xref: /linux/drivers/net/ethernet/intel/ixgbe/ixgbe_phy.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2024 Intel Corporation. */
3 
4 #include <linux/pci.h>
5 #include <linux/delay.h>
6 #include <linux/iopoll.h>
7 #include <linux/sched.h>
8 
9 #include "ixgbe.h"
10 #include "ixgbe_phy.h"
11 
12 static void ixgbe_i2c_start(struct ixgbe_hw *hw);
13 static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
14 static int ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
15 static int ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
16 static int ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
17 static int ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
18 static int ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
19 static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
20 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
21 static int ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
22 static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
23 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
24 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
25 static int ixgbe_get_phy_id(struct ixgbe_hw *hw);
26 static int ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
27 
28 /**
29  *  ixgbe_out_i2c_byte_ack - Send I2C byte with ack
30  *  @hw: pointer to the hardware structure
31  *  @byte: byte to send
32  *
33  *  Returns an error code on error.
34  **/
35 static int ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
36 {
37 	int status;
38 
39 	status = ixgbe_clock_out_i2c_byte(hw, byte);
40 	if (status)
41 		return status;
42 	return ixgbe_get_i2c_ack(hw);
43 }
44 
45 /**
46  *  ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
47  *  @hw: pointer to the hardware structure
48  *  @byte: pointer to a u8 to receive the byte
49  *
50  *  Returns an error code on error.
51  **/
52 static int ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
53 {
54 	int status;
55 
56 	status = ixgbe_clock_in_i2c_byte(hw, byte);
57 	if (status)
58 		return status;
59 	/* ACK */
60 	return ixgbe_clock_out_i2c_bit(hw, false);
61 }
62 
63 /**
64  *  ixgbe_ones_comp_byte_add - Perform one's complement addition
65  *  @add1: addend 1
66  *  @add2: addend 2
67  *
68  *  Returns one's complement 8-bit sum.
69  **/
70 static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
71 {
72 	u16 sum = add1 + add2;
73 
74 	sum = (sum & 0xFF) + (sum >> 8);
75 	return sum & 0xFF;
76 }
77 
78 /**
79  *  ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
80  *  @hw: pointer to the hardware structure
81  *  @addr: I2C bus address to read from
82  *  @reg: I2C device register to read from
83  *  @val: pointer to location to receive read value
84  *  @lock: true if to take and release semaphore
85  *
86  *  Returns an error code on error.
87  */
88 int ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
89 					u16 reg, u16 *val, bool lock)
90 {
91 	u32 swfw_mask = hw->phy.phy_semaphore_mask;
92 	int max_retry = 3;
93 	int retry = 0;
94 	u8 csum_byte;
95 	u8 high_bits;
96 	u8 low_bits;
97 	u8 reg_high;
98 	u8 csum;
99 
100 	reg_high = ((reg >> 7) & 0xFE) | 1;     /* Indicate read combined */
101 	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
102 	csum = ~csum;
103 	do {
104 		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
105 			return -EBUSY;
106 		ixgbe_i2c_start(hw);
107 		/* Device Address and write indication */
108 		if (ixgbe_out_i2c_byte_ack(hw, addr))
109 			goto fail;
110 		/* Write bits 14:8 */
111 		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
112 			goto fail;
113 		/* Write bits 7:0 */
114 		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
115 			goto fail;
116 		/* Write csum */
117 		if (ixgbe_out_i2c_byte_ack(hw, csum))
118 			goto fail;
119 		/* Re-start condition */
120 		ixgbe_i2c_start(hw);
121 		/* Device Address and read indication */
122 		if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
123 			goto fail;
124 		/* Get upper bits */
125 		if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
126 			goto fail;
127 		/* Get low bits */
128 		if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
129 			goto fail;
130 		/* Get csum */
131 		if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
132 			goto fail;
133 		/* NACK */
134 		if (ixgbe_clock_out_i2c_bit(hw, false))
135 			goto fail;
136 		ixgbe_i2c_stop(hw);
137 		if (lock)
138 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
139 		*val = (high_bits << 8) | low_bits;
140 		return 0;
141 
142 fail:
143 		ixgbe_i2c_bus_clear(hw);
144 		if (lock)
145 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
146 		retry++;
147 		if (retry < max_retry)
148 			hw_dbg(hw, "I2C byte read combined error - Retry.\n");
149 		else
150 			hw_dbg(hw, "I2C byte read combined error.\n");
151 	} while (retry < max_retry);
152 
153 	return -EIO;
154 }
155 
156 /**
157  *  ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
158  *  @hw: pointer to the hardware structure
159  *  @addr: I2C bus address to write to
160  *  @reg: I2C device register to write to
161  *  @val: value to write
162  *  @lock: true if to take and release semaphore
163  *
164  *  Returns an error code on error.
165  */
166 int ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
167 					 u16 reg, u16 val, bool lock)
168 {
169 	u32 swfw_mask = hw->phy.phy_semaphore_mask;
170 	int max_retry = 1;
171 	int retry = 0;
172 	u8 reg_high;
173 	u8 csum;
174 
175 	reg_high = (reg >> 7) & 0xFE;   /* Indicate write combined */
176 	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
177 	csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
178 	csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
179 	csum = ~csum;
180 	do {
181 		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
182 			return -EBUSY;
183 		ixgbe_i2c_start(hw);
184 		/* Device Address and write indication */
185 		if (ixgbe_out_i2c_byte_ack(hw, addr))
186 			goto fail;
187 		/* Write bits 14:8 */
188 		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
189 			goto fail;
190 		/* Write bits 7:0 */
191 		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
192 			goto fail;
193 		/* Write data 15:8 */
194 		if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
195 			goto fail;
196 		/* Write data 7:0 */
197 		if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
198 			goto fail;
199 		/* Write csum */
200 		if (ixgbe_out_i2c_byte_ack(hw, csum))
201 			goto fail;
202 		ixgbe_i2c_stop(hw);
203 		if (lock)
204 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
205 		return 0;
206 
207 fail:
208 		ixgbe_i2c_bus_clear(hw);
209 		if (lock)
210 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
211 		retry++;
212 		if (retry < max_retry)
213 			hw_dbg(hw, "I2C byte write combined error - Retry.\n");
214 		else
215 			hw_dbg(hw, "I2C byte write combined error.\n");
216 	} while (retry < max_retry);
217 
218 	return -EIO;
219 }
220 
221 /**
222  *  ixgbe_probe_phy - Probe a single address for a PHY
223  *  @hw: pointer to hardware structure
224  *  @phy_addr: PHY address to probe
225  *
226  *  Returns true if PHY found
227  **/
228 static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr)
229 {
230 	u16 ext_ability = 0;
231 
232 	hw->phy.mdio.prtad = phy_addr;
233 	if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0)
234 		return false;
235 
236 	if (ixgbe_get_phy_id(hw))
237 		return false;
238 
239 	hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id);
240 
241 	if (hw->phy.type == ixgbe_phy_unknown) {
242 		hw->phy.ops.read_reg(hw,
243 				     MDIO_PMA_EXTABLE,
244 				     MDIO_MMD_PMAPMD,
245 				     &ext_ability);
246 		if (ext_ability &
247 		    (MDIO_PMA_EXTABLE_10GBT |
248 		     MDIO_PMA_EXTABLE_1000BT))
249 			hw->phy.type = ixgbe_phy_cu_unknown;
250 		else
251 			hw->phy.type = ixgbe_phy_generic;
252 	}
253 
254 	return true;
255 }
256 
257 /**
258  *  ixgbe_identify_phy_generic - Get physical layer module
259  *  @hw: pointer to hardware structure
260  *
261  *  Determines the physical layer module found on the current adapter.
262  **/
263 int ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
264 {
265 	u32 status = -EFAULT;
266 	u32 phy_addr;
267 
268 	if (!hw->phy.phy_semaphore_mask) {
269 		if (hw->bus.lan_id)
270 			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
271 		else
272 			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
273 	}
274 
275 	if (hw->phy.type != ixgbe_phy_unknown)
276 		return 0;
277 
278 	if (hw->phy.nw_mng_if_sel) {
279 		phy_addr = FIELD_GET(IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD,
280 				     hw->phy.nw_mng_if_sel);
281 		if (ixgbe_probe_phy(hw, phy_addr))
282 			return 0;
283 		else
284 			return -EFAULT;
285 	}
286 
287 	for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
288 		if (ixgbe_probe_phy(hw, phy_addr)) {
289 			status = 0;
290 			break;
291 		}
292 	}
293 
294 	/* Certain media types do not have a phy so an address will not
295 	 * be found and the code will take this path.  Caller has to
296 	 * decide if it is an error or not.
297 	 */
298 	if (status)
299 		hw->phy.mdio.prtad = MDIO_PRTAD_NONE;
300 
301 	return status;
302 }
303 
304 /**
305  * ixgbe_check_reset_blocked - check status of MNG FW veto bit
306  * @hw: pointer to the hardware structure
307  *
308  * This function checks the MMNGC.MNG_VETO bit to see if there are
309  * any constraints on link from manageability.  For MAC's that don't
310  * have this bit just return false since the link can not be blocked
311  * via this method.
312  **/
313 bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
314 {
315 	u32 mmngc;
316 
317 	/* If we don't have this bit, it can't be blocking */
318 	if (hw->mac.type == ixgbe_mac_82598EB)
319 		return false;
320 
321 	mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
322 	if (mmngc & IXGBE_MMNGC_MNG_VETO) {
323 		hw_dbg(hw, "MNG_VETO bit detected.\n");
324 		return true;
325 	}
326 
327 	return false;
328 }
329 
330 /**
331  *  ixgbe_get_phy_id - Get the phy type
332  *  @hw: pointer to hardware structure
333  *
334  **/
335 static int ixgbe_get_phy_id(struct ixgbe_hw *hw)
336 {
337 	u16 phy_id_high = 0;
338 	u16 phy_id_low = 0;
339 	int status;
340 
341 	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
342 				      &phy_id_high);
343 
344 	if (!status) {
345 		hw->phy.id = (u32)(phy_id_high << 16);
346 		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
347 					      &phy_id_low);
348 		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
349 		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
350 	}
351 	return status;
352 }
353 
354 /**
355  *  ixgbe_get_phy_type_from_id - Get the phy type
356  *  @phy_id: hardware phy id
357  *
358  **/
359 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
360 {
361 	enum ixgbe_phy_type phy_type;
362 
363 	switch (phy_id) {
364 	case TN1010_PHY_ID:
365 		phy_type = ixgbe_phy_tn;
366 		break;
367 	case X550_PHY_ID2:
368 	case X550_PHY_ID3:
369 	case X540_PHY_ID:
370 		phy_type = ixgbe_phy_aq;
371 		break;
372 	case QT2022_PHY_ID:
373 		phy_type = ixgbe_phy_qt;
374 		break;
375 	case ATH_PHY_ID:
376 		phy_type = ixgbe_phy_nl;
377 		break;
378 	case X557_PHY_ID:
379 	case X557_PHY_ID2:
380 		phy_type = ixgbe_phy_x550em_ext_t;
381 		break;
382 	case BCM54616S_E_PHY_ID:
383 		phy_type = ixgbe_phy_ext_1g_t;
384 		break;
385 	default:
386 		phy_type = ixgbe_phy_unknown;
387 		break;
388 	}
389 
390 	return phy_type;
391 }
392 
393 /**
394  *  ixgbe_reset_phy_generic - Performs a PHY reset
395  *  @hw: pointer to hardware structure
396  **/
397 int ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
398 {
399 	u32 i;
400 	u16 ctrl = 0;
401 	int status = 0;
402 
403 	if (hw->phy.type == ixgbe_phy_unknown)
404 		status = ixgbe_identify_phy_generic(hw);
405 
406 	if (status != 0 || hw->phy.type == ixgbe_phy_none)
407 		return status;
408 
409 	/* Don't reset PHY if it's shut down due to overtemp. */
410 	if (!hw->phy.reset_if_overtemp && hw->phy.ops.check_overtemp(hw))
411 		return 0;
412 
413 	/* Blocked by MNG FW so bail */
414 	if (ixgbe_check_reset_blocked(hw))
415 		return 0;
416 
417 	/*
418 	 * Perform soft PHY reset to the PHY_XS.
