1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 #include <linux/pci.h> 5 #include <linux/delay.h> 6 #include <linux/iopoll.h> 7 #include <linux/sched.h> 8 9 #include "ixgbe.h" 10 #include "ixgbe_phy.h" 11 12 static void ixgbe_i2c_start(struct ixgbe_hw *hw); 13 static void ixgbe_i2c_stop(struct ixgbe_hw *hw); 14 static int ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data); 15 static int ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data); 16 static int ixgbe_get_i2c_ack(struct ixgbe_hw *hw); 17 static int ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data); 18 static int ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data); 19 static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl); 20 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl); 21 static int ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data); 22 static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl); 23 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw); 24 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id); 25 static int ixgbe_get_phy_id(struct ixgbe_hw *hw); 26 static int ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw); 27 28 /** 29 * ixgbe_out_i2c_byte_ack - Send I2C byte with ack 30 * @hw: pointer to the hardware structure 31 * @byte: byte to send 32 * 33 * Returns an error code on error. 34 **/ 35 static int ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte) 36 { 37 int status; 38 39 status = ixgbe_clock_out_i2c_byte(hw, byte); 40 if (status) 41 return status; 42 return ixgbe_get_i2c_ack(hw); 43 } 44 45 /** 46 * ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack 47 * @hw: pointer to the hardware structure 48 * @byte: pointer to a u8 to receive the byte 49 * 50 * Returns an error code on error. 51 **/ 52 static int ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte) 53 { 54 int status; 55 56 status = ixgbe_clock_in_i2c_byte(hw, byte); 57 if (status) 58 return status; 59 /* ACK */ 60 return ixgbe_clock_out_i2c_bit(hw, false); 61 } 62 63 /** 64 * ixgbe_ones_comp_byte_add - Perform one's complement addition 65 * @add1: addend 1 66 * @add2: addend 2 67 * 68 * Returns one's complement 8-bit sum. 69 **/ 70 static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2) 71 { 72 u16 sum = add1 + add2; 73 74 sum = (sum & 0xFF) + (sum >> 8); 75 return sum & 0xFF; 76 } 77 78 /** 79 * ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation 80 * @hw: pointer to the hardware structure 81 * @addr: I2C bus address to read from 82 * @reg: I2C device register to read from 83 * @val: pointer to location to receive read value 84 * @lock: true if to take and release semaphore 85 * 86 * Returns an error code on error. 87 */ 88 int ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr, 89 u16 reg, u16 *val, bool lock) 90 { 91 u32 swfw_mask = hw->phy.phy_semaphore_mask; 92 int max_retry = 3; 93 int retry = 0; 94 u8 csum_byte; 95 u8 high_bits; 96 u8 low_bits; 97 u8 reg_high; 98 u8 csum; 99 100 reg_high = ((reg >> 7) & 0xFE) | 1; /* Indicate read combined */ 101 csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF); 102 csum = ~csum; 103 do { 104 if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 105 return -EBUSY; 106 ixgbe_i2c_start(hw); 107 /* Device Address and write indication */ 108 if (ixgbe_out_i2c_byte_ack(hw, addr)) 109 goto fail; 110 /* Write bits 14:8 */ 111 if (ixgbe_out_i2c_byte_ack(hw, reg_high)) 112 goto fail; 113 /* Write bits 7:0 */ 114 if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF)) 115 goto fail; 116 /* Write csum */ 117 if (ixgbe_out_i2c_byte_ack(hw, csum)) 118 goto fail; 119 /* Re-start condition */ 120 ixgbe_i2c_start(hw); 121 /* Device Address and read indication */ 122 if (ixgbe_out_i2c_byte_ack(hw, addr | 1)) 123 goto fail; 124 /* Get upper bits */ 125 if (ixgbe_in_i2c_byte_ack(hw, &high_bits)) 126 goto fail; 127 /* Get low bits */ 128 if (ixgbe_in_i2c_byte_ack(hw, &low_bits)) 129 goto fail; 130 /* Get csum */ 131 if (ixgbe_clock_in_i2c_byte(hw, &csum_byte)) 132 goto fail; 133 /* NACK */ 134 if (ixgbe_clock_out_i2c_bit(hw, false)) 135 goto fail; 136 ixgbe_i2c_stop(hw); 137 if (lock) 138 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 139 *val = (high_bits << 8) | low_bits; 140 return 0; 141 142 fail: 143 ixgbe_i2c_bus_clear(hw); 144 if (lock) 145 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 146 retry++; 147 if (retry < max_retry) 148 hw_dbg(hw, "I2C byte read combined error - Retry.\n"); 149 else 150 hw_dbg(hw, "I2C byte read combined error.\n"); 151 } while (retry < max_retry); 152 153 return -EIO; 154 } 155 156 /** 157 * ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation 158 * @hw: pointer to the hardware structure 159 * @addr: I2C bus address to write to 160 * @reg: I2C device register to write to 161 * @val: value to write 162 * @lock: true if to take and release semaphore 163 * 164 * Returns an error code on error. 165 */ 166 int ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr, 167 u16 reg, u16 val, bool lock) 168 { 169 u32 swfw_mask = hw->phy.phy_semaphore_mask; 170 int max_retry = 1; 171 int retry = 0; 172 u8 reg_high; 173 u8 csum; 174 175 reg_high = (reg >> 7) & 0xFE; /* Indicate write combined */ 176 csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF); 177 csum = ixgbe_ones_comp_byte_add(csum, val >> 8); 178 csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF); 179 csum = ~csum; 180 do { 181 if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 182 return -EBUSY; 183 ixgbe_i2c_start(hw); 184 /* Device Address and write indication */ 185 if (ixgbe_out_i2c_byte_ack(hw, addr)) 186 goto fail; 187 /* Write bits 14:8 */ 188 if (ixgbe_out_i2c_byte_ack(hw, reg_high)) 189 goto fail; 190 /* Write bits 7:0 */ 191 if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF)) 192 goto fail; 193 /* Write data 15:8 */ 194 if (ixgbe_out_i2c_byte_ack(hw, val >> 8)) 195 goto fail; 196 /* Write data 7:0 */ 197 if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF)) 198 goto fail; 199 /* Write csum */ 200 if (ixgbe_out_i2c_byte_ack(hw, csum)) 201 goto fail; 202 ixgbe_i2c_stop(hw); 203 if (lock) 204 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 205 return 0; 206 207 fail: 208 ixgbe_i2c_bus_clear(hw); 209 if (lock) 210 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 211 retry++; 212 if (retry < max_retry) 213 hw_dbg(hw, "I2C byte write combined error - Retry.\n"); 214 else 215 hw_dbg(hw, "I2C byte write combined error.\n"); 216 } while (retry < max_retry); 217 218 return -EIO; 219 } 220 221 /** 222 * ixgbe_probe_phy - Probe a single address for a PHY 223 * @hw: pointer to hardware structure 224 * @phy_addr: PHY address to probe 225 * 226 * Returns true if PHY found 227 **/ 228 static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr) 229 { 230 u16 ext_ability = 0; 231 232 hw->phy.mdio.prtad = phy_addr; 233 if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0) 234 return false; 235 236 if (ixgbe_get_phy_id(hw)) 237 return false; 238 239 hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id); 240 241 if (hw->phy.type == ixgbe_phy_unknown) { 242 hw->phy.ops.read_reg(hw, 243 MDIO_PMA_EXTABLE, 244 MDIO_MMD_PMAPMD, 245 &ext_ability); 246 if (ext_ability & 247 (MDIO_PMA_EXTABLE_10GBT | 248 MDIO_PMA_EXTABLE_1000BT)) 249 hw->phy.type = ixgbe_phy_cu_unknown; 250 else 251 hw->phy.type = ixgbe_phy_generic; 252 } 253 254 return true; 255 } 256 257 /** 258 * ixgbe_identify_phy_generic - Get physical layer module 259 * @hw: pointer to hardware structure 260 * 261 * Determines the physical layer module found on the current adapter. 262 **/ 263 int ixgbe_identify_phy_generic(struct ixgbe_hw *hw) 264 { 265 u32 status = -EFAULT; 266 u32 phy_addr; 267 268 if (!hw->phy.phy_semaphore_mask) { 269 if (hw->bus.lan_id) 270 hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM; 271 else 272 hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM; 273 } 274 275 if (hw->phy.type != ixgbe_phy_unknown) 276 return 0; 277 278 if (hw->phy.nw_mng_if_sel) { 279 phy_addr = FIELD_GET(IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD, 280 hw->phy.nw_mng_if_sel); 281 if (ixgbe_probe_phy(hw, phy_addr)) 282 return 0; 283 else 284 return -EFAULT; 285 } 286 287 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) { 288 if (ixgbe_probe_phy(hw, phy_addr)) { 289 status = 0; 290 break; 291 } 292 } 293 294 /* Certain media types do not have a phy so an address will not 295 * be found and the code will take this path. Caller has to 296 * decide if it is an error or not. 297 */ 298 if (status) 299 hw->phy.mdio.prtad = MDIO_PRTAD_NONE; 300 301 return status; 302 } 303 304 /** 305 * ixgbe_check_reset_blocked - check status of MNG FW veto bit 306 * @hw: pointer to the hardware structure 307 * 308 * This function checks the MMNGC.MNG_VETO bit to see if there are 309 * any constraints on link from manageability. For MAC's that don't 310 * have this bit just return false since the link can not be blocked 311 * via this method. 312 **/ 313 bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw) 314 { 315 u32 mmngc; 316 317 /* If we don't have this bit, it can't be blocking */ 318 if (hw->mac.type == ixgbe_mac_82598EB) 319 return false; 320 321 mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC); 322 if (mmngc & IXGBE_MMNGC_MNG_VETO) { 323 hw_dbg(hw, "MNG_VETO bit detected.\n"); 324 return true; 325 } 326 327 return false; 328 } 329 330 /** 331 * ixgbe_get_phy_id - Get the phy type 332 * @hw: pointer to hardware structure 333 * 334 **/ 335 static int ixgbe_get_phy_id(struct ixgbe_hw *hw) 336 { 337 u16 phy_id_high = 0; 338 u16 phy_id_low = 0; 339 int status; 340 341 status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD, 342 &phy_id_high); 343 344 if (!status) { 345 hw->phy.id = (u32)(phy_id_high << 16); 346 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD, 347 &phy_id_low); 348 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK); 349 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK); 350 } 351 return status; 352 } 353 354 /** 355 * ixgbe_get_phy_type_from_id - Get the phy type 356 * @phy_id: hardware phy id 357 * 358 **/ 359 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id) 360 { 361 enum ixgbe_phy_type phy_type; 362 363 switch (phy_id) { 364 case TN1010_PHY_ID: 365 phy_type = ixgbe_phy_tn; 366 break; 367 case X550_PHY_ID2: 368 case X550_PHY_ID3: 369 case X540_PHY_ID: 370 phy_type = ixgbe_phy_aq; 371 break; 372 case QT2022_PHY_ID: 373 phy_type = ixgbe_phy_qt; 374 break; 375 case ATH_PHY_ID: 376 phy_type = ixgbe_phy_nl; 377 break; 378 case X557_PHY_ID: 379 case X557_PHY_ID2: 380 phy_type = ixgbe_phy_x550em_ext_t; 381 break; 382 case BCM54616S_E_PHY_ID: 383 phy_type = ixgbe_phy_ext_1g_t; 384 break; 385 default: 386 phy_type = ixgbe_phy_unknown; 387 break; 388 } 389 390 return phy_type; 391 } 392 393 /** 394 * ixgbe_reset_phy_generic - Performs a PHY reset 395 * @hw: pointer to hardware structure 396 **/ 397 int ixgbe_reset_phy_generic(struct ixgbe_hw *hw) 398 { 399 u32 i; 400 u16 ctrl = 0; 401 int status = 0; 402 403 if (hw->phy.type == ixgbe_phy_unknown) 404 status = ixgbe_identify_phy_generic(hw); 405 406 if (status != 0 || hw->phy.type == ixgbe_phy_none) 407 return status; 408 409 /* Don't reset PHY if it's shut down due to overtemp. */ 410 if (!hw->phy.reset_if_overtemp && hw->phy.ops.check_overtemp(hw)) 411 return 0; 412 413 /* Blocked by MNG FW so bail */ 414 if (ixgbe_check_reset_blocked(hw)) 415 return 0; 416 417 /* 418 * Perform soft PHY reset to the PHY_XS. 419 * This will cause a soft reset to the PHY 420 */ 421 hw->phy.ops.write_reg(hw, MDIO_CTRL1, 422 MDIO_MMD_PHYXS, 423 MDIO_CTRL1_RESET); 424 425 /* 426 * Poll for reset bit to self-clear indicating reset is complete. 