xref: /linux/drivers/net/ethernet/intel/ixgbe/ixgbe_phy.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #include <linux/pci.h>
5 #include <linux/delay.h>
6 #include <linux/iopoll.h>
7 #include <linux/sched.h>
8 
9 #include "ixgbe.h"
10 #include "ixgbe_phy.h"
11 
12 static void ixgbe_i2c_start(struct ixgbe_hw *hw);
13 static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
14 static int ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
15 static int ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
16 static int ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
17 static int ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
18 static int ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
19 static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
20 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
21 static int ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
22 static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
23 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
24 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
25 static int ixgbe_get_phy_id(struct ixgbe_hw *hw);
26 static int ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
27 
28 /**
29  *  ixgbe_out_i2c_byte_ack - Send I2C byte with ack
30  *  @hw: pointer to the hardware structure
31  *  @byte: byte to send
32  *
33  *  Returns an error code on error.
34  **/
35 static int ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
36 {
37 	int status;
38 
39 	status = ixgbe_clock_out_i2c_byte(hw, byte);
40 	if (status)
41 		return status;
42 	return ixgbe_get_i2c_ack(hw);
43 }
44 
45 /**
46  *  ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
47  *  @hw: pointer to the hardware structure
48  *  @byte: pointer to a u8 to receive the byte
49  *
50  *  Returns an error code on error.
51  **/
52 static int ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
53 {
54 	int status;
55 
56 	status = ixgbe_clock_in_i2c_byte(hw, byte);
57 	if (status)
58 		return status;
59 	/* ACK */
60 	return ixgbe_clock_out_i2c_bit(hw, false);
61 }
62 
63 /**
64  *  ixgbe_ones_comp_byte_add - Perform one's complement addition
65  *  @add1: addend 1
66  *  @add2: addend 2
67  *
68  *  Returns one's complement 8-bit sum.
69  **/
70 static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
71 {
72 	u16 sum = add1 + add2;
73 
74 	sum = (sum & 0xFF) + (sum >> 8);
75 	return sum & 0xFF;
76 }
77 
78 /**
79  *  ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
80  *  @hw: pointer to the hardware structure
81  *  @addr: I2C bus address to read from
82  *  @reg: I2C device register to read from
83  *  @val: pointer to location to receive read value
84  *  @lock: true if to take and release semaphore
85  *
86  *  Returns an error code on error.
87  */
88 int ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
89 					u16 reg, u16 *val, bool lock)
90 {
91 	u32 swfw_mask = hw->phy.phy_semaphore_mask;
92 	int max_retry = 3;
93 	int retry = 0;
94 	u8 csum_byte;
95 	u8 high_bits;
96 	u8 low_bits;
97 	u8 reg_high;
98 	u8 csum;
99 
100 	reg_high = ((reg >> 7) & 0xFE) | 1;     /* Indicate read combined */
101 	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
102 	csum = ~csum;
103 	do {
104 		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
105 			return -EBUSY;
106 		ixgbe_i2c_start(hw);
107 		/* Device Address and write indication */
108 		if (ixgbe_out_i2c_byte_ack(hw, addr))
109 			goto fail;
110 		/* Write bits 14:8 */
111 		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
112 			goto fail;
113 		/* Write bits 7:0 */
114 		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
115 			goto fail;
116 		/* Write csum */
117 		if (ixgbe_out_i2c_byte_ack(hw, csum))
118 			goto fail;
119 		/* Re-start condition */
120 		ixgbe_i2c_start(hw);
121 		/* Device Address and read indication */
122 		if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
123 			goto fail;
124 		/* Get upper bits */
125 		if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
126 			goto fail;
127 		/* Get low bits */
128 		if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
129 			goto fail;
130 		/* Get csum */
131 		if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
132 			goto fail;
133 		/* NACK */
134 		if (ixgbe_clock_out_i2c_bit(hw, false))
135 			goto fail;
136 		ixgbe_i2c_stop(hw);
137 		if (lock)
138 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
139 		*val = (high_bits << 8) | low_bits;
140 		return 0;
141 
142 fail:
143 		ixgbe_i2c_bus_clear(hw);
144 		if (lock)
145 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
146 		retry++;
147 		if (retry < max_retry)
148 			hw_dbg(hw, "I2C byte read combined error - Retry.\n");
149 		else
150 			hw_dbg(hw, "I2C byte read combined error.\n");
151 	} while (retry < max_retry);
152 
153 	return -EIO;
154 }
155 
156 /**
157  *  ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
158  *  @hw: pointer to the hardware structure
159  *  @addr: I2C bus address to write to
160  *  @reg: I2C device register to write to
161  *  @val: value to write
162  *  @lock: true if to take and release semaphore
163  *
164  *  Returns an error code on error.
165  */
166 int ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
167 					 u16 reg, u16 val, bool lock)
168 {
169 	u32 swfw_mask = hw->phy.phy_semaphore_mask;
170 	int max_retry = 1;
171 	int retry = 0;
172 	u8 reg_high;
173 	u8 csum;
174 
175 	reg_high = (reg >> 7) & 0xFE;   /* Indicate write combined */
176 	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
177 	csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
178 	csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
179 	csum = ~csum;
180 	do {
181 		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
182 			return -EBUSY;
183 		ixgbe_i2c_start(hw);
184 		/* Device Address and write indication */
185 		if (ixgbe_out_i2c_byte_ack(hw, addr))
186 			goto fail;
187 		/* Write bits 14:8 */
188 		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
189 			goto fail;
190 		/* Write bits 7:0 */
191 		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
192 			goto fail;
193 		/* Write data 15:8 */
194 		if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
195 			goto fail;
196 		/* Write data 7:0 */
197 		if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
198 			goto fail;
199 		/* Write csum */
200 		if (ixgbe_out_i2c_byte_ack(hw, csum))
201 			goto fail;
202 		ixgbe_i2c_stop(hw);
203 		if (lock)
204 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
205 		return 0;
206 
207 fail:
208 		ixgbe_i2c_bus_clear(hw);
209 		if (lock)
210 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
211 		retry++;
212 		if (retry < max_retry)
213 			hw_dbg(hw, "I2C byte write combined error - Retry.\n");
214 		else
215 			hw_dbg(hw, "I2C byte write combined error.\n");
216 	} while (retry < max_retry);
217 
218 	return -EIO;
219 }
220 
221 /**
222  *  ixgbe_probe_phy - Probe a single address for a PHY
223  *  @hw: pointer to hardware structure
224  *  @phy_addr: PHY address to probe
225  *
226  *  Returns true if PHY found
227  **/
228 static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr)
229 {
230 	u16 ext_ability = 0;
231 
232 	hw->phy.mdio.prtad = phy_addr;
233 	if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0)
234 		return false;
235 
236 	if (ixgbe_get_phy_id(hw))
237 		return false;
238 
239 	hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id);
240 
241 	if (hw->phy.type == ixgbe_phy_unknown) {
242 		hw->phy.ops.read_reg(hw,
243 				     MDIO_PMA_EXTABLE,
244 				     MDIO_MMD_PMAPMD,
245 				     &ext_ability);
246 		if (ext_ability &
247 		    (MDIO_PMA_EXTABLE_10GBT |
248 		     MDIO_PMA_EXTABLE_1000BT))
249 			hw->phy.type = ixgbe_phy_cu_unknown;
250 		else
251 			hw->phy.type = ixgbe_phy_generic;
252 	}
253 
254 	return true;
255 }
256 
257 /**
258  *  ixgbe_identify_phy_generic - Get physical layer module
259  *  @hw: pointer to hardware structure
260  *
261  *  Determines the physical layer module found on the current adapter.
262  **/
263 int ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
264 {
265 	u32 status = -EFAULT;
266 	u32 phy_addr;
267 
268 	if (!hw->phy.phy_semaphore_mask) {
269 		if (hw->bus.lan_id)
270 			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
271 		else
272 			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
273 	}
274 
275 	if (hw->phy.type != ixgbe_phy_unknown)
276 		return 0;
277 
278 	if (hw->phy.nw_mng_if_sel) {
279 		phy_addr = FIELD_GET(IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD,
280 				     hw->phy.nw_mng_if_sel);
281 		if (ixgbe_probe_phy(hw, phy_addr))
282 			return 0;
283 		else
284 			return -EFAULT;
285 	}
286 
287 	for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
288 		if (ixgbe_probe_phy(hw, phy_addr)) {
289 			status = 0;
290 			break;
291 		}
292 	}
293 
294 	/* Certain media types do not have a phy so an address will not
295 	 * be found and the code will take this path.  Caller has to
296 	 * decide if it is an error or not.
297 	 */
298 	if (status)
299 		hw->phy.mdio.prtad = MDIO_PRTAD_NONE;
300 
301 	return status;
302 }
303 
304 /**
305  * ixgbe_check_reset_blocked - check status of MNG FW veto bit
306  * @hw: pointer to the hardware structure
307  *
308  * This function checks the MMNGC.MNG_VETO bit to see if there are
309  * any constraints on link from manageability.  For MAC's that don't
310  * have this bit just return false since the link can not be blocked
311  * via this method.
312  **/
313 bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
314 {
315 	u32 mmngc;
316 
317 	/* If we don't have this bit, it can't be blocking */
318 	if (hw->mac.type == ixgbe_mac_82598EB)
319 		return false;
320 
321 	mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
322 	if (mmngc & IXGBE_MMNGC_MNG_VETO) {
323 		hw_dbg(hw, "MNG_VETO bit detected.\n");
324 		return true;
325 	}
326 
327 	return false;
328 }
329 
330 /**
331  *  ixgbe_get_phy_id - Get the phy type
332  *  @hw: pointer to hardware structure
333  *
334  **/
335 static int ixgbe_get_phy_id(struct ixgbe_hw *hw)
336 {
337 	u16 phy_id_high = 0;
338 	u16 phy_id_low = 0;
339 	int status;
340 
341 	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
342 				      &phy_id_high);
343 
344 	if (!status) {
345 		hw->phy.id = (u32)(phy_id_high << 16);
346 		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
347 					      &phy_id_low);
348 		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
349 		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
350 	}
351 	return status;
352 }
353 
354 /**
355  *  ixgbe_get_phy_type_from_id - Get the phy type
356  *  @phy_id: hardware phy id
357  *
358  **/
359 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
360 {
361 	enum ixgbe_phy_type phy_type;
362 
363 	switch (phy_id) {
364 	case TN1010_PHY_ID:
365 		phy_type = ixgbe_phy_tn;
366 		break;
367 	case X550_PHY_ID2:
368 	case X550_PHY_ID3:
369 	case X540_PHY_ID:
370 		phy_type = ixgbe_phy_aq;
371 		break;
372 	case QT2022_PHY_ID:
373 		phy_type = ixgbe_phy_qt;
374 		break;
375 	case ATH_PHY_ID:
376 		phy_type = ixgbe_phy_nl;
377 		break;
378 	case X557_PHY_ID:
379 	case X557_PHY_ID2:
380 		phy_type = ixgbe_phy_x550em_ext_t;
381 		break;
382 	case BCM54616S_E_PHY_ID:
383 		phy_type = ixgbe_phy_ext_1g_t;
384 		break;
385 	default:
386 		phy_type = ixgbe_phy_unknown;
387 		break;
388 	}
389 
390 	return phy_type;
391 }
392 
393 /**
394  *  ixgbe_reset_phy_generic - Performs a PHY reset
395  *  @hw: pointer to hardware structure
396  **/
397 int ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
398 {
399 	u32 i;
400 	u16 ctrl = 0;
401 	int status = 0;
402 
403 	if (hw->phy.type == ixgbe_phy_unknown)
404 		status = ixgbe_identify_phy_generic(hw);
405 
406 	if (status != 0 || hw->phy.type == ixgbe_phy_none)
407 		return status;
408 
409 	/* Don't reset PHY if it's shut down due to overtemp. */
410 	if (!hw->phy.reset_if_overtemp && hw->phy.ops.check_overtemp(hw))
411 		return 0;
412 
413 	/* Blocked by MNG FW so bail */
414 	if (ixgbe_check_reset_blocked(hw))
415 		return 0;
416 
417 	/*
418 	 * Perform soft PHY reset to the PHY_XS.
