xref: /linux/drivers/net/ethernet/intel/ixgbe/ixgbe_e610.c (revision c9e563cae19e529abcc2cb90b4b793952f209260)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2024 Intel Corporation. */
3 
4 #include "ixgbe_common.h"
5 #include "ixgbe_e610.h"
6 #include "ixgbe_x550.h"
7 #include "ixgbe_type.h"
8 #include "ixgbe_x540.h"
9 #include "ixgbe_mbx.h"
10 #include "ixgbe_phy.h"
11 
12 /**
13  * ixgbe_should_retry_aci_send_cmd_execute - decide if ACI command should
14  * be resent
15  * @opcode: ACI opcode
16  *
17  * Check if ACI command should be sent again depending on the provided opcode.
18  * It may happen when CSR is busy during link state changes.
19  *
20  * Return: true if the sending command routine should be repeated,
21  * otherwise false.
22  */
23 static bool ixgbe_should_retry_aci_send_cmd_execute(u16 opcode)
24 {
25 	switch (opcode) {
26 	case ixgbe_aci_opc_disable_rxen:
27 	case ixgbe_aci_opc_get_phy_caps:
28 	case ixgbe_aci_opc_get_link_status:
29 	case ixgbe_aci_opc_get_link_topo:
30 		return true;
31 	}
32 
33 	return false;
34 }
35 
36 /**
37  * ixgbe_aci_send_cmd_execute - execute sending FW Admin Command to FW Admin
38  * Command Interface
39  * @hw: pointer to the HW struct
40  * @desc: descriptor describing the command
41  * @buf: buffer to use for indirect commands (NULL for direct commands)
42  * @buf_size: size of buffer for indirect commands (0 for direct commands)
43  *
44  * Admin Command is sent using CSR by setting descriptor and buffer in specific
45  * registers.
46  *
47  * Return: the exit code of the operation.
48  * * - 0 - success.
49  * * - -EIO - CSR mechanism is not enabled.
50  * * - -EBUSY - CSR mechanism is busy.
51  * * - -EINVAL - buf_size is too big or
52  * invalid argument buf or buf_size.
53  * * - -ETIME - Admin Command X command timeout.
54  * * - -EIO - Admin Command X invalid state of HICR register or
55  * Admin Command failed because of bad opcode was returned or
56  * Admin Command failed with error Y.
57  */
58 static int ixgbe_aci_send_cmd_execute(struct ixgbe_hw *hw,
59 				      struct ixgbe_aci_desc *desc,
60 				      void *buf, u16 buf_size)
61 {
62 	u16 opcode, buf_tail_size = buf_size % 4;
63 	u32 *raw_desc = (u32 *)desc;
64 	u32 hicr, i, buf_tail = 0;
65 	bool valid_buf = false;
66 
67 	hw->aci.last_status = IXGBE_ACI_RC_OK;
68 
69 	/* It's necessary to check if mechanism is enabled */
70 	hicr = IXGBE_READ_REG(hw, IXGBE_PF_HICR);
71 
72 	if (!(hicr & IXGBE_PF_HICR_EN))
73 		return -EIO;
74 
75 	if (hicr & IXGBE_PF_HICR_C) {
76 		hw->aci.last_status = IXGBE_ACI_RC_EBUSY;
77 		return -EBUSY;
78 	}
79 
80 	opcode = le16_to_cpu(desc->opcode);
81 
82 	if (buf_size > IXGBE_ACI_MAX_BUFFER_SIZE)
83 		return -EINVAL;
84 
85 	if (buf)
86 		desc->flags |= cpu_to_le16(IXGBE_ACI_FLAG_BUF);
87 
88 	if (desc->flags & cpu_to_le16(IXGBE_ACI_FLAG_BUF)) {
89 		if ((buf && !buf_size) ||
90 		    (!buf && buf_size))
91 			return -EINVAL;
92 		if (buf && buf_size)
93 			valid_buf = true;
94 	}
95 
96 	if (valid_buf) {
97 		if (buf_tail_size)
98 			memcpy(&buf_tail, buf + buf_size - buf_tail_size,
99 			       buf_tail_size);
100 
101 		if (((buf_size + 3) & ~0x3) > IXGBE_ACI_LG_BUF)
102 			desc->flags |= cpu_to_le16(IXGBE_ACI_FLAG_LB);
103 
104 		desc->datalen = cpu_to_le16(buf_size);
105 
106 		if (desc->flags & cpu_to_le16(IXGBE_ACI_FLAG_RD)) {
107 			for (i = 0; i < buf_size / 4; i++)
108 				IXGBE_WRITE_REG(hw, IXGBE_PF_HIBA(i), ((u32 *)buf)[i]);
109 			if (buf_tail_size)
110 				IXGBE_WRITE_REG(hw, IXGBE_PF_HIBA(i), buf_tail);
111 		}
112 	}
113 
114 	/* Descriptor is written to specific registers */
115 	for (i = 0; i < IXGBE_ACI_DESC_SIZE_IN_DWORDS; i++)
116 		IXGBE_WRITE_REG(hw, IXGBE_PF_HIDA(i), raw_desc[i]);
117 
118 	/* SW has to set PF_HICR.C bit and clear PF_HICR.SV and
119 	 * PF_HICR_EV
120 	 */
121 	hicr = (IXGBE_READ_REG(hw, IXGBE_PF_HICR) | IXGBE_PF_HICR_C) &
122 	       ~(IXGBE_PF_HICR_SV | IXGBE_PF_HICR_EV);
123 	IXGBE_WRITE_REG(hw, IXGBE_PF_HICR, hicr);
124 
125 #define MAX_SLEEP_RESP_US 1000
126 #define MAX_TMOUT_RESP_SYNC_US 100000000
127 
128 	/* Wait for sync Admin Command response */
129 	read_poll_timeout(IXGBE_READ_REG, hicr,
130 			  (hicr & IXGBE_PF_HICR_SV) ||
131 			  !(hicr & IXGBE_PF_HICR_C),
132 			  MAX_SLEEP_RESP_US, MAX_TMOUT_RESP_SYNC_US, true, hw,
133 			  IXGBE_PF_HICR);
134 
135 #define MAX_TMOUT_RESP_ASYNC_US 150000000
136 
137 	/* Wait for async Admin Command response */
138 	read_poll_timeout(IXGBE_READ_REG, hicr,
139 			  (hicr & IXGBE_PF_HICR_EV) ||
140 			  !(hicr & IXGBE_PF_HICR_C),
141 			  MAX_SLEEP_RESP_US, MAX_TMOUT_RESP_ASYNC_US, true, hw,
142 			  IXGBE_PF_HICR);
143 
144 	/* Read sync Admin Command response */
145 	if ((hicr & IXGBE_PF_HICR_SV)) {
146 		for (i = 0; i < IXGBE_ACI_DESC_SIZE_IN_DWORDS; i++) {
147 			raw_desc[i] = IXGBE_READ_REG(hw, IXGBE_PF_HIDA(i));
148 			raw_desc[i] = raw_desc[i];
149 		}
150 	}
151 
152 	/* Read async Admin Command response */
153 	if ((hicr & IXGBE_PF_HICR_EV) && !(hicr & IXGBE_PF_HICR_C)) {
154 		for (i = 0; i < IXGBE_ACI_DESC_SIZE_IN_DWORDS; i++) {
155 			raw_desc[i] = IXGBE_READ_REG(hw, IXGBE_PF_HIDA_2(i));
156 			raw_desc[i] = raw_desc[i];
157 		}
158 	}
159 
160 	/* Handle timeout and invalid state of HICR register */
161 	if (hicr & IXGBE_PF_HICR_C)
162 		return -ETIME;
163 
164 	if (!(hicr & IXGBE_PF_HICR_SV) && !(hicr & IXGBE_PF_HICR_EV))
165 		return -EIO;
166 
167 	/* For every command other than 0x0014 treat opcode mismatch
168 	 * as an error. Response to 0x0014 command read from HIDA_2
169 	 * is a descriptor of an event which is expected to contain
170 	 * different opcode than the command.
171 	 */
172 	if (desc->opcode != cpu_to_le16(opcode) &&
173 	    opcode != ixgbe_aci_opc_get_fw_event)
174 		return -EIO;
175 
176 	if (desc->retval) {
177 		hw->aci.last_status = (enum ixgbe_aci_err)
178 			le16_to_cpu(desc->retval);
179 		return -EIO;
180 	}
181 
182 	/* Write a response values to a buf */
183 	if (valid_buf) {
184 		for (i = 0; i < buf_size / 4; i++)
185 			((u32 *)buf)[i] = IXGBE_READ_REG(hw, IXGBE_PF_HIBA(i));
186 		if (buf_tail_size) {
187 			buf_tail = IXGBE_READ_REG(hw, IXGBE_PF_HIBA(i));
188 			memcpy(buf + buf_size - buf_tail_size, &buf_tail,
189 			       buf_tail_size);
190 		}
191 	}
192 
193 	return 0;
194 }
195 
196 /**
197  * ixgbe_aci_send_cmd - send FW Admin Command to FW Admin Command Interface
198  * @hw: pointer to the HW struct
199  * @desc: descriptor describing the command
200  * @buf: buffer to use for indirect commands (NULL for direct commands)
201  * @buf_size: size of buffer for indirect commands (0 for direct commands)
202  *
203  * Helper function to send FW Admin Commands to the FW Admin Command Interface.
204  *
205  * Retry sending the FW Admin Command multiple times to the FW ACI
206  * if the EBUSY Admin Command error is returned.
207  *
208  * Return: the exit code of the operation.
209  */
210 int ixgbe_aci_send_cmd(struct ixgbe_hw *hw, struct ixgbe_aci_desc *desc,
211 		       void *buf, u16 buf_size)
212 {
213 	u16 opcode = le16_to_cpu(desc->opcode);
214 	struct ixgbe_aci_desc desc_cpy;
215 	enum ixgbe_aci_err last_status;
216 	u8 idx = 0, *buf_cpy = NULL;
217 	bool is_cmd_for_retry;
218 	unsigned long timeout;
219 	int err;
220 
221 	is_cmd_for_retry = ixgbe_should_retry_aci_send_cmd_execute(opcode);
222 	if (is_cmd_for_retry) {
223 		if (buf) {
224 			buf_cpy = kmalloc(buf_size, GFP_KERNEL);
225 			if (!buf_cpy)
226 				return -ENOMEM;
227 			*buf_cpy = *(u8 *)buf;
228 		}
229 		desc_cpy = *desc;
230 	}
231 
232 	timeout = jiffies + msecs_to_jiffies(IXGBE_ACI_SEND_TIMEOUT_MS);
233 	do {
234 		mutex_lock(&hw->aci.lock);
235 		err = ixgbe_aci_send_cmd_execute(hw, desc, buf, buf_size);
236 		last_status = hw->aci.last_status;
237 		mutex_unlock(&hw->aci.lock);
238 
239 		if (!is_cmd_for_retry || !err ||
240 		    last_status != IXGBE_ACI_RC_EBUSY)
241 			break;
242 
243 		if (buf)
244 			memcpy(buf, buf_cpy, buf_size);
245 		*desc = desc_cpy;
246 
247 		msleep(IXGBE_ACI_SEND_DELAY_TIME_MS);
248 	} while (++idx < IXGBE_ACI_SEND_MAX_EXECUTE &&
249 		 time_before(jiffies, timeout));
250 
251 	kfree(buf_cpy);
252 
253 	return err;
254 }
255 
256 /**
257  * ixgbe_aci_check_event_pending - check if there are any pending events
258  * @hw: pointer to the HW struct
259  *
260  * Determine if there are any pending events.
261  *
262  * Return: true if there are any currently pending events
263  * otherwise false.
264  */
265 bool ixgbe_aci_check_event_pending(struct ixgbe_hw *hw)
266 {
267 	u32 ep_bit_mask = hw->bus.func ? GL_FWSTS_EP_PF1 : GL_FWSTS_EP_PF0;
268 	u32 fwsts = IXGBE_READ_REG(hw, GL_FWSTS);
269 
270 	return (fwsts & ep_bit_mask) ? true : false;
271 }
272 
273 /**
274  * ixgbe_aci_get_event - get an event from ACI
275  * @hw: pointer to the HW struct
276  * @e: event information structure
277  * @pending: optional flag signaling that there are more pending events
278  *
279  * Obtain an event from ACI and return its content
280  * through 'e' using ACI command (0x0014).
281  * Provide information if there are more events
282  * to retrieve through 'pending'.
283  *
284  * Return: the exit code of the operation.
285  */
286 int ixgbe_aci_get_event(struct ixgbe_hw *hw, struct ixgbe_aci_event *e,
287 			bool *pending)
288 {
289 	struct ixgbe_aci_desc desc;
290 	int err;
291 
292 	if (!e || (!e->msg_buf && e->buf_len))
293 		return -EINVAL;
294 
295 	mutex_lock(&hw->aci.lock);
296 
297 	/* Check if there are any events pending */
298 	if (!ixgbe_aci_check_event_pending(hw)) {
299 		err = -ENOENT;
300 		goto aci_get_event_exit;
301 	}
302 
303 	/* Obtain pending event */
304 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_fw_event);
305 	err = ixgbe_aci_send_cmd_execute(hw, &desc, e->msg_buf, e->buf_len);
306 	if (err)
307 		goto aci_get_event_exit;
308 
309 	/* Returned 0x0014 opcode indicates that no event was obtained */
310 	if (desc.opcode == cpu_to_le16(ixgbe_aci_opc_get_fw_event)) {
311 		err = -ENOENT;
312 		goto aci_get_event_exit;
313 	}
314 
315 	/* Determine size of event data */
316 	e->msg_len = min_t(u16, le16_to_cpu(desc.datalen), e->buf_len);
317 	/* Write event descriptor to event info structure */
318 	memcpy(&e->desc, &desc, sizeof(e->desc));
319 
320 	/* Check if there are any further events pending */
321 	if (pending)
322 		*pending = ixgbe_aci_check_event_pending(hw);
323 
324 aci_get_event_exit:
325 	mutex_unlock(&hw->aci.lock);
326 
327 	return err;
328 }
329 
330 /**
331  * ixgbe_fill_dflt_direct_cmd_desc - fill ACI descriptor with default values.
332  * @desc: pointer to the temp descriptor (non DMA mem)
333  * @opcode: the opcode can be used to decide which flags to turn off or on
334  *
335  * Helper function to fill the descriptor desc with default values
336  * and the provided opcode.
337  */
338 void ixgbe_fill_dflt_direct_cmd_desc(struct ixgbe_aci_desc *desc, u16 opcode)
339 {
340 	/* Zero out the desc. */
341 	memset(desc, 0, sizeof(*desc));
342 	desc->opcode = cpu_to_le16(opcode);
343 	desc->flags = cpu_to_le16(IXGBE_ACI_FLAG_SI);
344 }
345 
346 /**
347  * ixgbe_aci_get_fw_ver - Get the firmware version
348  * @hw: pointer to the HW struct
349  *
350  * Get the firmware version using ACI command (0x0001).
351  *
352  * Return: the exit code of the operation.