427 * Some PHYs could take up to 3 seconds to complete and need about 428 * 1.7 usec delay after the reset is complete. 429 */ 430 for (i = 0; i < 30; i++) { 431 msleep(100); 432 if (hw->phy.type == ixgbe_phy_x550em_ext_t) { 433 status = hw->phy.ops.read_reg(hw, 434 IXGBE_MDIO_TX_VENDOR_ALARMS_3, 435 MDIO_MMD_PMAPMD, &ctrl); 436 if (status) 437 return status; 438 439 if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) { 440 udelay(2); 441 break; 442 } 443 } else { 444 status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, 445 MDIO_MMD_PHYXS, &ctrl); 446 if (status) 447 return status; 448 449 if (!(ctrl & MDIO_CTRL1_RESET)) { 450 udelay(2); 451 break; 452 } 453 } 454 } 455 456 if (ctrl & MDIO_CTRL1_RESET) { 457 hw_dbg(hw, "PHY reset polling failed to complete.\n"); 458 return -EIO; 459 } 460 461 return 0; 462 } 463 464 /** 465 * ixgbe_read_phy_reg_mdi - read PHY register 466 * @hw: pointer to hardware structure 467 * @reg_addr: 32 bit address of PHY register to read 468 * @device_type: 5 bit device type 469 * @phy_data: Pointer to read data from PHY register 470 * 471 * Reads a value from a specified PHY register without the SWFW lock 472 **/ 473 int ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type, 474 u16 *phy_data) 475 { 476 u32 i, data, command; 477 478 /* Setup and write the address cycle command */ 479 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) | 480 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) | 481 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) | 482 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND)); 483 484 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command); 485 486 /* Check every 10 usec to see if the address cycle completed. 487 * The MDI Command bit will clear when the operation is 488 * complete 489 */ 490 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) { 491 udelay(10); 492 493 command = IXGBE_READ_REG(hw, IXGBE_MSCA); 494 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0) 495 break; 496 } 497 498 499 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) { 500 hw_dbg(hw, "PHY address command did not complete.\n"); 501 return -EIO; 502 } 503 504 /* Address cycle complete, setup and write the read 505 * command 506 */ 507 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) | 508 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) | 509 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) | 510 (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND)); 511 512 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command); 513 514 /* Check every 10 usec to see if the address cycle 515 * completed. The MDI Command bit will clear when the 516 * operation is complete 517 */ 518 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) { 519 udelay(10); 520 521 command = IXGBE_READ_REG(hw, IXGBE_MSCA); 522 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0) 523 break; 524 } 525 526 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) { 527 hw_dbg(hw, "PHY read command didn't complete\n"); 528 return -EIO; 529 } 530 531 /* Read operation is complete. Get the data 532 * from MSRWD 533 */ 534 data = IXGBE_READ_REG(hw, IXGBE_MSRWD); 535 data >>= IXGBE_MSRWD_READ_DATA_SHIFT; 536 *phy_data = (u16)(data); 537 538 return 0; 539 } 540 541 /** 542 * ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register 543 * using the SWFW lock - this function is needed in most cases 544 * @hw: pointer to hardware structure 545 * @reg_addr: 32 bit address of PHY register to read 546 * @device_type: 5 bit device type 547 * @phy_data: Pointer to read data from PHY register 548 **/ 549 int ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr, 550 u32 device_type, u16 *phy_data) 551 { 552 u32 gssr = hw->phy.phy_semaphore_mask; 553 int status; 554 555 if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) { 556 status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type, 557 phy_data); 558 hw->mac.ops.release_swfw_sync(hw, gssr); 559 } else { 560 return -EBUSY; 561 } 562 563 return status; 564 } 565 566 /** 567 * ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register 568 * without SWFW lock 569 * @hw: pointer to hardware structure 570 * @reg_addr: 32 bit PHY register to write 571 * @device_type: 5 bit device type 572 * @phy_data: Data to write to the PHY register 573 **/ 574 int ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type, 575 u16 phy_data) 576 { 577 u32 i, command; 578 579 /* Put the data in the MDI single read and write data register*/ 580 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data); 581 582 /* Setup and write the address cycle command */ 583 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) | 584 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) | 585 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) | 586 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND)); 587 588 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command); 589 590 /* 591 * Check every 10 usec to see if the address cycle completed. 592 * The MDI Command bit will clear when the operation is 593 * complete 594 */ 595 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) { 596 udelay(10); 597 598 command = IXGBE_READ_REG(hw, IXGBE_MSCA); 599 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0) 600 break; 601 } 602 603 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) { 604 hw_dbg(hw, "PHY address cmd didn't complete\n"); 605 return -EIO; 606 } 607 608 /* 609 * Address cycle complete, setup and write the write 610 * command 611 */ 612 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) | 613 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) | 614 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) | 615 (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND)); 616 617 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command); 618 619 /* Check every 10 usec to see if the address cycle 620 * completed. The MDI Command bit will clear when the 621 * operation is complete 622 */ 623 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) { 624 udelay(10); 625 626 command = IXGBE_READ_REG(hw, IXGBE_MSCA); 627 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0) 628 break; 629 } 630 631 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) { 632 hw_dbg(hw, "PHY write cmd didn't complete\n"); 633 return -EIO; 634 } 635 636 return 0; 637 } 638 639 /** 640 * ixgbe_write_phy_reg_generic - Writes a value to specified PHY register 641 * using SWFW lock- this function is needed in most cases 642 * @hw: pointer to hardware structure 643 * @reg_addr: 32 bit PHY register to write 644 * @device_type: 5 bit device type 645 * @phy_data: Data to write to the PHY register 646 **/ 647 int ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr, 648 u32 device_type, u16 phy_data) 649 { 650 u32 gssr = hw->phy.phy_semaphore_mask; 651 int status; 652 653 if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) { 654 status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type, 655 phy_data); 656 hw->mac.ops.release_swfw_sync(hw, gssr); 657 } else { 658 return -EBUSY; 659 } 660 661 return status; 662 } 663 664 #define IXGBE_HW_READ_REG(addr) IXGBE_READ_REG(hw, addr) 665 666 /** 667 * ixgbe_msca_cmd - Write the command register and poll for completion/timeout 668 * @hw: pointer to hardware structure 669 * @cmd: command register value to write 670 **/ 671 static int ixgbe_msca_cmd(struct ixgbe_hw *hw, u32 cmd) 672 { 673 IXGBE_WRITE_REG(hw, IXGBE_MSCA, cmd); 674 675 return readx_poll_timeout(IXGBE_HW_READ_REG, IXGBE_MSCA, cmd, 676 !(cmd & IXGBE_MSCA_MDI_COMMAND), 10, 677 10 * IXGBE_MDIO_COMMAND_TIMEOUT); 678 } 679 680 /** 681 * ixgbe_mii_bus_read_generic_c22 - Read a clause 22 register with gssr flags 682 * @hw: pointer to hardware structure 683 * @addr: address 684 * @regnum: register number 685 * @gssr: semaphore flags to acquire 686 **/ 687 static int ixgbe_mii_bus_read_generic_c22(struct ixgbe_hw *hw, int addr, 688 int regnum, u32 gssr) 689 { 690 u32 hwaddr, cmd; 691 int data; 692 693 if (hw->mac.ops.acquire_swfw_sync(hw, gssr)) 694 return -EBUSY; 695 696 hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT; 697 hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT; 698 cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL | 699 IXGBE_MSCA_READ_AUTOINC | IXGBE_MSCA_MDI_COMMAND; 700 701 data = ixgbe_msca_cmd(hw, cmd); 702 if (data < 0) 703 goto mii_bus_read_done; 704 705 data = IXGBE_READ_REG(hw, IXGBE_MSRWD); 706 data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0); 707 708 mii_bus_read_done: 709 hw->mac.ops.release_swfw_sync(hw, gssr); 710 return data; 711 } 712 713 /** 714 * ixgbe_mii_bus_read_generic_c45 - Read a clause 45 register with gssr flags 715 * @hw: pointer to hardware structure 716 * @addr: address 717 * @devad: device address to read 718 * @regnum: register number 719 * @gssr: semaphore flags to acquire 720 **/ 721 static int ixgbe_mii_bus_read_generic_c45(struct ixgbe_hw *hw, int addr, 722 int devad, int regnum, u32 gssr) 723 { 724 u32 hwaddr, cmd; 725 int data; 726 727 if (hw->mac.ops.acquire_swfw_sync(hw, gssr)) 728 return -EBUSY; 729 730 hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT; 731 hwaddr |= devad << 16 | regnum; 732 cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND; 733 734 data = ixgbe_msca_cmd(hw, cmd); 735 if (data < 0) 736 goto mii_bus_read_done; 737 738 cmd = hwaddr | IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND; 739 data = ixgbe_msca_cmd(hw, cmd); 740 if (data < 0) 741 goto mii_bus_read_done; 742 743 data = IXGBE_READ_REG(hw, IXGBE_MSRWD); 744 data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0); 745 746 mii_bus_read_done: 747 hw->mac.ops.release_swfw_sync(hw, gssr); 748 return data; 749 } 750 751 /** 752 * ixgbe_mii_bus_write_generic_c22 - Write a clause 22 register with gssr flags 753 * @hw: pointer to hardware structure 754 * @addr: address 755 * @regnum: register number 756 * @val: value to write 757 * @gssr: semaphore flags to acquire 758 **/ 759 static int ixgbe_mii_bus_write_generic_c22(struct ixgbe_hw *hw, int addr, 760 int regnum, u16 val, u32 gssr) 761 { 762 u32 hwaddr, cmd; 763 int err; 764 765 if (hw->mac.ops.acquire_swfw_sync(hw, gssr)) 766 return -EBUSY; 767 768 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val); 769 770 hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT; 771 hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT; 772 cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL | IXGBE_MSCA_WRITE | 773 IXGBE_MSCA_MDI_COMMAND; 774 775 err = ixgbe_msca_cmd(hw, cmd); 776 777 hw->mac.ops.release_swfw_sync(hw, gssr); 778 return err; 779 } 780 781 /** 782 * ixgbe_mii_bus_write_generic_c45 - Write a clause 45 register with gssr flags 783 * @hw: pointer to hardware structure 784 * @addr: address 785 * @devad: device address to read 786 * @regnum: register number 787 * @val: value to write 788 * @gssr: semaphore flags to acquire 789 **/ 790 static int ixgbe_mii_bus_write_generic_c45(struct ixgbe_hw *hw, int addr, 791 int devad, int regnum, u16 val, 792 u32 gssr) 793 { 794 u32 hwaddr, cmd; 795 int err; 796 797 if (hw->mac.ops.acquire_swfw_sync(hw, gssr)) 798 return -EBUSY; 799 800 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val); 801 802 hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT; 803 hwaddr |= devad << 16 | regnum; 804 cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND; 805 806 err = ixgbe_msca_cmd(hw, cmd); 807 if (err < 0) 808 goto mii_bus_write_done; 809 810 cmd = hwaddr | IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND; 811 err = ixgbe_msca_cmd(hw, cmd); 812 813 mii_bus_write_done: 814 hw->mac.ops.release_swfw_sync(hw, gssr); 815 return err; 816 } 817 818 /** 819 * ixgbe_mii_bus_read_c22 - Read a clause 22 register 820 * @bus: pointer to mii_bus structure which points to our driver private 821 * @addr: address 822 * @regnum: register number 823 **/ 824 static int ixgbe_mii_bus_read_c22(struct mii_bus *bus, int addr, int regnum) 825 { 826 struct ixgbe_adapter *adapter = bus->priv; 827 struct ixgbe_hw *hw = &adapter->hw; 828 u32 gssr = hw->phy.phy_semaphore_mask; 829 830 return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr); 831 } 832 833 /** 834 * ixgbe_mii_bus_read_c45 - Read a clause 45 register 835 * @bus: pointer to mii_bus structure which points to our driver private 836 * @devad: device address to read 837 * @addr: address 838 * @regnum: register number 839 **/ 840 static int ixgbe_mii_bus_read_c45(struct mii_bus *bus, int devad, int addr, 841 int regnum) 842 { 843 struct ixgbe_adapter *adapter = bus->priv; 844 struct ixgbe_hw *hw = &adapter->hw; 845 u32 gssr = hw->phy.phy_semaphore_mask; 846 847 return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr); 848 } 849 850 /** 851 * ixgbe_mii_bus_write_c22 - Write a clause 22 register 852 * @bus: pointer to mii_bus structure which points to our driver private 853 * @addr: address 854 * @regnum: register number 855 * @val: value to write 856 **/ 857 static int ixgbe_mii_bus_write_c22(struct mii_bus *bus, int addr, int regnum, 858 u16 val) 859 { 860 struct ixgbe_adapter *adapter = bus->priv; 861 struct ixgbe_hw *hw = &adapter->hw; 862 u32 gssr = hw->phy.phy_semaphore_mask; 863 864 return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr); 865 } 866 867 /** 868 * ixgbe_mii_bus_write_c45 - Write a clause 45 register 869 * @bus: pointer to mii_bus structure which points to our driver private 870 * @addr: address 871 * @devad: device address to read 872 * @regnum: register number 873 * @val: value to write 874 **/ 875 static int ixgbe_mii_bus_write_c45(struct mii_bus *bus, int addr, int devad, 876 int regnum, u16 val) 877 { 878 struct ixgbe_adapter *adapter = bus->priv; 879 struct ixgbe_hw *hw = &adapter->hw; 880 u32 gssr = hw->phy.phy_semaphore_mask; 881 882 return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val, 883 gssr); 884 } 885 886 /** 887 * ixgbe_x550em_a_mii_bus_read_c22 - Read a clause 22 register on x550em_a 888 * @bus: pointer to mii_bus structure which points to our driver private 889 * @addr: address 890 * @regnum: register number 891 **/ 892 static int ixgbe_x550em_a_mii_bus_read_c22(struct mii_bus *bus, int addr, 893 int regnum) 894 { 895 struct ixgbe_adapter *adapter = bus->priv; 896 struct ixgbe_hw *hw = &adapter->hw; 897 u32 gssr = hw->phy.phy_semaphore_mask; 898 899 gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM; 900 return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr); 901 } 902 903 /** 904 * ixgbe_x550em_a_mii_bus_read_c45 - Read a clause 45 register on x550em_a 905 * @bus: pointer to mii_bus structure which points to our driver private 906 * @addr: address 907 * @devad: device address to read 908 * @regnum: register number 909 **/ 910 static int ixgbe_x550em_a_mii_bus_read_c45(struct mii_bus *bus, int addr, 911 int devad, int regnum) 912 { 913 struct ixgbe_adapter *adapter = bus->priv; 914 struct ixgbe_hw *hw = &adapter->hw; 915 u32 gssr = hw->phy.phy_semaphore_mask; 916 917 gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM; 918 return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr); 919 } 920 921 /** 922 * ixgbe_x550em_a_mii_bus_write_c22 - Write a clause 22 register on x550em_a 923 * @bus: pointer to mii_bus structure which points to our driver private 924 * @addr: address 925 * @regnum: register number 926 * @val: value to write 927 **/ 928 static int ixgbe_x550em_a_mii_bus_write_c22(struct mii_bus *bus, int addr, 929 int regnum, u16 val) 930 { 931 struct ixgbe_adapter *adapter = bus->priv; 932 struct ixgbe_hw *hw = &adapter->hw; 933 u32 gssr = hw->phy.phy_semaphore_mask; 934 935 gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM; 936 return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr); 937 } 938 939 /** 940 * ixgbe_x550em_a_mii_bus_write_c45 - Write a clause 45 register on x550em_a 941 * @bus: pointer to mii_bus structure which points to our driver private 942 * @addr: address 943 * @devad: device address to read 944 * @regnum: register number 945 * @val: value to write 946 **/ 947 static int ixgbe_x550em_a_mii_bus_write_c45(struct mii_bus *bus, int addr, 948 int devad, int regnum, u16 val) 949 { 950 struct ixgbe_adapter *adapter = bus->priv; 951 struct ixgbe_hw *hw = &adapter->hw; 952 u32 gssr = hw->phy.phy_semaphore_mask; 953 954 gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM; 955 return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val, 956 gssr); 957 } 958 959 /** 960 * ixgbe_get_first_secondary_devfn - get first device downstream of root port 961 * @devfn: PCI_DEVFN of root port on domain 0, bus 0 962 * 963 * Returns pci_dev pointer to PCI_DEVFN(0, 0) on subordinate side of root 964 * on domain 0, bus 0, devfn = 'devfn' 965 **/ 966 static struct pci_dev *ixgbe_get_first_secondary_devfn(unsigned int devfn) 967 { 968 struct pci_dev *rp_pdev; 969 int bus; 970 971 rp_pdev = pci_get_domain_bus_and_slot(0, 0, devfn); 972 if (rp_pdev && rp_pdev->subordinate) { 973 bus = rp_pdev->subordinate->number; 974 pci_dev_put(rp_pdev); 975 return pci_get_domain_bus_and_slot(0, bus, 0); 976 } 977 978 pci_dev_put(rp_pdev); 979 return NULL; 980 } 981 982 /** 983 * ixgbe_x550em_a_has_mii - is this the first ixgbe x550em_a PCI function? 984 * @hw: pointer to hardware structure 985 * 986 * Returns true if hw points to lowest numbered PCI B:D.F x550_em_a device in 987 * the SoC. There are up to 4 MACs sharing a single MDIO bus on the x550em_a, 988 * but we only want to register one MDIO bus. 989 **/ 990 static bool ixgbe_x550em_a_has_mii(struct ixgbe_hw *hw) 991 { 992 struct ixgbe_adapter *adapter = hw->back; 993 struct pci_dev *pdev = adapter->pdev; 994 struct pci_dev *func0_pdev; 995 bool has_mii = false; 996 997 /* For the C3000 family of SoCs (x550em_a) the internal ixgbe devices 998 * are always downstream of root ports @ 0000:00:16.0 & 0000:00:17.0 999 * It's not valid for function 0 to be disabled and function 1 is up, 1000 * so the lowest numbered ixgbe dev will be device 0 function 0 on one 1001 * of those two root ports 1002 */ 1003 func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x16, 0)); 1004 if (func0_pdev) { 1005 if (func0_pdev == pdev) 1006 has_mii = true; 1007 goto out; 1008 } 1009 func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x17, 0)); 1010 if (func0_pdev == pdev) 1011 has_mii = true; 1012 1013 out: 1014 pci_dev_put(func0_pdev); 1015 return has_mii; 1016 } 1017 1018 /** 1019 * ixgbe_mii_bus_init - mii_bus structure setup 1020 * @hw: pointer to hardware structure 1021 * 1022 * Returns 0 on success, negative on failure 1023 * 1024 * ixgbe_mii_bus_init initializes a mii_bus structure in adapter 1025 **/ 1026 int ixgbe_mii_bus_init(struct ixgbe_hw *hw) 1027 { 1028 int (*write_c22)(struct mii_bus *bus, int addr, int regnum, u16 val); 1029 int (*read_c22)(struct mii_bus *bus, int addr, int regnum); 1030 int (*write_c45)(struct mii_bus *bus, int addr, int devad, int regnum, 1031 u16 val); 1032 int (*read_c45)(struct mii_bus *bus, int addr, int devad, int regnum); 1033 struct ixgbe_adapter *adapter = hw->back; 1034 struct pci_dev *pdev = adapter->pdev; 1035 struct device *dev = &adapter->netdev->dev; 1036 struct mii_bus *bus; 1037 1038 switch (hw->device_id) { 1039 /* C3000 SoCs */ 1040 case IXGBE_DEV_ID_X550EM_A_KR: 1041 case IXGBE_DEV_ID_X550EM_A_KR_L: 1042 case IXGBE_DEV_ID_X550EM_A_SFP_N: 1043 case IXGBE_DEV_ID_X550EM_A_SGMII: 1044 case IXGBE_DEV_ID_X550EM_A_SGMII_L: 1045 case IXGBE_DEV_ID_X550EM_A_10G_T: 1046 case IXGBE_DEV_ID_X550EM_A_SFP: 1047 case IXGBE_DEV_ID_X550EM_A_1G_T: 1048 case IXGBE_DEV_ID_X550EM_A_1G_T_L: 1049 if (!ixgbe_x550em_a_has_mii(hw)) 1050 return 0; 1051 read_c22 = ixgbe_x550em_a_mii_bus_read_c22; 1052 write_c22 = ixgbe_x550em_a_mii_bus_write_c22; 1053 read_c45 = ixgbe_x550em_a_mii_bus_read_c45; 1054 write_c45 = ixgbe_x550em_a_mii_bus_write_c45; 1055 break; 1056 default: 1057 read_c22 = ixgbe_mii_bus_read_c22; 1058 write_c22 = ixgbe_mii_bus_write_c22; 1059 read_c45 = ixgbe_mii_bus_read_c45; 1060 write_c45 = ixgbe_mii_bus_write_c45; 1061 break; 1062 } 1063 1064 bus = devm_mdiobus_alloc(dev); 1065 if (!bus) 1066 return -ENOMEM; 1067 1068 bus->read = read_c22; 1069 bus->write = write_c22; 1070 bus->read_c45 = read_c45; 1071 bus->write_c45 = write_c45; 1072 1073 /* Use the position of the device in the PCI hierarchy as the id */ 1074 snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mdio-%s", ixgbe_driver_name, 1075 pci_name(pdev)); 1076 1077 bus->name = "ixgbe-mdio"; 1078 bus->priv = adapter; 1079 bus->parent = dev; 1080 bus->phy_mask = GENMASK(31, 0); 1081 1082 /* Support clause 22/45 natively. ixgbe_probe() sets MDIO_EMULATE_C22 1083 * unfortunately that causes some clause 22 frames to be sent with 1084 * clause 45 addressing. We don't want that. 1085 */ 1086 hw->phy.mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22; 1087 1088 adapter->mii_bus = bus; 1089 return mdiobus_register(bus); 1090 } 1091 1092 /** 1093 * ixgbe_setup_phy_link_generic - Set and restart autoneg 1094 * @hw: pointer to hardware structure 1095 * 1096 * Restart autonegotiation and PHY and waits for completion. 