419 	 * This will cause a soft reset to the PHY
420 	 */
421 	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
422 			      MDIO_MMD_PHYXS,
423 			      MDIO_CTRL1_RESET);
424 
425 	/*
426 	 * Poll for reset bit to self-clear indicating reset is complete.
427 	 * Some PHYs could take up to 3 seconds to complete and need about
428 	 * 1.7 usec delay after the reset is complete.
429 	 */
430 	for (i = 0; i < 30; i++) {
431 		msleep(100);
432 		if (hw->phy.type == ixgbe_phy_x550em_ext_t) {
433 			status = hw->phy.ops.read_reg(hw,
434 						  IXGBE_MDIO_TX_VENDOR_ALARMS_3,
435 						  MDIO_MMD_PMAPMD, &ctrl);
436 			if (status)
437 				return status;
438 
439 			if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) {
440 				udelay(2);
441 				break;
442 			}
443 		} else {
444 			status = hw->phy.ops.read_reg(hw, MDIO_CTRL1,
445 						      MDIO_MMD_PHYXS, &ctrl);
446 			if (status)
447 				return status;
448 
449 			if (!(ctrl & MDIO_CTRL1_RESET)) {
450 				udelay(2);
451 				break;
452 			}
453 		}
454 	}
455 
456 	if (ctrl & MDIO_CTRL1_RESET) {
457 		hw_dbg(hw, "PHY reset polling failed to complete.\n");
458 		return -EIO;
459 	}
460 
461 	return 0;
462 }
463 
464 /**
465  *  ixgbe_read_phy_reg_mdi - read PHY register
466  *  @hw: pointer to hardware structure
467  *  @reg_addr: 32 bit address of PHY register to read
468  *  @device_type: 5 bit device type
469  *  @phy_data: Pointer to read data from PHY register
470  *
471  *  Reads a value from a specified PHY register without the SWFW lock
472  **/
473 int ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
474 			   u16 *phy_data)
475 {
476 	u32 i, data, command;
477 
478 	/* Setup and write the address cycle command */
479 	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
480 		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
481 		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
482 		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
483 
484 	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
485 
486 	/* Check every 10 usec to see if the address cycle completed.
487 	 * The MDI Command bit will clear when the operation is
488 	 * complete
489 	 */
490 	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
491 		udelay(10);
492 
493 		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
494 		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
495 				break;
496 	}
497 
498 
499 	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
500 		hw_dbg(hw, "PHY address command did not complete.\n");
501 		return -EIO;
502 	}
503 
504 	/* Address cycle complete, setup and write the read
505 	 * command
506 	 */
507 	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
508 		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
509 		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
510 		   (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
511 
512 	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
513 
514 	/* Check every 10 usec to see if the address cycle
515 	 * completed. The MDI Command bit will clear when the
516 	 * operation is complete
517 	 */
518 	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
519 		udelay(10);
520 
521 		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
522 		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
523 			break;
524 	}
525 
526 	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
527 		hw_dbg(hw, "PHY read command didn't complete\n");
528 		return -EIO;
529 	}
530 
531 	/* Read operation is complete.  Get the data
532 	 * from MSRWD
533 	 */
534 	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
535 	data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
536 	*phy_data = (u16)(data);
537 
538 	return 0;
539 }
540 
541 /**
542  *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
543  *  using the SWFW lock - this function is needed in most cases
544  *  @hw: pointer to hardware structure
545  *  @reg_addr: 32 bit address of PHY register to read
546  *  @device_type: 5 bit device type
547  *  @phy_data: Pointer to read data from PHY register
548  **/
549 int ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
550 			       u32 device_type, u16 *phy_data)
551 {
552 	u32 gssr = hw->phy.phy_semaphore_mask;
553 	int status;
554 
555 	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
556 		status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
557 						phy_data);
558 		hw->mac.ops.release_swfw_sync(hw, gssr);
559 	} else {
560 		return -EBUSY;
561 	}
562 
563 	return status;
564 }
565 
566 /**
567  *  ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
568  *  without SWFW lock
569  *  @hw: pointer to hardware structure
570  *  @reg_addr: 32 bit PHY register to write
571  *  @device_type: 5 bit device type
572  *  @phy_data: Data to write to the PHY register
573  **/
574 int ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
575 			    u16 phy_data)
576 {
577 	u32 i, command;
578 
579 	/* Put the data in the MDI single read and write data register*/
580 	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
581 
582 	/* Setup and write the address cycle command */
583 	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
584 		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
585 		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
586 		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
587 
588 	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
589 
590 	/*
591 	 * Check every 10 usec to see if the address cycle completed.
592 	 * The MDI Command bit will clear when the operation is
593 	 * complete
594 	 */
595 	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
596 		udelay(10);
597 
598 		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
599 		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
600 			break;
601 	}
602 
603 	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
604 		hw_dbg(hw, "PHY address cmd didn't complete\n");
605 		return -EIO;
606 	}
607 
608 	/*
609 	 * Address cycle complete, setup and write the write
610 	 * command
611 	 */
612 	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
613 		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
614 		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
615 		   (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
616 
617 	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
618 
619 	/* Check every 10 usec to see if the address cycle
620 	 * completed. The MDI Command bit will clear when the
621 	 * operation is complete
622 	 */
623 	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
624 		udelay(10);
625 
626 		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
627 		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
628 			break;
629 	}
630 
631 	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
632 		hw_dbg(hw, "PHY write cmd didn't complete\n");
633 		return -EIO;
634 	}
635 
636 	return 0;
637 }
638 
639 /**
640  *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
641  *  using SWFW lock- this function is needed in most cases
642  *  @hw: pointer to hardware structure
643  *  @reg_addr: 32 bit PHY register to write
644  *  @device_type: 5 bit device type
645  *  @phy_data: Data to write to the PHY register
646  **/
647 int ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
648 				u32 device_type, u16 phy_data)
649 {
650 	u32 gssr = hw->phy.phy_semaphore_mask;
651 	int status;
652 
653 	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
654 		status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
655 						 phy_data);
656 		hw->mac.ops.release_swfw_sync(hw, gssr);
657 	} else {
658 		return -EBUSY;
659 	}
660 
661 	return status;
662 }
663 
664 #define IXGBE_HW_READ_REG(addr) IXGBE_READ_REG(hw, addr)
665 
666 /**
667  *  ixgbe_msca_cmd - Write the command register and poll for completion/timeout
668  *  @hw: pointer to hardware structure
669  *  @cmd: command register value to write
670  **/
671 static int ixgbe_msca_cmd(struct ixgbe_hw *hw, u32 cmd)
672 {
673 	IXGBE_WRITE_REG(hw, IXGBE_MSCA, cmd);
674 
675 	return readx_poll_timeout(IXGBE_HW_READ_REG, IXGBE_MSCA, cmd,
676 				  !(cmd & IXGBE_MSCA_MDI_COMMAND), 10,
677 				  10 * IXGBE_MDIO_COMMAND_TIMEOUT);
678 }
679 
680 /**
681  *  ixgbe_mii_bus_read_generic_c22 - Read a clause 22 register with gssr flags
682  *  @hw: pointer to hardware structure
683  *  @addr: address
684  *  @regnum: register number
685  *  @gssr: semaphore flags to acquire
686  **/
687 static int ixgbe_mii_bus_read_generic_c22(struct ixgbe_hw *hw, int addr,
688 					  int regnum, u32 gssr)
689 {
690 	u32 hwaddr, cmd;
691 	int data;
692 
693 	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
694 		return -EBUSY;
695 
696 	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
697 	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
698 	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL |
699 		IXGBE_MSCA_READ_AUTOINC | IXGBE_MSCA_MDI_COMMAND;
700 
701 	data = ixgbe_msca_cmd(hw, cmd);
702 	if (data < 0)
703 		goto mii_bus_read_done;
704 
705 	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
706 	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
707 
708 mii_bus_read_done:
709 	hw->mac.ops.release_swfw_sync(hw, gssr);
710 	return data;
711 }
712 
713 /**
714  *  ixgbe_mii_bus_read_generic_c45 - Read a clause 45 register with gssr flags
715  *  @hw: pointer to hardware structure
716  *  @addr: address
717  *  @devad: device address to read
718  *  @regnum: register number
719  *  @gssr: semaphore flags to acquire
720  **/
721 static int ixgbe_mii_bus_read_generic_c45(struct ixgbe_hw *hw, int addr,
722 					  int devad, int regnum, u32 gssr)
723 {
724 	u32 hwaddr, cmd;
725 	int data;
726 
727 	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
728 		return -EBUSY;
729 
730 	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
731 	hwaddr |= devad << 16 | regnum;
732 	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
733 
734 	data = ixgbe_msca_cmd(hw, cmd);
735 	if (data < 0)
736 		goto mii_bus_read_done;
737 
738 	cmd = hwaddr | IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND;
739 	data = ixgbe_msca_cmd(hw, cmd);
740 	if (data < 0)
741 		goto mii_bus_read_done;
742 
743 	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
744 	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
745 
746 mii_bus_read_done:
747 	hw->mac.ops.release_swfw_sync(hw, gssr);
748 	return data;
749 }
750 
751 /**
752  *  ixgbe_mii_bus_write_generic_c22 - Write a clause 22 register with gssr flags
753  *  @hw: pointer to hardware structure
754  *  @addr: address
755  *  @regnum: register number
756  *  @val: value to write
757  *  @gssr: semaphore flags to acquire
758  **/
759 static int ixgbe_mii_bus_write_generic_c22(struct ixgbe_hw *hw, int addr,
760 					   int regnum, u16 val, u32 gssr)
761 {
762 	u32 hwaddr, cmd;
763 	int err;
764 
765 	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
