1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /****************************************************************************** 5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 6 ******************************************************************************/ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/types.h> 11 #include <linux/bitops.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/in.h> 18 #include <linux/ip.h> 19 #include <linux/tcp.h> 20 #include <linux/sctp.h> 21 #include <linux/ipv6.h> 22 #include <linux/slab.h> 23 #include <net/checksum.h> 24 #include <net/ip6_checksum.h> 25 #include <linux/ethtool.h> 26 #include <linux/if.h> 27 #include <linux/if_vlan.h> 28 #include <linux/prefetch.h> 29 #include <net/mpls.h> 30 #include <linux/bpf.h> 31 #include <linux/bpf_trace.h> 32 #include <linux/atomic.h> 33 #include <net/xfrm.h> 34 35 #include "ixgbevf.h" 36 37 const char ixgbevf_driver_name[] = "ixgbevf"; 38 static const char ixgbevf_driver_string[] = 39 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 40 41 static char ixgbevf_copyright[] = 42 "Copyright (c) 2009 - 2018 Intel Corporation."; 43 44 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 45 [board_82599_vf] = &ixgbevf_82599_vf_info, 46 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 47 [board_X540_vf] = &ixgbevf_X540_vf_info, 48 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 49 [board_X550_vf] = &ixgbevf_X550_vf_info, 50 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 51 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 52 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 53 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 54 }; 55 56 /* ixgbevf_pci_tbl - PCI Device ID Table 57 * 58 * Wildcard entries (PCI_ANY_ID) should come last 59 * Last entry must be all 0s 60 * 61 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 62 * Class, Class Mask, private data (not used) } 63 */ 64 static const struct pci_device_id ixgbevf_pci_tbl[] = { 65 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 66 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 74 /* required last entry */ 75 {0, } 76 }; 77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 78 79 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 80 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 81 MODULE_LICENSE("GPL v2"); 82 83 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 84 static int debug = -1; 85 module_param(debug, int, 0); 86 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 87 88 static struct workqueue_struct *ixgbevf_wq; 89 90 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 91 { 92 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 93 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 94 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 95 queue_work(ixgbevf_wq, &adapter->service_task); 96 } 97 98 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 99 { 100 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 101 102 /* flush memory to make sure state is correct before next watchdog */ 103 smp_mb__before_atomic(); 104 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 105 } 106 107 /* forward decls */ 108 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 109 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 110 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 111 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer); 112 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 113 struct ixgbevf_rx_buffer *old_buff); 114 115 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 116 { 117 struct ixgbevf_adapter *adapter = hw->back; 118 119 if (!hw->hw_addr) 120 return; 121 hw->hw_addr = NULL; 122 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 123 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 124 ixgbevf_service_event_schedule(adapter); 125 } 126 127 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 128 { 129 u32 value; 130 131 /* The following check not only optimizes a bit by not 132 * performing a read on the status register when the 133 * register just read was a status register read that 134 * returned IXGBE_FAILED_READ_REG. It also blocks any 135 * potential recursion. 136 */ 137 if (reg == IXGBE_VFSTATUS) { 138 ixgbevf_remove_adapter(hw); 139 return; 140 } 141 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 142 if (value == IXGBE_FAILED_READ_REG) 143 ixgbevf_remove_adapter(hw); 144 } 145 146 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 147 { 148 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 149 u32 value; 150 151 if (IXGBE_REMOVED(reg_addr)) 152 return IXGBE_FAILED_READ_REG; 153 value = readl(reg_addr + reg); 154 if (unlikely(value == IXGBE_FAILED_READ_REG)) 155 ixgbevf_check_remove(hw, reg); 156 return value; 157 } 158 159 /** 160 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 161 * @adapter: pointer to adapter struct 162 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 163 * @queue: queue to map the corresponding interrupt to 164 * @msix_vector: the vector to map to the corresponding queue 165 **/ 166 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 167 u8 queue, u8 msix_vector) 168 { 169 u32 ivar, index; 170 struct ixgbe_hw *hw = &adapter->hw; 171 172 if (direction == -1) { 173 /* other causes */ 174 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 175 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 176 ivar &= ~0xFF; 177 ivar |= msix_vector; 178 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 179 } else { 180 /* Tx or Rx causes */ 181 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 182 index = ((16 * (queue & 1)) + (8 * direction)); 183 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 184 ivar &= ~(0xFF << index); 185 ivar |= (msix_vector << index); 186 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 187 } 188 } 189 190 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 191 { 192 return ring->stats.packets; 193 } 194 195 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 196 { 197 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 198 struct ixgbe_hw *hw = &adapter->hw; 199 200 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 201 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 202 203 if (head != tail) 204 return (head < tail) ? 205 tail - head : (tail + ring->count - head); 206 207 return 0; 208 } 209 210 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 211 { 212 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 213 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 214 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 215 216 clear_check_for_tx_hang(tx_ring); 217 218 /* Check for a hung queue, but be thorough. This verifies 219 * that a transmit has been completed since the previous 220 * check AND there is at least one packet pending. The 221 * ARMED bit is set to indicate a potential hang. 222 */ 223 if ((tx_done_old == tx_done) && tx_pending) { 224 /* make sure it is true for two checks in a row */ 225 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 226 &tx_ring->state); 227 } 228 /* reset the countdown */ 229 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 230 231 /* update completed stats and continue */ 232 tx_ring->tx_stats.tx_done_old = tx_done; 233 234 return false; 235 } 236 237 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 238 { 239 /* Do the reset outside of interrupt context */ 240 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 241 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 242 ixgbevf_service_event_schedule(adapter); 243 } 244 } 245 246 /** 247 * ixgbevf_tx_timeout - Respond to a Tx Hang 248 * @netdev: network interface device structure 249 * @txqueue: transmit queue hanging (unused) 250 **/ 251 static void ixgbevf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) 252 { 253 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 254 255 ixgbevf_tx_timeout_reset(adapter); 256 } 257 258 /** 259 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 260 * @q_vector: board private structure 261 * @tx_ring: tx ring to clean 262 * @napi_budget: Used to determine if we are in netpoll 263 **/ 264 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 265 struct ixgbevf_ring *tx_ring, int napi_budget) 266 { 267 struct ixgbevf_adapter *adapter = q_vector->adapter; 268 struct ixgbevf_tx_buffer *tx_buffer; 269 union ixgbe_adv_tx_desc *tx_desc; 270 unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0; 271 unsigned int budget = tx_ring->count / 2; 272 unsigned int i = tx_ring->next_to_clean; 273 274 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 275 return true; 276 277 tx_buffer = &tx_ring->tx_buffer_info[i]; 278 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 279 i -= tx_ring->count; 280 281 do { 282 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 283 284 /* if next_to_watch is not set then there is no work pending */ 285 if (!eop_desc) 286 break; 287 288 /* prevent any other reads prior to eop_desc */ 289 smp_rmb(); 290 291 /* if DD is not set pending work has not been completed */ 292 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 293 break; 294 295 /* clear next_to_watch to prevent false hangs */ 296 tx_buffer->next_to_watch = NULL; 297 298 /* update the statistics for this packet */ 299 total_bytes += tx_buffer->bytecount; 300 total_packets += tx_buffer->gso_segs; 301 if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC) 302 total_ipsec++; 303 304 /* free the skb */ 305 if (ring_is_xdp(tx_ring)) 306 page_frag_free(tx_buffer->data); 307 else 308 napi_consume_skb(tx_buffer->skb, napi_budget); 309 310 /* unmap skb header data */ 311 dma_unmap_single(tx_ring->dev, 312 dma_unmap_addr(tx_buffer, dma), 313 dma_unmap_len(tx_buffer, len), 314 DMA_TO_DEVICE); 315 316 /* clear tx_buffer data */ 317 dma_unmap_len_set(tx_buffer, len, 0); 318 319 /* unmap remaining buffers */ 320 while (tx_desc != eop_desc) { 321 tx_buffer++; 322 tx_desc++; 323 i++; 324 if (unlikely(!i)) { 325 i -= tx_ring->count; 326 tx_buffer = tx_ring->tx_buffer_info; 327 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 328 } 329 330 /* unmap any remaining paged data */ 331 if (dma_unmap_len(tx_buffer, len)) { 332 dma_unmap_page(tx_ring->dev, 333 dma_unmap_addr(tx_buffer, dma), 334 dma_unmap_len(tx_buffer, len), 335 DMA_TO_DEVICE); 336 dma_unmap_len_set(tx_buffer, len, 0); 337 } 338 } 339 340 /* move us one more past the eop_desc for start of next pkt */ 341 tx_buffer++; 342 tx_desc++; 343 i++; 344 if (unlikely(!i)) { 345 i -= tx_ring->count; 346 tx_buffer = tx_ring->tx_buffer_info; 347 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 348 } 349 350 /* issue prefetch for next Tx descriptor */ 351 prefetch(tx_desc); 352 353 /* update budget accounting */ 354 budget--; 355 } while (likely(budget)); 356 357 i += tx_ring->count; 358 tx_ring->next_to_clean = i; 359 u64_stats_update_begin(&tx_ring->syncp); 360 tx_ring->stats.bytes += total_bytes; 361 tx_ring->stats.packets += total_packets; 362 u64_stats_update_end(&tx_ring->syncp); 363 q_vector->tx.total_bytes += total_bytes; 364 q_vector->tx.total_packets += total_packets; 365 adapter->tx_ipsec += total_ipsec; 366 367 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 368 struct ixgbe_hw *hw = &adapter->hw; 369 union ixgbe_adv_tx_desc *eop_desc; 370 371 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 372 373 pr_err("Detected Tx Unit Hang%s\n" 374 " Tx Queue <%d>\n" 375 " TDH, TDT <%x>, <%x>\n" 376 " next_to_use <%x>\n" 377 " next_to_clean <%x>\n" 378 "tx_buffer_info[next_to_clean]\n" 379 " next_to_watch <%p>\n" 380 " eop_desc->wb.status <%x>\n" 381 " time_stamp <%lx>\n" 382 " jiffies <%lx>\n", 383 ring_is_xdp(tx_ring) ? " XDP" : "", 384 tx_ring->queue_index, 385 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 386 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 387 tx_ring->next_to_use, i, 388 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 389 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 390 391 if (!ring_is_xdp(tx_ring)) 392 netif_stop_subqueue(tx_ring->netdev, 393 tx_ring->queue_index); 394 395 /* schedule immediate reset if we believe we hung */ 396 ixgbevf_tx_timeout_reset(adapter); 397 398 return true; 399 } 400 401 if (ring_is_xdp(tx_ring)) 402 return !!budget; 403 404 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 405 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 406 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 407 /* Make sure that anybody stopping the queue after this 408 * sees the new next_to_clean. 409 */ 410 smp_mb(); 411 412 if (__netif_subqueue_stopped(tx_ring->netdev, 413 tx_ring->queue_index) && 414 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 415 netif_wake_subqueue(tx_ring->netdev, 416 tx_ring->queue_index); 417 ++tx_ring->tx_stats.restart_queue; 418 } 419 } 420 421 return !!budget; 422 } 423 424 /** 425 * ixgbevf_rx_skb - Helper function to determine proper Rx method 426 * @q_vector: structure containing interrupt and ring information 427 * @skb: packet to send up 428 **/ 429 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 430 struct sk_buff *skb) 431 { 432 napi_gro_receive(&q_vector->napi, skb); 433 } 434 435 #define IXGBE_RSS_L4_TYPES_MASK \ 436 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 437 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 438 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 439 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 440 441 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 442 union ixgbe_adv_rx_desc *rx_desc, 443 struct sk_buff *skb) 444 { 445 u16 rss_type; 446 447 if (!(ring->netdev->features & NETIF_F_RXHASH)) 448 return; 449 450 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 451 IXGBE_RXDADV_RSSTYPE_MASK; 452 453 if (!rss_type) 454 return; 455 456 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 457 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 458 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 459 } 460 461 /** 462 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 463 * @ring: structure containig ring specific data 464 * @rx_desc: current Rx descriptor being processed 465 * @skb: skb currently being received and modified 466 **/ 467 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 468 union ixgbe_adv_rx_desc *rx_desc, 469 struct sk_buff *skb) 470 { 471 skb_checksum_none_assert(skb); 472 473 /* Rx csum disabled */ 474 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 475 return; 476 477 /* if IP and error */ 478 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 479 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 480 ring->rx_stats.csum_err++; 481 return; 482 } 483 484 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 485 return; 486 487 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 488 ring->rx_stats.csum_err++; 489 return; 490 } 491 492 /* It must be a TCP or UDP packet with a valid checksum */ 493 skb->ip_summed = CHECKSUM_UNNECESSARY; 494 } 495 496 /** 497 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 498 * @rx_ring: rx descriptor ring packet is being transacted on 499 * @rx_desc: pointer to the EOP Rx descriptor 500 * @skb: pointer to current skb being populated 501 * 502 * This function checks the ring, descriptor, and packet information in 503 * order to populate the checksum, VLAN, protocol, and other fields within 504 * the skb. 505 **/ 506 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 507 union ixgbe_adv_rx_desc *rx_desc, 508 struct sk_buff *skb) 509 { 510 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 511 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 512 513 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 514 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 515 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 516 517 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 518 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 519 } 520 521 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP)) 522 ixgbevf_ipsec_rx(rx_ring, rx_desc, skb); 523 524 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 525 } 526 527 static 528 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring, 529 const unsigned int size) 530 { 531 struct ixgbevf_rx_buffer *rx_buffer; 532 533 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 534 prefetchw(rx_buffer->page); 535 536 /* we are reusing so sync this buffer for CPU use */ 537 dma_sync_single_range_for_cpu(rx_ring->dev, 538 rx_buffer->dma, 539 rx_buffer->page_offset, 540 size, 541 DMA_FROM_DEVICE); 542 543 rx_buffer->pagecnt_bias--; 544 545 return rx_buffer; 546 } 547 548 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring, 549 struct ixgbevf_rx_buffer *rx_buffer, 550 struct sk_buff *skb) 551 { 552 if (ixgbevf_can_reuse_rx_page(rx_buffer)) { 553 /* hand second half of page back to the ring */ 554 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 555 } else { 556 if (IS_ERR(skb)) 557 /* We are not reusing the buffer so unmap it and free 558 * any references we are holding to it 559 */ 560 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 561 ixgbevf_rx_pg_size(rx_ring), 562 DMA_FROM_DEVICE, 563 IXGBEVF_RX_DMA_ATTR); 564 __page_frag_cache_drain(rx_buffer->page, 565 rx_buffer->pagecnt_bias); 566 } 567 568 /* clear contents of rx_buffer */ 569 rx_buffer->page = NULL; 570 } 571 572 /** 573 * ixgbevf_is_non_eop - process handling of non-EOP buffers 574 * @rx_ring: Rx ring being processed 575 * @rx_desc: Rx descriptor for current buffer 576 * 577 * This function updates next to clean. If the buffer is an EOP buffer 578 * this function exits returning false, otherwise it will place the 579 * sk_buff in the next buffer to be chained and return true indicating 580 * that this is in fact a non-EOP buffer. 