xref: /linux/drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*******************************************************************************
2 
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2015 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17 
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20 
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 
25 *******************************************************************************/
26 
27 /******************************************************************************
28  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
29 ******************************************************************************/
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/types.h>
34 #include <linux/bitops.h>
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/vmalloc.h>
39 #include <linux/string.h>
40 #include <linux/in.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/sctp.h>
44 #include <linux/ipv6.h>
45 #include <linux/slab.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/ethtool.h>
49 #include <linux/if.h>
50 #include <linux/if_vlan.h>
51 #include <linux/prefetch.h>
52 
53 #include "ixgbevf.h"
54 
55 const char ixgbevf_driver_name[] = "ixgbevf";
56 static const char ixgbevf_driver_string[] =
57 	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
58 
59 #define DRV_VERSION "2.12.1-k"
60 const char ixgbevf_driver_version[] = DRV_VERSION;
61 static char ixgbevf_copyright[] =
62 	"Copyright (c) 2009 - 2015 Intel Corporation.";
63 
64 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
65 	[board_82599_vf]	= &ixgbevf_82599_vf_info,
66 	[board_82599_vf_hv]	= &ixgbevf_82599_vf_hv_info,
67 	[board_X540_vf]		= &ixgbevf_X540_vf_info,
68 	[board_X540_vf_hv]	= &ixgbevf_X540_vf_hv_info,
69 	[board_X550_vf]		= &ixgbevf_X550_vf_info,
70 	[board_X550_vf_hv]	= &ixgbevf_X550_vf_hv_info,
71 	[board_X550EM_x_vf]	= &ixgbevf_X550EM_x_vf_info,
72 	[board_X550EM_x_vf_hv]	= &ixgbevf_X550EM_x_vf_hv_info,
73 };
74 
75 /* ixgbevf_pci_tbl - PCI Device ID Table
76  *
77  * Wildcard entries (PCI_ANY_ID) should come last
78  * Last entry must be all 0s
79  *
80  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
81  *   Class, Class Mask, private data (not used) }
82  */
83 static const struct pci_device_id ixgbevf_pci_tbl[] = {
84 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
85 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv },
86 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
87 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv },
88 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
89 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv },
90 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
91 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv},
92 	/* required last entry */
93 	{0, }
94 };
95 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
96 
97 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
98 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
99 MODULE_LICENSE("GPL");
100 MODULE_VERSION(DRV_VERSION);
101 
102 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
103 static int debug = -1;
104 module_param(debug, int, 0);
105 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
106 
107 static struct workqueue_struct *ixgbevf_wq;
108 
109 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
110 {
111 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
112 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
113 	    !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
114 		queue_work(ixgbevf_wq, &adapter->service_task);
115 }
116 
117 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
118 {
119 	BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
120 
121 	/* flush memory to make sure state is correct before next watchdog */
122 	smp_mb__before_atomic();
123 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
124 }
125 
126 /* forward decls */
127 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
128 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
129 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
130 
131 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
132 {
133 	struct ixgbevf_adapter *adapter = hw->back;
134 
135 	if (!hw->hw_addr)
136 		return;
137 	hw->hw_addr = NULL;
138 	dev_err(&adapter->pdev->dev, "Adapter removed\n");
139 	if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
140 		ixgbevf_service_event_schedule(adapter);
141 }
142 
143 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
144 {
145 	u32 value;
146 
147 	/* The following check not only optimizes a bit by not
148 	 * performing a read on the status register when the
149 	 * register just read was a status register read that
150 	 * returned IXGBE_FAILED_READ_REG. It also blocks any
151 	 * potential recursion.
152 	 */
153 	if (reg == IXGBE_VFSTATUS) {
154 		ixgbevf_remove_adapter(hw);
155 		return;
156 	}
157 	value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
158 	if (value == IXGBE_FAILED_READ_REG)
159 		ixgbevf_remove_adapter(hw);
160 }
161 
162 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
163 {
164 	u8 __iomem *reg_addr = ACCESS_ONCE(hw->hw_addr);
165 	u32 value;
166 
167 	if (IXGBE_REMOVED(reg_addr))
168 		return IXGBE_FAILED_READ_REG;
169 	value = readl(reg_addr + reg);
170 	if (unlikely(value == IXGBE_FAILED_READ_REG))
171 		ixgbevf_check_remove(hw, reg);
172 	return value;
173 }
174 
175 /**
176  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
177  * @adapter: pointer to adapter struct
178  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
179  * @queue: queue to map the corresponding interrupt to
180  * @msix_vector: the vector to map to the corresponding queue
181  **/
182 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
183 			     u8 queue, u8 msix_vector)
184 {
185 	u32 ivar, index;
186 	struct ixgbe_hw *hw = &adapter->hw;
187 
188 	if (direction == -1) {
189 		/* other causes */
190 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
191 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
192 		ivar &= ~0xFF;
193 		ivar |= msix_vector;
194 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
195 	} else {
196 		/* Tx or Rx causes */
197 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
198 		index = ((16 * (queue & 1)) + (8 * direction));
199 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
200 		ivar &= ~(0xFF << index);
201 		ivar |= (msix_vector << index);
202 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
203 	}
204 }
205 
206 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring,
207 					struct ixgbevf_tx_buffer *tx_buffer)
208 {
209 	if (tx_buffer->skb) {
210 		dev_kfree_skb_any(tx_buffer->skb);
211 		if (dma_unmap_len(tx_buffer, len))
212 			dma_unmap_single(tx_ring->dev,
213 					 dma_unmap_addr(tx_buffer, dma),
214 					 dma_unmap_len(tx_buffer, len),
215 					 DMA_TO_DEVICE);
216 	} else if (dma_unmap_len(tx_buffer, len)) {
217 		dma_unmap_page(tx_ring->dev,
218 			       dma_unmap_addr(tx_buffer, dma),
219 			       dma_unmap_len(tx_buffer, len),
220 			       DMA_TO_DEVICE);
221 	}
222 	tx_buffer->next_to_watch = NULL;
223 	tx_buffer->skb = NULL;
224 	dma_unmap_len_set(tx_buffer, len, 0);
225 	/* tx_buffer must be completely set up in the transmit path */
226 }
227 
228 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
229 {
230 	return ring->stats.packets;
231 }
232 
233 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
234 {
235 	struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
236 	struct ixgbe_hw *hw = &adapter->hw;
237 
238 	u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
239 	u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
240 
241 	if (head != tail)
242 		return (head < tail) ?
243 			tail - head : (tail + ring->count - head);
244 
245 	return 0;
246 }
247 
248 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
249 {
250 	u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
251 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
252 	u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
253 
254 	clear_check_for_tx_hang(tx_ring);
255 
256 	/* Check for a hung queue, but be thorough. This verifies
257 	 * that a transmit has been completed since the previous
258 	 * check AND there is at least one packet pending. The
259 	 * ARMED bit is set to indicate a potential hang.
260 	 */
261 	if ((tx_done_old == tx_done) && tx_pending) {
262 		/* make sure it is true for two checks in a row */
263 		return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
264 					&tx_ring->state);
265 	}
266 	/* reset the countdown */
267 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
268 
269 	/* update completed stats and continue */
270 	tx_ring->tx_stats.tx_done_old = tx_done;
271 
272 	return false;
273 }
274 
275 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
276 {
277 	/* Do the reset outside of interrupt context */
278 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
279 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
280 		ixgbevf_service_event_schedule(adapter);
281 	}
282 }
283 
284 /**
285  * ixgbevf_tx_timeout - Respond to a Tx Hang
286  * @netdev: network interface device structure
287  **/
288 static void ixgbevf_tx_timeout(struct net_device *netdev)
289 {
290 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
291 
292 	ixgbevf_tx_timeout_reset(adapter);
293 }
294 
295 /**
296  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
297  * @q_vector: board private structure
298  * @tx_ring: tx ring to clean
299  * @napi_budget: Used to determine if we are in netpoll
300  **/
301 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
302 				 struct ixgbevf_ring *tx_ring, int napi_budget)
303 {
304 	struct ixgbevf_adapter *adapter = q_vector->adapter;
305 	struct ixgbevf_tx_buffer *tx_buffer;
306 	union ixgbe_adv_tx_desc *tx_desc;
307 	unsigned int total_bytes = 0, total_packets = 0;
308 	unsigned int budget = tx_ring->count / 2;
309 	unsigned int i = tx_ring->next_to_clean;
310 
311 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
312 		return true;
313 
314 	tx_buffer = &tx_ring->tx_buffer_info[i];
315 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
316 	i -= tx_ring->count;
317 
318 	do {
319 		union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
320 
321 		/* if next_to_watch is not set then there is no work pending */
322 		if (!eop_desc)
323 			break;
324 
325 		/* prevent any other reads prior to eop_desc */
326 		read_barrier_depends();
327 
328 		/* if DD is not set pending work has not been completed */
329 		if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
330 			break;
331 
332 		/* clear next_to_watch to prevent false hangs */
333 		tx_buffer->next_to_watch = NULL;
334 
335 		/* update the statistics for this packet */
336 		total_bytes += tx_buffer->bytecount;
337 		total_packets += tx_buffer->gso_segs;
338 
339 		/* free the skb */
340 		napi_consume_skb(tx_buffer->skb, napi_budget);
341 
342 		/* unmap skb header data */
343 		dma_unmap_single(tx_ring->dev,
344 				 dma_unmap_addr(tx_buffer, dma),
345 				 dma_unmap_len(tx_buffer, len),
346 				 DMA_TO_DEVICE);
347 
348 		/* clear tx_buffer data */
349 		tx_buffer->skb = NULL;
350 		dma_unmap_len_set(tx_buffer, len, 0);
351 
352 		/* unmap remaining buffers */
353 		while (tx_desc != eop_desc) {
354 			tx_buffer++;
355 			tx_desc++;
356 			i++;
357 			if (unlikely(!i)) {
358 				i -= tx_ring->count;
359 				tx_buffer = tx_ring->tx_buffer_info;
360 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
361 			}
362 
363 			/* unmap any remaining paged data */
364 			if (dma_unmap_len(tx_buffer, len)) {
365 				dma_unmap_page(tx_ring->dev,
366 					       dma_unmap_addr(tx_buffer, dma),
367 					       dma_unmap_len(tx_buffer, len),
368 					       DMA_TO_DEVICE);
369 				dma_unmap_len_set(tx_buffer, len, 0);
370 			}
371 		}
372 
373 		/* move us one more past the eop_desc for start of next pkt */
374 		tx_buffer++;
375 		tx_desc++;
376 		i++;
377 		if (unlikely(!i)) {
378 			i -= tx_ring->count;
379 			tx_buffer = tx_ring->tx_buffer_info;
380 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
381 		}
382 
383 		/* issue prefetch for next Tx descriptor */
384 		prefetch(tx_desc);
385 
386 		/* update budget accounting */
387 		budget--;
388 	} while (likely(budget));
389 
390 	i += tx_ring->count;
391 	tx_ring->next_to_clean = i;
392 	u64_stats_update_begin(&tx_ring->syncp);
393 	tx_ring->stats.bytes += total_bytes;
394 	tx_ring->stats.packets += total_packets;
395 	u64_stats_update_end(&tx_ring->syncp);
396 	q_vector->tx.total_bytes += total_bytes;
397 	q_vector->tx.total_packets += total_packets;
398 
399 	if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
400 		struct ixgbe_hw *hw = &adapter->hw;
401 		union ixgbe_adv_tx_desc *eop_desc;
402 
403 		eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
404 
405 		pr_err("Detected Tx Unit Hang\n"
406 		       "  Tx Queue             <%d>\n"
407 		       "  TDH, TDT             <%x>, <%x>\n"
408 		       "  next_to_use          <%x>\n"
409 		       "  next_to_clean        <%x>\n"
410 		       "tx_buffer_info[next_to_clean]\n"
411 		       "  next_to_watch        <%p>\n"
412 		       "  eop_desc->wb.status  <%x>\n"
413 		       "  time_stamp           <%lx>\n"
414 		       "  jiffies              <%lx>\n",
415 		       tx_ring->queue_index,
416 		       IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
417 		       IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
418 		       tx_ring->next_to_use, i,
419 		       eop_desc, (eop_desc ? eop_desc->wb.status : 0),
420 		       tx_ring->tx_buffer_info[i].time_stamp, jiffies);
421 
422 		netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
423 
424 		/* schedule immediate reset if we believe we hung */
425 		ixgbevf_tx_timeout_reset(adapter);
426 
427 		return true;
428 	}
429 
430 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
431 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
432 		     (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
433 		/* Make sure that anybody stopping the queue after this
434 		 * sees the new next_to_clean.
435 		 */
436 		smp_mb();
437 
438 		if (__netif_subqueue_stopped(tx_ring->netdev,
439 					     tx_ring->queue_index) &&
440 		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
441 			netif_wake_subqueue(tx_ring->netdev,
442 					    tx_ring->queue_index);
443 			++tx_ring->tx_stats.restart_queue;
444 		}
445 	}
446 
447 	return !!budget;
448 }
449 
450 /**
451  * ixgbevf_rx_skb - Helper function to determine proper Rx method
452  * @q_vector: structure containing interrupt and ring information
453  * @skb: packet to send up
454  **/
455 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
456 			   struct sk_buff *skb)
457 {
458 #ifdef CONFIG_NET_RX_BUSY_POLL
459 	skb_mark_napi_id(skb, &q_vector->napi);
460 
461 	if (ixgbevf_qv_busy_polling(q_vector)) {
462 		netif_receive_skb(skb);
463 		/* exit early if we busy polled */
464 		return;
465 	}
466 #endif /* CONFIG_NET_RX_BUSY_POLL */
467 
468 	napi_gro_receive(&q_vector->napi, skb);
469 }
470 
471 #define IXGBE_RSS_L4_TYPES_MASK \
472 	((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
473 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
474 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
475 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
476 
477 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
478 				   union ixgbe_adv_rx_desc *rx_desc,
479 				   struct sk_buff *skb)
480 {
481 	u16 rss_type;
482 
483 	if (!(ring->netdev->features & NETIF_F_RXHASH))
484 		return;
485 
486 	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
487 		   IXGBE_RXDADV_RSSTYPE_MASK;
488 
489 	if (!rss_type)
490 		return;
491 
492 	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
493 		     (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
494 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
495 }
496 
497 /**
498  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
499  * @ring: structure containig ring specific data
500  * @rx_desc: current Rx descriptor being processed
501  * @skb: skb currently being received and modified
502  **/
503 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
504 				       union ixgbe_adv_rx_desc *rx_desc,
505 				       struct sk_buff *skb)
506 {
507 	skb_checksum_none_assert(skb);
508 
509 	/* Rx csum disabled */
510 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
511 		return;
512 
513 	/* if IP and error */
514 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
515 	    ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
516 		ring->rx_stats.csum_err++;
517 		return;
518 	}
519 
520 	if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
521 		return;
522 
523 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
524 		ring->rx_stats.csum_err++;
525 		return;
526 	}
527 
528 	/* It must be a TCP or UDP packet with a valid checksum */
529 	skb->ip_summed = CHECKSUM_UNNECESSARY;
530 }
531 
532 /**
533  * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
534  * @rx_ring: rx descriptor ring packet is being transacted on
535  * @rx_desc: pointer to the EOP Rx descriptor
536  * @skb: pointer to current skb being populated
537  *
538  * This function checks the ring, descriptor, and packet information in
539  * order to populate the checksum, VLAN, protocol, and other fields within
540  * the skb.
541  **/
542 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
543 				       union ixgbe_adv_rx_desc *rx_desc,
544 				       struct sk_buff *skb)
545 {
546 	ixgbevf_rx_hash(rx_ring, rx_desc, skb);
547 	ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
548 
549 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
550 		u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
551 		unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
552 
553 		if (test_bit(vid & VLAN_VID_MASK, active_vlans))
554 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
555 	}
556 
557 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
558 }
559 
560 /**
561  * ixgbevf_is_non_eop - process handling of non-EOP buffers
562  * @rx_ring: Rx ring being processed
563  * @rx_desc: Rx descriptor for current buffer
564  * @skb: current socket buffer containing buffer in progress
565  *
566  * This function updates next to clean.  If the buffer is an EOP buffer
567  * this function exits returning false, otherwise it will place the
568  * sk_buff in the next buffer to be chained and return true indicating
569  * that this is in fact a non-EOP buffer.