1097 **/ 1098 int ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw) 1099 { 1100 u16 autoneg_reg = IXGBE_MII_AUTONEG_REG; 1101 ixgbe_link_speed speed; 1102 bool autoneg = false; 1103 int status = 0; 1104 1105 ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg); 1106 1107 /* Set or unset auto-negotiation 10G advertisement */ 1108 hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg); 1109 1110 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G; 1111 if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) && 1112 (speed & IXGBE_LINK_SPEED_10GB_FULL)) 1113 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G; 1114 1115 hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg); 1116 1117 hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG, 1118 MDIO_MMD_AN, &autoneg_reg); 1119 1120 if (hw->mac.type == ixgbe_mac_X550) { 1121 /* Set or unset auto-negotiation 5G advertisement */ 1122 autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE; 1123 if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) && 1124 (speed & IXGBE_LINK_SPEED_5GB_FULL)) 1125 autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE; 1126 1127 /* Set or unset auto-negotiation 2.5G advertisement */ 1128 autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE; 1129 if ((hw->phy.autoneg_advertised & 1130 IXGBE_LINK_SPEED_2_5GB_FULL) && 1131 (speed & IXGBE_LINK_SPEED_2_5GB_FULL)) 1132 autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE; 1133 } 1134 1135 /* Set or unset auto-negotiation 1G advertisement */ 1136 autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE; 1137 if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) && 1138 (speed & IXGBE_LINK_SPEED_1GB_FULL)) 1139 autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE; 1140 1141 hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG, 1142 MDIO_MMD_AN, autoneg_reg); 1143 1144 /* Set or unset auto-negotiation 100M advertisement */ 1145 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg); 1146 1147 autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF); 1148 if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) && 1149 (speed & IXGBE_LINK_SPEED_100_FULL)) 1150 autoneg_reg |= ADVERTISE_100FULL; 1151 1152 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg); 1153 1154 /* Blocked by MNG FW so don't reset PHY */ 1155 if (ixgbe_check_reset_blocked(hw)) 1156 return 0; 1157 1158 /* Restart PHY autonegotiation and wait for completion */ 1159 hw->phy.ops.read_reg(hw, MDIO_CTRL1, 1160 MDIO_MMD_AN, &autoneg_reg); 1161 1162 autoneg_reg |= MDIO_AN_CTRL1_RESTART; 1163 1164 hw->phy.ops.write_reg(hw, MDIO_CTRL1, 1165 MDIO_MMD_AN, autoneg_reg); 1166 1167 return status; 1168 } 1169 1170 /** 1171 * ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities 1172 * @hw: pointer to hardware structure 1173 * @speed: new link speed 1174 * @autoneg_wait_to_complete: unused 1175 **/ 1176 int ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw, 1177 ixgbe_link_speed speed, 1178 bool autoneg_wait_to_complete) 1179 { 1180 /* Clear autoneg_advertised and set new values based on input link 1181 * speed. 1182 */ 1183 hw->phy.autoneg_advertised = 0; 1184 1185 if (speed & IXGBE_LINK_SPEED_10GB_FULL) 1186 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL; 1187 1188 if (speed & IXGBE_LINK_SPEED_5GB_FULL) 1189 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL; 1190 1191 if (speed & IXGBE_LINK_SPEED_2_5GB_FULL) 1192 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL; 1193 1194 if (speed & IXGBE_LINK_SPEED_1GB_FULL) 1195 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL; 1196 1197 if (speed & IXGBE_LINK_SPEED_100_FULL) 1198 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL; 1199 1200 if (speed & IXGBE_LINK_SPEED_10_FULL) 1201 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL; 1202 1203 /* Setup link based on the new speed settings */ 1204 if (hw->phy.ops.setup_link) 1205 hw->phy.ops.setup_link(hw); 1206 1207 return 0; 1208 } 1209 1210 /** 1211 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy 1212 * @hw: pointer to hardware structure 1213 * 1214 * Determines the supported link capabilities by reading the PHY auto 1215 * negotiation register. 1216 */ 1217 static int ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw) 1218 { 1219 u16 speed_ability; 1220 int status; 1221 1222 status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD, 1223 &speed_ability); 1224 if (status) 1225 return status; 1226 1227 if (speed_ability & MDIO_SPEED_10G) 1228 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL; 1229 if (speed_ability & MDIO_PMA_SPEED_1000) 1230 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL; 1231 if (speed_ability & MDIO_PMA_SPEED_100) 1232 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL; 1233 1234 switch (hw->mac.type) { 1235 case ixgbe_mac_X550: 1236 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL; 1237 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL; 1238 break; 1239 case ixgbe_mac_X550EM_x: 1240 case ixgbe_mac_x550em_a: 1241 hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL; 1242 break; 1243 default: 1244 break; 1245 } 1246 1247 return 0; 1248 } 1249 1250 /** 1251 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities 1252 * @hw: pointer to hardware structure 1253 * @speed: pointer to link speed 1254 * @autoneg: boolean auto-negotiation value 1255 */ 1256 int ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw, 1257 ixgbe_link_speed *speed, 1258 bool *autoneg) 1259 { 1260 int status = 0; 1261 1262 *autoneg = true; 1263 if (!hw->phy.speeds_supported) 1264 status = ixgbe_get_copper_speeds_supported(hw); 1265 1266 *speed = hw->phy.speeds_supported; 1267 return status; 1268 } 1269 1270 /** 1271 * ixgbe_check_phy_link_tnx - Determine link and speed status 1272 * @hw: pointer to hardware structure 1273 * @speed: link speed 1274 * @link_up: status of link 1275 * 1276 * Reads the VS1 register to determine if link is up and the current speed for 1277 * the PHY. 1278 **/ 1279 int ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed, 1280 bool *link_up) 1281 { 1282 u32 max_time_out = 10; 1283 u16 phy_speed = 0; 1284 u16 phy_link = 0; 1285 u16 phy_data = 0; 1286 u32 time_out; 1287 int status; 1288 1289 /* Initialize speed and link to default case */ 1290 *link_up = false; 1291 *speed = IXGBE_LINK_SPEED_10GB_FULL; 1292 1293 /* 1294 * Check current speed and link status of the PHY register. 1295 * This is a vendor specific register and may have to 1296 * be changed for other copper PHYs. 1297 */ 1298 for (time_out = 0; time_out < max_time_out; time_out++) { 1299 udelay(10); 1300 status = hw->phy.ops.read_reg(hw, 1301 MDIO_STAT1, 1302 MDIO_MMD_VEND1, 1303 &phy_data); 1304 phy_link = phy_data & 1305 IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS; 1306 phy_speed = phy_data & 1307 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS; 1308 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) { 1309 *link_up = true; 1310 if (phy_speed == 1311 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS) 1312 *speed = IXGBE_LINK_SPEED_1GB_FULL; 1313 break; 1314 } 1315 } 1316 1317 return status; 1318 } 1319 1320 /** 1321 * ixgbe_setup_phy_link_tnx - Set and restart autoneg 1322 * @hw: pointer to hardware structure 1323 * 1324 * Restart autonegotiation and PHY and waits for completion. 1325 * This function always returns success, this is nessary since 1326 * it is called via a function pointer that could call other 1327 * functions that could return an error. 1328 **/ 1329 int ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw) 1330 { 1331 u16 autoneg_reg = IXGBE_MII_AUTONEG_REG; 1332 bool autoneg = false; 1333 ixgbe_link_speed speed; 1334 1335 ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg); 1336 1337 if (speed & IXGBE_LINK_SPEED_10GB_FULL) { 1338 /* Set or unset auto-negotiation 10G advertisement */ 1339 hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, 1340 MDIO_MMD_AN, 1341 &autoneg_reg); 1342 1343 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G; 1344 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) 1345 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G; 1346 1347 hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, 1348 MDIO_MMD_AN, 1349 autoneg_reg); 1350 } 1351 1352 if (speed & IXGBE_LINK_SPEED_1GB_FULL) { 1353 /* Set or unset auto-negotiation 1G advertisement */ 1354 hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG, 1355 MDIO_MMD_AN, 1356 &autoneg_reg); 1357 1358 autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX; 1359 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) 1360 autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX; 1361 1362 hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG, 1363 MDIO_MMD_AN, 1364 autoneg_reg); 1365 } 1366 1367 if (speed & IXGBE_LINK_SPEED_100_FULL) { 1368 /* Set or unset auto-negotiation 100M advertisement */ 1369 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, 1370 MDIO_MMD_AN, 1371 &autoneg_reg); 1372 1373 autoneg_reg &= ~(ADVERTISE_100FULL | 1374 ADVERTISE_100HALF); 1375 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) 1376 autoneg_reg |= ADVERTISE_100FULL; 1377 1378 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, 1379 MDIO_MMD_AN, 1380 autoneg_reg); 1381 } 1382 1383 /* Blocked by MNG FW so don't reset PHY */ 1384 if (ixgbe_check_reset_blocked(hw)) 1385 return 0; 1386 1387 /* Restart PHY autonegotiation and wait for completion */ 1388 hw->phy.ops.read_reg(hw, MDIO_CTRL1, 1389 MDIO_MMD_AN, &autoneg_reg); 1390 1391 autoneg_reg |= MDIO_AN_CTRL1_RESTART; 1392 1393 hw->phy.ops.write_reg(hw, MDIO_CTRL1, 1394 MDIO_MMD_AN, autoneg_reg); 1395 return 0; 1396 } 1397 1398 /** 1399 * ixgbe_reset_phy_nl - Performs a PHY reset 1400 * @hw: pointer to hardware structure 1401 **/ 1402 int ixgbe_reset_phy_nl(struct ixgbe_hw *hw) 1403 { 1404 u16 phy_offset, control, eword, edata, block_crc; 1405 u16 list_offset, data_offset; 1406 bool end_data = false; 1407 u16 phy_data = 0; 1408 int ret_val; 1409 u32 i; 1410 1411 /* Blocked by MNG FW so bail */ 1412 if (ixgbe_check_reset_blocked(hw)) 1413 return 0; 1414 1415 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data); 1416 1417 /* reset the PHY and poll for completion */ 1418 hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, 1419 (phy_data | MDIO_CTRL1_RESET)); 1420 1421 for (i = 0; i < 100; i++) { 1422 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, 1423 &phy_data); 1424 if ((phy_data & MDIO_CTRL1_RESET) == 0) 1425 break; 1426 usleep_range(10000, 20000); 1427 } 1428 1429 if ((phy_data & MDIO_CTRL1_RESET) != 0) { 1430 hw_dbg(hw, "PHY reset did not complete.