581 **/ 582 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 583 union ixgbe_adv_rx_desc *rx_desc) 584 { 585 u32 ntc = rx_ring->next_to_clean + 1; 586 587 /* fetch, update, and store next to clean */ 588 ntc = (ntc < rx_ring->count) ? ntc : 0; 589 rx_ring->next_to_clean = ntc; 590 591 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 592 593 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 594 return false; 595 596 return true; 597 } 598 599 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring) 600 { 601 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0; 602 } 603 604 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 605 struct ixgbevf_rx_buffer *bi) 606 { 607 struct page *page = bi->page; 608 dma_addr_t dma; 609 610 /* since we are recycling buffers we should seldom need to alloc */ 611 if (likely(page)) 612 return true; 613 614 /* alloc new page for storage */ 615 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring)); 616 if (unlikely(!page)) { 617 rx_ring->rx_stats.alloc_rx_page_failed++; 618 return false; 619 } 620 621 /* map page for use */ 622 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 623 ixgbevf_rx_pg_size(rx_ring), 624 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); 625 626 /* if mapping failed free memory back to system since 627 * there isn't much point in holding memory we can't use 628 */ 629 if (dma_mapping_error(rx_ring->dev, dma)) { 630 __free_pages(page, ixgbevf_rx_pg_order(rx_ring)); 631 632 rx_ring->rx_stats.alloc_rx_page_failed++; 633 return false; 634 } 635 636 bi->dma = dma; 637 bi->page = page; 638 bi->page_offset = ixgbevf_rx_offset(rx_ring); 639 bi->pagecnt_bias = 1; 640 rx_ring->rx_stats.alloc_rx_page++; 641 642 return true; 643 } 644 645 /** 646 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 647 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 648 * @cleaned_count: number of buffers to replace 649 **/ 650 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 651 u16 cleaned_count) 652 { 653 union ixgbe_adv_rx_desc *rx_desc; 654 struct ixgbevf_rx_buffer *bi; 655 unsigned int i = rx_ring->next_to_use; 656 657 /* nothing to do or no valid netdev defined */ 658 if (!cleaned_count || !rx_ring->netdev) 659 return; 660 661 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 662 bi = &rx_ring->rx_buffer_info[i]; 663 i -= rx_ring->count; 664 665 do { 666 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 667 break; 668 669 /* sync the buffer for use by the device */ 670 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 671 bi->page_offset, 672 ixgbevf_rx_bufsz(rx_ring), 673 DMA_FROM_DEVICE); 674 675 /* Refresh the desc even if pkt_addr didn't change 676 * because each write-back erases this info. 677 */ 678 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 679 680 rx_desc++; 681 bi++; 682 i++; 683 if (unlikely(!i)) { 684 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 685 bi = rx_ring->rx_buffer_info; 686 i -= rx_ring->count; 687 } 688 689 /* clear the length for the next_to_use descriptor */ 690 rx_desc->wb.upper.length = 0; 691 692 cleaned_count--; 693 } while (cleaned_count); 694 695 i += rx_ring->count; 696 697 if (rx_ring->next_to_use != i) { 698 /* record the next descriptor to use */ 699 rx_ring->next_to_use = i; 700 701 /* update next to alloc since we have filled the ring */ 702 rx_ring->next_to_alloc = i; 703 704 /* Force memory writes to complete before letting h/w 705 * know there are new descriptors to fetch. (Only 706 * applicable for weak-ordered memory model archs, 707 * such as IA-64). 708 */ 709 wmb(); 710 ixgbevf_write_tail(rx_ring, i); 711 } 712 } 713 714 /** 715 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 716 * @rx_ring: rx descriptor ring packet is being transacted on 717 * @rx_desc: pointer to the EOP Rx descriptor 718 * @skb: pointer to current skb being fixed 719 * 720 * Check for corrupted packet headers caused by senders on the local L2 721 * embedded NIC switch not setting up their Tx Descriptors right. These 722 * should be very rare. 723 * 724 * Also address the case where we are pulling data in on pages only 725 * and as such no data is present in the skb header. 726 * 727 * In addition if skb is not at least 60 bytes we need to pad it so that 728 * it is large enough to qualify as a valid Ethernet frame. 729 * 730 * Returns true if an error was encountered and skb was freed. 731 **/ 732 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 733 union ixgbe_adv_rx_desc *rx_desc, 734 struct sk_buff *skb) 735 { 736 /* XDP packets use error pointer so abort at this point */ 737 if (IS_ERR(skb)) 738 return true; 739 740 /* verify that the packet does not have any known errors */ 741 if (unlikely(ixgbevf_test_staterr(rx_desc, 742 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 743 struct net_device *netdev = rx_ring->netdev; 744 745 if (!(netdev->features & NETIF_F_RXALL)) { 746 dev_kfree_skb_any(skb); 747 return true; 748 } 749 } 750 751 /* if eth_skb_pad returns an error the skb was freed */ 752 if (eth_skb_pad(skb)) 753 return true; 754 755 return false; 756 } 757 758 /** 759 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 760 * @rx_ring: rx descriptor ring to store buffers on 761 * @old_buff: donor buffer to have page reused 762 * 763 * Synchronizes page for reuse by the adapter 764 **/ 765 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 766 struct ixgbevf_rx_buffer *old_buff) 767 { 768 struct ixgbevf_rx_buffer *new_buff; 769 u16 nta = rx_ring->next_to_alloc; 770 771 new_buff = &rx_ring->rx_buffer_info[nta]; 772 773 /* update, and store next to alloc */ 774 nta++; 775 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 776 777 /* transfer page from old buffer to new buffer */ 778 new_buff->page = old_buff->page; 779 new_buff->dma = old_buff->dma; 780 new_buff->page_offset = old_buff->page_offset; 781 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 782 } 783 784 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer) 785 { 786 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 787 struct page *page = rx_buffer->page; 788 789 /* avoid re-using remote and pfmemalloc pages */ 790 if (!dev_page_is_reusable(page)) 791 return false; 792 793 #if (PAGE_SIZE < 8192) 794 /* if we are only owner of page we can reuse it */ 795 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 796 return false; 797 #else 798 #define IXGBEVF_LAST_OFFSET \ 799 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048) 800 801 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET) 802 return false; 803 804 #endif 805 806 /* If we have drained the page fragment pool we need to update 807 * the pagecnt_bias and page count so that we fully restock the 808 * number of references the driver holds. 809 */ 810 if (unlikely(!pagecnt_bias)) { 811 page_ref_add(page, USHRT_MAX); 812 rx_buffer->pagecnt_bias = USHRT_MAX; 813 } 814 815 return true; 816 } 817 818 /** 819 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 820 * @rx_ring: rx descriptor ring to transact packets on 821 * @rx_buffer: buffer containing page to add 822 * @skb: sk_buff to place the data into 823 * @size: size of buffer to be added 824 * 825 * This function will add the data contained in rx_buffer->page to the skb. 826 **/ 827 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 828 struct ixgbevf_rx_buffer *rx_buffer, 829 struct sk_buff *skb, 830 unsigned int size) 831 { 832 #if (PAGE_SIZE < 8192) 833 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 834 #else 835 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 836 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 837 SKB_DATA_ALIGN(size); 838 #endif 839 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 840 rx_buffer->page_offset, size, truesize); 841 #if (PAGE_SIZE < 8192) 842 rx_buffer->page_offset ^= truesize; 843 #else 844 rx_buffer->page_offset += truesize; 845 #endif 846 } 847 848 static 849 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring, 850 struct ixgbevf_rx_buffer *rx_buffer, 851 struct xdp_buff *xdp, 852 union ixgbe_adv_rx_desc *rx_desc) 853 { 854 unsigned int size = xdp->data_end - xdp->data; 855 #if (PAGE_SIZE < 8192) 856 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 857 #else 858 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 859 xdp->data_hard_start); 860 #endif 861 unsigned int headlen; 862 struct sk_buff *skb; 863 864 /* prefetch first cache line of first page */ 865 net_prefetch(xdp->data); 866 867 /* Note, we get here by enabling legacy-rx via: 868 * 869 * ethtool --set-priv-flags <dev> legacy-rx on 870 * 871 * In this mode, we currently get 0 extra XDP headroom as 872 * opposed to having legacy-rx off, where we process XDP 873 * packets going to stack via ixgbevf_build_skb(). 874 * 875 * For ixgbevf_construct_skb() mode it means that the 876 * xdp->data_meta will always point to xdp->data, since 877 * the helper cannot expand the head. Should this ever 878 * changed in future for legacy-rx mode on, then lets also 879 * add xdp->data_meta handling here. 880 */ 881 882 /* allocate a skb to store the frags */ 883 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE); 884 if (unlikely(!skb)) 885 return NULL; 886 887 /* Determine available headroom for copy */ 888 headlen = size; 889 if (headlen > IXGBEVF_RX_HDR_SIZE) 890 headlen = eth_get_headlen(skb->dev, xdp->data, 891 IXGBEVF_RX_HDR_SIZE); 892 893 /* align pull length to size of long to optimize memcpy performance */ 894 memcpy(__skb_put(skb, headlen), xdp->data, 895 ALIGN(headlen, sizeof(long))); 896 897 /* update all of the pointers */ 898 size -= headlen; 899 if (size) { 900 skb_add_rx_frag(skb, 0, rx_buffer->page, 901 (xdp->data + headlen) - 902 page_address(rx_buffer->page), 903 size, truesize); 904 #if (PAGE_SIZE < 8192) 905 rx_buffer->page_offset ^= truesize; 906 #else 907 rx_buffer->page_offset += truesize; 908 #endif 909 } else { 910 rx_buffer->pagecnt_bias++; 911 } 912 913 return skb; 914 } 915 916 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 917 u32 qmask) 918 { 919 struct ixgbe_hw *hw = &adapter->hw; 920 921 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 922 } 923 924 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring, 925 struct ixgbevf_rx_buffer *rx_buffer, 926 struct xdp_buff *xdp, 927 union ixgbe_adv_rx_desc *rx_desc) 928 { 929 unsigned int metasize = xdp->data - xdp->data_meta; 930 #if (PAGE_SIZE < 8192) 931 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 932 #else 933 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 934 SKB_DATA_ALIGN(xdp->data_end - 935 xdp->data_hard_start); 936 #endif 937 struct sk_buff *skb; 938 939 /* Prefetch first cache line of first page. If xdp->data_meta 940 * is unused, this points to xdp->data, otherwise, we likely 941 * have a consumer accessing first few bytes of meta data, 942 * and then actual data. 943 */ 944 net_prefetch(xdp->data_meta); 945 946 /* build an skb around the page buffer */ 947 skb = napi_build_skb(xdp->data_hard_start, truesize); 948 if (unlikely(!skb)) 949 return NULL; 950 951 /* update pointers within the skb to store the data */ 952 skb_reserve(skb, xdp->data - xdp->data_hard_start); 953 __skb_put(skb, xdp->data_end - xdp->data); 954 if (metasize) 955 skb_metadata_set(skb, metasize); 956 957 /* update buffer offset */ 958 #if (PAGE_SIZE < 8192) 959 rx_buffer->page_offset ^= truesize; 960 #else 961 rx_buffer->page_offset += truesize; 962 #endif 963 964 return skb; 965 } 966 967 #define IXGBEVF_XDP_PASS 0 968 #define IXGBEVF_XDP_CONSUMED 1 969 #define IXGBEVF_XDP_TX 2 970 971 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring, 972 struct xdp_buff *xdp) 973 { 974 struct ixgbevf_tx_buffer *tx_buffer; 975 union ixgbe_adv_tx_desc *tx_desc; 976 u32 len, cmd_type; 977 dma_addr_t dma; 978 u16 i; 979 980 len = xdp->data_end - xdp->data; 981 982 if (unlikely(!ixgbevf_desc_unused(ring))) 983 return IXGBEVF_XDP_CONSUMED; 984 985 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE); 986 if (dma_mapping_error(ring->dev, dma)) 987 return IXGBEVF_XDP_CONSUMED; 988 989 /* record the location of the first descriptor for this packet */ 990 i = ring->next_to_use; 991 tx_buffer = &ring->tx_buffer_info[i]; 992 993 dma_unmap_len_set(tx_buffer, len, len); 994 dma_unmap_addr_set(tx_buffer, dma, dma); 995 tx_buffer->data = xdp->data; 996 tx_buffer->bytecount = len; 997 tx_buffer->gso_segs = 1; 998 tx_buffer->protocol = 0; 999 1000 /* Populate minimal context descriptor that will provide for the 1001 * fact that we are expected to process Ethernet frames. 1002 */ 1003 if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) { 1004 struct ixgbe_adv_tx_context_desc *context_desc; 1005 1006 set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1007 1008 context_desc = IXGBEVF_TX_CTXTDESC(ring, 0); 1009 context_desc->vlan_macip_lens = 1010 cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT); 1011 context_desc->fceof_saidx = 0; 1012 context_desc->type_tucmd_mlhl = 1013 cpu_to_le32(IXGBE_TXD_CMD_DEXT | 1014 IXGBE_ADVTXD_DTYP_CTXT); 1015 context_desc->mss_l4len_idx = 0; 1016 1017 i = 1; 1018 } 1019 1020 /* put descriptor type bits */ 1021 cmd_type = IXGBE_ADVTXD_DTYP_DATA | 1022 IXGBE_ADVTXD_DCMD_DEXT | 1023 IXGBE_ADVTXD_DCMD_IFCS; 1024 cmd_type |= len | IXGBE_TXD_CMD; 1025 1026 tx_desc = IXGBEVF_TX_DESC(ring, i); 1027 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1028 1029 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1030 tx_desc->read.olinfo_status = 1031 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) | 1032 IXGBE_ADVTXD_CC); 1033 1034 /* Avoid any potential race with cleanup */ 1035 smp_wmb(); 1036 1037 /* set next_to_watch value indicating a packet is present */ 1038 i++; 1039 if (i == ring->count) 1040 i = 0; 1041 1042 tx_buffer->next_to_watch = tx_desc; 1043 ring->next_to_use = i; 1044 1045 return IXGBEVF_XDP_TX; 1046 } 1047 1048 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter, 1049 struct ixgbevf_ring *rx_ring, 1050 struct xdp_buff *xdp) 1051 { 1052 int result = IXGBEVF_XDP_PASS; 1053 struct ixgbevf_ring *xdp_ring; 1054 struct bpf_prog *xdp_prog; 1055 u32 act; 1056 1057 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1058 1059 if (!xdp_prog) 1060 goto xdp_out; 1061 1062 act = bpf_prog_run_xdp(xdp_prog, xdp); 1063 switch (act) { 1064 case XDP_PASS: 1065 break; 1066 case XDP_TX: 1067 xdp_ring = adapter->xdp_ring[rx_ring->queue_index]; 1068 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp); 1069 if (result == IXGBEVF_XDP_CONSUMED) 1070 goto out_failure; 1071 break; 1072 default: 1073 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 1074 fallthrough; 1075 case XDP_ABORTED: 1076 out_failure: 1077 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 1078 fallthrough; /* handle aborts by dropping packet */ 1079 case XDP_DROP: 1080 result = IXGBEVF_XDP_CONSUMED; 1081 break; 1082 } 1083 xdp_out: 1084 return ERR_PTR(-result); 1085 } 1086 1087 static unsigned int ixgbevf_rx_frame_truesize(struct ixgbevf_ring *rx_ring, 1088 unsigned int size) 1089 { 1090 unsigned int truesize; 1091 1092 #if (PAGE_SIZE < 8192) 1093 truesize = ixgbevf_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 1094 #else 1095 truesize = ring_uses_build_skb(rx_ring) ? 1096 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) + 1097 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 1098 SKB_DATA_ALIGN(size); 1099 #endif 1100 return truesize; 1101 } 1102 1103 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring, 1104 struct ixgbevf_rx_buffer *rx_buffer, 1105 unsigned int size) 1106 { 1107 unsigned int truesize = ixgbevf_rx_frame_truesize(rx_ring, size); 1108 1109 #if (PAGE_SIZE < 8192) 1110 rx_buffer->page_offset ^= truesize; 1111 #else 1112 rx_buffer->page_offset += truesize; 1113 #endif 1114 } 1115 1116 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 1117 struct ixgbevf_ring *rx_ring, 1118 int budget) 1119 { 1120 unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0; 1121 struct ixgbevf_adapter *adapter = q_vector->adapter; 1122 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 1123 struct sk_buff *skb = rx_ring->skb; 1124 bool xdp_xmit = false; 1125 struct xdp_buff xdp; 1126 1127 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1128 #if (PAGE_SIZE < 8192) 1129 frame_sz = ixgbevf_rx_frame_truesize(rx_ring, 0); 1130 #endif 1131 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 1132 1133 while (likely(total_rx_packets < budget)) { 1134 struct ixgbevf_rx_buffer *rx_buffer; 1135 union ixgbe_adv_rx_desc *rx_desc; 1136 unsigned int size; 1137 1138 /* return some buffers to hardware, one at a time is too slow */ 1139 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 1140 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 1141 cleaned_count = 0; 1142 } 1143 1144 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1145 size = le16_to_cpu(rx_desc->wb.upper.length); 1146 if (!size) 1147 break; 1148 1149 /* This memory barrier is needed to keep us from reading 1150 * any other fields out of the rx_desc until we know the 1151 * RXD_STAT_DD bit is set 1152 */ 1153 rmb(); 1154 1155 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size); 1156 1157 /* retrieve a buffer from the ring */ 1158 if (!skb) { 1159 unsigned int offset = ixgbevf_rx_offset(rx_ring); 1160 unsigned char *hard_start; 1161 1162 hard_start = page_address(rx_buffer->page) + 1163 rx_buffer->page_offset - offset; 1164 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 1165 #if (PAGE_SIZE > 4096) 1166 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1167 xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, size); 1168 #endif 1169 skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp); 1170 } 1171 1172 if (IS_ERR(skb)) { 1173 if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) { 1174 xdp_xmit = true; 1175 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer, 1176 size); 1177 } else { 1178 rx_buffer->pagecnt_bias++; 1179 } 1180 total_rx_packets++; 1181 total_rx_bytes += size; 1182 } else if (skb) { 1183 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1184 } else if (ring_uses_build_skb(rx_ring)) { 1185 skb = ixgbevf_build_skb(rx_ring, rx_buffer, 1186 &xdp, rx_desc); 1187 } else { 1188 skb = ixgbevf_construct_skb(rx_ring, rx_buffer, 1189 &xdp, rx_desc); 1190 } 1191 1192 /* exit if we failed to retrieve a buffer */ 1193 if (!skb) { 1194 rx_ring->rx_stats.alloc_rx_buff_failed++; 1195 rx_buffer->pagecnt_bias++; 1196 break; 1197 } 1198 1199 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb); 1200 cleaned_count++; 1201 1202 /* fetch next buffer in frame if non-eop */ 1203 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 1204 continue; 1205 1206 /* verify the packet layout is correct */ 1207 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 1208 skb = NULL; 1209 continue; 1210 } 1211 1212 /* probably a little skewed due to removing CRC */ 1213 total_rx_bytes += skb->len; 1214 1215 /* Workaround hardware that can't do proper VEPA multicast 1216 * source pruning. 