766 		return -EBUSY;
767 
768 	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
769 
770 	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
771 	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
772 	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL | IXGBE_MSCA_WRITE |
773 		IXGBE_MSCA_MDI_COMMAND;
774 
775 	err = ixgbe_msca_cmd(hw, cmd);
776 
777 	hw->mac.ops.release_swfw_sync(hw, gssr);
778 	return err;
779 }
780 
781 /**
782  *  ixgbe_mii_bus_write_generic_c45 - Write a clause 45 register with gssr flags
783  *  @hw: pointer to hardware structure
784  *  @addr: address
785  *  @devad: device address to read
786  *  @regnum: register number
787  *  @val: value to write
788  *  @gssr: semaphore flags to acquire
789  **/
790 static int ixgbe_mii_bus_write_generic_c45(struct ixgbe_hw *hw, int addr,
791 					   int devad, int regnum, u16 val,
792 					   u32 gssr)
793 {
794 	u32 hwaddr, cmd;
795 	int err;
796 
797 	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
798 		return -EBUSY;
799 
800 	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
801 
802 	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
803 	hwaddr |= devad << 16 | regnum;
804 	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
805 
806 	err = ixgbe_msca_cmd(hw, cmd);
807 	if (err < 0)
808 		goto mii_bus_write_done;
809 
810 	cmd = hwaddr | IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND;
811 	err = ixgbe_msca_cmd(hw, cmd);
812 
813 mii_bus_write_done:
814 	hw->mac.ops.release_swfw_sync(hw, gssr);
815 	return err;
816 }
817 
818 /**
819  *  ixgbe_mii_bus_read_c22 - Read a clause 22 register
820  *  @bus: pointer to mii_bus structure which points to our driver private
821  *  @addr: address
822  *  @regnum: register number
823  **/
824 static int ixgbe_mii_bus_read_c22(struct mii_bus *bus, int addr, int regnum)
825 {
826 	struct ixgbe_adapter *adapter = bus->priv;
827 	struct ixgbe_hw *hw = &adapter->hw;
828 	u32 gssr = hw->phy.phy_semaphore_mask;
829 
830 	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
831 }
832 
833 /**
834  *  ixgbe_mii_bus_read_c45 - Read a clause 45 register
835  *  @bus: pointer to mii_bus structure which points to our driver private
836  *  @devad: device address to read
837  *  @addr: address
838  *  @regnum: register number
839  **/
840 static int ixgbe_mii_bus_read_c45(struct mii_bus *bus, int devad, int addr,
841 				  int regnum)
842 {
843 	struct ixgbe_adapter *adapter = bus->priv;
844 	struct ixgbe_hw *hw = &adapter->hw;
845 	u32 gssr = hw->phy.phy_semaphore_mask;
846 
847 	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
848 }
849 
850 /**
851  *  ixgbe_mii_bus_write_c22 - Write a clause 22 register
852  *  @bus: pointer to mii_bus structure which points to our driver private
853  *  @addr: address
854  *  @regnum: register number
855  *  @val: value to write
856  **/
857 static int ixgbe_mii_bus_write_c22(struct mii_bus *bus, int addr, int regnum,
858 				   u16 val)
859 {
860 	struct ixgbe_adapter *adapter = bus->priv;
861 	struct ixgbe_hw *hw = &adapter->hw;
862 	u32 gssr = hw->phy.phy_semaphore_mask;
863 
864 	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
865 }
866 
867 /**
868  *  ixgbe_mii_bus_write_c45 - Write a clause 45 register
869  *  @bus: pointer to mii_bus structure which points to our driver private
870  *  @addr: address
871  *  @devad: device address to read
872  *  @regnum: register number
873  *  @val: value to write
874  **/
875 static int ixgbe_mii_bus_write_c45(struct mii_bus *bus, int addr, int devad,
876 				   int regnum, u16 val)
877 {
878 	struct ixgbe_adapter *adapter = bus->priv;
879 	struct ixgbe_hw *hw = &adapter->hw;
880 	u32 gssr = hw->phy.phy_semaphore_mask;
881 
882 	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
883 					       gssr);
884 }
885 
886 /**
887  *  ixgbe_x550em_a_mii_bus_read_c22 - Read a clause 22 register on x550em_a
888  *  @bus: pointer to mii_bus structure which points to our driver private
889  *  @addr: address
890  *  @regnum: register number
891  **/
892 static int ixgbe_x550em_a_mii_bus_read_c22(struct mii_bus *bus, int addr,
893 					   int regnum)
894 {
895 	struct ixgbe_adapter *adapter = bus->priv;
896 	struct ixgbe_hw *hw = &adapter->hw;
897 	u32 gssr = hw->phy.phy_semaphore_mask;
898 
899 	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
900 	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
901 }
902 
903 /**
904  *  ixgbe_x550em_a_mii_bus_read_c45 - Read a clause 45 register on x550em_a
905  *  @bus: pointer to mii_bus structure which points to our driver private
906  *  @addr: address
907  *  @devad: device address to read
908  *  @regnum: register number
909  **/
910 static int ixgbe_x550em_a_mii_bus_read_c45(struct mii_bus *bus, int addr,
911 					   int devad, int regnum)
912 {
913 	struct ixgbe_adapter *adapter = bus->priv;
914 	struct ixgbe_hw *hw = &adapter->hw;
915 	u32 gssr = hw->phy.phy_semaphore_mask;
916 
917 	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
918 	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
919 }
920 
921 /**
922  *  ixgbe_x550em_a_mii_bus_write_c22 - Write a clause 22 register on x550em_a
923  *  @bus: pointer to mii_bus structure which points to our driver private
924  *  @addr: address
925  *  @regnum: register number
926  *  @val: value to write
927  **/
928 static int ixgbe_x550em_a_mii_bus_write_c22(struct mii_bus *bus, int addr,
929 					    int regnum, u16 val)
930 {
931 	struct ixgbe_adapter *adapter = bus->priv;
932 	struct ixgbe_hw *hw = &adapter->hw;
933 	u32 gssr = hw->phy.phy_semaphore_mask;
934 
935 	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
936 	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
937 }
938 
939 /**
940  *  ixgbe_x550em_a_mii_bus_write_c45 - Write a clause 45 register on x550em_a
941  *  @bus: pointer to mii_bus structure which points to our driver private
942  *  @addr: address
943  *  @devad: device address to read
944  *  @regnum: register number
945  *  @val: value to write
946  **/
947 static int ixgbe_x550em_a_mii_bus_write_c45(struct mii_bus *bus, int addr,
948 					    int devad, int regnum, u16 val)
949 {
950 	struct ixgbe_adapter *adapter = bus->priv;
951 	struct ixgbe_hw *hw = &adapter->hw;
952 	u32 gssr = hw->phy.phy_semaphore_mask;
953 
954 	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
955 	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
956 					       gssr);
957 }
958 
959 /**
960  * ixgbe_get_first_secondary_devfn - get first device downstream of root port
961  * @devfn: PCI_DEVFN of root port on domain 0, bus 0
962  *
963  * Returns pci_dev pointer to PCI_DEVFN(0, 0) on subordinate side of root
964  * on domain 0, bus 0, devfn = 'devfn'
965  **/
966 static struct pci_dev *ixgbe_get_first_secondary_devfn(unsigned int devfn)
967 {
968 	struct pci_dev *rp_pdev;
969 	int bus;
970 
971 	rp_pdev = pci_get_domain_bus_and_slot(0, 0, devfn);
972 	if (rp_pdev && rp_pdev->subordinate) {
973 		bus = rp_pdev->subordinate->number;
974 		pci_dev_put(rp_pdev);
975 		return pci_get_domain_bus_and_slot(0, bus, 0);
976 	}
977 
978 	pci_dev_put(rp_pdev);
979 	return NULL;
980 }
981 
982 /**
983  * ixgbe_x550em_a_has_mii - is this the first ixgbe x550em_a PCI function?
984  * @hw: pointer to hardware structure
985  *
986  * Returns true if hw points to lowest numbered PCI B:D.F x550_em_a device in
987  * the SoC.  There are up to 4 MACs sharing a single MDIO bus on the x550em_a,
988  * but we only want to register one MDIO bus.
989  **/
990 static bool ixgbe_x550em_a_has_mii(struct ixgbe_hw *hw)
991 {
992 	struct ixgbe_adapter *adapter = hw->back;
993 	struct pci_dev *pdev = adapter->pdev;
994 	struct pci_dev *func0_pdev;
995 	bool has_mii = false;
996 
997 	/* For the C3000 family of SoCs (x550em_a) the internal ixgbe devices
998 	 * are always downstream of root ports @ 0000:00:16.0 & 0000:00:17.0
999 	 * It's not valid for function 0 to be disabled and function 1 is up,
1000 	 * so the lowest numbered ixgbe dev will be device 0 function 0 on one
1001 	 * of those two root ports
1002 	 */
1003 	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x16, 0));
1004 	if (func0_pdev) {
1005 		if (func0_pdev == pdev)
1006 			has_mii = true;
1007 		goto out;
1008 	}
1009 	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x17, 0));
1010 	if (func0_pdev == pdev)
1011 		has_mii = true;
1012 
1013 out:
1014 	pci_dev_put(func0_pdev);
1015 	return has_mii;
1016 }
1017 
1018 /**
1019  * ixgbe_mii_bus_init - mii_bus structure setup
1020  * @hw: pointer to hardware structure
1021  *
1022  * Returns 0 on success, negative on failure
1023  *
1024  * ixgbe_mii_bus_init initializes a mii_bus structure in adapter
1025  **/
1026 int ixgbe_mii_bus_init(struct ixgbe_hw *hw)
1027 {
1028 	int (*write_c22)(struct mii_bus *bus, int addr, int regnum, u16 val);
1029 	int (*read_c22)(struct mii_bus *bus, int addr, int regnum);
1030 	int (*write_c45)(struct mii_bus *bus, int addr, int devad, int regnum,
1031 			 u16 val);
1032 	int (*read_c45)(struct mii_bus *bus, int addr, int devad, int regnum);
1033 	struct ixgbe_adapter *adapter = hw->back;
1034 	struct pci_dev *pdev = adapter->pdev;
1035 	struct device *dev = &adapter->netdev->dev;
1036 	struct mii_bus *bus;
1037 
1038 	switch (hw->device_id) {
1039 	/* C3000 SoCs */
1040 	case IXGBE_DEV_ID_X550EM_A_KR:
1041 	case IXGBE_DEV_ID_X550EM_A_KR_L:
1042 	case IXGBE_DEV_ID_X550EM_A_SFP_N:
1043 	case IXGBE_DEV_ID_X550EM_A_SGMII:
1044 	case IXGBE_DEV_ID_X550EM_A_SGMII_L:
1045 	case IXGBE_DEV_ID_X550EM_A_10G_T:
1046 	case IXGBE_DEV_ID_X550EM_A_SFP:
1047 	case IXGBE_DEV_ID_X550EM_A_1G_T:
1048 	case IXGBE_DEV_ID_X550EM_A_1G_T_L:
1049 		if (!ixgbe_x550em_a_has_mii(hw))
1050 			return 0;
1051 		read_c22 = ixgbe_x550em_a_mii_bus_read_c22;
1052 		write_c22 = ixgbe_x550em_a_mii_bus_write_c22;
1053 		read_c45 = ixgbe_x550em_a_mii_bus_read_c45;
1054 		write_c45 = ixgbe_x550em_a_mii_bus_write_c45;
1055 		break;
1056 	default:
1057 		read_c22 = ixgbe_mii_bus_read_c22;
1058 		write_c22 = ixgbe_mii_bus_write_c22;
1059 		read_c45 = ixgbe_mii_bus_read_c45;
1060 		write_c45 = ixgbe_mii_bus_write_c45;
1061 		break;
1062 	}
1063 
1064 	bus = devm_mdiobus_alloc(dev);
1065 	if (!bus)
1066 		return -ENOMEM;
1067 
1068 	bus->read = read_c22;
1069 	bus->write = write_c22;
1070 	bus->read_c45 = read_c45;
1071 	bus->write_c45 = write_c45;
1072 
1073 	/* Use the position of the device in the PCI hierarchy as the id */
1074 	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mdio-%s", ixgbe_driver_name,
1075 		 pci_name(pdev));
1076 
1077 	bus->name = "ixgbe-mdio";
1078 	bus->priv = adapter;
1079 	bus->parent = dev;
1080 	bus->phy_mask = GENMASK(31, 0);
1081 
1082 	/* Support clause 22/45 natively.  ixgbe_probe() sets MDIO_EMULATE_C22
1083 	 * unfortunately that causes some clause 22 frames to be sent with
1084 	 * clause 45 addressing.  We don't want that.
