029 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4030 i = 0; 4031 } 4032 tx_desc->read.olinfo_status = 0; 4033 4034 size = skb_frag_size(frag); 4035 data_len -= size; 4036 4037 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 4038 DMA_TO_DEVICE); 4039 4040 tx_buffer = &tx_ring->tx_buffer_info[i]; 4041 } 4042 4043 /* write last descriptor with RS and EOP bits */ 4044 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 4045 tx_desc->read.cmd_type_len = cmd_type; 4046 4047 /* set the timestamp */ 4048 first->time_stamp = jiffies; 4049 4050 skb_tx_timestamp(skb); 4051 4052 /* Force memory writes to complete before letting h/w know there 4053 * are new descriptors to fetch. (Only applicable for weak-ordered 4054 * memory model archs, such as IA-64). 4055 * 4056 * We also need this memory barrier (wmb) to make certain all of the 4057 * status bits have been updated before next_to_watch is written. 4058 */ 4059 wmb(); 4060 4061 /* set next_to_watch value indicating a packet is present */ 4062 first->next_to_watch = tx_desc; 4063 4064 i++; 4065 if (i == tx_ring->count) 4066 i = 0; 4067 4068 tx_ring->next_to_use = i; 4069 4070 /* notify HW of packet */ 4071 ixgbevf_write_tail(tx_ring, i); 4072 4073 return; 4074 dma_error: 4075 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4076 tx_buffer = &tx_ring->tx_buffer_info[i]; 4077 4078 /* clear dma mappings for failed tx_buffer_info map */ 4079 while (tx_buffer != first) { 4080 if (dma_unmap_len(tx_buffer, len)) 4081 dma_unmap_page(tx_ring->dev, 4082 dma_unmap_addr(tx_buffer, dma), 4083 dma_unmap_len(tx_buffer, len), 4084 DMA_TO_DEVICE); 4085 dma_unmap_len_set(tx_buffer, len, 0); 4086 4087 if (i-- == 0) 4088 i += tx_ring->count; 4089 tx_buffer = &tx_ring->tx_buffer_info[i]; 4090 } 4091 4092 if (dma_unmap_len(tx_buffer, len)) 4093 dma_unmap_single(tx_ring->dev, 4094 dma_unmap_addr(tx_buffer, dma), 4095 dma_unmap_len(tx_buffer, len), 4096 DMA_TO_DEVICE); 4097 dma_unmap_len_set(tx_buffer, len, 0); 4098 4099 dev_kfree_skb_any(tx_buffer->skb); 4100 tx_buffer->skb = NULL; 4101 4102 tx_ring->next_to_use = i; 4103 } 4104 4105 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4106 { 4107 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 4108 /* Herbert's original patch had: 4109 * smp_mb__after_netif_stop_queue(); 4110 * but since that doesn't exist yet, just open code it. 4111 */ 4112 smp_mb(); 4113 4114 /* We need to check again in a case another CPU has just 4115 * made room available. 4116 */ 4117 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 4118 return -EBUSY; 4119 4120 /* A reprieve! - use start_queue because it doesn't call schedule */ 4121 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 4122 ++tx_ring->tx_stats.restart_queue; 4123 4124 return 0; 4125 } 4126 4127 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4128 { 4129 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 4130 return 0; 4131 return __ixgbevf_maybe_stop_tx(tx_ring, size); 4132 } 4133 4134 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb, 4135 struct ixgbevf_ring *tx_ring) 4136 { 4137 struct ixgbevf_tx_buffer *first; 4138 int tso; 4139 u32 tx_flags = 0; 4140 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4141 struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 }; 4142 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4143 unsigned short f; 4144 #endif 4145 u8 hdr_len = 0; 4146 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 4147 4148 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 4149 dev_kfree_skb_any(skb); 4150 return NETDEV_TX_OK; 4151 } 4152 4153 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 4154 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 4155 * + 2 desc gap to keep tail from touching head, 4156 * + 