1217 */ 1218 if ((skb->pkt_type == PACKET_BROADCAST || 1219 skb->pkt_type == PACKET_MULTICAST) && 1220 ether_addr_equal(rx_ring->netdev->dev_addr, 1221 eth_hdr(skb)->h_source)) { 1222 dev_kfree_skb_irq(skb); 1223 continue; 1224 } 1225 1226 /* populate checksum, VLAN, and protocol */ 1227 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 1228 1229 ixgbevf_rx_skb(q_vector, skb); 1230 1231 /* reset skb pointer */ 1232 skb = NULL; 1233 1234 /* update budget accounting */ 1235 total_rx_packets++; 1236 } 1237 1238 /* place incomplete frames back on ring for completion */ 1239 rx_ring->skb = skb; 1240 1241 if (xdp_xmit) { 1242 struct ixgbevf_ring *xdp_ring = 1243 adapter->xdp_ring[rx_ring->queue_index]; 1244 1245 /* Force memory writes to complete before letting h/w 1246 * know there are new descriptors to fetch. 1247 */ 1248 wmb(); 1249 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use); 1250 } 1251 1252 u64_stats_update_begin(&rx_ring->syncp); 1253 rx_ring->stats.packets += total_rx_packets; 1254 rx_ring->stats.bytes += total_rx_bytes; 1255 u64_stats_update_end(&rx_ring->syncp); 1256 q_vector->rx.total_packets += total_rx_packets; 1257 q_vector->rx.total_bytes += total_rx_bytes; 1258 1259 return total_rx_packets; 1260 } 1261 1262 /** 1263 * ixgbevf_poll - NAPI polling calback 1264 * @napi: napi struct with our devices info in it 1265 * @budget: amount of work driver is allowed to do this pass, in packets 1266 * 1267 * This function will clean more than one or more rings associated with a 1268 * q_vector. 1269 **/ 1270 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1271 { 1272 struct ixgbevf_q_vector *q_vector = 1273 container_of(napi, struct ixgbevf_q_vector, napi); 1274 struct ixgbevf_adapter *adapter = q_vector->adapter; 1275 struct ixgbevf_ring *ring; 1276 int per_ring_budget, work_done = 0; 1277 bool clean_complete = true; 1278 1279 ixgbevf_for_each_ring(ring, q_vector->tx) { 1280 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1281 clean_complete = false; 1282 } 1283 1284 if (budget <= 0) 1285 return budget; 1286 1287 /* attempt to distribute budget to each queue fairly, but don't allow 1288 * the budget to go below 1 because we'll exit polling 1289 */ 1290 if (q_vector->rx.count > 1) 1291 per_ring_budget = max(budget/q_vector->rx.count, 1); 1292 else 1293 per_ring_budget = budget; 1294 1295 ixgbevf_for_each_ring(ring, q_vector->rx) { 1296 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1297 per_ring_budget); 1298 work_done += cleaned; 1299 if (cleaned >= per_ring_budget) 1300 clean_complete = false; 1301 } 1302 1303 /* If all work not completed, return budget and keep polling */ 1304 if (!clean_complete) 1305 return budget; 1306 1307 /* Exit the polling mode, but don't re-enable interrupts if stack might 1308 * poll us due to busy-polling 1309 */ 1310 if (likely(napi_complete_done(napi, work_done))) { 1311 if (adapter->rx_itr_setting == 1) 1312 ixgbevf_set_itr(q_vector); 1313 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1314 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1315 ixgbevf_irq_enable_queues(adapter, 1316 BIT(q_vector->v_idx)); 1317 } 1318 1319 return min(work_done, budget - 1); 1320 } 1321 1322 /** 1323 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1324 * @q_vector: structure containing interrupt and ring information 1325 **/ 1326 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1327 { 1328 struct ixgbevf_adapter *adapter = q_vector->adapter; 1329 struct ixgbe_hw *hw = &adapter->hw; 1330 int v_idx = q_vector->v_idx; 1331 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1332 1333 /* set the WDIS bit to not clear the timer bits and cause an 1334 * immediate assertion of the interrupt 1335 */ 1336 itr_reg |= IXGBE_EITR_CNT_WDIS; 1337 1338 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1339 } 1340 1341 /** 1342 * ixgbevf_configure_msix - Configure MSI-X hardware 1343 * @adapter: board private structure 1344 * 1345 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1346 * interrupts. 1347 **/ 1348 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1349 { 1350 struct ixgbevf_q_vector *q_vector; 1351 int q_vectors, v_idx; 1352 1353 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1354 adapter->eims_enable_mask = 0; 1355 1356 /* Populate the IVAR table and set the ITR values to the 1357 * corresponding register. 1358 */ 1359 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1360 struct ixgbevf_ring *ring; 1361 1362 q_vector = adapter->q_vector[v_idx]; 1363 1364 ixgbevf_for_each_ring(ring, q_vector->rx) 1365 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1366 1367 ixgbevf_for_each_ring(ring, q_vector->tx) 1368 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1369 1370 if (q_vector->tx.ring && !q_vector->rx.ring) { 1371 /* Tx only vector */ 1372 if (adapter->tx_itr_setting == 1) 1373 q_vector->itr = IXGBE_12K_ITR; 1374 else 1375 q_vector->itr = adapter->tx_itr_setting; 1376 } else { 1377 /* Rx or Rx/Tx vector */ 1378 if (adapter->rx_itr_setting == 1) 1379 q_vector->itr = IXGBE_20K_ITR; 1380 else 1381 q_vector->itr = adapter->rx_itr_setting; 1382 } 1383 1384 /* add q_vector eims value to global eims_enable_mask */ 1385 adapter->eims_enable_mask |= BIT(v_idx); 1386 1387 ixgbevf_write_eitr(q_vector); 1388 } 1389 1390 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1391 /* setup eims_other and add value to global eims_enable_mask */ 1392 adapter->eims_other = BIT(v_idx); 1393 adapter->eims_enable_mask |= adapter->eims_other; 1394 } 1395 1396 enum latency_range { 1397 lowest_latency = 0, 1398 low_latency = 1, 1399 bulk_latency = 2, 1400 latency_invalid = 255 1401 }; 1402 1403 /** 1404 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1405 * @q_vector: structure containing interrupt and ring information 1406 * @ring_container: structure containing ring performance data 1407 * 1408 * Stores a new ITR value based on packets and byte 1409 * counts during the last interrupt. The advantage of per interrupt 1410 * computation is faster updates and more accurate ITR for the current 1411 * traffic pattern. Constants in this function were computed 1412 * based on theoretical maximum wire speed and thresholds were set based 1413 * on testing data as well as attempting to minimize response time 1414 * while increasing bulk throughput. 1415 **/ 1416 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1417 struct ixgbevf_ring_container *ring_container) 1418 { 1419 int bytes = ring_container->total_bytes; 1420 int packets = ring_container->total_packets; 1421 u32 timepassed_us; 1422 u64 bytes_perint; 1423 u8 itr_setting = ring_container->itr; 1424 1425 if (packets == 0) 1426 return; 1427 1428 /* simple throttle rate management 1429 * 0-20MB/s lowest (100000 ints/s) 1430 * 20-100MB/s low (20000 ints/s) 1431 * 100-1249MB/s bulk (12000 ints/s) 1432 */ 1433 /* what was last interrupt timeslice? */ 1434 timepassed_us = q_vector->itr >> 2; 1435 if (timepassed_us == 0) 1436 return; 1437 1438 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1439 1440 switch (itr_setting) { 1441 case lowest_latency: 1442 if (bytes_perint > 10) 1443 itr_setting = low_latency; 1444 break; 1445 case low_latency: 1446 if (bytes_perint > 20) 1447 itr_setting = bulk_latency; 1448 else if (bytes_perint <= 10) 1449 itr_setting = lowest_latency; 1450 break; 1451 case bulk_latency: 1452 if (bytes_perint <= 20) 1453 itr_setting = low_latency; 1454 break; 1455 } 1456 1457 /* clear work counters since we have the values we need */ 1458 ring_container->total_bytes = 0; 1459 ring_container->total_packets = 0; 1460 1461 /* write updated itr to ring container */ 1462 ring_container->itr = itr_setting; 1463 } 1464 1465 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1466 { 1467 u32 new_itr = q_vector->itr; 1468 u8 current_itr; 1469 1470 ixgbevf_update_itr(q_vector, &q_vector->tx); 1471 ixgbevf_update_itr(q_vector, &q_vector->rx); 1472 1473 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1474 1475 switch (current_itr) { 1476 /* counts and packets in update_itr are dependent on these numbers */ 1477 case lowest_latency: 1478 new_itr = IXGBE_100K_ITR; 1479 break; 1480 case low_latency: 1481 new_itr = IXGBE_20K_ITR; 1482 break; 1483 case bulk_latency: 1484 new_itr = IXGBE_12K_ITR; 1485 break; 1486 default: 1487 break; 1488 } 1489 1490 if (new_itr != q_vector->itr) { 1491 /* do an exponential smoothing */ 1492 new_itr = (10 * new_itr * q_vector->itr) / 1493 ((9 * new_itr) + q_vector->itr); 1494 1495 /* save the algorithm value here */ 1496 q_vector->itr = new_itr; 1497 1498 ixgbevf_write_eitr(q_vector); 1499 } 1500 } 1501 1502 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1503 { 1504 struct ixgbevf_adapter *adapter = data; 1505 struct ixgbe_hw *hw = &adapter->hw; 1506 1507 hw->mac.get_link_status = 1; 1508 1509 ixgbevf_service_event_schedule(adapter); 1510 1511 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1512 1513 return IRQ_HANDLED; 1514 } 1515 1516 /** 1517 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1518 * @irq: unused 1519 * @data: pointer to our q_vector struct for this interrupt vector 1520 **/ 1521 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1522 { 1523 struct ixgbevf_q_vector *q_vector = data; 1524 1525 /* EIAM disabled interrupts (on this vector) for us */ 1526 if (q_vector->rx.ring || q_vector->tx.ring) 1527 napi_schedule_irqoff(&q_vector->napi); 1528 1529 return IRQ_HANDLED; 1530 } 1531 1532 /** 1533 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1534 * @adapter: board private structure 1535 * 1536 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1537 * interrupts from the kernel. 1538 **/ 1539 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1540 { 1541 struct net_device *netdev = adapter->netdev; 1542 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1543 unsigned int ri = 0, ti = 0; 1544 int vector, err; 1545 1546 for (vector = 0; vector < q_vectors; vector++) { 1547 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1548 struct msix_entry *entry = &adapter->msix_entries[vector]; 1549 1550 if (q_vector->tx.ring && q_vector->rx.ring) { 1551 snprintf(q_vector->name, sizeof(q_vector->name), 1552 "%s-TxRx-%u", netdev->name, ri++); 1553 ti++; 1554 } else if (q_vector->rx.ring) { 1555 snprintf(q_vector->name, sizeof(q_vector->name), 1556 "%s-rx-%u", netdev->name, ri++); 1557 } else if (q_vector->tx.ring) { 1558 snprintf(q_vector->name, sizeof(q_vector->name), 1559 "%s-tx-%u", netdev->name, ti++); 1560 } else { 1561 /* skip this unused q_vector */ 1562 continue; 1563 } 1564 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1565 q_vector->name, q_vector); 1566 if (err) { 1567 hw_dbg(&adapter->hw, 1568 "request_irq failed for MSIX interrupt Error: %d\n", 1569 err); 1570 goto free_queue_irqs; 1571 } 1572 } 1573 1574 err = request_irq(adapter->msix_entries[vector].vector, 1575 &ixgbevf_msix_other, 0, netdev->name, adapter); 1576 if (err) { 1577 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1578 err); 1579 goto free_queue_irqs; 1580 } 1581 1582 return 0; 1583 1584 free_queue_irqs: 1585 while (vector) { 1586 vector--; 1587 free_irq(adapter->msix_entries[vector].vector, 1588 adapter->q_vector[vector]); 1589 } 1590 /* This failure is non-recoverable - it indicates the system is 1591 * out of MSIX vector resources and the VF driver cannot run 1592 * without them. Set the number of msix vectors to zero 1593 * indicating that not enough can be allocated. The error 1594 * will be returned to the user indicating device open failed. 1595 * Any further attempts to force the driver to open will also 1596 * fail. The only way to recover is to unload the driver and 1597 * reload it again. If the system has recovered some MSIX 1598 * vectors then it may succeed. 1599 */ 1600 adapter->num_msix_vectors = 0; 1601 return err; 1602 } 1603 1604 /** 1605 * ixgbevf_request_irq - initialize interrupts 1606 * @adapter: board private structure 1607 * 1608 * Attempts to configure interrupts using the best available 1609 * capabilities of the hardware and kernel. 1610 **/ 1611 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1612 { 1613 int err = ixgbevf_request_msix_irqs(adapter); 1614 1615 if (err) 1616 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1617 1618 return err; 1619 } 1620 1621 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1622 { 1623 int i, q_vectors; 1624 1625 if (!adapter->msix_entries) 1626 return; 1627 1628 q_vectors = adapter->num_msix_vectors; 1629 i = q_vectors - 1; 1630 1631 free_irq(adapter->msix_entries[i].vector, adapter); 1632 i--; 1633 1634 for (; i >= 0; i--) { 1635 /* free only the irqs that were actually requested */ 1636 if (!adapter->q_vector[i]->rx.ring && 1637 !adapter->q_vector[i]->tx.ring) 1638 continue; 1639 1640 free_irq(adapter->msix_entries[i].vector, 1641 adapter->q_vector[i]); 1642 } 1643 } 1644 1645 /** 1646 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1647 * @adapter: board private structure 1648 **/ 1649 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1650 { 1651 struct ixgbe_hw *hw = &adapter->hw; 1652 int i; 1653 1654 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1655 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1656 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1657 1658 IXGBE_WRITE_FLUSH(hw); 1659 1660 for (i = 0; i < adapter->num_msix_vectors; i++) 1661 synchronize_irq(adapter->msix_entries[i].vector); 1662 } 1663 1664 /** 1665 * ixgbevf_irq_enable - Enable default interrupt generation settings 1666 * @adapter: board private structure 1667 **/ 1668 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1669 { 1670 struct ixgbe_hw *hw = &adapter->hw; 1671 1672 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1673 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1674 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1675 } 1676 1677 /** 1678 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1679 * @adapter: board private structure 1680 * @ring: structure containing ring specific data 1681 * 1682 * Configure the Tx descriptor ring after a reset. 1683 **/ 1684 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1685 struct ixgbevf_ring *ring) 1686 { 1687 struct ixgbe_hw *hw = &adapter->hw; 1688 u64 tdba = ring->dma; 1689 int wait_loop = 10; 1690 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1691 u8 reg_idx = ring->reg_idx; 1692 1693 /* disable queue to avoid issues while updating state */ 1694 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1695 IXGBE_WRITE_FLUSH(hw); 1696 1697 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1698 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1699 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1700 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1701 1702 /* disable head writeback */ 1703 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1704 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1705 1706 /* enable relaxed ordering */ 1707 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1708 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1709 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1710 1711 /* reset head and tail pointers */ 1712 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1713 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1714 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1715 1716 /* reset ntu and ntc to place SW in sync with hardwdare */ 1717 ring->next_to_clean = 0; 1718 ring->next_to_use = 0; 1719 1720 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1721 * to or less than the number of on chip descriptors, which is 1722 * currently 40. 1723 */ 1724 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1725 1726 /* Setting PTHRESH to 32 both improves performance */ 1727 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1728 32; /* PTHRESH = 32 */ 1729 1730 /* reinitialize tx_buffer_info */ 1731 memset(ring->tx_buffer_info, 0, 1732 sizeof(struct ixgbevf_tx_buffer) * ring->count); 1733 1734 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1735 clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1736 1737 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1738 1739 /* poll to verify queue is enabled */ 1740 do { 1741 usleep_range(1000, 2000); 1742 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1743 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1744 if (!wait_loop) 1745 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1746 } 1747 1748 /** 1749 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1750 * @adapter: board private structure 1751 * 1752 * Configure the Tx unit of the MAC after a reset. 1753 **/ 1754 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1755 { 1756 u32 i; 1757 1758 /* Setup the HW Tx Head and Tail descriptor pointers */ 1759 for (i = 0; i < adapter->num_tx_queues; i++) 1760 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1761 for (i = 0; i < adapter->num_xdp_queues; i++) 1762 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]); 1763 } 1764 1765 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1766 1767 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, 1768 struct ixgbevf_ring *ring, int index) 1769 { 1770 struct ixgbe_hw *hw = &adapter->hw; 1771 u32 srrctl; 1772 1773 srrctl = IXGBE_SRRCTL_DROP_EN; 1774 1775 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1776 if (ring_uses_large_buffer(ring)) 1777 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1778 else 1779 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1780 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1781 1782 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1783 } 1784 1785 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1786 { 1787 struct ixgbe_hw *hw = &adapter->hw; 1788 1789 /* PSRTYPE must be initialized in 82599 */ 1790 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1791 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1792 IXGBE_PSRTYPE_L2HDR; 1793 1794 if (adapter->num_rx_queues > 1) 1795 psrtype |= BIT(29); 1796 1797 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1798 } 1799 1800 #define IXGBEVF_MAX_RX_DESC_POLL 10 1801 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1802 struct ixgbevf_ring *ring) 1803 { 1804 struct ixgbe_hw *hw = &adapter->hw; 1805 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1806 u32 rxdctl; 1807 u8 reg_idx = ring->reg_idx; 1808 1809 if (IXGBE_REMOVED(hw->hw_addr)) 1810 return; 1811 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1812 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1813 1814 /* write value back with RXDCTL.ENABLE bit cleared */ 1815 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1816 1817 /* the hardware may take up to 100us to really disable the Rx queue */ 1818 do { 1819 udelay(10); 1820 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1821 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1822 1823 if (!wait_loop) 1824 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1825 reg_idx); 1826 } 1827 1828 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1829 struct ixgbevf_ring *ring) 1830 { 1831 struct ixgbe_hw *hw = &adapter->hw; 1832 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1833 u32 rxdctl; 1834 u8 reg_idx = ring->reg_idx; 1835 1836 if (IXGBE_REMOVED(hw->hw_addr)) 1837 return; 1838 do { 1839 usleep_range(1000, 2000); 1840 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1841 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1842 1843 if (!wait_loop) 1844 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1845 reg_idx); 1846 } 1847 1848 /** 1849 * ixgbevf_init_rss_key - Initialize adapter RSS key 1850 * @adapter: device handle 1851 * 1852 * Allocates and initializes the RSS key if it is not allocated. 