419 	 * This will cause a soft reset to the PHY
420 	 */
421 	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
422 			      MDIO_MMD_PHYXS,
423 			      MDIO_CTRL1_RESET);
424 
425 	/*
426 	 * Poll for reset bit to self-clear indicating reset is complete.
427 	 * Some PHYs could take up to 3 seconds to complete and need about
428 	 * 1.7 usec delay after the reset is complete.
429 	 */
430 	for (i = 0; i < 30; i++) {
431 		msleep(100);
432 		if (hw->phy.type == ixgbe_phy_x550em_ext_t) {
433 			status = hw->phy.ops.read_reg(hw,
434 						  IXGBE_MDIO_TX_VENDOR_ALARMS_3,
435 						  MDIO_MMD_PMAPMD, &ctrl);
436 			if (status)
437 				return status;
438 
439 			if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) {
440 				udelay(2);
441 				break;
442 			}
443 		} else {
444 			status = hw->phy.ops.read_reg(hw, MDIO_CTRL1,
445 						      MDIO_MMD_PHYXS, &ctrl);
446 			if (status)
447 				return status;
448 
449 			if (!(ctrl & MDIO_CTRL1_RESET)) {
450 				udelay(2);
451 				break;
452 			}
453 		}
454 	}
455 
456 	if (ctrl & MDIO_CTRL1_RESET) {
457 		hw_dbg(hw, "PHY reset polling failed to complete.\n");
458 		return -EIO;
459 	}
460 
461 	return 0;
462 }
463 
464 /**
465  *  ixgbe_read_phy_reg_mdi - read PHY register
466  *  @hw: pointer to hardware structure
467  *  @reg_addr: 32 bit address of PHY register to read
468  *  @device_type: 5 bit device type
469  *  @phy_data: Pointer to read data from PHY register
470  *
471  *  Reads a value from a specified PHY register without the SWFW lock
472  **/
473 int ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
474 			   u16 *phy_data)
475 {
476 	u32 i, data, command;
477 
478 	/* Setup and write the address cycle command */
479 	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
480 		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
481 		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
482 		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
483 
484 	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
485 
486 	/* Check every 10 usec to see if the address cycle completed.
487 	 * The MDI Command bit will clear when the operation is
488 	 * complete
489 	 */
490 	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
491 		udelay(10);
492 
493 		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
494 		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
495 				break;
496 	}
497 
498 
499 	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
500 		hw_dbg(hw, "PHY address command did not complete.\n");
501 		return -EIO;
502 	}
503 
504 	/* Address cycle complete, setup and write the read
505 	 * command
506 	 */
507 	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
508 		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
509 		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
510 		   (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
511 
512 	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
513 
514 	/* Check every 10 usec to see if the address cycle
515 	 * completed. The MDI Command bit will clear when the
516 	 * operation is complete
517 	 */
518 	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
519 		udelay(10);
520 
521 		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
522 		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
523 			break;
524 	}
525 
526 	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
527 		hw_dbg(hw, "PHY read command didn't complete\n");
528 		return -EIO;
529 	}
530 
531 	/* Read operation is complete.  Get the data
532 	 * from MSRWD
533 	 */
534 	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
535 	data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
536 	*phy_data = (u16)(data);
537 
538 	return 0;
539 }
540 
541 /**
542  *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
543  *  using the SWFW lock - this function is needed in most cases
544  *  @hw: pointer to hardware structure
545  *  @reg_addr: 32 bit address of PHY register to read
546  *  @device_type: 5 bit device type
547  *  @phy_data: Pointer to read data from PHY register
548  **/
549 int ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
550 			       u32 device_type, u16 *phy_data)
551 {
552 	u32 gssr = hw->phy.phy_semaphore_mask;
553 	int status;
554 
555 	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
556 		status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
557 						phy_data);
558 		hw->mac.ops.release_swfw_sync(hw, gssr);
559 	} else {
560 		return -EBUSY;
561 	}
562 
563 	return status;
564 }
565 
566 /**
567  *  ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
568  *  without SWFW lock
569  *  @hw: pointer to hardware structure
570  *  @reg_addr: 32 bit PHY register to write
571  *  @device_type: 5 bit device type
572  *  @phy_data: Data to write to the PHY register
573  **/
574 int ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
575 			    u16 phy_data)
576 {
577 	u32 i, command;
578 
579 	/* Put the data in the MDI single read and write data register*/
580 	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
581 
582 	/* Setup and write the address cycle command */
583 	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
584 		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
585 		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
586 		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
587 
588 	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
589 
590 	/*
591 	 * Check every 10 usec to see if the address cycle completed.
592 	 * The MDI Command bit will clear when the operation is
593 	 * complete
594 	 */
595 	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
596 		udelay(10);
597 
598 		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
599 		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
600 			break;
601 	}
602 
603 	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
604 		hw_dbg(hw, "PHY address cmd didn't complete\n");
605 		return -EIO;
606 	}
607 
608 	/*
609 	 * Address cycle complete, setup and write the write
610 	 * command
611 	 */
612 	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
613 		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
614 		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
615 		   (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
616 
617 	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
618 
619 	/* Check every 10 usec to see if the address cycle
620 	 * completed. The MDI Command bit will clear when the
621 	 * operation is complete
622 	 */
623 	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
624 		udelay(10);
625 
626 		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
627 		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
628 			break;
629 	}
630 
631 	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
632 		hw_dbg(hw, "PHY write cmd didn't complete\n");
633 		return -EIO;
634 	}
635 
636 	return 0;
637 }
638 
639 /**
640  *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
641  *  using SWFW lock- this function is needed in most cases
642  *  @hw: pointer to hardware structure
643  *  @reg_addr: 32 bit PHY register to write
644  *  @device_type: 5 bit device type
645  *  @phy_data: Data to write to the PHY register
646  **/
647 int ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
648 				u32 device_type, u16 phy_data)
649 {
650 	u32 gssr = hw->phy.phy_semaphore_mask;
651 	int status;
652 
653 	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
654 		status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
655 						 phy_data);
656 		hw->mac.ops.release_swfw_sync(hw, gssr);
657 	} else {
658 		return -EBUSY;
659 	}
660 
661 	return status;
662 }
663 
664 #define IXGBE_HW_READ_REG(addr) IXGBE_READ_REG(hw, addr)
665 
666 /**
667  *  ixgbe_msca_cmd - Write the command register and poll for completion/timeout
668  *  @hw: pointer to hardware structure
669  *  @cmd: command register value to write
670  **/
671 static int ixgbe_msca_cmd(struct ixgbe_hw *hw, u32 cmd)
672 {
673 	IXGBE_WRITE_REG(hw, IXGBE_MSCA, cmd);
674 
675 	return readx_poll_timeout(IXGBE_HW_READ_REG, IXGBE_MSCA, cmd,
676 				  !(cmd & IXGBE_MSCA_MDI_COMMAND), 10,
677 				  10 * IXGBE_MDIO_COMMAND_TIMEOUT);
678 }
679 
680 /**
681  *  ixgbe_mii_bus_read_generic_c22 - Read a clause 22 register with gssr flags
682  *  @hw: pointer to hardware structure
683  *  @addr: address
684  *  @regnum: register number
685  *  @gssr: semaphore flags to acquire
686  **/
687 static int ixgbe_mii_bus_read_generic_c22(struct ixgbe_hw *hw, int addr,
688 					  int regnum, u32 gssr)
689 {
690 	u32 hwaddr, cmd;
691 	int data;
692 
693 	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
694 		return -EBUSY;
695 
696 	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
697 	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
698 	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL |
699 		IXGBE_MSCA_READ_AUTOINC | IXGBE_MSCA_MDI_COMMAND;
700 
701 	data = ixgbe_msca_cmd(hw, cmd);
702 	if (data < 0)
703 		goto mii_bus_read_done;
704 
705 	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
706 	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
707 
708 mii_bus_read_done:
709 	hw->mac.ops.release_swfw_sync(hw, gssr);
710 	return data;
711 }
712 
713 /**
714  *  ixgbe_mii_bus_read_generic_c45 - Read a clause 45 register with gssr flags
715  *  @hw: pointer to hardware structure
716  *  @addr: address
717  *  @devad: device address to read
718  *  @regnum: register number
719  *  @gssr: semaphore flags to acquire
720  **/
721 static int ixgbe_mii_bus_read_generic_c45(struct ixgbe_hw *hw, int addr,
722 					  int devad, int regnum, u32 gssr)
723 {
724 	u32 hwaddr, cmd;
725 	int data;
726 
727 	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
728 		return -EBUSY;
729 
730 	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
731 	hwaddr |= devad << 16 | regnum;
732 	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
733 
734 	data = ixgbe_msca_cmd(hw, cmd);
735 	if (data < 0)
736 		goto mii_bus_read_done;
737 
738 	cmd = hwaddr | IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND;
739 	data = ixgbe_msca_cmd(hw, cmd);
740 	if (data < 0)
741 		goto mii_bus_read_done;
742 
743 	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
744 	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
745 
746 mii_bus_read_done:
747 	hw->mac.ops.release_swfw_sync(hw, gssr);
748 	return data;
749 }
750 
751 /**
752  *  ixgbe_mii_bus_write_generic_c22 - Write a clause 22 register with gssr flags
753  *  @hw: pointer to hardware structure
754  *  @addr: address
755  *  @regnum: register number
756  *  @val: value to write
757  *  @gssr: semaphore flags to acquire
758  **/
759 static int ixgbe_mii_bus_write_generic_c22(struct ixgbe_hw *hw, int addr,
760 					   int regnum, u16 val, u32 gssr)
761 {
762 	u32 hwaddr, cmd;
763 	int err;
764 
765 	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