\n"); 1431 return -EIO; 1432 } 1433 1434 /* Get init offsets */ 1435 ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset, 1436 &data_offset); 1437 if (ret_val) 1438 return ret_val; 1439 1440 ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc); 1441 data_offset++; 1442 while (!end_data) { 1443 /* 1444 * Read control word from PHY init contents offset 1445 */ 1446 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword); 1447 if (ret_val) 1448 goto err_eeprom; 1449 control = FIELD_GET(IXGBE_CONTROL_MASK_NL, eword); 1450 edata = eword & IXGBE_DATA_MASK_NL; 1451 switch (control) { 1452 case IXGBE_DELAY_NL: 1453 data_offset++; 1454 hw_dbg(hw, "DELAY: %d MS\n", edata); 1455 usleep_range(edata * 1000, edata * 2000); 1456 break; 1457 case IXGBE_DATA_NL: 1458 hw_dbg(hw, "DATA:\n"); 1459 data_offset++; 1460 ret_val = hw->eeprom.ops.read(hw, data_offset++, 1461 &phy_offset); 1462 if (ret_val) 1463 goto err_eeprom; 1464 for (i = 0; i < edata; i++) { 1465 ret_val = hw->eeprom.ops.read(hw, data_offset, 1466 &eword); 1467 if (ret_val) 1468 goto err_eeprom; 1469 hw->phy.ops.write_reg(hw, phy_offset, 1470 MDIO_MMD_PMAPMD, eword); 1471 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword, 1472 phy_offset); 1473 data_offset++; 1474 phy_offset++; 1475 } 1476 break; 1477 case IXGBE_CONTROL_NL: 1478 data_offset++; 1479 hw_dbg(hw, "CONTROL:\n"); 1480 if (edata == IXGBE_CONTROL_EOL_NL) { 1481 hw_dbg(hw, "EOL\n"); 1482 end_data = true; 1483 } else if (edata == IXGBE_CONTROL_SOL_NL) { 1484 hw_dbg(hw, "SOL\n"); 1485 } else { 1486 hw_dbg(hw, "Bad control value\n"); 1487 return -EIO; 1488 } 1489 break; 1490 default: 1491 hw_dbg(hw, "Bad control type\n"); 1492 return -EIO; 1493 } 1494 } 1495 1496 return ret_val; 1497 1498 err_eeprom: 1499 hw_err(hw, "eeprom read at offset %d failed\n", data_offset); 1500 return -EIO; 1501 } 1502 1503 /** 1504 * ixgbe_identify_module_generic - Identifies module type 1505 * @hw: pointer to hardware structure 1506 * 1507 * Determines HW type and calls appropriate function. 1508 **/ 1509 int ixgbe_identify_module_generic(struct ixgbe_hw *hw) 1510 { 1511 switch (hw->mac.ops.get_media_type(hw)) { 1512 case ixgbe_media_type_fiber: 1513 return ixgbe_identify_sfp_module_generic(hw); 1514 case ixgbe_media_type_fiber_qsfp: 1515 return ixgbe_identify_qsfp_module_generic(hw); 1516 default: 1517 hw->phy.sfp_type = ixgbe_sfp_type_not_present; 1518 return -ENOENT; 1519 } 1520 1521 return -ENOENT; 1522 } 1523 1524 /** 1525 * ixgbe_identify_sfp_module_generic - Identifies SFP modules 1526 * @hw: pointer to hardware structure 1527 * 1528 * Searches for and identifies the SFP module and assigns appropriate PHY type. 1529 **/ 1530 int ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw) 1531 { 1532 enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type; 1533 struct ixgbe_adapter *adapter = hw->back; 1534 u8 oui_bytes[3] = {0, 0, 0}; 1535 u8 bitrate_nominal = 0; 1536 u8 comp_codes_10g = 0; 1537 u8 comp_codes_1g = 0; 1538 u16 enforce_sfp = 0; 1539 u32 vendor_oui = 0; 1540 u8 identifier = 0; 1541 u8 cable_tech = 0; 1542 u8 cable_spec = 0; 1543 int status; 1544 1545 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) { 1546 hw->phy.sfp_type = ixgbe_sfp_type_not_present; 1547 return -ENOENT; 1548 } 1549 1550 /* LAN ID is needed for sfp_type determination */ 1551 hw->mac.ops.set_lan_id(hw); 1552 1553 status = hw->phy.ops.read_i2c_eeprom(hw, 1554 IXGBE_SFF_IDENTIFIER, 1555 &identifier); 1556 1557 if (status) 1558 goto err_read_i2c_eeprom; 1559 1560 if (identifier != IXGBE_SFF_IDENTIFIER_SFP) { 1561 hw->phy.type = ixgbe_phy_sfp_unsupported; 1562 return -EOPNOTSUPP; 1563 } 1564 status = hw->phy.ops.read_i2c_eeprom(hw, 1565 IXGBE_SFF_1GBE_COMP_CODES, 1566 &comp_codes_1g); 1567 1568 if (status) 1569 goto err_read_i2c_eeprom; 1570 1571 status = hw->phy.ops.read_i2c_eeprom(hw, 1572 IXGBE_SFF_10GBE_COMP_CODES, 1573 &comp_codes_10g); 1574 1575 if (status) 1576 goto err_read_i2c_eeprom; 1577 status = hw->phy.ops.read_i2c_eeprom(hw, 1578 IXGBE_SFF_CABLE_TECHNOLOGY, 1579 &cable_tech); 1580 if (status) 1581 goto err_read_i2c_eeprom; 1582 1583 status = hw->phy.ops.read_i2c_eeprom(hw, 1584 IXGBE_SFF_BITRATE_NOMINAL, 1585 &bitrate_nominal); 1586 if (status) 1587 goto err_read_i2c_eeprom; 1588 1589 /* ID Module 1590 * ========= 1591 * 0 SFP_DA_CU 1592 * 1 SFP_SR 1593 * 2 SFP_LR 1594 * 3 SFP_DA_CORE0 - 82599-specific 1595 * 4 SFP_DA_CORE1 - 82599-specific 1596 * 5 SFP_SR/LR_CORE0 - 82599-specific 1597 * 6 SFP_SR/LR_CORE1 - 82599-specific 1598 * 7 SFP_act_lmt_DA_CORE0 - 82599-specific 1599 * 8 SFP_act_lmt_DA_CORE1 - 82599-specific 1600 * 9 SFP_1g_cu_CORE0 - 82599-specific 1601 * 10 SFP_1g_cu_CORE1 - 82599-specific 1602 * 11 SFP_1g_sx_CORE0 - 82599-specific 1603 * 12 SFP_1g_sx_CORE1 - 82599-specific 1604 */ 1605 if (hw->mac.type == ixgbe_mac_82598EB) { 1606 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) 1607 hw->phy.sfp_type = ixgbe_sfp_type_da_cu; 1608 else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE) 1609 hw->phy.sfp_type = ixgbe_sfp_type_sr; 1610 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE) 1611 hw->phy.sfp_type = ixgbe_sfp_type_lr; 1612 else 1613 hw->phy.sfp_type = ixgbe_sfp_type_unknown; 1614 } else { 1615 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) { 1616 if (hw->bus.lan_id == 0) 1617 hw->phy.sfp_type = 1618 ixgbe_sfp_type_da_cu_core0; 1619 else 1620 hw->phy.sfp_type = 1621 ixgbe_sfp_type_da_cu_core1; 1622 } else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) { 1623 hw->phy.ops.read_i2c_eeprom( 1624 hw, IXGBE_SFF_CABLE_SPEC_COMP, 1625 &cable_spec); 1626 if (cable_spec & 1627 IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) { 1628 if (hw->bus.lan_id == 0) 1629 hw->phy.sfp_type = 1630 ixgbe_sfp_type_da_act_lmt_core0; 1631 else 1632 hw->phy.sfp_type = 1633 ixgbe_sfp_type_da_act_lmt_core1; 1634 } else { 1635 hw->phy.sfp_type = 1636 ixgbe_sfp_type_unknown; 1637 } 1638 } else if (comp_codes_10g & 1639 (IXGBE_SFF_10GBASESR_CAPABLE | 1640 IXGBE_SFF_10GBASELR_CAPABLE)) { 1641 if (hw->bus.lan_id == 0) 1642 hw->phy.sfp_type = 1643 ixgbe_sfp_type_srlr_core0; 1644 else 1645 hw->phy.sfp_type = 1646 ixgbe_sfp_type_srlr_core1; 1647 } else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) { 1648 if (hw->bus.lan_id == 0) 1649 hw->phy.sfp_type = 1650 ixgbe_sfp_type_1g_cu_core0; 1651 else 1652 hw->phy.sfp_type = 1653 ixgbe_sfp_type_1g_cu_core1; 1654 } else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) { 1655 if (hw->bus.lan_id == 0) 1656 hw->phy.sfp_type = 1657 ixgbe_sfp_type_1g_sx_core0; 1658 else 1659 hw->phy.sfp_type = 1660 ixgbe_sfp_type_1g_sx_core1; 1661 } else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) { 1662 if (hw->bus.lan_id == 0) 1663 hw->phy.sfp_type = 1664 ixgbe_sfp_type_1g_lx_core0; 1665 else 1666 hw->phy.sfp_type = 1667 ixgbe_sfp_type_1g_lx_core1; 1668 /* Support only Ethernet 1000BASE-BX10, checking the Bit Rate 1669 * Nominal Value as per SFF-8472 by convention 1.25 Gb/s should 1670 * be rounded up to 0Dh (13 in units of 100 MBd) for 1000BASE-BX 1671 */ 1672 } else if ((comp_codes_1g & IXGBE_SFF_BASEBX10_CAPABLE) && 1673 (bitrate_nominal == 0xD)) { 1674 if (hw->bus.lan_id == 0) 1675 hw->phy.sfp_type = 1676 ixgbe_sfp_type_1g_bx_core0; 1677 else 1678 hw->phy.sfp_type = 1679 ixgbe_sfp_type_1g_bx_core1; 1680 } else { 1681 hw->phy.sfp_type = ixgbe_sfp_type_unknown; 1682 } 1683 } 1684 1685 if (hw->phy.sfp_type != stored_sfp_type) 1686 hw->phy.sfp_setup_needed = true; 1687 1688 /* Determine if the SFP+ PHY is dual speed or not. */ 1689 hw->phy.multispeed_fiber = false; 1690 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) && 1691 (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) || 1692 ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) && 1693 (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE))) 1694 hw->phy.multispeed_fiber = true; 1695 1696 /* Determine PHY vendor */ 1697 if (hw->phy.type != ixgbe_phy_nl) { 1698 hw->phy.id = identifier; 1699 status = hw->phy.ops.read_i2c_eeprom(hw, 1700 IXGBE_SFF_VENDOR_OUI_BYTE0, 1701 &oui_bytes[0]); 1702 1703 if (status != 0) 1704 goto err_read_i2c_eeprom; 1705 1706 status = hw->phy.ops.read_i2c_eeprom(hw, 1707 IXGBE_SFF_VENDOR_OUI_BYTE1, 1708 &oui_bytes[1]); 1709 1710 if (status != 0) 1711 goto err_read_i2c_eeprom; 1712 1713 status = hw->phy.ops.read_i2c_eeprom(hw, 1714 IXGBE_SFF_VENDOR_OUI_BYTE2, 1715 &oui_bytes[2]); 1716 1717 if (status != 0) 1718 goto err_read_i2c_eeprom; 1719 1720 vendor_oui = 1721 ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) | 1722 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) | 1723 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT)); 1724 1725 switch (vendor_oui) { 1726 case IXGBE_SFF_VENDOR_OUI_TYCO: 1727 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) 1728 hw->phy.type = 1729 ixgbe_phy_sfp_passive_tyco; 1730 break; 1731 case IXGBE_SFF_VENDOR_OUI_FTL: 1732 if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) 1733 hw->phy.type = ixgbe_phy_sfp_ftl_active; 1734 else 1735 hw->phy.type = ixgbe_phy_sfp_ftl; 1736 break; 1737 case IXGBE_SFF_VENDOR_OUI_AVAGO: 1738 hw->phy.type = ixgbe_phy_sfp_avago; 1739 break; 1740 case IXGBE_SFF_VENDOR_OUI_INTEL: 1741 hw->phy.type = ixgbe_phy_sfp_intel; 1742 break; 1743 default: 1744 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) 1745 hw->phy.type = 1746 ixgbe_phy_sfp_passive_unknown; 1747 else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) 1748 hw->phy.type = 1749 ixgbe_phy_sfp_active_unknown; 1750 else 1751 hw->phy.type = ixgbe_phy_sfp_unknown; 1752 break; 1753 } 1754 } 1755 1756 /* Allow any DA cable vendor */ 1757 if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE | 1758 IXGBE_SFF_DA_ACTIVE_CABLE)) 1759 return 0; 1760 1761 /* Verify supported 1G SFP modules */ 1762 if (comp_codes_10g == 0 && 1763 !