1853 **/ 1854 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1855 { 1856 u32 *rss_key; 1857 1858 if (!adapter->rss_key) { 1859 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1860 if (unlikely(!rss_key)) 1861 return -ENOMEM; 1862 1863 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1864 adapter->rss_key = rss_key; 1865 } 1866 1867 return 0; 1868 } 1869 1870 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1871 { 1872 struct ixgbe_hw *hw = &adapter->hw; 1873 u32 vfmrqc = 0, vfreta = 0; 1874 u16 rss_i = adapter->num_rx_queues; 1875 u8 i, j; 1876 1877 /* Fill out hash function seeds */ 1878 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1879 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1880 1881 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1882 if (j == rss_i) 1883 j = 0; 1884 1885 adapter->rss_indir_tbl[i] = j; 1886 1887 vfreta |= j << (i & 0x3) * 8; 1888 if ((i & 3) == 3) { 1889 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1890 vfreta = 0; 1891 } 1892 } 1893 1894 /* Perform hash on these packet types */ 1895 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1896 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1897 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1898 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1899 1900 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1901 1902 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1903 } 1904 1905 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1906 struct ixgbevf_ring *ring) 1907 { 1908 struct ixgbe_hw *hw = &adapter->hw; 1909 union ixgbe_adv_rx_desc *rx_desc; 1910 u64 rdba = ring->dma; 1911 u32 rxdctl; 1912 u8 reg_idx = ring->reg_idx; 1913 1914 /* disable queue to avoid issues while updating state */ 1915 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1916 ixgbevf_disable_rx_queue(adapter, ring); 1917 1918 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1919 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1920 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1921 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1922 1923 #ifndef CONFIG_SPARC 1924 /* enable relaxed ordering */ 1925 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1926 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1927 #else 1928 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1929 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1930 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1931 #endif 1932 1933 /* reset head and tail pointers */ 1934 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1935 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1936 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1937 1938 /* initialize rx_buffer_info */ 1939 memset(ring->rx_buffer_info, 0, 1940 sizeof(struct ixgbevf_rx_buffer) * ring->count); 1941 1942 /* initialize Rx descriptor 0 */ 1943 rx_desc = IXGBEVF_RX_DESC(ring, 0); 1944 rx_desc->wb.upper.length = 0; 1945 1946 /* reset ntu and ntc to place SW in sync with hardwdare */ 1947 ring->next_to_clean = 0; 1948 ring->next_to_use = 0; 1949 ring->next_to_alloc = 0; 1950 1951 ixgbevf_configure_srrctl(adapter, ring, reg_idx); 1952 1953 /* RXDCTL.RLPML does not work on 82599 */ 1954 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) { 1955 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK | 1956 IXGBE_RXDCTL_RLPML_EN); 1957 1958 #if (PAGE_SIZE < 8192) 1959 /* Limit the maximum frame size so we don't overrun the skb */ 1960 if (ring_uses_build_skb(ring) && 1961 !ring_uses_large_buffer(ring)) 1962 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB | 1963 IXGBE_RXDCTL_RLPML_EN; 1964 #endif 1965 } 1966 1967 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1968 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1969 1970 ixgbevf_rx_desc_queue_enable(adapter, ring); 1971 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1972 } 1973 1974 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter, 1975 struct ixgbevf_ring *rx_ring) 1976 { 1977 struct net_device *netdev = adapter->netdev; 1978 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1979 1980 /* set build_skb and buffer size flags */ 1981 clear_ring_build_skb_enabled(rx_ring); 1982 clear_ring_uses_large_buffer(rx_ring); 1983 1984 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX) 1985 return; 1986 1987 if (PAGE_SIZE < 8192) 1988 if (max_frame > IXGBEVF_MAX_FRAME_BUILD_SKB) 1989 set_ring_uses_large_buffer(rx_ring); 1990 1991 /* 82599 can't rely on RXDCTL.RLPML to restrict the size of the frame */ 1992 if (adapter->hw.mac.type == ixgbe_mac_82599_vf && !ring_uses_large_buffer(rx_ring)) 1993 return; 1994 1995 set_ring_build_skb_enabled(rx_ring); 1996 } 1997 1998 /** 1999 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 2000 * @adapter: board private structure 2001 * 2002 * Configure the Rx unit of the MAC after a reset. 2003 **/ 2004 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 2005 { 2006 struct ixgbe_hw *hw = &adapter->hw; 2007 struct net_device *netdev = adapter->netdev; 2008 int i, ret; 2009 2010 ixgbevf_setup_psrtype(adapter); 2011 if (hw->mac.type >= ixgbe_mac_X550_vf) 2012 ixgbevf_setup_vfmrqc(adapter); 2013 2014 spin_lock_bh(&adapter->mbx_lock); 2015 /* notify the PF of our intent to use this size of frame */ 2016 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 2017 spin_unlock_bh(&adapter->mbx_lock); 2018 if (ret) 2019 dev_err(&adapter->pdev->dev, 2020 "Failed to set MTU at %d\n", netdev->mtu); 2021 2022 /* Setup the HW Rx Head and Tail Descriptor Pointers and 2023 * the Base and Length of the Rx Descriptor Ring 2024 */ 2025 for (i = 0; i < adapter->num_rx_queues; i++) { 2026 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 2027 2028 ixgbevf_set_rx_buffer_len(adapter, rx_ring); 2029 ixgbevf_configure_rx_ring(adapter, rx_ring); 2030 } 2031 } 2032 2033 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 2034 __be16 proto, u16 vid) 2035 { 2036 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2037 struct ixgbe_hw *hw = &adapter->hw; 2038 int err; 2039 2040 spin_lock_bh(&adapter->mbx_lock); 2041 2042 /* add VID to filter table */ 2043 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 2044 2045 spin_unlock_bh(&adapter->mbx_lock); 2046 2047 if (err) { 2048 netdev_err(netdev, "VF could not set VLAN %d\n", vid); 2049 2050 /* translate error return types so error makes sense */ 2051 if (err == IXGBE_ERR_MBX) 2052 return -EIO; 2053 2054 if (err == IXGBE_ERR_INVALID_ARGUMENT) 2055 return -EACCES; 2056 } 2057 2058 set_bit(vid, adapter->active_vlans); 2059 2060 return err; 2061 } 2062 2063 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 2064 __be16 proto, u16 vid) 2065 { 2066 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2067 struct ixgbe_hw *hw = &adapter->hw; 2068 int err; 2069 2070 spin_lock_bh(&adapter->mbx_lock); 2071 2072 /* remove VID from filter table */ 2073 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 2074 2075 spin_unlock_bh(&adapter->mbx_lock); 2076 2077 if (err) 2078 netdev_err(netdev, "Could not remove VLAN %d\n", vid); 2079 2080 clear_bit(vid, adapter->active_vlans); 2081 2082 return err; 2083 } 2084 2085 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 2086 { 2087 u16 vid; 2088 2089 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2090 ixgbevf_vlan_rx_add_vid(adapter->netdev, 2091 htons(ETH_P_8021Q), vid); 2092 } 2093 2094 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 2095 { 2096 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2097 struct ixgbe_hw *hw = &adapter->hw; 2098 int count = 0; 2099 2100 if (!netdev_uc_empty(netdev)) { 2101 struct netdev_hw_addr *ha; 2102 2103 netdev_for_each_uc_addr(ha, netdev) { 2104 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 2105 udelay(200); 2106 } 2107 } else { 2108 /* If the list is empty then send message to PF driver to 2109 * clear all MAC VLANs on this VF. 2110 */ 2111 hw->mac.ops.set_uc_addr(hw, 0, NULL); 2112 } 2113 2114 return count; 2115 } 2116 2117 /** 2118 * ixgbevf_set_rx_mode - Multicast and unicast set 2119 * @netdev: network interface device structure 2120 * 2121 * The set_rx_method entry point is called whenever the multicast address 2122 * list, unicast address list or the network interface flags are updated. 2123 * This routine is responsible for configuring the hardware for proper 2124 * multicast mode and configuring requested unicast filters. 2125 **/ 2126 static void ixgbevf_set_rx_mode(struct net_device *netdev) 2127 { 2128 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2129 struct ixgbe_hw *hw = &adapter->hw; 2130 unsigned int flags = netdev->flags; 2131 int xcast_mode; 2132 2133 /* request the most inclusive mode we need */ 2134 if (flags & IFF_PROMISC) 2135 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 2136 else if (flags & IFF_ALLMULTI) 2137 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 2138 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 2139 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 2140 else 2141 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 2142 2143 spin_lock_bh(&adapter->mbx_lock); 2144 2145 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 2146 2147 /* reprogram multicast list */ 2148 hw->mac.ops.update_mc_addr_list(hw, netdev); 2149 2150 ixgbevf_write_uc_addr_list(netdev); 2151 2152 spin_unlock_bh(&adapter->mbx_lock); 2153 } 2154 2155 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 2156 { 2157 int q_idx; 2158 struct ixgbevf_q_vector *q_vector; 2159 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2160 2161 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2162 q_vector = adapter->q_vector[q_idx]; 2163 napi_enable(&q_vector->napi); 2164 } 2165 } 2166 2167 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 2168 { 2169 int q_idx; 2170 struct ixgbevf_q_vector *q_vector; 2171 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2172 2173 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2174 q_vector = adapter->q_vector[q_idx]; 2175 napi_disable(&q_vector->napi); 2176 } 2177 } 2178 2179 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 2180 { 2181 struct ixgbe_hw *hw = &adapter->hw; 2182 unsigned int def_q = 0; 2183 unsigned int num_tcs = 0; 2184 unsigned int num_rx_queues = adapter->num_rx_queues; 2185 unsigned int num_tx_queues = adapter->num_tx_queues; 2186 int err; 2187 2188 spin_lock_bh(&adapter->mbx_lock); 2189 2190 /* fetch queue configuration from the PF */ 2191 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2192 2193 spin_unlock_bh(&adapter->mbx_lock); 2194 2195 if (err) 2196 return err; 2197 2198 if (num_tcs > 1) { 2199 /* we need only one Tx queue */ 2200 num_tx_queues = 1; 2201 2202 /* update default Tx ring register index */ 2203 adapter->tx_ring[0]->reg_idx = def_q; 2204 2205 /* we need as many queues as traffic classes */ 2206 num_rx_queues = num_tcs; 2207 } 2208 2209 /* if we have a bad config abort request queue reset */ 2210 if ((adapter->num_rx_queues != num_rx_queues) || 2211 (adapter->num_tx_queues != num_tx_queues)) { 2212 /* force mailbox timeout to prevent further messages */ 2213 hw->mbx.timeout = 0; 2214 2215 /* wait for watchdog to come around and bail us out */ 2216 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2217 } 2218 2219 return 0; 2220 } 2221 2222 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2223 { 2224 ixgbevf_configure_dcb(adapter); 2225 2226 ixgbevf_set_rx_mode(adapter->netdev); 2227 2228 ixgbevf_restore_vlan(adapter); 2229 ixgbevf_ipsec_restore(adapter); 2230 2231 ixgbevf_configure_tx(adapter); 2232 ixgbevf_configure_rx(adapter); 2233 } 2234 2235 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2236 { 2237 /* Only save pre-reset stats if there are some */ 2238 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2239 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2240 adapter->stats.base_vfgprc; 2241 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2242 adapter->stats.base_vfgptc; 2243 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2244 adapter->stats.base_vfgorc; 2245 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2246 adapter->stats.base_vfgotc; 2247 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2248 adapter->stats.base_vfmprc; 2249 } 2250 } 2251 2252 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2253 { 2254 struct ixgbe_hw *hw = &adapter->hw; 2255 2256 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2257 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2258 adapter->stats.last_vfgorc |= 2259 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2260 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2261 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2262 adapter->stats.last_vfgotc |= 2263 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2264 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2265 2266 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2267 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2268 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2269 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2270 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2271 } 2272 2273 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2274 { 2275 struct ixgbe_hw *hw = &adapter->hw; 2276 static const int api[] = { 2277 ixgbe_mbox_api_15, 2278 ixgbe_mbox_api_14, 2279 ixgbe_mbox_api_13, 2280 ixgbe_mbox_api_12, 2281 ixgbe_mbox_api_11, 2282 ixgbe_mbox_api_10, 2283 ixgbe_mbox_api_unknown 2284 }; 2285 int err, idx = 0; 2286 2287 spin_lock_bh(&adapter->mbx_lock); 2288 2289 while (api[idx] != ixgbe_mbox_api_unknown) { 2290 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2291 if (!err) 2292 break; 2293 idx++; 2294 } 2295 2296 if (hw->api_version >= ixgbe_mbox_api_15) { 2297 hw->mbx.ops.init_params(hw); 2298 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 2299 sizeof(struct ixgbe_mbx_operations)); 2300 } 2301 2302 spin_unlock_bh(&adapter->mbx_lock); 2303 } 2304 2305 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2306 { 2307 struct net_device *netdev = adapter->netdev; 2308 struct pci_dev *pdev = adapter->pdev; 2309 struct ixgbe_hw *hw = &adapter->hw; 2310 bool state; 2311 2312 ixgbevf_configure_msix(adapter); 2313 2314 spin_lock_bh(&adapter->mbx_lock); 2315 2316 if (is_valid_ether_addr(hw->mac.addr)) 2317 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2318 else 2319 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2320 2321 spin_unlock_bh(&adapter->mbx_lock); 2322 2323 state = adapter->link_state; 2324 hw->mac.ops.get_link_state(hw, &adapter->link_state); 2325 if (state && state != adapter->link_state) 2326 dev_info(&pdev->dev, "VF is administratively disabled\n"); 2327 2328 smp_mb__before_atomic(); 2329 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2330 ixgbevf_napi_enable_all(adapter); 2331 2332 /* clear any pending interrupts, may auto mask */ 2333 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2334 ixgbevf_irq_enable(adapter); 2335 2336 /* enable transmits */ 2337 netif_tx_start_all_queues(netdev); 2338 2339 ixgbevf_save_reset_stats(adapter); 2340 ixgbevf_init_last_counter_stats(adapter); 2341 2342 hw->mac.get_link_status = 1; 2343 mod_timer(&adapter->service_timer, jiffies); 2344 } 2345 2346 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2347 { 2348 ixgbevf_configure(adapter); 2349 2350 ixgbevf_up_complete(adapter); 2351 } 2352 2353 /** 2354 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2355 * @rx_ring: ring to free buffers from 2356 **/ 2357 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2358 { 2359 u16 i = rx_ring->next_to_clean; 2360 2361 /* Free Rx ring sk_buff */ 2362 if (rx_ring->skb) { 2363 dev_kfree_skb(rx_ring->skb); 2364 rx_ring->skb = NULL; 2365 } 2366 2367 /* Free all the Rx ring pages */ 2368 while (i != rx_ring->next_to_alloc) { 2369 struct ixgbevf_rx_buffer *rx_buffer; 2370 2371 rx_buffer = &rx_ring->rx_buffer_info[i]; 2372 2373 /* Invalidate cache lines that may have been written to by 2374 * device so that we avoid corrupting memory. 