353  */
354 static int ixgbe_aci_get_fw_ver(struct ixgbe_hw *hw)
355 {
356 	struct ixgbe_aci_cmd_get_ver *resp;
357 	struct ixgbe_aci_desc desc;
358 	int err;
359 
360 	resp = &desc.params.get_ver;
361 
362 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_ver);
363 
364 	err = ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
365 	if (!err) {
366 		hw->fw_branch = resp->fw_branch;
367 		hw->fw_maj_ver = resp->fw_major;
368 		hw->fw_min_ver = resp->fw_minor;
369 		hw->fw_patch = resp->fw_patch;
370 		hw->fw_build = le32_to_cpu(resp->fw_build);
371 		hw->api_branch = resp->api_branch;
372 		hw->api_maj_ver = resp->api_major;
373 		hw->api_min_ver = resp->api_minor;
374 		hw->api_patch = resp->api_patch;
375 	}
376 
377 	return err;
378 }
379 
380 /**
381  * ixgbe_aci_req_res - request a common resource
382  * @hw: pointer to the HW struct
383  * @res: resource ID
384  * @access: access type
385  * @sdp_number: resource number
386  * @timeout: the maximum time in ms that the driver may hold the resource
387  *
388  * Requests a common resource using the ACI command (0x0008).
389  * Specifies the maximum time the driver may hold the resource.
390  * If the requested resource is currently occupied by some other driver,
391  * a busy return value is returned and the timeout field value indicates the
392  * maximum time the current owner has to free it.
393  *
394  * Return: the exit code of the operation.
395  */
396 static int ixgbe_aci_req_res(struct ixgbe_hw *hw, enum ixgbe_aci_res_ids res,
397 			     enum ixgbe_aci_res_access_type access,
398 			     u8 sdp_number, u32 *timeout)
399 {
400 	struct ixgbe_aci_cmd_req_res *cmd_resp;
401 	struct ixgbe_aci_desc desc;
402 	int err;
403 
404 	cmd_resp = &desc.params.res_owner;
405 
406 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_req_res);
407 
408 	cmd_resp->res_id = cpu_to_le16(res);
409 	cmd_resp->access_type = cpu_to_le16(access);
410 	cmd_resp->res_number = cpu_to_le32(sdp_number);
411 	cmd_resp->timeout = cpu_to_le32(*timeout);
412 	*timeout = 0;
413 
414 	err = ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
415 
416 	/* If the resource is held by some other driver, the command completes
417 	 * with a busy return value and the timeout field indicates the maximum
418 	 * time the current owner of the resource has to free it.
419 	 */
420 	if (!err || hw->aci.last_status == IXGBE_ACI_RC_EBUSY)
421 		*timeout = le32_to_cpu(cmd_resp->timeout);
422 
423 	return err;
424 }
425 
426 /**
427  * ixgbe_aci_release_res - release a common resource using ACI
428  * @hw: pointer to the HW struct
429  * @res: resource ID
430  * @sdp_number: resource number
431  *
432  * Release a common resource using ACI command (0x0009).
433  *
434  * Return: the exit code of the operation.
435  */
436 static int ixgbe_aci_release_res(struct ixgbe_hw *hw,
437 				 enum ixgbe_aci_res_ids res, u8 sdp_number)
438 {
439 	struct ixgbe_aci_cmd_req_res *cmd;
440 	struct ixgbe_aci_desc desc;
441 
442 	cmd = &desc.params.res_owner;
443 
444 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_release_res);
445 
446 	cmd->res_id = cpu_to_le16(res);
447 	cmd->res_number = cpu_to_le32(sdp_number);
448 
449 	return ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
450 }
451 
452 /**
453  * ixgbe_acquire_res - acquire the ownership of a resource
454  * @hw: pointer to the HW structure
455  * @res: resource ID
456  * @access: access type (read or write)
457  * @timeout: timeout in milliseconds
458  *
459  * Make an attempt to acquire the ownership of a resource using
460  * the ixgbe_aci_req_res to utilize ACI.
461  * In case if some other driver has previously acquired the resource and
462  * performed any necessary updates, the -EALREADY is returned,
463  * and the caller does not obtain the resource and has no further work to do.
464  * If needed, the function will poll until the current lock owner timeouts.
465  *
466  * Return: the exit code of the operation.
467  */
468 int ixgbe_acquire_res(struct ixgbe_hw *hw, enum ixgbe_aci_res_ids res,
469 		      enum ixgbe_aci_res_access_type access, u32 timeout)
470 {
471 #define IXGBE_RES_POLLING_DELAY_MS	10
472 	u32 delay = IXGBE_RES_POLLING_DELAY_MS;
473 	u32 res_timeout = timeout;
474 	u32 retry_timeout;
475 	int err;
476 
477 	err = ixgbe_aci_req_res(hw, res, access, 0, &res_timeout);
478 
479 	/* A return code of -EALREADY means that another driver has
480 	 * previously acquired the resource and performed any necessary updates;
481 	 * in this case the caller does not obtain the resource and has no
482 	 * further work to do.
483 	 */
484 	if (err == -EALREADY)
485 		return err;
486 
487 	/* If necessary, poll until the current lock owner timeouts.
488 	 * Set retry_timeout to the timeout value reported by the FW in the
489 	 * response to the "Request Resource Ownership" (0x0008) Admin Command
490 	 * as it indicates the maximum time the current owner of the resource
491 	 * is allowed to hold it.
492 	 */
493 	retry_timeout = res_timeout;
494 	while (err && retry_timeout && res_timeout) {
495 		msleep(delay);
496 		retry_timeout = (retry_timeout > delay) ?
497 			retry_timeout - delay : 0;
498 		err = ixgbe_aci_req_res(hw, res, access, 0, &res_timeout);
499 
500 		/* Success - lock acquired.
501 		 * -EALREADY - lock free, no work to do.
502 		 */
503 		if (!err || err == -EALREADY)
504 			break;
505 	}
506 
507 	return err;
508 }
509 
510 /**
511  * ixgbe_release_res - release a common resource
512  * @hw: pointer to the HW structure
513  * @res: resource ID
514  *
515  * Release a common resource using ixgbe_aci_release_res.
516  */
517 void ixgbe_release_res(struct ixgbe_hw *hw, enum ixgbe_aci_res_ids res)
518 {
519 	u32 total_delay = 0;
520 	int err;
521 
522 	err = ixgbe_aci_release_res(hw, res, 0);
523 
524 	/* There are some rare cases when trying to release the resource
525 	 * results in an admin command timeout, so handle them correctly.
526 	 */
527 	while (err == -ETIME &&
528 	       total_delay < IXGBE_ACI_RELEASE_RES_TIMEOUT) {
529 		usleep_range(1000, 1500);
530 		err = ixgbe_aci_release_res(hw, res, 0);
531 		total_delay++;
532 	}
533 }
534 
535 /**
536  * ixgbe_parse_e610_caps - Parse common device/function capabilities
537  * @hw: pointer to the HW struct
538  * @caps: pointer to common capabilities structure
539  * @elem: the capability element to parse
540  * @prefix: message prefix for tracing capabilities
541  *
542  * Given a capability element, extract relevant details into the common
543  * capability structure.
544  *
545  * Return: true if the capability matches one of the common capability ids,
546  * false otherwise.
547  */
548 static bool ixgbe_parse_e610_caps(struct ixgbe_hw *hw,
549 				  struct ixgbe_hw_caps *caps,
550 				  struct ixgbe_aci_cmd_list_caps_elem *elem,
551 				  const char *prefix)
552 {
553 	u32 logical_id = le32_to_cpu(elem->logical_id);
554 	u32 phys_id = le32_to_cpu(elem->phys_id);
555 	u32 number = le32_to_cpu(elem->number);
556 	u16 cap = le16_to_cpu(elem->cap);
557 
558 	switch (cap) {
559 	case IXGBE_ACI_CAPS_VALID_FUNCTIONS:
560 		caps->valid_functions = number;
561 		break;
562 	case IXGBE_ACI_CAPS_SRIOV:
563 		caps->sr_iov_1_1 = (number == 1);
564 		break;
565 	case IXGBE_ACI_CAPS_VMDQ:
566 		caps->vmdq = (number == 1);
567 		break;
568 	case IXGBE_ACI_CAPS_DCB:
569 		caps->dcb = (number == 1);
570 		caps->active_tc_bitmap = logical_id;
571 		caps->maxtc = phys_id;
572 		break;
573 	case IXGBE_ACI_CAPS_RSS:
574 		caps->rss_table_size = number;
575 		caps->rss_table_entry_width = logical_id;
576 		break;
577 	case IXGBE_ACI_CAPS_RXQS:
578 		caps->num_rxq = number;
579 		caps->rxq_first_id = phys_id;
580 		break;
581 	case IXGBE_ACI_CAPS_TXQS:
582 		caps->num_txq = number;
583 		caps->txq_first_id = phys_id;
584 		break;
585 	case IXGBE_ACI_CAPS_MSIX:
586 		caps->num_msix_vectors = number;
587 		caps->msix_vector_first_id = phys_id;
588 		break;
589 	case IXGBE_ACI_CAPS_NVM_VER:
590 		break;
591 	case IXGBE_ACI_CAPS_PENDING_NVM_VER:
592 		caps->nvm_update_pending_nvm = true;
593 		break;
594 	case IXGBE_ACI_CAPS_PENDING_OROM_VER:
595 		caps->nvm_update_pending_orom = true;
596 		break;
597 	case IXGBE_ACI_CAPS_PENDING_NET_VER:
598 		caps->nvm_update_pending_netlist = true;
599 		break;
600 	case IXGBE_ACI_CAPS_NVM_MGMT:
601 		caps->nvm_unified_update =
602 			(number & IXGBE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
603 			true : false;
604 		break;
605 	case IXGBE_ACI_CAPS_MAX_MTU:
606 		caps->max_mtu = number;
607 		break;
608 	case IXGBE_ACI_CAPS_PCIE_RESET_AVOIDANCE:
609 		caps->pcie_reset_avoidance = (number > 0);
610 		break;
611 	case IXGBE_ACI_CAPS_POST_UPDATE_RESET_RESTRICT:
612 		caps->reset_restrict_support = (number == 1);
613 		break;
614 	case IXGBE_ACI_CAPS_EXT_TOPO_DEV_IMG0:
615 	case IXGBE_ACI_CAPS_EXT_TOPO_DEV_IMG1:
616 	case IXGBE_ACI_CAPS_EXT_TOPO_DEV_IMG2:
617 	case IXGBE_ACI_CAPS_EXT_TOPO_DEV_IMG3:
618 	{
619 		u8 index = cap - IXGBE_ACI_CAPS_EXT_TOPO_DEV_IMG0;
620 
621 		caps->ext_topo_dev_img_ver_high[index] = number;
622 		caps->ext_topo_dev_img_ver_low[index] = logical_id;
623 		caps->ext_topo_dev_img_part_num[index] =
624 			FIELD_GET(IXGBE_EXT_TOPO_DEV_IMG_PART_NUM_M, phys_id);
625 		caps->ext_topo_dev_img_load_en[index] =
626 			(phys_id & IXGBE_EXT_TOPO_DEV_IMG_LOAD_EN) != 0;
627 		caps->ext_topo_dev_img_prog_en[index] =
628 			(phys_id & IXGBE_EXT_TOPO_DEV_IMG_PROG_EN) != 0;
629 		break;
630 	}
631 	default:
632 		/* Not one of the recognized common capabilities */
633 		return false;
634 	}
635 
636 	return true;
637 }
638 
639 /**
640  * ixgbe_parse_valid_functions_cap - Parse IXGBE_ACI_CAPS_VALID_FUNCTIONS caps
641  * @hw: pointer to the HW struct
642  * @dev_p: pointer to device capabilities structure
643  * @cap: capability element to parse
644  *
645  * Parse IXGBE_ACI_CAPS_VALID_FUNCTIONS for device capabilities.
646  */
647 static void
648 ixgbe_parse_valid_functions_cap(struct ixgbe_hw *hw,
649 				struct ixgbe_hw_dev_caps *dev_p,
650 				struct ixgbe_aci_cmd_list_caps_elem *cap)
651 {
652 	dev_p->num_funcs = hweight32(le32_to_cpu(cap->number));
653 }
654 
655 /**
656  * ixgbe_parse_vf_dev_caps - Parse IXGBE_ACI_CAPS_VF device caps
657  * @hw: pointer to the HW struct
658  * @dev_p: pointer to device capabilities structure
659  * @cap: capability element to parse
660  *
661  * Parse IXGBE_ACI_CAPS_VF for device capabilities.
662  */
663 static void ixgbe_parse_vf_dev_caps(struct ixgbe_hw *hw,
664 				    struct ixgbe_hw_dev_caps *dev_p,
665 				    struct ixgbe_aci_cmd_list_caps_elem *cap)
666 {
667 	dev_p->num_vfs_exposed = le32_to_cpu(cap->number);
668 }
669 
670 /**
671  * ixgbe_parse_vsi_dev_caps - Parse IXGBE_ACI_CAPS_VSI device caps
672  * @hw: pointer to the HW struct
673  * @dev_p: pointer to device capabilities structure
674  * @cap: capability element to parse
675  *
676  * Parse IXGBE_ACI_CAPS_VSI for device capabilities.
677  */
678 static void ixgbe_parse_vsi_dev_caps(struct ixgbe_hw *hw,
679 				     struct ixgbe_hw_dev_caps *dev_p,
680 				     struct ixgbe_aci_cmd_list_caps_elem *cap)
681 {
682 	dev_p->num_vsi_allocd_to_host = le32_to_cpu(cap->number);
683 }
684 
685 /**
686  * ixgbe_parse_fdir_dev_caps - Parse IXGBE_ACI_CAPS_FD device caps
687  * @hw: pointer to the HW struct
688  * @dev_p: pointer to device capabilities structure
689  * @cap: capability element to parse
690  *
691  * Parse IXGBE_ACI_CAPS_FD for device capabilities.
692  */
693 static void ixgbe_parse_fdir_dev_caps(struct ixgbe_hw *hw,
694 				      struct ixgbe_hw_dev_caps *dev_p,
695 				      struct ixgbe_aci_cmd_list_caps_elem *cap)
696 {
697 	dev_p->num_flow_director_fltr = le32_to_cpu(cap->number);
698 }
699 
700 /**
701  * ixgbe_parse_dev_caps - Parse device capabilities
702  * @hw: pointer to the HW struct
703  * @dev_p: pointer to device capabilities structure
704  * @buf: buffer containing the device capability records
705  * @cap_count: the number of capabilities
706  *
707  * Helper device to parse device (0x000B) capabilities list. For
708  * capabilities shared between device and function, this relies on
709  * ixgbe_parse_e610_caps.
710  *
711  * Loop through the list of provided capabilities and extract the relevant
712  * data into the device capabilities structured.
713  */
714 static void ixgbe_parse_dev_caps(struct ixgbe_hw *hw,
715 				 struct ixgbe_hw_dev_caps *dev_p,
716 				 void *buf, u32 cap_count)
717 {
718 	struct ixgbe_aci_cmd_list_caps_elem *cap_resp;
719 	u32 i;
720 
721 	cap_resp = (struct ixgbe_aci_cmd_list_caps_elem *)buf;
722 
723 	memset(dev_p, 0, sizeof(*dev_p));
724 
725 	for (i = 0; i < cap_count; i++) {
726 		u16 cap = le16_to_cpu(cap_resp[i].cap);
727 
728 		ixgbe_parse_e610_caps(hw, &dev_p->common_cap, &cap_resp[i],
729 				      "dev caps");
730 
731 		switch (cap) {
732 		case IXGBE_ACI_CAPS_VALID_FUNCTIONS:
733 			ixgbe_parse_valid_functions_cap(hw, dev_p,
734 							&cap_resp[i]);
735 			break;
736 		case IXGBE_ACI_CAPS_VF:
737 			ixgbe_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
738 			break;
739 		case IXGBE_ACI_CAPS_VSI:
740 			ixgbe_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
741 			break;
742 		case  IXGBE_ACI_CAPS_FD:
743 			ixgbe_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
744 			break;
745 		default:
746 			/* Don't list common capabilities as unknown */
747 			break;
748 		}
749 	}
750 }
751 
752 /**
753  * ixgbe_parse_vf_func_caps - Parse IXGBE_ACI_CAPS_VF function caps
754  * @hw: pointer to the HW struct
755  * @func_p: pointer to function capabilities structure
756  * @cap: pointer to the capability element to parse
757  *
758  * Extract function capabilities for IXGBE_ACI_CAPS_VF.