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 || 1764 hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 || 1765 hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 || 1766 hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 || 1767 hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 || 1768 hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1 || 1769 hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core0 || 1770 hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core1)) { 1771 hw->phy.type = ixgbe_phy_sfp_unsupported; 1772 return -EOPNOTSUPP; 1773 } 1774 1775 /* Anything else 82598-based is supported */ 1776 if (hw->mac.type == ixgbe_mac_82598EB) 1777 return 0; 1778 1779 hw->mac.ops.get_device_caps(hw, &enforce_sfp); 1780 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) && 1781 !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 || 1782 hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 || 1783 hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 || 1784 hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 || 1785 hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 || 1786 hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1 || 1787 hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core0 || 1788 hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core1)) { 1789 /* Make sure we're a supported PHY type */ 1790 if (hw->phy.type == ixgbe_phy_sfp_intel) 1791 return 0; 1792 if (hw->allow_unsupported_sfp) { 1793 e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n"); 1794 return 0; 1795 } 1796 hw_dbg(hw, "SFP+ module not supported\n"); 1797 hw->phy.type = ixgbe_phy_sfp_unsupported; 1798 return -EOPNOTSUPP; 1799 } 1800 return 0; 1801 1802 err_read_i2c_eeprom: 1803 hw->phy.sfp_type = ixgbe_sfp_type_not_present; 1804 if (hw->phy.type != ixgbe_phy_nl) { 1805 hw->phy.id = 0; 1806 hw->phy.type = ixgbe_phy_unknown; 1807 } 1808 return -ENOENT; 1809 } 1810 1811 /** 1812 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules 1813 * @hw: pointer to hardware structure 1814 * 1815 * Searches for and identifies the QSFP module and assigns appropriate PHY type 1816 **/ 1817 static int ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw) 1818 { 1819 struct ixgbe_adapter *adapter = hw->back; 1820 int status; 1821 u32 vendor_oui = 0; 1822 enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type; 1823 u8 identifier = 0; 1824 u8 comp_codes_1g = 0; 1825 u8 comp_codes_10g = 0; 1826 u8 oui_bytes[3] = {0, 0, 0}; 1827 u16 enforce_sfp = 0; 1828 u8 connector = 0; 1829 u8 cable_length = 0; 1830 u8 device_tech = 0; 1831 bool active_cable = false; 1832 1833 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) { 1834 hw->phy.sfp_type = ixgbe_sfp_type_not_present; 1835 return -ENOENT; 1836 } 1837 1838 /* LAN ID is needed for sfp_type determination */ 1839 hw->mac.ops.set_lan_id(hw); 1840 1841 status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER, 1842 &identifier); 1843 1844 if (status != 0) 1845 goto err_read_i2c_eeprom; 1846 1847 if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) { 1848 hw->phy.type = ixgbe_phy_sfp_unsupported; 1849 return -EOPNOTSUPP; 1850 } 1851 1852 hw->phy.id = identifier; 1853 1854 status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP, 1855 &comp_codes_10g); 1856 1857 if (status != 0) 1858 goto err_read_i2c_eeprom; 1859 1860 status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP, 1861 &comp_codes_1g); 1862 1863 if (status != 0) 1864 goto err_read_i2c_eeprom; 1865 1866 if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) { 1867 hw->phy.type = ixgbe_phy_qsfp_passive_unknown; 1868 if (hw->bus.lan_id == 0) 1869 hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0; 1870 else 1871 hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1; 1872 } else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE | 1873 IXGBE_SFF_10GBASELR_CAPABLE)) { 1874 if (hw->bus.lan_id == 0) 1875 hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0; 1876 else 1877 hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1; 1878 } else { 1879 if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE) 1880 active_cable = true; 1881 1882 if (!active_cable) { 1883 /* check for active DA cables that pre-date 1884 * SFF-8436 v3.6 1885 */ 1886 hw->phy.ops.read_i2c_eeprom(hw, 1887 IXGBE_SFF_QSFP_CONNECTOR, 1888 &connector); 1889 1890 hw->phy.ops.read_i2c_eeprom(hw, 1891 IXGBE_SFF_QSFP_CABLE_LENGTH, 1892 &cable_length); 1893 1894 hw->phy.ops.read_i2c_eeprom(hw, 1895 IXGBE_SFF_QSFP_DEVICE_TECH, 1896 &device_tech); 1897 1898 if ((connector == 1899 IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) && 1900 (cable_length > 0) && 1901 ((device_tech >> 4) == 1902 IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL)) 1903 active_cable = true; 1904 } 1905 1906 if (active_cable) { 1907 hw->phy.type = ixgbe_phy_qsfp_active_unknown; 1908 if (hw->bus.lan_id == 0) 1909 hw->phy.sfp_type = 1910 ixgbe_sfp_type_da_act_lmt_core0; 1911 else 1912 hw->phy.sfp_type = 1913 ixgbe_sfp_type_da_act_lmt_core1; 1914 } else { 1915 /* unsupported module type */ 1916 hw->phy.type = ixgbe_phy_sfp_unsupported; 1917 return -EOPNOTSUPP; 1918 } 1919 } 1920 1921 if (hw->phy.sfp_type != stored_sfp_type) 1922 hw->phy.sfp_setup_needed = true; 1923 1924 /* Determine if the QSFP+ PHY is dual speed or not. */ 1925 hw->phy.multispeed_fiber = false; 1926 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) && 1927 (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) || 1928 ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) && 1929 (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE))) 1930 hw->phy.multispeed_fiber = true; 1931 1932 /* Determine PHY vendor for optical modules */ 1933 if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE | 1934 IXGBE_SFF_10GBASELR_CAPABLE)) { 1935 status = hw->phy.ops.read_i2c_eeprom(hw, 1936 IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0, 1937 &oui_bytes[0]); 1938 1939 if (status != 0) 1940 goto err_read_i2c_eeprom; 1941 1942 status = hw->phy.ops.read_i2c_eeprom(hw, 1943 IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1, 1944 &oui_bytes[1]); 1945 1946 if (status != 0) 1947 goto err_read_i2c_eeprom; 1948 1949 status = hw->phy.ops.read_i2c_eeprom(hw, 1950 IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2, 1951 &oui_bytes[2]); 1952 1953 if (status != 0) 1954 goto err_read_i2c_eeprom; 1955 1956 vendor_oui = 1957 ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) | 1958 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) | 1959 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT)); 1960 1961 if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL) 1962 hw->phy.type = ixgbe_phy_qsfp_intel; 1963 else 1964 hw->phy.type = ixgbe_phy_qsfp_unknown; 1965 1966 hw->mac.ops.get_device_caps(hw, &enforce_sfp); 1967 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) { 1968 /* Make sure we're a supported PHY type */ 1969 if (hw->phy.type == ixgbe_phy_qsfp_intel) 1970 return 0; 1971 if (hw->allow_unsupported_sfp) { 1972 e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n"); 1973 return 0; 1974 } 1975 hw_dbg(hw, "QSFP module not supported\n"); 1976 hw->phy.type = ixgbe_phy_sfp_unsupported; 1977 return -EOPNOTSUPP; 1978 } 1979 return 0; 1980 } 1981 return 0; 1982 1983 err_read_i2c_eeprom: 1984 hw->phy.sfp_type = ixgbe_sfp_type_not_present; 1985 hw->phy.id = 0; 1986 hw->phy.type = ixgbe_phy_unknown; 1987 1988 return -ENOENT; 1989 } 1990 1991 /** 1992 * ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence 1993 * @hw: pointer to hardware structure 1994 * @list_offset: offset to the SFP ID list 1995 * @data_offset: offset to the SFP data block 1996 * 1997 * Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if 1998 * so it returns the offsets to the phy init sequence block. 1999 **/ 2000 int ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw, 2001 u16 *list_offset, 2002 u16 *data_offset) 2003 { 2004 u16 sfp_id; 2005 u16 sfp_type = hw->phy.sfp_type; 2006 2007 if (hw->phy.sfp_type == ixgbe_sfp_type_unknown) 2008 return -EOPNOTSUPP; 2009 2010 if (hw->phy.sfp_type == ixgbe_sfp_type_not_present) 2011 return -ENOENT; 2012 2013 if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) && 2014 (hw->phy.sfp_type == ixgbe_sfp_type_da_cu)) 2015 return -EOPNOTSUPP; 2016 2017 /* 2018 * Limiting active cables and 1G Phys must be initialized as 2019 * SR modules 2020 */ 2021 if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 || 2022 sfp_type == ixgbe_sfp_type_1g_lx_core0 || 2023 sfp_type == ixgbe_sfp_type_1g_cu_core0 || 2024 sfp_type == ixgbe_sfp_type_1g_sx_core0 || 2025 sfp_type == ixgbe_sfp_type_1g_bx_core0) 2026 sfp_type = ixgbe_sfp_type_srlr_core0; 2027 else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 || 2028 sfp_type == ixgbe_sfp_type_1g_lx_core1 || 2029 sfp_type == ixgbe_sfp_type_1g_cu_core1 || 2030 sfp_type == ixgbe_sfp_type_1g_sx_core1 || 2031 sfp_type == ixgbe_sfp_type_1g_bx_core1) 2032 sfp_type = ixgbe_sfp_type_srlr_core1; 2033 2034 /* Read offset to PHY init contents */ 2035 if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) { 2036 hw_err(hw, "eeprom read at %d failed\n", 2037 IXGBE_PHY_INIT_OFFSET_NL); 2038 return -EIO; 2039 } 2040 2041 if ((!*list_offset) || (*list_offset == 0xFFFF)) 2042 return -EIO; 2043 2044 /* Shift offset to first ID word */ 2045 (*list_offset)++; 2046 2047 /* 2048 * Find the matching SFP ID in the EEPROM 2049 * and program the init sequence 2050 */ 2051 if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id)) 2052 goto err_phy; 2053 2054 while (sfp_id != IXGBE_PHY_INIT_END_NL) { 2055 if (sfp_id == sfp_type) { 2056 (*list_offset)++; 2057 if (hw->eeprom.ops.read(hw, *list_offset, data_offset)) 2058 goto err_phy; 2059 if ((!