2375 */ 2376 dma_sync_single_range_for_cpu(rx_ring->dev, 2377 rx_buffer->dma, 2378 rx_buffer->page_offset, 2379 ixgbevf_rx_bufsz(rx_ring), 2380 DMA_FROM_DEVICE); 2381 2382 /* free resources associated with mapping */ 2383 dma_unmap_page_attrs(rx_ring->dev, 2384 rx_buffer->dma, 2385 ixgbevf_rx_pg_size(rx_ring), 2386 DMA_FROM_DEVICE, 2387 IXGBEVF_RX_DMA_ATTR); 2388 2389 __page_frag_cache_drain(rx_buffer->page, 2390 rx_buffer->pagecnt_bias); 2391 2392 i++; 2393 if (i == rx_ring->count) 2394 i = 0; 2395 } 2396 2397 rx_ring->next_to_alloc = 0; 2398 rx_ring->next_to_clean = 0; 2399 rx_ring->next_to_use = 0; 2400 } 2401 2402 /** 2403 * ixgbevf_clean_tx_ring - Free Tx Buffers 2404 * @tx_ring: ring to be cleaned 2405 **/ 2406 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2407 { 2408 u16 i = tx_ring->next_to_clean; 2409 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 2410 2411 while (i != tx_ring->next_to_use) { 2412 union ixgbe_adv_tx_desc *eop_desc, *tx_desc; 2413 2414 /* Free all the Tx ring sk_buffs */ 2415 if (ring_is_xdp(tx_ring)) 2416 page_frag_free(tx_buffer->data); 2417 else 2418 dev_kfree_skb_any(tx_buffer->skb); 2419 2420 /* unmap skb header data */ 2421 dma_unmap_single(tx_ring->dev, 2422 dma_unmap_addr(tx_buffer, dma), 2423 dma_unmap_len(tx_buffer, len), 2424 DMA_TO_DEVICE); 2425 2426 /* check for eop_desc to determine the end of the packet */ 2427 eop_desc = tx_buffer->next_to_watch; 2428 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 2429 2430 /* unmap remaining buffers */ 2431 while (tx_desc != eop_desc) { 2432 tx_buffer++; 2433 tx_desc++; 2434 i++; 2435 if (unlikely(i == tx_ring->count)) { 2436 i = 0; 2437 tx_buffer = tx_ring->tx_buffer_info; 2438 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 2439 } 2440 2441 /* unmap any remaining paged data */ 2442 if (dma_unmap_len(tx_buffer, len)) 2443 dma_unmap_page(tx_ring->dev, 2444 dma_unmap_addr(tx_buffer, dma), 2445 dma_unmap_len(tx_buffer, len), 2446 DMA_TO_DEVICE); 2447 } 2448 2449 /* move us one more past the eop_desc for start of next pkt */ 2450 tx_buffer++; 2451 i++; 2452 if (unlikely(i == tx_ring->count)) { 2453 i = 0; 2454 tx_buffer = tx_ring->tx_buffer_info; 2455 } 2456 } 2457 2458 /* reset next_to_use and next_to_clean */ 2459 tx_ring->next_to_use = 0; 2460 tx_ring->next_to_clean = 0; 2461 2462 } 2463 2464 /** 2465 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2466 * @adapter: board private structure 2467 **/ 2468 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2469 { 2470 int i; 2471 2472 for (i = 0; i < adapter->num_rx_queues; i++) 2473 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2474 } 2475 2476 /** 2477 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2478 * @adapter: board private structure 2479 **/ 2480 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2481 { 2482 int i; 2483 2484 for (i = 0; i < adapter->num_tx_queues; i++) 2485 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2486 for (i = 0; i < adapter->num_xdp_queues; i++) 2487 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]); 2488 } 2489 2490 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2491 { 2492 struct net_device *netdev = adapter->netdev; 2493 struct ixgbe_hw *hw = &adapter->hw; 2494 int i; 2495 2496 /* signal that we are down to the interrupt handler */ 2497 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2498 return; /* do nothing if already down */ 2499 2500 /* disable all enabled Rx queues */ 2501 for (i = 0; i < adapter->num_rx_queues; i++) 2502 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2503 2504 usleep_range(10000, 20000); 2505 2506 netif_tx_stop_all_queues(netdev); 2507 2508 /* call carrier off first to avoid false dev_watchdog timeouts */ 2509 netif_carrier_off(netdev); 2510 netif_tx_disable(netdev); 2511 2512 ixgbevf_irq_disable(adapter); 2513 2514 ixgbevf_napi_disable_all(adapter); 2515 2516 del_timer_sync(&adapter->service_timer); 2517 2518 /* disable transmits in the hardware now that interrupts are off */ 2519 for (i = 0; i < adapter->num_tx_queues; i++) { 2520 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2521 2522 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2523 IXGBE_TXDCTL_SWFLSH); 2524 } 2525 2526 for (i = 0; i < adapter->num_xdp_queues; i++) { 2527 u8 reg_idx = adapter->xdp_ring[i]->reg_idx; 2528 2529 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2530 IXGBE_TXDCTL_SWFLSH); 2531 } 2532 2533 if (!pci_channel_offline(adapter->pdev)) 2534 ixgbevf_reset(adapter); 2535 2536 ixgbevf_clean_all_tx_rings(adapter); 2537 ixgbevf_clean_all_rx_rings(adapter); 2538 } 2539 2540 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2541 { 2542 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2543 msleep(1); 2544 2545 ixgbevf_down(adapter); 2546 pci_set_master(adapter->pdev); 2547 ixgbevf_up(adapter); 2548 2549 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2550 } 2551 2552 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2553 { 2554 struct ixgbe_hw *hw = &adapter->hw; 2555 struct net_device *netdev = adapter->netdev; 2556 2557 if (hw->mac.ops.reset_hw(hw)) { 2558 hw_dbg(hw, "PF still resetting\n"); 2559 } else { 2560 hw->mac.ops.init_hw(hw); 2561 ixgbevf_negotiate_api(adapter); 2562 } 2563 2564 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2565 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2566 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2567 } 2568 2569 adapter->last_reset = jiffies; 2570 } 2571 2572 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2573 int vectors) 2574 { 2575 int vector_threshold; 2576 2577 /* We'll want at least 2 (vector_threshold): 2578 * 1) TxQ[0] + RxQ[0] handler 2579 * 2) Other (Link Status Change, etc.) 2580 */ 2581 vector_threshold = MIN_MSIX_COUNT; 2582 2583 /* The more we get, the more we will assign to Tx/Rx Cleanup 2584 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2585 * Right now, we simply care about how many we'll get; we'll 2586 * set them up later while requesting irq's. 2587 */ 2588 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2589 vector_threshold, vectors); 2590 2591 if (vectors < 0) { 2592 dev_err(&adapter->pdev->dev, 2593 "Unable to allocate MSI-X interrupts\n"); 2594 kfree(adapter->msix_entries); 2595 adapter->msix_entries = NULL; 2596 return vectors; 2597 } 2598 2599 /* Adjust for only the vectors we'll use, which is minimum 2600 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2601 * vectors we were allocated. 2602 */ 2603 adapter->num_msix_vectors = vectors; 2604 2605 return 0; 2606 } 2607 2608 /** 2609 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2610 * @adapter: board private structure to initialize 2611 * 2612 * This is the top level queue allocation routine. The order here is very 2613 * important, starting with the "most" number of features turned on at once, 2614 * and ending with the smallest set of features. This way large combinations 2615 * can be allocated if they're turned on, and smaller combinations are the 2616 * fall through conditions. 2617 * 2618 **/ 2619 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2620 { 2621 struct ixgbe_hw *hw = &adapter->hw; 2622 unsigned int def_q = 0; 2623 unsigned int num_tcs = 0; 2624 int err; 2625 2626 /* Start with base case */ 2627 adapter->num_rx_queues = 1; 2628 adapter->num_tx_queues = 1; 2629 adapter->num_xdp_queues = 0; 2630 2631 spin_lock_bh(&adapter->mbx_lock); 2632 2633 /* fetch queue configuration from the PF */ 2634 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2635 2636 spin_unlock_bh(&adapter->mbx_lock); 2637 2638 if (err) 2639 return; 2640 2641 /* we need as many queues as traffic classes */ 2642 if (num_tcs > 1) { 2643 adapter->num_rx_queues = num_tcs; 2644 } else { 2645 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2646 2647 switch (hw->api_version) { 2648 case ixgbe_mbox_api_11: 2649 case ixgbe_mbox_api_12: 2650 case ixgbe_mbox_api_13: 2651 case ixgbe_mbox_api_14: 2652 case ixgbe_mbox_api_15: 2653 if (adapter->xdp_prog && 2654 hw->mac.max_tx_queues == rss) 2655 rss = rss > 3 ? 2 : 1; 2656 2657 adapter->num_rx_queues = rss; 2658 adapter->num_tx_queues = rss; 2659 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0; 2660 break; 2661 default: 2662 break; 2663 } 2664 } 2665 } 2666 2667 /** 2668 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2669 * @adapter: board private structure to initialize 2670 * 2671 * Attempt to configure the interrupts using the best available 2672 * capabilities of the hardware and the kernel. 2673 **/ 2674 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2675 { 2676 int vector, v_budget; 2677 2678 /* It's easy to be greedy for MSI-X vectors, but it really 2679 * doesn't do us much good if we have a lot more vectors 2680 * than CPU's. So let's be conservative and only ask for 2681 * (roughly) the same number of vectors as there are CPU's. 2682 * The default is to use pairs of vectors. 2683 */ 2684 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2685 v_budget = min_t(int, v_budget, num_online_cpus()); 2686 v_budget += NON_Q_VECTORS; 2687 2688 adapter->msix_entries = kcalloc(v_budget, 2689 sizeof(struct msix_entry), GFP_KERNEL); 2690 if (!adapter->msix_entries) 2691 return -ENOMEM; 2692 2693 for (vector = 0; vector < v_budget; vector++) 2694 adapter->msix_entries[vector].entry = vector; 2695 2696 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver 2697 * does not support any other modes, so we will simply fail here. Note 2698 * that we clean up the msix_entries pointer else-where. 2699 */ 2700 return ixgbevf_acquire_msix_vectors(adapter, v_budget); 2701 } 2702 2703 static void ixgbevf_add_ring(struct ixgbevf_ring *ring, 2704 struct ixgbevf_ring_container *head) 2705 { 2706 ring->next = head->ring; 2707 head->ring = ring; 2708 head->count++; 2709 } 2710 2711 /** 2712 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector 2713 * @adapter: board private structure to initialize 2714 * @v_idx: index of vector in adapter struct 2715 * @txr_count: number of Tx rings for q vector 2716 * @txr_idx: index of first Tx ring to assign 2717 * @xdp_count: total number of XDP rings to allocate 2718 * @xdp_idx: index of first XDP ring to allocate 2719 * @rxr_count: number of Rx rings for q vector 2720 * @rxr_idx: index of first Rx ring to assign 2721 * 2722 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2723 **/ 2724 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx, 2725 int txr_count, int txr_idx, 2726 int xdp_count, int xdp_idx, 2727 int rxr_count, int rxr_idx) 2728 { 2729 struct ixgbevf_q_vector *q_vector; 2730 int reg_idx = txr_idx + xdp_idx; 2731 struct ixgbevf_ring *ring; 2732 int ring_count, size; 2733 2734 ring_count = txr_count + xdp_count + rxr_count; 2735 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count); 2736 2737 /* allocate q_vector and rings */ 2738 q_vector = kzalloc(size, GFP_KERNEL); 2739 if (!q_vector) 2740 return -ENOMEM; 2741 2742 /* initialize NAPI */ 2743 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll); 2744 2745 /* tie q_vector and adapter together */ 2746 adapter->q_vector[v_idx] = q_vector; 2747 q_vector->adapter = adapter; 2748 q_vector->v_idx = v_idx; 2749 2750 /* initialize pointer to rings */ 2751 ring = q_vector->ring; 2752 2753 while (txr_count) { 2754 /* assign generic ring traits */ 2755 ring->dev = &adapter->pdev->dev; 2756 ring->netdev = adapter->netdev; 2757 2758 /* configure backlink on ring */ 2759 ring->q_vector = q_vector; 2760 2761 /* update q_vector Tx values */ 2762 ixgbevf_add_ring(ring, &q_vector->tx); 2763 2764 /* apply Tx specific ring traits */ 2765 ring->count = adapter->tx_ring_count; 2766 ring->queue_index = txr_idx; 2767 ring->reg_idx = reg_idx; 2768 2769 /* assign ring to adapter */ 2770 adapter->tx_ring[txr_idx] = ring; 2771 2772 /* update count and index */ 2773 txr_count--; 2774 txr_idx++; 2775 reg_idx++; 2776 2777 /* push pointer to next ring */ 2778 ring++; 2779 } 2780 2781 while (xdp_count) { 2782 /* assign generic ring traits */ 2783 ring->dev = &adapter->pdev->dev; 2784 ring->netdev = adapter->netdev; 2785 2786 /* configure backlink on ring */ 2787 ring->q_vector = q_vector; 2788 2789 /* update q_vector Tx values */ 2790 ixgbevf_add_ring(ring, &q_vector->tx); 2791 2792 /* apply Tx specific ring traits */ 2793 ring->count = adapter->tx_ring_count; 2794 ring->queue_index = xdp_idx; 2795 ring->reg_idx = reg_idx; 2796 set_ring_xdp(ring); 2797 2798 /* assign ring to adapter */ 2799 adapter->xdp_ring[xdp_idx] = ring; 2800 2801 /* update count and index */ 2802 xdp_count--; 2803 xdp_idx++; 2804 reg_idx++; 2805 2806 /* push pointer to next ring */ 2807 ring++; 2808 } 2809 2810 while (rxr_count) { 2811 /* assign generic ring traits */ 2812 ring->dev = &adapter->pdev->dev; 2813 ring->netdev = adapter->netdev; 2814 2815 /* configure backlink on ring */ 2816 ring->q_vector = q_vector; 2817 2818 /* update q_vector Rx values */ 2819 ixgbevf_add_ring(ring, &q_vector->rx); 2820 2821 /* apply Rx specific ring traits */ 2822 ring->count = adapter->rx_ring_count; 2823 ring->queue_index = rxr_idx; 2824 ring->reg_idx = rxr_idx; 2825 2826 /* assign ring to adapter */ 2827 adapter->rx_ring[rxr_idx] = ring; 2828 2829 /* update count and index */ 2830 rxr_count--; 2831 rxr_idx++; 2832 2833 /* push pointer to next ring */ 2834 ring++; 2835 } 2836 2837 return 0; 2838 } 2839 2840 /** 2841 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector 2842 * @adapter: board private structure to initialize 2843 * @v_idx: index of vector in adapter struct 2844 * 2845 * This function frees the memory allocated to the q_vector. In addition if 2846 * NAPI is enabled it will delete any references to the NAPI struct prior 2847 * to freeing the q_vector. 2848 **/ 2849 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx) 2850 { 2851 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx]; 2852 struct ixgbevf_ring *ring; 2853 2854 ixgbevf_for_each_ring(ring, q_vector->tx) { 2855 if (ring_is_xdp(ring)) 2856 adapter->xdp_ring[ring->queue_index] = NULL; 2857 else 2858 adapter->tx_ring[ring->queue_index] = NULL; 2859 } 2860 2861 ixgbevf_for_each_ring(ring, q_vector->rx) 2862 adapter->rx_ring[ring->queue_index] = NULL; 2863 2864 adapter->q_vector[v_idx] = NULL; 2865 netif_napi_del(&q_vector->napi); 2866 2867 /* ixgbevf_get_stats() might access the rings on this vector, 2868 * we must wait a grace period before freeing it. 2869 */ 2870 kfree_rcu(q_vector, rcu); 2871 } 2872 2873 /** 2874 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2875 * @adapter: board private structure to initialize 2876 * 2877 * We allocate one q_vector per queue interrupt. If allocation fails we 2878 * return -ENOMEM. 2879 **/ 2880 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2881 { 2882 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2883 int rxr_remaining = adapter->num_rx_queues; 2884 int txr_remaining = adapter->num_tx_queues; 2885 int xdp_remaining = adapter->num_xdp_queues; 2886 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0; 2887 int err; 2888 2889 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) { 2890 for (; rxr_remaining; v_idx++, q_vectors--) { 2891 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2892 2893 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2894 0, 0, 0, 0, rqpv, rxr_idx); 2895 if (err) 2896 goto err_out; 2897 2898 /* update counts and index */ 2899 rxr_remaining -= rqpv; 2900 rxr_idx += rqpv; 2901 } 2902 } 2903 2904 for (; q_vectors; v_idx++, q_vectors--) { 2905 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2906 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors); 2907 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors); 2908 2909 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2910 tqpv, txr_idx, 2911 xqpv, xdp_idx, 2912 rqpv, rxr_idx); 2913 2914 if (err) 2915 goto err_out; 2916 2917 /* update counts and index */ 2918 rxr_remaining -= rqpv; 2919 rxr_idx += rqpv; 2920 txr_remaining -= tqpv; 2921 txr_idx += tqpv; 2922 xdp_remaining -= xqpv; 2923 xdp_idx += xqpv; 2924 } 2925 2926 return 0; 2927 2928 err_out: 2929 while (v_idx) { 2930 v_idx--; 2931 ixgbevf_free_q_vector(adapter, v_idx); 2932 } 2933 2934 return -ENOMEM; 2935 } 2936 2937 /** 2938 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2939 * @adapter: board private structure to initialize 2940 * 2941 * This function frees the memory allocated to the q_vectors. In addition if 2942 * NAPI is enabled it will delete any references to the NAPI struct prior 2943 * to freeing the q_vector. 2944 **/ 2945 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2946 { 2947 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2948 2949 while (q_vectors) { 2950 q_vectors--; 2951 ixgbevf_free_q_vector(adapter, q_vectors); 2952 } 2953 } 2954 2955 /** 2956 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2957 * @adapter: board private structure 2958 * 2959 **/ 2960 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2961 { 2962 if (!adapter->msix_entries) 2963 return; 2964 2965 pci_disable_msix(adapter->pdev); 2966 kfree(adapter->msix_entries); 2967 adapter->msix_entries = NULL; 2968 } 2969 2970 /** 2971 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2972 * @adapter: board private structure to initialize 2973 * 2974 **/ 2975 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2976 { 2977 int err; 2978 2979 /* Number of supported queues */ 2980 ixgbevf_set_num_queues(adapter); 2981 2982 err = ixgbevf_set_interrupt_capability(adapter); 2983 if (err) { 2984 hw_dbg(&adapter->hw, 2985 "Unable to setup interrupt capabilities\n"); 2986 goto err_set_interrupt; 2987 } 2988 2989 err = ixgbevf_alloc_q_vectors(adapter); 2990 if (err) { 2991 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2992 goto err_alloc_q_vectors; 2993 } 2994 2995 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n", 2996 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled", 2997 adapter->num_rx_queues, adapter->num_tx_queues, 2998 adapter->num_xdp_queues); 2999 3000 set_bit(__IXGBEVF_DOWN, &adapter->state); 3001 3002 return 0; 3003 err_alloc_q_vectors: 3004 ixgbevf_reset_interrupt_capability(adapter); 3005 err_set_interrupt: 3006 return err; 3007 } 3008 3009 /** 3010 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 3011 * @adapter: board private structure to clear interrupt scheme on 3012 * 3013 * We go through and clear interrupt specific resources and reset the structure 3014 * to pre-load conditions 3015 **/ 3016 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 3017 { 3018 adapter->num_tx_queues = 0; 3019 adapter->num_xdp_queues = 0; 3020 adapter->num_rx_queues = 0; 3021 3022 ixgbevf_free_q_vectors(adapter); 3023 ixgbevf_reset_interrupt_capability(adapter); 3024 } 3025 3026 /** 3027 * ixgbevf_sw_init - Initialize general software structures 3028 * @adapter: board private structure to initialize 3029 * 3030 * ixgbevf_sw_init initializes the Adapter private data structure. 3031 * Fields are initialized based on PCI device information and 3032 * OS network device settings (MTU size). 3033 **/ 3034 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 3035 { 3036 struct ixgbe_hw *hw = &adapter->hw; 3037 struct pci_dev *pdev = adapter->pdev; 3038 struct net_device *netdev = adapter->netdev; 3039 int err; 3040 3041 /* PCI config space info */ 3042 hw->vendor_id = pdev->vendor; 3043 hw->device_id = pdev->device; 3044 hw->revision_id = pdev->revision; 3045 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3046 hw->subsystem_device_id = pdev->subsystem_device; 3047 3048 hw->mbx.ops.init_params(hw); 3049 3050 if (hw->mac.type >= ixgbe_mac_X550_vf) { 3051 err = ixgbevf_init_rss_key(adapter); 3052 if (err) 3053 goto out; 3054 } 3055 3056 /* assume legacy case in which PF would only give VF 2 queues */ 3057 hw->mac.max_tx_queues = 2; 3058 hw->mac.max_rx_queues = 2; 3059 3060 /* lock to protect mailbox accesses */ 3061 spin_lock_init(&adapter->mbx_lock); 3062 3063 err = hw->mac.ops.reset_hw(hw); 3064 if (err) { 3065 dev_info(&pdev->dev, 3066 "PF still in reset state. Is the PF interface up?