570  **/
571 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
572 			       union ixgbe_adv_rx_desc *rx_desc)
573 {
574 	u32 ntc = rx_ring->next_to_clean + 1;
575 
576 	/* fetch, update, and store next to clean */
577 	ntc = (ntc < rx_ring->count) ? ntc : 0;
578 	rx_ring->next_to_clean = ntc;
579 
580 	prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
581 
582 	if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
583 		return false;
584 
585 	return true;
586 }
587 
588 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
589 				      struct ixgbevf_rx_buffer *bi)
590 {
591 	struct page *page = bi->page;
592 	dma_addr_t dma = bi->dma;
593 
594 	/* since we are recycling buffers we should seldom need to alloc */
595 	if (likely(page))
596 		return true;
597 
598 	/* alloc new page for storage */
599 	page = dev_alloc_page();
600 	if (unlikely(!page)) {
601 		rx_ring->rx_stats.alloc_rx_page_failed++;
602 		return false;
603 	}
604 
605 	/* map page for use */
606 	dma = dma_map_page(rx_ring->dev, page, 0,
607 			   PAGE_SIZE, DMA_FROM_DEVICE);
608 
609 	/* if mapping failed free memory back to system since
610 	 * there isn't much point in holding memory we can't use
611 	 */
612 	if (dma_mapping_error(rx_ring->dev, dma)) {
613 		__free_page(page);
614 
615 		rx_ring->rx_stats.alloc_rx_buff_failed++;
616 		return false;
617 	}
618 
619 	bi->dma = dma;
620 	bi->page = page;
621 	bi->page_offset = 0;
622 
623 	return true;
624 }
625 
626 /**
627  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
628  * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
629  * @cleaned_count: number of buffers to replace
630  **/
631 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
632 				     u16 cleaned_count)
633 {
634 	union ixgbe_adv_rx_desc *rx_desc;
635 	struct ixgbevf_rx_buffer *bi;
636 	unsigned int i = rx_ring->next_to_use;
637 
638 	/* nothing to do or no valid netdev defined */
639 	if (!cleaned_count || !rx_ring->netdev)
640 		return;
641 
642 	rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
643 	bi = &rx_ring->rx_buffer_info[i];
644 	i -= rx_ring->count;
645 
646 	do {
647 		if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
648 			break;
649 
650 		/* Refresh the desc even if pkt_addr didn't change
651 		 * because each write-back erases this info.
652 		 */
653 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
654 
655 		rx_desc++;
656 		bi++;
657 		i++;
658 		if (unlikely(!i)) {
659 			rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
660 			bi = rx_ring->rx_buffer_info;
661 			i -= rx_ring->count;
662 		}
663 
664 		/* clear the hdr_addr for the next_to_use descriptor */
665 		rx_desc->read.hdr_addr = 0;
666 
667 		cleaned_count--;
668 	} while (cleaned_count);
669 
670 	i += rx_ring->count;
671 
672 	if (rx_ring->next_to_use != i) {
673 		/* record the next descriptor to use */
674 		rx_ring->next_to_use = i;
675 
676 		/* update next to alloc since we have filled the ring */
677 		rx_ring->next_to_alloc = i;
678 
679 		/* Force memory writes to complete before letting h/w
680 		 * know there are new descriptors to fetch.  (Only
681 		 * applicable for weak-ordered memory model archs,
682 		 * such as IA-64).
683 		 */
684 		wmb();
685 		ixgbevf_write_tail(rx_ring, i);
686 	}
687 }
688 
689 /**
690  * ixgbevf_cleanup_headers - Correct corrupted or empty headers
691  * @rx_ring: rx descriptor ring packet is being transacted on
692  * @rx_desc: pointer to the EOP Rx descriptor
693  * @skb: pointer to current skb being fixed
694  *
695  * Check for corrupted packet headers caused by senders on the local L2
696  * embedded NIC switch not setting up their Tx Descriptors right.  These
697  * should be very rare.
698  *
699  * Also address the case where we are pulling data in on pages only
700  * and as such no data is present in the skb header.
701  *
702  * In addition if skb is not at least 60 bytes we need to pad it so that
703  * it is large enough to qualify as a valid Ethernet frame.
704  *
705  * Returns true if an error was encountered and skb was freed.
706  **/
707 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
708 				    union ixgbe_adv_rx_desc *rx_desc,
709 				    struct sk_buff *skb)
710 {
711 	/* verify that the packet does not have any known errors */
712 	if (unlikely(ixgbevf_test_staterr(rx_desc,
713 					  IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
714 		struct net_device *netdev = rx_ring->netdev;
715 
716 		if (!(netdev->features & NETIF_F_RXALL)) {
717 			dev_kfree_skb_any(skb);
718 			return true;
719 		}
720 	}
721 
722 	/* if eth_skb_pad returns an error the skb was freed */
723 	if (eth_skb_pad(skb))
724 		return true;
725 
726 	return false;
727 }
728 
729 /**
730  * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
731  * @rx_ring: rx descriptor ring to store buffers on
732  * @old_buff: donor buffer to have page reused
733  *
734  * Synchronizes page for reuse by the adapter
735  **/
736 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
737 				  struct ixgbevf_rx_buffer *old_buff)
738 {
739 	struct ixgbevf_rx_buffer *new_buff;
740 	u16 nta = rx_ring->next_to_alloc;
741 
742 	new_buff = &rx_ring->rx_buffer_info[nta];
743 
744 	/* update, and store next to alloc */
745 	nta++;
746 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
747 
748 	/* transfer page from old buffer to new buffer */
749 	new_buff->page = old_buff->page;
750 	new_buff->dma = old_buff->dma;
751 	new_buff->page_offset = old_buff->page_offset;
752 
753 	/* sync the buffer for use by the device */
754 	dma_sync_single_range_for_device(rx_ring->dev, new_buff->dma,
755 					 new_buff->page_offset,
756 					 IXGBEVF_RX_BUFSZ,
757 					 DMA_FROM_DEVICE);
758 }
759 
760 static inline bool ixgbevf_page_is_reserved(struct page *page)
761 {
762 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
763 }
764 
765 /**
766  * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
767  * @rx_ring: rx descriptor ring to transact packets on
768  * @rx_buffer: buffer containing page to add
769  * @rx_desc: descriptor containing length of buffer written by hardware
770  * @skb: sk_buff to place the data into
771  *
772  * This function will add the data contained in rx_buffer->page to the skb.
773  * This is done either through a direct copy if the data in the buffer is
774  * less than the skb header size, otherwise it will just attach the page as
775  * a frag to the skb.
776  *
777  * The function will then update the page offset if necessary and return
778  * true if the buffer can be reused by the adapter.
779  **/
780 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
781 				struct ixgbevf_rx_buffer *rx_buffer,
782 				union ixgbe_adv_rx_desc *rx_desc,
783 				struct sk_buff *skb)
784 {
785 	struct page *page = rx_buffer->page;
786 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
787 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
788 #if (PAGE_SIZE < 8192)
789 	unsigned int truesize = IXGBEVF_RX_BUFSZ;
790 #else
791 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
792 #endif
793 	unsigned int pull_len;
794 
795 	if (unlikely(skb_is_nonlinear(skb)))
796 		goto add_tail_frag;
797 
798 	if (likely(size <= IXGBEVF_RX_HDR_SIZE)) {
799 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
800 
801 		/* page is not reserved, we can reuse buffer as is */
802 		if (likely(!ixgbevf_page_is_reserved(page)))
803 			return true;
804 
805 		/* this page cannot be reused so discard it */
806 		put_page(page);
807 		return false;
808 	}
809 
810 	/* we need the header to contain the greater of either ETH_HLEN or
811 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
812 	 */
813 	pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE);
814 
815 	/* align pull length to size of long to optimize memcpy performance */
816 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
817 
818 	/* update all of the pointers */
819 	va += pull_len;
820 	size -= pull_len;
821 
822 add_tail_frag:
823 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
824 			(unsigned long)va & ~PAGE_MASK, size, truesize);
825 
826 	/* avoid re-using remote pages */
827 	if (unlikely(ixgbevf_page_is_reserved(page)))
828 		return false;
829 
830 #if (PAGE_SIZE < 8192)
831 	/* if we are only owner of page we can reuse it */
832 	if (unlikely(page_count(page) != 1))
833 		return false;
834 
835 	/* flip page offset to other buffer */
836 	rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ;
837 
838 #else
839 	/* move offset up to the next cache line */
840 	rx_buffer->page_offset += truesize;
841 
842 	if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ))
843 		return false;
844 
845 #endif
846 	/* Even if we own the page, we are not allowed to use atomic_set()
847 	 * This would break get_page_unless_zero() users.
848 	 */
849 	page_ref_inc(page);
850 
851 	return true;
852 }
853 
854 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring,
855 					       union ixgbe_adv_rx_desc *rx_desc,
856 					       struct sk_buff *skb)
857 {
858 	struct ixgbevf_rx_buffer *rx_buffer;
859 	struct page *page;
860 
861 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
862 	page = rx_buffer->page;
863 	prefetchw(page);
864 
865 	if (likely(!skb)) {
866 		void *page_addr = page_address(page) +
867 				  rx_buffer->page_offset;
868 
869 		/* prefetch first cache line of first page */
870 		prefetch(page_addr);
871 #if L1_CACHE_BYTES < 128
872 		prefetch(page_addr + L1_CACHE_BYTES);
873 #endif
874 
875 		/* allocate a skb to store the frags */
876 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
877 						IXGBEVF_RX_HDR_SIZE);
878 		if (unlikely(!skb)) {
879 			rx_ring->rx_stats.alloc_rx_buff_failed++;
880 			return NULL;
881 		}
882 
883 		/* we will be copying header into skb->data in
884 		 * pskb_may_pull so it is in our interest to prefetch
885 		 * it now to avoid a possible cache miss
886 		 */
887 		prefetchw(skb->data);
888 	}
889 
890 	/* we are reusing so sync this buffer for CPU use */
891 	dma_sync_single_range_for_cpu(rx_ring->dev,
892 				      rx_buffer->dma,
893 				      rx_buffer->page_offset,
894 				      IXGBEVF_RX_BUFSZ,
895 				      DMA_FROM_DEVICE);
896 
897 	/* pull page into skb */
898 	if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
899 		/* hand second half of page back to the ring */
900 		ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
901 	} else {
902 		/* we are not reusing the buffer so unmap it */
903 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
904 			       PAGE_SIZE, DMA_FROM_DEVICE);
905 	}
906 
907 	/* clear contents of buffer_info */
908 	rx_buffer->dma = 0;
909 	rx_buffer->page = NULL;
910 
911 	return skb;
912 }
913 
914 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
915 					     u32 qmask)
916 {
917 	struct ixgbe_hw *hw = &adapter->hw;
918 
919 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
920 }
921 
922 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
923 				struct ixgbevf_ring *rx_ring,
924 				int budget)
925 {
926 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
927 	u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
928 	struct sk_buff *skb = rx_ring->skb;
929 
930 	while (likely(total_rx_packets < budget)) {
931 		union ixgbe_adv_rx_desc *rx_desc;
932 
933 		/* return some buffers to hardware, one at a time is too slow */
934 		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
935 			ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
936 			cleaned_count = 0;
937 		}
938 
939 		rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
940 
941 		if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_DD))
942 			break;
943 
944 		/* This memory barrier is needed to keep us from reading
945 		 * any other fields out of the rx_desc until we know the
946 		 * RXD_STAT_DD bit is set
947 		 */
948 		rmb();
949 
950 		/* retrieve a buffer from the ring */
951 		skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb);
952 
953 		/* exit if we failed to retrieve a buffer */
954 		if (!skb)
955 			break;
956 
957 		cleaned_count++;
958 
959 		/* fetch next buffer in frame if non-eop */
960 		if (ixgbevf_is_non_eop(rx_ring, rx_desc))
961 			continue;
962 
963 		/* verify the packet layout is correct */
964 		if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
965 			skb = NULL;
966 			continue;
967 		}
968 
969 		/* probably a little skewed due to removing CRC */
970 		total_rx_bytes += skb->len;
971 
972 		/* Workaround hardware that can't do proper VEPA multicast
973 		 * source pruning.
974 		 */
975 		if ((skb->pkt_type == PACKET_BROADCAST ||
976 		     skb->pkt_type == PACKET_MULTICAST) &&
977 		    ether_addr_equal(rx_ring->netdev->dev_addr,
978 				     eth_hdr(skb)->h_source)) {
979 			dev_kfree_skb_irq(skb);
980 			continue;
981 		}
982 
983 		/* populate checksum, VLAN, and protocol */
984 		ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
985 
986 		ixgbevf_rx_skb(q_vector, skb);
987 
988 		/* reset skb pointer */
989 		skb = NULL;
990 
991 		/* update budget accounting */
992 		total_rx_packets++;
993 	}
994 
995 	/* place incomplete frames back on ring for completion */
996 	rx_ring->skb = skb;
997 
998 	u64_stats_update_begin(&rx_ring->syncp);
999 	rx_ring->stats.packets += total_rx_packets;
1000 	rx_ring->stats.bytes += total_rx_bytes;
1001 	u64_stats_update_end(&rx_ring->syncp);
1002 	q_vector->rx.total_packets += total_rx_packets;
1003 	q_vector->rx.total_bytes += total_rx_bytes;
1004 
1005 	return total_rx_packets;
1006 }
1007 
1008 /**
1009  * ixgbevf_poll - NAPI polling calback
1010  * @napi: napi struct with our devices info in it
1011  * @budget: amount of work driver is allowed to do this pass, in packets
1012  *
1013  * This function will clean more than one or more rings associated with a
1014  * q_vector.
1015  **/
1016 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1017 {
1018 	struct ixgbevf_q_vector *q_vector =
1019 		container_of(napi, struct ixgbevf_q_vector, napi);
1020 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1021 	struct ixgbevf_ring *ring;
1022 	int per_ring_budget, work_done = 0;
1023 	bool clean_complete = true;
1024 
1025 	ixgbevf_for_each_ring(ring, q_vector->tx) {
1026 		if (!ixgbevf_clean_tx_irq(q_vector, ring, budget))
1027 			clean_complete = false;
1028 	}
1029 
1030 	if (budget <= 0)
1031 		return budget;
1032 #ifdef CONFIG_NET_RX_BUSY_POLL
1033 	if (!ixgbevf_qv_lock_napi(q_vector))
1034 		return budget;
1035 #endif
1036 
1037 	/* attempt to distribute budget to each queue fairly, but don't allow
1038 	 * the budget to go below 1 because we'll exit polling
1039 	 */
1040 	if (q_vector->rx.count > 1)
1041 		per_ring_budget = max(budget/q_vector->rx.count, 1);
1042 	else
1043 		per_ring_budget = budget;
1044 
1045 	ixgbevf_for_each_ring(ring, q_vector->rx) {
1046 		int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1047 						   per_ring_budget);
1048 		work_done += cleaned;
1049 		if (cleaned >= per_ring_budget)
1050 			clean_complete = false;
1051 	}
1052 
1053 #ifdef CONFIG_NET_RX_BUSY_POLL
1054 	ixgbevf_qv_unlock_napi(q_vector);
1055 #endif
1056 
1057 	/* If all work not completed, return budget and keep polling */
1058 	if (!clean_complete)
1059 		return budget;
1060 	/* all work done, exit the polling mode */
1061 	napi_complete_done(napi, work_done);
1062 	if (adapter->rx_itr_setting == 1)
1063 		ixgbevf_set_itr(q_vector);
1064 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1065 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1066 		ixgbevf_irq_enable_queues(adapter,
1067 					  BIT(q_vector->v_idx));
1068 
1069 	return 0;
1070 }
1071 
1072 /**
1073  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1074  * @q_vector: structure containing interrupt and ring information
1075  **/
1076 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1077 {
1078 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1079 	struct ixgbe_hw *hw = &adapter->hw;
1080 	int v_idx = q_vector->v_idx;
1081 	u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1082 
1083 	/* set the WDIS bit to not clear the timer bits and cause an
1084 	 * immediate assertion of the interrupt
1085 	 */
1086 	itr_reg |= IXGBE_EITR_CNT_WDIS;
1087 
1088 	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1089 }
1090 
1091 #ifdef CONFIG_NET_RX_BUSY_POLL
1092 /* must be called with local_bh_disable()d */
1093 static int ixgbevf_busy_poll_recv(struct napi_struct *napi)
1094 {
1095 	struct ixgbevf_q_vector *q_vector =
1096 			container_of(napi, struct ixgbevf_q_vector, napi);
1097 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1098 	struct ixgbevf_ring  *ring;
1099 	int found = 0;
1100 
1101 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
1102 		return LL_FLUSH_FAILED;
1103 
1104 	if (!ixgbevf_qv_lock_poll(q_vector))
1105 		return LL_FLUSH_BUSY;
1106 
1107 	ixgbevf_for_each_ring(ring, q_vector->rx) {
1108 		found = ixgbevf_clean_rx_irq(q_vector, ring, 4);
1109 #ifdef BP_EXTENDED_STATS
1110 		if (found)
1111 			ring->stats.cleaned += found;
1112 		else
1113 			ring->stats.misses++;
1114 #endif
1115 		if (found)
1116 			break;
1117 	}
1118 
1119 	ixgbevf_qv_unlock_poll(q_vector);
1120 
1121 	return found;
1122 }
1123 #endif /* CONFIG_NET_RX_BUSY_POLL */
1124 
1125 /**
1126  * ixgbevf_configure_msix - Configure MSI-X hardware
1127  * @adapter: board private structure
1128  *
1129  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1130  * interrupts.