759  */
760 static void ixgbe_parse_vf_func_caps(struct ixgbe_hw *hw,
761 				     struct ixgbe_hw_func_caps *func_p,
762 				     struct ixgbe_aci_cmd_list_caps_elem *cap)
763 {
764 	func_p->num_allocd_vfs = le32_to_cpu(cap->number);
765 	func_p->vf_base_id = le32_to_cpu(cap->logical_id);
766 }
767 
768 /**
769  * ixgbe_get_num_per_func - determine number of resources per PF
770  * @hw: pointer to the HW structure
771  * @max: value to be evenly split between each PF
772  *
773  * Determine the number of valid functions by going through the bitmap returned
774  * from parsing capabilities and use this to calculate the number of resources
775  * per PF based on the max value passed in.
776  *
777  * Return: the number of resources per PF or 0, if no PH are available.
778  */
779 static u32 ixgbe_get_num_per_func(struct ixgbe_hw *hw, u32 max)
780 {
781 #define IXGBE_CAPS_VALID_FUNCS_M	GENMASK(7, 0)
782 	u8 funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
783 			    IXGBE_CAPS_VALID_FUNCS_M);
784 
785 	return funcs ? (max / funcs) : 0;
786 }
787 
788 /**
789  * ixgbe_parse_vsi_func_caps - Parse IXGBE_ACI_CAPS_VSI function caps
790  * @hw: pointer to the HW struct
791  * @func_p: pointer to function capabilities structure
792  * @cap: pointer to the capability element to parse
793  *
794  * Extract function capabilities for IXGBE_ACI_CAPS_VSI.
795  */
796 static void ixgbe_parse_vsi_func_caps(struct ixgbe_hw *hw,
797 				      struct ixgbe_hw_func_caps *func_p,
798 				      struct ixgbe_aci_cmd_list_caps_elem *cap)
799 {
800 	func_p->guar_num_vsi = ixgbe_get_num_per_func(hw, IXGBE_MAX_VSI);
801 }
802 
803 /**
804  * ixgbe_parse_func_caps - Parse function capabilities
805  * @hw: pointer to the HW struct
806  * @func_p: pointer to function capabilities structure
807  * @buf: buffer containing the function capability records
808  * @cap_count: the number of capabilities
809  *
810  * Helper function to parse function (0x000A) capabilities list. For
811  * capabilities shared between device and function, this relies on
812  * ixgbe_parse_e610_caps.
813  *
814  * Loop through the list of provided capabilities and extract the relevant
815  * data into the function capabilities structured.
816  */
817 static void ixgbe_parse_func_caps(struct ixgbe_hw *hw,
818 				  struct ixgbe_hw_func_caps *func_p,
819 				  void *buf, u32 cap_count)
820 {
821 	struct ixgbe_aci_cmd_list_caps_elem *cap_resp;
822 	u32 i;
823 
824 	cap_resp = (struct ixgbe_aci_cmd_list_caps_elem *)buf;
825 
826 	memset(func_p, 0, sizeof(*func_p));
827 
828 	for (i = 0; i < cap_count; i++) {
829 		u16 cap = le16_to_cpu(cap_resp[i].cap);
830 
831 		ixgbe_parse_e610_caps(hw, &func_p->common_cap,
832 				      &cap_resp[i], "func caps");
833 
834 		switch (cap) {
835 		case IXGBE_ACI_CAPS_VF:
836 			ixgbe_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
837 			break;
838 		case IXGBE_ACI_CAPS_VSI:
839 			ixgbe_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
840 			break;
841 		default:
842 			/* Don't list common capabilities as unknown */
843 			break;
844 		}
845 	}
846 }
847 
848 /**
849  * ixgbe_aci_list_caps - query function/device capabilities
850  * @hw: pointer to the HW struct
851  * @buf: a buffer to hold the capabilities
852  * @buf_size: size of the buffer
853  * @cap_count: if not NULL, set to the number of capabilities reported
854  * @opc: capabilities type to discover, device or function
855  *
856  * Get the function (0x000A) or device (0x000B) capabilities description from
857  * firmware and store it in the buffer.
858  *
859  * If the cap_count pointer is not NULL, then it is set to the number of
860  * capabilities firmware will report. Note that if the buffer size is too
861  * small, it is possible the command will return -ENOMEM. The
862  * cap_count will still be updated in this case. It is recommended that the
863  * buffer size be set to IXGBE_ACI_MAX_BUFFER_SIZE (the largest possible
864  * buffer that firmware could return) to avoid this.
865  *
866  * Return: the exit code of the operation.
867  * Exit code of -ENOMEM means the buffer size is too small.
868  */
869 int ixgbe_aci_list_caps(struct ixgbe_hw *hw, void *buf, u16 buf_size,
870 			u32 *cap_count, enum ixgbe_aci_opc opc)
871 {
872 	struct ixgbe_aci_cmd_list_caps *cmd;
873 	struct ixgbe_aci_desc desc;
874 	int err;
875 
876 	cmd = &desc.params.get_cap;
877 
878 	if (opc != ixgbe_aci_opc_list_func_caps &&
879 	    opc != ixgbe_aci_opc_list_dev_caps)
880 		return -EINVAL;
881 
882 	ixgbe_fill_dflt_direct_cmd_desc(&desc, opc);
883 	err = ixgbe_aci_send_cmd(hw, &desc, buf, buf_size);
884 
885 	if (cap_count)
886 		*cap_count = le32_to_cpu(cmd->count);
887 
888 	return err;
889 }
890 
891 /**
892  * ixgbe_discover_dev_caps - Read and extract device capabilities
893  * @hw: pointer to the hardware structure
894  * @dev_caps: pointer to device capabilities structure
895  *
896  * Read the device capabilities and extract them into the dev_caps structure
897  * for later use.
898  *
899  * Return: the exit code of the operation.
900  */
901 int ixgbe_discover_dev_caps(struct ixgbe_hw *hw,
902 			    struct ixgbe_hw_dev_caps *dev_caps)
903 {
904 	u32 cap_count;
905 	u8 *cbuf;
906 	int err;
907 
908 	cbuf = kzalloc(IXGBE_ACI_MAX_BUFFER_SIZE, GFP_KERNEL);
909 	if (!cbuf)
910 		return -ENOMEM;
911 
912 	/* Although the driver doesn't know the number of capabilities the
913 	 * device will return, we can simply send a 4KB buffer, the maximum
914 	 * possible size that firmware can return.
915 	 */
916 	cap_count = IXGBE_ACI_MAX_BUFFER_SIZE /
917 		    sizeof(struct ixgbe_aci_cmd_list_caps_elem);
918 
919 	err = ixgbe_aci_list_caps(hw, cbuf, IXGBE_ACI_MAX_BUFFER_SIZE,
920 				  &cap_count,
921 				  ixgbe_aci_opc_list_dev_caps);
922 	if (!err)
923 		ixgbe_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
924 
925 	kfree(cbuf);
926 
927 	return 0;
928 }
929 
930 /**
931  * ixgbe_discover_func_caps - Read and extract function capabilities
932  * @hw: pointer to the hardware structure
933  * @func_caps: pointer to function capabilities structure
934  *
935  * Read the function capabilities and extract them into the func_caps structure
936  * for later use.
937  *
938  * Return: the exit code of the operation.
939  */
940 int ixgbe_discover_func_caps(struct ixgbe_hw *hw,
941 			     struct ixgbe_hw_func_caps *func_caps)
942 {
943 	u32 cap_count;
944 	u8 *cbuf;
945 	int err;
946 
947 	cbuf = kzalloc(IXGBE_ACI_MAX_BUFFER_SIZE, GFP_KERNEL);
948 	if (!cbuf)
949 		return -ENOMEM;
950 
951 	/* Although the driver doesn't know the number of capabilities the
952 	 * device will return, we can simply send a 4KB buffer, the maximum
953 	 * possible size that firmware can return.
954 	 */
955 	cap_count = IXGBE_ACI_MAX_BUFFER_SIZE /
956 		    sizeof(struct ixgbe_aci_cmd_list_caps_elem);
957 
958 	err = ixgbe_aci_list_caps(hw, cbuf, IXGBE_ACI_MAX_BUFFER_SIZE,
959 				  &cap_count,
960 				  ixgbe_aci_opc_list_func_caps);
961 	if (!err)
962 		ixgbe_parse_func_caps(hw, func_caps, cbuf, cap_count);
963 
964 	kfree(cbuf);
965 
966 	return 0;
967 }
968 
969 /**
970  * ixgbe_get_caps - get info about the HW
971  * @hw: pointer to the hardware structure
972  *
973  * Retrieve both device and function capabilities.
974  *
975  * Return: the exit code of the operation.
976  */
977 int ixgbe_get_caps(struct ixgbe_hw *hw)
978 {
979 	int err;
980 
981 	err = ixgbe_discover_dev_caps(hw, &hw->dev_caps);
982 	if (err)
983 		return err;
984 
985 	return ixgbe_discover_func_caps(hw, &hw->func_caps);
986 }
987 
988 /**
989  * ixgbe_aci_disable_rxen - disable RX
990  * @hw: pointer to the HW struct
991  *
992  * Request a safe disable of Receive Enable using ACI command (0x000C).
993  *
994  * Return: the exit code of the operation.
995  */
996 int ixgbe_aci_disable_rxen(struct ixgbe_hw *hw)
997 {
998 	struct ixgbe_aci_cmd_disable_rxen *cmd;
999 	struct ixgbe_aci_desc desc;
1000 
1001 	cmd = &desc.params.disable_rxen;
1002 
1003 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_disable_rxen);
1004 
1005 	cmd->lport_num = hw->bus.func;
1006 
1007 	return ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
1008 }
1009 
1010 /**
1011  * ixgbe_aci_get_phy_caps - returns PHY capabilities
1012  * @hw: pointer to the HW struct
1013  * @qual_mods: report qualified modules
1014  * @report_mode: report mode capabilities
1015  * @pcaps: structure for PHY capabilities to be filled
1016  *
1017  * Returns the various PHY capabilities supported on the Port
1018  * using ACI command (0x0600).
1019  *
1020  * Return: the exit code of the operation.
1021  */
1022 int ixgbe_aci_get_phy_caps(struct ixgbe_hw *hw, bool qual_mods, u8 report_mode,
1023 			   struct ixgbe_aci_cmd_get_phy_caps_data *pcaps)
1024 {
1025 	struct ixgbe_aci_cmd_get_phy_caps *cmd;
1026 	u16 pcaps_size = sizeof(*pcaps);
1027 	struct ixgbe_aci_desc desc;
1028 	int err;
1029 
1030 	cmd = &desc.params.get_phy;
1031 
1032 	if (!pcaps || (report_mode & ~IXGBE_ACI_REPORT_MODE_M))
1033 		return -EINVAL;
1034 
1035 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_phy_caps);
1036 
1037 	if (qual_mods)
1038 		cmd->param0 |= cpu_to_le16(IXGBE_ACI_GET_PHY_RQM);
1039 
1040 	cmd->param0 |= cpu_to_le16(report_mode);
1041 	err = ixgbe_aci_send_cmd(hw, &desc, pcaps, pcaps_size);
1042 	if (!err && report_mode == IXGBE_ACI_REPORT_TOPO_CAP_MEDIA) {
1043 		hw->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
1044 		hw->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
1045 		memcpy(hw->link.link_info.module_type, &pcaps->module_type,
1046 		       sizeof(hw->link.link_info.module_type));
1047 	}
1048 
1049 	return err;
1050 }
1051 
1052 /**
1053  * ixgbe_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
1054  * @caps: PHY ability structure to copy data from
1055  * @cfg: PHY configuration structure to copy data to
1056  *
1057  * Helper function to copy data from PHY capabilities data structure
1058  * to PHY configuration data structure
1059  */
1060 void ixgbe_copy_phy_caps_to_cfg(struct ixgbe_aci_cmd_get_phy_caps_data *caps,
1061 				struct ixgbe_aci_cmd_set_phy_cfg_data *cfg)
1062 {
1063 	if (!caps || !cfg)
1064 		return;
1065 
1066 	memset(cfg, 0, sizeof(*cfg));
1067 	cfg->phy_type_low = caps->phy_type_low;
1068 	cfg->phy_type_high = caps->phy_type_high;
1069 	cfg->caps = caps->caps;
1070 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
1071 	cfg->eee_cap = caps->eee_cap;
1072 	cfg->eeer_value = caps->eeer_value;
1073 	cfg->link_fec_opt = caps->link_fec_options;
1074 	cfg->module_compliance_enforcement =
1075 		caps->module_compliance_enforcement;
1076 }
1077 
1078 /**
1079  * ixgbe_aci_set_phy_cfg - set PHY configuration
1080  * @hw: pointer to the HW struct
1081  * @cfg: structure with PHY configuration data to be set
1082  *
1083  * Set the various PHY configuration parameters supported on the Port
1084  * using ACI command (0x0601).
1085  * One or more of the Set PHY config parameters may be ignored in an MFP
1086  * mode as the PF may not have the privilege to set some of the PHY Config
1087  * parameters.
1088  *
1089  * Return: the exit code of the operation.
1090  */
1091 int ixgbe_aci_set_phy_cfg(struct ixgbe_hw *hw,
1092 			  struct ixgbe_aci_cmd_set_phy_cfg_data *cfg)
1093 {
1094 	struct ixgbe_aci_desc desc;
1095 	int err;
1096 
1097 	if (!cfg)
1098 		return -EINVAL;
1099 
1100 	/* Ensure that only valid bits of cfg->caps can be turned on. */
1101 	cfg->caps &= IXGBE_ACI_PHY_ENA_VALID_MASK;
1102 
1103 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_set_phy_cfg);
1104 	desc.params.set_phy.lport_num = hw->bus.func;
1105 	desc.flags |= cpu_to_le16(IXGBE_ACI_FLAG_RD);
1106 
1107 	err = ixgbe_aci_send_cmd(hw, &desc, cfg, sizeof(*cfg));
1108 	if (!err)
1109 		hw->phy.curr_user_phy_cfg = *cfg;
1110 
1111 	return err;
1112 }
1113 
1114 /**
1115  * ixgbe_aci_set_link_restart_an - set up link and restart AN
1116  * @hw: pointer to the HW struct
1117  * @ena_link: if true: enable link, if false: disable link
1118  *
1119  * Function sets up the link and restarts the Auto-Negotiation over the link.
1120  *
1121  * Return: the exit code of the operation.
1122  */
1123 int ixgbe_aci_set_link_restart_an(struct ixgbe_hw *hw, bool ena_link)
1124 {
1125 	struct ixgbe_aci_cmd_restart_an *cmd;
1126 	struct ixgbe_aci_desc desc;
1127 
1128 	cmd = &desc.params.restart_an;
1129 
1130 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_restart_an);
1131 
1132 	cmd->cmd_flags = IXGBE_ACI_RESTART_AN_LINK_RESTART;
1133 	cmd->lport_num = hw->bus.func;
1134 	if (ena_link)
1135 		cmd->cmd_flags |= IXGBE_ACI_RESTART_AN_LINK_ENABLE;
1136 	else
1137 		cmd->cmd_flags &= ~IXGBE_ACI_RESTART_AN_LINK_ENABLE;
1138 
1139 	return ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
1140 }
1141 
1142 /**
1143  * ixgbe_is_media_cage_present - check if media cage is present
1144  * @hw: pointer to the HW struct
1145  *
1146  * Identify presence of media cage using the ACI command (0x06E0).