1 desc for context descriptor, 4157 * otherwise try next time 4158 */ 4159 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4160 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 4161 skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 4162 4163 count += TXD_USE_COUNT(skb_frag_size(frag)); 4164 } 4165 #else 4166 count += skb_shinfo(skb)->nr_frags; 4167 #endif 4168 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 4169 tx_ring->tx_stats.tx_busy++; 4170 return NETDEV_TX_BUSY; 4171 } 4172 4173 /* record the location of the first descriptor for this packet */ 4174 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4175 first->skb = skb; 4176 first->bytecount = skb->len; 4177 first->gso_segs = 1; 4178 4179 if (skb_vlan_tag_present(skb)) { 4180 tx_flags |= skb_vlan_tag_get(skb); 4181 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 4182 tx_flags |= IXGBE_TX_FLAGS_VLAN; 4183 } 4184 4185 /* record initial flags and protocol */ 4186 first->tx_flags = tx_flags; 4187 first->protocol = vlan_get_protocol(skb); 4188 4189 #ifdef CONFIG_IXGBEVF_IPSEC 4190 if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx)) 4191 goto out_drop; 4192 #endif 4193 tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx); 4194 if (tso < 0) 4195 goto out_drop; 4196 else if (!tso) 4197 ixgbevf_tx_csum(tx_ring, first, &ipsec_tx); 4198 4199 ixgbevf_tx_map(tx_ring, first, hdr_len); 4200 4201 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 4202 4203 return NETDEV_TX_OK; 4204 4205 out_drop: 4206 dev_kfree_skb_any(first->skb); 4207 first->skb = NULL; 4208 4209 return NETDEV_TX_OK; 4210 } 4211 4212 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 4213 { 4214 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4215 struct ixgbevf_ring *tx_ring; 4216 4217 if (skb->len <= 0) { 4218 dev_kfree_skb_any(skb); 4219 return NETDEV_TX_OK; 4220 } 4221 4222 /* The minimum packet size for olinfo paylen is 17 so pad the skb 4223 * in order to meet this minimum size requirement. 4224 */ 4225 if (skb->len < 17) { 4226 if (skb_padto(skb, 17)) 4227 return NETDEV_TX_OK; 4228 skb->len = 17; 4229 } 4230 4231 tx_ring = adapter->tx_ring[skb->queue_mapping]; 4232 return ixgbevf_xmit_frame_ring(skb, tx_ring); 4233 } 4234 4235 /** 4236 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 4237 * @netdev: network interface device structure 4238 * @p: pointer to an address structure 4239 * 4240 * Returns 0 on success, negative on failure 4241 **/ 4242 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 4243 { 4244 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4245 struct ixgbe_hw *hw = &adapter->hw; 4246 struct sockaddr *addr = p; 4247 int err; 4248 4249 if (!is_valid_ether_addr(addr->sa_data)) 4250 return -EADDRNOTAVAIL; 4251 4252 spin_lock_bh(&adapter->mbx_lock); 4253 4254 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 4255 4256 spin_unlock_bh(&adapter->mbx_lock); 4257 4258 if (err) 4259 return -EPERM; 4260 4261 ether_addr_copy(hw->mac.addr, addr->sa_data); 4262 ether_addr_copy(hw->mac.perm_addr, addr->sa_data); 4263 eth_hw_addr_set(netdev, addr->sa_data); 4264 4265 return 0; 4266 } 4267 4268 /** 4269 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 4270 * @netdev: network interface device structure 4271 * @new_mtu: new value for maximum frame size 4272 * 4273 * Returns 0 on success, negative on failure 4274 **/ 4275 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 4276 { 4277 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4278 struct ixgbe_hw *hw = &adapter->hw; 4279 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 4280 int ret; 4281 4282 /* prevent MTU being changed to a size unsupported by XDP */ 4283 if (adapter->xdp_prog) { 4284 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n"); 4285 