1131  **/
1132 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1133 {
1134 	struct ixgbevf_q_vector *q_vector;
1135 	int q_vectors, v_idx;
1136 
1137 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1138 	adapter->eims_enable_mask = 0;
1139 
1140 	/* Populate the IVAR table and set the ITR values to the
1141 	 * corresponding register.
1142 	 */
1143 	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1144 		struct ixgbevf_ring *ring;
1145 
1146 		q_vector = adapter->q_vector[v_idx];
1147 
1148 		ixgbevf_for_each_ring(ring, q_vector->rx)
1149 			ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1150 
1151 		ixgbevf_for_each_ring(ring, q_vector->tx)
1152 			ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1153 
1154 		if (q_vector->tx.ring && !q_vector->rx.ring) {
1155 			/* Tx only vector */
1156 			if (adapter->tx_itr_setting == 1)
1157 				q_vector->itr = IXGBE_12K_ITR;
1158 			else
1159 				q_vector->itr = adapter->tx_itr_setting;
1160 		} else {
1161 			/* Rx or Rx/Tx vector */
1162 			if (adapter->rx_itr_setting == 1)
1163 				q_vector->itr = IXGBE_20K_ITR;
1164 			else
1165 				q_vector->itr = adapter->rx_itr_setting;
1166 		}
1167 
1168 		/* add q_vector eims value to global eims_enable_mask */
1169 		adapter->eims_enable_mask |= BIT(v_idx);
1170 
1171 		ixgbevf_write_eitr(q_vector);
1172 	}
1173 
1174 	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1175 	/* setup eims_other and add value to global eims_enable_mask */
1176 	adapter->eims_other = BIT(v_idx);
1177 	adapter->eims_enable_mask |= adapter->eims_other;
1178 }
1179 
1180 enum latency_range {
1181 	lowest_latency = 0,
1182 	low_latency = 1,
1183 	bulk_latency = 2,
1184 	latency_invalid = 255
1185 };
1186 
1187 /**
1188  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1189  * @q_vector: structure containing interrupt and ring information
1190  * @ring_container: structure containing ring performance data
1191  *
1192  * Stores a new ITR value based on packets and byte
1193  * counts during the last interrupt.  The advantage of per interrupt
1194  * computation is faster updates and more accurate ITR for the current
1195  * traffic pattern.  Constants in this function were computed
1196  * based on theoretical maximum wire speed and thresholds were set based
1197  * on testing data as well as attempting to minimize response time
1198  * while increasing bulk throughput.
1199  **/
1200 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1201 			       struct ixgbevf_ring_container *ring_container)
1202 {
1203 	int bytes = ring_container->total_bytes;
1204 	int packets = ring_container->total_packets;
1205 	u32 timepassed_us;
1206 	u64 bytes_perint;
1207 	u8 itr_setting = ring_container->itr;
1208 
1209 	if (packets == 0)
1210 		return;
1211 
1212 	/* simple throttle rate management
1213 	 *    0-20MB/s lowest (100000 ints/s)
1214 	 *   20-100MB/s low   (20000 ints/s)
1215 	 *  100-1249MB/s bulk (12000 ints/s)
1216 	 */
1217 	/* what was last interrupt timeslice? */
1218 	timepassed_us = q_vector->itr >> 2;
1219 	bytes_perint = bytes / timepassed_us; /* bytes/usec */
1220 
1221 	switch (itr_setting) {
1222 	case lowest_latency:
1223 		if (bytes_perint > 10)
1224 			itr_setting = low_latency;
1225 		break;
1226 	case low_latency:
1227 		if (bytes_perint > 20)
1228 			itr_setting = bulk_latency;
1229 		else if (bytes_perint <= 10)
1230 			itr_setting = lowest_latency;
1231 		break;
1232 	case bulk_latency:
1233 		if (bytes_perint <= 20)
1234 			itr_setting = low_latency;
1235 		break;
1236 	}
1237 
1238 	/* clear work counters since we have the values we need */
1239 	ring_container->total_bytes = 0;
1240 	ring_container->total_packets = 0;
1241 
1242 	/* write updated itr to ring container */
1243 	ring_container->itr = itr_setting;
1244 }
1245 
1246 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1247 {
1248 	u32 new_itr = q_vector->itr;
1249 	u8 current_itr;
1250 
1251 	ixgbevf_update_itr(q_vector, &q_vector->tx);
1252 	ixgbevf_update_itr(q_vector, &q_vector->rx);
1253 
1254 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1255 
1256 	switch (current_itr) {
1257 	/* counts and packets in update_itr are dependent on these numbers */
1258 	case lowest_latency:
1259 		new_itr = IXGBE_100K_ITR;
1260 		break;
1261 	case low_latency:
1262 		new_itr = IXGBE_20K_ITR;
1263 		break;
1264 	case bulk_latency:
1265 		new_itr = IXGBE_12K_ITR;
1266 		break;
1267 	default:
1268 		break;
1269 	}
1270 
1271 	if (new_itr != q_vector->itr) {
1272 		/* do an exponential smoothing */
1273 		new_itr = (10 * new_itr * q_vector->itr) /
1274 			  ((9 * new_itr) + q_vector->itr);
1275 
1276 		/* save the algorithm value here */
1277 		q_vector->itr = new_itr;
1278 
1279 		ixgbevf_write_eitr(q_vector);
1280 	}
1281 }
1282 
1283 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1284 {
1285 	struct ixgbevf_adapter *adapter = data;
1286 	struct ixgbe_hw *hw = &adapter->hw;
1287 
1288 	hw->mac.get_link_status = 1;
1289 
1290 	ixgbevf_service_event_schedule(adapter);
1291 
1292 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1293 
1294 	return IRQ_HANDLED;
1295 }
1296 
1297 /**
1298  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1299  * @irq: unused
1300  * @data: pointer to our q_vector struct for this interrupt vector
1301  **/
1302 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1303 {
1304 	struct ixgbevf_q_vector *q_vector = data;
1305 
1306 	/* EIAM disabled interrupts (on this vector) for us */
1307 	if (q_vector->rx.ring || q_vector->tx.ring)
1308 		napi_schedule_irqoff(&q_vector->napi);
1309 
1310 	return IRQ_HANDLED;
1311 }
1312 
1313 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1314 				     int r_idx)
1315 {
1316 	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1317 
1318 	a->rx_ring[r_idx]->next = q_vector->rx.ring;
1319 	q_vector->rx.ring = a->rx_ring[r_idx];
1320 	q_vector->rx.count++;
1321 }
1322 
1323 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1324 				     int t_idx)
1325 {
1326 	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1327 
1328 	a->tx_ring[t_idx]->next = q_vector->tx.ring;
1329 	q_vector->tx.ring = a->tx_ring[t_idx];
1330 	q_vector->tx.count++;
1331 }
1332 
1333 /**
1334  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1335  * @adapter: board private structure to initialize
1336  *
1337  * This function maps descriptor rings to the queue-specific vectors
1338  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1339  * one vector per ring/queue, but on a constrained vector budget, we
1340  * group the rings as "efficiently" as possible.  You would add new
1341  * mapping configurations in here.
1342  **/
1343 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1344 {
1345 	int q_vectors;
1346 	int v_start = 0;
1347 	int rxr_idx = 0, txr_idx = 0;
1348 	int rxr_remaining = adapter->num_rx_queues;
1349 	int txr_remaining = adapter->num_tx_queues;
1350 	int i, j;
1351 	int rqpv, tqpv;
1352 
1353 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1354 
1355 	/* The ideal configuration...
1356 	 * We have enough vectors to map one per queue.
1357 	 */
1358 	if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1359 		for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1360 			map_vector_to_rxq(adapter, v_start, rxr_idx);
1361 
1362 		for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1363 			map_vector_to_txq(adapter, v_start, txr_idx);
1364 		return 0;
1365 	}
1366 
1367 	/* If we don't have enough vectors for a 1-to-1
1368 	 * mapping, we'll have to group them so there are
1369 	 * multiple queues per vector.
1370 	 */
1371 	/* Re-adjusting *qpv takes care of the remainder. */
1372 	for (i = v_start; i < q_vectors; i++) {
1373 		rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1374 		for (j = 0; j < rqpv; j++) {
1375 			map_vector_to_rxq(adapter, i, rxr_idx);
1376 			rxr_idx++;
1377 			rxr_remaining--;
1378 		}
1379 	}
1380 	for (i = v_start; i < q_vectors; i++) {
1381 		tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1382 		for (j = 0; j < tqpv; j++) {
1383 			map_vector_to_txq(adapter, i, txr_idx);
1384 			txr_idx++;
1385 			txr_remaining--;
1386 		}
1387 	}
1388 
1389 	return 0;
1390 }
1391 
1392 /**
1393  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1394  * @adapter: board private structure
1395  *
1396  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1397  * interrupts from the kernel.
1398  **/
1399 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1400 {
1401 	struct net_device *netdev = adapter->netdev;
1402 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1403 	int vector, err;
1404 	int ri = 0, ti = 0;
1405 
1406 	for (vector = 0; vector < q_vectors; vector++) {
1407 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1408 		struct msix_entry *entry = &adapter->msix_entries[vector];
1409 
1410 		if (q_vector->tx.ring && q_vector->rx.ring) {
1411 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1412 				 "%s-%s-%d", netdev->name, "TxRx", ri++);
1413 			ti++;
1414 		} else if (q_vector->rx.ring) {
1415 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1416 				 "%s-%s-%d", netdev->name, "rx", ri++);
1417 		} else if (q_vector->tx.ring) {
1418 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1419 				 "%s-%s-%d", netdev->name, "tx", ti++);
1420 		} else {
1421 			/* skip this unused q_vector */
1422 			continue;
1423 		}
1424 		err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1425 				  q_vector->name, q_vector);
1426 		if (err) {
1427 			hw_dbg(&adapter->hw,
1428 			       "request_irq failed for MSIX interrupt Error: %d\n",
1429 			       err);
1430 			goto free_queue_irqs;
1431 		}
1432 	}
1433 
1434 	err = request_irq(adapter->msix_entries[vector].vector,
1435 			  &ixgbevf_msix_other, 0, netdev->name, adapter);
1436 	if (err) {
1437 		hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1438 		       err);
1439 		goto free_queue_irqs;
1440 	}
1441 
1442 	return 0;
1443 
1444 free_queue_irqs:
1445 	while (vector) {
1446 		vector--;
1447 		free_irq(adapter->msix_entries[vector].vector,
1448 			 adapter->q_vector[vector]);
1449 	}
1450 	/* This failure is non-recoverable - it indicates the system is
1451 	 * out of MSIX vector resources and the VF driver cannot run
1452 	 * without them.  Set the number of msix vectors to zero
1453 	 * indicating that not enough can be allocated.  The error
1454 	 * will be returned to the user indicating device open failed.
1455 	 * Any further attempts to force the driver to open will also
1456 	 * fail.  The only way to recover is to unload the driver and
1457 	 * reload it again.  If the system has recovered some MSIX
1458 	 * vectors then it may succeed.
1459 	 */
1460 	adapter->num_msix_vectors = 0;
1461 	return err;
1462 }
1463 
1464 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1465 {
1466 	int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1467 
1468 	for (i = 0; i < q_vectors; i++) {
1469 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1470 
1471 		q_vector->rx.ring = NULL;
1472 		q_vector->tx.ring = NULL;
1473 		q_vector->rx.count = 0;
1474 		q_vector->tx.count = 0;
1475 	}
1476 }
1477 
1478 /**
1479  * ixgbevf_request_irq - initialize interrupts
1480  * @adapter: board private structure
1481  *
1482  * Attempts to configure interrupts using the best available
1483  * capabilities of the hardware and kernel.
1484  **/
1485 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1486 {
1487 	int err = ixgbevf_request_msix_irqs(adapter);
1488 
1489 	if (err)
1490 		hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1491 
1492 	return err;
1493 }
1494 
1495 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1496 {
1497 	int i, q_vectors;
1498 
1499 	q_vectors = adapter->num_msix_vectors;
1500 	i = q_vectors - 1;
1501 
1502 	free_irq(adapter->msix_entries[i].vector, adapter);
1503 	i--;
1504 
1505 	for (; i >= 0; i--) {
1506 		/* free only the irqs that were actually requested */
1507 		if (!adapter->q_vector[i]->rx.ring &&
1508 		    !adapter->q_vector[i]->tx.ring)
1509 			continue;
1510 
1511 		free_irq(adapter->msix_entries[i].vector,
1512 			 adapter->q_vector[i]);
1513 	}
1514 
1515 	ixgbevf_reset_q_vectors(adapter);
1516 }
1517 
1518 /**
1519  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1520  * @adapter: board private structure
1521  **/
1522 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1523 {
1524 	struct ixgbe_hw *hw = &adapter->hw;
1525 	int i;
1526 
1527 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1528 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1529 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1530 
1531 	IXGBE_WRITE_FLUSH(hw);
1532 
1533 	for (i = 0; i < adapter->num_msix_vectors; i++)
1534 		synchronize_irq(adapter->msix_entries[i].vector);
1535 }
1536 
1537 /**
1538  * ixgbevf_irq_enable - Enable default interrupt generation settings
1539  * @adapter: board private structure
1540  **/
1541 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1542 {
1543 	struct ixgbe_hw *hw = &adapter->hw;
1544 
1545 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1546 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1547 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1548 }
1549 
1550 /**
1551  * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1552  * @adapter: board private structure
1553  * @ring: structure containing ring specific data
1554  *
1555  * Configure the Tx descriptor ring after a reset.
1556  **/
1557 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1558 				      struct ixgbevf_ring *ring)
1559 {
1560 	struct ixgbe_hw *hw = &adapter->hw;
1561 	u64 tdba = ring->dma;
1562 	int wait_loop = 10;
1563 	u32 txdctl = IXGBE_TXDCTL_ENABLE;
1564 	u8 reg_idx = ring->reg_idx;
1565 
1566 	/* disable queue to avoid issues while updating state */
1567 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1568 	IXGBE_WRITE_FLUSH(hw);
1569 
1570 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1571 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1572 	IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1573 			ring->count * sizeof(union ixgbe_adv_tx_desc));
1574 
1575 	/* disable head writeback */
1576 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1577 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1578 
1579 	/* enable relaxed ordering */
1580 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1581 			(IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1582 			 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1583 
1584 	/* reset head and tail pointers */
1585 	IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1586 	IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1587 	ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1588 
1589 	/* reset ntu and ntc to place SW in sync with hardwdare */
1590 	ring->next_to_clean = 0;
1591 	ring->next_to_use = 0;
1592 
1593 	/* In order to avoid issues WTHRESH + PTHRESH should always be equal
1594 	 * to or less than the number of on chip descriptors, which is
1595 	 * currently 40.
1596 	 */
1597 	txdctl |= (8 << 16);    /* WTHRESH = 8 */
1598 
1599 	/* Setting PTHRESH to 32 both improves performance */
1600 	txdctl |= (1u << 8) |    /* HTHRESH = 1 */
1601 		   32;           /* PTHRESH = 32 */
1602 
1603 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1604 
1605 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1606 
1607 	/* poll to verify queue is enabled */
1608 	do {
1609 		usleep_range(1000, 2000);
1610 		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1611 	}  while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1612 	if (!wait_loop)
1613 		pr_err("Could not enable Tx Queue %d\n", reg_idx);
1614 }
1615 
1616 /**
1617  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1618  * @adapter: board private structure
1619  *
1620  * Configure the Tx unit of the MAC after a reset.