\n"); 3067 } else { 3068 err = hw->mac.ops.init_hw(hw); 3069 if (err) { 3070 pr_err("init_shared_code failed: %d\n", err); 3071 goto out; 3072 } 3073 ixgbevf_negotiate_api(adapter); 3074 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 3075 if (err) 3076 dev_info(&pdev->dev, "Error reading MAC address\n"); 3077 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 3078 dev_info(&pdev->dev, 3079 "MAC address not assigned by administrator.\n"); 3080 eth_hw_addr_set(netdev, hw->mac.addr); 3081 } 3082 3083 if (!is_valid_ether_addr(netdev->dev_addr)) { 3084 dev_info(&pdev->dev, "Assigning random MAC address\n"); 3085 eth_hw_addr_random(netdev); 3086 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 3087 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 3088 } 3089 3090 /* Enable dynamic interrupt throttling rates */ 3091 adapter->rx_itr_setting = 1; 3092 adapter->tx_itr_setting = 1; 3093 3094 /* set default ring sizes */ 3095 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 3096 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 3097 3098 adapter->link_state = true; 3099 3100 set_bit(__IXGBEVF_DOWN, &adapter->state); 3101 return 0; 3102 3103 out: 3104 return err; 3105 } 3106 3107 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 3108 { \ 3109 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 3110 if (current_counter < last_counter) \ 3111 counter += 0x100000000LL; \ 3112 last_counter = current_counter; \ 3113 counter &= 0xFFFFFFFF00000000LL; \ 3114 counter |= current_counter; \ 3115 } 3116 3117 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 3118 { \ 3119 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 3120 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 3121 u64 current_counter = (current_counter_msb << 32) | \ 3122 current_counter_lsb; \ 3123 if (current_counter < last_counter) \ 3124 counter += 0x1000000000LL; \ 3125 last_counter = current_counter; \ 3126 counter &= 0xFFFFFFF000000000LL; \ 3127 counter |= current_counter; \ 3128 } 3129 /** 3130 * ixgbevf_update_stats - Update the board statistics counters. 3131 * @adapter: board private structure 3132 **/ 3133 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 3134 { 3135 struct ixgbe_hw *hw = &adapter->hw; 3136 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; 3137 u64 alloc_rx_page = 0, hw_csum_rx_error = 0; 3138 int i; 3139 3140 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3141 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3142 return; 3143 3144 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 3145 adapter->stats.vfgprc); 3146 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 3147 adapter->stats.vfgptc); 3148 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 3149 adapter->stats.last_vfgorc, 3150 adapter->stats.vfgorc); 3151 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 3152 adapter->stats.last_vfgotc, 3153 adapter->stats.vfgotc); 3154 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 3155 adapter->stats.vfmprc); 3156 3157 for (i = 0; i < adapter->num_rx_queues; i++) { 3158 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 3159 3160 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 3161 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; 3162 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 3163 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; 3164 } 3165 3166 adapter->hw_csum_rx_error = hw_csum_rx_error; 3167 adapter->alloc_rx_page_failed = alloc_rx_page_failed; 3168 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; 3169 adapter->alloc_rx_page = alloc_rx_page; 3170 } 3171 3172 /** 3173 * ixgbevf_service_timer - Timer Call-back 3174 * @t: pointer to timer_list struct 3175 **/ 3176 static void ixgbevf_service_timer(struct timer_list *t) 3177 { 3178 struct ixgbevf_adapter *adapter = from_timer(adapter, t, 3179 service_timer); 3180 3181 /* Reset the timer */ 3182 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 3183 3184 ixgbevf_service_event_schedule(adapter); 3185 } 3186 3187 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 3188 { 3189 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 3190 return; 3191 3192 rtnl_lock(); 3193 /* If we're already down or resetting, just bail */ 3194 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3195 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 3196 test_bit(__IXGBEVF_RESETTING, &adapter->state)) { 3197 rtnl_unlock(); 3198 return; 3199 } 3200 3201 adapter->tx_timeout_count++; 3202 3203 ixgbevf_reinit_locked(adapter); 3204 rtnl_unlock(); 3205 } 3206 3207 /** 3208 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 3209 * @adapter: pointer to the device adapter structure 3210 * 3211 * This function serves two purposes. First it strobes the interrupt lines 3212 * in order to make certain interrupts are occurring. Secondly it sets the 3213 * bits needed to check for TX hangs. As a result we should immediately 3214 * determine if a hang has occurred. 3215 **/ 3216 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 3217 { 3218 struct ixgbe_hw *hw = &adapter->hw; 3219 u32 eics = 0; 3220 int i; 3221 3222 /* If we're down or resetting, just bail */ 3223 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3224 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3225 return; 3226 3227 /* Force detection of hung controller */ 3228 if (netif_carrier_ok(adapter->netdev)) { 3229 for (i = 0; i < adapter->num_tx_queues; i++) 3230 set_check_for_tx_hang(adapter->tx_ring[i]); 3231 for (i = 0; i < adapter->num_xdp_queues; i++) 3232 set_check_for_tx_hang(adapter->xdp_ring[i]); 3233 } 3234 3235 /* get one bit for every active Tx/Rx interrupt vector */ 3236 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 3237 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 3238 3239 if (qv->rx.ring || qv->tx.ring) 3240 eics |= BIT(i); 3241 } 3242 3243 /* Cause software interrupt to ensure rings are cleaned */ 3244 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 3245 } 3246 3247 /** 3248 * ixgbevf_watchdog_update_link - update the link status 3249 * @adapter: pointer to the device adapter structure 3250 **/ 3251 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 3252 { 3253 struct ixgbe_hw *hw = &adapter->hw; 3254 u32 link_speed = adapter->link_speed; 3255 bool link_up = adapter->link_up; 3256 s32 err; 3257 3258 spin_lock_bh(&adapter->mbx_lock); 3259 3260 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 3261 3262 spin_unlock_bh(&adapter->mbx_lock); 3263 3264 /* if check for link returns error we will need to reset */ 3265 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 3266 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 3267 link_up = false; 3268 } 3269 3270 adapter->link_up = link_up; 3271 adapter->link_speed = link_speed; 3272 } 3273 3274 /** 3275 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 3276 * print link up message 3277 * @adapter: pointer to the device adapter structure 3278 **/ 3279 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 3280 { 3281 struct net_device *netdev = adapter->netdev; 3282 3283 /* only continue if link was previously down */ 3284 if (netif_carrier_ok(netdev)) 3285 return; 3286 3287 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 3288 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 3289 "10 Gbps" : 3290 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 3291 "1 Gbps" : 3292 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 3293 "100 Mbps" : 3294 "unknown speed"); 3295 3296 netif_carrier_on(netdev); 3297 } 3298 3299 /** 3300 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 3301 * print link down message 3302 * @adapter: pointer to the adapter structure 3303 **/ 3304 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 3305 { 3306 struct net_device *netdev = adapter->netdev; 3307 3308 adapter->link_speed = 0; 3309 3310 /* only continue if link was up previously */ 3311 if (!netif_carrier_ok(netdev)) 3312 return; 3313 3314 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 3315 3316 netif_carrier_off(netdev); 3317 } 3318 3319 /** 3320 * ixgbevf_watchdog_subtask - worker thread to bring link up 3321 * @adapter: board private structure 3322 **/ 3323 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 3324 { 3325 /* if interface is down do nothing */ 3326 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3327 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3328 return; 3329 3330 ixgbevf_watchdog_update_link(adapter); 3331 3332 if (adapter->link_up && adapter->link_state) 3333 ixgbevf_watchdog_link_is_up(adapter); 3334 else 3335 ixgbevf_watchdog_link_is_down(adapter); 3336 3337 ixgbevf_update_stats(adapter); 3338 } 3339 3340 /** 3341 * ixgbevf_service_task - manages and runs subtasks 3342 * @work: pointer to work_struct containing our data 3343 **/ 3344 static void ixgbevf_service_task(struct work_struct *work) 3345 { 3346 struct ixgbevf_adapter *adapter = container_of(work, 3347 struct ixgbevf_adapter, 3348 service_task); 3349 struct ixgbe_hw *hw = &adapter->hw; 3350 3351 if (IXGBE_REMOVED(hw->hw_addr)) { 3352 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 3353 rtnl_lock(); 3354 ixgbevf_down(adapter); 3355 rtnl_unlock(); 3356 } 3357 return; 3358 } 3359 3360 ixgbevf_queue_reset_subtask(adapter); 3361 ixgbevf_reset_subtask(adapter); 3362 ixgbevf_watchdog_subtask(adapter); 3363 ixgbevf_check_hang_subtask(adapter); 3364 3365 ixgbevf_service_event_complete(adapter); 3366 } 3367 3368 /** 3369 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 3370 * @tx_ring: Tx descriptor ring for a specific queue 3371 * 3372 * Free all transmit software resources 3373 **/ 3374 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 3375 { 3376 ixgbevf_clean_tx_ring(tx_ring); 3377 3378 vfree(tx_ring->tx_buffer_info); 3379 tx_ring->tx_buffer_info = NULL; 3380 3381 /* if not set, then don't free */ 3382 if (!tx_ring->desc) 3383 return; 3384 3385 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 3386 tx_ring->dma); 3387 3388 tx_ring->desc = NULL; 3389 } 3390 3391 /** 3392 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 3393 * @adapter: board private structure 3394 * 3395 * Free all transmit software resources 3396 **/ 3397 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 3398 { 3399 int i; 3400 3401 for (i = 0; i < adapter->num_tx_queues; i++) 3402 if (adapter->tx_ring[i]->desc) 3403 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3404 for (i = 0; i < adapter->num_xdp_queues; i++) 3405 if (adapter->xdp_ring[i]->desc) 3406 ixgbevf_free_tx_resources(adapter->xdp_ring[i]); 3407 } 3408 3409 /** 3410 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 3411 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 3412 * 3413 * Return 0 on success, negative on failure 3414 **/ 3415 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3416 { 3417 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3418 int size; 3419 3420 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3421 tx_ring->tx_buffer_info = vmalloc(size); 3422 if (!tx_ring->tx_buffer_info) 3423 goto err; 3424 3425 u64_stats_init(&tx_ring->syncp); 3426 3427 /* round up to nearest 4K */ 3428 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3429 tx_ring->size = ALIGN(tx_ring->size, 4096); 3430 3431 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3432 &tx_ring->dma, GFP_KERNEL); 3433 if (!tx_ring->desc) 3434 goto err; 3435 3436 return 0; 3437 3438 err: 3439 vfree(tx_ring->tx_buffer_info); 3440 tx_ring->tx_buffer_info = NULL; 3441 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3442 return -ENOMEM; 3443 } 3444 3445 /** 3446 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3447 * @adapter: board private structure 3448 * 3449 * If this function returns with an error, then it's possible one or 3450 * more of the rings is populated (while the rest are not). It is the 3451 * callers duty to clean those orphaned rings. 3452 * 3453 * Return 0 on success, negative on failure 3454 **/ 3455 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3456 { 3457 int i, j = 0, err = 0; 3458 3459 for (i = 0; i < adapter->num_tx_queues; i++) { 3460 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3461 if (!err) 3462 continue; 3463 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3464 goto err_setup_tx; 3465 } 3466 3467 for (j = 0; j < adapter->num_xdp_queues; j++) { 3468 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]); 3469 if (!err) 3470 continue; 3471 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j); 3472 goto err_setup_tx; 3473 } 3474 3475 return 0; 3476 err_setup_tx: 3477 /* rewind the index freeing the rings as we go */ 3478 while (j--) 3479 ixgbevf_free_tx_resources(adapter->xdp_ring[j]); 3480 while (i--) 3481 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3482 3483 return err; 3484 } 3485 3486 /** 3487 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3488 * @adapter: board private structure 3489 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3490 * 3491 * Returns 0 on success, negative on failure 3492 **/ 3493 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter, 3494 struct ixgbevf_ring *rx_ring) 3495 { 3496 int size; 3497 3498 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3499 rx_ring->rx_buffer_info = vmalloc(size); 3500 if (!rx_ring->rx_buffer_info) 3501 goto err; 3502 3503 u64_stats_init(&rx_ring->syncp); 3504 3505 /* Round up to nearest 4K */ 3506 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3507 rx_ring->size = ALIGN(rx_ring->size, 4096); 3508 3509 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3510 &rx_ring->dma, GFP_KERNEL); 3511 3512 if (!rx_ring->desc) 3513 goto err; 3514 3515 /* XDP RX-queue info */ 3516 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev, 3517 rx_ring->queue_index, 0) < 0) 3518 goto err; 3519 3520 rx_ring->xdp_prog = adapter->xdp_prog; 3521 3522 return 0; 3523 err: 3524 vfree(rx_ring->rx_buffer_info); 3525 rx_ring->rx_buffer_info = NULL; 3526 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3527 return -ENOMEM; 3528 } 3529 3530 /** 3531 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3532 * @adapter: board private structure 3533 * 3534 * If this function returns with an error, then it's possible one or 3535 * more of the rings is populated (while the rest are not). It is the 3536 * callers duty to clean those orphaned rings. 3537 * 3538 * Return 0 on success, negative on failure 3539 **/ 3540 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3541 { 3542 int i, err = 0; 3543 3544 for (i = 0; i < adapter->num_rx_queues; i++) { 3545 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]); 3546 if (!err) 3547 continue; 3548 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3549 goto err_setup_rx; 3550 } 3551 3552 return 0; 3553 err_setup_rx: 3554 /* rewind the index freeing the rings as we go */ 3555 while (i--) 3556 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3557 return err; 3558 } 3559 3560 /** 3561 * ixgbevf_free_rx_resources - Free Rx Resources 3562 * @rx_ring: ring to clean the resources from 3563 * 3564 * Free all receive software resources 3565 **/ 3566 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3567 { 3568 ixgbevf_clean_rx_ring(rx_ring); 3569 3570 rx_ring->xdp_prog = NULL; 3571 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 3572 vfree(rx_ring->rx_buffer_info); 3573 rx_ring->rx_buffer_info = NULL; 3574 3575 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3576 rx_ring->dma); 3577 3578 rx_ring->desc = NULL; 3579 } 3580 3581 /** 3582 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3583 * @adapter: board private structure 3584 * 3585 * Free all receive software resources 3586 **/ 3587 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3588 { 3589 int i; 3590 3591 for (i = 0; i < adapter->num_rx_queues; i++) 3592 if (adapter->rx_ring[i]->desc) 3593 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3594 } 3595 3596 /** 3597 * ixgbevf_open - Called when a network interface is made active 3598 * @netdev: network interface device structure 3599 * 3600 * Returns 0 on success, negative value on failure 3601 * 3602 * The open entry point is called when a network interface is made 3603 * active by the system (IFF_UP). At this point all resources needed 3604 * for transmit and receive operations are allocated, the interrupt 3605 * handler is registered with the OS, the watchdog timer is started, 3606 * and the stack is notified that the interface is ready. 3607 **/ 3608 int ixgbevf_open(struct net_device *netdev) 3609 { 3610 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3611 struct ixgbe_hw *hw = &adapter->hw; 3612 int err; 3613 3614 /* A previous failure to open the device because of a lack of 3615 * available MSIX vector resources may have reset the number 3616 * of msix vectors variable to zero. The only way to recover 3617 * is to unload/reload the driver and hope that the system has 3618 * been able to recover some MSIX vector resources. 3619 */ 3620 if (!adapter->num_msix_vectors) 3621 return -ENOMEM; 3622 3623 if (hw->adapter_stopped) { 3624 ixgbevf_reset(adapter); 3625 /* if adapter is still stopped then PF isn't up and 3626 * the VF can't start. 3627 */ 3628 if (hw->adapter_stopped) { 3629 err = IXGBE_ERR_MBX; 3630 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3631 goto err_setup_reset; 3632 } 3633 } 3634 3635 /* disallow open during test */ 3636 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3637 return -EBUSY; 3638 3639 netif_carrier_off(netdev); 3640 3641 /* allocate transmit descriptors */ 3642 err = ixgbevf_setup_all_tx_resources(adapter); 3643 if (err) 3644 goto err_setup_tx; 3645 3646 /* allocate receive descriptors */ 3647 err = ixgbevf_setup_all_rx_resources(adapter); 3648 if (err) 3649 goto err_setup_rx; 3650 3651 ixgbevf_configure(adapter); 3652 3653 err = ixgbevf_request_irq(adapter); 3654 if (err) 3655 goto err_req_irq; 3656 3657 /* Notify the stack of the actual queue counts. */ 3658 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3659 if (err) 3660 goto err_set_queues; 3661 3662 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3663 if (err) 3664 goto err_set_queues; 3665 3666 ixgbevf_up_complete(adapter); 3667 3668 return 0; 3669 3670 err_set_queues: 3671 ixgbevf_free_irq(adapter); 3672 err_req_irq: 3673 ixgbevf_free_all_rx_resources(adapter); 3674 err_setup_rx: 3675 ixgbevf_free_all_tx_resources(adapter); 3676 err_setup_tx: 3677 ixgbevf_reset(adapter); 3678 err_setup_reset: 3679 3680 return err; 3681 } 3682 3683 /** 3684 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3685 * @adapter: the private adapter struct 3686 * 3687 * This function should contain the necessary work common to both suspending 3688 * and closing of the device. 