return -EPERM; 4286 } 4287 4288 spin_lock_bh(&adapter->mbx_lock); 4289 /* notify the PF of our intent to use this size of frame */ 4290 ret = hw->mac.ops.set_rlpml(hw, max_frame); 4291 spin_unlock_bh(&adapter->mbx_lock); 4292 if (ret) 4293 return -EINVAL; 4294 4295 hw_dbg(hw, "changing MTU from %d to %d\n", 4296 netdev->mtu, new_mtu); 4297 4298 /* must set new MTU before calling down or up */ 4299 WRITE_ONCE(netdev->mtu, new_mtu); 4300 4301 if (netif_running(netdev)) 4302 ixgbevf_reinit_locked(adapter); 4303 4304 return 0; 4305 } 4306 4307 static int ixgbevf_suspend(struct device *dev_d) 4308 { 4309 struct net_device *netdev = dev_get_drvdata(dev_d); 4310 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4311 4312 rtnl_lock(); 4313 netif_device_detach(netdev); 4314 4315 if (netif_running(netdev)) 4316 ixgbevf_close_suspend(adapter); 4317 4318 ixgbevf_clear_interrupt_scheme(adapter); 4319 rtnl_unlock(); 4320 4321 return 0; 4322 } 4323 4324 static int ixgbevf_resume(struct device *dev_d) 4325 { 4326 struct pci_dev *pdev = to_pci_dev(dev_d); 4327 struct net_device *netdev = pci_get_drvdata(pdev); 4328 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4329 u32 err; 4330 4331 adapter->hw.hw_addr = adapter->io_addr; 4332 smp_mb__before_atomic(); 4333 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4334 pci_set_master(pdev); 4335 4336 ixgbevf_reset(adapter); 4337 4338 rtnl_lock(); 4339 err = ixgbevf_init_interrupt_scheme(adapter); 4340 if (!err && netif_running(netdev)) 4341 err = ixgbevf_open(netdev); 4342 rtnl_unlock(); 4343 if (err) 4344 return err; 4345 4346 netif_device_attach(netdev); 4347 4348 return err; 4349 } 4350 4351 static void ixgbevf_shutdown(struct pci_dev *pdev) 4352 { 4353 ixgbevf_suspend(&pdev->dev); 4354 } 4355 4356 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats, 4357 const struct ixgbevf_ring *ring) 4358 { 4359 u64 bytes, packets; 4360 unsigned int start; 4361 4362 if (ring) { 4363 do { 4364 start = u64_stats_fetch_begin(&ring->syncp); 4365 bytes = ring->stats.bytes; 4366 packets = ring->stats.packets; 4367 } while (u64_stats_fetch_retry(&ring->syncp, start)); 4368 stats->tx_bytes += bytes; 4369 stats->tx_packets += packets; 4370 } 4371 } 4372 4373 static void ixgbevf_get_stats(struct net_device *netdev, 4374 struct rtnl_link_stats64 *stats) 4375 { 4376 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4377 unsigned int start; 4378 u64 bytes, packets; 4379 const struct ixgbevf_ring *ring; 4380 int i; 4381 4382 ixgbevf_update_stats(adapter); 4383 4384 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 4385 4386 rcu_read_lock(); 4387 for (i = 0; i < adapter->num_rx_queues; i++) { 4388 ring = adapter->rx_ring[i]; 4389 do { 4390 start = u64_stats_fetch_begin(&ring->syncp); 4391 bytes = ring->stats.bytes; 4392 packets = ring->stats.packets; 4393 } while (u64_stats_fetch_retry(&ring->syncp, start)); 4394 stats->rx_bytes += bytes; 4395 stats->rx_packets += packets; 4396 } 4397 4398 for (i = 0; i < adapter->num_tx_queues; i++) { 4399 ring = adapter->tx_ring[i]; 4400 ixgbevf_get_tx_ring_stats(stats, ring); 4401 } 4402 4403 for (i = 0; i < adapter->num_xdp_queues; i++) { 4404 ring = adapter->xdp_ring[i]; 4405 ixgbevf_get_tx_ring_stats(stats, ring); 4406 } 4407 rcu_read_unlock(); 4408 } 4409 4410 #define IXGBEVF_MAX_MAC_HDR_LEN 127 4411 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 4412 4413 static netdev_features_t 4414 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 4415 netdev_features_t features) 4416 { 4417 unsigned int network_hdr_len, mac_hdr_len; 4418 4419 /* Make certain the headers can be described by a context descriptor */ 4420 mac_hdr_len = skb_network_offset(skb); 4421 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 4422 return features & ~(NETIF_F_HW_CSUM | 4423 NETIF_F_SCTP_CRC | 4424 NETIF_F_HW_VLAN_CTAG_TX | 4425 NETIF_F_TSO | 4426 NETIF_F_TSO6); 4427 4428 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4429 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 4430 return features & ~(NETIF_F_HW_CSUM | 4431 NETIF_F_SCTP_CRC | 4432 NETIF_F_TSO | 4433 NETIF_F_TSO6); 4434 4435 /* We can only support IPV4 TSO in tunnels if we can mangle the 4436 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4437 */ 4438 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4439 features &= ~NETIF_F_TSO; 4440 4441 return features; 4442 } 4443 4444 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog) 4445 { 4446 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4447 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4448 struct bpf_prog *old_prog; 4449 4450 /* verify ixgbevf ring attributes are sufficient for XDP */ 4451 for (i = 0; i < adapter->num_rx_queues; i++) { 4452 struct ixgbevf_ring *ring = adapter->rx_ring[i]; 4453 4454 if (frame_size > ixgbevf_rx_bufsz(ring)) 4455 return -EINVAL; 4456 } 4457 4458 old_prog = xchg(&adapter->xdp_prog, prog); 4459 4460 /* If transitioning XDP modes reconfigure rings */ 4461 if (!!prog != !!old_prog) { 4462 /* Hardware has to reinitialize queues and interrupts to 4463 * match packet buffer alignment. Unfortunately, the 4464 * hardware is not flexible enough to do this dynamically. 4465 */ 4466 if (netif_running(dev)) 4467 ixgbevf_close(dev); 4468 4469 ixgbevf_clear_interrupt_scheme(adapter); 4470 ixgbevf_init_interrupt_scheme(adapter); 4471 4472 if (netif_running(dev)) 4473 ixgbevf_open(dev); 4474 } else { 4475 for (i = 0; i < adapter->num_rx_queues; i++) 4476 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog); 4477 } 4478 4479 if (old_prog) 4480 bpf_prog_put(old_prog); 4481 4482 return 0; 4483 } 4484 4485 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4486 { 4487 switch (xdp->command) { 4488 case XDP_SETUP_PROG: 4489 return ixgbevf_xdp_setup(dev, xdp->prog); 4490 default: 4491 return -EINVAL; 4492 } 4493 } 4494 4495 static const struct net_device_ops ixgbevf_netdev_ops = { 4496 .ndo_open = ixgbevf_open, 4497 .ndo_stop = ixgbevf_close, 4498 .ndo_start_xmit = ixgbevf_xmit_frame, 4499 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 4500 .ndo_get_stats64 = ixgbevf_get_stats, 4501 .ndo_validate_addr = eth_validate_addr, 4502 .ndo_set_mac_address = ixgbevf_set_mac, 4503 .ndo_change_mtu = ixgbevf_change_mtu, 4504 .ndo_tx_timeout = ixgbevf_tx_timeout, 4505 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 4506 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 4507 .ndo_features_check = ixgbevf_features_check, 4508 .ndo_bpf = ixgbevf_xdp, 4509 }; 4510 4511 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 4512 { 4513 dev->netdev_ops = &ixgbevf_netdev_ops; 4514 ixgbevf_set_ethtool_ops(dev); 4515 dev->watchdog_timeo = 5 * HZ; 4516 } 4517 4518 /** 4519 * ixgbevf_probe - Device Initialization Routine 4520 * @pdev: PCI device information struct 4521 * @ent: entry in ixgbevf_pci_tbl 4522 * 4523 * Returns 0 on success, negative on failure 4524 * 4525 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 4526 * The OS initialization, configuring of the adapter private structure, 4527 * and a hardware reset occur. 