1085 	 */
1086 	hw->phy.mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22;
1087 
1088 	adapter->mii_bus = bus;
1089 	return mdiobus_register(bus);
1090 }
1091 
1092 /**
1093  *  ixgbe_setup_phy_link_generic - Set and restart autoneg
1094  *  @hw: pointer to hardware structure
1095  *
1096  *  Restart autonegotiation and PHY and waits for completion.
1097  **/
1098 int ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
1099 {
1100 	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1101 	ixgbe_link_speed speed;
1102 	bool autoneg = false;
1103 	int status = 0;
1104 
1105 	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1106 
1107 	/* Set or unset auto-negotiation 10G advertisement */
1108 	hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg);
1109 
1110 	autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1111 	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) &&
1112 	    (speed & IXGBE_LINK_SPEED_10GB_FULL))
1113 		autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1114 
1115 	hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg);
1116 
1117 	hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1118 			     MDIO_MMD_AN, &autoneg_reg);
1119 
1120 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_e610) {
1121 		/* Set or unset auto-negotiation 5G advertisement */
1122 		autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE;
1123 		if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) &&
1124 		    (speed & IXGBE_LINK_SPEED_5GB_FULL))
1125 			autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE;
1126 
1127 		/* Set or unset auto-negotiation 2.5G advertisement */
1128 		autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE;
1129 		if ((hw->phy.autoneg_advertised &
1130 		     IXGBE_LINK_SPEED_2_5GB_FULL) &&
1131 		    (speed & IXGBE_LINK_SPEED_2_5GB_FULL))
1132 			autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE;
1133 	}
1134 
1135 	/* Set or unset auto-negotiation 1G advertisement */
1136 	autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
1137 	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) &&
1138 	    (speed & IXGBE_LINK_SPEED_1GB_FULL))
1139 		autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
1140 
1141 	hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1142 			      MDIO_MMD_AN, autoneg_reg);
1143 
1144 	/* Set or unset auto-negotiation 100M advertisement */
1145 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
1146 
1147 	autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF);
1148 	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) &&
1149 	    (speed & IXGBE_LINK_SPEED_100_FULL))
1150 		autoneg_reg |= ADVERTISE_100FULL;
1151 
1152 	hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
1153 
1154 	/* Blocked by MNG FW so don't reset PHY */
1155 	if (ixgbe_check_reset_blocked(hw))
1156 		return 0;
1157 
1158 	/* Restart PHY autonegotiation and wait for completion */
1159 	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1160 			     MDIO_MMD_AN, &autoneg_reg);
1161 
1162 	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1163 
1164 	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1165 			      MDIO_MMD_AN, autoneg_reg);
1166 
1167 	return status;
1168 }
1169 
1170 /**
1171  *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
1172  *  @hw: pointer to hardware structure
1173  *  @speed: new link speed
1174  *  @autoneg_wait_to_complete: unused
1175  **/
1176 int ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
1177 				       ixgbe_link_speed speed,
1178 				       bool autoneg_wait_to_complete)
1179 {
1180 	/* Clear autoneg_advertised and set new values based on input link
1181 	 * speed.
1182 	 */
1183 	hw->phy.autoneg_advertised = 0;
1184 
1185 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
1186 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
1187 
1188 	if (speed & IXGBE_LINK_SPEED_5GB_FULL)
1189 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL;
1190 
1191 	if (speed & IXGBE_LINK_SPEED_2_5GB_FULL)
1192 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL;
1193 
1194 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
1195 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
1196 
1197 	if (speed & IXGBE_LINK_SPEED_100_FULL)
1198 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
1199 
1200 	if (speed & IXGBE_LINK_SPEED_10_FULL)
1201 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL;
1202 
1203 	/* Setup link based on the new speed settings */
1204 	if (hw->phy.ops.setup_link)
1205 		hw->phy.ops.setup_link(hw);
1206 
1207 	return 0;
1208 }
1209 
1210 /**
1211  * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
1212  * @hw: pointer to hardware structure
1213  *
1214  * Determines the supported link capabilities by reading the PHY auto
1215  * negotiation register.
1216  */
1217 static int ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
1218 {
1219 	u16 speed_ability;
1220 	int status;
1221 
1222 	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
1223 				      &speed_ability);
1224 	if (status)
1225 		return status;
1226 
1227 	if (speed_ability & MDIO_SPEED_10G)
1228 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
1229 	if (speed_ability & MDIO_PMA_SPEED_1000)
1230 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
1231 	if (speed_ability & MDIO_PMA_SPEED_100)
1232 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
1233 
1234 	switch (hw->mac.type) {
1235 	case ixgbe_mac_X550:
1236 	case ixgbe_mac_e610:
1237 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
1238 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
1239 		break;
1240 	case ixgbe_mac_X550EM_x:
1241 	case ixgbe_mac_x550em_a:
1242 		hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
1243 		break;
1244 	default:
1245 		break;
1246 	}
1247 
1248 	return 0;
1249 }
1250 
1251 /**
1252  * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
1253  * @hw: pointer to hardware structure
1254  * @speed: pointer to link speed
1255  * @autoneg: boolean auto-negotiation value
1256  */
1257 int ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
1258 					       ixgbe_link_speed *speed,
1259 					       bool *autoneg)
1260 {
1261 	int status = 0;
1262 
1263 	*autoneg = true;
1264 	if (!hw->phy.speeds_supported)
1265 		status = ixgbe_get_copper_speeds_supported(hw);
1266 
1267 	*speed = hw->phy.speeds_supported;
1268 	return status;
1269 }
1270 
1271 /**
1272  *  ixgbe_check_phy_link_tnx - Determine link and speed status
1273  *  @hw: pointer to hardware structure
1274  *  @speed: link speed
1275  *  @link_up: status of link
1276  *
1277  *  Reads the VS1 register to determine if link is up and the current speed for
1278  *  the PHY.
1279  **/
1280 int ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1281 			     bool *link_up)
1282 {
1283 	u32 max_time_out = 10;
1284 	u16 phy_speed = 0;
1285 	u16 phy_link = 0;
1286 	u16 phy_data = 0;
1287 	u32 time_out;
1288 	int status;
1289 
1290 	/* Initialize speed and link to default case */
1291 	*link_up = false;
1292 	*speed = IXGBE_LINK_SPEED_10GB_FULL;
1293 
1294 	/*
1295 	 * Check current speed and link status of the PHY register.
1296 	 * This is a vendor specific register and may have to
1297 	 * be changed for other copper PHYs.
1298 	 */
1299 	for (time_out = 0; time_out < max_time_out; time_out++) {
1300 		udelay(10);
1301 		status = hw->phy.ops.read_reg(hw,
1302 					      MDIO_STAT1,
1303 					      MDIO_MMD_VEND1,
1304 					      &phy_data);
1305 		phy_link = phy_data &
1306 			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1307 		phy_speed = phy_data &
1308 			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1309 		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1310 			*link_up = true;
1311 			if (phy_speed ==
1312 			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1313 				*speed = IXGBE_LINK_SPEED_1GB_FULL;
1314 			break;
1315 		}
1316 	}
1317 
1318 	return status;
1319 }
1320 
1321 /**
1322  *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
1323  *	@hw: pointer to hardware structure
1324  *
1325  *	Restart autonegotiation and PHY and waits for completion.
1326  *      This function always returns success, this is nessary since
1327  *	it is called via a function pointer that could call other
1328  *	functions that could return an error.