1621  **/
1622 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1623 {
1624 	u32 i;
1625 
1626 	/* Setup the HW Tx Head and Tail descriptor pointers */
1627 	for (i = 0; i < adapter->num_tx_queues; i++)
1628 		ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1629 }
1630 
1631 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1632 
1633 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1634 {
1635 	struct ixgbe_hw *hw = &adapter->hw;
1636 	u32 srrctl;
1637 
1638 	srrctl = IXGBE_SRRCTL_DROP_EN;
1639 
1640 	srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1641 	srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1642 	srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1643 
1644 	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1645 }
1646 
1647 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1648 {
1649 	struct ixgbe_hw *hw = &adapter->hw;
1650 
1651 	/* PSRTYPE must be initialized in 82599 */
1652 	u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1653 		      IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1654 		      IXGBE_PSRTYPE_L2HDR;
1655 
1656 	if (adapter->num_rx_queues > 1)
1657 		psrtype |= BIT(29);
1658 
1659 	IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1660 }
1661 
1662 #define IXGBEVF_MAX_RX_DESC_POLL 10
1663 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1664 				     struct ixgbevf_ring *ring)
1665 {
1666 	struct ixgbe_hw *hw = &adapter->hw;
1667 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1668 	u32 rxdctl;
1669 	u8 reg_idx = ring->reg_idx;
1670 
1671 	if (IXGBE_REMOVED(hw->hw_addr))
1672 		return;
1673 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1674 	rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1675 
1676 	/* write value back with RXDCTL.ENABLE bit cleared */
1677 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1678 
1679 	/* the hardware may take up to 100us to really disable the Rx queue */
1680 	do {
1681 		udelay(10);
1682 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1683 	} while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1684 
1685 	if (!wait_loop)
1686 		pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1687 		       reg_idx);
1688 }
1689 
1690 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1691 					 struct ixgbevf_ring *ring)
1692 {
1693 	struct ixgbe_hw *hw = &adapter->hw;
1694 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1695 	u32 rxdctl;
1696 	u8 reg_idx = ring->reg_idx;
1697 
1698 	if (IXGBE_REMOVED(hw->hw_addr))
1699 		return;
1700 	do {
1701 		usleep_range(1000, 2000);
1702 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1703 	} while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1704 
1705 	if (!wait_loop)
1706 		pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1707 		       reg_idx);
1708 }
1709 
1710 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1711 {
1712 	struct ixgbe_hw *hw = &adapter->hw;
1713 	u32 vfmrqc = 0, vfreta = 0;
1714 	u16 rss_i = adapter->num_rx_queues;
1715 	u8 i, j;
1716 
1717 	/* Fill out hash function seeds */
1718 	netdev_rss_key_fill(adapter->rss_key, sizeof(adapter->rss_key));
1719 	for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1720 		IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), adapter->rss_key[i]);
1721 
1722 	for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1723 		if (j == rss_i)
1724 			j = 0;
1725 
1726 		adapter->rss_indir_tbl[i] = j;
1727 
1728 		vfreta |= j << (i & 0x3) * 8;
1729 		if ((i & 3) == 3) {
1730 			IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1731 			vfreta = 0;
1732 		}
1733 	}
1734 
1735 	/* Perform hash on these packet types */
1736 	vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1737 		IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1738 		IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1739 		IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1740 
1741 	vfmrqc |= IXGBE_VFMRQC_RSSEN;
1742 
1743 	IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1744 }
1745 
1746 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1747 				      struct ixgbevf_ring *ring)
1748 {
1749 	struct ixgbe_hw *hw = &adapter->hw;
1750 	u64 rdba = ring->dma;
1751 	u32 rxdctl;
1752 	u8 reg_idx = ring->reg_idx;
1753 
1754 	/* disable queue to avoid issues while updating state */
1755 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1756 	ixgbevf_disable_rx_queue(adapter, ring);
1757 
1758 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1759 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1760 	IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1761 			ring->count * sizeof(union ixgbe_adv_rx_desc));
1762 
1763 #ifndef CONFIG_SPARC
1764 	/* enable relaxed ordering */
1765 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1766 			IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1767 #else
1768 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1769 			IXGBE_DCA_RXCTRL_DESC_RRO_EN |
1770 			IXGBE_DCA_RXCTRL_DATA_WRO_EN);
1771 #endif
1772 
1773 	/* reset head and tail pointers */
1774 	IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1775 	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1776 	ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1777 
1778 	/* reset ntu and ntc to place SW in sync with hardwdare */
1779 	ring->next_to_clean = 0;
1780 	ring->next_to_use = 0;
1781 	ring->next_to_alloc = 0;
1782 
1783 	ixgbevf_configure_srrctl(adapter, reg_idx);
1784 
1785 	/* allow any size packet since we can handle overflow */
1786 	rxdctl &= ~IXGBE_RXDCTL_RLPML_EN;
1787 
1788 	rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1789 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1790 
1791 	ixgbevf_rx_desc_queue_enable(adapter, ring);
1792 	ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1793 }
1794 
1795 /**
1796  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1797  * @adapter: board private structure
1798  *
1799  * Configure the Rx unit of the MAC after a reset.
1800  **/
1801 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1802 {
1803 	int i;
1804 	struct ixgbe_hw *hw = &adapter->hw;
1805 	struct net_device *netdev = adapter->netdev;
1806 
1807 	ixgbevf_setup_psrtype(adapter);
1808 	if (hw->mac.type >= ixgbe_mac_X550_vf)
1809 		ixgbevf_setup_vfmrqc(adapter);
1810 
1811 	/* notify the PF of our intent to use this size of frame */
1812 	hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
1813 
1814 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1815 	 * the Base and Length of the Rx Descriptor Ring
1816 	 */
1817 	for (i = 0; i < adapter->num_rx_queues; i++)
1818 		ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]);
1819 }
1820 
1821 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
1822 				   __be16 proto, u16 vid)
1823 {
1824 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1825 	struct ixgbe_hw *hw = &adapter->hw;
1826 	int err;
1827 
1828 	spin_lock_bh(&adapter->mbx_lock);
1829 
1830 	/* add VID to filter table */
1831 	err = hw->mac.ops.set_vfta(hw, vid, 0, true);
1832 
1833 	spin_unlock_bh(&adapter->mbx_lock);
1834 
1835 	/* translate error return types so error makes sense */
1836 	if (err == IXGBE_ERR_MBX)
1837 		return -EIO;
1838 
1839 	if (err == IXGBE_ERR_INVALID_ARGUMENT)
1840 		return -EACCES;
1841 
1842 	set_bit(vid, adapter->active_vlans);
1843 
1844 	return err;
1845 }
1846 
1847 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
1848 				    __be16 proto, u16 vid)
1849 {
1850 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1851 	struct ixgbe_hw *hw = &adapter->hw;
1852 	int err;
1853 
1854 	spin_lock_bh(&adapter->mbx_lock);
1855 
1856 	/* remove VID from filter table */
1857 	err = hw->mac.ops.set_vfta(hw, vid, 0, false);
1858 
1859 	spin_unlock_bh(&adapter->mbx_lock);
1860 
1861 	clear_bit(vid, adapter->active_vlans);
1862 
1863 	return err;
1864 }
1865 
1866 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1867 {
1868 	u16 vid;
1869 
1870 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1871 		ixgbevf_vlan_rx_add_vid(adapter->netdev,
1872 					htons(ETH_P_8021Q), vid);
1873 }
1874 
1875 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1876 {
1877 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1878 	struct ixgbe_hw *hw = &adapter->hw;
1879 	int count = 0;
1880 
1881 	if ((netdev_uc_count(netdev)) > 10) {
1882 		pr_err("Too many unicast filters - No Space\n");
1883 		return -ENOSPC;
1884 	}
1885 
1886 	if (!netdev_uc_empty(netdev)) {
1887 		struct netdev_hw_addr *ha;
1888 
1889 		netdev_for_each_uc_addr(ha, netdev) {
1890 			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1891 			udelay(200);
1892 		}
1893 	} else {
1894 		/* If the list is empty then send message to PF driver to
1895 		 * clear all MAC VLANs on this VF.
1896 		 */
1897 		hw->mac.ops.set_uc_addr(hw, 0, NULL);
1898 	}
1899 
1900 	return count;
1901 }
1902 
1903 /**
1904  * ixgbevf_set_rx_mode - Multicast and unicast set
1905  * @netdev: network interface device structure
1906  *
1907  * The set_rx_method entry point is called whenever the multicast address
1908  * list, unicast address list or the network interface flags are updated.
1909  * This routine is responsible for configuring the hardware for proper
1910  * multicast mode and configuring requested unicast filters.
1911  **/
1912 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1913 {
1914 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1915 	struct ixgbe_hw *hw = &adapter->hw;
1916 	unsigned int flags = netdev->flags;
1917 	int xcast_mode;
1918 
1919 	xcast_mode = (flags & IFF_ALLMULTI) ? IXGBEVF_XCAST_MODE_ALLMULTI :
1920 		     (flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
1921 		     IXGBEVF_XCAST_MODE_MULTI : IXGBEVF_XCAST_MODE_NONE;
1922 
1923 	spin_lock_bh(&adapter->mbx_lock);
1924 
1925 	hw->mac.ops.update_xcast_mode(hw, xcast_mode);
1926 
1927 	/* reprogram multicast list */
1928 	hw->mac.ops.update_mc_addr_list(hw, netdev);
1929 
1930 	ixgbevf_write_uc_addr_list(netdev);
1931 
1932 	spin_unlock_bh(&adapter->mbx_lock);
1933 }
1934 
1935 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1936 {
1937 	int q_idx;
1938 	struct ixgbevf_q_vector *q_vector;
1939 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1940 
1941 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1942 		q_vector = adapter->q_vector[q_idx];
1943 #ifdef CONFIG_NET_RX_BUSY_POLL
1944 		ixgbevf_qv_init_lock(adapter->q_vector[q_idx]);
1945 #endif
1946 		napi_enable(&q_vector->napi);
1947 	}
1948 }
1949 
1950 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1951 {
1952 	int q_idx;
1953 	struct ixgbevf_q_vector *q_vector;
1954 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1955 
1956 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1957 		q_vector = adapter->q_vector[q_idx];
1958 		napi_disable(&q_vector->napi);
1959 #ifdef CONFIG_NET_RX_BUSY_POLL
1960 		while (!ixgbevf_qv_disable(adapter->q_vector[q_idx])) {
1961 			pr_info("QV %d locked\n", q_idx);
1962 			usleep_range(1000, 20000);
1963 		}
1964 #endif /* CONFIG_NET_RX_BUSY_POLL */
1965 	}
1966 }
1967 
1968 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
1969 {
1970 	struct ixgbe_hw *hw = &adapter->hw;
1971 	unsigned int def_q = 0;
1972 	unsigned int num_tcs = 0;
1973 	unsigned int num_rx_queues = adapter->num_rx_queues;
1974 	unsigned int num_tx_queues = adapter->num_tx_queues;
1975 	int err;
1976 
1977 	spin_lock_bh(&adapter->mbx_lock);
1978 
1979 	/* fetch queue configuration from the PF */
1980 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
1981 
1982 	spin_unlock_bh(&adapter->mbx_lock);
1983 
1984 	if (err)
1985 		return err;
1986 
1987 	if (num_tcs > 1) {
1988 		/* we need only one Tx queue */
1989 		num_tx_queues = 1;
1990 
1991 		/* update default Tx ring register index */
1992 		adapter->tx_ring[0]->reg_idx = def_q;
1993 
1994 		/* we need as many queues as traffic classes */
1995 		num_rx_queues = num_tcs;
1996 	}
1997 
1998 	/* if we have a bad config abort request queue reset */
1999 	if ((adapter->num_rx_queues != num_rx_queues) ||
2000 	    (adapter->num_tx_queues != num_tx_queues)) {
2001 		/* force mailbox timeout to prevent further messages */
2002 		hw->mbx.timeout = 0;
2003 
2004 		/* wait for watchdog to come around and bail us out */
2005 		set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state);
2006 	}
2007 
2008 	return 0;
2009 }
2010 
2011 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
2012 {
2013 	ixgbevf_configure_dcb(adapter);
2014 
2015 	ixgbevf_set_rx_mode(adapter->netdev);
2016 
2017 	ixgbevf_restore_vlan(adapter);
2018 
2019 	ixgbevf_configure_tx(adapter);
2020 	ixgbevf_configure_rx(adapter);
2021 }
2022 
2023 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2024 {
2025 	/* Only save pre-reset stats if there are some */
2026 	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2027 		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2028 			adapter->stats.base_vfgprc;
2029 		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2030 			adapter->stats.base_vfgptc;
2031 		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2032 			adapter->stats.base_vfgorc;
2033 		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2034 			adapter->stats.base_vfgotc;
2035 		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2036 			adapter->stats.base_vfmprc;
2037 	}
2038 }
2039 
2040 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2041 {
2042 	struct ixgbe_hw *hw = &adapter->hw;
2043 
2044 	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2045 	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2046 	adapter->stats.last_vfgorc |=
2047 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2048 	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2049 	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2050 	adapter->stats.last_vfgotc |=
2051 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2052 	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2053 
2054 	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2055 	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2056 	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2057 	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2058 	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2059 }
2060 
2061 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2062 {
2063 	struct ixgbe_hw *hw = &adapter->hw;
2064 	int api[] = { ixgbe_mbox_api_12,
2065 		      ixgbe_mbox_api_11,
2066 		      ixgbe_mbox_api_10,
2067 		      ixgbe_mbox_api_unknown };
2068 	int err, idx = 0;
2069 
2070 	spin_lock_bh(&adapter->mbx_lock);
2071 
2072 	while (api[idx] != ixgbe_mbox_api_unknown) {
2073 		err = hw->mac.ops.negotiate_api_version(hw, api[idx]);
2074 		if (!err)
2075 			break;
2076 		idx++;
2077 	}
2078 
2079 	spin_unlock_bh(&adapter->mbx_lock);
2080 }
2081 
2082 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2083 {
2084 	struct net_device *netdev = adapter->netdev;
2085 	struct ixgbe_hw *hw = &adapter->hw;
2086 
2087 	ixgbevf_configure_msix(adapter);
2088 
2089 	spin_lock_bh(&adapter->mbx_lock);
2090 
2091 	if (is_valid_ether_addr(hw->mac.addr))
2092 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2093 	else
2094 		hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2095 
2096 	spin_unlock_bh(&adapter->mbx_lock);
2097 
2098 	smp_mb__before_atomic();
2099 	clear_bit(__IXGBEVF_DOWN, &adapter->state);
2100 	ixgbevf_napi_enable_all(adapter);
2101 
2102 	/* clear any pending interrupts, may auto mask */
2103 	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2104 	ixgbevf_irq_enable(adapter);
2105 
2106 	/* enable transmits */
2107 	netif_tx_start_all_queues(netdev);
2108 
2109 	ixgbevf_save_reset_stats(adapter);
2110 	ixgbevf_init_last_counter_stats(adapter);
2111 
2112 	hw->mac.get_link_status = 1;
2113 	mod_timer(&adapter->service_timer, jiffies);
2114 }
2115 
2116 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2117 {
2118 	ixgbevf_configure(adapter);
2119 
2120 	ixgbevf_up_complete(adapter);
2121 }
2122 
2123 /**
2124  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2125  * @rx_ring: ring to free buffers from
2126  **/
2127 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2128 {
2129 	struct device *dev = rx_ring->dev;
2130 	unsigned long size;
2131 	unsigned int i;
2132 
2133 	/* Free Rx ring sk_buff */
2134 	if (rx_ring->skb) {
2135 		dev_kfree_skb(rx_ring->skb);
2136 		rx_ring->skb = NULL;
2137 	}
2138 
2139 	/* ring already cleared, nothing to do */
2140 	if (!rx_ring->rx_buffer_info)
2141 		return;
2142 
2143 	/* Free all the Rx ring pages */
2144 	for (i = 0; i < rx_ring->count; i++) {
2145 		struct ixgbevf_rx_buffer *rx_buffer;
2146 
2147 		rx_buffer = &rx_ring->rx_buffer_info[i];
2148 		if (rx_buffer->dma)
2149 			dma_unmap_page(dev, rx_buffer->dma,
2150 				       PAGE_SIZE, DMA_FROM_DEVICE);
2151 		rx_buffer->dma = 0;
2152 		if (rx_buffer->page)
2153 			__free_page(rx_buffer->page);
2154 		rx_buffer->page = NULL;
2155 	}
2156 
2157 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2158 	memset(rx_ring->rx_buffer_info, 0, size);
2159 
2160 	/* Zero out the descriptor ring */
2161 	memset(rx_ring->desc, 0, rx_ring->size);
2162 }
2163 
2164 /**
2165  * ixgbevf_clean_tx_ring - Free Tx Buffers
2166  * @tx_ring: ring to be cleaned
2167  **/
2168 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2169 {
2170 	struct ixgbevf_tx_buffer *tx_buffer_info;
2171 	unsigned long size;
2172 	unsigned int i;
2173 
2174 	if (!tx_ring->tx_buffer_info)
2175 		return;
2176 
2177 	/* Free all the Tx ring sk_buffs */
2178 	for (i = 0; i < tx_ring->count; i++) {
2179 		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2180 		ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
2181 	}
2182 
2183 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2184 	memset(tx_ring->tx_buffer_info, 0, size);
2185 
2186 	memset(tx_ring->desc, 0, tx_ring->size);
2187 }
2188 
2189 /**
2190  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2191  * @adapter: board private structure
2192  **/
2193 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2194 {
2195 	int i;
2196 
2197 	for (i = 0; i < adapter->num_rx_queues; i++)
2198 		ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2199 }
2200 
2201 /**
2202  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2203  * @adapter: board private structure
2204  **/
2205 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2206 {
2207 	int i;
2208 
2209 	for (i = 0; i < adapter->num_tx_queues; i++)
2210 		ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2211 }
2212 
2213 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2214 {
2215 	struct net_device *netdev = adapter->netdev;
2216 	struct ixgbe_hw *hw = &adapter->hw;
2217 	int i;
2218 
2219 	/* signal that we are down to the interrupt handler */
2220 	if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2221 		return; /* do nothing if already down */
2222 
2223 	/* disable all enabled Rx queues */
2224 	for (i = 0; i < adapter->num_rx_queues; i++)
2225 		ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2226 
2227 	usleep_range(10000, 20000);
2228 
2229 	netif_tx_stop_all_queues(netdev);
2230 
2231 	/* call carrier off first to avoid false dev_watchdog timeouts */
2232 	netif_carrier_off(netdev);
2233 	netif_tx_disable(netdev);
2234 
2235 	ixgbevf_irq_disable(adapter);
2236 
2237 	ixgbevf_napi_disable_all(adapter);
2238 
2239 	del_timer_sync(&adapter->service_timer);
2240 
2241 	/* disable transmits in the hardware now that interrupts are off */
2242 	for (i = 0; i < adapter->num_tx_queues; i++) {
2243 		u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2244 
2245 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2246 				IXGBE_TXDCTL_SWFLSH);
2247 	}
2248 
2249 	if (!pci_channel_offline(adapter->pdev))
2250 		ixgbevf_reset(adapter);
2251 
2252 	ixgbevf_clean_all_tx_rings(adapter);
2253 	ixgbevf_clean_all_rx_rings(adapter);
2254 }
2255 
2256 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2257 {
2258 	WARN_ON(in_interrupt());
2259 
2260 	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2261 		msleep(1);
2262 
2263 	ixgbevf_down(adapter);
2264 	ixgbevf_up(adapter);
2265 
2266 	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2267 }
2268 
2269 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2270 {
2271 	struct ixgbe_hw *hw = &adapter->hw;
2272 	struct net_device *netdev = adapter->netdev;
2273 
2274 	if (hw->mac.ops.reset_hw(hw)) {
2275 		hw_dbg(hw, "PF still resetting\n");
2276 	} else {
2277 		hw->mac.ops.init_hw(hw);
2278 		ixgbevf_negotiate_api(adapter);
2279 	}
2280 
2281 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2282 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
2283 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2284 	}
2285 
2286 	adapter->last_reset = jiffies;
2287 }
2288 
2289 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2290 					int vectors)
2291 {
2292 	int vector_threshold;
2293 
2294 	/* We'll want at least 2 (vector_threshold):
2295 	 * 1) TxQ[0] + RxQ[0] handler
2296 	 * 2) Other (Link Status Change, etc.)