3689 */ 3690 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3691 { 3692 ixgbevf_down(adapter); 3693 ixgbevf_free_irq(adapter); 3694 ixgbevf_free_all_tx_resources(adapter); 3695 ixgbevf_free_all_rx_resources(adapter); 3696 } 3697 3698 /** 3699 * ixgbevf_close - Disables a network interface 3700 * @netdev: network interface device structure 3701 * 3702 * Returns 0, this is not allowed to fail 3703 * 3704 * The close entry point is called when an interface is de-activated 3705 * by the OS. The hardware is still under the drivers control, but 3706 * needs to be disabled. A global MAC reset is issued to stop the 3707 * hardware, and all transmit and receive resources are freed. 3708 **/ 3709 int ixgbevf_close(struct net_device *netdev) 3710 { 3711 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3712 3713 if (netif_device_present(netdev)) 3714 ixgbevf_close_suspend(adapter); 3715 3716 return 0; 3717 } 3718 3719 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3720 { 3721 struct net_device *dev = adapter->netdev; 3722 3723 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3724 &adapter->state)) 3725 return; 3726 3727 /* if interface is down do nothing */ 3728 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3729 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3730 return; 3731 3732 /* Hardware has to reinitialize queues and interrupts to 3733 * match packet buffer alignment. Unfortunately, the 3734 * hardware is not flexible enough to do this dynamically. 3735 */ 3736 rtnl_lock(); 3737 3738 if (netif_running(dev)) 3739 ixgbevf_close(dev); 3740 3741 ixgbevf_clear_interrupt_scheme(adapter); 3742 ixgbevf_init_interrupt_scheme(adapter); 3743 3744 if (netif_running(dev)) 3745 ixgbevf_open(dev); 3746 3747 rtnl_unlock(); 3748 } 3749 3750 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3751 u32 vlan_macip_lens, u32 fceof_saidx, 3752 u32 type_tucmd, u32 mss_l4len_idx) 3753 { 3754 struct ixgbe_adv_tx_context_desc *context_desc; 3755 u16 i = tx_ring->next_to_use; 3756 3757 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3758 3759 i++; 3760 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3761 3762 /* set bits to identify this as an advanced context descriptor */ 3763 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3764 3765 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3766 context_desc->fceof_saidx = cpu_to_le32(fceof_saidx); 3767 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3768 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3769 } 3770 3771 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3772 struct ixgbevf_tx_buffer *first, 3773 u8 *hdr_len, 3774 struct ixgbevf_ipsec_tx_data *itd) 3775 { 3776 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3777 struct sk_buff *skb = first->skb; 3778 union { 3779 struct iphdr *v4; 3780 struct ipv6hdr *v6; 3781 unsigned char *hdr; 3782 } ip; 3783 union { 3784 struct tcphdr *tcp; 3785 unsigned char *hdr; 3786 } l4; 3787 u32 paylen, l4_offset; 3788 u32 fceof_saidx = 0; 3789 int err; 3790 3791 if (skb->ip_summed != CHECKSUM_PARTIAL) 3792 return 0; 3793 3794 if (!skb_is_gso(skb)) 3795 return 0; 3796 3797 err = skb_cow_head(skb, 0); 3798 if (err < 0) 3799 return err; 3800 3801 if (eth_p_mpls(first->protocol)) 3802 ip.hdr = skb_inner_network_header(skb); 3803 else 3804 ip.hdr = skb_network_header(skb); 3805 l4.hdr = skb_checksum_start(skb); 3806 3807 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3808 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3809 3810 /* initialize outer IP header fields */ 3811 if (ip.v4->version == 4) { 3812 unsigned char *csum_start = skb_checksum_start(skb); 3813 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3814 int len = csum_start - trans_start; 3815 3816 /* IP header will have to cancel out any data that 3817 * is not a part of the outer IP header, so set to 3818 * a reverse csum if needed, else init check to 0. 3819 */ 3820 ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ? 3821 csum_fold(csum_partial(trans_start, 3822 len, 0)) : 0; 3823 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3824 3825 ip.v4->tot_len = 0; 3826 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3827 IXGBE_TX_FLAGS_CSUM | 3828 IXGBE_TX_FLAGS_IPV4; 3829 } else { 3830 ip.v6->payload_len = 0; 3831 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3832 IXGBE_TX_FLAGS_CSUM; 3833 } 3834 3835 /* determine offset of inner transport header */ 3836 l4_offset = l4.hdr - skb->data; 3837 3838 /* compute length of segmentation header */ 3839 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3840 3841 /* remove payload length from inner checksum */ 3842 paylen = skb->len - l4_offset; 3843 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 3844 3845 /* update gso size and bytecount with header size */ 3846 first->gso_segs = skb_shinfo(skb)->gso_segs; 3847 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3848 3849 /* mss_l4len_id: use 1 as index for TSO */ 3850 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3851 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3852 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3853 3854 fceof_saidx |= itd->pfsa; 3855 type_tucmd |= itd->flags | itd->trailer_len; 3856 3857 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3858 vlan_macip_lens = l4.hdr - ip.hdr; 3859 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3860 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3861 3862 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd, 3863 mss_l4len_idx); 3864 3865 return 1; 3866 } 3867 3868 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3869 struct ixgbevf_tx_buffer *first, 3870 struct ixgbevf_ipsec_tx_data *itd) 3871 { 3872 struct sk_buff *skb = first->skb; 3873 u32 vlan_macip_lens = 0; 3874 u32 fceof_saidx = 0; 3875 u32 type_tucmd = 0; 3876 3877 if (skb->ip_summed != CHECKSUM_PARTIAL) 3878 goto no_csum; 3879 3880 switch (skb->csum_offset) { 3881 case offsetof(struct tcphdr, check): 3882 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3883 fallthrough; 3884 case offsetof(struct udphdr, check): 3885 break; 3886 case offsetof(struct sctphdr, checksum): 3887 /* validate that this is actually an SCTP request */ 3888 if (skb_csum_is_sctp(skb)) { 3889 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3890 break; 3891 } 3892 fallthrough; 3893 default: 3894 skb_checksum_help(skb); 3895 goto no_csum; 3896 } 3897 3898 if (first->protocol == htons(ETH_P_IP)) 3899 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3900 3901 /* update TX checksum flag */ 3902 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3903 vlan_macip_lens = skb_checksum_start_offset(skb) - 3904 skb_network_offset(skb); 3905 no_csum: 3906 /* vlan_macip_lens: MACLEN, VLAN tag */ 3907 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3908 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3909 3910 fceof_saidx |= itd->pfsa; 3911 type_tucmd |= itd->flags | itd->trailer_len; 3912 3913 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3914 fceof_saidx, type_tucmd, 0); 3915 } 3916 3917 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3918 { 3919 /* set type for advanced descriptor with frame checksum insertion */ 3920 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3921 IXGBE_ADVTXD_DCMD_IFCS | 3922 IXGBE_ADVTXD_DCMD_DEXT); 3923 3924 /* set HW VLAN bit if VLAN is present */ 3925 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3926 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3927 3928 /* set segmentation enable bits for TSO/FSO */ 3929 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3930 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3931 3932 return cmd_type; 3933 } 3934 3935 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3936 u32 tx_flags, unsigned int paylen) 3937 { 3938 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3939 3940 /* enable L4 checksum for TSO and TX checksum offload */ 3941 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3942 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3943 3944 /* enble IPv4 checksum for TSO */ 3945 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3946 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3947 3948 /* enable IPsec */ 3949 if (tx_flags & IXGBE_TX_FLAGS_IPSEC) 3950 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC); 3951 3952 /* use index 1 context for TSO/FSO/FCOE/IPSEC */ 3953 if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC)) 3954 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3955 3956 /* Check Context must be set if Tx switch is enabled, which it 3957 * always is for case where virtual functions are running 3958 */ 3959 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3960 3961 tx_desc->read.olinfo_status = olinfo_status; 3962 } 3963 3964 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3965 struct ixgbevf_tx_buffer *first, 3966 const u8 hdr_len) 3967 { 3968 struct sk_buff *skb = first->skb; 3969 struct ixgbevf_tx_buffer *tx_buffer; 3970 union ixgbe_adv_tx_desc *tx_desc; 3971 skb_frag_t *frag; 3972 dma_addr_t dma; 3973 unsigned int data_len, size; 3974 u32 tx_flags = first->tx_flags; 3975 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3976 u16 i = tx_ring->next_to_use; 3977 3978 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3979 3980 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 3981 3982 size = skb_headlen(skb); 3983 data_len = skb->data_len; 3984 3985 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3986 3987 tx_buffer = first; 3988 3989 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3990 if (dma_mapping_error(tx_ring->dev, dma)) 3991 goto dma_error; 3992 3993 /* record length, and DMA address */ 3994 dma_unmap_len_set(tx_buffer, len, size); 3995 dma_unmap_addr_set(tx_buffer, dma, dma); 3996 3997 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3998 3999 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 4000 tx_desc->read.cmd_type_len = 4001 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 4002 4003 i++; 4004 tx_desc++; 4005 if (i == tx_ring->count) { 4006 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4007 i = 0; 4008 } 4009 tx_desc->read.olinfo_status = 0; 4010 4011 dma += IXGBE_MAX_DATA_PER_TXD; 4012 size -= IXGBE_MAX_DATA_PER_TXD; 4013 4014 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4015 } 4016 4017 if (likely(!data_len)) 4018 break; 4019 4020 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 4021 4022 i++; 4023 tx_desc++; 4024 if (i == tx_ring->count) { 4025 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4026 i = 0; 4027 } 4028 tx_desc->read.olinfo_status = 0; 4029 4030 size = skb_frag_size(frag); 4031 data_len -= size; 4032 4033 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 4034 DMA_TO_DEVICE); 4035 4036 tx_buffer = &tx_ring->tx_buffer_info[i]; 4037 } 4038 4039 /* write last descriptor with RS and EOP bits */ 4040 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 4041 tx_desc->read.cmd_type_len = cmd_type; 4042 4043 /* set the timestamp */ 4044 first->time_stamp = jiffies; 4045 4046 skb_tx_timestamp(skb); 4047 4048 /* Force memory writes to complete before letting h/w know there 4049 * are new descriptors to fetch. (Only applicable for weak-ordered 4050 * memory model archs, such as IA-64). 4051 * 4052 * We also need this memory barrier (wmb) to make certain all of the 4053 * status bits have been updated before next_to_watch is written. 4054 */ 4055 wmb(); 4056 4057 /* set next_to_watch value indicating a packet is present */ 4058 first->next_to_watch = tx_desc; 4059 4060 i++; 4061 if (i == tx_ring->count) 4062 i = 0; 4063 4064 tx_ring->next_to_use = i; 4065 4066 /* notify HW of packet */ 4067 ixgbevf_write_tail(tx_ring, i); 4068 4069 return; 4070 dma_error: 4071 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4072 tx_buffer = &tx_ring->tx_buffer_info[i]; 4073 4074 /* clear dma mappings for failed tx_buffer_info map */ 4075 while (tx_buffer != first) { 4076 if (dma_unmap_len(tx_buffer, len)) 4077 dma_unmap_page(tx_ring->dev, 4078 dma_unmap_addr(tx_buffer, dma), 4079 dma_unmap_len(tx_buffer, len), 4080 DMA_TO_DEVICE); 4081 dma_unmap_len_set(tx_buffer, len, 0); 4082 4083 if (i-- == 0) 4084 i += tx_ring->count; 4085 tx_buffer = &tx_ring->tx_buffer_info[i]; 4086 } 4087 4088 if (dma_unmap_len(tx_buffer, len)) 4089 dma_unmap_single(tx_ring->dev, 4090 dma_unmap_addr(tx_buffer, dma), 4091 dma_unmap_len(tx_buffer, len), 4092 DMA_TO_DEVICE); 4093 dma_unmap_len_set(tx_buffer, len, 0); 4094 4095 dev_kfree_skb_any(tx_buffer->skb); 4096 tx_buffer->skb = NULL; 4097 4098 tx_ring->next_to_use = i; 4099 } 4100 4101 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4102 { 4103 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 4104 /* Herbert's original patch had: 4105 * smp_mb__after_netif_stop_queue(); 4106 * but since that doesn't exist yet, just open code it. 4107 */ 4108 smp_mb(); 4109 4110 /* We need to check again in a case another CPU has just 4111 * made room available. 4112 */ 4113 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 4114 return -EBUSY; 4115 4116 /* A reprieve! - use start_queue because it doesn't call schedule */ 4117 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 4118 ++tx_ring->tx_stats.restart_queue; 4119 4120 return 0; 4121 } 4122 4123 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4124 { 4125 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 4126 return 0; 4127 return __ixgbevf_maybe_stop_tx(tx_ring, size); 4128 } 4129 4130 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb, 4131 struct ixgbevf_ring *tx_ring) 4132 { 4133 struct ixgbevf_tx_buffer *first; 4134 int tso; 4135 u32 tx_flags = 0; 4136 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4137 struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 }; 4138 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4139 unsigned short f; 4140 #endif 4141 u8 hdr_len = 0; 4142 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 4143 4144 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 4145 dev_kfree_skb_any(skb); 4146 return NETDEV_TX_OK; 4147 } 4148 4149 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 4150 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 4151 * + 2 desc gap to keep tail from touching head, 4152 * + 1 desc for context descriptor, 4153 * otherwise try next time 4154 */ 4155 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4156 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 4157 skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 4158 4159 count += TXD_USE_COUNT(skb_frag_size(frag)); 4160 } 4161 #else 4162 count += skb_shinfo(skb)->nr_frags; 4163 #endif 4164 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 4165 tx_ring->tx_stats.tx_busy++; 4166 return NETDEV_TX_BUSY; 4167 } 4168 4169 /* record the location of the first descriptor for this packet */ 4170 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4171 first->skb = skb; 4172 first->bytecount = skb->len; 4173 first->gso_segs = 1; 4174 4175 if (skb_vlan_tag_present(skb)) { 4176 tx_flags |= skb_vlan_tag_get(skb); 4177 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 4178 tx_flags |= IXGBE_TX_FLAGS_VLAN; 4179 } 4180 4181 /* record initial flags and protocol */ 4182 first->tx_flags = tx_flags; 4183 first->protocol = vlan_get_protocol(skb); 4184 4185 #ifdef CONFIG_IXGBEVF_IPSEC 4186 if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx)) 4187 goto out_drop; 4188 #endif 4189 tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx); 4190 if (tso < 0) 4191 goto out_drop; 4192 else if (!tso) 4193 ixgbevf_tx_csum(tx_ring, first, &ipsec_tx); 4194 4195 ixgbevf_tx_map(tx_ring, first, hdr_len); 4196 4197 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 4198 4199 return NETDEV_TX_OK; 4200 4201 out_drop: 4202 dev_kfree_skb_any(first->skb); 4203 first->skb = NULL; 4204 4205 return NETDEV_TX_OK; 4206 } 4207 4208 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 4209 { 4210 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4211 struct ixgbevf_ring *tx_ring; 4212 4213 if (skb->len <= 0) { 4214 dev_kfree_skb_any(skb); 4215 return NETDEV_TX_OK; 4216 } 4217 4218 /* The minimum packet size for olinfo paylen is 17 so pad the skb 4219 * in order to meet this minimum size requirement. 