*data_offset) || (*data_offset == 0xFFFF)) { 2060 hw_dbg(hw, "SFP+ module not supported\n"); 2061 return -EOPNOTSUPP; 2062 } else { 2063 break; 2064 } 2065 } else { 2066 (*list_offset) += 2; 2067 if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id)) 2068 goto err_phy; 2069 } 2070 } 2071 2072 if (sfp_id == IXGBE_PHY_INIT_END_NL) { 2073 hw_dbg(hw, "No matching SFP+ module found\n"); 2074 return -EOPNOTSUPP; 2075 } 2076 2077 return 0; 2078 2079 err_phy: 2080 hw_err(hw, "eeprom read at offset %d failed\n", *list_offset); 2081 return -EIO; 2082 } 2083 2084 /** 2085 * ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface 2086 * @hw: pointer to hardware structure 2087 * @byte_offset: EEPROM byte offset to read 2088 * @eeprom_data: value read 2089 * 2090 * Performs byte read operation to SFP module's EEPROM over I2C interface. 2091 **/ 2092 int ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset, 2093 u8 *eeprom_data) 2094 { 2095 return hw->phy.ops.read_i2c_byte(hw, byte_offset, 2096 IXGBE_I2C_EEPROM_DEV_ADDR, 2097 eeprom_data); 2098 } 2099 2100 /** 2101 * ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface 2102 * @hw: pointer to hardware structure 2103 * @byte_offset: byte offset at address 0xA2 2104 * @sff8472_data: value read 2105 * 2106 * Performs byte read operation to SFP module's SFF-8472 data over I2C 2107 **/ 2108 int ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset, 2109 u8 *sff8472_data) 2110 { 2111 return hw->phy.ops.read_i2c_byte(hw, byte_offset, 2112 IXGBE_I2C_EEPROM_DEV_ADDR2, 2113 sff8472_data); 2114 } 2115 2116 /** 2117 * ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface 2118 * @hw: pointer to hardware structure 2119 * @byte_offset: EEPROM byte offset to write 2120 * @eeprom_data: value to write 2121 * 2122 * Performs byte write operation to SFP module's EEPROM over I2C interface. 2123 **/ 2124 int ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset, 2125 u8 eeprom_data) 2126 { 2127 return hw->phy.ops.write_i2c_byte(hw, byte_offset, 2128 IXGBE_I2C_EEPROM_DEV_ADDR, 2129 eeprom_data); 2130 } 2131 2132 /** 2133 * ixgbe_is_sfp_probe - Returns true if SFP is being detected 2134 * @hw: pointer to hardware structure 2135 * @offset: eeprom offset to be read 2136 * @addr: I2C address to be read 2137 */ 2138 static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr) 2139 { 2140 if (addr == IXGBE_I2C_EEPROM_DEV_ADDR && 2141 offset == IXGBE_SFF_IDENTIFIER && 2142 hw->phy.sfp_type == ixgbe_sfp_type_not_present) 2143 return true; 2144 return false; 2145 } 2146 2147 /** 2148 * ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C 2149 * @hw: pointer to hardware structure 2150 * @byte_offset: byte offset to read 2151 * @dev_addr: device address 2152 * @data: value read 2153 * @lock: true if to take and release semaphore 2154 * 2155 * Performs byte read operation to SFP module's EEPROM over I2C interface at 2156 * a specified device address. 2157 */ 2158 static int ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset, 2159 u8 dev_addr, u8 *data, bool lock) 2160 { 2161 u32 swfw_mask = hw->phy.phy_semaphore_mask; 2162 u32 max_retry = 10; 2163 bool nack = true; 2164 u32 retry = 0; 2165 int status; 2166 2167 if (hw->mac.type >= ixgbe_mac_X550) 2168 max_retry = 3; 2169 if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr)) 2170 max_retry = IXGBE_SFP_DETECT_RETRIES; 2171 2172 *data = 0; 2173 2174 do { 2175 if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 2176 return -EBUSY; 2177 2178 ixgbe_i2c_start(hw); 2179 2180 /* Device Address and write indication */ 2181 status = ixgbe_clock_out_i2c_byte(hw, dev_addr); 2182 if (status != 0) 2183 goto fail; 2184 2185 status = ixgbe_get_i2c_ack(hw); 2186 if (status != 0) 2187 goto fail; 2188 2189 status = ixgbe_clock_out_i2c_byte(hw, byte_offset); 2190 if (status != 0) 2191 goto fail; 2192 2193 status = ixgbe_get_i2c_ack(hw); 2194 if (status != 0) 2195 goto fail; 2196 2197 ixgbe_i2c_start(hw); 2198 2199 /* Device Address and read indication */ 2200 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1)); 2201 if (status != 0) 2202 goto fail; 2203 2204 status = ixgbe_get_i2c_ack(hw); 2205 if (status != 0) 2206 goto fail; 2207 2208 status = ixgbe_clock_in_i2c_byte(hw, data); 2209 if (status != 0) 2210 goto fail; 2211 2212 status = ixgbe_clock_out_i2c_bit(hw, nack); 2213 if (status != 0) 2214 goto fail; 2215 2216 ixgbe_i2c_stop(hw); 2217 if (lock) 2218 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 2219 return 0; 2220 2221 fail: 2222 ixgbe_i2c_bus_clear(hw); 2223 if (lock) { 2224 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 2225 msleep(100); 2226 } 2227 retry++; 2228 if (retry < max_retry) 2229 hw_dbg(hw, "I2C byte read error - Retrying.\n"); 2230 else 2231 hw_dbg(hw, "I2C byte read error.\n"); 2232 2233 } while (retry < max_retry); 2234 2235 return status; 2236 } 2237 2238 /** 2239 * ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C 2240 * @hw: pointer to hardware structure 2241 * @byte_offset: byte offset to read 2242 * @dev_addr: device address 2243 * @data: value read 2244 * 2245 * Performs byte read operation to SFP module's EEPROM over I2C interface at 2246 * a specified device address. 2247 */ 2248 int ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset, 2249 u8 dev_addr, u8 *data) 2250 { 2251 return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr, 2252 data, true); 2253 } 2254 2255 /** 2256 * ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C 2257 * @hw: pointer to hardware structure 2258 * @byte_offset: byte offset to read 2259 * @dev_addr: device address 2260 * @data: value read 2261 * 2262 * Performs byte read operation to SFP module's EEPROM over I2C interface at 2263 * a specified device address. 2264 */ 2265 int ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset, 2266 u8 dev_addr, u8 *data) 2267 { 2268 return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr, 2269 data, false); 2270 } 2271 2272 /** 2273 * ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C 2274 * @hw: pointer to hardware structure 2275 * @byte_offset: byte offset to write 2276 * @dev_addr: device address 2277 * @data: value to write 2278 * @lock: true if to take and release semaphore 2279 * 2280 * Performs byte write operation to SFP module's EEPROM over I2C interface at 2281 * a specified device address. 2282 */ 2283 static int ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset, 2284 u8 dev_addr, u8 data, bool lock) 2285 { 2286 u32 swfw_mask = hw->phy.phy_semaphore_mask; 2287 u32 max_retry = 1; 2288 u32 retry = 0; 2289 int status; 2290 2291 if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 2292 return -EBUSY; 2293 2294 do { 2295 ixgbe_i2c_start(hw); 2296 2297 status = ixgbe_clock_out_i2c_byte(hw, dev_addr); 2298 if (status != 0) 2299 goto fail; 2300 2301 status = ixgbe_get_i2c_ack(hw); 2302 if (status != 0) 2303 goto fail; 2304 2305 status = ixgbe_clock_out_i2c_byte(hw, byte_offset); 2306 if (status != 0) 2307 goto fail; 2308 2309 status = ixgbe_get_i2c_ack(hw); 2310 if (status != 0) 2311 goto fail; 2312 2313 status = ixgbe_clock_out_i2c_byte(hw, data); 2314 if (status != 0) 2315 goto fail; 2316 2317 status = ixgbe_get_i2c_ack(hw); 2318 if (status != 0) 2319 goto fail; 2320 2321 ixgbe_i2c_stop(hw); 2322 if (lock) 2323 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 2324 return 0; 2325 2326 fail: 2327 ixgbe_i2c_bus_clear(hw); 2328 retry++; 2329 if (retry < max_retry) 2330 hw_dbg(hw, "I2C byte write error - Retrying.\n"); 2331 else 2332 hw_dbg(hw, "I2C byte write error.\n"); 2333 } while (retry < max_retry); 2334 2335 if (lock) 2336 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 2337 2338 return status; 2339 } 2340 2341 /** 2342 * ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C 2343 * @hw: pointer to hardware structure 2344 * @byte_offset: byte offset to write 2345 * @dev_addr: device address 2346 * @data: value to write 2347 * 2348 * Performs byte write operation to SFP module's EEPROM over I2C interface at 2349 * a specified device address. 2350 */ 2351 int ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset, 2352 u8 dev_addr, u8 data) 2353 { 2354 return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr, 2355 data, true); 2356 } 2357 2358 /** 2359 * ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C 2360 * @hw: pointer to hardware structure 2361 * @byte_offset: byte offset to write 2362 * @dev_addr: device address 2363 * @data: value to write 2364 * 2365 * Performs byte write operation to SFP module's EEPROM over I2C interface at 2366 * a specified device address. 2367 */ 2368 int ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset, 2369 u8 dev_addr, u8 data) 2370 { 2371 return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr, 2372 data, false); 2373 } 2374 2375 /** 2376 * ixgbe_i2c_start - Sets I2C start condition 2377 * @hw: pointer to hardware structure 2378 * 2379 * Sets I2C start condition (High -> Low on SDA while SCL is High) 2380 * Set bit-bang mode on X550 hardware. 2381 **/ 2382 static void ixgbe_i2c_start(struct ixgbe_hw *hw) 2383 { 2384 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 2385 2386 i2cctl |= IXGBE_I2C_BB_EN(hw); 2387 2388 /* Start condition must begin with data and clock high */ 2389 ixgbe_set_i2c_data(hw, &i2cctl, 1); 2390 ixgbe_raise_i2c_clk(hw, &i2cctl); 2391 2392 /* Setup time for start condition (4.7us) */ 2393 udelay(IXGBE_I2C_T_SU_STA); 2394 2395 ixgbe_set_i2c_data(hw, &i2cctl, 0); 2396 2397 /* Hold time for start condition (4us) */ 2398 udelay(IXGBE_I2C_T_HD_STA); 2399 2400 ixgbe_lower_i2c_clk(hw, &i2cctl); 2401 2402 /* Minimum low period of clock is 4.7 us */ 2403 udelay(IXGBE_I2C_T_LOW); 2404 2405 } 2406 2407 /** 2408 * ixgbe_i2c_stop - Sets I2C stop condition 2409 * @hw: pointer to hardware structure 2410 * 2411 * Sets I2C stop condition (Low -> High on SDA while SCL is High) 2412 * Disables bit-bang mode and negates data output enable on X550 2413 * hardware. 