2297 	 */
2298 	vector_threshold = MIN_MSIX_COUNT;
2299 
2300 	/* The more we get, the more we will assign to Tx/Rx Cleanup
2301 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2302 	 * Right now, we simply care about how many we'll get; we'll
2303 	 * set them up later while requesting irq's.
2304 	 */
2305 	vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2306 					vector_threshold, vectors);
2307 
2308 	if (vectors < 0) {
2309 		dev_err(&adapter->pdev->dev,
2310 			"Unable to allocate MSI-X interrupts\n");
2311 		kfree(adapter->msix_entries);
2312 		adapter->msix_entries = NULL;
2313 		return vectors;
2314 	}
2315 
2316 	/* Adjust for only the vectors we'll use, which is minimum
2317 	 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2318 	 * vectors we were allocated.
2319 	 */
2320 	adapter->num_msix_vectors = vectors;
2321 
2322 	return 0;
2323 }
2324 
2325 /**
2326  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2327  * @adapter: board private structure to initialize
2328  *
2329  * This is the top level queue allocation routine.  The order here is very
2330  * important, starting with the "most" number of features turned on at once,
2331  * and ending with the smallest set of features.  This way large combinations
2332  * can be allocated if they're turned on, and smaller combinations are the
2333  * fallthrough conditions.
2334  *
2335  **/
2336 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2337 {
2338 	struct ixgbe_hw *hw = &adapter->hw;
2339 	unsigned int def_q = 0;
2340 	unsigned int num_tcs = 0;
2341 	int err;
2342 
2343 	/* Start with base case */
2344 	adapter->num_rx_queues = 1;
2345 	adapter->num_tx_queues = 1;
2346 
2347 	spin_lock_bh(&adapter->mbx_lock);
2348 
2349 	/* fetch queue configuration from the PF */
2350 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2351 
2352 	spin_unlock_bh(&adapter->mbx_lock);
2353 
2354 	if (err)
2355 		return;
2356 
2357 	/* we need as many queues as traffic classes */
2358 	if (num_tcs > 1) {
2359 		adapter->num_rx_queues = num_tcs;
2360 	} else {
2361 		u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2362 
2363 		switch (hw->api_version) {
2364 		case ixgbe_mbox_api_11:
2365 		case ixgbe_mbox_api_12:
2366 			adapter->num_rx_queues = rss;
2367 			adapter->num_tx_queues = rss;
2368 		default:
2369 			break;
2370 		}
2371 	}
2372 }
2373 
2374 /**
2375  * ixgbevf_alloc_queues - Allocate memory for all rings
2376  * @adapter: board private structure to initialize
2377  *
2378  * We allocate one ring per queue at run-time since we don't know the
2379  * number of queues at compile-time.  The polling_netdev array is
2380  * intended for Multiqueue, but should work fine with a single queue.
2381  **/
2382 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
2383 {
2384 	struct ixgbevf_ring *ring;
2385 	int rx = 0, tx = 0;
2386 
2387 	for (; tx < adapter->num_tx_queues; tx++) {
2388 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2389 		if (!ring)
2390 			goto err_allocation;
2391 
2392 		ring->dev = &adapter->pdev->dev;
2393 		ring->netdev = adapter->netdev;
2394 		ring->count = adapter->tx_ring_count;
2395 		ring->queue_index = tx;
2396 		ring->reg_idx = tx;
2397 
2398 		adapter->tx_ring[tx] = ring;
2399 	}
2400 
2401 	for (; rx < adapter->num_rx_queues; rx++) {
2402 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2403 		if (!ring)
2404 			goto err_allocation;
2405 
2406 		ring->dev = &adapter->pdev->dev;
2407 		ring->netdev = adapter->netdev;
2408 
2409 		ring->count = adapter->rx_ring_count;
2410 		ring->queue_index = rx;
2411 		ring->reg_idx = rx;
2412 
2413 		adapter->rx_ring[rx] = ring;
2414 	}
2415 
2416 	return 0;
2417 
2418 err_allocation:
2419 	while (tx) {
2420 		kfree(adapter->tx_ring[--tx]);
2421 		adapter->tx_ring[tx] = NULL;
2422 	}
2423 
2424 	while (rx) {
2425 		kfree(adapter->rx_ring[--rx]);
2426 		adapter->rx_ring[rx] = NULL;
2427 	}
2428 	return -ENOMEM;
2429 }
2430 
2431 /**
2432  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2433  * @adapter: board private structure to initialize
2434  *
2435  * Attempt to configure the interrupts using the best available
2436  * capabilities of the hardware and the kernel.
2437  **/
2438 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2439 {
2440 	struct net_device *netdev = adapter->netdev;
2441 	int err;
2442 	int vector, v_budget;
2443 
2444 	/* It's easy to be greedy for MSI-X vectors, but it really
2445 	 * doesn't do us much good if we have a lot more vectors
2446 	 * than CPU's.  So let's be conservative and only ask for
2447 	 * (roughly) the same number of vectors as there are CPU's.
2448 	 * The default is to use pairs of vectors.
2449 	 */
2450 	v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2451 	v_budget = min_t(int, v_budget, num_online_cpus());
2452 	v_budget += NON_Q_VECTORS;
2453 
2454 	/* A failure in MSI-X entry allocation isn't fatal, but it does
2455 	 * mean we disable MSI-X capabilities of the adapter.
2456 	 */
2457 	adapter->msix_entries = kcalloc(v_budget,
2458 					sizeof(struct msix_entry), GFP_KERNEL);
2459 	if (!adapter->msix_entries)
2460 		return -ENOMEM;
2461 
2462 	for (vector = 0; vector < v_budget; vector++)
2463 		adapter->msix_entries[vector].entry = vector;
2464 
2465 	err = ixgbevf_acquire_msix_vectors(adapter, v_budget);
2466 	if (err)
2467 		return err;
2468 
2469 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
2470 	if (err)
2471 		return err;
2472 
2473 	return netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
2474 }
2475 
2476 /**
2477  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2478  * @adapter: board private structure to initialize
2479  *
2480  * We allocate one q_vector per queue interrupt.  If allocation fails we
2481  * return -ENOMEM.
2482  **/
2483 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2484 {
2485 	int q_idx, num_q_vectors;
2486 	struct ixgbevf_q_vector *q_vector;
2487 
2488 	num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2489 
2490 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2491 		q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2492 		if (!q_vector)
2493 			goto err_out;
2494 		q_vector->adapter = adapter;
2495 		q_vector->v_idx = q_idx;
2496 		netif_napi_add(adapter->netdev, &q_vector->napi,
2497 			       ixgbevf_poll, 64);
2498 		adapter->q_vector[q_idx] = q_vector;
2499 	}
2500 
2501 	return 0;
2502 
2503 err_out:
2504 	while (q_idx) {
2505 		q_idx--;
2506 		q_vector = adapter->q_vector[q_idx];
2507 #ifdef CONFIG_NET_RX_BUSY_POLL
2508 		napi_hash_del(&q_vector->napi);
2509 #endif
2510 		netif_napi_del(&q_vector->napi);
2511 		kfree(q_vector);
2512 		adapter->q_vector[q_idx] = NULL;
2513 	}
2514 	return -ENOMEM;
2515 }
2516 
2517 /**
2518  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2519  * @adapter: board private structure to initialize
2520  *
2521  * This function frees the memory allocated to the q_vectors.  In addition if
2522  * NAPI is enabled it will delete any references to the NAPI struct prior
2523  * to freeing the q_vector.
2524  **/
2525 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2526 {
2527 	int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2528 
2529 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2530 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2531 
2532 		adapter->q_vector[q_idx] = NULL;
2533 #ifdef CONFIG_NET_RX_BUSY_POLL
2534 		napi_hash_del(&q_vector->napi);
2535 #endif
2536 		netif_napi_del(&q_vector->napi);
2537 		kfree(q_vector);
2538 	}
2539 }
2540 
2541 /**
2542  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2543  * @adapter: board private structure
2544  *
2545  **/
2546 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2547 {
2548 	pci_disable_msix(adapter->pdev);
2549 	kfree(adapter->msix_entries);
2550 	adapter->msix_entries = NULL;
2551 }
2552 
2553 /**
2554  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2555  * @adapter: board private structure to initialize
2556  *
2557  **/
2558 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2559 {
2560 	int err;
2561 
2562 	/* Number of supported queues */
2563 	ixgbevf_set_num_queues(adapter);
2564 
2565 	err = ixgbevf_set_interrupt_capability(adapter);
2566 	if (err) {
2567 		hw_dbg(&adapter->hw,
2568 		       "Unable to setup interrupt capabilities\n");
2569 		goto err_set_interrupt;
2570 	}
2571 
2572 	err = ixgbevf_alloc_q_vectors(adapter);
2573 	if (err) {
2574 		hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2575 		goto err_alloc_q_vectors;
2576 	}
2577 
2578 	err = ixgbevf_alloc_queues(adapter);
2579 	if (err) {
2580 		pr_err("Unable to allocate memory for queues\n");
2581 		goto err_alloc_queues;
2582 	}
2583 
2584 	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n",
2585 	       (adapter->num_rx_queues > 1) ? "Enabled" :
2586 	       "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2587 
2588 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2589 
2590 	return 0;
2591 err_alloc_queues:
2592 	ixgbevf_free_q_vectors(adapter);
2593 err_alloc_q_vectors:
2594 	ixgbevf_reset_interrupt_capability(adapter);
2595 err_set_interrupt:
2596 	return err;
2597 }
2598 
2599 /**
2600  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2601  * @adapter: board private structure to clear interrupt scheme on
2602  *
2603  * We go through and clear interrupt specific resources and reset the structure
2604  * to pre-load conditions
2605  **/
2606 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2607 {
2608 	int i;
2609 
2610 	for (i = 0; i < adapter->num_tx_queues; i++) {
2611 		kfree(adapter->tx_ring[i]);
2612 		adapter->tx_ring[i] = NULL;
2613 	}
2614 	for (i = 0; i < adapter->num_rx_queues; i++) {
2615 		kfree(adapter->rx_ring[i]);
2616 		adapter->rx_ring[i] = NULL;
2617 	}
2618 
2619 	adapter->num_tx_queues = 0;
2620 	adapter->num_rx_queues = 0;
2621 
2622 	ixgbevf_free_q_vectors(adapter);
2623 	ixgbevf_reset_interrupt_capability(adapter);
2624 }
2625 
2626 /**
2627  * ixgbevf_sw_init - Initialize general software structures
2628  * @adapter: board private structure to initialize
2629  *
2630  * ixgbevf_sw_init initializes the Adapter private data structure.
2631  * Fields are initialized based on PCI device information and
2632  * OS network device settings (MTU size).
2633  **/
2634 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2635 {
2636 	struct ixgbe_hw *hw = &adapter->hw;
2637 	struct pci_dev *pdev = adapter->pdev;
2638 	struct net_device *netdev = adapter->netdev;
2639 	int err;
2640 
2641 	/* PCI config space info */
2642 	hw->vendor_id = pdev->vendor;
2643 	hw->device_id = pdev->device;
2644 	hw->revision_id = pdev->revision;
2645 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2646 	hw->subsystem_device_id = pdev->subsystem_device;
2647 
2648 	hw->mbx.ops.init_params(hw);
2649 
2650 	/* assume legacy case in which PF would only give VF 2 queues */
2651 	hw->mac.max_tx_queues = 2;
2652 	hw->mac.max_rx_queues = 2;
2653 
2654 	/* lock to protect mailbox accesses */
2655 	spin_lock_init(&adapter->mbx_lock);
2656 
2657 	err = hw->mac.ops.reset_hw(hw);
2658 	if (err) {
2659 		dev_info(&pdev->dev,
2660 			 "PF still in reset state.  Is the PF interface up?\n");
2661 	} else {
2662 		err = hw->mac.ops.init_hw(hw);
2663 		if (err) {
2664 			pr_err("init_shared_code failed: %d\n", err);
2665 			goto out;
2666 		}
2667 		ixgbevf_negotiate_api(adapter);
2668 		err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2669 		if (err)
2670 			dev_info(&pdev->dev, "Error reading MAC address\n");
2671 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
2672 			dev_info(&pdev->dev,
2673 				 "MAC address not assigned by administrator.\n");
2674 		ether_addr_copy(netdev->dev_addr, hw->mac.addr);
2675 	}
2676 
2677 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2678 		dev_info(&pdev->dev, "Assigning random MAC address\n");
2679 		eth_hw_addr_random(netdev);
2680 		ether_addr_copy(hw->mac.addr, netdev->dev_addr);
2681 		ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
2682 	}
2683 
2684 	/* Enable dynamic interrupt throttling rates */
2685 	adapter->rx_itr_setting = 1;
2686 	adapter->tx_itr_setting = 1;
2687 
2688 	/* set default ring sizes */
2689 	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2690 	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2691 
2692 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2693 	return 0;
2694 
2695 out:
2696 	return err;
2697 }
2698 
2699 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
2700 	{							\
2701 		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
2702 		if (current_counter < last_counter)		\
2703 			counter += 0x100000000LL;		\
2704 		last_counter = current_counter;			\
2705 		counter &= 0xFFFFFFFF00000000LL;		\
2706 		counter |= current_counter;			\
2707 	}
2708 
2709 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2710 	{								 \
2711 		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
2712 		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
2713 		u64 current_counter = (current_counter_msb << 32) |	 \
2714 			current_counter_lsb;				 \
2715 		if (current_counter < last_counter)			 \
2716 			counter += 0x1000000000LL;			 \
2717 		last_counter = current_counter;				 \
2718 		counter &= 0xFFFFFFF000000000LL;			 \
2719 		counter |= current_counter;				 \
2720 	}
2721 /**
2722  * ixgbevf_update_stats - Update the board statistics counters.