1147  *
1148  * Return: true if media cage is present, else false. If no cage, then
1149  * media type is backplane or BASE-T.
1150  */
1151 static bool ixgbe_is_media_cage_present(struct ixgbe_hw *hw)
1152 {
1153 	struct ixgbe_aci_cmd_get_link_topo *cmd;
1154 	struct ixgbe_aci_desc desc;
1155 
1156 	cmd = &desc.params.get_link_topo;
1157 
1158 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_link_topo);
1159 
1160 	cmd->addr.topo_params.node_type_ctx =
1161 		FIELD_PREP(IXGBE_ACI_LINK_TOPO_NODE_CTX_M,
1162 			   IXGBE_ACI_LINK_TOPO_NODE_CTX_PORT);
1163 
1164 	/* Set node type. */
1165 	cmd->addr.topo_params.node_type_ctx |=
1166 		FIELD_PREP(IXGBE_ACI_LINK_TOPO_NODE_TYPE_M,
1167 			   IXGBE_ACI_LINK_TOPO_NODE_TYPE_CAGE);
1168 
1169 	/* Node type cage can be used to determine if cage is present. If AQC
1170 	 * returns error (ENOENT), then no cage present. If no cage present then
1171 	 * connection type is backplane or BASE-T.
1172 	 */
1173 	return !ixgbe_aci_get_netlist_node(hw, cmd, NULL, NULL);
1174 }
1175 
1176 /**
1177  * ixgbe_get_media_type_from_phy_type - Gets media type based on phy type
1178  * @hw: pointer to the HW struct
1179  *
1180  * Try to identify the media type based on the phy type.
1181  * If more than one media type, the ixgbe_media_type_unknown is returned.
1182  * First, phy_type_low is checked, then phy_type_high.
1183  * If none are identified, the ixgbe_media_type_unknown is returned
1184  *
1185  * Return: type of a media based on phy type in form of enum.
1186  */
1187 static enum ixgbe_media_type
1188 ixgbe_get_media_type_from_phy_type(struct ixgbe_hw *hw)
1189 {
1190 	struct ixgbe_link_status *hw_link_info;
1191 
1192 	if (!hw)
1193 		return ixgbe_media_type_unknown;
1194 
1195 	hw_link_info = &hw->link.link_info;
1196 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
1197 		/* If more than one media type is selected, report unknown */
1198 		return ixgbe_media_type_unknown;
1199 
1200 	if (hw_link_info->phy_type_low) {
1201 		/* 1G SGMII is a special case where some DA cable PHYs
1202 		 * may show this as an option when it really shouldn't
1203 		 * be since SGMII is meant to be between a MAC and a PHY
1204 		 * in a backplane. Try to detect this case and handle it
1205 		 */
1206 		if (hw_link_info->phy_type_low == IXGBE_PHY_TYPE_LOW_1G_SGMII &&
1207 		    (hw_link_info->module_type[IXGBE_ACI_MOD_TYPE_IDENT] ==
1208 		    IXGBE_ACI_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
1209 		    hw_link_info->module_type[IXGBE_ACI_MOD_TYPE_IDENT] ==
1210 		    IXGBE_ACI_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
1211 			return ixgbe_media_type_da;
1212 
1213 		switch (hw_link_info->phy_type_low) {
1214 		case IXGBE_PHY_TYPE_LOW_1000BASE_SX:
1215 		case IXGBE_PHY_TYPE_LOW_1000BASE_LX:
1216 		case IXGBE_PHY_TYPE_LOW_10GBASE_SR:
1217 		case IXGBE_PHY_TYPE_LOW_10GBASE_LR:
1218 		case IXGBE_PHY_TYPE_LOW_25GBASE_SR:
1219 		case IXGBE_PHY_TYPE_LOW_25GBASE_LR:
1220 			return ixgbe_media_type_fiber;
1221 		case IXGBE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
1222 		case IXGBE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
1223 			return ixgbe_media_type_fiber;
1224 		case IXGBE_PHY_TYPE_LOW_100BASE_TX:
1225 		case IXGBE_PHY_TYPE_LOW_1000BASE_T:
1226 		case IXGBE_PHY_TYPE_LOW_2500BASE_T:
1227 		case IXGBE_PHY_TYPE_LOW_5GBASE_T:
1228 		case IXGBE_PHY_TYPE_LOW_10GBASE_T:
1229 		case IXGBE_PHY_TYPE_LOW_25GBASE_T:
1230 			return ixgbe_media_type_copper;
1231 		case IXGBE_PHY_TYPE_LOW_10G_SFI_DA:
1232 		case IXGBE_PHY_TYPE_LOW_25GBASE_CR:
1233 		case IXGBE_PHY_TYPE_LOW_25GBASE_CR_S:
1234 		case IXGBE_PHY_TYPE_LOW_25GBASE_CR1:
1235 			return ixgbe_media_type_da;
1236 		case IXGBE_PHY_TYPE_LOW_25G_AUI_C2C:
1237 			if (ixgbe_is_media_cage_present(hw))
1238 				return ixgbe_media_type_aui;
1239 			fallthrough;
1240 		case IXGBE_PHY_TYPE_LOW_1000BASE_KX:
1241 		case IXGBE_PHY_TYPE_LOW_2500BASE_KX:
1242 		case IXGBE_PHY_TYPE_LOW_2500BASE_X:
1243 		case IXGBE_PHY_TYPE_LOW_5GBASE_KR:
1244 		case IXGBE_PHY_TYPE_LOW_10GBASE_KR_CR1:
1245 		case IXGBE_PHY_TYPE_LOW_10G_SFI_C2C:
1246 		case IXGBE_PHY_TYPE_LOW_25GBASE_KR:
1247 		case IXGBE_PHY_TYPE_LOW_25GBASE_KR1:
1248 		case IXGBE_PHY_TYPE_LOW_25GBASE_KR_S:
1249 			return ixgbe_media_type_backplane;
1250 		}
1251 	} else {
1252 		switch (hw_link_info->phy_type_high) {
1253 		case IXGBE_PHY_TYPE_HIGH_10BASE_T:
1254 			return ixgbe_media_type_copper;
1255 		}
1256 	}
1257 	return ixgbe_media_type_unknown;
1258 }
1259 
1260 /**
1261  * ixgbe_update_link_info - update status of the HW network link
1262  * @hw: pointer to the HW struct
1263  *
1264  * Update the status of the HW network link.
1265  *
1266  * Return: the exit code of the operation.
1267  */
1268 int ixgbe_update_link_info(struct ixgbe_hw *hw)
1269 {
1270 	struct ixgbe_aci_cmd_get_phy_caps_data *pcaps;
1271 	struct ixgbe_link_status *li;
1272 	int err;
1273 
1274 	if (!hw)
1275 		return -EINVAL;
1276 
1277 	li = &hw->link.link_info;
1278 
1279 	err = ixgbe_aci_get_link_info(hw, true, NULL);
1280 	if (err)
1281 		return err;
1282 
1283 	if (!(li->link_info & IXGBE_ACI_MEDIA_AVAILABLE))
1284 		return 0;
1285 
1286 	pcaps =	kzalloc(sizeof(*pcaps), GFP_KERNEL);
1287 	if (!pcaps)
1288 		return -ENOMEM;
1289 
1290 	err = ixgbe_aci_get_phy_caps(hw, false, IXGBE_ACI_REPORT_TOPO_CAP_MEDIA,
1291 				     pcaps);
1292 
1293 	if (!err)
1294 		memcpy(li->module_type, &pcaps->module_type,
1295 		       sizeof(li->module_type));
1296 
1297 	kfree(pcaps);
1298 
1299 	return err;
1300 }
1301 
1302 /**
1303  * ixgbe_get_link_status - get status of the HW network link
1304  * @hw: pointer to the HW struct
1305  * @link_up: pointer to bool (true/false = linkup/linkdown)
1306  *
1307  * Variable link_up is true if link is up, false if link is down.
1308  * The variable link_up is invalid if status is non zero. As a
1309  * result of this call, link status reporting becomes enabled
1310  *
1311  * Return: the exit code of the operation.
1312  */
1313 int ixgbe_get_link_status(struct ixgbe_hw *hw, bool *link_up)
1314 {
1315 	if (!hw || !link_up)
1316 		return -EINVAL;
1317 
1318 	if (hw->link.get_link_info) {
1319 		int err = ixgbe_update_link_info(hw);
1320 
1321 		if (err)
1322 			return err;
1323 	}
1324 
1325 	*link_up = hw->link.link_info.link_info & IXGBE_ACI_LINK_UP;
1326 
1327 	return 0;
1328 }
1329 
1330 /**
1331  * ixgbe_aci_get_link_info - get the link status
1332  * @hw: pointer to the HW struct
1333  * @ena_lse: enable/disable LinkStatusEvent reporting
1334  * @link: pointer to link status structure - optional
1335  *
1336  * Get the current Link Status using ACI command (0x607).
1337  * The current link can be optionally provided to update
1338  * the status.
1339  *
1340  * Return: the link status of the adapter.
1341  */
1342 int ixgbe_aci_get_link_info(struct ixgbe_hw *hw, bool ena_lse,
1343 			    struct ixgbe_link_status *link)
1344 {
1345 	struct ixgbe_aci_cmd_get_link_status_data link_data = {};
1346 	struct ixgbe_aci_cmd_get_link_status *resp;
1347 	struct ixgbe_link_status *li_old, *li;
1348 	struct ixgbe_fc_info *hw_fc_info;
1349 	struct ixgbe_aci_desc desc;
1350 	bool tx_pause, rx_pause;
1351 	u8 cmd_flags;
1352 	int err;
1353 
1354 	if (!hw)
1355 		return -EINVAL;
1356 
1357 	li_old = &hw->link.link_info_old;
1358 	li = &hw->link.link_info;
1359 	hw_fc_info = &hw->fc;
1360 
1361 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_link_status);
1362 	cmd_flags = (ena_lse) ? IXGBE_ACI_LSE_ENA : IXGBE_ACI_LSE_DIS;
1363 	resp = &desc.params.get_link_status;
1364 	resp->cmd_flags = cpu_to_le16(cmd_flags);
1365 	resp->lport_num = hw->bus.func;
1366 
1367 	err = ixgbe_aci_send_cmd(hw, &desc, &link_data, sizeof(link_data));
1368 	if (err)
1369 		return err;
1370 
1371 	/* Save off old link status information. */
1372 	*li_old = *li;
1373 
1374 	/* Update current link status information. */
1375 	li->link_speed = le16_to_cpu(link_data.link_speed);
1376 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
1377 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
1378 	li->link_info = link_data.link_info;
1379 	li->link_cfg_err = link_data.link_cfg_err;
1380 	li->an_info = link_data.an_info;
1381 	li->ext_info = link_data.ext_info;
1382 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
1383 	li->fec_info = link_data.cfg & IXGBE_ACI_FEC_MASK;
1384 	li->topo_media_conflict = link_data.topo_media_conflict;
1385 	li->pacing = link_data.cfg & (IXGBE_ACI_CFG_PACING_M |
1386 				      IXGBE_ACI_CFG_PACING_TYPE_M);
1387 
1388 	/* Update fc info. */
1389 	tx_pause = !!(link_data.an_info & IXGBE_ACI_LINK_PAUSE_TX);
1390 	rx_pause = !!(link_data.an_info & IXGBE_ACI_LINK_PAUSE_RX);
1391 	if (tx_pause && rx_pause)
1392 		hw_fc_info->current_mode = ixgbe_fc_full;
1393 	else if (tx_pause)
1394 		hw_fc_info->current_mode = ixgbe_fc_tx_pause;
1395 	else if (rx_pause)
1396 		hw_fc_info->current_mode = ixgbe_fc_rx_pause;
1397 	else
1398 		hw_fc_info->current_mode = ixgbe_fc_none;
1399 
1400 	li->lse_ena = !!(le16_to_cpu(resp->cmd_flags) &
1401 			 IXGBE_ACI_LSE_IS_ENABLED);
1402 
1403 	/* Save link status information. */
1404 	if (link)
1405 		*link = *li;
1406 
1407 	/* Flag cleared so calling functions don't call AQ again. */
1408 	hw->link.get_link_info = false;
1409 
1410 	return 0;
1411 }
1412 
1413 /**
1414  * ixgbe_aci_set_event_mask - set event mask
1415  * @hw: pointer to the HW struct
1416  * @port_num: port number of the physical function
1417  * @mask: event mask to be set
1418  *
1419  * Set the event mask using ACI command (0x0613).
1420  *
1421  * Return: the exit code of the operation.
1422  */
1423 int ixgbe_aci_set_event_mask(struct ixgbe_hw *hw, u8 port_num, u16 mask)
1424 {
1425 	struct ixgbe_aci_cmd_set_event_mask *cmd;
1426 	struct ixgbe_aci_desc desc;
1427 
1428 	cmd = &desc.params.set_event_mask;
1429 
1430 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_set_event_mask);
1431 
1432 	cmd->lport_num = port_num;
1433 
1434 	cmd->event_mask = cpu_to_le16(mask);
1435 	return ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
1436 }
1437 
1438 /**
1439  * ixgbe_configure_lse - enable/disable link status events
1440  * @hw: pointer to the HW struct
1441  * @activate: true for enable lse, false otherwise
1442  * @mask: event mask to be set; a set bit means deactivation of the
1443  * corresponding event
1444  *
1445  * Set the event mask and then enable or disable link status events
1446  *
1447  * Return: the exit code of the operation.
1448  */
1449 int ixgbe_configure_lse(struct ixgbe_hw *hw, bool activate, u16 mask)
1450 {
1451 	int err;
1452 
1453 	err = ixgbe_aci_set_event_mask(hw, (u8)hw->bus.func, mask);
1454 	if (err)
1455 		return err;
1456 
1457 	/* Enabling link status events generation by fw. */
1458 	return ixgbe_aci_get_link_info(hw, activate, NULL);
1459 }
1460 
1461 /**
1462  * ixgbe_start_hw_e610 - Prepare hardware for Tx/Rx
1463  * @hw: pointer to hardware structure
1464  *
1465  * Get firmware version and start the hardware using the generic
1466  * start_hw() and ixgbe_start_hw_gen2() functions.
1467  *
1468  * Return: the exit code of the operation.
1469  */
1470 static int ixgbe_start_hw_e610(struct ixgbe_hw *hw)
1471 {
1472 	int err;
1473 
1474 	err = ixgbe_aci_get_fw_ver(hw);
1475 	if (err)
1476 		return err;
1477 
1478 	err = ixgbe_start_hw_generic(hw);
1479 	if (err)
1480 		return err;
1481 
1482 	ixgbe_start_hw_gen2(hw);
1483 
1484 	return 0;
1485 }
1486 
1487 /**
1488  * ixgbe_get_media_type_e610 - Gets media type
1489  * @hw: pointer to the HW struct
1490  *
1491  * In order to get the media type, the function gets PHY
1492  * capabilities and later on use them to identify the PHY type
1493  * checking phy_type_high and phy_type_low.
1494  *
1495  * Return: the type of media in form of ixgbe_media_type enum
1496  * or ixgbe_media_type_unknown in case of an error.
1497  */
1498 enum ixgbe_media_type ixgbe_get_media_type_e610(struct ixgbe_hw *hw)
1499 {
1500 	struct ixgbe_aci_cmd_get_phy_caps_data pcaps;
1501 	int rc;
1502 
1503 	rc = ixgbe_update_link_info(hw);
1504 	if (rc)
1505 		return ixgbe_media_type_unknown;
1506 
1507 	/* If there is no link but PHY (dongle) is available SW should use
1508 	 * Get PHY Caps admin command instead of Get Link Status, find most
1509 	 * significant bit that is set in PHY types reported by the command
1510 	 * and use it to discover media type.