2414 **/ 2415 static void ixgbe_i2c_stop(struct ixgbe_hw *hw) 2416 { 2417 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 2418 u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw); 2419 u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw); 2420 u32 bb_en_bit = IXGBE_I2C_BB_EN(hw); 2421 2422 /* Stop condition must begin with data low and clock high */ 2423 ixgbe_set_i2c_data(hw, &i2cctl, 0); 2424 ixgbe_raise_i2c_clk(hw, &i2cctl); 2425 2426 /* Setup time for stop condition (4us) */ 2427 udelay(IXGBE_I2C_T_SU_STO); 2428 2429 ixgbe_set_i2c_data(hw, &i2cctl, 1); 2430 2431 /* bus free time between stop and start (4.7us)*/ 2432 udelay(IXGBE_I2C_T_BUF); 2433 2434 if (bb_en_bit || data_oe_bit || clk_oe_bit) { 2435 i2cctl &= ~bb_en_bit; 2436 i2cctl |= data_oe_bit | clk_oe_bit; 2437 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl); 2438 IXGBE_WRITE_FLUSH(hw); 2439 } 2440 } 2441 2442 /** 2443 * ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C 2444 * @hw: pointer to hardware structure 2445 * @data: data byte to clock in 2446 * 2447 * Clocks in one byte data via I2C data/clock 2448 **/ 2449 static int ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data) 2450 { 2451 bool bit = false; 2452 int i; 2453 2454 *data = 0; 2455 for (i = 7; i >= 0; i--) { 2456 ixgbe_clock_in_i2c_bit(hw, &bit); 2457 *data |= bit << i; 2458 } 2459 2460 return 0; 2461 } 2462 2463 /** 2464 * ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C 2465 * @hw: pointer to hardware structure 2466 * @data: data byte clocked out 2467 * 2468 * Clocks out one byte data via I2C data/clock 2469 **/ 2470 static int ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data) 2471 { 2472 bool bit = false; 2473 int status; 2474 u32 i2cctl; 2475 int i; 2476 2477 for (i = 7; i >= 0; i--) { 2478 bit = (data >> i) & 0x1; 2479 status = ixgbe_clock_out_i2c_bit(hw, bit); 2480 2481 if (status != 0) 2482 break; 2483 } 2484 2485 /* Release SDA line (set high) */ 2486 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 2487 i2cctl |= IXGBE_I2C_DATA_OUT(hw); 2488 i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw); 2489 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl); 2490 IXGBE_WRITE_FLUSH(hw); 2491 2492 return status; 2493 } 2494 2495 /** 2496 * ixgbe_get_i2c_ack - Polls for I2C ACK 2497 * @hw: pointer to hardware structure 2498 * 2499 * Clocks in/out one bit via I2C data/clock 2500 **/ 2501 static int ixgbe_get_i2c_ack(struct ixgbe_hw *hw) 2502 { 2503 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 2504 u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw); 2505 u32 timeout = 10; 2506 bool ack = true; 2507 int status = 0; 2508 u32 i = 0; 2509 2510 if (data_oe_bit) { 2511 i2cctl |= IXGBE_I2C_DATA_OUT(hw); 2512 i2cctl |= data_oe_bit; 2513 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl); 2514 IXGBE_WRITE_FLUSH(hw); 2515 } 2516 ixgbe_raise_i2c_clk(hw, &i2cctl); 2517 2518 /* Minimum high period of clock is 4us */ 2519 udelay(IXGBE_I2C_T_HIGH); 2520 2521 /* Poll for ACK. Note that ACK in I2C spec is 2522 * transition from 1 to 0 */ 2523 for (i = 0; i < timeout; i++) { 2524 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 2525 ack = ixgbe_get_i2c_data(hw, &i2cctl); 2526 2527 udelay(1); 2528 if (ack == 0) 2529 break; 2530 } 2531 2532 if (ack == 1) { 2533 hw_dbg(hw, "I2C ack was not received.\n"); 2534 status = -EIO; 2535 } 2536 2537 ixgbe_lower_i2c_clk(hw, &i2cctl); 2538 2539 /* Minimum low period of clock is 4.7 us */ 2540 udelay(IXGBE_I2C_T_LOW); 2541 2542 return status; 2543 } 2544 2545 /** 2546 * ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock 2547 * @hw: pointer to hardware structure 2548 * @data: read data value 2549 * 2550 * Clocks in one bit via I2C data/clock 2551 **/ 2552 static int ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data) 2553 { 2554 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 2555 u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw); 2556 2557 if (data_oe_bit) { 2558 i2cctl |= IXGBE_I2C_DATA_OUT(hw); 2559 i2cctl |= data_oe_bit; 2560 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl); 2561 IXGBE_WRITE_FLUSH(hw); 2562 } 2563 ixgbe_raise_i2c_clk(hw, &i2cctl); 2564 2565 /* Minimum high period of clock is 4us */ 2566 udelay(IXGBE_I2C_T_HIGH); 2567 2568 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 2569 *data = ixgbe_get_i2c_data(hw, &i2cctl); 2570 2571 ixgbe_lower_i2c_clk(hw, &i2cctl); 2572 2573 /* Minimum low period of clock is 4.7 us */ 2574 udelay(IXGBE_I2C_T_LOW); 2575 2576 return 0; 2577 } 2578 2579 /** 2580 * ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock 2581 * @hw: pointer to hardware structure 2582 * @data: data value to write 2583 * 2584 * Clocks out one bit via I2C data/clock 2585 **/ 2586 static int ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data) 2587 { 2588 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 2589 int status; 2590 2591 status = ixgbe_set_i2c_data(hw, &i2cctl, data); 2592 if (status == 0) { 2593 ixgbe_raise_i2c_clk(hw, &i2cctl); 2594 2595 /* Minimum high period of clock is 4us */ 2596 udelay(IXGBE_I2C_T_HIGH); 2597 2598 ixgbe_lower_i2c_clk(hw, &i2cctl); 2599 2600 /* Minimum low period of clock is 4.7 us. 2601 * This also takes care of the data hold time. 2602 */ 2603 udelay(IXGBE_I2C_T_LOW); 2604 } else { 2605 hw_dbg(hw, "I2C data was not set to %X\n", data); 2606 return -EIO; 2607 } 2608 2609 return 0; 2610 } 2611 /** 2612 * ixgbe_raise_i2c_clk - Raises the I2C SCL clock 2613 * @hw: pointer to hardware structure 2614 * @i2cctl: Current value of I2CCTL register 2615 * 2616 * Raises the I2C clock line '0'->'1' 2617 * Negates the I2C clock output enable on X550 hardware. 2618 **/ 2619 static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl) 2620 { 2621 u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw); 2622 u32 i = 0; 2623 u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT; 2624 u32 i2cctl_r = 0; 2625 2626 if (clk_oe_bit) { 2627 *i2cctl |= clk_oe_bit; 2628 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl); 2629 } 2630 2631 for (i = 0; i < timeout; i++) { 2632 *i2cctl |= IXGBE_I2C_CLK_OUT(hw); 2633 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl); 2634 IXGBE_WRITE_FLUSH(hw); 2635 /* SCL rise time (1000ns) */ 2636 udelay(IXGBE_I2C_T_RISE); 2637 2638 i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 2639 if (i2cctl_r & IXGBE_I2C_CLK_IN(hw)) 2640 break; 2641 } 2642 } 2643 2644 /** 2645 * ixgbe_lower_i2c_clk - Lowers the I2C SCL clock 2646 * @hw: pointer to hardware structure 2647 * @i2cctl: Current value of I2CCTL register 2648 * 2649 * Lowers the I2C clock line '1'->'0' 2650 * Asserts the I2C clock output enable on X550 hardware. 2651 **/ 2652 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl) 2653 { 2654 2655 *i2cctl &= ~IXGBE_I2C_CLK_OUT(hw); 2656 *i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw); 2657 2658 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl); 2659 IXGBE_WRITE_FLUSH(hw); 2660 2661 /* SCL fall time (300ns) */ 2662 udelay(IXGBE_I2C_T_FALL); 2663 } 2664 2665 /** 2666 * ixgbe_set_i2c_data - Sets the I2C data bit 2667 * @hw: pointer to hardware structure 2668 * @i2cctl: Current value of I2CCTL register 2669 * @data: I2C data value (0 or 1) to set 2670 * 2671 * Sets the I2C data bit 2672 * Asserts the I2C data output enable on X550 hardware. 2673 **/ 2674 static int ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data) 2675 { 2676 u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw); 2677 2678 if (data) 2679 *i2cctl |= IXGBE_I2C_DATA_OUT(hw); 2680 else 2681 *i2cctl &= ~IXGBE_I2C_DATA_OUT(hw); 2682 *i2cctl &= ~data_oe_bit; 2683 2684 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl); 2685 IXGBE_WRITE_FLUSH(hw); 2686 2687 /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */ 2688 udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA); 2689 2690 if (!data) /* Can't verify data in this case */ 2691 return 0; 2692 if (data_oe_bit) { 2693 *i2cctl |= data_oe_bit; 2694 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl); 2695 IXGBE_WRITE_FLUSH(hw); 2696 } 2697 2698 /* Verify data was set correctly */ 2699 *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 2700 if (data != ixgbe_get_i2c_data(hw, i2cctl)) { 2701 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data); 2702 return -EIO; 2703 } 2704 2705 return 0; 2706 } 2707 2708 /** 2709 * ixgbe_get_i2c_data - Reads the I2C SDA data bit 2710 * @hw: pointer to hardware structure 2711 * @i2cctl: Current value of I2CCTL register 2712 * 2713 * Returns the I2C data bit value 2714 * Negates the I2C data output enable on X550 hardware. 2715 **/ 2716 static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl) 2717 { 2718 u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw); 2719 2720 if (data_oe_bit) { 2721 *i2cctl |= data_oe_bit; 2722 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl); 2723 IXGBE_WRITE_FLUSH(hw); 2724 udelay(IXGBE_I2C_T_FALL); 2725 } 2726 2727 if (*i2cctl & IXGBE_I2C_DATA_IN(hw)) 2728 return true; 2729 return false; 2730 } 2731 2732 /** 2733 * ixgbe_i2c_bus_clear - Clears the I2C bus 2734 * @hw: pointer to hardware structure 2735 * 2736 * Clears the I2C bus by sending nine clock pulses. 2737 * Used when data line is stuck low. 2738 **/ 2739 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw) 2740 { 2741 u32 i2cctl; 2742 u32 i; 2743 2744 ixgbe_i2c_start(hw); 2745 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 2746 2747 ixgbe_set_i2c_data(hw, &i2cctl, 1); 2748 2749 for (i = 0; i < 9; i++) { 2750 ixgbe_raise_i2c_clk(hw, &i2cctl); 2751 2752 /* Min high period of clock is 4us */ 2753 udelay(IXGBE_I2C_T_HIGH); 2754 2755 ixgbe_lower_i2c_clk(hw, &i2cctl); 2756 2757 /* Min low period of clock is 4.7us*/ 2758 udelay(IXGBE_I2C_T_LOW); 2759 } 2760 2761 ixgbe_i2c_start(hw); 2762 2763 /* Put the i2c bus back to default state */ 2764 ixgbe_i2c_stop(hw); 2765 } 2766 2767 /** 2768 * ixgbe_tn_check_overtemp - Checks if an overtemp occurred. 2769 * @hw: pointer to hardware structure 2770 * 2771 * Checks if the LASI temp alarm status was triggered due to overtemp 2772 * 2773 * Return true when an overtemp event detected, otherwise false. 2774 **/ 2775 bool ixgbe_tn_check_overtemp(struct ixgbe_hw *hw) 2776 { 2777 u16 phy_data = 0; 2778 u32 status; 2779 2780 if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM) 2781 return false; 2782 2783 /* Check that the LASI temp alarm status was triggered */ 2784 status = hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG, 2785 MDIO_MMD_PMAPMD, &phy_data); 2786 if (status) 2787 return false; 2788 2789 return !!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM); 2790 } 2791 2792 /** ixgbe_set_copper_phy_power - Control power for copper phy 2793 * @hw: pointer to hardware structure 2794 * @on: true for on, false for off 2795 **/ 2796 int ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on) 2797 { 2798 u32 status; 2799 u16 reg; 2800 2801 /* Bail if we don't have copper phy */ 2802 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper) 2803 return 0; 2804 2805 if (!on && ixgbe_mng_present(hw)) 2806 return 0; 2807 2808 status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, ®); 2809 if (status) 2810 return status; 2811 2812 if (on) { 2813 reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE; 2814 } else { 2815 if (ixgbe_check_reset_blocked(hw)) 2816 return 0; 2817 reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE; 2818 } 2819 2820 status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg); 2821 return status; 2822 } 2823