2723  * @adapter: board private structure
2724  **/
2725 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2726 {
2727 	struct ixgbe_hw *hw = &adapter->hw;
2728 	int i;
2729 
2730 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2731 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2732 		return;
2733 
2734 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2735 				adapter->stats.vfgprc);
2736 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2737 				adapter->stats.vfgptc);
2738 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2739 				adapter->stats.last_vfgorc,
2740 				adapter->stats.vfgorc);
2741 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2742 				adapter->stats.last_vfgotc,
2743 				adapter->stats.vfgotc);
2744 	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2745 				adapter->stats.vfmprc);
2746 
2747 	for (i = 0;  i  < adapter->num_rx_queues;  i++) {
2748 		adapter->hw_csum_rx_error +=
2749 			adapter->rx_ring[i]->hw_csum_rx_error;
2750 		adapter->rx_ring[i]->hw_csum_rx_error = 0;
2751 	}
2752 }
2753 
2754 /**
2755  * ixgbevf_service_timer - Timer Call-back
2756  * @data: pointer to adapter cast into an unsigned long
2757  **/
2758 static void ixgbevf_service_timer(unsigned long data)
2759 {
2760 	struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2761 
2762 	/* Reset the timer */
2763 	mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
2764 
2765 	ixgbevf_service_event_schedule(adapter);
2766 }
2767 
2768 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
2769 {
2770 	if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state))
2771 		return;
2772 
2773 	/* If we're already down or resetting, just bail */
2774 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2775 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2776 		return;
2777 
2778 	adapter->tx_timeout_count++;
2779 
2780 	ixgbevf_reinit_locked(adapter);
2781 }
2782 
2783 /**
2784  * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
2785  * @adapter: pointer to the device adapter structure
2786  *
2787  * This function serves two purposes.  First it strobes the interrupt lines
2788  * in order to make certain interrupts are occurring.  Secondly it sets the
2789  * bits needed to check for TX hangs.  As a result we should immediately
2790  * determine if a hang has occurred.
2791  **/
2792 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
2793 {
2794 	struct ixgbe_hw *hw = &adapter->hw;
2795 	u32 eics = 0;
2796 	int i;
2797 
2798 	/* If we're down or resetting, just bail */
2799 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2800 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2801 		return;
2802 
2803 	/* Force detection of hung controller */
2804 	if (netif_carrier_ok(adapter->netdev)) {
2805 		for (i = 0; i < adapter->num_tx_queues; i++)
2806 			set_check_for_tx_hang(adapter->tx_ring[i]);
2807 	}
2808 
2809 	/* get one bit for every active Tx/Rx interrupt vector */
2810 	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2811 		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2812 
2813 		if (qv->rx.ring || qv->tx.ring)
2814 			eics |= BIT(i);
2815 	}
2816 
2817 	/* Cause software interrupt to ensure rings are cleaned */
2818 	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
2819 }
2820 
2821 /**
2822  * ixgbevf_watchdog_update_link - update the link status
2823  * @adapter: pointer to the device adapter structure
2824  **/
2825 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
2826 {
2827 	struct ixgbe_hw *hw = &adapter->hw;
2828 	u32 link_speed = adapter->link_speed;
2829 	bool link_up = adapter->link_up;
2830 	s32 err;
2831 
2832 	spin_lock_bh(&adapter->mbx_lock);
2833 
2834 	err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
2835 
2836 	spin_unlock_bh(&adapter->mbx_lock);
2837 
2838 	/* if check for link returns error we will need to reset */
2839 	if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
2840 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
2841 		link_up = false;
2842 	}
2843 
2844 	adapter->link_up = link_up;
2845 	adapter->link_speed = link_speed;
2846 }
2847 
2848 /**
2849  * ixgbevf_watchdog_link_is_up - update netif_carrier status and
2850  *				 print link up message
2851  * @adapter: pointer to the device adapter structure
2852  **/
2853 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
2854 {
2855 	struct net_device *netdev = adapter->netdev;
2856 
2857 	/* only continue if link was previously down */
2858 	if (netif_carrier_ok(netdev))
2859 		return;
2860 
2861 	dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
2862 		 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2863 		 "10 Gbps" :
2864 		 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
2865 		 "1 Gbps" :
2866 		 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
2867 		 "100 Mbps" :
2868 		 "unknown speed");
2869 
2870 	netif_carrier_on(netdev);
2871 }
2872 
2873 /**
2874  * ixgbevf_watchdog_link_is_down - update netif_carrier status and
2875  *				   print link down message
2876  * @adapter: pointer to the adapter structure
2877  **/
2878 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
2879 {
2880 	struct net_device *netdev = adapter->netdev;
2881 
2882 	adapter->link_speed = 0;
2883 
2884 	/* only continue if link was up previously */
2885 	if (!netif_carrier_ok(netdev))
2886 		return;
2887 
2888 	dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2889 
2890 	netif_carrier_off(netdev);
2891 }
2892 
2893 /**
2894  * ixgbevf_watchdog_subtask - worker thread to bring link up
2895  * @work: pointer to work_struct containing our data
2896  **/
2897 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
2898 {
2899 	/* if interface is down do nothing */
2900 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2901 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2902 		return;
2903 
2904 	ixgbevf_watchdog_update_link(adapter);
2905 
2906 	if (adapter->link_up)
2907 		ixgbevf_watchdog_link_is_up(adapter);
2908 	else
2909 		ixgbevf_watchdog_link_is_down(adapter);
2910 
2911 	ixgbevf_update_stats(adapter);
2912 }
2913 
2914 /**
2915  * ixgbevf_service_task - manages and runs subtasks
2916  * @work: pointer to work_struct containing our data
2917  **/
2918 static void ixgbevf_service_task(struct work_struct *work)
2919 {
2920 	struct ixgbevf_adapter *adapter = container_of(work,
2921 						       struct ixgbevf_adapter,
2922 						       service_task);
2923 	struct ixgbe_hw *hw = &adapter->hw;
2924 
2925 	if (IXGBE_REMOVED(hw->hw_addr)) {
2926 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
2927 			rtnl_lock();
2928 			ixgbevf_down(adapter);
2929 			rtnl_unlock();
2930 		}
2931 		return;
2932 	}
2933 
2934 	ixgbevf_queue_reset_subtask(adapter);
2935 	ixgbevf_reset_subtask(adapter);
2936 	ixgbevf_watchdog_subtask(adapter);
2937 	ixgbevf_check_hang_subtask(adapter);
2938 
2939 	ixgbevf_service_event_complete(adapter);
2940 }
2941 
2942 /**
2943  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2944  * @tx_ring: Tx descriptor ring for a specific queue
2945  *
2946  * Free all transmit software resources
2947  **/
2948 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
2949 {
2950 	ixgbevf_clean_tx_ring(tx_ring);
2951 
2952 	vfree(tx_ring->tx_buffer_info);
2953 	tx_ring->tx_buffer_info = NULL;
2954 
2955 	/* if not set, then don't free */
2956 	if (!tx_ring->desc)
2957 		return;
2958 
2959 	dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
2960 			  tx_ring->dma);
2961 
2962 	tx_ring->desc = NULL;
2963 }
2964 
2965 /**
2966  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2967  * @adapter: board private structure
2968  *
2969  * Free all transmit software resources
2970  **/
2971 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2972 {
2973 	int i;
2974 
2975 	for (i = 0; i < adapter->num_tx_queues; i++)
2976 		if (adapter->tx_ring[i]->desc)
2977 			ixgbevf_free_tx_resources(adapter->tx_ring[i]);
2978 }
2979 
2980 /**
2981  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2982  * @tx_ring: Tx descriptor ring (for a specific queue) to setup
2983  *
2984  * Return 0 on success, negative on failure
2985  **/
2986 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
2987 {
2988 	int size;
2989 
2990 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2991 	tx_ring->tx_buffer_info = vzalloc(size);
2992 	if (!tx_ring->tx_buffer_info)
2993 		goto err;
2994 
2995 	/* round up to nearest 4K */
2996 	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2997 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2998 
2999 	tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
3000 					   &tx_ring->dma, GFP_KERNEL);
3001 	if (!tx_ring->desc)
3002 		goto err;
3003 
3004 	return 0;
3005 
3006 err:
3007 	vfree(tx_ring->tx_buffer_info);
3008 	tx_ring->tx_buffer_info = NULL;
3009 	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3010 	return -ENOMEM;
3011 }
3012 
3013 /**
3014  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3015  * @adapter: board private structure
3016  *
3017  * If this function returns with an error, then it's possible one or
3018  * more of the rings is populated (while the rest are not).  It is the
3019  * callers duty to clean those orphaned rings.
3020  *
3021  * Return 0 on success, negative on failure
3022  **/
3023 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3024 {
3025 	int i, err = 0;
3026 
3027 	for (i = 0; i < adapter->num_tx_queues; i++) {
3028 		err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3029 		if (!err)
3030 			continue;
3031 		hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3032 		break;
3033 	}
3034 
3035 	return err;
3036 }
3037 
3038 /**
3039  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3040  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3041  *
3042  * Returns 0 on success, negative on failure
3043  **/
3044 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring)
3045 {
3046 	int size;
3047 
3048 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3049 	rx_ring->rx_buffer_info = vzalloc(size);
3050 	if (!rx_ring->rx_buffer_info)
3051 		goto err;
3052 
3053 	/* Round up to nearest 4K */
3054 	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3055 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3056 
3057 	rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3058 					   &rx_ring->dma, GFP_KERNEL);
3059 
3060 	if (!rx_ring->desc)
3061 		goto err;
3062 
3063 	return 0;
3064 err:
3065 	vfree(rx_ring->rx_buffer_info);
3066 	rx_ring->rx_buffer_info = NULL;
3067 	dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3068 	return -ENOMEM;
3069 }
3070 
3071 /**
3072  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3073  * @adapter: board private structure
3074  *
3075  * If this function returns with an error, then it's possible one or
3076  * more of the rings is populated (while the rest are not).  It is the
3077  * callers duty to clean those orphaned rings.
3078  *
3079  * Return 0 on success, negative on failure
3080  **/
3081 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3082 {
3083 	int i, err = 0;
3084 
3085 	for (i = 0; i < adapter->num_rx_queues; i++) {
3086 		err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]);
3087 		if (!err)
3088 			continue;
3089 		hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3090 		break;
3091 	}
3092 	return err;
3093 }
3094 
3095 /**
3096  * ixgbevf_free_rx_resources - Free Rx Resources
3097  * @rx_ring: ring to clean the resources from
3098  *
3099  * Free all receive software resources
3100  **/
3101 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3102 {
3103 	ixgbevf_clean_rx_ring(rx_ring);
3104 
3105 	vfree(rx_ring->rx_buffer_info);
3106 	rx_ring->rx_buffer_info = NULL;
3107 
3108 	dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3109 			  rx_ring->dma);
3110 
3111 	rx_ring->desc = NULL;
3112 }
3113 
3114 /**
3115  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3116  * @adapter: board private structure
3117  *
3118  * Free all receive software resources
3119  **/
3120 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3121 {
3122 	int i;
3123 
3124 	for (i = 0; i < adapter->num_rx_queues; i++)
3125 		if (adapter->rx_ring[i]->desc)
3126 			ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3127 }
3128 
3129 /**
3130  * ixgbevf_open - Called when a network interface is made active
3131  * @netdev: network interface device structure
3132  *
3133  * Returns 0 on success, negative value on failure
3134  *
3135  * The open entry point is called when a network interface is made
3136  * active by the system (IFF_UP).  At this point all resources needed
3137  * for transmit and receive operations are allocated, the interrupt
3138  * handler is registered with the OS, the watchdog timer is started,
3139  * and the stack is notified that the interface is ready.
3140  **/
3141 int ixgbevf_open(struct net_device *netdev)
3142 {
3143 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3144 	struct ixgbe_hw *hw = &adapter->hw;
3145 	int err;
3146 
3147 	/* A previous failure to open the device because of a lack of
3148 	 * available MSIX vector resources may have reset the number
3149 	 * of msix vectors variable to zero.  The only way to recover
3150 	 * is to unload/reload the driver and hope that the system has
3151 	 * been able to recover some MSIX vector resources.
3152 	 */
3153 	if (!adapter->num_msix_vectors)
3154 		return -ENOMEM;
3155 
3156 	if (hw->adapter_stopped) {
3157 		ixgbevf_reset(adapter);
3158 		/* if adapter is still stopped then PF isn't up and
3159 		 * the VF can't start.
3160 		 */
3161 		if (hw->adapter_stopped) {
3162 			err = IXGBE_ERR_MBX;
3163 			pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3164 			goto err_setup_reset;
3165 		}
3166 	}
3167 
3168 	/* disallow open during test */
3169 	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3170 		return -EBUSY;
3171 
3172 	netif_carrier_off(netdev);
3173 
3174 	/* allocate transmit descriptors */
3175 	err = ixgbevf_setup_all_tx_resources(adapter);
3176 	if (err)
3177 		goto err_setup_tx;
3178 
3179 	/* allocate receive descriptors */
3180 	err = ixgbevf_setup_all_rx_resources(adapter);
3181 	if (err)
3182 		goto err_setup_rx;
3183 
3184 	ixgbevf_configure(adapter);
3185 
3186 	/* Map the Tx/Rx rings to the vectors we were allotted.
3187 	 * if request_irq will be called in this function map_rings
3188 	 * must be called *before* up_complete
3189 	 */
3190 	ixgbevf_map_rings_to_vectors(adapter);
3191 
3192 	err = ixgbevf_request_irq(adapter);
3193 	if (err)
3194 		goto err_req_irq;
3195 
3196 	ixgbevf_up_complete(adapter);
3197 
3198 	return 0;
3199 
3200 err_req_irq:
3201 	ixgbevf_down(adapter);
3202 err_setup_rx:
3203 	ixgbevf_free_all_rx_resources(adapter);
3204 err_setup_tx:
3205 	ixgbevf_free_all_tx_resources(adapter);
3206 	ixgbevf_reset(adapter);
3207 
3208 err_setup_reset:
3209 
3210 	return err;
3211 }
3212 
3213 /**
3214  * ixgbevf_close - Disables a network interface
3215  * @netdev: network interface device structure
3216  *
3217  * Returns 0, this is not allowed to fail
3218  *
3219  * The close entry point is called when an interface is de-activated
3220  * by the OS.  The hardware is still under the drivers control, but
3221  * needs to be disabled.  A global MAC reset is issued to stop the
3222  * hardware, and all transmit and receive resources are freed.
3223  **/
3224 int ixgbevf_close(struct net_device *netdev)
3225 {
3226 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3227 
3228 	ixgbevf_down(adapter);
3229 	ixgbevf_free_irq(adapter);
3230 
3231 	ixgbevf_free_all_tx_resources(adapter);
3232 	ixgbevf_free_all_rx_resources(adapter);
3233 
3234 	return 0;
3235 }
3236 
3237 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3238 {
3239 	struct net_device *dev = adapter->netdev;
3240 
3241 	if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED,
3242 				&adapter->state))
3243 		return;
3244 
3245 	/* if interface is down do nothing */
3246 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3247 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3248 		return;
3249 
3250 	/* Hardware has to reinitialize queues and interrupts to
3251 	 * match packet buffer alignment. Unfortunately, the
3252 	 * hardware is not flexible enough to do this dynamically.