766 		return -EBUSY;
767 
768 	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
769 
770 	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
771 	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
772 	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL | IXGBE_MSCA_WRITE |
773 		IXGBE_MSCA_MDI_COMMAND;
774 
775 	err = ixgbe_msca_cmd(hw, cmd);
776 
777 	hw->mac.ops.release_swfw_sync(hw, gssr);
778 	return err;
779 }
780 
781 /**
782  *  ixgbe_mii_bus_write_generic_c45 - Write a clause 45 register with gssr flags
783  *  @hw: pointer to hardware structure
784  *  @addr: address
785  *  @devad: device address to read
786  *  @regnum: register number
787  *  @val: value to write
788  *  @gssr: semaphore flags to acquire
789  **/
790 static int ixgbe_mii_bus_write_generic_c45(struct ixgbe_hw *hw, int addr,
791 					   int devad, int regnum, u16 val,
792 					   u32 gssr)
793 {
794 	u32 hwaddr, cmd;
795 	int err;
796 
797 	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
798 		return -EBUSY;
799 
800 	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
801 
802 	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
803 	hwaddr |= devad << 16 | regnum;
804 	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
805 
806 	err = ixgbe_msca_cmd(hw, cmd);
807 	if (err < 0)
808 		goto mii_bus_write_done;
809 
810 	cmd = hwaddr | IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND;
811 	err = ixgbe_msca_cmd(hw, cmd);
812 
813 mii_bus_write_done:
814 	hw->mac.ops.release_swfw_sync(hw, gssr);
815 	return err;
816 }
817 
818 /**
819  *  ixgbe_mii_bus_read_c22 - Read a clause 22 register
820  *  @bus: pointer to mii_bus structure which points to our driver private
821  *  @addr: address
822  *  @regnum: register number
823  **/
824 static int ixgbe_mii_bus_read_c22(struct mii_bus *bus, int addr, int regnum)
825 {
826 	struct ixgbe_adapter *adapter = bus->priv;
827 	struct ixgbe_hw *hw = &adapter->hw;
828 	u32 gssr = hw->phy.phy_semaphore_mask;
829 
830 	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
831 }
832 
833 /**
834  *  ixgbe_mii_bus_read_c45 - Read a clause 45 register
835  *  @bus: pointer to mii_bus structure which points to our driver private
836  *  @devad: device address to read
837  *  @addr: address
838  *  @regnum: register number
839  **/
840 static int ixgbe_mii_bus_read_c45(struct mii_bus *bus, int devad, int addr,
841 				  int regnum)
842 {
843 	struct ixgbe_adapter *adapter = bus->priv;
844 	struct ixgbe_hw *hw = &adapter->hw;
845 	u32 gssr = hw->phy.phy_semaphore_mask;
846 
847 	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
848 }
849 
850 /**
851  *  ixgbe_mii_bus_write_c22 - Write a clause 22 register
852  *  @bus: pointer to mii_bus structure which points to our driver private
853  *  @addr: address
854  *  @regnum: register number
855  *  @val: value to write
856  **/
857 static int ixgbe_mii_bus_write_c22(struct mii_bus *bus, int addr, int regnum,
858 				   u16 val)
859 {
860 	struct ixgbe_adapter *adapter = bus->priv;
861 	struct ixgbe_hw *hw = &adapter->hw;
862 	u32 gssr = hw->phy.phy_semaphore_mask;
863 
864 	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
865 }
866 
867 /**
868  *  ixgbe_mii_bus_write_c45 - Write a clause 45 register
869  *  @bus: pointer to mii_bus structure which points to our driver private
870  *  @addr: address
871  *  @devad: device address to read
872  *  @regnum: register number
873  *  @val: value to write
874  **/
875 static int ixgbe_mii_bus_write_c45(struct mii_bus *bus, int addr, int devad,
876 				   int regnum, u16 val)
877 {
878 	struct ixgbe_adapter *adapter = bus->priv;
879 	struct ixgbe_hw *hw = &adapter->hw;
880 	u32 gssr = hw->phy.phy_semaphore_mask;
881 
882 	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
883 					       gssr);
884 }
885 
886 /**
887  *  ixgbe_x550em_a_mii_bus_read_c22 - Read a clause 22 register on x550em_a
888  *  @bus: pointer to mii_bus structure which points to our driver private
889  *  @addr: address
890  *  @regnum: register number
891  **/
892 static int ixgbe_x550em_a_mii_bus_read_c22(struct mii_bus *bus, int addr,
893 					   int regnum)
894 {
895 	struct ixgbe_adapter *adapter = bus->priv;
896 	struct ixgbe_hw *hw = &adapter->hw;
897 	u32 gssr = hw->phy.phy_semaphore_mask;
898 
899 	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
900 	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
901 }
902 
903 /**
904  *  ixgbe_x550em_a_mii_bus_read_c45 - Read a clause 45 register on x550em_a
905  *  @bus: pointer to mii_bus structure which points to our driver private
906  *  @addr: address
907  *  @devad: device address to read
908  *  @regnum: register number
909  **/
910 static int ixgbe_x550em_a_mii_bus_read_c45(struct mii_bus *bus, int addr,
911 					   int devad, int regnum)
912 {
913 	struct ixgbe_adapter *adapter = bus->priv;
914 	struct ixgbe_hw *hw = &adapter->hw;
915 	u32 gssr = hw->phy.phy_semaphore_mask;
916 
917 	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
918 	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
919 }
920 
921 /**
922  *  ixgbe_x550em_a_mii_bus_write_c22 - Write a clause 22 register on x550em_a
923  *  @bus: pointer to mii_bus structure which points to our driver private
924  *  @addr: address
925  *  @regnum: register number
926  *  @val: value to write
927  **/
928 static int ixgbe_x550em_a_mii_bus_write_c22(struct mii_bus *bus, int addr,
929 					    int regnum, u16 val)
930 {
931 	struct ixgbe_adapter *adapter = bus->priv;
932 	struct ixgbe_hw *hw = &adapter->hw;
933 	u32 gssr = hw->phy.phy_semaphore_mask;
934 
935 	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
936 	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
937 }
938 
939 /**
940  *  ixgbe_x550em_a_mii_bus_write_c45 - Write a clause 45 register on x550em_a
941  *  @bus: pointer to mii_bus structure which points to our driver private
942  *  @addr: address
943  *  @devad: device address to read
944  *  @regnum: register number
945  *  @val: value to write
946  **/
947 static int ixgbe_x550em_a_mii_bus_write_c45(struct mii_bus *bus, int addr,
948 					    int devad, int regnum, u16 val)
949 {
950 	struct ixgbe_adapter *adapter = bus->priv;
951 	struct ixgbe_hw *hw = &adapter->hw;
952 	u32 gssr = hw->phy.phy_semaphore_mask;
953 
954 	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
955 	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
956 					       gssr);
957 }
958 
959 /**
960  * ixgbe_get_first_secondary_devfn - get first device downstream of root port
961  * @devfn: PCI_DEVFN of root port on domain 0, bus 0
962  *
963  * Returns pci_dev pointer to PCI_DEVFN(0, 0) on subordinate side of root
964  * on domain 0, bus 0, devfn = 'devfn'
965  **/
966 static struct pci_dev *ixgbe_get_first_secondary_devfn(unsigned int devfn)
967 {
968 	struct pci_dev *rp_pdev;
969 	int bus;
970 
971 	rp_pdev = pci_get_domain_bus_and_slot(0, 0, devfn);
972 	if (rp_pdev && rp_pdev->subordinate) {
973 		bus = rp_pdev->subordinate->number;
974 		pci_dev_put(rp_pdev);
975 		return pci_get_domain_bus_and_slot(0, bus, 0);
976 	}
977 
978 	pci_dev_put(rp_pdev);
979 	return NULL;
980 }
981 
982 /**
983  * ixgbe_x550em_a_has_mii - is this the first ixgbe x550em_a PCI function?
984  * @hw: pointer to hardware structure
985  *
986  * Returns true if hw points to lowest numbered PCI B:D.F x550_em_a device in
987  * the SoC.  There are up to 4 MACs sharing a single MDIO bus on the x550em_a,
988  * but we only want to register one MDIO bus.
989  **/
990 static bool ixgbe_x550em_a_has_mii(struct ixgbe_hw *hw)
991 {
992 	struct ixgbe_adapter *adapter = hw->back;
993 	struct pci_dev *pdev = adapter->pdev;
994 	struct pci_dev *func0_pdev;
995 	bool has_mii = false;
996 
997 	/* For the C3000 family of SoCs (x550em_a) the internal ixgbe devices
998 	 * are always downstream of root ports @ 0000:00:16.0 & 0000:00:17.0
999 	 * It's not valid for function 0 to be disabled and function 1 is up,
1000 	 * so the lowest numbered ixgbe dev will be device 0 function 0 on one
1001 	 * of those two root ports
1002 	 */
1003 	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x16, 0));
1004 	if (func0_pdev) {
1005 		if (func0_pdev == pdev)
1006 			has_mii = true;
1007 		goto out;
1008 	}
1009 	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x17, 0));
1010 	if (func0_pdev == pdev)
1011 		has_mii = true;
1012 
1013 out:
1014 	pci_dev_put(func0_pdev);
1015 	return has_mii;
1016 }
1017 
1018 /**
1019  * ixgbe_mii_bus_init - mii_bus structure setup
1020  * @hw: pointer to hardware structure
1021  *
1022  * Returns 0 on success, negative on failure
1023  *
1024  * ixgbe_mii_bus_init initializes a mii_bus structure in adapter
1025  **/
1026 int ixgbe_mii_bus_init(struct ixgbe_hw *hw)
1027 {
1028 	int (*write_c22)(struct mii_bus *bus, int addr, int regnum, u16 val);
1029 	int (*read_c22)(struct mii_bus *bus, int addr, int regnum);
1030 	int (*write_c45)(struct mii_bus *bus, int addr, int devad, int regnum,
1031 			 u16 val);
1032 	int (*read_c45)(struct mii_bus *bus, int addr, int devad, int regnum);
1033 	struct ixgbe_adapter *adapter = hw->back;
1034 	struct pci_dev *pdev = adapter->pdev;
1035 	struct device *dev = &adapter->netdev->dev;
1036 	struct mii_bus *bus;
1037 
1038 	switch (hw->device_id) {
1039 	/* C3000 SoCs */
1040 	case IXGBE_DEV_ID_X550EM_A_KR:
1041 	case IXGBE_DEV_ID_X550EM_A_KR_L:
1042 	case IXGBE_DEV_ID_X550EM_A_SFP_N:
1043 	case IXGBE_DEV_ID_X550EM_A_SGMII:
1044 	case IXGBE_DEV_ID_X550EM_A_SGMII_L:
1045 	case IXGBE_DEV_ID_X550EM_A_10G_T:
1046 	case IXGBE_DEV_ID_X550EM_A_SFP:
1047 	case IXGBE_DEV_ID_X550EM_A_1G_T:
1048 	case IXGBE_DEV_ID_X550EM_A_1G_T_L:
1049 		if (!ixgbe_x550em_a_has_mii(hw))
1050 			return 0;
1051 		read_c22 = ixgbe_x550em_a_mii_bus_read_c22;
1052 		write_c22 = ixgbe_x550em_a_mii_bus_write_c22;
1053 		read_c45 = ixgbe_x550em_a_mii_bus_read_c45;
1054 		write_c45 = ixgbe_x550em_a_mii_bus_write_c45;
1055 		break;
1056 	default:
1057 		read_c22 = ixgbe_mii_bus_read_c22;
1058 		write_c22 = ixgbe_mii_bus_write_c22;
1059 		read_c45 = ixgbe_mii_bus_read_c45;
1060 		write_c45 = ixgbe_mii_bus_write_c45;
1061 		break;
1062 	}
1063 
1064 	bus = devm_mdiobus_alloc(dev);
1065 	if (!bus)
1066 		return -ENOMEM;
1067 
1068 	bus->read = read_c22;
1069 	bus->write = write_c22;
1070 	bus->read_c45 = read_c45;
1071 	bus->write_c45 = write_c45;
1072 
1073 	/* Use the position of the device in the PCI hierarchy as the id */
1074 	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mdio-%s", ixgbe_driver_name,
1075 		 pci_name(pdev));
1076 
1077 	bus->name = "ixgbe-mdio";
1078 	bus->priv = adapter;
1079 	bus->parent = dev;
1080 	bus->phy_mask = GENMASK(31, 0);
1081 
1082 	/* Support clause 22/45 natively.  ixgbe_probe() sets MDIO_EMULATE_C22
1083 	 * unfortunately that causes some clause 22 frames to be sent with
1084 	 * clause 45 addressing.  We don't want that.