4528 **/ 4529 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4530 { 4531 struct net_device *netdev; 4532 struct ixgbevf_adapter *adapter = NULL; 4533 struct ixgbe_hw *hw = NULL; 4534 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 4535 bool disable_dev = false; 4536 int err; 4537 4538 err = pci_enable_device(pdev); 4539 if (err) 4540 return err; 4541 4542 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4543 if (err) { 4544 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4545 goto err_dma; 4546 } 4547 4548 err = pci_request_regions(pdev, ixgbevf_driver_name); 4549 if (err) { 4550 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4551 goto err_pci_reg; 4552 } 4553 4554 pci_set_master(pdev); 4555 4556 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4557 MAX_TX_QUEUES); 4558 if (!netdev) { 4559 err = -ENOMEM; 4560 goto err_alloc_etherdev; 4561 } 4562 4563 SET_NETDEV_DEV(netdev, &pdev->dev); 4564 4565 adapter = netdev_priv(netdev); 4566 4567 adapter->netdev = netdev; 4568 adapter->pdev = pdev; 4569 hw = &adapter->hw; 4570 hw->back = adapter; 4571 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4572 4573 /* call save state here in standalone driver because it relies on 4574 * adapter struct to exist, and needs to call netdev_priv 4575 */ 4576 pci_save_state(pdev); 4577 4578 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4579 pci_resource_len(pdev, 0)); 4580 adapter->io_addr = hw->hw_addr; 4581 if (!hw->hw_addr) { 4582 err = -EIO; 4583 goto err_ioremap; 4584 } 4585 4586 ixgbevf_assign_netdev_ops(netdev); 4587 4588 /* Setup HW API */ 4589 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4590 hw->mac.type = ii->mac; 4591 4592 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops_legacy, 4593 sizeof(struct ixgbe_mbx_operations)); 4594 4595 /* setup the private structure */ 4596 err = ixgbevf_sw_init(adapter); 4597 if (err) 4598 goto err_sw_init; 4599 4600 /* The HW MAC address was set and/or determined in sw_init */ 4601 if (!is_valid_ether_addr(netdev->dev_addr)) { 4602 pr_err("invalid MAC address\n"); 4603 err = -EIO; 4604 goto err_sw_init; 4605 } 4606 4607 netdev->hw_features = NETIF_F_SG | 4608 NETIF_F_TSO | 4609 NETIF_F_TSO6 | 4610 NETIF_F_RXCSUM | 4611 NETIF_F_HW_CSUM | 4612 NETIF_F_SCTP_CRC; 4613 4614 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4615 NETIF_F_GSO_GRE_CSUM | \ 4616 NETIF_F_GSO_IPXIP4 | \ 4617 NETIF_F_GSO_IPXIP6 | \ 4618 NETIF_F_GSO_UDP_TUNNEL | \ 4619 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4620 4621 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4622 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4623 IXGBEVF_GSO_PARTIAL_FEATURES; 4624 4625 netdev->features = netdev->hw_features | NETIF_F_HIGHDMA; 4626 4627 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4628 netdev->mpls_features |= NETIF_F_SG | 4629 NETIF_F_TSO | 4630 NETIF_F_TSO6 | 4631 NETIF_F_HW_CSUM; 4632 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4633 netdev->hw_enc_features |= netdev->vlan_features; 4634 4635 /* set this bit last since it cannot be part of vlan_features */ 4636 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4637 NETIF_F_HW_VLAN_CTAG_RX | 4638 NETIF_F_HW_VLAN_CTAG_TX; 4639 4640 netdev->priv_flags |= IFF_UNICAST_FLT; 4641 netdev->xdp_features = NETDEV_XDP_ACT_BASIC; 4642 4643 /* MTU range: 68 - 1504 or 9710 */ 4644 netdev->min_mtu = ETH_MIN_MTU; 4645 switch (adapter->hw.api_version) { 4646 case ixgbe_mbox_api_11: 4647 case ixgbe_mbox_api_12: 4648 case ixgbe_mbox_api_13: 4649 case ixgbe_mbox_api_14: 4650 case ixgbe_mbox_api_15: 4651 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4652 (ETH_HLEN + ETH_FCS_LEN); 4653 break; 4654 default: 4655 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4656 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4657 (ETH_HLEN + ETH_FCS_LEN); 4658 else 4659 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4660 break; 4661 } 4662 4663 if (IXGBE_REMOVED(hw->hw_addr)) { 4664 err = -EIO; 4665 goto err_sw_init; 4666 } 4667 4668 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); 4669 4670 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4671 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4672 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4673 