1511 	 */
1512 	if (!(hw->link.link_info.link_info & IXGBE_ACI_LINK_UP) &&
1513 	    (hw->link.link_info.link_info & IXGBE_ACI_MEDIA_AVAILABLE)) {
1514 		int highest_bit;
1515 
1516 		/* Get PHY Capabilities */
1517 		rc = ixgbe_aci_get_phy_caps(hw, false,
1518 					    IXGBE_ACI_REPORT_TOPO_CAP_MEDIA,
1519 					    &pcaps);
1520 		if (rc)
1521 			return ixgbe_media_type_unknown;
1522 
1523 		highest_bit = fls64(le64_to_cpu(pcaps.phy_type_high));
1524 		if (highest_bit) {
1525 			hw->link.link_info.phy_type_high =
1526 				BIT_ULL(highest_bit - 1);
1527 			hw->link.link_info.phy_type_low = 0;
1528 		} else {
1529 			highest_bit = fls64(le64_to_cpu(pcaps.phy_type_low));
1530 			if (highest_bit) {
1531 				hw->link.link_info.phy_type_low =
1532 					BIT_ULL(highest_bit - 1);
1533 				hw->link.link_info.phy_type_high = 0;
1534 			}
1535 		}
1536 	}
1537 
1538 	/* Based on link status or search above try to discover media type. */
1539 	hw->phy.media_type = ixgbe_get_media_type_from_phy_type(hw);
1540 
1541 	return hw->phy.media_type;
1542 }
1543 
1544 /**
1545  * ixgbe_setup_link_e610 - Set up link
1546  * @hw: pointer to hardware structure
1547  * @speed: new link speed
1548  * @autoneg_wait: true when waiting for completion is needed
1549  *
1550  * Set up the link with the specified speed.
1551  *
1552  * Return: the exit code of the operation.
1553  */
1554 int ixgbe_setup_link_e610(struct ixgbe_hw *hw, ixgbe_link_speed speed,
1555 			  bool autoneg_wait)
1556 {
1557 	/* Simply request FW to perform proper PHY setup */
1558 	return hw->phy.ops.setup_link_speed(hw, speed, autoneg_wait);
1559 }
1560 
1561 /**
1562  * ixgbe_check_link_e610 - Determine link and speed status
1563  * @hw: pointer to hardware structure
1564  * @speed: pointer to link speed
1565  * @link_up: true when link is up
1566  * @link_up_wait_to_complete: bool used to wait for link up or not
1567  *
1568  * Determine if the link is up and the current link speed
1569  * using ACI command (0x0607).
1570  *
1571  * Return: the exit code of the operation.
1572  */
1573 int ixgbe_check_link_e610(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1574 			  bool *link_up, bool link_up_wait_to_complete)
1575 {
1576 	int err;
1577 	u32 i;
1578 
1579 	if (!speed || !link_up)
1580 		return -EINVAL;
1581 
1582 	/* Set get_link_info flag to ensure that fresh
1583 	 * link information will be obtained from FW
1584 	 * by sending Get Link Status admin command.
1585 	 */
1586 	hw->link.get_link_info = true;
1587 
1588 	/* Update link information in adapter context. */
1589 	err = ixgbe_get_link_status(hw, link_up);
1590 	if (err)
1591 		return err;
1592 
1593 	/* Wait for link up if it was requested. */
1594 	if (link_up_wait_to_complete && !(*link_up)) {
1595 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
1596 			msleep(100);
1597 			hw->link.get_link_info = true;
1598 			err = ixgbe_get_link_status(hw, link_up);
1599 			if (err)
1600 				return err;
1601 			if (*link_up)
1602 				break;
1603 		}
1604 	}
1605 
1606 	/* Use link information in adapter context updated by the call
1607 	 * to ixgbe_get_link_status() to determine current link speed.
1608 	 * Link speed information is valid only when link up was
1609 	 * reported by FW.
1610 	 */
1611 	if (*link_up) {
1612 		switch (hw->link.link_info.link_speed) {
1613 		case IXGBE_ACI_LINK_SPEED_10MB:
1614 			*speed = IXGBE_LINK_SPEED_10_FULL;
1615 			break;
1616 		case IXGBE_ACI_LINK_SPEED_100MB:
1617 			*speed = IXGBE_LINK_SPEED_100_FULL;
1618 			break;
1619 		case IXGBE_ACI_LINK_SPEED_1000MB:
1620 			*speed = IXGBE_LINK_SPEED_1GB_FULL;
1621 			break;
1622 		case IXGBE_ACI_LINK_SPEED_2500MB:
1623 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
1624 			break;
1625 		case IXGBE_ACI_LINK_SPEED_5GB:
1626 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
1627 			break;
1628 		case IXGBE_ACI_LINK_SPEED_10GB:
1629 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
1630 			break;
1631 		default:
1632 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
1633 			break;
1634 		}
1635 	} else {
1636 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
1637 	}
1638 
1639 	return 0;
1640 }
1641 
1642 /**
1643  * ixgbe_get_link_capabilities_e610 - Determine link capabilities
1644  * @hw: pointer to hardware structure
1645  * @speed: pointer to link speed
1646  * @autoneg: true when autoneg or autotry is enabled
1647  *
1648  * Determine speed and AN parameters of a link.
1649  *
1650  * Return: the exit code of the operation.
1651  */
1652 int ixgbe_get_link_capabilities_e610(struct ixgbe_hw *hw,
1653 				     ixgbe_link_speed *speed,
1654 				     bool *autoneg)
1655 {
1656 	if (!speed || !autoneg)
1657 		return -EINVAL;
1658 
1659 	*autoneg = true;
1660 	*speed = hw->phy.speeds_supported;
1661 
1662 	return 0;
1663 }
1664 
1665 /**
1666  * ixgbe_cfg_phy_fc - Configure PHY Flow Control (FC) data based on FC mode
1667  * @hw: pointer to hardware structure
1668  * @cfg: PHY configuration data to set FC mode
1669  * @req_mode: FC mode to configure
1670  *
1671  * Configures PHY Flow Control according to the provided configuration.
1672  *
1673  * Return: the exit code of the operation.
1674  */
1675 int ixgbe_cfg_phy_fc(struct ixgbe_hw *hw,
1676 		     struct ixgbe_aci_cmd_set_phy_cfg_data *cfg,
1677 		     enum ixgbe_fc_mode req_mode)
1678 {
1679 	u8 pause_mask = 0x0;
1680 
1681 	if (!cfg)
1682 		return -EINVAL;
1683 
1684 	switch (req_mode) {
1685 	case ixgbe_fc_full:
1686 		pause_mask |= IXGBE_ACI_PHY_EN_TX_LINK_PAUSE;
1687 		pause_mask |= IXGBE_ACI_PHY_EN_RX_LINK_PAUSE;
1688 		break;
1689 	case ixgbe_fc_rx_pause:
1690 		pause_mask |= IXGBE_ACI_PHY_EN_RX_LINK_PAUSE;
1691 		break;
1692 	case ixgbe_fc_tx_pause:
1693 		pause_mask |= IXGBE_ACI_PHY_EN_TX_LINK_PAUSE;
1694 		break;
1695 	default:
1696 		break;
1697 	}
1698 
1699 	/* Clear the old pause settings. */
1700 	cfg->caps &= ~(IXGBE_ACI_PHY_EN_TX_LINK_PAUSE |
1701 		IXGBE_ACI_PHY_EN_RX_LINK_PAUSE);
1702 
1703 	/* Set the new capabilities. */
1704 	cfg->caps |= pause_mask;
1705 
1706 	return 0;
1707 }
1708 
1709 /**
1710  * ixgbe_setup_fc_e610 - Set up flow control
1711  * @hw: pointer to hardware structure
1712  *
1713  * Set up flow control. This has to be done during init time.
1714  *
1715  * Return: the exit code of the operation.
1716  */
1717 int ixgbe_setup_fc_e610(struct ixgbe_hw *hw)
1718 {
1719 	struct ixgbe_aci_cmd_get_phy_caps_data pcaps = {};
1720 	struct ixgbe_aci_cmd_set_phy_cfg_data cfg = {};
1721 	int err;
1722 
1723 	/* Get the current PHY config */
1724 	err = ixgbe_aci_get_phy_caps(hw, false,
1725 				     IXGBE_ACI_REPORT_ACTIVE_CFG, &pcaps);
1726 	if (err)
1727 		return err;
1728 
1729 	ixgbe_copy_phy_caps_to_cfg(&pcaps, &cfg);
1730 
1731 	/* Configure the set PHY data */
1732 	err = ixgbe_cfg_phy_fc(hw, &cfg, hw->fc.requested_mode);
1733 	if (err)
1734 		return err;
1735 
1736 	/* If the capabilities have changed, then set the new config */
1737 	if (cfg.caps != pcaps.caps) {
1738 		cfg.caps |= IXGBE_ACI_PHY_ENA_AUTO_LINK_UPDT;
1739 
1740 		err = ixgbe_aci_set_phy_cfg(hw, &cfg);
1741 		if (err)
1742 			return err;
1743 	}
1744 
1745 	return err;
1746 }
1747 
1748 /**
1749  * ixgbe_fc_autoneg_e610 - Configure flow control
1750  * @hw: pointer to hardware structure
1751  *
1752  * Configure Flow Control.
1753  */
1754 void ixgbe_fc_autoneg_e610(struct ixgbe_hw *hw)
1755 {
1756 	int err;
1757 
1758 	/* Get current link err.
1759 	 * Current FC mode will be stored in the hw context.
1760 	 */
1761 	err = ixgbe_aci_get_link_info(hw, false, NULL);
1762 	if (err)
1763 		goto no_autoneg;
1764 
1765 	/* Check if the link is up */
1766 	if (!(hw->link.link_info.link_info & IXGBE_ACI_LINK_UP))
1767 		goto no_autoneg;
1768 
1769 	/* Check if auto-negotiation has completed */
1770 	if (!(hw->link.link_info.an_info & IXGBE_ACI_AN_COMPLETED))
1771 		goto no_autoneg;
1772 
1773 	hw->fc.fc_was_autonegged = true;
1774 	return;
1775 
1776 no_autoneg:
1777 	hw->fc.fc_was_autonegged = false;
1778 	hw->fc.current_mode = hw->fc.requested_mode;
1779 }
1780 
1781 /**
1782  * ixgbe_disable_rx_e610 - Disable RX unit
1783  * @hw: pointer to hardware structure
1784  *
1785  * Disable RX DMA unit on E610 with use of ACI command (0x000C).
1786  *
1787  * Return: the exit code of the operation.
1788  */
1789 void ixgbe_disable_rx_e610(struct ixgbe_hw *hw)
1790 {
1791 	u32 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
1792 	u32 pfdtxgswc;
1793 	int err;
1794 
1795 	if (!(rxctrl & IXGBE_RXCTRL_RXEN))
1796 		return;
1797 
1798 	pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
1799 	if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
1800 		pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
1801 		IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
1802 		hw->mac.set_lben = true;
1803 	} else {
1804 		hw->mac.set_lben = false;
1805 	}
1806 
1807 	err = ixgbe_aci_disable_rxen(hw);
1808 
1809 	/* If we fail - disable RX using register write */
1810 	if (err) {
1811 		rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
1812 		if (rxctrl & IXGBE_RXCTRL_RXEN) {
1813 			rxctrl &= ~IXGBE_RXCTRL_RXEN;
1814 			IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
1815 		}
1816 	}
1817 }
1818 
1819 /**
1820  * ixgbe_init_phy_ops_e610 - PHY specific init
1821  * @hw: pointer to hardware structure
1822  *
1823  * Initialize any function pointers that were not able to be
1824  * set during init_shared_code because the PHY type was not known.
1825  *
1826  * Return: the exit code of the operation.
1827  */
1828 int ixgbe_init_phy_ops_e610(struct ixgbe_hw *hw)
1829 {
1830 	struct ixgbe_mac_info *mac = &hw->mac;
1831 	struct ixgbe_phy_info *phy = &hw->phy;
1832 
1833 	if (mac->ops.get_media_type(hw) == ixgbe_media_type_copper)
1834 		phy->ops.set_phy_power = ixgbe_set_phy_power_e610;
1835 	else
1836 		phy->ops.set_phy_power = NULL;
1837 
1838 	/* Identify the PHY */
1839 	return phy->ops.identify(hw);
1840 }
1841 
1842 /**
1843  * ixgbe_identify_phy_e610 - Identify PHY
1844  * @hw: pointer to hardware structure
1845  *
1846  * Determine PHY type, supported speeds and PHY ID.
1847  *
1848  * Return: the exit code of the operation.
1849  */
1850 int ixgbe_identify_phy_e610(struct ixgbe_hw *hw)
1851 {
1852 	struct ixgbe_aci_cmd_get_phy_caps_data pcaps;
1853 	u64 phy_type_low, phy_type_high;
1854 	int err;
1855 
1856 	/* Set PHY type */
1857 	hw->phy.type = ixgbe_phy_fw;
1858 
1859 	err = ixgbe_aci_get_phy_caps(hw, false,
1860 				     IXGBE_ACI_REPORT_TOPO_CAP_MEDIA, &pcaps);
1861 	if (err)
1862 		return err;
1863 
1864 	if (!(pcaps.module_compliance_enforcement &
1865 	      IXGBE_ACI_MOD_ENFORCE_STRICT_MODE)) {
1866 		/* Handle lenient mode */
1867 		err = ixgbe_aci_get_phy_caps(hw, false,
1868 					     IXGBE_ACI_REPORT_TOPO_CAP_NO_MEDIA,
1869 					     &pcaps);
1870 		if (err)
1871 			return err;
1872 	}
1873 
1874 	/* Determine supported speeds */
1875 	hw->phy.speeds_supported = IXGBE_LINK_SPEED_UNKNOWN;
1876 	phy_type_high = le64_to_cpu(pcaps.phy_type_high);
1877 	phy_type_low = le64_to_cpu(pcaps.phy_type_low);
1878 
1879 	if (phy_type_high & IXGBE_PHY_TYPE_HIGH_10BASE_T ||
1880 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_10M_SGMII)
1881 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10_FULL;
1882 	if (phy_type_low  & IXGBE_PHY_TYPE_LOW_100BASE_TX ||
1883 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_100M_SGMII ||
1884 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_100M_USXGMII)
1885 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
1886 	if (phy_type_low  & IXGBE_PHY_TYPE_LOW_1000BASE_T  ||
1887 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_1000BASE_SX ||
1888 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_1000BASE_LX ||
1889 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_1000BASE_KX ||
1890 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_1G_SGMII    ||
1891 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_1G_USXGMII)
1892 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
1893 	if (phy_type_low  & IXGBE_PHY_TYPE_LOW_10GBASE_T       ||
1894 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_10G_SFI_DA      ||
1895 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_10GBASE_SR      ||
1896 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_10GBASE_LR      ||
1897 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_10GBASE_KR_CR1  ||
1898 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_10G_SFI_AOC_ACC ||
1899 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_10G_SFI_C2C     ||
1900 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_10G_USXGMII)
1901 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
1902 
1903 	/* 2.5 and 5 Gbps link speeds must be excluded from the
1904 	 * auto-negotiation set used during driver initialization due to
1905 	 * compatibility issues with certain switches. Those issues do not
1906 	 * exist in case of E610 2.5G SKU device (0x57b1).