1085 	 */
1086 	hw->phy.mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22;
1087 
1088 	adapter->mii_bus = bus;
1089 	return mdiobus_register(bus);
1090 }
1091 
1092 /**
1093  *  ixgbe_setup_phy_link_generic - Set and restart autoneg
1094  *  @hw: pointer to hardware structure
1095  *
1096  *  Restart autonegotiation and PHY and waits for completion.
1097  **/
1098 int ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
1099 {
1100 	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1101 	ixgbe_link_speed speed;
1102 	bool autoneg = false;
1103 	int status = 0;
1104 
1105 	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1106 
1107 	/* Set or unset auto-negotiation 10G advertisement */
1108 	hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg);
1109 
1110 	autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1111 	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) &&
1112 	    (speed & IXGBE_LINK_SPEED_10GB_FULL))
1113 		autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1114 
1115 	hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg);
1116 
1117 	hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1118 			     MDIO_MMD_AN, &autoneg_reg);
1119 
1120 	if (hw->mac.type == ixgbe_mac_X550) {
1121 		/* Set or unset auto-negotiation 5G advertisement */
1122 		autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE;
1123 		if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) &&
1124 		    (speed & IXGBE_LINK_SPEED_5GB_FULL))
1125 			autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE;
1126 
1127 		/* Set or unset auto-negotiation 2.5G advertisement */
1128 		autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE;
1129 		if ((hw->phy.autoneg_advertised &
1130 		     IXGBE_LINK_SPEED_2_5GB_FULL) &&
1131 		    (speed & IXGBE_LINK_SPEED_2_5GB_FULL))
1132 			autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE;
1133 	}
1134 
1135 	/* Set or unset auto-negotiation 1G advertisement */
1136 	autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
1137 	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) &&
1138 	    (speed & IXGBE_LINK_SPEED_1GB_FULL))
1139 		autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
1140 
1141 	hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1142 			      MDIO_MMD_AN, autoneg_reg);
1143 
1144 	/* Set or unset auto-negotiation 100M advertisement */
1145 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
1146 
1147 	autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF);
1148 	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) &&
1149 	    (speed & IXGBE_LINK_SPEED_100_FULL))
1150 		autoneg_reg |= ADVERTISE_100FULL;
1151 
1152 	hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
1153 
1154 	/* Blocked by MNG FW so don't reset PHY */
1155 	if (ixgbe_check_reset_blocked(hw))
1156 		return 0;
1157 
1158 	/* Restart PHY autonegotiation and wait for completion */
1159 	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1160 			     MDIO_MMD_AN, &autoneg_reg);
1161 
1162 	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1163 
1164 	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1165 			      MDIO_MMD_AN, autoneg_reg);
1166 
1167 	return status;
1168 }
1169 
1170 /**
1171  *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
1172  *  @hw: pointer to hardware structure
1173  *  @speed: new link speed
1174  *  @autoneg_wait_to_complete: unused
1175  **/
1176 int ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
1177 				       ixgbe_link_speed speed,
1178 				       bool autoneg_wait_to_complete)
1179 {
1180 	/* Clear autoneg_advertised and set new values based on input link
1181 	 * speed.
1182 	 */
1183 	hw->phy.autoneg_advertised = 0;
1184 
1185 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
1186 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
1187 
1188 	if (speed & IXGBE_LINK_SPEED_5GB_FULL)
1189 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL;
1190 
1191 	if (speed & IXGBE_LINK_SPEED_2_5GB_FULL)
1192 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL;
1193 
1194 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
1195 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
1196 
1197 	if (speed & IXGBE_LINK_SPEED_100_FULL)
1198 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
1199 
1200 	if (speed & IXGBE_LINK_SPEED_10_FULL)
1201 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL;
1202 
1203 	/* Setup link based on the new speed settings */
1204 	if (hw->phy.ops.setup_link)
1205 		hw->phy.ops.setup_link(hw);
1206 
1207 	return 0;
1208 }
1209 
1210 /**
1211  * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
1212  * @hw: pointer to hardware structure
1213  *
1214  * Determines the supported link capabilities by reading the PHY auto
1215  * negotiation register.
1216  */
1217 static int ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
1218 {
1219 	u16 speed_ability;
1220 	int status;
1221 
1222 	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
1223 				      &speed_ability);
1224 	if (status)
1225 		return status;
1226 
1227 	if (speed_ability & MDIO_SPEED_10G)
1228 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
1229 	if (speed_ability & MDIO_PMA_SPEED_1000)
1230 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
1231 	if (speed_ability & MDIO_PMA_SPEED_100)
1232 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
1233 
1234 	switch (hw->mac.type) {
1235 	case ixgbe_mac_X550:
1236 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
1237 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
1238 		break;
1239 	case ixgbe_mac_X550EM_x:
1240 	case ixgbe_mac_x550em_a:
1241 		hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
1242 		break;
1243 	default:
1244 		break;
1245 	}
1246 
1247 	return 0;
1248 }
1249 
1250 /**
1251  * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
1252  * @hw: pointer to hardware structure
1253  * @speed: pointer to link speed
1254  * @autoneg: boolean auto-negotiation value
1255  */
1256 int ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
1257 					       ixgbe_link_speed *speed,
1258 					       bool *autoneg)
1259 {
1260 	int status = 0;
1261 
1262 	*autoneg = true;
1263 	if (!hw->phy.speeds_supported)
1264 		status = ixgbe_get_copper_speeds_supported(hw);
1265 
1266 	*speed = hw->phy.speeds_supported;
1267 	return status;
1268 }
1269 
1270 /**
1271  *  ixgbe_check_phy_link_tnx - Determine link and speed status
1272  *  @hw: pointer to hardware structure
1273  *  @speed: link speed
1274  *  @link_up: status of link
1275  *
1276  *  Reads the VS1 register to determine if link is up and the current speed for
1277  *  the PHY.
1278  **/
1279 int ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1280 			     bool *link_up)
1281 {
1282 	u32 max_time_out = 10;
1283 	u16 phy_speed = 0;
1284 	u16 phy_link = 0;
1285 	u16 phy_data = 0;
1286 	u32 time_out;
1287 	int status;
1288 
1289 	/* Initialize speed and link to default case */
1290 	*link_up = false;
1291 	*speed = IXGBE_LINK_SPEED_10GB_FULL;
1292 
1293 	/*
1294 	 * Check current speed and link status of the PHY register.
1295 	 * This is a vendor specific register and may have to
1296 	 * be changed for other copper PHYs.
1297 	 */
1298 	for (time_out = 0; time_out < max_time_out; time_out++) {
1299 		udelay(10);
1300 		status = hw->phy.ops.read_reg(hw,
1301 					      MDIO_STAT1,
1302 					      MDIO_MMD_VEND1,
1303 					      &phy_data);
1304 		phy_link = phy_data &
1305 			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1306 		phy_speed = phy_data &
1307 			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1308 		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1309 			*link_up = true;
1310 			if (phy_speed ==
1311 			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1312 				*speed = IXGBE_LINK_SPEED_1GB_FULL;
1313 			break;
1314 		}
1315 	}
1316 
1317 	return status;
1318 }
1319 
1320 /**
1321  *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
1322  *	@hw: pointer to hardware structure
1323  *
1324  *	Restart autonegotiation and PHY and waits for completion.
1325  *      This function always returns success, this is nessary since
1326  *	it is called via a function pointer that could call other
1327  *	functions that could return an error.