1329  **/
1330 int ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
1331 {
1332 	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1333 	bool autoneg = false;
1334 	ixgbe_link_speed speed;
1335 
1336 	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1337 
1338 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
1339 		/* Set or unset auto-negotiation 10G advertisement */
1340 		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
1341 				     MDIO_MMD_AN,
1342 				     &autoneg_reg);
1343 
1344 		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1345 		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
1346 			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1347 
1348 		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
1349 				      MDIO_MMD_AN,
1350 				      autoneg_reg);
1351 	}
1352 
1353 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
1354 		/* Set or unset auto-negotiation 1G advertisement */
1355 		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1356 				     MDIO_MMD_AN,
1357 				     &autoneg_reg);
1358 
1359 		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1360 		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
1361 			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1362 
1363 		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1364 				      MDIO_MMD_AN,
1365 				      autoneg_reg);
1366 	}
1367 
1368 	if (speed & IXGBE_LINK_SPEED_100_FULL) {
1369 		/* Set or unset auto-negotiation 100M advertisement */
1370 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1371 				     MDIO_MMD_AN,
1372 				     &autoneg_reg);
1373 
1374 		autoneg_reg &= ~(ADVERTISE_100FULL |
1375 				 ADVERTISE_100HALF);
1376 		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
1377 			autoneg_reg |= ADVERTISE_100FULL;
1378 
1379 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
1380 				      MDIO_MMD_AN,
1381 				      autoneg_reg);
1382 	}
1383 
1384 	/* Blocked by MNG FW so don't reset PHY */
1385 	if (ixgbe_check_reset_blocked(hw))
1386 		return 0;
1387 
1388 	/* Restart PHY autonegotiation and wait for completion */
1389 	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1390 			     MDIO_MMD_AN, &autoneg_reg);
1391 
1392 	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1393 
1394 	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1395 			      MDIO_MMD_AN, autoneg_reg);
1396 	return 0;
1397 }
1398 
1399 /**
1400  *  ixgbe_reset_phy_nl - Performs a PHY reset
1401  *  @hw: pointer to hardware structure
1402  **/
1403 int ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
1404 {
1405 	u16 phy_offset, control, eword, edata, block_crc;
1406 	u16 list_offset, data_offset;
1407 	bool end_data = false;
1408 	u16 phy_data = 0;
1409 	int ret_val;
1410 	u32 i;
1411 
1412 	/* Blocked by MNG FW so bail */
1413 	if (ixgbe_check_reset_blocked(hw))
1414 		return 0;
1415 
1416 	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1417 
1418 	/* reset the PHY and poll for completion */
1419 	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1420 			      (phy_data | MDIO_CTRL1_RESET));
1421 
1422 	for (i = 0; i < 100; i++) {
1423 		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1424 				     &phy_data);
1425 		if ((phy_data & MDIO_CTRL1_RESET) == 0)
1426 			break;
1427 		usleep_range(10000, 20000);
1428 	}
1429 
1430 	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1431 		hw_dbg(hw, "PHY reset did not complete.\n");
1432 		return -EIO;
1433 	}
1434 
1435 	/* Get init offsets */
1436 	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1437 						      &data_offset);
1438 	if (ret_val)
1439 		return ret_val;
1440 
1441 	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1442 	data_offset++;
1443 	while (!end_data) {
1444 		/*
1445 		 * Read control word from PHY init contents offset
1446 		 */
1447 		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1448 		if (ret_val)
1449 			goto err_eeprom;
1450 		control = FIELD_GET(IXGBE_CONTROL_MASK_NL, eword);
1451 		edata = eword & IXGBE_DATA_MASK_NL;
1452 		switch (control) {
1453 		case IXGBE_DELAY_NL:
1454 			data_offset++;
1455 			hw_dbg(hw, "DELAY: %d MS\n", edata);
1456 			usleep_range(edata * 1000, edata * 2000);
1457 			break;
1458 		case IXGBE_DATA_NL:
1459 			hw_dbg(hw, "DATA:\n");
1460 			data_offset++;
1461 			ret_val = hw->eeprom.ops.read(hw, data_offset++,
1462 						      &phy_offset);
1463 			if (ret_val)
1464 				goto err_eeprom;
1465 			for (i = 0; i < edata; i++) {
1466 				ret_val = hw->eeprom.ops.read(hw, data_offset,
1467 							      &eword);
1468 				if (ret_val)
1469 					goto err_eeprom;
1470 				hw->phy.ops.write_reg(hw, phy_offset,
1471 						      MDIO_MMD_PMAPMD, eword);
1472 				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1473 				       phy_offset);
1474 				data_offset++;
1475 				phy_offset++;
1476 			}
1477 			break;
1478 		case IXGBE_CONTROL_NL:
1479 			data_offset++;
1480 			hw_dbg(hw, "CONTROL:\n");
1481 			if (edata == IXGBE_CONTROL_EOL_NL) {
1482 				hw_dbg(hw, "EOL\n");
1483 				end_data = true;
1484 			} else if (edata == IXGBE_CONTROL_SOL_NL) {
1485 				hw_dbg(hw, "SOL\n");
1486 			} else {
1487 				hw_dbg(hw, "Bad control value\n");
1488 				return -EIO;
1489 			}
1490 			break;
1491 		default:
1492 			hw_dbg(hw, "Bad control type\n");
1493 			return -EIO;
1494 		}
1495 	}
1496 
1497 	return ret_val;
1498 
1499 err_eeprom:
1500 	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1501 	return -EIO;
1502 }
1503 
1504 /**
1505  *  ixgbe_identify_module_generic - Identifies module type
1506  *  @hw: pointer to hardware structure
1507  *
1508  *  Determines HW type and calls appropriate function.
1509  **/
1510 int ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1511 {
1512 	switch (hw->mac.ops.get_media_type(hw)) {
1513 	case ixgbe_media_type_fiber:
1514 		return ixgbe_identify_sfp_module_generic(hw);
1515 	case ixgbe_media_type_fiber_qsfp:
1516 		return ixgbe_identify_qsfp_module_generic(hw);
1517 	default:
1518 		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1519 		return -ENOENT;
1520 	}
1521 
1522 	return -ENOENT;
1523 }
1524 
1525 /**
1526  *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
1527  *  @hw: pointer to hardware structure
1528  *
1529  *  Searches for and identifies the SFP module and assigns appropriate PHY type.
1530  **/
1531 int ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1532 {
1533 	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1534 	struct ixgbe_adapter *adapter = hw->back;
1535 	u8 oui_bytes[3] = {0, 0, 0};
1536 	u8 bitrate_nominal = 0;
1537 	u8 comp_codes_10g = 0;
1538 	u8 comp_codes_1g = 0;
1539 	u16 enforce_sfp = 0;
1540 	u32 vendor_oui = 0;
1541 	u8 identifier = 0;
1542 	u8 cable_tech = 0;
1543 	u8 cable_spec = 0;
1544 	int status;
1545 
1546 	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1547 		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1548 		return -ENOENT;
1549 	}
1550 
1551 	/* LAN ID is needed for sfp_type determination */
1552 	hw->mac.ops.set_lan_id(hw);
1553 
1554 	status = hw->phy.ops.read_i2c_eeprom(hw,
1555 					     IXGBE_SFF_IDENTIFIER,
1556 					     &identifier);
1557 
1558 	if (status)
1559 		goto err_read_i2c_eeprom;
1560 
1561 	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1562 		hw->phy.type = ixgbe_phy_sfp_unsupported;
1563 		return -EOPNOTSUPP;
1564 	}
1565 	status = hw->phy.ops.read_i2c_eeprom(hw,
1566 					     IXGBE_SFF_1GBE_COMP_CODES,
1567 					     &comp_codes_1g);
1568 
1569 	if (status)
1570 		goto err_read_i2c_eeprom;
1571 
1572 	status = hw->phy.ops.read_i2c_eeprom(hw,
1573 					     IXGBE_SFF_10GBE_COMP_CODES,
1574 					     &comp_codes_10g);
1575 
1576 	if (status)
1577 		goto err_read_i2c_eeprom;
1578 	status = hw->phy.ops.read_i2c_eeprom(hw,
1579 					     IXGBE_SFF_CABLE_TECHNOLOGY,
1580 					     &cable_tech);
1581 	if (status)
1582 		goto err_read_i2c_eeprom;
1583 
1584 	status = hw->phy.ops.read_i2c_eeprom(hw,
1585 					     IXGBE_SFF_BITRATE_NOMINAL,
1586 					     &bitrate_nominal);
1587 	if (status)
1588 		goto err_read_i2c_eeprom;
1589 
1590 	 /* ID Module
1591 	  * =========
1592 	  * 0   SFP_DA_CU
1593 	  * 1   SFP_SR
1594 	  * 2   SFP_LR
1595 	  * 3   SFP_DA_CORE0 - 82599-specific
1596 	  * 4   SFP_DA_CORE1 - 82599-specific
1597 	  * 5   SFP_SR/LR_CORE0 - 82599-specific
1598 	  * 6   SFP_SR/LR_CORE1 - 82599-specific
1599 	  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
1600 	  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
1601 	  * 9   SFP_1g_cu_CORE0 - 82599-specific
1602 	  * 10  SFP_1g_cu_CORE1 - 82599-specific
1603 	  * 11  SFP_1g_sx_CORE0 - 82599-specific
1604 	  * 12  SFP_1g_sx_CORE1 - 82599-specific
1605 	  */
1606 	if (hw->mac.type == ixgbe_mac_82598EB) {
1607 		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1608 			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1609 		else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1610 			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1611 		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1612 			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1613 		else
1614 			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1615 	} else {
1616 		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1617 			if (hw->bus.lan_id == 0)
1618 				hw->phy.sfp_type =
1619 					     ixgbe_sfp_type_da_cu_core0;
1620 			else
1621 				hw->phy.sfp_type =
1622 					     ixgbe_sfp_type_da_cu_core1;
1623 		} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1624 			hw->phy.ops.read_i2c_eeprom(
1625 					hw, IXGBE_SFF_CABLE_SPEC_COMP,
1626 					&cable_spec);
1627 			if (cable_spec &
1628 			    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1629 				if (hw->bus.lan_id == 0)
1630 					hw->phy.sfp_type =
1631 					ixgbe_sfp_type_da_act_lmt_core0;
1632 				else
1633 					hw->phy.sfp_type =
1634 					ixgbe_sfp_type_da_act_lmt_core1;
1635 			} else {
1636 				hw->phy.sfp_type =
1637 						ixgbe_sfp_type_unknown;
1638 			}
1639 		} else if (comp_codes_10g &
1640 			   (IXGBE_SFF_10GBASESR_CAPABLE |
1641 			    IXGBE_SFF_10GBASELR_CAPABLE)) {
1642 			if (hw->bus.lan_id == 0)
1643 				hw->phy.sfp_type =
1644 					      ixgbe_sfp_type_srlr_core0;
1645 			else
1646 				hw->phy.sfp_type =
1647 					      ixgbe_sfp_type_srlr_core1;
1648 		} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1649 			if (hw->bus.lan_id == 0)
1650 				hw->phy.sfp_type =
1651 					ixgbe_sfp_type_1g_cu_core0;
1652 			else
1653 				hw->phy.sfp_type =
1654 					ixgbe_sfp_type_1g_cu_core1;
1655 		} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1656 			if (hw->bus.lan_id == 0)
1657 				hw->phy.sfp_type =
1658 					ixgbe_sfp_type_1g_sx_core0;
1659 			else
1660 				hw->phy.sfp_type =
1661 					ixgbe_sfp_type_1g_sx_core1;
1662 		} else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1663 			if (hw->bus.lan_id == 0)
1664 				hw->phy.sfp_type =
1665 					ixgbe_sfp_type_1g_lx_core0;
1666 			else
1667 				hw->phy.sfp_type =
1668 					ixgbe_sfp_type_1g_lx_core1;
1669 		/* Support only Ethernet 1000BASE-BX10, checking the Bit Rate
1670 		 * Nominal Value as per SFF-8472 by convention 1.25 Gb/s should