1907 	 */
1908 	if (!hw->phy.autoneg_advertised &&
1909 	    hw->device_id != IXGBE_DEV_ID_E610_2_5G_T)
1910 		hw->phy.autoneg_advertised = hw->phy.speeds_supported;
1911 
1912 	if (phy_type_low  & IXGBE_PHY_TYPE_LOW_2500BASE_T   ||
1913 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_2500BASE_X   ||
1914 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_2500BASE_KX  ||
1915 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_2500M_SGMII ||
1916 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_2500M_USXGMII)
1917 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
1918 
1919 	if (!hw->phy.autoneg_advertised &&
1920 	    hw->device_id == IXGBE_DEV_ID_E610_2_5G_T)
1921 		hw->phy.autoneg_advertised = hw->phy.speeds_supported;
1922 
1923 	if (phy_type_low  & IXGBE_PHY_TYPE_LOW_5GBASE_T  ||
1924 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_5GBASE_KR ||
1925 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_5G_USXGMII)
1926 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
1927 
1928 	/* Set PHY ID */
1929 	memcpy(&hw->phy.id, pcaps.phy_id_oui, sizeof(u32));
1930 
1931 	hw->phy.eee_speeds_supported = IXGBE_LINK_SPEED_10_FULL |
1932 				       IXGBE_LINK_SPEED_100_FULL |
1933 				       IXGBE_LINK_SPEED_1GB_FULL;
1934 	hw->phy.eee_speeds_advertised = hw->phy.eee_speeds_supported;
1935 
1936 	return 0;
1937 }
1938 
1939 /**
1940  * ixgbe_identify_module_e610 - Identify SFP module type
1941  * @hw: pointer to hardware structure
1942  *
1943  * Identify the SFP module type.
1944  *
1945  * Return: the exit code of the operation.
1946  */
1947 int ixgbe_identify_module_e610(struct ixgbe_hw *hw)
1948 {
1949 	bool media_available;
1950 	u8 module_type;
1951 	int err;
1952 
1953 	err = ixgbe_update_link_info(hw);
1954 	if (err)
1955 		return err;
1956 
1957 	media_available =
1958 		(hw->link.link_info.link_info & IXGBE_ACI_MEDIA_AVAILABLE);
1959 
1960 	if (media_available) {
1961 		hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1962 
1963 		/* Get module type from hw context updated by
1964 		 * ixgbe_update_link_info()
1965 		 */
1966 		module_type = hw->link.link_info.module_type[IXGBE_ACI_MOD_TYPE_IDENT];
1967 
1968 		if ((module_type & IXGBE_ACI_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE) ||
1969 		    (module_type & IXGBE_ACI_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE)) {
1970 			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1971 		} else if (module_type & IXGBE_ACI_MOD_TYPE_BYTE1_10G_BASE_SR) {
1972 			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1973 		} else if ((module_type & IXGBE_ACI_MOD_TYPE_BYTE1_10G_BASE_LR) ||
1974 			   (module_type & IXGBE_ACI_MOD_TYPE_BYTE1_10G_BASE_LRM)) {
1975 			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1976 		}
1977 	} else {
1978 		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1979 		return -ENOENT;
1980 	}
1981 
1982 	return 0;
1983 }
1984 
1985 /**
1986  * ixgbe_setup_phy_link_e610 - Sets up firmware-controlled PHYs
1987  * @hw: pointer to hardware structure
1988  *
1989  * Set the parameters for the firmware-controlled PHYs.
1990  *
1991  * Return: the exit code of the operation.
1992  */
1993 int ixgbe_setup_phy_link_e610(struct ixgbe_hw *hw)
1994 {
1995 	struct ixgbe_aci_cmd_get_phy_caps_data pcaps;
1996 	struct ixgbe_aci_cmd_set_phy_cfg_data pcfg;
1997 	u8 rmode = IXGBE_ACI_REPORT_TOPO_CAP_MEDIA;
1998 	u64 sup_phy_type_low, sup_phy_type_high;
1999 	u64 phy_type_low = 0, phy_type_high = 0;
2000 	int err;
2001 
2002 	err = ixgbe_aci_get_link_info(hw, false, NULL);
2003 	if (err)
2004 		return err;
2005 
2006 	/* If media is not available get default config. */
2007 	if (!(hw->link.link_info.link_info & IXGBE_ACI_MEDIA_AVAILABLE))
2008 		rmode = IXGBE_ACI_REPORT_DFLT_CFG;
2009 
2010 	err = ixgbe_aci_get_phy_caps(hw, false, rmode, &pcaps);
2011 	if (err)
2012 		return err;
2013 
2014 	sup_phy_type_low = le64_to_cpu(pcaps.phy_type_low);
2015 	sup_phy_type_high = le64_to_cpu(pcaps.phy_type_high);
2016 
2017 	/* Get Active configuration to avoid unintended changes. */
2018 	err = ixgbe_aci_get_phy_caps(hw, false, IXGBE_ACI_REPORT_ACTIVE_CFG,
2019 				     &pcaps);
2020 	if (err)
2021 		return err;
2022 
2023 	ixgbe_copy_phy_caps_to_cfg(&pcaps, &pcfg);
2024 
2025 	if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10_FULL) {
2026 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_10BASE_T;
2027 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_10M_SGMII;
2028 	}
2029 	if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) {
2030 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_100BASE_TX;
2031 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_100M_SGMII;
2032 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_100M_USXGMII;
2033 	}
2034 	if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) {
2035 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_1000BASE_T;
2036 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_1000BASE_SX;
2037 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_1000BASE_LX;
2038 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_1000BASE_KX;
2039 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_1G_SGMII;
2040 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_1G_USXGMII;
2041 	}
2042 	if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_2_5GB_FULL) {
2043 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_2500BASE_T;
2044 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_2500BASE_X;
2045 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_2500BASE_KX;
2046 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_2500M_SGMII;
2047 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_2500M_USXGMII;
2048 	}
2049 	if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) {
2050 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_5GBASE_T;
2051 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_5GBASE_KR;
2052 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_5G_USXGMII;
2053 	}
2054 	if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) {
2055 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10GBASE_T;
2056 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10G_SFI_DA;
2057 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10GBASE_SR;
2058 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10GBASE_LR;
2059 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10GBASE_KR_CR1;
2060 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10G_SFI_AOC_ACC;
2061 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10G_SFI_C2C;
2062 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_10G_USXGMII;
2063 	}
2064 
2065 	/* Mask the set values to avoid requesting unsupported link types. */
2066 	phy_type_low &= sup_phy_type_low;
2067 	pcfg.phy_type_low = cpu_to_le64(phy_type_low);
2068 	phy_type_high &= sup_phy_type_high;
2069 	pcfg.phy_type_high = cpu_to_le64(phy_type_high);
2070 
2071 	if (pcfg.phy_type_high != pcaps.phy_type_high ||
2072 	    pcfg.phy_type_low != pcaps.phy_type_low ||
2073 	    pcfg.caps != pcaps.caps) {
2074 		pcfg.caps |= IXGBE_ACI_PHY_ENA_LINK;
2075 		pcfg.caps |= IXGBE_ACI_PHY_ENA_AUTO_LINK_UPDT;
2076 
2077 		err = ixgbe_aci_set_phy_cfg(hw, &pcfg);
2078 		if (err)
2079 			return err;
2080 	}
2081 
2082 	return 0;
2083 }
2084 
2085 /**
2086  * ixgbe_set_phy_power_e610 - Control power for copper PHY
2087  * @hw: pointer to hardware structure
2088  * @on: true for on, false for off
2089  *
2090  * Set the power on/off of the PHY
2091  * by getting its capabilities and setting the appropriate
2092  * configuration parameters.
2093  *
2094  * Return: the exit code of the operation.
2095  */
2096 int ixgbe_set_phy_power_e610(struct ixgbe_hw *hw, bool on)
2097 {
2098 	struct ixgbe_aci_cmd_get_phy_caps_data phy_caps = {};
2099 	struct ixgbe_aci_cmd_set_phy_cfg_data phy_cfg = {};
2100 	int err;
2101 
2102 	err = ixgbe_aci_get_phy_caps(hw, false,
2103 				     IXGBE_ACI_REPORT_ACTIVE_CFG,
2104 				     &phy_caps);
2105 	if (err)
2106 		return err;
2107 
2108 	ixgbe_copy_phy_caps_to_cfg(&phy_caps, &phy_cfg);
2109 
2110 	if (on)
2111 		phy_cfg.caps &= ~IXGBE_ACI_PHY_ENA_LOW_POWER;
2112 	else
2113 		phy_cfg.caps |= IXGBE_ACI_PHY_ENA_LOW_POWER;
2114 
2115 	/* PHY is already in requested power mode. */
2116 	if (phy_caps.caps == phy_cfg.caps)
2117 		return 0;
2118 
2119 	phy_cfg.caps |= IXGBE_ACI_PHY_ENA_LINK;
2120 	phy_cfg.caps |= IXGBE_ACI_PHY_ENA_AUTO_LINK_UPDT;
2121 
2122 	return ixgbe_aci_set_phy_cfg(hw, &phy_cfg);
2123 }
2124 
2125 /**
2126  * ixgbe_enter_lplu_e610 - Transition to low power states
2127  * @hw: pointer to hardware structure
2128  *
2129  * Configures Low Power Link Up on transition to low power states
2130  * (from D0 to non-D0). Link is required to enter LPLU so avoid resetting the
2131  * X557 PHY immediately prior to entering LPLU.
2132  *
2133  * Return: the exit code of the operation.
2134  */
2135 int ixgbe_enter_lplu_e610(struct ixgbe_hw *hw)
2136 {
2137 	struct ixgbe_aci_cmd_get_phy_caps_data phy_caps = {};
2138 	struct ixgbe_aci_cmd_set_phy_cfg_data phy_cfg = {};
2139 	int err;
2140 
2141 	err = ixgbe_aci_get_phy_caps(hw, false,
2142 				     IXGBE_ACI_REPORT_ACTIVE_CFG,
2143 				     &phy_caps);
2144 	if (err)
2145 		return err;
2146 
2147 	ixgbe_copy_phy_caps_to_cfg(&phy_caps, &phy_cfg);
2148 
2149 	phy_cfg.low_power_ctrl_an |= IXGBE_ACI_PHY_EN_D3COLD_LOW_POWER_AUTONEG;
2150 
2151 	return ixgbe_aci_set_phy_cfg(hw, &phy_cfg);
2152 }
2153 
2154 /**
2155  * ixgbe_init_eeprom_params_e610 - Initialize EEPROM params
2156  * @hw: pointer to hardware structure
2157  *
2158  * Initialize the EEPROM parameters ixgbe_eeprom_info within the ixgbe_hw
2159  * struct in order to set up EEPROM access.
2160  *
2161  * Return: the operation exit code.
2162  */
2163 int ixgbe_init_eeprom_params_e610(struct ixgbe_hw *hw)
2164 {
2165 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
2166 	u32 gens_stat;
2167 	u8 sr_size;
2168 
2169 	if (eeprom->type != ixgbe_eeprom_uninitialized)
2170 		return 0;
2171 
2172 	eeprom->type = ixgbe_flash;
2173 
2174 	gens_stat = IXGBE_READ_REG(hw, GLNVM_GENS);
2175 	sr_size = FIELD_GET(GLNVM_GENS_SR_SIZE_M, gens_stat);
2176 
2177 	/* Switching to words (sr_size contains power of 2). */
2178 	eeprom->word_size = BIT(sr_size) * IXGBE_SR_WORDS_IN_1KB;
2179 
2180 	hw_dbg(hw, "Eeprom params: type = %d, size = %d\n", eeprom->type,
2181 	       eeprom->word_size);
2182 
2183 	return 0;
2184 }
2185 
2186 /**
2187  * ixgbe_aci_get_netlist_node - get a node handle
2188  * @hw: pointer to the hw struct
2189  * @cmd: get_link_topo AQ structure
2190  * @node_part_number: output node part number if node found
2191  * @node_handle: output node handle parameter if node found
2192  *
2193  * Get the netlist node and assigns it to
2194  * the provided handle using ACI command (0x06E0).
2195  *
2196  * Return: the exit code of the operation.
2197  */
2198 int ixgbe_aci_get_netlist_node(struct ixgbe_hw *hw,
2199 			       struct ixgbe_aci_cmd_get_link_topo *cmd,
2200 			       u8 *node_part_number, u16 *node_handle)
2201 {
2202 	struct ixgbe_aci_desc desc;
2203 
2204 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_link_topo);
2205 	desc.params.get_link_topo = *cmd;
2206 
2207 	if (ixgbe_aci_send_cmd(hw, &desc, NULL, 0))
2208 		return -EOPNOTSUPP;
2209 
2210 	if (node_handle)
2211 		*node_handle =
2212 			le16_to_cpu(desc.params.get_link_topo.addr.handle);
2213 	if (node_part_number)
2214 		*node_part_number = desc.params.get_link_topo.node_part_num;
2215 
2216 	return 0;
2217 }
2218 
2219 /**
2220  * ixgbe_acquire_nvm - Generic request for acquiring the NVM ownership
2221  * @hw: pointer to the HW structure
2222  * @access: NVM access type (read or write)
2223  *
2224  * Request NVM ownership.
2225  *
2226  * Return: the exit code of the operation.
2227  */
2228 int ixgbe_acquire_nvm(struct ixgbe_hw *hw,
2229 		      enum ixgbe_aci_res_access_type access)
2230 {
2231 	u32 fla;
2232 
2233 	/* Skip if we are in blank NVM programming mode */
2234 	fla = IXGBE_READ_REG(hw, IXGBE_GLNVM_FLA);
2235 	if ((fla & IXGBE_GLNVM_FLA_LOCKED_M) == 0)
2236 		return 0;
2237 
2238 	return ixgbe_acquire_res(hw, IXGBE_NVM_RES_ID, access,
2239 				 IXGBE_NVM_TIMEOUT);
2240 }
2241 
2242 /**
2243  * ixgbe_release_nvm - Generic request for releasing the NVM ownership
2244  * @hw: pointer to the HW structure
2245  *
2246  * Release NVM ownership.
2247  */
2248 void ixgbe_release_nvm(struct ixgbe_hw *hw)
2249 {
2250 	u32 fla;
2251 
2252 	/* Skip if we are in blank NVM programming mode */
2253 	fla = IXGBE_READ_REG(hw, IXGBE_GLNVM_FLA);
2254 	if ((fla & IXGBE_GLNVM_FLA_LOCKED_M) == 0)
2255 		return;
2256 
2257 	ixgbe_release_res(hw, IXGBE_NVM_RES_ID);
2258 }
2259 
2260 /**
2261  * ixgbe_aci_read_nvm - read NVM
2262  * @hw: pointer to the HW struct
2263  * @module_typeid: module pointer location in words from the NVM beginning
2264  * @offset: byte offset from the module beginning
2265  * @length: length of the section to be read (in bytes from the offset)
2266  * @data: command buffer (size [bytes] = length)
2267  * @last_command: tells if this is the last command in a series
2268  * @read_shadow_ram: tell if this is a shadow RAM read
2269  *
2270  * Read the NVM using ACI command (0x0701).
2271  *
2272  * Return: the exit code of the operation.