4674 err = ixgbevf_init_interrupt_scheme(adapter); 4675 if (err) 4676 goto err_sw_init; 4677 4678 strcpy(netdev->name, "eth%d"); 4679 4680 err = register_netdev(netdev); 4681 if (err) 4682 goto err_register; 4683 4684 pci_set_drvdata(pdev, netdev); 4685 netif_carrier_off(netdev); 4686 ixgbevf_init_ipsec_offload(adapter); 4687 4688 ixgbevf_init_last_counter_stats(adapter); 4689 4690 /* print the VF info */ 4691 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4692 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4693 4694 switch (hw->mac.type) { 4695 case ixgbe_mac_X550_vf: 4696 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4697 break; 4698 case ixgbe_mac_X540_vf: 4699 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4700 break; 4701 case ixgbe_mac_e610_vf: 4702 dev_info(&pdev->dev, "Intel(R) E610 Virtual Function\n"); 4703 break; 4704 case ixgbe_mac_82599_vf: 4705 default: 4706 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4707 break; 4708 } 4709 4710 return 0; 4711 4712 err_register: 4713 ixgbevf_clear_interrupt_scheme(adapter); 4714 err_sw_init: 4715 ixgbevf_reset_interrupt_capability(adapter); 4716 iounmap(adapter->io_addr); 4717 kfree(adapter->rss_key); 4718 err_ioremap: 4719 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4720 free_netdev(netdev); 4721 err_alloc_etherdev: 4722 pci_release_regions(pdev); 4723 err_pci_reg: 4724 err_dma: 4725 if (!adapter || disable_dev) 4726 pci_disable_device(pdev); 4727 return err; 4728 } 4729 4730 /** 4731 * ixgbevf_remove - Device Removal Routine 4732 * @pdev: PCI device information struct 4733 * 4734 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4735 * that it should release a PCI device. The could be caused by a 4736 * Hot-Plug event, or because the driver is going to be removed from 4737 * memory. 4738 **/ 4739 static void ixgbevf_remove(struct pci_dev *pdev) 4740 { 4741 struct net_device *netdev = pci_get_drvdata(pdev); 4742 struct ixgbevf_adapter *adapter; 4743 bool disable_dev; 4744 4745 if (!netdev) 4746 return; 4747 4748 adapter = netdev_priv(netdev); 4749 4750 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4751 cancel_work_sync(&adapter->service_task); 4752 4753 if (netdev->reg_state == NETREG_REGISTERED) 4754 unregister_netdev(netdev); 4755 4756 ixgbevf_stop_ipsec_offload(adapter); 4757 ixgbevf_clear_interrupt_scheme(adapter); 4758 ixgbevf_reset_interrupt_capability(adapter); 4759 4760 iounmap(adapter->io_addr); 4761 pci_release_regions(pdev); 4762 4763 hw_dbg(&adapter->hw, "Remove complete\n"); 4764 4765 kfree(adapter->rss_key); 4766 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4767 free_netdev(netdev); 4768 4769 if (disable_dev) 4770 pci_disable_device(pdev); 4771 } 4772 4773 /** 4774 * ixgbevf_io_error_detected - called when PCI error is detected 4775 * @pdev: Pointer to PCI device 4776 * @state: The current pci connection state 4777 * 4778 * This function is called after a PCI bus error affecting 4779 * this device has been detected. 4780 **/ 4781 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4782 pci_channel_state_t state) 4783 { 4784 struct net_device *netdev = pci_get_drvdata(pdev); 4785 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4786 4787 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4788 return PCI_ERS_RESULT_DISCONNECT; 4789 4790 rtnl_lock(); 4791 netif_device_detach(netdev); 4792 4793 if (netif_running(netdev)) 4794 ixgbevf_close_suspend(adapter); 4795 4796 if (state == pci_channel_io_perm_failure) { 4797 rtnl_unlock(); 4798 return PCI_ERS_RESULT_DISCONNECT; 4799 } 4800 4801 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4802 pci_disable_device(pdev); 4803 rtnl_unlock(); 4804 4805 /* Request a slot reset. */ 4806 return PCI_ERS_RESULT_NEED_RESET; 4807 } 4808 4809 /** 4810 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4811 * @pdev: Pointer to PCI device 4812 * 4813 * Restart the card from scratch, as if from a cold-boot. Implementation 4814 * resembles the first-half of the ixgbevf_resume routine. 