3253 	 */
3254 	if (netif_running(dev))
3255 		ixgbevf_close(dev);
3256 
3257 	ixgbevf_clear_interrupt_scheme(adapter);
3258 	ixgbevf_init_interrupt_scheme(adapter);
3259 
3260 	if (netif_running(dev))
3261 		ixgbevf_open(dev);
3262 }
3263 
3264 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3265 				u32 vlan_macip_lens, u32 type_tucmd,
3266 				u32 mss_l4len_idx)
3267 {
3268 	struct ixgbe_adv_tx_context_desc *context_desc;
3269 	u16 i = tx_ring->next_to_use;
3270 
3271 	context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3272 
3273 	i++;
3274 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3275 
3276 	/* set bits to identify this as an advanced context descriptor */
3277 	type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3278 
3279 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
3280 	context_desc->seqnum_seed	= 0;
3281 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
3282 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
3283 }
3284 
3285 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3286 		       struct ixgbevf_tx_buffer *first,
3287 		       u8 *hdr_len)
3288 {
3289 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
3290 	struct sk_buff *skb = first->skb;
3291 	union {
3292 		struct iphdr *v4;
3293 		struct ipv6hdr *v6;
3294 		unsigned char *hdr;
3295 	} ip;
3296 	union {
3297 		struct tcphdr *tcp;
3298 		unsigned char *hdr;
3299 	} l4;
3300 	u32 paylen, l4_offset;
3301 	int err;
3302 
3303 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3304 		return 0;
3305 
3306 	if (!skb_is_gso(skb))
3307 		return 0;
3308 
3309 	err = skb_cow_head(skb, 0);
3310 	if (err < 0)
3311 		return err;
3312 
3313 	ip.hdr = skb_network_header(skb);
3314 	l4.hdr = skb_checksum_start(skb);
3315 
3316 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3317 	type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3318 
3319 	/* initialize outer IP header fields */
3320 	if (ip.v4->version == 4) {
3321 		/* IP header will have to cancel out any data that
3322 		 * is not a part of the outer IP header
3323 		 */
3324 		ip.v4->check = csum_fold(csum_add(lco_csum(skb),
3325 						  csum_unfold(l4.tcp->check)));
3326 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3327 
3328 		ip.v4->tot_len = 0;
3329 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3330 				   IXGBE_TX_FLAGS_CSUM |
3331 				   IXGBE_TX_FLAGS_IPV4;
3332 	} else {
3333 		ip.v6->payload_len = 0;
3334 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3335 				   IXGBE_TX_FLAGS_CSUM;
3336 	}
3337 
3338 	/* determine offset of inner transport header */
3339 	l4_offset = l4.hdr - skb->data;
3340 
3341 	/* compute length of segmentation header */
3342 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3343 
3344 	/* remove payload length from inner checksum */
3345 	paylen = skb->len - l4_offset;
3346 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
3347 
3348 	/* update gso size and bytecount with header size */
3349 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3350 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3351 
3352 	/* mss_l4len_id: use 1 as index for TSO */
3353 	mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT;
3354 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3355 	mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT);
3356 
3357 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3358 	vlan_macip_lens = l4.hdr - ip.hdr;
3359 	vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT;
3360 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3361 
3362 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3363 			    type_tucmd, mss_l4len_idx);
3364 
3365 	return 1;
3366 }
3367 
3368 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb)
3369 {
3370 	unsigned int offset = 0;
3371 
3372 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
3373 
3374 	return offset == skb_checksum_start_offset(skb);
3375 }
3376 
3377 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3378 			    struct ixgbevf_tx_buffer *first)
3379 {
3380 	struct sk_buff *skb = first->skb;
3381 	u32 vlan_macip_lens = 0;
3382 	u32 type_tucmd = 0;
3383 
3384 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3385 		goto no_csum;
3386 
3387 	switch (skb->csum_offset) {
3388 	case offsetof(struct tcphdr, check):
3389 		type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3390 		/* fall through */
3391 	case offsetof(struct udphdr, check):
3392 		break;
3393 	case offsetof(struct sctphdr, checksum):
3394 		/* validate that this is actually an SCTP request */
3395 		if (((first->protocol == htons(ETH_P_IP)) &&
3396 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
3397 		    ((first->protocol == htons(ETH_P_IPV6)) &&
3398 		     ixgbevf_ipv6_csum_is_sctp(skb))) {
3399 			type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3400 			break;
3401 		}
3402 		/* fall through */
3403 	default:
3404 		skb_checksum_help(skb);
3405 		goto no_csum;
3406 	}
3407 	/* update TX checksum flag */
3408 	first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3409 	vlan_macip_lens = skb_checksum_start_offset(skb) -
3410 			  skb_network_offset(skb);
3411 no_csum:
3412 	/* vlan_macip_lens: MACLEN, VLAN tag */
3413 	vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3414 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3415 
3416 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
3417 }
3418 
3419 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3420 {
3421 	/* set type for advanced descriptor with frame checksum insertion */
3422 	__le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3423 				      IXGBE_ADVTXD_DCMD_IFCS |
3424 				      IXGBE_ADVTXD_DCMD_DEXT);
3425 
3426 	/* set HW VLAN bit if VLAN is present */
3427 	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3428 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3429 
3430 	/* set segmentation enable bits for TSO/FSO */
3431 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3432 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3433 
3434 	return cmd_type;
3435 }
3436 
3437 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3438 				     u32 tx_flags, unsigned int paylen)
3439 {
3440 	__le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3441 
3442 	/* enable L4 checksum for TSO and TX checksum offload */
3443 	if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3444 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3445 
3446 	/* enble IPv4 checksum for TSO */
3447 	if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3448 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3449 
3450 	/* use index 1 context for TSO/FSO/FCOE */
3451 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3452 		olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT);
3453 
3454 	/* Check Context must be set if Tx switch is enabled, which it
3455 	 * always is for case where virtual functions are running
3456 	 */
3457 	olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3458 
3459 	tx_desc->read.olinfo_status = olinfo_status;
3460 }
3461 
3462 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3463 			   struct ixgbevf_tx_buffer *first,
3464 			   const u8 hdr_len)
3465 {
3466 	dma_addr_t dma;
3467 	struct sk_buff *skb = first->skb;
3468 	struct ixgbevf_tx_buffer *tx_buffer;
3469 	union ixgbe_adv_tx_desc *tx_desc;
3470 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
3471 	unsigned int data_len = skb->data_len;
3472 	unsigned int size = skb_headlen(skb);
3473 	unsigned int paylen = skb->len - hdr_len;
3474 	u32 tx_flags = first->tx_flags;
3475 	__le32 cmd_type;
3476 	u16 i = tx_ring->next_to_use;
3477 
3478 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3479 
3480 	ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen);
3481 	cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3482 
3483 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3484 	if (dma_mapping_error(tx_ring->dev, dma))
3485 		goto dma_error;
3486 
3487 	/* record length, and DMA address */
3488 	dma_unmap_len_set(first, len, size);
3489 	dma_unmap_addr_set(first, dma, dma);
3490 
3491 	tx_desc->read.buffer_addr = cpu_to_le64(dma);
3492 
3493 	for (;;) {
3494 		while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3495 			tx_desc->read.cmd_type_len =
3496 				cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3497 
3498 			i++;
3499 			tx_desc++;
3500 			if (i == tx_ring->count) {
3501 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3502 				i = 0;
3503 			}
3504 
3505 			dma += IXGBE_MAX_DATA_PER_TXD;
3506 			size -= IXGBE_MAX_DATA_PER_TXD;
3507 
3508 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
3509 			tx_desc->read.olinfo_status = 0;
3510 		}
3511 
3512 		if (likely(!data_len))
3513 			break;
3514 
3515 		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3516 
3517 		i++;
3518 		tx_desc++;
3519 		if (i == tx_ring->count) {
3520 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3521 			i = 0;
3522 		}
3523 
3524 		size = skb_frag_size(frag);
3525 		data_len -= size;
3526 
3527 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3528 				       DMA_TO_DEVICE);
3529 		if (dma_mapping_error(tx_ring->dev, dma))
3530 			goto dma_error;
3531 
3532 		tx_buffer = &tx_ring->tx_buffer_info[i];
3533 		dma_unmap_len_set(tx_buffer, len, size);
3534 		dma_unmap_addr_set(tx_buffer, dma, dma);
3535 
3536 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3537 		tx_desc->read.olinfo_status = 0;
3538 
3539 		frag++;
3540 	}
3541 
3542 	/* write last descriptor with RS and EOP bits */
3543 	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
3544 	tx_desc->read.cmd_type_len = cmd_type;
3545 
3546 	/* set the timestamp */
3547 	first->time_stamp = jiffies;
3548 
3549 	/* Force memory writes to complete before letting h/w know there
3550 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
3551 	 * memory model archs, such as IA-64).
3552 	 *
3553 	 * We also need this memory barrier (wmb) to make certain all of the
3554 	 * status bits have been updated before next_to_watch is written.
3555 	 */
3556 	wmb();
3557 
3558 	/* set next_to_watch value indicating a packet is present */
3559 	first->next_to_watch = tx_desc;
3560 
3561 	i++;
3562 	if (i == tx_ring->count)
3563 		i = 0;
3564 
3565 	tx_ring->next_to_use = i;
3566 
3567 	/* notify HW of packet */
3568 	ixgbevf_write_tail(tx_ring, i);
3569 
3570 	return;
3571 dma_error:
3572 	dev_err(tx_ring->dev, "TX DMA map failed\n");
3573 
3574 	/* clear dma mappings for failed tx_buffer_info map */
3575 	for (;;) {
3576 		tx_buffer = &tx_ring->tx_buffer_info[i];
3577 		ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer);
3578 		if (tx_buffer == first)
3579 			break;
3580 		if (i == 0)
3581 			i = tx_ring->count;
3582 		i--;
3583 	}
3584 
3585 	tx_ring->next_to_use = i;
3586 }
3587 
3588 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3589 {
3590 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3591 	/* Herbert's original patch had:
3592 	 *  smp_mb__after_netif_stop_queue();
3593 	 * but since that doesn't exist yet, just open code it.
3594 	 */
3595 	smp_mb();
3596 
3597 	/* We need to check again in a case another CPU has just
3598 	 * made room available.
3599 	 */
3600 	if (likely(ixgbevf_desc_unused(tx_ring) < size))
3601 		return -EBUSY;
3602 
3603 	/* A reprieve! - use start_queue because it doesn't call schedule */
3604 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3605 	++tx_ring->tx_stats.restart_queue;
3606 
3607 	return 0;
3608 }
3609 
3610 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3611 {
3612 	if (likely(ixgbevf_desc_unused(tx_ring) >= size))
3613 		return 0;
3614 	return __ixgbevf_maybe_stop_tx(tx_ring, size);
3615 }
3616 
3617 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3618 {
3619 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3620 	struct ixgbevf_tx_buffer *first;
3621 	struct ixgbevf_ring *tx_ring;
3622 	int tso;
3623 	u32 tx_flags = 0;
3624 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
3625 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3626 	unsigned short f;
3627 #endif
3628 	u8 hdr_len = 0;
3629 	u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
3630 
3631 	if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
3632 		dev_kfree_skb_any(skb);
3633 		return NETDEV_TX_OK;
3634 	}
3635 
3636 	tx_ring = adapter->tx_ring[skb->queue_mapping];
3637 
3638 	/* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
3639 	 *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
3640 	 *       + 2 desc gap to keep tail from touching head,
3641 	 *       + 1 desc for context descriptor,
3642 	 * otherwise try next time
3643 	 */
3644 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3645 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3646 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3647 #else
3648 	count += skb_shinfo(skb)->nr_frags;
3649 #endif
3650 	if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
3651 		tx_ring->tx_stats.tx_busy++;
3652 		return NETDEV_TX_BUSY;
3653 	}
3654 
3655 	/* record the location of the first descriptor for this packet */
3656 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
3657 	first->skb = skb;
3658 	first->bytecount = skb->len;
3659 	first->gso_segs = 1;
3660 
3661 	if (skb_vlan_tag_present(skb)) {
3662 		tx_flags |= skb_vlan_tag_get(skb);
3663 		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3664 		tx_flags |= IXGBE_TX_FLAGS_VLAN;
3665 	}
3666 
3667 	/* record initial flags and protocol */
3668 	first->tx_flags = tx_flags;
3669 	first->protocol = vlan_get_protocol(skb);
3670 
3671 	tso = ixgbevf_tso(tx_ring, first, &hdr_len);
3672 	if (tso < 0)
3673 		goto out_drop;
3674 	else if (!tso)
3675 		ixgbevf_tx_csum(tx_ring, first);
3676 
3677 	ixgbevf_tx_map(tx_ring, first, hdr_len);
3678 
3679 	ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
3680 
3681 	return NETDEV_TX_OK;
3682 
3683 out_drop:
3684 	dev_kfree_skb_any(first->skb);
3685 	first->skb = NULL;
3686 
3687 	return NETDEV_TX_OK;
3688 }
3689 
3690 /**
3691  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3692  * @netdev: network interface device structure
3693  * @p: pointer to an address structure
3694  *
3695  * Returns 0 on success, negative on failure
3696  **/
3697 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3698 {
3699 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3700 	struct ixgbe_hw *hw = &adapter->hw;
3701 	struct sockaddr *addr = p;
3702 	int err;
3703 
3704 	if (!is_valid_ether_addr(addr->sa_data))
3705 		return -EADDRNOTAVAIL;
3706 
3707 	spin_lock_bh(&adapter->mbx_lock);
3708 
3709 	err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0);
3710 
3711 	spin_unlock_bh(&adapter->mbx_lock);
3712 
3713 	if (err)
3714 		return -EPERM;
3715 
3716 	ether_addr_copy(hw->mac.addr, addr->sa_data);
3717 	ether_addr_copy(netdev->dev_addr, addr->sa_data);
3718 
3719 	return 0;
3720 }
3721 
3722 /**
3723  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3724  * @netdev: network interface device structure
3725  * @new_mtu: new value for maximum frame size
3726  *
3727  * Returns 0 on success, negative on failure
3728  **/
3729 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3730 {
3731 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3732 	struct ixgbe_hw *hw = &adapter->hw;
3733 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3734 	int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3735 
3736 	switch (adapter->hw.api_version) {
3737 	case ixgbe_mbox_api_11:
3738 	case ixgbe_mbox_api_12:
3739 		max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3740 		break;
3741 	default:
3742 		if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
3743 			max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3744 		break;
3745 	}
3746 
3747 	/* MTU < 68 is an error and causes problems on some kernels */
3748 	if ((new_mtu < 68) || (max_frame > max_possible_frame))
3749 		return -EINVAL;
3750 
3751 	hw_dbg(hw, "changing MTU from %d to %d\n",
3752 	       netdev->mtu, new_mtu);
3753 	/* must set new MTU before calling down or up */
3754 	netdev->mtu = new_mtu;
3755 
3756 	/* notify the PF of our intent to use this size of frame */
3757 	hw->mac.ops.set_rlpml(hw, max_frame);
3758 
3759 	return 0;
3760 }
3761 
3762 #ifdef CONFIG_NET_POLL_CONTROLLER
3763 /* Polling 'interrupt' - used by things like netconsole to send skbs
3764  * without having to re-enable interrupts. It's not called while
3765  * the interrupt routine is executing.
3766  */
3767 static void ixgbevf_netpoll(struct net_device *netdev)
3768 {
3769 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3770 	int i;
3771 
3772 	/* if interface is down do nothing */
3773 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
3774 		return;
3775 	for (i = 0; i < adapter->num_rx_queues; i++)
3776 		ixgbevf_msix_clean_rings(0, adapter->q_vector[i]);
3777 }
3778 #endif /* CONFIG_NET_POLL_CONTROLLER */
3779 
3780 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
3781 {
3782 	struct net_device *netdev = pci_get_drvdata(pdev);
3783 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3784 #ifdef CONFIG_PM
3785 	int retval = 0;
3786 #endif
3787 
3788 	netif_device_detach(netdev);
3789 
3790 	if (netif_running(netdev)) {
3791 		rtnl_lock();
3792 		ixgbevf_down(adapter);
3793 		ixgbevf_free_irq(adapter);
3794 		ixgbevf_free_all_tx_resources(adapter);
3795 		ixgbevf_free_all_rx_resources(adapter);
3796 		rtnl_unlock();
3797 	}
3798 
3799 	ixgbevf_clear_interrupt_scheme(adapter);
3800 
3801 #ifdef CONFIG_PM
3802 	retval = pci_save_state(pdev);
3803 	if (retval)
3804 		return retval;
3805 
3806 #endif
3807 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
3808 		pci_disable_device(pdev);
3809 
3810 	return 0;
3811 }
3812 
3813 #ifdef CONFIG_PM
3814 static int ixgbevf_resume(struct pci_dev *pdev)
3815 {
3816 	struct net_device *netdev = pci_get_drvdata(pdev);
3817 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3818 	u32 err;
3819 
3820 	pci_restore_state(pdev);
3821 	/* pci_restore_state clears dev->state_saved so call
3822 	 * pci_save_state to restore it.