4220 */ 4221 if (skb->len < 17) { 4222 if (skb_padto(skb, 17)) 4223 return NETDEV_TX_OK; 4224 skb->len = 17; 4225 } 4226 4227 tx_ring = adapter->tx_ring[skb->queue_mapping]; 4228 return ixgbevf_xmit_frame_ring(skb, tx_ring); 4229 } 4230 4231 /** 4232 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 4233 * @netdev: network interface device structure 4234 * @p: pointer to an address structure 4235 * 4236 * Returns 0 on success, negative on failure 4237 **/ 4238 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 4239 { 4240 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4241 struct ixgbe_hw *hw = &adapter->hw; 4242 struct sockaddr *addr = p; 4243 int err; 4244 4245 if (!is_valid_ether_addr(addr->sa_data)) 4246 return -EADDRNOTAVAIL; 4247 4248 spin_lock_bh(&adapter->mbx_lock); 4249 4250 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 4251 4252 spin_unlock_bh(&adapter->mbx_lock); 4253 4254 if (err) 4255 return -EPERM; 4256 4257 ether_addr_copy(hw->mac.addr, addr->sa_data); 4258 ether_addr_copy(hw->mac.perm_addr, addr->sa_data); 4259 eth_hw_addr_set(netdev, addr->sa_data); 4260 4261 return 0; 4262 } 4263 4264 /** 4265 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 4266 * @netdev: network interface device structure 4267 * @new_mtu: new value for maximum frame size 4268 * 4269 * Returns 0 on success, negative on failure 4270 **/ 4271 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 4272 { 4273 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4274 struct ixgbe_hw *hw = &adapter->hw; 4275 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 4276 int ret; 4277 4278 /* prevent MTU being changed to a size unsupported by XDP */ 4279 if (adapter->xdp_prog) { 4280 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n"); 4281 return -EPERM; 4282 } 4283 4284 spin_lock_bh(&adapter->mbx_lock); 4285 /* notify the PF of our intent to use this size of frame */ 4286 ret = hw->mac.ops.set_rlpml(hw, max_frame); 4287 spin_unlock_bh(&adapter->mbx_lock); 4288 if (ret) 4289 return -EINVAL; 4290 4291 hw_dbg(hw, "changing MTU from %d to %d\n", 4292 netdev->mtu, new_mtu); 4293 4294 /* must set new MTU before calling down or up */ 4295 WRITE_ONCE(netdev->mtu, new_mtu); 4296 4297 if (netif_running(netdev)) 4298 ixgbevf_reinit_locked(adapter); 4299 4300 return 0; 4301 } 4302 4303 static int ixgbevf_suspend(struct device *dev_d) 4304 { 4305 struct net_device *netdev = dev_get_drvdata(dev_d); 4306 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4307 4308 rtnl_lock(); 4309 netif_device_detach(netdev); 4310 4311 if (netif_running(netdev)) 4312 ixgbevf_close_suspend(adapter); 4313 4314 ixgbevf_clear_interrupt_scheme(adapter); 4315 rtnl_unlock(); 4316 4317 return 0; 4318 } 4319 4320 static int ixgbevf_resume(struct device *dev_d) 4321 { 4322 struct pci_dev *pdev = to_pci_dev(dev_d); 4323 struct net_device *netdev = pci_get_drvdata(pdev); 4324 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4325 u32 err; 4326 4327 adapter->hw.hw_addr = adapter->io_addr; 4328 smp_mb__before_atomic(); 4329 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4330 pci_set_master(pdev); 4331 4332 ixgbevf_reset(adapter); 4333 4334 rtnl_lock(); 4335 err = ixgbevf_init_interrupt_scheme(adapter); 4336 if (!err && netif_running(netdev)) 4337 err = ixgbevf_open(netdev); 4338 rtnl_unlock(); 4339 if (err) 4340 return err; 4341 4342 netif_device_attach(netdev); 4343 4344 return err; 4345 } 4346 4347 static void ixgbevf_shutdown(struct pci_dev *pdev) 4348 { 4349 ixgbevf_suspend(&pdev->dev); 4350 } 4351 4352 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats, 4353 const struct ixgbevf_ring *ring) 4354 { 4355 u64 bytes, packets; 4356 unsigned int start; 4357 4358 if (ring) { 4359 do { 4360 start = u64_stats_fetch_begin(&ring->syncp); 4361 bytes = ring->stats.bytes; 4362 packets = ring->stats.packets; 4363 } while (u64_stats_fetch_retry(&ring->syncp, start)); 4364 stats->tx_bytes += bytes; 4365 stats->tx_packets += packets; 4366 } 4367 } 4368 4369 static void ixgbevf_get_stats(struct net_device *netdev, 4370 struct rtnl_link_stats64 *stats) 4371 { 4372 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4373 unsigned int start; 4374 u64 bytes, packets; 4375 const struct ixgbevf_ring *ring; 4376 int i; 4377 4378 ixgbevf_update_stats(adapter); 4379 4380 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 4381 4382 rcu_read_lock(); 4383 for (i = 0; i < adapter->num_rx_queues; i++) { 4384 ring = adapter->rx_ring[i]; 4385 do { 4386 start = u64_stats_fetch_begin(&ring->syncp); 4387 bytes = ring->stats.bytes; 4388 packets = ring->stats.packets; 4389 } while (u64_stats_fetch_retry(&ring->syncp, start)); 4390 stats->rx_bytes += bytes; 4391 stats->rx_packets += packets; 4392 } 4393 4394 for (i = 0; i < adapter->num_tx_queues; i++) { 4395 ring = adapter->tx_ring[i]; 4396 ixgbevf_get_tx_ring_stats(stats, ring); 4397 } 4398 4399 for (i = 0; i < adapter->num_xdp_queues; i++) { 4400 ring = adapter->xdp_ring[i]; 4401 ixgbevf_get_tx_ring_stats(stats, ring); 4402 } 4403 rcu_read_unlock(); 4404 } 4405 4406 #define IXGBEVF_MAX_MAC_HDR_LEN 127 4407 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 4408 4409 static netdev_features_t 4410 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 4411 netdev_features_t features) 4412 { 4413 unsigned int network_hdr_len, mac_hdr_len; 4414 4415 /* Make certain the headers can be described by a context descriptor */ 4416 mac_hdr_len = skb_network_offset(skb); 4417 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 4418 return features & ~(NETIF_F_HW_CSUM | 4419 NETIF_F_SCTP_CRC | 4420 NETIF_F_HW_VLAN_CTAG_TX | 4421 NETIF_F_TSO | 4422 NETIF_F_TSO6); 4423 4424 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4425 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 4426 return features & ~(NETIF_F_HW_CSUM | 4427 NETIF_F_SCTP_CRC | 4428 NETIF_F_TSO | 4429 NETIF_F_TSO6); 4430 4431 /* We can only support IPV4 TSO in tunnels if we can mangle the 4432 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4433 */ 4434 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4435 features &= ~NETIF_F_TSO; 4436 4437 return features; 4438 } 4439 4440 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog) 4441 { 4442 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4443 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4444 struct bpf_prog *old_prog; 4445 4446 /* verify ixgbevf ring attributes are sufficient for XDP */ 4447 for (i = 0; i < adapter->num_rx_queues; i++) { 4448 struct ixgbevf_ring *ring = adapter->rx_ring[i]; 4449 4450 if (frame_size > ixgbevf_rx_bufsz(ring)) 4451 return -EINVAL; 4452 } 4453 4454 old_prog = xchg(&adapter->xdp_prog, prog); 4455 4456 /* If transitioning XDP modes reconfigure rings */ 4457 if (!!prog != !!old_prog) { 4458 /* Hardware has to reinitialize queues and interrupts to 4459 * match packet buffer alignment. Unfortunately, the 4460 * hardware is not flexible enough to do this dynamically. 4461 */ 4462 if (netif_running(dev)) 4463 ixgbevf_close(dev); 4464 4465 ixgbevf_clear_interrupt_scheme(adapter); 4466 ixgbevf_init_interrupt_scheme(adapter); 4467 4468 if (netif_running(dev)) 4469 ixgbevf_open(dev); 4470 } else { 4471 for (i = 0; i < adapter->num_rx_queues; i++) 4472 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog); 4473 } 4474 4475 if (old_prog) 4476 bpf_prog_put(old_prog); 4477 4478 return 0; 4479 } 4480 4481 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4482 { 4483 switch (xdp->command) { 4484 case XDP_SETUP_PROG: 4485 return ixgbevf_xdp_setup(dev, xdp->prog); 4486 default: 4487 return -EINVAL; 4488 } 4489 } 4490 4491 static const struct net_device_ops ixgbevf_netdev_ops = { 4492 .ndo_open = ixgbevf_open, 4493 .ndo_stop = ixgbevf_close, 4494 .ndo_start_xmit = ixgbevf_xmit_frame, 4495 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 4496 .ndo_get_stats64 = ixgbevf_get_stats, 4497 .ndo_validate_addr = eth_validate_addr, 4498 .ndo_set_mac_address = ixgbevf_set_mac, 4499 .ndo_change_mtu = ixgbevf_change_mtu, 4500 .ndo_tx_timeout = ixgbevf_tx_timeout, 4501 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 4502 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 4503 .ndo_features_check = ixgbevf_features_check, 4504 .ndo_bpf = ixgbevf_xdp, 4505 }; 4506 4507 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 4508 { 4509 dev->netdev_ops = &ixgbevf_netdev_ops; 4510 ixgbevf_set_ethtool_ops(dev); 4511 dev->watchdog_timeo = 5 * HZ; 4512 } 4513 4514 /** 4515 * ixgbevf_probe - Device Initialization Routine 4516 * @pdev: PCI device information struct 4517 * @ent: entry in ixgbevf_pci_tbl 4518 * 4519 * Returns 0 on success, negative on failure 4520 * 4521 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 4522 * The OS initialization, configuring of the adapter private structure, 4523 * and a hardware reset occur. 4524 **/ 4525 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4526 { 4527 struct net_device *netdev; 4528 struct ixgbevf_adapter *adapter = NULL; 4529 struct ixgbe_hw *hw = NULL; 4530 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 4531 bool disable_dev = false; 4532 int err; 4533 4534 err = pci_enable_device(pdev); 4535 if (err) 4536 return err; 4537 4538 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4539 if (err) { 4540 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4541 goto err_dma; 4542 } 4543 4544 err = pci_request_regions(pdev, ixgbevf_driver_name); 4545 if (err) { 4546 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4547 goto err_pci_reg; 4548 } 4549 4550 pci_set_master(pdev); 4551 4552 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4553 MAX_TX_QUEUES); 4554 if (!netdev) { 4555 err = -ENOMEM; 4556 goto err_alloc_etherdev; 4557 } 4558 4559 SET_NETDEV_DEV(netdev, &pdev->dev); 4560 4561 adapter = netdev_priv(netdev); 4562 4563 adapter->netdev = netdev; 4564 adapter->pdev = pdev; 4565 hw = &adapter->hw; 4566 hw->back = adapter; 4567 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4568 4569 /* call save state here in standalone driver because it relies on 4570 * adapter struct to exist, and needs to call netdev_priv 4571 */ 4572 pci_save_state(pdev); 4573 4574 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4575 pci_resource_len(pdev, 0)); 4576 adapter->io_addr = hw->hw_addr; 4577 if (!hw->hw_addr) { 4578 err = -EIO; 4579 goto err_ioremap; 4580 } 4581 4582 ixgbevf_assign_netdev_ops(netdev); 4583 4584 /* Setup HW API */ 4585 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4586 hw->mac.type = ii->mac; 4587 4588 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops_legacy, 4589 sizeof(struct ixgbe_mbx_operations)); 4590 4591 /* setup the private structure */ 4592 err = ixgbevf_sw_init(adapter); 4593 if (err) 4594 goto err_sw_init; 4595 4596 /* The HW MAC address was set and/or determined in sw_init */ 4597 if (!is_valid_ether_addr(netdev->dev_addr)) { 4598 pr_err("invalid MAC address\n"); 4599 err = -EIO; 4600 goto err_sw_init; 4601 } 4602 4603 netdev->hw_features = NETIF_F_SG | 4604 NETIF_F_TSO | 4605 NETIF_F_TSO6 | 4606 NETIF_F_RXCSUM | 4607 NETIF_F_HW_CSUM | 4608 NETIF_F_SCTP_CRC; 4609 4610 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4611 NETIF_F_GSO_GRE_CSUM | \ 4612 NETIF_F_GSO_IPXIP4 | \ 4613 NETIF_F_GSO_IPXIP6 | \ 4614 NETIF_F_GSO_UDP_TUNNEL | \ 4615 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4616 4617 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4618 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4619 IXGBEVF_GSO_PARTIAL_FEATURES; 4620 4621 netdev->features = netdev->hw_features | NETIF_F_HIGHDMA; 4622 4623 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4624 netdev->mpls_features |= NETIF_F_SG | 4625 NETIF_F_TSO | 4626 NETIF_F_TSO6 | 4627 NETIF_F_HW_CSUM; 4628 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4629 netdev->hw_enc_features |= netdev->vlan_features; 4630 4631 /* set this bit last since it cannot be part of vlan_features */ 4632 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4633 NETIF_F_HW_VLAN_CTAG_RX | 4634 NETIF_F_HW_VLAN_CTAG_TX; 4635 4636 netdev->priv_flags |= IFF_UNICAST_FLT; 4637 netdev->xdp_features = NETDEV_XDP_ACT_BASIC; 4638 4639 /* MTU range: 68 - 1504 or 9710 */ 4640 netdev->min_mtu = ETH_MIN_MTU; 4641 switch (adapter->hw.api_version) { 4642 case ixgbe_mbox_api_11: 4643 case ixgbe_mbox_api_12: 4644 case ixgbe_mbox_api_13: 4645 case ixgbe_mbox_api_14: 4646 case ixgbe_mbox_api_15: 4647 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4648 (ETH_HLEN + ETH_FCS_LEN); 4649 break; 4650 default: 4651 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4652 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4653 (ETH_HLEN + ETH_FCS_LEN); 4654 else 4655 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4656 break; 4657 } 4658 4659 if (IXGBE_REMOVED(hw->hw_addr)) { 4660 err = -EIO; 4661 goto err_sw_init; 4662 } 4663 4664 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); 4665 4666 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4667 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4668 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4669 4670 err = ixgbevf_init_interrupt_scheme(adapter); 4671 if (err) 4672 goto err_sw_init; 4673 4674 strcpy(netdev->name, "eth%d"); 4675 4676 err = register_netdev(netdev); 4677 if (err) 4678 goto err_register; 4679 4680 pci_set_drvdata(pdev, netdev); 4681 netif_carrier_off(netdev); 4682 ixgbevf_init_ipsec_offload(adapter); 4683 4684 ixgbevf_init_last_counter_stats(adapter); 4685 4686 /* print the VF info */ 4687 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4688 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4689 4690 switch (hw->mac.type) { 4691 case ixgbe_mac_X550_vf: 4692 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4693 break; 4694 case ixgbe_mac_X540_vf: 4695 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4696 break; 4697 case ixgbe_mac_82599_vf: 4698 default: 4699 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4700 break; 4701 } 4702 4703 return 0; 4704 4705 err_register: 4706 ixgbevf_clear_interrupt_scheme(adapter); 4707 err_sw_init: 4708 ixgbevf_reset_interrupt_capability(adapter); 4709 iounmap(adapter->io_addr); 4710 kfree(adapter->rss_key); 4711 err_ioremap: 4712 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4713 free_netdev(netdev); 4714 err_alloc_etherdev: 4715 pci_release_regions(pdev); 4716 err_pci_reg: 4717 err_dma: 4718 if (!adapter || disable_dev) 4719 pci_disable_device(pdev); 4720 return err; 4721 } 4722 4723 /** 4724 * ixgbevf_remove - Device Removal Routine 4725 * @pdev: PCI device information struct 4726 * 4727 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4728 * that it should release a PCI device. The could be caused by a 4729 * Hot-Plug event, or because the driver is going to be removed from 4730 * memory. 4731 **/ 4732 static void ixgbevf_remove(struct pci_dev *pdev) 4733 { 4734 struct net_device *netdev = pci_get_drvdata(pdev); 4735 struct ixgbevf_adapter *adapter; 4736 bool disable_dev; 4737 4738 if (!netdev) 4739 return; 4740 4741 adapter = netdev_priv(netdev); 4742 4743 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4744 cancel_work_sync(&adapter->service_task); 4745 4746 if (netdev->reg_state == NETREG_REGISTERED) 4747 unregister_netdev(netdev); 4748 4749 ixgbevf_stop_ipsec_offload(adapter); 4750 ixgbevf_clear_interrupt_scheme(adapter); 4751 ixgbevf_reset_interrupt_capability(adapter); 4752 4753 iounmap(adapter->io_addr); 4754 pci_release_regions(pdev); 4755 4756 hw_dbg(&adapter->hw, "Remove complete\n"); 4757 4758 kfree(adapter->rss_key); 4759 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4760 free_netdev(netdev); 4761 4762 if (disable_dev) 4763 pci_disable_device(pdev); 4764 } 4765 4766 /** 4767 * ixgbevf_io_error_detected - called when PCI error is detected 4768 * @pdev: Pointer to PCI device 4769 * @state: The current pci connection state 4770 * 4771 * This function is called after a PCI bus error affecting 4772 * this device has been detected. 4773 **/ 4774 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4775 pci_channel_state_t state) 4776 { 4777 struct net_device *netdev = pci_get_drvdata(pdev); 4778 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4779 4780 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4781 return PCI_ERS_RESULT_DISCONNECT; 4782 4783 rtnl_lock(); 4784 netif_device_detach(netdev); 4785 4786 if (netif_running(netdev)) 4787 ixgbevf_close_suspend(adapter); 4788 4789 if (state == pci_channel_io_perm_failure) { 4790 rtnl_unlock(); 4791 return PCI_ERS_RESULT_DISCONNECT; 4792 } 4793 4794 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4795 pci_disable_device(pdev); 4796 rtnl_unlock(); 4797 4798 /* Request a slot reset. */ 4799 return PCI_ERS_RESULT_NEED_RESET; 4800 } 4801 4802 /** 4803 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4804 * @pdev: Pointer to PCI device 4805 * 4806 * Restart the card from scratch, as if from a cold-boot. Implementation 4807 * resembles the first-half of the ixgbevf_resume routine. 4808 **/ 4809 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4810 { 4811 struct net_device *netdev = pci_get_drvdata(pdev); 4812 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4813 4814 if (pci_enable_device_mem(pdev)) { 4815 dev_err(&pdev->dev, 4816 "Cannot re-enable PCI device after reset.\n"); 4817 return PCI_ERS_RESULT_DISCONNECT; 4818 } 4819 4820 adapter->hw.hw_addr = adapter->io_addr; 4821 smp_mb__before_atomic(); 4822 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4823 pci_set_master(pdev); 4824 4825 ixgbevf_reset(adapter); 4826 4827 return PCI_ERS_RESULT_RECOVERED; 4828 } 4829 4830 /** 4831 * ixgbevf_io_resume - called when traffic can start flowing again. 4832 * @pdev: Pointer to PCI device 4833 * 4834 * This callback is called when the error recovery driver tells us that 4835 * its OK to resume normal operation. Implementation resembles the 4836 * second-half of the ixgbevf_resume routine. 4837 **/ 4838 static void ixgbevf_io_resume(struct pci_dev *pdev) 4839 { 4840 struct net_device *netdev = pci_get_drvdata(pdev); 4841 4842 rtnl_lock(); 4843 if (netif_running(netdev)) 4844 ixgbevf_open(netdev); 4845 4846 netif_device_attach(netdev); 4847 rtnl_unlock(); 4848 } 4849 4850 /* PCI Error Recovery (ERS) */ 4851 static const struct pci_error_handlers ixgbevf_err_handler = { 4852 .error_detected = ixgbevf_io_error_detected, 4853 .slot_reset = ixgbevf_io_slot_reset, 4854 .resume = ixgbevf_io_resume, 4855 }; 4856 4857 static DEFINE_SIMPLE_DEV_PM_OPS(ixgbevf_pm_ops, ixgbevf_suspend, ixgbevf_resume); 4858 4859 static struct pci_driver ixgbevf_driver = { 4860 .name = ixgbevf_driver_name, 4861 .id_table = ixgbevf_pci_tbl, 4862 .probe = ixgbevf_probe, 4863 .remove = ixgbevf_remove, 4864 4865 /* Power Management Hooks */ 4866 .driver.pm = pm_sleep_ptr(&ixgbevf_pm_ops), 4867 4868 .shutdown = ixgbevf_shutdown, 4869 .err_handler = &ixgbevf_err_handler 4870 }; 4871 4872 /** 4873 * ixgbevf_init_module - Driver Registration Routine 4874 * 4875 * ixgbevf_init_module is the first routine called when the driver is 4876 * loaded. All it does is register with the PCI subsystem. 4877 **/ 4878 static int __init ixgbevf_init_module(void) 4879 { 4880 int err; 4881 4882 pr_info("%s\n", ixgbevf_driver_string); 4883 pr_info("%s\n", ixgbevf_copyright); 4884 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4885 if (!ixgbevf_wq) { 4886 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4887 return -ENOMEM; 4888 } 4889 4890 err = pci_register_driver(&ixgbevf_driver); 4891 if (err) { 4892 destroy_workqueue(ixgbevf_wq); 4893 return err; 4894 } 4895 4896 return 0; 4897 } 4898 4899 module_init(ixgbevf_init_module); 4900 4901 /** 4902 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4903 * 4904 * ixgbevf_exit_module is called just before the driver is removed 4905 * from memory. 4906 **/ 4907 static void __exit ixgbevf_exit_module(void) 4908 { 4909 pci_unregister_driver(&ixgbevf_driver); 4910 if (ixgbevf_wq) { 4911 destroy_workqueue(ixgbevf_wq); 4912 ixgbevf_wq = NULL; 4913 } 4914 } 4915 4916 #ifdef DEBUG 4917 /** 4918 * ixgbevf_get_hw_dev_name - return device name string 4919 * used by hardware layer to print debugging information 4920 * @hw: pointer to private hardware struct 4921 **/ 4922 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4923 { 4924 struct ixgbevf_adapter *adapter = hw->back; 4925 4926 return adapter->netdev->name; 4927 } 4928 4929 #endif 4930 module_exit(ixgbevf_exit_module); 4931 4932 /* ixgbevf_main.c */ 4933