2273  */
2274 int ixgbe_aci_read_nvm(struct ixgbe_hw *hw, u16 module_typeid, u32 offset,
2275 		       u16 length, void *data, bool last_command,
2276 		       bool read_shadow_ram)
2277 {
2278 	struct ixgbe_aci_cmd_nvm *cmd;
2279 	struct ixgbe_aci_desc desc;
2280 
2281 	if (offset > IXGBE_ACI_NVM_MAX_OFFSET)
2282 		return -EINVAL;
2283 
2284 	cmd = &desc.params.nvm;
2285 
2286 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_read);
2287 
2288 	if (!read_shadow_ram && module_typeid == IXGBE_ACI_NVM_START_POINT)
2289 		cmd->cmd_flags |= IXGBE_ACI_NVM_FLASH_ONLY;
2290 
2291 	/* If this is the last command in a series, set the proper flag. */
2292 	if (last_command)
2293 		cmd->cmd_flags |= IXGBE_ACI_NVM_LAST_CMD;
2294 	cmd->module_typeid = cpu_to_le16(module_typeid);
2295 	cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
2296 	cmd->offset_high = (offset >> 16) & 0xFF;
2297 	cmd->length = cpu_to_le16(length);
2298 
2299 	return ixgbe_aci_send_cmd(hw, &desc, data, length);
2300 }
2301 
2302 /**
2303  * ixgbe_aci_erase_nvm - erase NVM sector
2304  * @hw: pointer to the HW struct
2305  * @module_typeid: module pointer location in words from the NVM beginning
2306  *
2307  * Erase the NVM sector using the ACI command (0x0702).
2308  *
2309  * Return: the exit code of the operation.
2310  */
2311 int ixgbe_aci_erase_nvm(struct ixgbe_hw *hw, u16 module_typeid)
2312 {
2313 	struct ixgbe_aci_cmd_nvm *cmd;
2314 	struct ixgbe_aci_desc desc;
2315 	__le16 len;
2316 	int err;
2317 
2318 	/* Read a length value from SR, so module_typeid is equal to 0,
2319 	 * calculate offset where module size is placed from bytes to words
2320 	 * set last command and read from SR values to true.
2321 	 */
2322 	err = ixgbe_aci_read_nvm(hw, 0, 2 * module_typeid + 2, 2, &len, true,
2323 				 true);
2324 	if (err)
2325 		return err;
2326 
2327 	cmd = &desc.params.nvm;
2328 
2329 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_erase);
2330 
2331 	cmd->module_typeid = cpu_to_le16(module_typeid);
2332 	cmd->length = len;
2333 	cmd->offset_low = 0;
2334 	cmd->offset_high = 0;
2335 
2336 	return ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
2337 }
2338 
2339 /**
2340  * ixgbe_aci_update_nvm - update NVM
2341  * @hw: pointer to the HW struct
2342  * @module_typeid: module pointer location in words from the NVM beginning
2343  * @offset: byte offset from the module beginning
2344  * @length: length of the section to be written (in bytes from the offset)
2345  * @data: command buffer (size [bytes] = length)
2346  * @last_command: tells if this is the last command in a series
2347  * @command_flags: command parameters
2348  *
2349  * Update the NVM using the ACI command (0x0703).
2350  *
2351  * Return: the exit code of the operation.
2352  */
2353 int ixgbe_aci_update_nvm(struct ixgbe_hw *hw, u16 module_typeid,
2354 			 u32 offset, u16 length, void *data,
2355 			 bool last_command, u8 command_flags)
2356 {
2357 	struct ixgbe_aci_cmd_nvm *cmd;
2358 	struct ixgbe_aci_desc desc;
2359 
2360 	cmd = &desc.params.nvm;
2361 
2362 	/* In offset the highest byte must be zeroed. */
2363 	if (offset & 0xFF000000)
2364 		return -EINVAL;
2365 
2366 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_write);
2367 
2368 	cmd->cmd_flags |= command_flags;
2369 
2370 	/* If this is the last command in a series, set the proper flag. */
2371 	if (last_command)
2372 		cmd->cmd_flags |= IXGBE_ACI_NVM_LAST_CMD;
2373 	cmd->module_typeid = cpu_to_le16(module_typeid);
2374 	cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
2375 	cmd->offset_high = FIELD_GET(IXGBE_ACI_NVM_OFFSET_HI_U_MASK, offset);
2376 	cmd->length = cpu_to_le16(length);
2377 
2378 	desc.flags |= cpu_to_le16(IXGBE_ACI_FLAG_RD);
2379 
2380 	return ixgbe_aci_send_cmd(hw, &desc, data, length);
2381 }
2382 
2383 /**
2384  * ixgbe_nvm_write_activate - NVM activate write
2385  * @hw: pointer to the HW struct
2386  * @cmd_flags: flags for write activate command
2387  * @response_flags: response indicators from firmware
2388  *
2389  * Update the control word with the required banks' validity bits
2390  * and dumps the Shadow RAM to flash using ACI command (0x0707).
2391  *
2392  * cmd_flags controls which banks to activate, the preservation level to use
2393  * when activating the NVM bank, and whether an EMP reset is required for
2394  * activation.
2395  *
2396  * Note that the 16bit cmd_flags value is split between two separate 1 byte
2397  * flag values in the descriptor.
2398  *
2399  * On successful return of the firmware command, the response_flags variable
2400  * is updated with the flags reported by firmware indicating certain status,
2401  * such as whether EMP reset is enabled.
2402  *
2403  * Return: the exit code of the operation.
2404  */
2405 int ixgbe_nvm_write_activate(struct ixgbe_hw *hw, u16 cmd_flags,
2406 			     u8 *response_flags)
2407 {
2408 	struct ixgbe_aci_cmd_nvm *cmd;
2409 	struct ixgbe_aci_desc desc;
2410 	s32 err;
2411 
2412 	cmd = &desc.params.nvm;
2413 	ixgbe_fill_dflt_direct_cmd_desc(&desc,
2414 					ixgbe_aci_opc_nvm_write_activate);
2415 
2416 	cmd->cmd_flags = (u8)(cmd_flags & 0xFF);
2417 	cmd->offset_high = (u8)FIELD_GET(IXGBE_ACI_NVM_OFFSET_HI_A_MASK,
2418 					 cmd_flags);
2419 
2420 	err = ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
2421 	if (!err && response_flags)
2422 		*response_flags = cmd->cmd_flags;
2423 
2424 	return err;
2425 }
2426 
2427 /**
2428  * ixgbe_nvm_validate_checksum - validate checksum
2429  * @hw: pointer to the HW struct
2430  *
2431  * Verify NVM PFA checksum validity using ACI command (0x0706).
2432  * If the checksum verification failed, IXGBE_ERR_NVM_CHECKSUM is returned.
2433  * The function acquires and then releases the NVM ownership.
2434  *
2435  * Return: the exit code of the operation.
2436  */
2437 int ixgbe_nvm_validate_checksum(struct ixgbe_hw *hw)
2438 {
2439 	struct ixgbe_aci_cmd_nvm_checksum *cmd;
2440 	struct ixgbe_aci_desc desc;
2441 	int err;
2442 
2443 	err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ);
2444 	if (err)
2445 		return err;
2446 
2447 	cmd = &desc.params.nvm_checksum;
2448 
2449 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_checksum);
2450 	cmd->flags = IXGBE_ACI_NVM_CHECKSUM_VERIFY;
2451 
2452 	err = ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
2453 
2454 	ixgbe_release_nvm(hw);
2455 
2456 	if (!err && cmd->checksum !=
2457 		cpu_to_le16(IXGBE_ACI_NVM_CHECKSUM_CORRECT)) {
2458 		struct ixgbe_adapter *adapter = container_of(hw, struct ixgbe_adapter,
2459 							     hw);
2460 
2461 		err = -EIO;
2462 		netdev_err(adapter->netdev, "Invalid Shadow Ram checksum");
2463 	}
2464 
2465 	return err;
2466 }
2467 
2468 /**
2469  * ixgbe_discover_flash_size - Discover the available flash size
2470  * @hw: pointer to the HW struct
2471  *
2472  * The device flash could be up to 16MB in size. However, it is possible that
2473  * the actual size is smaller. Use bisection to determine the accessible size
2474  * of flash memory.
2475  *
2476  * Return: the exit code of the operation.
2477  */
2478 static int ixgbe_discover_flash_size(struct ixgbe_hw *hw)
2479 {
2480 	u32 min_size = 0, max_size = IXGBE_ACI_NVM_MAX_OFFSET + 1;
2481 	int err;
2482 
2483 	err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ);
2484 	if (err)
2485 		return err;
2486 
2487 	while ((max_size - min_size) > 1) {
2488 		u32 offset = (max_size + min_size) / 2;
2489 		u32 len = 1;
2490 		u8 data;
2491 
2492 		err = ixgbe_read_flat_nvm(hw, offset, &len, &data, false);
2493 		if (err == -EIO &&
2494 		    hw->aci.last_status == IXGBE_ACI_RC_EINVAL) {
2495 			err = 0;
2496 			max_size = offset;
2497 		} else if (!err) {
2498 			min_size = offset;
2499 		} else {
2500 			/* an unexpected error occurred */
2501 			goto err_read_flat_nvm;
2502 		}
2503 	}
2504 
2505 	hw->flash.flash_size = max_size;
2506 
2507 err_read_flat_nvm:
2508 	ixgbe_release_nvm(hw);
2509 
2510 	return err;
2511 }
2512 
2513 /**
2514  * ixgbe_read_sr_base_address - Read the value of a Shadow RAM pointer word
2515  * @hw: pointer to the HW structure
2516  * @offset: the word offset of the Shadow RAM word to read
2517  * @pointer: pointer value read from Shadow RAM
2518  *
2519  * Read the given Shadow RAM word, and convert it to a pointer value specified
2520  * in bytes. This function assumes the specified offset is a valid pointer
2521  * word.
2522  *
2523  * Each pointer word specifies whether it is stored in word size or 4KB
2524  * sector size by using the highest bit. The reported pointer value will be in
2525  * bytes, intended for flat NVM reads.
2526  *
2527  * Return: the exit code of the operation.
2528  */
2529 static int ixgbe_read_sr_base_address(struct ixgbe_hw *hw, u16 offset,
2530 				      u32 *pointer)
2531 {
2532 	u16 value;
2533 	int err;
2534 
2535 	err = ixgbe_read_ee_aci_e610(hw, offset, &value);
2536 	if (err)
2537 		return err;
2538 
2539 	/* Determine if the pointer is in 4KB or word units */
2540 	if (value & IXGBE_SR_NVM_PTR_4KB_UNITS)
2541 		*pointer = (value & ~IXGBE_SR_NVM_PTR_4KB_UNITS) * SZ_4K;
2542 	else
2543 		*pointer = value * sizeof(u16);
2544 
2545 	return 0;
2546 }
2547 
2548 /**
2549  * ixgbe_read_sr_area_size - Read an area size from a Shadow RAM word
2550  * @hw: pointer to the HW structure
2551  * @offset: the word offset of the Shadow RAM to read
2552  * @size: size value read from the Shadow RAM
2553  *
2554  * Read the given Shadow RAM word, and convert it to an area size value
2555  * specified in bytes. This function assumes the specified offset is a valid
2556  * area size word.
2557  *
2558  * Each area size word is specified in 4KB sector units. This function reports
2559  * the size in bytes, intended for flat NVM reads.
2560  *
2561  * Return: the exit code of the operation.
2562  */
2563 static int ixgbe_read_sr_area_size(struct ixgbe_hw *hw, u16 offset, u32 *size)
2564 {
2565 	u16 value;
2566 	int err;
2567 
2568 	err = ixgbe_read_ee_aci_e610(hw, offset, &value);
2569 	if (err)
2570 		return err;
2571 
2572 	/* Area sizes are always specified in 4KB units */
2573 	*size = value * SZ_4K;
2574 
2575 	return 0;
2576 }
2577 
2578 /**
2579  * ixgbe_determine_active_flash_banks - Discover active bank for each module
2580  * @hw: pointer to the HW struct
2581  *
2582  * Read the Shadow RAM control word and determine which banks are active for
2583  * the NVM, OROM, and Netlist modules. Also read and calculate the associated
2584  * pointer and size. These values are then cached into the ixgbe_flash_info
2585  * structure for later use in order to calculate the correct offset to read
2586  * from the active module.
2587  *
2588  * Return: the exit code of the operation.
2589  */
2590 static int ixgbe_determine_active_flash_banks(struct ixgbe_hw *hw)
2591 {
2592 	struct ixgbe_bank_info *banks = &hw->flash.banks;
2593 	u16 ctrl_word;
2594 	int err;
2595 
2596 	err = ixgbe_read_ee_aci_e610(hw, IXGBE_E610_SR_NVM_CTRL_WORD,
2597 				     &ctrl_word);
2598 	if (err)
2599 		return err;
2600 
2601 	if (FIELD_GET(IXGBE_SR_CTRL_WORD_1_M, ctrl_word) !=
2602 	    IXGBE_SR_CTRL_WORD_VALID)
2603 		return -ENODATA;
2604 
2605 	if (!(ctrl_word & IXGBE_SR_CTRL_WORD_NVM_BANK))
2606 		banks->nvm_bank = IXGBE_1ST_FLASH_BANK;
2607 	else
2608 		banks->nvm_bank = IXGBE_2ND_FLASH_BANK;
2609 
2610 	if (!(ctrl_word & IXGBE_SR_CTRL_WORD_OROM_BANK))
2611 		banks->orom_bank = IXGBE_1ST_FLASH_BANK;
2612 	else
2613 		banks->orom_bank = IXGBE_2ND_FLASH_BANK;
2614 
2615 	if (!(ctrl_word & IXGBE_SR_CTRL_WORD_NETLIST_BANK))
2616 		banks->netlist_bank = IXGBE_1ST_FLASH_BANK;
2617 	else
2618 		banks->netlist_bank = IXGBE_2ND_FLASH_BANK;
2619 
2620 	err = ixgbe_read_sr_base_address(hw, IXGBE_E610_SR_1ST_NVM_BANK_PTR,
2621 					 &banks->nvm_ptr);
2622 	if (err)
2623 		return err;
2624 
2625 	err = ixgbe_read_sr_area_size(hw, IXGBE_E610_SR_NVM_BANK_SIZE,
2626 				      &banks->nvm_size);
2627 	if (err)
2628 		return err;
2629 
2630 	err = ixgbe_read_sr_base_address(hw, IXGBE_E610_SR_1ST_OROM_BANK_PTR,
2631 					 &banks->orom_ptr);
2632 	if (err)
2633 		return err;
2634 
2635 	err = ixgbe_read_sr_area_size(hw, IXGBE_E610_SR_OROM_BANK_SIZE,
2636 				      &banks->orom_size);
2637 	if (err)
2638 		return err;
2639 
2640 	err = ixgbe_read_sr_base_address(hw, IXGBE_E610_SR_NETLIST_BANK_PTR,
2641 					 &banks->netlist_ptr);
2642 	if (err)
2643 		return err;
2644 
2645 	err = ixgbe_read_sr_area_size(hw, IXGBE_E610_SR_NETLIST_BANK_SIZE,
2646 				      &banks->netlist_size);
2647 
2648 	return err;
2649 }
2650 
2651 /**
2652  * ixgbe_get_flash_bank_offset - Get offset into requested flash bank
2653  * @hw: pointer to the HW structure
2654  * @bank: whether to read from the active or inactive flash bank
2655  * @module: the module to read from
2656  *
2657  * Based on the module, lookup the module offset from the beginning of the
2658  * flash.
2659  *
2660  * Return: the flash offset. Note that a value of zero is invalid and must be
2661  * treated as an error.