1671 		 * be rounded up to 0Dh (13 in units of 100 MBd) for 1000BASE-BX
1672 		 */
1673 		} else if ((comp_codes_1g & IXGBE_SFF_BASEBX10_CAPABLE) &&
1674 			   (bitrate_nominal == 0xD)) {
1675 			if (hw->bus.lan_id == 0)
1676 				hw->phy.sfp_type =
1677 					ixgbe_sfp_type_1g_bx_core0;
1678 			else
1679 				hw->phy.sfp_type =
1680 					ixgbe_sfp_type_1g_bx_core1;
1681 		} else {
1682 			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1683 		}
1684 	}
1685 
1686 	if (hw->phy.sfp_type != stored_sfp_type)
1687 		hw->phy.sfp_setup_needed = true;
1688 
1689 	/* Determine if the SFP+ PHY is dual speed or not. */
1690 	hw->phy.multispeed_fiber = false;
1691 	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1692 	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1693 	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1694 	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1695 		hw->phy.multispeed_fiber = true;
1696 
1697 	/* Determine PHY vendor */
1698 	if (hw->phy.type != ixgbe_phy_nl) {
1699 		hw->phy.id = identifier;
1700 		status = hw->phy.ops.read_i2c_eeprom(hw,
1701 					    IXGBE_SFF_VENDOR_OUI_BYTE0,
1702 					    &oui_bytes[0]);
1703 
1704 		if (status != 0)
1705 			goto err_read_i2c_eeprom;
1706 
1707 		status = hw->phy.ops.read_i2c_eeprom(hw,
1708 					    IXGBE_SFF_VENDOR_OUI_BYTE1,
1709 					    &oui_bytes[1]);
1710 
1711 		if (status != 0)
1712 			goto err_read_i2c_eeprom;
1713 
1714 		status = hw->phy.ops.read_i2c_eeprom(hw,
1715 					    IXGBE_SFF_VENDOR_OUI_BYTE2,
1716 					    &oui_bytes[2]);
1717 
1718 		if (status != 0)
1719 			goto err_read_i2c_eeprom;
1720 
1721 		vendor_oui =
1722 		  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1723 		   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1724 		   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1725 
1726 		switch (vendor_oui) {
1727 		case IXGBE_SFF_VENDOR_OUI_TYCO:
1728 			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1729 				hw->phy.type =
1730 					    ixgbe_phy_sfp_passive_tyco;
1731 			break;
1732 		case IXGBE_SFF_VENDOR_OUI_FTL:
1733 			if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1734 				hw->phy.type = ixgbe_phy_sfp_ftl_active;
1735 			else
1736 				hw->phy.type = ixgbe_phy_sfp_ftl;
1737 			break;
1738 		case IXGBE_SFF_VENDOR_OUI_AVAGO:
1739 			hw->phy.type = ixgbe_phy_sfp_avago;
1740 			break;
1741 		case IXGBE_SFF_VENDOR_OUI_INTEL:
1742 			hw->phy.type = ixgbe_phy_sfp_intel;
1743 			break;
1744 		default:
1745 			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1746 				hw->phy.type =
1747 					 ixgbe_phy_sfp_passive_unknown;
1748 			else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1749 				hw->phy.type =
1750 					ixgbe_phy_sfp_active_unknown;
1751 			else
1752 				hw->phy.type = ixgbe_phy_sfp_unknown;
1753 			break;
1754 		}
1755 	}
1756 
1757 	/* Allow any DA cable vendor */
1758 	if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1759 	    IXGBE_SFF_DA_ACTIVE_CABLE))
1760 		return 0;
1761 
1762 	/* Verify supported 1G SFP modules */
1763 	if (comp_codes_10g == 0 &&
1764 	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1765 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1766 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1767 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1768 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1769 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
1770 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core0 ||
1771 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core1)) {
1772 		hw->phy.type = ixgbe_phy_sfp_unsupported;
1773 		return -EOPNOTSUPP;
1774 	}
1775 
1776 	/* Anything else 82598-based is supported */
1777 	if (hw->mac.type == ixgbe_mac_82598EB)
1778 		return 0;
1779 
1780 	hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1781 	if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1782 	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1783 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1784 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1785 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1786 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1787 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
1788 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core0 ||
1789 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core1)) {
1790 		/* Make sure we're a supported PHY type */
1791 		if (hw->phy.type == ixgbe_phy_sfp_intel)
1792 			return 0;
1793 		if (hw->allow_unsupported_sfp) {
1794 			e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1795 			return 0;
1796 		}
1797 		hw_dbg(hw, "SFP+ module not supported\n");
1798 		hw->phy.type = ixgbe_phy_sfp_unsupported;
1799 		return -EOPNOTSUPP;
1800 	}
1801 	return 0;
1802 
1803 err_read_i2c_eeprom:
1804 	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1805 	if (hw->phy.type != ixgbe_phy_nl) {
1806 		hw->phy.id = 0;
1807 		hw->phy.type = ixgbe_phy_unknown;
1808 	}
1809 	return -ENOENT;
1810 }
1811 
1812 /**
1813  * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1814  * @hw: pointer to hardware structure
1815  *
1816  * Searches for and identifies the QSFP module and assigns appropriate PHY type
1817  **/
1818 static int ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1819 {
1820 	struct ixgbe_adapter *adapter = hw->back;
1821 	int status;
1822 	u32 vendor_oui = 0;
1823 	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1824 	u8 identifier = 0;
1825 	u8 comp_codes_1g = 0;
1826 	u8 comp_codes_10g = 0;
1827 	u8 oui_bytes[3] = {0, 0, 0};
1828 	u16 enforce_sfp = 0;
1829 	u8 connector = 0;
1830 	u8 cable_length = 0;
1831 	u8 device_tech = 0;
1832 	bool active_cable = false;
1833 
1834 	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1835 		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1836 		return -ENOENT;
1837 	}
1838 
1839 	/* LAN ID is needed for sfp_type determination */
1840 	hw->mac.ops.set_lan_id(hw);
1841 
1842 	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1843 					     &identifier);
1844 
1845 	if (status != 0)
1846 		goto err_read_i2c_eeprom;
1847 
1848 	if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1849 		hw->phy.type = ixgbe_phy_sfp_unsupported;
1850 		return -EOPNOTSUPP;
1851 	}
1852 
1853 	hw->phy.id = identifier;
1854 
1855 	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1856 					     &comp_codes_10g);
1857 
1858 	if (status != 0)
1859 		goto err_read_i2c_eeprom;
1860 
1861 	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1862 					     &comp_codes_1g);
1863 
1864 	if (status != 0)
1865 		goto err_read_i2c_eeprom;
1866 
1867 	if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1868 		hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1869 		if (hw->bus.lan_id == 0)
1870 			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1871 		else
1872 			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1873 	} else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1874 				     IXGBE_SFF_10GBASELR_CAPABLE)) {
1875 		if (hw->bus.lan_id == 0)
1876 			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1877 		else
1878 			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1879 	} else {
1880 		if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1881 			active_cable = true;
1882 
1883 		if (!active_cable) {
1884 			/* check for active DA cables that pre-date
1885 			 * SFF-8436 v3.6
1886 			 */
1887 			hw->phy.ops.read_i2c_eeprom(hw,
1888 					IXGBE_SFF_QSFP_CONNECTOR,
1889 					&connector);
1890 
1891 			hw->phy.ops.read_i2c_eeprom(hw,
1892 					IXGBE_SFF_QSFP_CABLE_LENGTH,
1893 					&cable_length);
1894 
1895 			hw->phy.ops.read_i2c_eeprom(hw,
1896 					IXGBE_SFF_QSFP_DEVICE_TECH,
1897 					&device_tech);
1898 
1899 			if ((connector ==
1900 				     IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1901 			    (cable_length > 0) &&
1902 			    ((device_tech >> 4) ==
1903 				     IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1904 				active_cable = true;
1905 		}
1906 
1907 		if (active_cable) {
1908 			hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1909 			if (hw->bus.lan_id == 0)
1910 				hw->phy.sfp_type =
1911 						ixgbe_sfp_type_da_act_lmt_core0;
1912 			else
1913 				hw->phy.sfp_type =
1914 						ixgbe_sfp_type_da_act_lmt_core1;
1915 		} else {
1916 			/* unsupported module type */
1917 			hw->phy.type = ixgbe_phy_sfp_unsupported;
1918 			return -EOPNOTSUPP;
1919 		}
1920 	}
1921 
1922 	if (hw->phy.sfp_type != stored_sfp_type)
1923 		hw->phy.sfp_setup_needed = true;
1924 
1925 	/* Determine if the QSFP+ PHY is dual speed or not. */
1926 	hw->phy.multispeed_fiber = false;
1927 	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1928 	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1929 	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1930 	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1931 		hw->phy.multispeed_fiber = true;
1932 
1933 	/* Determine PHY vendor for optical modules */
1934 	if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1935 			      IXGBE_SFF_10GBASELR_CAPABLE)) {
1936 		status = hw->phy.ops.read_i2c_eeprom(hw,
1937 					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1938 					&oui_bytes[0]);
1939 
1940 		if (status != 0)
1941 			goto err_read_i2c_eeprom;
1942 
1943 		status = hw->phy.ops.read_i2c_eeprom(hw,
1944 					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1945 					&oui_bytes[1]);
1946 
1947 		if (status != 0)
1948 			goto err_read_i2c_eeprom;
1949 
1950 		status = hw->phy.ops.read_i2c_eeprom(hw,
1951 					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1952 					&oui_bytes[2]);
1953 
1954 		if (status != 0)
1955 			goto err_read_i2c_eeprom;
1956 
1957 		vendor_oui =
1958 			((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1959 			 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1960 			 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1961 
1962 		if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1963 			hw->phy.type = ixgbe_phy_qsfp_intel;
1964 		else
1965 			hw->phy.type = ixgbe_phy_qsfp_unknown;
1966 
1967 		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1968 		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1969 			/* Make sure we're a supported PHY type */
1970 			if (hw->phy.type == ixgbe_phy_qsfp_intel)
1971 				return 0;
1972 			if (hw->allow_unsupported_sfp) {
1973 				e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1974 				return 0;
1975 			}
1976 			hw_dbg(hw, "QSFP module not supported\n");
1977 			hw->phy.type = ixgbe_phy_sfp_unsupported;
1978 			return -EOPNOTSUPP;
1979 		}
1980 		return 0;
1981 	}
1982 	return 0;
1983 
1984 err_read_i2c_eeprom:
1985 	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1986 	hw->phy.id = 0;
1987 	hw->phy.type = ixgbe_phy_unknown;
1988 
1989 	return -ENOENT;
1990 }
1991 
1992 /**
1993  *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1994  *  @hw: pointer to hardware structure
1995  *  @list_offset: offset to the SFP ID list
1996  *  @data_offset: offset to the SFP data block
1997  *
1998  *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1999  *  so it returns the offsets to the phy init sequence block.