1328  **/
1329 int ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
1330 {
1331 	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1332 	bool autoneg = false;
1333 	ixgbe_link_speed speed;
1334 
1335 	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1336 
1337 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
1338 		/* Set or unset auto-negotiation 10G advertisement */
1339 		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
1340 				     MDIO_MMD_AN,
1341 				     &autoneg_reg);
1342 
1343 		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1344 		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
1345 			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1346 
1347 		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
1348 				      MDIO_MMD_AN,
1349 				      autoneg_reg);
1350 	}
1351 
1352 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
1353 		/* Set or unset auto-negotiation 1G advertisement */
1354 		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1355 				     MDIO_MMD_AN,
1356 				     &autoneg_reg);
1357 
1358 		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1359 		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
1360 			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1361 
1362 		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1363 				      MDIO_MMD_AN,
1364 				      autoneg_reg);
1365 	}
1366 
1367 	if (speed & IXGBE_LINK_SPEED_100_FULL) {
1368 		/* Set or unset auto-negotiation 100M advertisement */
1369 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1370 				     MDIO_MMD_AN,
1371 				     &autoneg_reg);
1372 
1373 		autoneg_reg &= ~(ADVERTISE_100FULL |
1374 				 ADVERTISE_100HALF);
1375 		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
1376 			autoneg_reg |= ADVERTISE_100FULL;
1377 
1378 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
1379 				      MDIO_MMD_AN,
1380 				      autoneg_reg);
1381 	}
1382 
1383 	/* Blocked by MNG FW so don't reset PHY */
1384 	if (ixgbe_check_reset_blocked(hw))
1385 		return 0;
1386 
1387 	/* Restart PHY autonegotiation and wait for completion */
1388 	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1389 			     MDIO_MMD_AN, &autoneg_reg);
1390 
1391 	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1392 
1393 	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1394 			      MDIO_MMD_AN, autoneg_reg);
1395 	return 0;
1396 }
1397 
1398 /**
1399  *  ixgbe_reset_phy_nl - Performs a PHY reset
1400  *  @hw: pointer to hardware structure
1401  **/
1402 int ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
1403 {
1404 	u16 phy_offset, control, eword, edata, block_crc;
1405 	u16 list_offset, data_offset;
1406 	bool end_data = false;
1407 	u16 phy_data = 0;
1408 	int ret_val;
1409 	u32 i;
1410 
1411 	/* Blocked by MNG FW so bail */
1412 	if (ixgbe_check_reset_blocked(hw))
1413 		return 0;
1414 
1415 	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1416 
1417 	/* reset the PHY and poll for completion */
1418 	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1419 			      (phy_data | MDIO_CTRL1_RESET));
1420 
1421 	for (i = 0; i < 100; i++) {
1422 		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1423 				     &phy_data);
1424 		if ((phy_data & MDIO_CTRL1_RESET) == 0)
1425 			break;
1426 		usleep_range(10000, 20000);
1427 	}
1428 
1429 	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1430 		hw_dbg(hw, "PHY reset did not complete.\n");
1431 		return -EIO;
1432 	}
1433 
1434 	/* Get init offsets */
1435 	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1436 						      &data_offset);
1437 	if (ret_val)
1438 		return ret_val;
1439 
1440 	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1441 	data_offset++;
1442 	while (!end_data) {
1443 		/*
1444 		 * Read control word from PHY init contents offset
1445 		 */
1446 		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1447 		if (ret_val)
1448 			goto err_eeprom;
1449 		control = FIELD_GET(IXGBE_CONTROL_MASK_NL, eword);
1450 		edata = eword & IXGBE_DATA_MASK_NL;
1451 		switch (control) {
1452 		case IXGBE_DELAY_NL:
1453 			data_offset++;
1454 			hw_dbg(hw, "DELAY: %d MS\n", edata);
1455 			usleep_range(edata * 1000, edata * 2000);
1456 			break;
1457 		case IXGBE_DATA_NL:
1458 			hw_dbg(hw, "DATA:\n");
1459 			data_offset++;
1460 			ret_val = hw->eeprom.ops.read(hw, data_offset++,
1461 						      &phy_offset);
1462 			if (ret_val)
1463 				goto err_eeprom;
1464 			for (i = 0; i < edata; i++) {
1465 				ret_val = hw->eeprom.ops.read(hw, data_offset,
1466 							      &eword);
1467 				if (ret_val)
1468 					goto err_eeprom;
1469 				hw->phy.ops.write_reg(hw, phy_offset,
1470 						      MDIO_MMD_PMAPMD, eword);
1471 				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1472 				       phy_offset);
1473 				data_offset++;
1474 				phy_offset++;
1475 			}
1476 			break;
1477 		case IXGBE_CONTROL_NL:
1478 			data_offset++;
1479 			hw_dbg(hw, "CONTROL:\n");
1480 			if (edata == IXGBE_CONTROL_EOL_NL) {
1481 				hw_dbg(hw, "EOL\n");
1482 				end_data = true;
1483 			} else if (edata == IXGBE_CONTROL_SOL_NL) {
1484 				hw_dbg(hw, "SOL\n");
1485 			} else {
1486 				hw_dbg(hw, "Bad control value\n");
1487 				return -EIO;
1488 			}
1489 			break;
1490 		default:
1491 			hw_dbg(hw, "Bad control type\n");
1492 			return -EIO;
1493 		}
1494 	}
1495 
1496 	return ret_val;
1497 
1498 err_eeprom:
1499 	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1500 	return -EIO;
1501 }
1502 
1503 /**
1504  *  ixgbe_identify_module_generic - Identifies module type
1505  *  @hw: pointer to hardware structure
1506  *
1507  *  Determines HW type and calls appropriate function.
1508  **/
1509 int ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1510 {
1511 	switch (hw->mac.ops.get_media_type(hw)) {
1512 	case ixgbe_media_type_fiber:
1513 		return ixgbe_identify_sfp_module_generic(hw);
1514 	case ixgbe_media_type_fiber_qsfp:
1515 		return ixgbe_identify_qsfp_module_generic(hw);
1516 	default:
1517 		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1518 		return -ENOENT;
1519 	}
1520 
1521 	return -ENOENT;
1522 }
1523 
1524 /**
1525  *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
1526  *  @hw: pointer to hardware structure
1527  *
1528  *  Searches for and identifies the SFP module and assigns appropriate PHY type.
1529  **/
1530 int ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1531 {
1532 	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1533 	struct ixgbe_adapter *adapter = hw->back;
1534 	u8 oui_bytes[3] = {0, 0, 0};
1535 	u8 bitrate_nominal = 0;
1536 	u8 comp_codes_10g = 0;
1537 	u8 comp_codes_1g = 0;
1538 	u16 enforce_sfp = 0;
1539 	u32 vendor_oui = 0;
1540 	u8 identifier = 0;
1541 	u8 cable_tech = 0;
1542 	u8 cable_spec = 0;
1543 	int status;
1544 
1545 	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1546 		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1547 		return -ENOENT;
1548 	}
1549 
1550 	/* LAN ID is needed for sfp_type determination */
1551 	hw->mac.ops.set_lan_id(hw);
1552 
1553 	status = hw->phy.ops.read_i2c_eeprom(hw,
1554 					     IXGBE_SFF_IDENTIFIER,
1555 					     &identifier);
1556 
1557 	if (status)
1558 		goto err_read_i2c_eeprom;
1559 
1560 	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1561 		hw->phy.type = ixgbe_phy_sfp_unsupported;
1562 		return -EOPNOTSUPP;
1563 	}
1564 	status = hw->phy.ops.read_i2c_eeprom(hw,
1565 					     IXGBE_SFF_1GBE_COMP_CODES,
1566 					     &comp_codes_1g);
1567 
1568 	if (status)
1569 		goto err_read_i2c_eeprom;
1570 
1571 	status = hw->phy.ops.read_i2c_eeprom(hw,
1572 					     IXGBE_SFF_10GBE_COMP_CODES,
1573 					     &comp_codes_10g);
1574 
1575 	if (status)
1576 		goto err_read_i2c_eeprom;
1577 	status = hw->phy.ops.read_i2c_eeprom(hw,
1578 					     IXGBE_SFF_CABLE_TECHNOLOGY,
1579 					     &cable_tech);
1580 	if (status)
1581 		goto err_read_i2c_eeprom;
1582 
1583 	status = hw->phy.ops.read_i2c_eeprom(hw,
1584 					     IXGBE_SFF_BITRATE_NOMINAL,
1585 					     &bitrate_nominal);
1586 	if (status)
1587 		goto err_read_i2c_eeprom;
1588 
1589 	 /* ID Module
1590 	  * =========
1591 	  * 0   SFP_DA_CU
1592 	  * 1   SFP_SR
1593 	  * 2   SFP_LR
1594 	  * 3   SFP_DA_CORE0 - 82599-specific
1595 	  * 4   SFP_DA_CORE1 - 82599-specific
1596 	  * 5   SFP_SR/LR_CORE0 - 82599-specific
1597 	  * 6   SFP_SR/LR_CORE1 - 82599-specific
1598 	  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
1599 	  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
1600 	  * 9   SFP_1g_cu_CORE0 - 82599-specific
1601 	  * 10  SFP_1g_cu_CORE1 - 82599-specific
1602 	  * 11  SFP_1g_sx_CORE0 - 82599-specific
1603 	  * 12  SFP_1g_sx_CORE1 - 82599-specific
1604 	  */
1605 	if (hw->mac.type == ixgbe_mac_82598EB) {
1606 		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1607 			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1608 		else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1609 			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1610 		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1611 			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1612 		else
1613 			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1614 	} else {
1615 		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1616 			if (hw->bus.lan_id == 0)
1617 				hw->phy.sfp_type =
1618 					     ixgbe_sfp_type_da_cu_core0;
1619 			else
1620 				hw->phy.sfp_type =
1621 					     ixgbe_sfp_type_da_cu_core1;
1622 		} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1623 			hw->phy.ops.read_i2c_eeprom(
1624 					hw, IXGBE_SFF_CABLE_SPEC_COMP,
1625 					&cable_spec);
1626 			if (cable_spec &
1627 			    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1628 				if (hw->bus.lan_id == 0)
1629 					hw->phy.sfp_type =
1630 					ixgbe_sfp_type_da_act_lmt_core0;
1631 				else
1632 					hw->phy.sfp_type =
1633 					ixgbe_sfp_type_da_act_lmt_core1;
1634 			} else {
1635 				hw->phy.sfp_type =
1636 						ixgbe_sfp_type_unknown;
1637 			}
1638 		} else if (comp_codes_10g &
1639 			   (IXGBE_SFF_10GBASESR_CAPABLE |
1640 			    IXGBE_SFF_10GBASELR_CAPABLE)) {
1641 			if (hw->bus.lan_id == 0)
1642 				hw->phy.sfp_type =
1643 					      ixgbe_sfp_type_srlr_core0;
1644 			else
1645 				hw->phy.sfp_type =
1646 					      ixgbe_sfp_type_srlr_core1;
1647 		} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1648 			if (hw->bus.lan_id == 0)
1649 				hw->phy.sfp_type =
1650 					ixgbe_sfp_type_1g_cu_core0;
1651 			else
1652 				hw->phy.sfp_type =
1653 					ixgbe_sfp_type_1g_cu_core1;
1654 		} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1655 			if (hw->bus.lan_id == 0)
1656 				hw->phy.sfp_type =
1657 					ixgbe_sfp_type_1g_sx_core0;
1658 			else
1659 				hw->phy.sfp_type =
1660 					ixgbe_sfp_type_1g_sx_core1;
1661 		} else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1662 			if (hw->bus.lan_id == 0)
1663 				hw->phy.sfp_type =
1664 					ixgbe_sfp_type_1g_lx_core0;
1665 			else
1666 				hw->phy.sfp_type =
1667 					ixgbe_sfp_type_1g_lx_core1;
1668 		/* Support only Ethernet 1000BASE-BX10, checking the Bit Rate
1669 		 * Nominal Value as per SFF-8472 by convention 1.25 Gb/s should