4815 **/ 4816 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4817 { 4818 struct net_device *netdev = pci_get_drvdata(pdev); 4819 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4820 4821 if (pci_enable_device_mem(pdev)) { 4822 dev_err(&pdev->dev, 4823 "Cannot re-enable PCI device after reset.\n"); 4824 return PCI_ERS_RESULT_DISCONNECT; 4825 } 4826 4827 adapter->hw.hw_addr = adapter->io_addr; 4828 smp_mb__before_atomic(); 4829 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4830 pci_set_master(pdev); 4831 4832 ixgbevf_reset(adapter); 4833 4834 return PCI_ERS_RESULT_RECOVERED; 4835 } 4836 4837 /** 4838 * ixgbevf_io_resume - called when traffic can start flowing again. 4839 * @pdev: Pointer to PCI device 4840 * 4841 * This callback is called when the error recovery driver tells us that 4842 * its OK to resume normal operation. Implementation resembles the 4843 * second-half of the ixgbevf_resume routine. 4844 **/ 4845 static void ixgbevf_io_resume(struct pci_dev *pdev) 4846 { 4847 struct net_device *netdev = pci_get_drvdata(pdev); 4848 4849 rtnl_lock(); 4850 if (netif_running(netdev)) 4851 ixgbevf_open(netdev); 4852 4853 netif_device_attach(netdev); 4854 rtnl_unlock(); 4855 } 4856 4857 /* PCI Error Recovery (ERS) */ 4858 static const struct pci_error_handlers ixgbevf_err_handler = { 4859 .error_detected = ixgbevf_io_error_detected, 4860 .slot_reset = ixgbevf_io_slot_reset, 4861 .resume = ixgbevf_io_resume, 4862 }; 4863 4864 static DEFINE_SIMPLE_DEV_PM_OPS(ixgbevf_pm_ops, ixgbevf_suspend, ixgbevf_resume); 4865 4866 static struct pci_driver ixgbevf_driver = { 4867 .name = ixgbevf_driver_name, 4868 .id_table = ixgbevf_pci_tbl, 4869 .probe = ixgbevf_probe, 4870 .remove = ixgbevf_remove, 4871 4872 /* Power Management Hooks */ 4873 .driver.pm = pm_sleep_ptr(&ixgbevf_pm_ops), 4874 4875 .shutdown = ixgbevf_shutdown, 4876 .err_handler = &ixgbevf_err_handler 4877 }; 4878 4879 /** 4880 * ixgbevf_init_module - Driver Registration Routine 4881 * 4882 * ixgbevf_init_module is the first routine called when the driver is 4883 * loaded. All it does is register with the PCI subsystem. 4884 **/ 4885 static int __init ixgbevf_init_module(void) 4886 { 4887 int err; 4888 4889 pr_info("%s\n", ixgbevf_driver_string); 4890 pr_info("%s\n", ixgbevf_copyright); 4891 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4892 if (!ixgbevf_wq) { 4893 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4894 return -ENOMEM; 4895 } 4896 4897 err = pci_register_driver(&ixgbevf_driver); 4898 if (err) { 4899 destroy_workqueue(ixgbevf_wq); 4900 return err; 4901 } 4902 4903 return 0; 4904 } 4905 4906 module_init(ixgbevf_init_module); 4907 4908 /** 4909 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4910 * 4911 * ixgbevf_exit_module is called just before the driver is removed 4912 * from memory. 4913 **/ 4914 static void __exit ixgbevf_exit_module(void) 4915 { 4916 pci_unregister_driver(&ixgbevf_driver); 4917 if (ixgbevf_wq) { 4918 destroy_workqueue(ixgbevf_wq); 4919 ixgbevf_wq = NULL; 4920 } 4921 } 4922 4923 #ifdef DEBUG 4924 /** 4925 * ixgbevf_get_hw_dev_name - return device name string 4926 * used by hardware layer to print debugging information 4927 * @hw: pointer to private hardware struct 4928 **/ 4929 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4930 { 4931 struct ixgbevf_adapter *adapter = hw->back; 4932 4933 return adapter->netdev->name; 4934 } 4935 4936 #endif 4937 module_exit(ixgbevf_exit_module); 4938 4939 /* ixgbevf_main.c */ 4940