2000  **/
2001 int ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
2002 					u16 *list_offset,
2003 					u16 *data_offset)
2004 {
2005 	u16 sfp_id;
2006 	u16 sfp_type = hw->phy.sfp_type;
2007 
2008 	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
2009 		return -EOPNOTSUPP;
2010 
2011 	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2012 		return -ENOENT;
2013 
2014 	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
2015 	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
2016 		return -EOPNOTSUPP;
2017 
2018 	/*
2019 	 * Limiting active cables and 1G Phys must be initialized as
2020 	 * SR modules
2021 	 */
2022 	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
2023 	    sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
2024 	    sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
2025 	    sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
2026 	    sfp_type == ixgbe_sfp_type_1g_bx_core0)
2027 		sfp_type = ixgbe_sfp_type_srlr_core0;
2028 	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
2029 		 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
2030 		 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
2031 		 sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
2032 		 sfp_type == ixgbe_sfp_type_1g_bx_core1)
2033 		sfp_type = ixgbe_sfp_type_srlr_core1;
2034 
2035 	/* Read offset to PHY init contents */
2036 	if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
2037 		hw_err(hw, "eeprom read at %d failed\n",
2038 		       IXGBE_PHY_INIT_OFFSET_NL);
2039 		return -EIO;
2040 	}
2041 
2042 	if ((!*list_offset) || (*list_offset == 0xFFFF))
2043 		return -EIO;
2044 
2045 	/* Shift offset to first ID word */
2046 	(*list_offset)++;
2047 
2048 	/*
2049 	 * Find the matching SFP ID in the EEPROM
2050 	 * and program the init sequence
2051 	 */
2052 	if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2053 		goto err_phy;
2054 
2055 	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
2056 		if (sfp_id == sfp_type) {
2057 			(*list_offset)++;
2058 			if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
2059 				goto err_phy;
2060 			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
2061 				hw_dbg(hw, "SFP+ module not supported\n");
2062 				return -EOPNOTSUPP;
2063 			} else {
2064 				break;
2065 			}
2066 		} else {
2067 			(*list_offset) += 2;
2068 			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2069 				goto err_phy;
2070 		}
2071 	}
2072 
2073 	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
2074 		hw_dbg(hw, "No matching SFP+ module found\n");
2075 		return -EOPNOTSUPP;
2076 	}
2077 
2078 	return 0;
2079 
2080 err_phy:
2081 	hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
2082 	return -EIO;
2083 }
2084 
2085 /**
2086  *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
2087  *  @hw: pointer to hardware structure
2088  *  @byte_offset: EEPROM byte offset to read
2089  *  @eeprom_data: value read
2090  *
2091  *  Performs byte read operation to SFP module's EEPROM over I2C interface.
2092  **/
2093 int ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2094 				  u8 *eeprom_data)
2095 {
2096 	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2097 					 IXGBE_I2C_EEPROM_DEV_ADDR,
2098 					 eeprom_data);
2099 }
2100 
2101 /**
2102  *  ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
2103  *  @hw: pointer to hardware structure
2104  *  @byte_offset: byte offset at address 0xA2
2105  *  @sff8472_data: value read
2106  *
2107  *  Performs byte read operation to SFP module's SFF-8472 data over I2C
2108  **/
2109 int ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
2110 				   u8 *sff8472_data)
2111 {
2112 	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2113 					 IXGBE_I2C_EEPROM_DEV_ADDR2,
2114 					 sff8472_data);
2115 }
2116 
2117 /**
2118  *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
2119  *  @hw: pointer to hardware structure
2120  *  @byte_offset: EEPROM byte offset to write
2121  *  @eeprom_data: value to write
2122  *
2123  *  Performs byte write operation to SFP module's EEPROM over I2C interface.
2124  **/
2125 int ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2126 				   u8 eeprom_data)
2127 {
2128 	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
2129 					  IXGBE_I2C_EEPROM_DEV_ADDR,
2130 					  eeprom_data);
2131 }
2132 
2133 /**
2134  * ixgbe_is_sfp_probe - Returns true if SFP is being detected
2135  * @hw: pointer to hardware structure
2136  * @offset: eeprom offset to be read
2137  * @addr: I2C address to be read
2138  */
2139 static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
2140 {
2141 	if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
2142 	    offset == IXGBE_SFF_IDENTIFIER &&
2143 	    hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2144 		return true;
2145 	return false;
2146 }
2147 
2148 /**
2149  *  ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
2150  *  @hw: pointer to hardware structure
2151  *  @byte_offset: byte offset to read
2152  *  @dev_addr: device address
2153  *  @data: value read
2154  *  @lock: true if to take and release semaphore
2155  *
2156  *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2157  *  a specified device address.
2158  */
2159 static int ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2160 					   u8 dev_addr, u8 *data, bool lock)
2161 {
2162 	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2163 	u32 max_retry = 10;
2164 	bool nack = true;
2165 	u32 retry = 0;
2166 	int status;
2167 
2168 	if (hw->mac.type >= ixgbe_mac_X550)
2169 		max_retry = 3;
2170 	if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
2171 		max_retry = IXGBE_SFP_DETECT_RETRIES;
2172 
2173 	*data = 0;
2174 
2175 	do {
2176 		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2177 			return -EBUSY;
2178 
2179 		ixgbe_i2c_start(hw);
2180 
2181 		/* Device Address and write indication */
2182 		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2183 		if (status != 0)
2184 			goto fail;
2185 
2186 		status = ixgbe_get_i2c_ack(hw);
2187 		if (status != 0)
2188 			goto fail;
2189 
2190 		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2191 		if (status != 0)
2192 			goto fail;
2193 
2194 		status = ixgbe_get_i2c_ack(hw);
2195 		if (status != 0)
2196 			goto fail;
2197 
2198 		ixgbe_i2c_start(hw);
2199 
2200 		/* Device Address and read indication */
2201 		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
2202 		if (status != 0)
2203 			goto fail;
2204 
2205 		status = ixgbe_get_i2c_ack(hw);
2206 		if (status != 0)
2207 			goto fail;
2208 
2209 		status = ixgbe_clock_in_i2c_byte(hw, data);
2210 		if (status != 0)
2211 			goto fail;
2212 
2213 		status = ixgbe_clock_out_i2c_bit(hw, nack);
2214 		if (status != 0)
2215 			goto fail;
2216 
2217 		ixgbe_i2c_stop(hw);
2218 		if (lock)
2219 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2220 		return 0;
2221 
2222 fail:
2223 		ixgbe_i2c_bus_clear(hw);
2224 		if (lock) {
2225 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2226 			msleep(100);
2227 		}
2228 		retry++;
2229 		if (retry < max_retry)
2230 			hw_dbg(hw, "I2C byte read error - Retrying.\n");
2231 		else
2232 			hw_dbg(hw, "I2C byte read error.\n");
2233 
2234 	} while (retry < max_retry);
2235 
2236 	return status;
2237 }
2238 
2239 /**
2240  *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
2241  *  @hw: pointer to hardware structure
2242  *  @byte_offset: byte offset to read
2243  *  @dev_addr: device address
2244  *  @data: value read
2245  *
2246  *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2247  *  a specified device address.
2248  */
2249 int ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2250 				u8 dev_addr, u8 *data)
2251 {
2252 	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2253 					       data, true);
2254 }
2255 
2256 /**
2257  *  ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
2258  *  @hw: pointer to hardware structure
2259  *  @byte_offset: byte offset to read
2260  *  @dev_addr: device address
2261  *  @data: value read
2262  *
2263  *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2264  *  a specified device address.
2265  */
2266 int ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2267 					 u8 dev_addr, u8 *data)
2268 {
2269 	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2270 					       data, false);
2271 }
2272 
2273 /**
2274  *  ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
2275  *  @hw: pointer to hardware structure
2276  *  @byte_offset: byte offset to write
2277  *  @dev_addr: device address
2278  *  @data: value to write
2279  *  @lock: true if to take and release semaphore
2280  *
2281  *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2282  *  a specified device address.
2283  */
2284 static int ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2285 					    u8 dev_addr, u8 data, bool lock)
2286 {
2287 	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2288 	u32 max_retry = 1;
2289 	u32 retry = 0;
2290 	int status;
2291 
2292 	if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2293 		return -EBUSY;
2294 
2295 	do {
2296 		ixgbe_i2c_start(hw);
2297 
2298 		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2299 		if (status != 0)
2300 			goto fail;
2301 
2302 		status = ixgbe_get_i2c_ack(hw);
2303 		if (status != 0)
2304 			goto fail;
2305 
2306 		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2307 		if (status != 0)
2308 			goto fail;
2309 
2310 		status = ixgbe_get_i2c_ack(hw);
2311 		if (status != 0)
2312 			goto fail;
2313 
2314 		status = ixgbe_clock_out_i2c_byte(hw, data);
2315 		if (status != 0)
2316 			goto fail;
2317 
2318 		status = ixgbe_get_i2c_ack(hw);
2319 		if (status != 0)
2320 			goto fail;
2321 
2322 		ixgbe_i2c_stop(hw);
2323 		if (lock)
2324 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2325 		return 0;
2326 
2327 fail:
2328 		ixgbe_i2c_bus_clear(hw);
2329 		retry++;
2330 		if (retry < max_retry)
2331 			hw_dbg(hw, "I2C byte write error - Retrying.\n");
2332 		else
2333 			hw_dbg(hw, "I2C byte write error.\n");
2334 	} while (retry < max_retry);
2335 
2336 	if (lock)
2337 		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2338 
2339 	return status;
2340 }
2341 
2342 /**
2343  *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
2344  *  @hw: pointer to hardware structure
2345  *  @byte_offset: byte offset to write
2346  *  @dev_addr: device address
2347  *  @data: value to write
2348  *
2349  *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2350  *  a specified device address.
2351  */
2352 int ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2353 				 u8 dev_addr, u8 data)
2354 {
2355 	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2356 						data, true);
2357 }
2358 
2359 /**
2360  *  ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
2361  *  @hw: pointer to hardware structure
2362  *  @byte_offset: byte offset to write
2363  *  @dev_addr: device address
2364  *  @data: value to write
2365  *
2366  *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2367  *  a specified device address.
2368  */
2369 int ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2370 					  u8 dev_addr, u8 data)
2371 {
2372 	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2373 						data, false);
2374 }
2375 
2376 /**
2377  *  ixgbe_i2c_start - Sets I2C start condition
2378  *  @hw: pointer to hardware structure
2379  *
2380  *  Sets I2C start condition (High -> Low on SDA while SCL is High)
2381  *  Set bit-bang mode on X550 hardware.
2382  **/
2383 static void ixgbe_i2c_start(struct ixgbe_hw *hw)
2384 {
2385 	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2386 
2387 	i2cctl |= IXGBE_I2C_BB_EN(hw);
2388 
2389 	/* Start condition must begin with data and clock high */
2390 	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2391 	ixgbe_raise_i2c_clk(hw, &i2cctl);
2392 
2393 	/* Setup time for start condition (4.7us) */
2394 	udelay(IXGBE_I2C_T_SU_STA);
2395 
2396 	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2397 
2398 	/* Hold time for start condition (4us) */
2399 	udelay(IXGBE_I2C_T_HD_STA);
2400 
2401 	ixgbe_lower_i2c_clk(hw, &i2cctl);
2402 
2403 	/* Minimum low period of clock is 4.7 us */
2404 	udelay(IXGBE_I2C_T_LOW);
2405 
2406 }
2407 
2408 /**
2409  *  ixgbe_i2c_stop - Sets I2C stop condition
2410  *  @hw: pointer to hardware structure
2411  *
2412  *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
2413  *  Disables bit-bang mode and negates data output enable on X550
2414  *  hardware.