1670 		 * be rounded up to 0Dh (13 in units of 100 MBd) for 1000BASE-BX
1671 		 */
1672 		} else if ((comp_codes_1g & IXGBE_SFF_BASEBX10_CAPABLE) &&
1673 			   (bitrate_nominal == 0xD)) {
1674 			if (hw->bus.lan_id == 0)
1675 				hw->phy.sfp_type =
1676 					ixgbe_sfp_type_1g_bx_core0;
1677 			else
1678 				hw->phy.sfp_type =
1679 					ixgbe_sfp_type_1g_bx_core1;
1680 		} else {
1681 			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1682 		}
1683 	}
1684 
1685 	if (hw->phy.sfp_type != stored_sfp_type)
1686 		hw->phy.sfp_setup_needed = true;
1687 
1688 	/* Determine if the SFP+ PHY is dual speed or not. */
1689 	hw->phy.multispeed_fiber = false;
1690 	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1691 	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1692 	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1693 	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1694 		hw->phy.multispeed_fiber = true;
1695 
1696 	/* Determine PHY vendor */
1697 	if (hw->phy.type != ixgbe_phy_nl) {
1698 		hw->phy.id = identifier;
1699 		status = hw->phy.ops.read_i2c_eeprom(hw,
1700 					    IXGBE_SFF_VENDOR_OUI_BYTE0,
1701 					    &oui_bytes[0]);
1702 
1703 		if (status != 0)
1704 			goto err_read_i2c_eeprom;
1705 
1706 		status = hw->phy.ops.read_i2c_eeprom(hw,
1707 					    IXGBE_SFF_VENDOR_OUI_BYTE1,
1708 					    &oui_bytes[1]);
1709 
1710 		if (status != 0)
1711 			goto err_read_i2c_eeprom;
1712 
1713 		status = hw->phy.ops.read_i2c_eeprom(hw,
1714 					    IXGBE_SFF_VENDOR_OUI_BYTE2,
1715 					    &oui_bytes[2]);
1716 
1717 		if (status != 0)
1718 			goto err_read_i2c_eeprom;
1719 
1720 		vendor_oui =
1721 		  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1722 		   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1723 		   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1724 
1725 		switch (vendor_oui) {
1726 		case IXGBE_SFF_VENDOR_OUI_TYCO:
1727 			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1728 				hw->phy.type =
1729 					    ixgbe_phy_sfp_passive_tyco;
1730 			break;
1731 		case IXGBE_SFF_VENDOR_OUI_FTL:
1732 			if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1733 				hw->phy.type = ixgbe_phy_sfp_ftl_active;
1734 			else
1735 				hw->phy.type = ixgbe_phy_sfp_ftl;
1736 			break;
1737 		case IXGBE_SFF_VENDOR_OUI_AVAGO:
1738 			hw->phy.type = ixgbe_phy_sfp_avago;
1739 			break;
1740 		case IXGBE_SFF_VENDOR_OUI_INTEL:
1741 			hw->phy.type = ixgbe_phy_sfp_intel;
1742 			break;
1743 		default:
1744 			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1745 				hw->phy.type =
1746 					 ixgbe_phy_sfp_passive_unknown;
1747 			else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1748 				hw->phy.type =
1749 					ixgbe_phy_sfp_active_unknown;
1750 			else
1751 				hw->phy.type = ixgbe_phy_sfp_unknown;
1752 			break;
1753 		}
1754 	}
1755 
1756 	/* Allow any DA cable vendor */
1757 	if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1758 	    IXGBE_SFF_DA_ACTIVE_CABLE))
1759 		return 0;
1760 
1761 	/* Verify supported 1G SFP modules */
1762 	if (comp_codes_10g == 0 &&
1763 	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1764 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1765 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1766 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1767 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1768 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
1769 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core0 ||
1770 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core1)) {
1771 		hw->phy.type = ixgbe_phy_sfp_unsupported;
1772 		return -EOPNOTSUPP;
1773 	}
1774 
1775 	/* Anything else 82598-based is supported */
1776 	if (hw->mac.type == ixgbe_mac_82598EB)
1777 		return 0;
1778 
1779 	hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1780 	if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1781 	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1782 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1783 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1784 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1785 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1786 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
1787 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core0 ||
1788 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core1)) {
1789 		/* Make sure we're a supported PHY type */
1790 		if (hw->phy.type == ixgbe_phy_sfp_intel)
1791 			return 0;
1792 		if (hw->allow_unsupported_sfp) {
1793 			e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1794 			return 0;
1795 		}
1796 		hw_dbg(hw, "SFP+ module not supported\n");
1797 		hw->phy.type = ixgbe_phy_sfp_unsupported;
1798 		return -EOPNOTSUPP;
1799 	}
1800 	return 0;
1801 
1802 err_read_i2c_eeprom:
1803 	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1804 	if (hw->phy.type != ixgbe_phy_nl) {
1805 		hw->phy.id = 0;
1806 		hw->phy.type = ixgbe_phy_unknown;
1807 	}
1808 	return -ENOENT;
1809 }
1810 
1811 /**
1812  * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1813  * @hw: pointer to hardware structure
1814  *
1815  * Searches for and identifies the QSFP module and assigns appropriate PHY type
1816  **/
1817 static int ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1818 {
1819 	struct ixgbe_adapter *adapter = hw->back;
1820 	int status;
1821 	u32 vendor_oui = 0;
1822 	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1823 	u8 identifier = 0;
1824 	u8 comp_codes_1g = 0;
1825 	u8 comp_codes_10g = 0;
1826 	u8 oui_bytes[3] = {0, 0, 0};
1827 	u16 enforce_sfp = 0;
1828 	u8 connector = 0;
1829 	u8 cable_length = 0;
1830 	u8 device_tech = 0;
1831 	bool active_cable = false;
1832 
1833 	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1834 		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1835 		return -ENOENT;
1836 	}
1837 
1838 	/* LAN ID is needed for sfp_type determination */
1839 	hw->mac.ops.set_lan_id(hw);
1840 
1841 	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1842 					     &identifier);
1843 
1844 	if (status != 0)
1845 		goto err_read_i2c_eeprom;
1846 
1847 	if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1848 		hw->phy.type = ixgbe_phy_sfp_unsupported;
1849 		return -EOPNOTSUPP;
1850 	}
1851 
1852 	hw->phy.id = identifier;
1853 
1854 	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1855 					     &comp_codes_10g);
1856 
1857 	if (status != 0)
1858 		goto err_read_i2c_eeprom;
1859 
1860 	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1861 					     &comp_codes_1g);
1862 
1863 	if (status != 0)
1864 		goto err_read_i2c_eeprom;
1865 
1866 	if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1867 		hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1868 		if (hw->bus.lan_id == 0)
1869 			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1870 		else
1871 			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1872 	} else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1873 				     IXGBE_SFF_10GBASELR_CAPABLE)) {
1874 		if (hw->bus.lan_id == 0)
1875 			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1876 		else
1877 			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1878 	} else {
1879 		if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1880 			active_cable = true;
1881 
1882 		if (!active_cable) {
1883 			/* check for active DA cables that pre-date
1884 			 * SFF-8436 v3.6
1885 			 */
1886 			hw->phy.ops.read_i2c_eeprom(hw,
1887 					IXGBE_SFF_QSFP_CONNECTOR,
1888 					&connector);
1889 
1890 			hw->phy.ops.read_i2c_eeprom(hw,
1891 					IXGBE_SFF_QSFP_CABLE_LENGTH,
1892 					&cable_length);
1893 
1894 			hw->phy.ops.read_i2c_eeprom(hw,
1895 					IXGBE_SFF_QSFP_DEVICE_TECH,
1896 					&device_tech);
1897 
1898 			if ((connector ==
1899 				     IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1900 			    (cable_length > 0) &&
1901 			    ((device_tech >> 4) ==
1902 				     IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1903 				active_cable = true;
1904 		}
1905 
1906 		if (active_cable) {
1907 			hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1908 			if (hw->bus.lan_id == 0)
1909 				hw->phy.sfp_type =
1910 						ixgbe_sfp_type_da_act_lmt_core0;
1911 			else
1912 				hw->phy.sfp_type =
1913 						ixgbe_sfp_type_da_act_lmt_core1;
1914 		} else {
1915 			/* unsupported module type */
1916 			hw->phy.type = ixgbe_phy_sfp_unsupported;
1917 			return -EOPNOTSUPP;
1918 		}
1919 	}
1920 
1921 	if (hw->phy.sfp_type != stored_sfp_type)
1922 		hw->phy.sfp_setup_needed = true;
1923 
1924 	/* Determine if the QSFP+ PHY is dual speed or not. */
1925 	hw->phy.multispeed_fiber = false;
1926 	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1927 	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1928 	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1929 	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1930 		hw->phy.multispeed_fiber = true;
1931 
1932 	/* Determine PHY vendor for optical modules */
1933 	if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1934 			      IXGBE_SFF_10GBASELR_CAPABLE)) {
1935 		status = hw->phy.ops.read_i2c_eeprom(hw,
1936 					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1937 					&oui_bytes[0]);
1938 
1939 		if (status != 0)
1940 			goto err_read_i2c_eeprom;
1941 
1942 		status = hw->phy.ops.read_i2c_eeprom(hw,
1943 					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1944 					&oui_bytes[1]);
1945 
1946 		if (status != 0)
1947 			goto err_read_i2c_eeprom;
1948 
1949 		status = hw->phy.ops.read_i2c_eeprom(hw,
1950 					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1951 					&oui_bytes[2]);
1952 
1953 		if (status != 0)
1954 			goto err_read_i2c_eeprom;
1955 
1956 		vendor_oui =
1957 			((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1958 			 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1959 			 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1960 
1961 		if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1962 			hw->phy.type = ixgbe_phy_qsfp_intel;
1963 		else
1964 			hw->phy.type = ixgbe_phy_qsfp_unknown;
1965 
1966 		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1967 		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1968 			/* Make sure we're a supported PHY type */
1969 			if (hw->phy.type == ixgbe_phy_qsfp_intel)
1970 				return 0;
1971 			if (hw->allow_unsupported_sfp) {
1972 				e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1973 				return 0;
1974 			}
1975 			hw_dbg(hw, "QSFP module not supported\n");
1976 			hw->phy.type = ixgbe_phy_sfp_unsupported;
1977 			return -EOPNOTSUPP;
1978 		}
1979 		return 0;
1980 	}
1981 	return 0;
1982 
1983 err_read_i2c_eeprom:
1984 	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1985 	hw->phy.id = 0;
1986 	hw->phy.type = ixgbe_phy_unknown;
1987 
1988 	return -ENOENT;
1989 }
1990 
1991 /**
1992  *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1993  *  @hw: pointer to hardware structure
1994  *  @list_offset: offset to the SFP ID list
1995  *  @data_offset: offset to the SFP data block
1996  *
1997  *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1998  *  so it returns the offsets to the phy init sequence block.