3823 	 */
3824 	pci_save_state(pdev);
3825 
3826 	err = pci_enable_device_mem(pdev);
3827 	if (err) {
3828 		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
3829 		return err;
3830 	}
3831 	smp_mb__before_atomic();
3832 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
3833 	pci_set_master(pdev);
3834 
3835 	ixgbevf_reset(adapter);
3836 
3837 	rtnl_lock();
3838 	err = ixgbevf_init_interrupt_scheme(adapter);
3839 	rtnl_unlock();
3840 	if (err) {
3841 		dev_err(&pdev->dev, "Cannot initialize interrupts\n");
3842 		return err;
3843 	}
3844 
3845 	if (netif_running(netdev)) {
3846 		err = ixgbevf_open(netdev);
3847 		if (err)
3848 			return err;
3849 	}
3850 
3851 	netif_device_attach(netdev);
3852 
3853 	return err;
3854 }
3855 
3856 #endif /* CONFIG_PM */
3857 static void ixgbevf_shutdown(struct pci_dev *pdev)
3858 {
3859 	ixgbevf_suspend(pdev, PMSG_SUSPEND);
3860 }
3861 
3862 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3863 						struct rtnl_link_stats64 *stats)
3864 {
3865 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3866 	unsigned int start;
3867 	u64 bytes, packets;
3868 	const struct ixgbevf_ring *ring;
3869 	int i;
3870 
3871 	ixgbevf_update_stats(adapter);
3872 
3873 	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3874 
3875 	for (i = 0; i < adapter->num_rx_queues; i++) {
3876 		ring = adapter->rx_ring[i];
3877 		do {
3878 			start = u64_stats_fetch_begin_irq(&ring->syncp);
3879 			bytes = ring->stats.bytes;
3880 			packets = ring->stats.packets;
3881 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3882 		stats->rx_bytes += bytes;
3883 		stats->rx_packets += packets;
3884 	}
3885 
3886 	for (i = 0; i < adapter->num_tx_queues; i++) {
3887 		ring = adapter->tx_ring[i];
3888 		do {
3889 			start = u64_stats_fetch_begin_irq(&ring->syncp);
3890 			bytes = ring->stats.bytes;
3891 			packets = ring->stats.packets;
3892 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3893 		stats->tx_bytes += bytes;
3894 		stats->tx_packets += packets;
3895 	}
3896 
3897 	return stats;
3898 }
3899 
3900 #define IXGBEVF_MAX_MAC_HDR_LEN		127
3901 #define IXGBEVF_MAX_NETWORK_HDR_LEN	511
3902 
3903 static netdev_features_t
3904 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev,
3905 		       netdev_features_t features)
3906 {
3907 	unsigned int network_hdr_len, mac_hdr_len;
3908 
3909 	/* Make certain the headers can be described by a context descriptor */
3910 	mac_hdr_len = skb_network_header(skb) - skb->data;
3911 	if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN))
3912 		return features & ~(NETIF_F_HW_CSUM |
3913 				    NETIF_F_SCTP_CRC |
3914 				    NETIF_F_HW_VLAN_CTAG_TX |
3915 				    NETIF_F_TSO |
3916 				    NETIF_F_TSO6);
3917 
3918 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
3919 	if (unlikely(network_hdr_len >  IXGBEVF_MAX_NETWORK_HDR_LEN))
3920 		return features & ~(NETIF_F_HW_CSUM |
3921 				    NETIF_F_SCTP_CRC |
3922 				    NETIF_F_TSO |
3923 				    NETIF_F_TSO6);
3924 
3925 	/* We can only support IPV4 TSO in tunnels if we can mangle the
3926 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
3927 	 */
3928 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
3929 		features &= ~NETIF_F_TSO;
3930 
3931 	return features;
3932 }
3933 
3934 static const struct net_device_ops ixgbevf_netdev_ops = {
3935 	.ndo_open		= ixgbevf_open,
3936 	.ndo_stop		= ixgbevf_close,
3937 	.ndo_start_xmit		= ixgbevf_xmit_frame,
3938 	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
3939 	.ndo_get_stats64	= ixgbevf_get_stats,
3940 	.ndo_validate_addr	= eth_validate_addr,
3941 	.ndo_set_mac_address	= ixgbevf_set_mac,
3942 	.ndo_change_mtu		= ixgbevf_change_mtu,
3943 	.ndo_tx_timeout		= ixgbevf_tx_timeout,
3944 	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
3945 	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
3946 #ifdef CONFIG_NET_RX_BUSY_POLL
3947 	.ndo_busy_poll		= ixgbevf_busy_poll_recv,
3948 #endif
3949 #ifdef CONFIG_NET_POLL_CONTROLLER
3950 	.ndo_poll_controller	= ixgbevf_netpoll,
3951 #endif
3952 	.ndo_features_check	= ixgbevf_features_check,
3953 };
3954 
3955 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3956 {
3957 	dev->netdev_ops = &ixgbevf_netdev_ops;
3958 	ixgbevf_set_ethtool_ops(dev);
3959 	dev->watchdog_timeo = 5 * HZ;
3960 }
3961 
3962 /**
3963  * ixgbevf_probe - Device Initialization Routine
3964  * @pdev: PCI device information struct
3965  * @ent: entry in ixgbevf_pci_tbl
3966  *
3967  * Returns 0 on success, negative on failure
3968  *
3969  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3970  * The OS initialization, configuring of the adapter private structure,
3971  * and a hardware reset occur.
3972  **/
3973 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3974 {
3975 	struct net_device *netdev;
3976 	struct ixgbevf_adapter *adapter = NULL;
3977 	struct ixgbe_hw *hw = NULL;
3978 	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3979 	int err, pci_using_dac;
3980 	bool disable_dev = false;
3981 
3982 	err = pci_enable_device(pdev);
3983 	if (err)
3984 		return err;
3985 
3986 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3987 		pci_using_dac = 1;
3988 	} else {
3989 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3990 		if (err) {
3991 			dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
3992 			goto err_dma;
3993 		}
3994 		pci_using_dac = 0;
3995 	}
3996 
3997 	err = pci_request_regions(pdev, ixgbevf_driver_name);
3998 	if (err) {
3999 		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
4000 		goto err_pci_reg;
4001 	}
4002 
4003 	pci_set_master(pdev);
4004 
4005 	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
4006 				   MAX_TX_QUEUES);
4007 	if (!netdev) {
4008 		err = -ENOMEM;
4009 		goto err_alloc_etherdev;
4010 	}
4011 
4012 	SET_NETDEV_DEV(netdev, &pdev->dev);
4013 
4014 	adapter = netdev_priv(netdev);
4015 
4016 	adapter->netdev = netdev;
4017 	adapter->pdev = pdev;
4018 	hw = &adapter->hw;
4019 	hw->back = adapter;
4020 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4021 
4022 	/* call save state here in standalone driver because it relies on
4023 	 * adapter struct to exist, and needs to call netdev_priv
4024 	 */
4025 	pci_save_state(pdev);
4026 
4027 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4028 			      pci_resource_len(pdev, 0));
4029 	adapter->io_addr = hw->hw_addr;
4030 	if (!hw->hw_addr) {
4031 		err = -EIO;
4032 		goto err_ioremap;
4033 	}
4034 
4035 	ixgbevf_assign_netdev_ops(netdev);
4036 
4037 	/* Setup HW API */
4038 	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
4039 	hw->mac.type  = ii->mac;
4040 
4041 	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
4042 	       sizeof(struct ixgbe_mbx_operations));
4043 
4044 	/* setup the private structure */
4045 	err = ixgbevf_sw_init(adapter);
4046 	if (err)
4047 		goto err_sw_init;
4048 
4049 	/* The HW MAC address was set and/or determined in sw_init */
4050 	if (!is_valid_ether_addr(netdev->dev_addr)) {
4051 		pr_err("invalid MAC address\n");
4052 		err = -EIO;
4053 		goto err_sw_init;
4054 	}
4055 
4056 	netdev->hw_features = NETIF_F_SG |
4057 			      NETIF_F_TSO |
4058 			      NETIF_F_TSO6 |
4059 			      NETIF_F_RXCSUM |
4060 			      NETIF_F_HW_CSUM |
4061 			      NETIF_F_SCTP_CRC;
4062 
4063 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
4064 				      NETIF_F_GSO_GRE_CSUM | \
4065 				      NETIF_F_GSO_IPXIP4 | \
4066 				      NETIF_F_GSO_IPXIP6 | \
4067 				      NETIF_F_GSO_UDP_TUNNEL | \
4068 				      NETIF_F_GSO_UDP_TUNNEL_CSUM)
4069 
4070 	netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES;
4071 	netdev->hw_features |= NETIF_F_GSO_PARTIAL |
4072 			       IXGBEVF_GSO_PARTIAL_FEATURES;
4073 
4074 	netdev->features = netdev->hw_features;
4075 
4076 	if (pci_using_dac)
4077 		netdev->features |= NETIF_F_HIGHDMA;
4078 
4079 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
4080 	netdev->mpls_features |= NETIF_F_HW_CSUM;
4081 	netdev->hw_enc_features |= netdev->vlan_features;
4082 
4083 	/* set this bit last since it cannot be part of vlan_features */
4084 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4085 			    NETIF_F_HW_VLAN_CTAG_RX |
4086 			    NETIF_F_HW_VLAN_CTAG_TX;
4087 
4088 	netdev->priv_flags |= IFF_UNICAST_FLT;
4089 
4090 	if (IXGBE_REMOVED(hw->hw_addr)) {
4091 		err = -EIO;
4092 		goto err_sw_init;
4093 	}
4094 
4095 	setup_timer(&adapter->service_timer, &ixgbevf_service_timer,
4096 		    (unsigned long)adapter);
4097 
4098 	INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4099 	set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4100 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4101 
4102 	err = ixgbevf_init_interrupt_scheme(adapter);
4103 	if (err)
4104 		goto err_sw_init;
4105 
4106 	strcpy(netdev->name, "eth%d");
4107 
4108 	err = register_netdev(netdev);
4109 	if (err)
4110 		goto err_register;
4111 
4112 	pci_set_drvdata(pdev, netdev);
4113 	netif_carrier_off(netdev);
4114 
4115 	ixgbevf_init_last_counter_stats(adapter);
4116 
4117 	/* print the VF info */
4118 	dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4119 	dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4120 
4121 	switch (hw->mac.type) {
4122 	case ixgbe_mac_X550_vf:
4123 		dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4124 		break;
4125 	case ixgbe_mac_X540_vf:
4126 		dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4127 		break;
4128 	case ixgbe_mac_82599_vf:
4129 	default:
4130 		dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4131 		break;
4132 	}
4133 
4134 	return 0;
4135 
4136 err_register:
4137 	ixgbevf_clear_interrupt_scheme(adapter);
4138 err_sw_init:
4139 	ixgbevf_reset_interrupt_capability(adapter);
4140 	iounmap(adapter->io_addr);
4141 err_ioremap:
4142 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4143 	free_netdev(netdev);
4144 err_alloc_etherdev:
4145 	pci_release_regions(pdev);
4146 err_pci_reg:
4147 err_dma:
4148 	if (!adapter || disable_dev)
4149 		pci_disable_device(pdev);
4150 	return err;
4151 }
4152 
4153 /**
4154  * ixgbevf_remove - Device Removal Routine
4155  * @pdev: PCI device information struct
4156  *
4157  * ixgbevf_remove is called by the PCI subsystem to alert the driver
4158  * that it should release a PCI device.  The could be caused by a
4159  * Hot-Plug event, or because the driver is going to be removed from
4160  * memory.
4161  **/
4162 static void ixgbevf_remove(struct pci_dev *pdev)
4163 {
4164 	struct net_device *netdev = pci_get_drvdata(pdev);
4165 	struct ixgbevf_adapter *adapter;
4166 	bool disable_dev;
4167 
4168 	if (!netdev)
4169 		return;
4170 
4171 	adapter = netdev_priv(netdev);
4172 
4173 	set_bit(__IXGBEVF_REMOVING, &adapter->state);
4174 	cancel_work_sync(&adapter->service_task);
4175 
4176 	if (netdev->reg_state == NETREG_REGISTERED)
4177 		unregister_netdev(netdev);
4178 
4179 	ixgbevf_clear_interrupt_scheme(adapter);
4180 	ixgbevf_reset_interrupt_capability(adapter);
4181 
4182 	iounmap(adapter->io_addr);
4183 	pci_release_regions(pdev);
4184 
4185 	hw_dbg(&adapter->hw, "Remove complete\n");
4186 
4187 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4188 	free_netdev(netdev);
4189 
4190 	if (disable_dev)
4191 		pci_disable_device(pdev);
4192 }
4193 
4194 /**
4195  * ixgbevf_io_error_detected - called when PCI error is detected
4196  * @pdev: Pointer to PCI device
4197  * @state: The current pci connection state
4198  *
4199  * This function is called after a PCI bus error affecting
4200  * this device has been detected.
4201  **/
4202 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4203 						  pci_channel_state_t state)
4204 {
4205 	struct net_device *netdev = pci_get_drvdata(pdev);
4206 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4207 
4208 	if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4209 		return PCI_ERS_RESULT_DISCONNECT;
4210 
4211 	rtnl_lock();
4212 	netif_device_detach(netdev);
4213 
4214 	if (state == pci_channel_io_perm_failure) {
4215 		rtnl_unlock();
4216 		return PCI_ERS_RESULT_DISCONNECT;
4217 	}
4218 
4219 	if (netif_running(netdev))
4220 		ixgbevf_down(adapter);
4221 
4222 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4223 		pci_disable_device(pdev);
4224 	rtnl_unlock();
4225 
4226 	/* Request a slot slot reset. */
4227 	return PCI_ERS_RESULT_NEED_RESET;
4228 }
4229 
4230 /**
4231  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4232  * @pdev: Pointer to PCI device
4233  *
4234  * Restart the card from scratch, as if from a cold-boot. Implementation
4235  * resembles the first-half of the ixgbevf_resume routine.
4236  **/
4237 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4238 {
4239 	struct net_device *netdev = pci_get_drvdata(pdev);
4240 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4241 
4242 	if (pci_enable_device_mem(pdev)) {
4243 		dev_err(&pdev->dev,
4244 			"Cannot re-enable PCI device after reset.\n");
4245 		return PCI_ERS_RESULT_DISCONNECT;
4246 	}
4247 
4248 	smp_mb__before_atomic();
4249 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4250 	pci_set_master(pdev);
4251 
4252 	ixgbevf_reset(adapter);
4253 
4254 	return PCI_ERS_RESULT_RECOVERED;
4255 }
4256 
4257 /**
4258  * ixgbevf_io_resume - called when traffic can start flowing again.
4259  * @pdev: Pointer to PCI device
4260  *
4261  * This callback is called when the error recovery driver tells us that
4262  * its OK to resume normal operation. Implementation resembles the
4263  * second-half of the ixgbevf_resume routine.
4264  **/
4265 static void ixgbevf_io_resume(struct pci_dev *pdev)
4266 {
4267 	struct net_device *netdev = pci_get_drvdata(pdev);
4268 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4269 
4270 	if (netif_running(netdev))
4271 		ixgbevf_up(adapter);
4272 
4273 	netif_device_attach(netdev);
4274 }
4275 
4276 /* PCI Error Recovery (ERS) */
4277 static const struct pci_error_handlers ixgbevf_err_handler = {
4278 	.error_detected = ixgbevf_io_error_detected,
4279 	.slot_reset = ixgbevf_io_slot_reset,
4280 	.resume = ixgbevf_io_resume,
4281 };
4282 
4283 static struct pci_driver ixgbevf_driver = {
4284 	.name		= ixgbevf_driver_name,
4285 	.id_table	= ixgbevf_pci_tbl,
4286 	.probe		= ixgbevf_probe,
4287 	.remove		= ixgbevf_remove,
4288 #ifdef CONFIG_PM
4289 	/* Power Management Hooks */
4290 	.suspend	= ixgbevf_suspend,
4291 	.resume		= ixgbevf_resume,
4292 #endif
4293 	.shutdown	= ixgbevf_shutdown,
4294 	.err_handler	= &ixgbevf_err_handler
4295 };
4296 
4297 /**
4298  * ixgbevf_init_module - Driver Registration Routine
4299  *
4300  * ixgbevf_init_module is the first routine called when the driver is
4301  * loaded. All it does is register with the PCI subsystem.
4302  **/
4303 static int __init ixgbevf_init_module(void)
4304 {
4305 	pr_info("%s - version %s\n", ixgbevf_driver_string,
4306 		ixgbevf_driver_version);
4307 
4308 	pr_info("%s\n", ixgbevf_copyright);
4309 	ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4310 	if (!ixgbevf_wq) {
4311 		pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4312 		return -ENOMEM;
4313 	}
4314 
4315 	return pci_register_driver(&ixgbevf_driver);
4316 }
4317 
4318 module_init(ixgbevf_init_module);
4319 
4320 /**
4321  * ixgbevf_exit_module - Driver Exit Cleanup Routine
4322  *
4323  * ixgbevf_exit_module is called just before the driver is removed
4324  * from memory.
4325  **/
4326 static void __exit ixgbevf_exit_module(void)
4327 {
4328 	pci_unregister_driver(&ixgbevf_driver);
4329 	if (ixgbevf_wq) {
4330 		destroy_workqueue(ixgbevf_wq);
4331 		ixgbevf_wq = NULL;
4332 	}
4333 }
4334 
4335 #ifdef DEBUG
4336 /**
4337  * ixgbevf_get_hw_dev_name - return device name string
4338  * used by hardware layer to print debugging information
4339  **/
4340 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4341 {
4342 	struct ixgbevf_adapter *adapter = hw->back;
4343 
4344 	return adapter->netdev->name;
4345 }
4346 
4347 #endif
4348 module_exit(ixgbevf_exit_module);
4349 
4350 /* ixgbevf_main.c */
4351