2415  **/
2416 static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
2417 {
2418 	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2419 	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2420 	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2421 	u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
2422 
2423 	/* Stop condition must begin with data low and clock high */
2424 	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2425 	ixgbe_raise_i2c_clk(hw, &i2cctl);
2426 
2427 	/* Setup time for stop condition (4us) */
2428 	udelay(IXGBE_I2C_T_SU_STO);
2429 
2430 	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2431 
2432 	/* bus free time between stop and start (4.7us)*/
2433 	udelay(IXGBE_I2C_T_BUF);
2434 
2435 	if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2436 		i2cctl &= ~bb_en_bit;
2437 		i2cctl |= data_oe_bit | clk_oe_bit;
2438 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2439 		IXGBE_WRITE_FLUSH(hw);
2440 	}
2441 }
2442 
2443 /**
2444  *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2445  *  @hw: pointer to hardware structure
2446  *  @data: data byte to clock in
2447  *
2448  *  Clocks in one byte data via I2C data/clock
2449  **/
2450 static int ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2451 {
2452 	bool bit = false;
2453 	int i;
2454 
2455 	*data = 0;
2456 	for (i = 7; i >= 0; i--) {
2457 		ixgbe_clock_in_i2c_bit(hw, &bit);
2458 		*data |= bit << i;
2459 	}
2460 
2461 	return 0;
2462 }
2463 
2464 /**
2465  *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2466  *  @hw: pointer to hardware structure
2467  *  @data: data byte clocked out
2468  *
2469  *  Clocks out one byte data via I2C data/clock
2470  **/
2471 static int ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2472 {
2473 	bool bit = false;
2474 	int status;
2475 	u32 i2cctl;
2476 	int i;
2477 
2478 	for (i = 7; i >= 0; i--) {
2479 		bit = (data >> i) & 0x1;
2480 		status = ixgbe_clock_out_i2c_bit(hw, bit);
2481 
2482 		if (status != 0)
2483 			break;
2484 	}
2485 
2486 	/* Release SDA line (set high) */
2487 	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2488 	i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2489 	i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2490 	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2491 	IXGBE_WRITE_FLUSH(hw);
2492 
2493 	return status;
2494 }
2495 
2496 /**
2497  *  ixgbe_get_i2c_ack - Polls for I2C ACK
2498  *  @hw: pointer to hardware structure
2499  *
2500  *  Clocks in/out one bit via I2C data/clock
2501  **/
2502 static int ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2503 {
2504 	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2505 	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2506 	u32 timeout = 10;
2507 	bool ack = true;
2508 	int status = 0;
2509 	u32 i = 0;
2510 
2511 	if (data_oe_bit) {
2512 		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2513 		i2cctl |= data_oe_bit;
2514 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2515 		IXGBE_WRITE_FLUSH(hw);
2516 	}
2517 	ixgbe_raise_i2c_clk(hw, &i2cctl);
2518 
2519 	/* Minimum high period of clock is 4us */
2520 	udelay(IXGBE_I2C_T_HIGH);
2521 
2522 	/* Poll for ACK.  Note that ACK in I2C spec is
2523 	 * transition from 1 to 0 */
2524 	for (i = 0; i < timeout; i++) {
2525 		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2526 		ack = ixgbe_get_i2c_data(hw, &i2cctl);
2527 
2528 		udelay(1);
2529 		if (ack == 0)
2530 			break;
2531 	}
2532 
2533 	if (ack == 1) {
2534 		hw_dbg(hw, "I2C ack was not received.\n");
2535 		status = -EIO;
2536 	}
2537 
2538 	ixgbe_lower_i2c_clk(hw, &i2cctl);
2539 
2540 	/* Minimum low period of clock is 4.7 us */
2541 	udelay(IXGBE_I2C_T_LOW);
2542 
2543 	return status;
2544 }
2545 
2546 /**
2547  *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2548  *  @hw: pointer to hardware structure
2549  *  @data: read data value
2550  *
2551  *  Clocks in one bit via I2C data/clock
2552  **/
2553 static int ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2554 {
2555 	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2556 	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2557 
2558 	if (data_oe_bit) {
2559 		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2560 		i2cctl |= data_oe_bit;
2561 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2562 		IXGBE_WRITE_FLUSH(hw);
2563 	}
2564 	ixgbe_raise_i2c_clk(hw, &i2cctl);
2565 
2566 	/* Minimum high period of clock is 4us */
2567 	udelay(IXGBE_I2C_T_HIGH);
2568 
2569 	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2570 	*data = ixgbe_get_i2c_data(hw, &i2cctl);
2571 
2572 	ixgbe_lower_i2c_clk(hw, &i2cctl);
2573 
2574 	/* Minimum low period of clock is 4.7 us */
2575 	udelay(IXGBE_I2C_T_LOW);
2576 
2577 	return 0;
2578 }
2579 
2580 /**
2581  *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2582  *  @hw: pointer to hardware structure
2583  *  @data: data value to write
2584  *
2585  *  Clocks out one bit via I2C data/clock
2586  **/
2587 static int ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2588 {
2589 	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2590 	int status;
2591 
2592 	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2593 	if (status == 0) {
2594 		ixgbe_raise_i2c_clk(hw, &i2cctl);
2595 
2596 		/* Minimum high period of clock is 4us */
2597 		udelay(IXGBE_I2C_T_HIGH);
2598 
2599 		ixgbe_lower_i2c_clk(hw, &i2cctl);
2600 
2601 		/* Minimum low period of clock is 4.7 us.
2602 		 * This also takes care of the data hold time.
2603 		 */
2604 		udelay(IXGBE_I2C_T_LOW);
2605 	} else {
2606 		hw_dbg(hw, "I2C data was not set to %X\n", data);
2607 		return -EIO;
2608 	}
2609 
2610 	return 0;
2611 }
2612 /**
2613  *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2614  *  @hw: pointer to hardware structure
2615  *  @i2cctl: Current value of I2CCTL register
2616  *
2617  *  Raises the I2C clock line '0'->'1'
2618  *  Negates the I2C clock output enable on X550 hardware.
2619  **/
2620 static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2621 {
2622 	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2623 	u32 i = 0;
2624 	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2625 	u32 i2cctl_r = 0;
2626 
2627 	if (clk_oe_bit) {
2628 		*i2cctl |= clk_oe_bit;
2629 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2630 	}
2631 
2632 	for (i = 0; i < timeout; i++) {
2633 		*i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2634 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2635 		IXGBE_WRITE_FLUSH(hw);
2636 		/* SCL rise time (1000ns) */
2637 		udelay(IXGBE_I2C_T_RISE);
2638 
2639 		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2640 		if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2641 			break;
2642 	}
2643 }
2644 
2645 /**
2646  *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2647  *  @hw: pointer to hardware structure
2648  *  @i2cctl: Current value of I2CCTL register
2649  *
2650  *  Lowers the I2C clock line '1'->'0'
2651  *  Asserts the I2C clock output enable on X550 hardware.
2652  **/
2653 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2654 {
2655 
2656 	*i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2657 	*i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2658 
2659 	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2660 	IXGBE_WRITE_FLUSH(hw);
2661 
2662 	/* SCL fall time (300ns) */
2663 	udelay(IXGBE_I2C_T_FALL);
2664 }
2665 
2666 /**
2667  *  ixgbe_set_i2c_data - Sets the I2C data bit
2668  *  @hw: pointer to hardware structure
2669  *  @i2cctl: Current value of I2CCTL register
2670  *  @data: I2C data value (0 or 1) to set
2671  *
2672  *  Sets the I2C data bit
2673  *  Asserts the I2C data output enable on X550 hardware.
2674  **/
2675 static int ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2676 {
2677 	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2678 
2679 	if (data)
2680 		*i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2681 	else
2682 		*i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2683 	*i2cctl &= ~data_oe_bit;
2684 
2685 	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2686 	IXGBE_WRITE_FLUSH(hw);
2687 
2688 	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2689 	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2690 
2691 	if (!data)	/* Can't verify data in this case */
2692 		return 0;
2693 	if (data_oe_bit) {
2694 		*i2cctl |= data_oe_bit;
2695 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2696 		IXGBE_WRITE_FLUSH(hw);
2697 	}
2698 
2699 	/* Verify data was set correctly */
2700 	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2701 	if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
2702 		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2703 		return -EIO;
2704 	}
2705 
2706 	return 0;
2707 }
2708 
2709 /**
2710  *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
2711  *  @hw: pointer to hardware structure
2712  *  @i2cctl: Current value of I2CCTL register
2713  *
2714  *  Returns the I2C data bit value
2715  *  Negates the I2C data output enable on X550 hardware.
2716  **/
2717 static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2718 {
2719 	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2720 
2721 	if (data_oe_bit) {
2722 		*i2cctl |= data_oe_bit;
2723 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2724 		IXGBE_WRITE_FLUSH(hw);
2725 		udelay(IXGBE_I2C_T_FALL);
2726 	}
2727 
2728 	if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2729 		return true;
2730 	return false;
2731 }
2732 
2733 /**
2734  *  ixgbe_i2c_bus_clear - Clears the I2C bus
2735  *  @hw: pointer to hardware structure
2736  *
2737  *  Clears the I2C bus by sending nine clock pulses.
2738  *  Used when data line is stuck low.
2739  **/
2740 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2741 {
2742 	u32 i2cctl;
2743 	u32 i;
2744 
2745 	ixgbe_i2c_start(hw);
2746 	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2747 
2748 	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2749 
2750 	for (i = 0; i < 9; i++) {
2751 		ixgbe_raise_i2c_clk(hw, &i2cctl);
2752 
2753 		/* Min high period of clock is 4us */
2754 		udelay(IXGBE_I2C_T_HIGH);
2755 
2756 		ixgbe_lower_i2c_clk(hw, &i2cctl);
2757 
2758 		/* Min low period of clock is 4.7us*/
2759 		udelay(IXGBE_I2C_T_LOW);
2760 	}
2761 
2762 	ixgbe_i2c_start(hw);
2763 
2764 	/* Put the i2c bus back to default state */
2765 	ixgbe_i2c_stop(hw);
2766 }
2767 
2768 /**
2769  *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2770  *  @hw: pointer to hardware structure
2771  *
2772  *  Checks if the LASI temp alarm status was triggered due to overtemp
2773  *
2774  *  Return true when an overtemp event detected, otherwise false.
2775  **/
2776 bool ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2777 {
2778 	u16 phy_data = 0;
2779 	u32 status;
2780 
2781 	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2782 		return false;
2783 
2784 	/* Check that the LASI temp alarm status was triggered */
2785 	status = hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2786 				      MDIO_MMD_PMAPMD, &phy_data);
2787 	if (status)
2788 		return false;
2789 
2790 	return !!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM);
2791 }
2792 
2793 /** ixgbe_set_copper_phy_power - Control power for copper phy
2794  *  @hw: pointer to hardware structure
2795  *  @on: true for on, false for off
2796  **/
2797 int ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2798 {
2799 	u32 status;
2800 	u16 reg;
2801 
2802 	/* Bail if we don't have copper phy */
2803 	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2804 		return 0;
2805 
2806 	if (!on && ixgbe_mng_present(hw))
2807 		return 0;
2808 
2809 	status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, &reg);
2810 	if (status)
2811 		return status;
2812 
2813 	if (on) {
2814 		reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2815 	} else {
2816 		if (ixgbe_check_reset_blocked(hw))
2817 			return 0;
2818 		reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2819 	}
2820 
2821 	status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg);
2822 	return status;
2823 }
2824