1999  **/
2000 int ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
2001 					u16 *list_offset,
2002 					u16 *data_offset)
2003 {
2004 	u16 sfp_id;
2005 	u16 sfp_type = hw->phy.sfp_type;
2006 
2007 	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
2008 		return -EOPNOTSUPP;
2009 
2010 	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2011 		return -ENOENT;
2012 
2013 	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
2014 	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
2015 		return -EOPNOTSUPP;
2016 
2017 	/*
2018 	 * Limiting active cables and 1G Phys must be initialized as
2019 	 * SR modules
2020 	 */
2021 	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
2022 	    sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
2023 	    sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
2024 	    sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
2025 	    sfp_type == ixgbe_sfp_type_1g_bx_core0)
2026 		sfp_type = ixgbe_sfp_type_srlr_core0;
2027 	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
2028 		 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
2029 		 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
2030 		 sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
2031 		 sfp_type == ixgbe_sfp_type_1g_bx_core1)
2032 		sfp_type = ixgbe_sfp_type_srlr_core1;
2033 
2034 	/* Read offset to PHY init contents */
2035 	if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
2036 		hw_err(hw, "eeprom read at %d failed\n",
2037 		       IXGBE_PHY_INIT_OFFSET_NL);
2038 		return -EIO;
2039 	}
2040 
2041 	if ((!*list_offset) || (*list_offset == 0xFFFF))
2042 		return -EIO;
2043 
2044 	/* Shift offset to first ID word */
2045 	(*list_offset)++;
2046 
2047 	/*
2048 	 * Find the matching SFP ID in the EEPROM
2049 	 * and program the init sequence
2050 	 */
2051 	if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2052 		goto err_phy;
2053 
2054 	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
2055 		if (sfp_id == sfp_type) {
2056 			(*list_offset)++;
2057 			if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
2058 				goto err_phy;
2059 			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
2060 				hw_dbg(hw, "SFP+ module not supported\n");
2061 				return -EOPNOTSUPP;
2062 			} else {
2063 				break;
2064 			}
2065 		} else {
2066 			(*list_offset) += 2;
2067 			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2068 				goto err_phy;
2069 		}
2070 	}
2071 
2072 	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
2073 		hw_dbg(hw, "No matching SFP+ module found\n");
2074 		return -EOPNOTSUPP;
2075 	}
2076 
2077 	return 0;
2078 
2079 err_phy:
2080 	hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
2081 	return -EIO;
2082 }
2083 
2084 /**
2085  *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
2086  *  @hw: pointer to hardware structure
2087  *  @byte_offset: EEPROM byte offset to read
2088  *  @eeprom_data: value read
2089  *
2090  *  Performs byte read operation to SFP module's EEPROM over I2C interface.
2091  **/
2092 int ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2093 				  u8 *eeprom_data)
2094 {
2095 	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2096 					 IXGBE_I2C_EEPROM_DEV_ADDR,
2097 					 eeprom_data);
2098 }
2099 
2100 /**
2101  *  ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
2102  *  @hw: pointer to hardware structure
2103  *  @byte_offset: byte offset at address 0xA2
2104  *  @sff8472_data: value read
2105  *
2106  *  Performs byte read operation to SFP module's SFF-8472 data over I2C
2107  **/
2108 int ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
2109 				   u8 *sff8472_data)
2110 {
2111 	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2112 					 IXGBE_I2C_EEPROM_DEV_ADDR2,
2113 					 sff8472_data);
2114 }
2115 
2116 /**
2117  *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
2118  *  @hw: pointer to hardware structure
2119  *  @byte_offset: EEPROM byte offset to write
2120  *  @eeprom_data: value to write
2121  *
2122  *  Performs byte write operation to SFP module's EEPROM over I2C interface.
2123  **/
2124 int ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2125 				   u8 eeprom_data)
2126 {
2127 	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
2128 					  IXGBE_I2C_EEPROM_DEV_ADDR,
2129 					  eeprom_data);
2130 }
2131 
2132 /**
2133  * ixgbe_is_sfp_probe - Returns true if SFP is being detected
2134  * @hw: pointer to hardware structure
2135  * @offset: eeprom offset to be read
2136  * @addr: I2C address to be read
2137  */
2138 static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
2139 {
2140 	if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
2141 	    offset == IXGBE_SFF_IDENTIFIER &&
2142 	    hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2143 		return true;
2144 	return false;
2145 }
2146 
2147 /**
2148  *  ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
2149  *  @hw: pointer to hardware structure
2150  *  @byte_offset: byte offset to read
2151  *  @dev_addr: device address
2152  *  @data: value read
2153  *  @lock: true if to take and release semaphore
2154  *
2155  *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2156  *  a specified device address.
2157  */
2158 static int ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2159 					   u8 dev_addr, u8 *data, bool lock)
2160 {
2161 	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2162 	u32 max_retry = 10;
2163 	bool nack = true;
2164 	u32 retry = 0;
2165 	int status;
2166 
2167 	if (hw->mac.type >= ixgbe_mac_X550)
2168 		max_retry = 3;
2169 	if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
2170 		max_retry = IXGBE_SFP_DETECT_RETRIES;
2171 
2172 	*data = 0;
2173 
2174 	do {
2175 		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2176 			return -EBUSY;
2177 
2178 		ixgbe_i2c_start(hw);
2179 
2180 		/* Device Address and write indication */
2181 		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2182 		if (status != 0)
2183 			goto fail;
2184 
2185 		status = ixgbe_get_i2c_ack(hw);
2186 		if (status != 0)
2187 			goto fail;
2188 
2189 		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2190 		if (status != 0)
2191 			goto fail;
2192 
2193 		status = ixgbe_get_i2c_ack(hw);
2194 		if (status != 0)
2195 			goto fail;
2196 
2197 		ixgbe_i2c_start(hw);
2198 
2199 		/* Device Address and read indication */
2200 		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
2201 		if (status != 0)
2202 			goto fail;
2203 
2204 		status = ixgbe_get_i2c_ack(hw);
2205 		if (status != 0)
2206 			goto fail;
2207 
2208 		status = ixgbe_clock_in_i2c_byte(hw, data);
2209 		if (status != 0)
2210 			goto fail;
2211 
2212 		status = ixgbe_clock_out_i2c_bit(hw, nack);
2213 		if (status != 0)
2214 			goto fail;
2215 
2216 		ixgbe_i2c_stop(hw);
2217 		if (lock)
2218 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2219 		return 0;
2220 
2221 fail:
2222 		ixgbe_i2c_bus_clear(hw);
2223 		if (lock) {
2224 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2225 			msleep(100);
2226 		}
2227 		retry++;
2228 		if (retry < max_retry)
2229 			hw_dbg(hw, "I2C byte read error - Retrying.\n");
2230 		else
2231 			hw_dbg(hw, "I2C byte read error.\n");
2232 
2233 	} while (retry < max_retry);
2234 
2235 	return status;
2236 }
2237 
2238 /**
2239  *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
2240  *  @hw: pointer to hardware structure
2241  *  @byte_offset: byte offset to read
2242  *  @dev_addr: device address
2243  *  @data: value read
2244  *
2245  *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2246  *  a specified device address.
2247  */
2248 int ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2249 				u8 dev_addr, u8 *data)
2250 {
2251 	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2252 					       data, true);
2253 }
2254 
2255 /**
2256  *  ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
2257  *  @hw: pointer to hardware structure
2258  *  @byte_offset: byte offset to read
2259  *  @dev_addr: device address
2260  *  @data: value read
2261  *
2262  *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2263  *  a specified device address.
2264  */
2265 int ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2266 					 u8 dev_addr, u8 *data)
2267 {
2268 	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2269 					       data, false);
2270 }
2271 
2272 /**
2273  *  ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
2274  *  @hw: pointer to hardware structure
2275  *  @byte_offset: byte offset to write
2276  *  @dev_addr: device address
2277  *  @data: value to write
2278  *  @lock: true if to take and release semaphore
2279  *
2280  *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2281  *  a specified device address.
2282  */
2283 static int ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2284 					    u8 dev_addr, u8 data, bool lock)
2285 {
2286 	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2287 	u32 max_retry = 1;
2288 	u32 retry = 0;
2289 	int status;
2290 
2291 	if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2292 		return -EBUSY;
2293 
2294 	do {
2295 		ixgbe_i2c_start(hw);
2296 
2297 		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2298 		if (status != 0)
2299 			goto fail;
2300 
2301 		status = ixgbe_get_i2c_ack(hw);
2302 		if (status != 0)
2303 			goto fail;
2304 
2305 		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2306 		if (status != 0)
2307 			goto fail;
2308 
2309 		status = ixgbe_get_i2c_ack(hw);
2310 		if (status != 0)
2311 			goto fail;
2312 
2313 		status = ixgbe_clock_out_i2c_byte(hw, data);
2314 		if (status != 0)
2315 			goto fail;
2316 
2317 		status = ixgbe_get_i2c_ack(hw);
2318 		if (status != 0)
2319 			goto fail;
2320 
2321 		ixgbe_i2c_stop(hw);
2322 		if (lock)
2323 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2324 		return 0;
2325 
2326 fail:
2327 		ixgbe_i2c_bus_clear(hw);
2328 		retry++;
2329 		if (retry < max_retry)
2330 			hw_dbg(hw, "I2C byte write error - Retrying.\n");
2331 		else
2332 			hw_dbg(hw, "I2C byte write error.\n");
2333 	} while (retry < max_retry);
2334 
2335 	if (lock)
2336 		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2337 
2338 	return status;
2339 }
2340 
2341 /**
2342  *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
2343  *  @hw: pointer to hardware structure
2344  *  @byte_offset: byte offset to write
2345  *  @dev_addr: device address
2346  *  @data: value to write
2347  *
2348  *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2349  *  a specified device address.
2350  */
2351 int ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2352 				 u8 dev_addr, u8 data)
2353 {
2354 	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2355 						data, true);
2356 }
2357 
2358 /**
2359  *  ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
2360  *  @hw: pointer to hardware structure
2361  *  @byte_offset: byte offset to write
2362  *  @dev_addr: device address
2363  *  @data: value to write
2364  *
2365  *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2366  *  a specified device address.
2367  */
2368 int ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2369 					  u8 dev_addr, u8 data)
2370 {
2371 	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2372 						data, false);
2373 }
2374 
2375 /**
2376  *  ixgbe_i2c_start - Sets I2C start condition
2377  *  @hw: pointer to hardware structure
2378  *
2379  *  Sets I2C start condition (High -> Low on SDA while SCL is High)
2380  *  Set bit-bang mode on X550 hardware.
2381  **/
2382 static void ixgbe_i2c_start(struct ixgbe_hw *hw)
2383 {
2384 	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2385 
2386 	i2cctl |= IXGBE_I2C_BB_EN(hw);
2387 
2388 	/* Start condition must begin with data and clock high */
2389 	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2390 	ixgbe_raise_i2c_clk(hw, &i2cctl);
2391 
2392 	/* Setup time for start condition (4.7us) */
2393 	udelay(IXGBE_I2C_T_SU_STA);
2394 
2395 	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2396 
2397 	/* Hold time for start condition (4us) */
2398 	udelay(IXGBE_I2C_T_HD_STA);
2399 
2400 	ixgbe_lower_i2c_clk(hw, &i2cctl);
2401 
2402 	/* Minimum low period of clock is 4.7 us */
2403 	udelay(IXGBE_I2C_T_LOW);
2404 
2405 }
2406 
2407 /**
2408  *  ixgbe_i2c_stop - Sets I2C stop condition
2409  *  @hw: pointer to hardware structure
2410  *
2411  *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
2412  *  Disables bit-bang mode and negates data output enable on X550
2413  *  hardware.
2414  **/
2415 static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
2416 {
2417 	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2418 	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2419 	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2420 	u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
2421 
2422 	/* Stop condition must begin with data low and clock high */
2423 	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2424 	ixgbe_raise_i2c_clk(hw, &i2cctl);
2425 
2426 	/* Setup time for stop condition (4us) */
2427 	udelay(IXGBE_I2C_T_SU_STO);
2428 
2429 	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2430 
2431 	/* bus free time between stop and start (4.7us)*/
2432 	udelay(IXGBE_I2C_T_BUF);
2433 
2434 	if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2435 		i2cctl &= ~bb_en_bit;
2436 		i2cctl |= data_oe_bit | clk_oe_bit;
2437 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2438 		IXGBE_WRITE_FLUSH(hw);
2439 	}
2440 }
2441 
2442 /**
2443  *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2444  *  @hw: pointer to hardware structure
2445  *  @data: data byte to clock in
2446  *
2447  *  Clocks in one byte data via I2C data/clock
2448  **/
2449 static int ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2450 {
2451 	bool bit = false;
2452 	int i;
2453 
2454 	*data = 0;
2455 	for (i = 7; i >= 0; i--) {
2456 		ixgbe_clock_in_i2c_bit(hw, &bit);
2457 		*data |= bit << i;
2458 	}
2459 
2460 	return 0;
2461 }
2462 
2463 /**
2464  *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2465  *  @hw: pointer to hardware structure
2466  *  @data: data byte clocked out
2467  *
2468  *  Clocks out one byte data via I2C data/clock
2469  **/
2470 static int ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2471 {
2472 	bool bit = false;
2473 	int status;
2474 	u32 i2cctl;
2475 	int i;
2476 
2477 	for (i = 7; i >= 0; i--) {
2478 		bit = (data >> i) & 0x1;
2479 		status = ixgbe_clock_out_i2c_bit(hw, bit);
2480 
2481 		if (status != 0)
2482 			break;
2483 	}
2484 
2485 	/* Release SDA line (set high) */
2486 	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2487 	i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2488 	i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2489 	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2490 	IXGBE_WRITE_FLUSH(hw);
2491 
2492 	return status;
2493 }
2494 
2495 /**
2496  *  ixgbe_get_i2c_ack - Polls for I2C ACK
2497  *  @hw: pointer to hardware structure
2498  *
2499  *  Clocks in/out one bit via I2C data/clock
2500  **/
2501 static int ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2502 {
2503 	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2504 	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2505 	u32 timeout = 10;
2506 	bool ack = true;
2507 	int status = 0;
2508 	u32 i = 0;
2509 
2510 	if (data_oe_bit) {
2511 		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2512 		i2cctl |= data_oe_bit;
2513 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2514 		IXGBE_WRITE_FLUSH(hw);
2515 	}
2516 	ixgbe_raise_i2c_clk(hw, &i2cctl);
2517 
2518 	/* Minimum high period of clock is 4us */
2519 	udelay(IXGBE_I2C_T_HIGH);
2520 
2521 	/* Poll for ACK.  Note that ACK in I2C spec is
2522 	 * transition from 1 to 0 */
2523 	for (i = 0; i < timeout; i++) {
2524 		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2525 		ack = ixgbe_get_i2c_data(hw, &i2cctl);
2526 
2527 		udelay(1);
2528 		if (ack == 0)
2529 			break;
2530 	}
2531 
2532 	if (ack == 1) {
2533 		hw_dbg(hw, "I2C ack was not received.\n");
2534 		status = -EIO;
2535 	}
2536 
2537 	ixgbe_lower_i2c_clk(hw, &i2cctl);
2538 
2539 	/* Minimum low period of clock is 4.7 us */
2540 	udelay(IXGBE_I2C_T_LOW);
2541 
2542 	return status;
2543 }
2544 
2545 /**
2546  *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2547  *  @hw: pointer to hardware structure
2548  *  @data: read data value
2549  *
2550  *  Clocks in one bit via I2C data/clock
2551  **/
2552 static int ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2553 {
2554 	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2555 	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2556 
2557 	if (data_oe_bit) {
2558 		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2559 		i2cctl |= data_oe_bit;
2560 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2561 		IXGBE_WRITE_FLUSH(hw);
2562 	}
2563 	ixgbe_raise_i2c_clk(hw, &i2cctl);
2564 
2565 	/* Minimum high period of clock is 4us */
2566 	udelay(IXGBE_I2C_T_HIGH);
2567 
2568 	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2569 	*data = ixgbe_get_i2c_data(hw, &i2cctl);
2570 
2571 	ixgbe_lower_i2c_clk(hw, &i2cctl);
2572 
2573 	/* Minimum low period of clock is 4.7 us */
2574 	udelay(IXGBE_I2C_T_LOW);
2575 
2576 	return 0;
2577 }
2578 
2579 /**
2580  *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2581  *  @hw: pointer to hardware structure
2582  *  @data: data value to write
2583  *
2584  *  Clocks out one bit via I2C data/clock
2585  **/
2586 static int ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2587 {
2588 	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2589 	int status;
2590 
2591 	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2592 	if (status == 0) {
2593 		ixgbe_raise_i2c_clk(hw, &i2cctl);
2594 
2595 		/* Minimum high period of clock is 4us */
2596 		udelay(IXGBE_I2C_T_HIGH);
2597 
2598 		ixgbe_lower_i2c_clk(hw, &i2cctl);
2599 
2600 		/* Minimum low period of clock is 4.7 us.
2601 		 * This also takes care of the data hold time.
2602 		 */
2603 		udelay(IXGBE_I2C_T_LOW);
2604 	} else {
2605 		hw_dbg(hw, "I2C data was not set to %X\n", data);
2606 		return -EIO;
2607 	}
2608 
2609 	return 0;
2610 }
2611 /**
2612  *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2613  *  @hw: pointer to hardware structure
2614  *  @i2cctl: Current value of I2CCTL register
2615  *
2616  *  Raises the I2C clock line '0'->'1'
2617  *  Negates the I2C clock output enable on X550 hardware.
2618  **/
2619 static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2620 {
2621 	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2622 	u32 i = 0;
2623 	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2624 	u32 i2cctl_r = 0;
2625 
2626 	if (clk_oe_bit) {
2627 		*i2cctl |= clk_oe_bit;
2628 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2629 	}
2630 
2631 	for (i = 0; i < timeout; i++) {
2632 		*i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2633 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2634 		IXGBE_WRITE_FLUSH(hw);
2635 		/* SCL rise time (1000ns) */
2636 		udelay(IXGBE_I2C_T_RISE);
2637 
2638 		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2639 		if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2640 			break;
2641 	}
2642 }
2643 
2644 /**
2645  *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2646  *  @hw: pointer to hardware structure
2647  *  @i2cctl: Current value of I2CCTL register
2648  *
2649  *  Lowers the I2C clock line '1'->'0'
2650  *  Asserts the I2C clock output enable on X550 hardware.
2651  **/
2652 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2653 {
2654 
2655 	*i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2656 	*i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2657 
2658 	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2659 	IXGBE_WRITE_FLUSH(hw);
2660 
2661 	/* SCL fall time (300ns) */
2662 	udelay(IXGBE_I2C_T_FALL);
2663 }
2664 
2665 /**
2666  *  ixgbe_set_i2c_data - Sets the I2C data bit
2667  *  @hw: pointer to hardware structure
2668  *  @i2cctl: Current value of I2CCTL register
2669  *  @data: I2C data value (0 or 1) to set
2670  *
2671  *  Sets the I2C data bit
2672  *  Asserts the I2C data output enable on X550 hardware.
2673  **/
2674 static int ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2675 {
2676 	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2677 
2678 	if (data)
2679 		*i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2680 	else
2681 		*i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2682 	*i2cctl &= ~data_oe_bit;
2683 
2684 	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2685 	IXGBE_WRITE_FLUSH(hw);
2686 
2687 	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2688 	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2689 
2690 	if (!data)	/* Can't verify data in this case */
2691 		return 0;
2692 	if (data_oe_bit) {
2693 		*i2cctl |= data_oe_bit;
2694 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2695 		IXGBE_WRITE_FLUSH(hw);
2696 	}
2697 
2698 	/* Verify data was set correctly */
2699 	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2700 	if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
2701 		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2702 		return -EIO;
2703 	}
2704 
2705 	return 0;
2706 }
2707 
2708 /**
2709  *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
2710  *  @hw: pointer to hardware structure
2711  *  @i2cctl: Current value of I2CCTL register
2712  *
2713  *  Returns the I2C data bit value
2714  *  Negates the I2C data output enable on X550 hardware.
2715  **/
2716 static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2717 {
2718 	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2719 
2720 	if (data_oe_bit) {
2721 		*i2cctl |= data_oe_bit;
2722 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2723 		IXGBE_WRITE_FLUSH(hw);
2724 		udelay(IXGBE_I2C_T_FALL);
2725 	}
2726 
2727 	if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2728 		return true;
2729 	return false;
2730 }
2731 
2732 /**
2733  *  ixgbe_i2c_bus_clear - Clears the I2C bus
2734  *  @hw: pointer to hardware structure
2735  *
2736  *  Clears the I2C bus by sending nine clock pulses.
2737  *  Used when data line is stuck low.
2738  **/
2739 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2740 {
2741 	u32 i2cctl;
2742 	u32 i;
2743 
2744 	ixgbe_i2c_start(hw);
2745 	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2746 
2747 	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2748 
2749 	for (i = 0; i < 9; i++) {
2750 		ixgbe_raise_i2c_clk(hw, &i2cctl);
2751 
2752 		/* Min high period of clock is 4us */
2753 		udelay(IXGBE_I2C_T_HIGH);
2754 
2755 		ixgbe_lower_i2c_clk(hw, &i2cctl);
2756 
2757 		/* Min low period of clock is 4.7us*/
2758 		udelay(IXGBE_I2C_T_LOW);
2759 	}
2760 
2761 	ixgbe_i2c_start(hw);
2762 
2763 	/* Put the i2c bus back to default state */
2764 	ixgbe_i2c_stop(hw);
2765 }
2766 
2767 /**
2768  *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2769  *  @hw: pointer to hardware structure
2770  *
2771  *  Checks if the LASI temp alarm status was triggered due to overtemp
2772  *
2773  *  Return true when an overtemp event detected, otherwise false.
2774  **/
2775 bool ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2776 {
2777 	u16 phy_data = 0;
2778 	u32 status;
2779 
2780 	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2781 		return false;
2782 
2783 	/* Check that the LASI temp alarm status was triggered */
2784 	status = hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2785 				      MDIO_MMD_PMAPMD, &phy_data);
2786 	if (status)
2787 		return false;
2788 
2789 	return !!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM);
2790 }
2791 
2792 /** ixgbe_set_copper_phy_power - Control power for copper phy
2793  *  @hw: pointer to hardware structure
2794  *  @on: true for on, false for off
2795  **/
2796 int ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2797 {
2798 	u32 status;
2799 	u16 reg;
2800 
2801 	/* Bail if we don't have copper phy */
2802 	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2803 		return 0;
2804 
2805 	if (!on && ixgbe_mng_present(hw))
2806 		return 0;
2807 
2808 	status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, &reg);
2809 	if (status)
2810 		return status;
2811 
2812 	if (on) {
2813 		reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2814 	} else {
2815 		if (ixgbe_check_reset_blocked(hw))
2816 			return 0;
2817 		reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2818 	}
2819 
2820 	status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg);
2821 	return status;
2822 }
2823