2662  */
2663 static int ixgbe_get_flash_bank_offset(struct ixgbe_hw *hw,
2664 				       enum ixgbe_bank_select bank,
2665 				       u16 module)
2666 {
2667 	struct ixgbe_bank_info *banks = &hw->flash.banks;
2668 	enum ixgbe_flash_bank active_bank;
2669 	bool second_bank_active;
2670 	u32 offset, size;
2671 
2672 	switch (module) {
2673 	case IXGBE_E610_SR_1ST_NVM_BANK_PTR:
2674 		offset = banks->nvm_ptr;
2675 		size = banks->nvm_size;
2676 		active_bank = banks->nvm_bank;
2677 		break;
2678 	case IXGBE_E610_SR_1ST_OROM_BANK_PTR:
2679 		offset = banks->orom_ptr;
2680 		size = banks->orom_size;
2681 		active_bank = banks->orom_bank;
2682 		break;
2683 	case IXGBE_E610_SR_NETLIST_BANK_PTR:
2684 		offset = banks->netlist_ptr;
2685 		size = banks->netlist_size;
2686 		active_bank = banks->netlist_bank;
2687 		break;
2688 	default:
2689 		return 0;
2690 	}
2691 
2692 	switch (active_bank) {
2693 	case IXGBE_1ST_FLASH_BANK:
2694 		second_bank_active = false;
2695 		break;
2696 	case IXGBE_2ND_FLASH_BANK:
2697 		second_bank_active = true;
2698 		break;
2699 	default:
2700 		return 0;
2701 	}
2702 
2703 	/* The second flash bank is stored immediately following the first
2704 	 * bank. Based on whether the 1st or 2nd bank is active, and whether
2705 	 * we want the active or inactive bank, calculate the desired offset.
2706 	 */
2707 	switch (bank) {
2708 	case IXGBE_ACTIVE_FLASH_BANK:
2709 		return offset + (second_bank_active ? size : 0);
2710 	case IXGBE_INACTIVE_FLASH_BANK:
2711 		return offset + (second_bank_active ? 0 : size);
2712 	}
2713 
2714 	return 0;
2715 }
2716 
2717 /**
2718  * ixgbe_read_flash_module - Read a word from one of the main NVM modules
2719  * @hw: pointer to the HW structure
2720  * @bank: which bank of the module to read
2721  * @module: the module to read
2722  * @offset: the offset into the module in bytes
2723  * @data: storage for the word read from the flash
2724  * @length: bytes of data to read
2725  *
2726  * Read data from the specified flash module. The bank parameter indicates
2727  * whether or not to read from the active bank or the inactive bank of that
2728  * module.
2729  *
2730  * The word will be read using flat NVM access, and relies on the
2731  * hw->flash.banks data being setup by ixgbe_determine_active_flash_banks()
2732  * during initialization.
2733  *
2734  * Return: the exit code of the operation.
2735  */
2736 static int ixgbe_read_flash_module(struct ixgbe_hw *hw,
2737 				   enum ixgbe_bank_select bank,
2738 				   u16 module, u32 offset, u8 *data, u32 length)
2739 {
2740 	u32 start;
2741 	int err;
2742 
2743 	start = ixgbe_get_flash_bank_offset(hw, bank, module);
2744 	if (!start)
2745 		return -EINVAL;
2746 
2747 	err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ);
2748 	if (err)
2749 		return err;
2750 
2751 	err = ixgbe_read_flat_nvm(hw, start + offset, &length, data, false);
2752 
2753 	ixgbe_release_nvm(hw);
2754 
2755 	return err;
2756 }
2757 
2758 /**
2759  * ixgbe_read_nvm_module - Read from the active main NVM module
2760  * @hw: pointer to the HW structure
2761  * @bank: whether to read from active or inactive NVM module
2762  * @offset: offset into the NVM module to read, in words
2763  * @data: storage for returned word value
2764  *
2765  * Read the specified word from the active NVM module. This includes the CSS
2766  * header at the start of the NVM module.
2767  *
2768  * Return: the exit code of the operation.
2769  */
2770 static int ixgbe_read_nvm_module(struct ixgbe_hw *hw,
2771 				 enum ixgbe_bank_select bank,
2772 				 u32 offset, u16 *data)
2773 {
2774 	__le16 data_local;
2775 	int err;
2776 
2777 	err = ixgbe_read_flash_module(hw, bank, IXGBE_E610_SR_1ST_NVM_BANK_PTR,
2778 				      offset * sizeof(data_local),
2779 				      (u8 *)&data_local,
2780 				      sizeof(data_local));
2781 	if (!err)
2782 		*data = le16_to_cpu(data_local);
2783 
2784 	return err;
2785 }
2786 
2787 /**
2788  * ixgbe_read_netlist_module - Read data from the netlist module area
2789  * @hw: pointer to the HW structure
2790  * @bank: whether to read from the active or inactive module
2791  * @offset: offset into the netlist to read from
2792  * @data: storage for returned word value
2793  *
2794  * Read a word from the specified netlist bank.
2795  *
2796  * Return: the exit code of the operation.
2797  */
2798 static int ixgbe_read_netlist_module(struct ixgbe_hw *hw,
2799 				     enum ixgbe_bank_select bank,
2800 				     u32 offset, u16 *data)
2801 {
2802 	__le16 data_local;
2803 	int err;
2804 
2805 	err = ixgbe_read_flash_module(hw, bank, IXGBE_E610_SR_NETLIST_BANK_PTR,
2806 				      offset * sizeof(data_local),
2807 				      (u8 *)&data_local, sizeof(data_local));
2808 	if (!err)
2809 		*data = le16_to_cpu(data_local);
2810 
2811 	return err;
2812 }
2813 
2814 /**
2815  * ixgbe_read_orom_module - Read from the active Option ROM module
2816  * @hw: pointer to the HW structure
2817  * @bank: whether to read from active or inactive OROM module
2818  * @offset: offset into the OROM module to read, in words
2819  * @data: storage for returned word value
2820  *
2821  * Read the specified word from the active Option ROM module of the flash.
2822  * Note that unlike the NVM module, the CSS data is stored at the end of the
2823  * module instead of at the beginning.
2824  *
2825  * Return: the exit code of the operation.
2826  */
2827 static int ixgbe_read_orom_module(struct ixgbe_hw *hw,
2828 				  enum ixgbe_bank_select bank,
2829 				  u32 offset, u16 *data)
2830 {
2831 	__le16 data_local;
2832 	int err;
2833 
2834 	err = ixgbe_read_flash_module(hw, bank, IXGBE_E610_SR_1ST_OROM_BANK_PTR,
2835 				      offset * sizeof(data_local),
2836 				      (u8 *)&data_local, sizeof(data_local));
2837 	if (!err)
2838 		*data = le16_to_cpu(data_local);
2839 
2840 	return err;
2841 }
2842 
2843 /**
2844  * ixgbe_get_nvm_css_hdr_len - Read the CSS header length
2845  * @hw: pointer to the HW struct
2846  * @bank: whether to read from the active or inactive flash bank
2847  * @hdr_len: storage for header length in words
2848  *
2849  * Read the CSS header length from the NVM CSS header and add the
2850  * Authentication header size, and then convert to words.
2851  *
2852  * Return: the exit code of the operation.
2853  */
2854 static int ixgbe_get_nvm_css_hdr_len(struct ixgbe_hw *hw,
2855 				     enum ixgbe_bank_select bank,
2856 				     u32 *hdr_len)
2857 {
2858 	u16 hdr_len_l, hdr_len_h;
2859 	u32 hdr_len_dword;
2860 	int err;
2861 
2862 	err = ixgbe_read_nvm_module(hw, bank, IXGBE_NVM_CSS_HDR_LEN_L,
2863 				    &hdr_len_l);
2864 	if (err)
2865 		return err;
2866 
2867 	err = ixgbe_read_nvm_module(hw, bank, IXGBE_NVM_CSS_HDR_LEN_H,
2868 				    &hdr_len_h);
2869 	if (err)
2870 		return err;
2871 
2872 	/* CSS header length is in DWORD, so convert to words and add
2873 	 * authentication header size.
2874 	 */
2875 	hdr_len_dword = (hdr_len_h << 16) | hdr_len_l;
2876 	*hdr_len = hdr_len_dword * 2 + IXGBE_NVM_AUTH_HEADER_LEN;
2877 
2878 	return 0;
2879 }
2880 
2881 /**
2882  * ixgbe_read_nvm_sr_copy - Read a word from the Shadow RAM copy
2883  * @hw: pointer to the HW structure
2884  * @bank: whether to read from the active or inactive NVM module
2885  * @offset: offset into the Shadow RAM copy to read, in words
2886  * @data: storage for returned word value
2887  *
2888  * Read the specified word from the copy of the Shadow RAM found in the
2889  * specified NVM module.
2890  *
2891  * Return: the exit code of the operation.
2892  */
2893 static int ixgbe_read_nvm_sr_copy(struct ixgbe_hw *hw,
2894 				  enum ixgbe_bank_select bank,
2895 				  u32 offset, u16 *data)
2896 {
2897 	u32 hdr_len;
2898 	int err;
2899 
2900 	err = ixgbe_get_nvm_css_hdr_len(hw, bank, &hdr_len);
2901 	if (err)
2902 		return err;
2903 
2904 	hdr_len = round_up(hdr_len, IXGBE_HDR_LEN_ROUNDUP);
2905 
2906 	return ixgbe_read_nvm_module(hw, bank, hdr_len + offset, data);
2907 }
2908 
2909 /**
2910  * ixgbe_get_nvm_srev - Read the security revision from the NVM CSS header
2911  * @hw: pointer to the HW struct
2912  * @bank: whether to read from the active or inactive flash bank
2913  * @srev: storage for security revision
2914  *
2915  * Read the security revision out of the CSS header of the active NVM module
2916  * bank.
2917  *
2918  * Return: the exit code of the operation.
2919  */
2920 static int ixgbe_get_nvm_srev(struct ixgbe_hw *hw,
2921 			      enum ixgbe_bank_select bank, u32 *srev)
2922 {
2923 	u16 srev_l, srev_h;
2924 	int err;
2925 
2926 	err = ixgbe_read_nvm_module(hw, bank, IXGBE_NVM_CSS_SREV_L, &srev_l);
2927 	if (err)
2928 		return err;
2929 
2930 	err = ixgbe_read_nvm_module(hw, bank, IXGBE_NVM_CSS_SREV_H, &srev_h);
2931 	if (err)
2932 		return err;
2933 
2934 	*srev = (srev_h << 16) | srev_l;
2935 
2936 	return 0;
2937 }
2938 
2939 /**
2940  * ixgbe_get_orom_civd_data - Get the combo version information from Option ROM
2941  * @hw: pointer to the HW struct
2942  * @bank: whether to read from the active or inactive flash module
2943  * @civd: storage for the Option ROM CIVD data.
2944  *
2945  * Searches through the Option ROM flash contents to locate the CIVD data for
2946  * the image.
2947  *
2948  * Return: the exit code of the operation.
2949  */
2950 static int
2951 ixgbe_get_orom_civd_data(struct ixgbe_hw *hw, enum ixgbe_bank_select bank,
2952 			 struct ixgbe_orom_civd_info *civd)
2953 {
2954 	struct ixgbe_orom_civd_info tmp;
2955 	u32 offset;
2956 	int err;
2957 
2958 	/* The CIVD section is located in the Option ROM aligned to 512 bytes.
2959 	 * The first 4 bytes must contain the ASCII characters "$CIV".
2960 	 * A simple modulo 256 sum of all of the bytes of the structure must
2961 	 * equal 0.
2962 	 */
2963 	for (offset = 0; (offset + SZ_512) <= hw->flash.banks.orom_size;
2964 	     offset += SZ_512) {
2965 		u8 sum = 0;
2966 		u32 i;
2967 
2968 		err = ixgbe_read_flash_module(hw, bank,
2969 					      IXGBE_E610_SR_1ST_OROM_BANK_PTR,
2970 					      offset,
2971 					      (u8 *)&tmp, sizeof(tmp));
2972 		if (err)
2973 			return err;
2974 
2975 		/* Skip forward until we find a matching signature */
2976 		if (memcmp(IXGBE_OROM_CIV_SIGNATURE, tmp.signature,
2977 			   sizeof(tmp.signature)))
2978 			continue;
2979 
2980 		/* Verify that the simple checksum is zero */
2981 		for (i = 0; i < sizeof(tmp); i++)
2982 			sum += ((u8 *)&tmp)[i];
2983 
2984 		if (sum)
2985 			return -EDOM;
2986 
2987 		*civd = tmp;
2988 		return 0;
2989 	}
2990 
2991 	return -ENODATA;
2992 }
2993 
2994 /**
2995  * ixgbe_get_orom_srev - Read the security revision from the OROM CSS header
2996  * @hw: pointer to the HW struct
2997  * @bank: whether to read from active or inactive flash module
2998  * @srev: storage for security revision
2999  *
3000  * Read the security revision out of the CSS header of the active OROM module
3001  * bank.
3002  *
3003  * Return: the exit code of the operation.
3004  */
3005 static int ixgbe_get_orom_srev(struct ixgbe_hw *hw,
3006 			       enum ixgbe_bank_select bank,
3007 			       u32 *srev)
3008 {
3009 	u32 orom_size_word = hw->flash.banks.orom_size / 2;
3010 	u32 css_start, hdr_len;
3011 	u16 srev_l, srev_h;
3012 	int err;
3013 
3014 	err = ixgbe_get_nvm_css_hdr_len(hw, bank, &hdr_len);
3015 	if (err)
3016 		return err;
3017 
3018 	if (orom_size_word < hdr_len)
3019 		return -EINVAL;
3020 
3021 	/* Calculate how far into the Option ROM the CSS header starts. Note
3022 	 * that ixgbe_read_orom_module takes a word offset.
3023 	 */
3024 	css_start = orom_size_word - hdr_len;
3025 	err = ixgbe_read_orom_module(hw, bank,
3026 				     css_start + IXGBE_NVM_CSS_SREV_L,
3027 				     &srev_l);
3028 	if (err)
3029 		return err;
3030 
3031 	err = ixgbe_read_orom_module(hw, bank,
3032 				     css_start + IXGBE_NVM_CSS_SREV_H,
3033 				     &srev_h);
3034 	if (err)
3035 		return err;
3036 
3037 	*srev = srev_h << 16 | srev_l;
3038 
3039 	return 0;
3040 }
3041 
3042 /**
3043  * ixgbe_get_orom_ver_info - Read Option ROM version information
3044  * @hw: pointer to the HW struct
3045  * @bank: whether to read from the active or inactive flash module
3046  * @orom: pointer to Option ROM info structure
3047  *
3048  * Read Option ROM version and security revision from the Option ROM flash
3049  * section.
3050  *
3051  * Return: the exit code of the operation.
3052  */
3053 static int ixgbe_get_orom_ver_info(struct ixgbe_hw *hw,
3054 				   enum ixgbe_bank_select bank,
3055 				   struct ixgbe_orom_info *orom)
3056 {
3057 	struct ixgbe_orom_civd_info civd;
3058 	u32 combo_ver;
3059 	int err;
3060 
3061 	err = ixgbe_get_orom_civd_data(hw, bank, &civd);
3062 	if (err)
3063 		return err;
3064 
3065 	combo_ver = le32_to_cpu(civd.combo_ver);
3066 
3067 	orom->major = (u8)FIELD_GET(IXGBE_OROM_VER_MASK, combo_ver);
3068 	orom->patch = (u8)FIELD_GET(IXGBE_OROM_VER_PATCH_MASK, combo_ver);
3069 	orom->build = (u16)FIELD_GET(IXGBE_OROM_VER_BUILD_MASK, combo_ver);
3070 
3071 	return ixgbe_get_orom_srev(hw, bank, &orom->srev);
3072 }
3073 
3074 /**
3075  * ixgbe_get_inactive_orom_ver - Read Option ROM version from the inactive bank
3076  * @hw: pointer to the HW structure
3077  * @orom: storage for Option ROM version information
3078  *
3079  * Read the Option ROM version and security revision data for the inactive
3080  * section of flash. Used to access version data for a pending update that has
3081  * not yet been activated.
3082  *
3083  * Return: the exit code of the operation.
3084  */
3085 int ixgbe_get_inactive_orom_ver(struct ixgbe_hw *hw,
3086 				struct ixgbe_orom_info *orom)
3087 {
3088 	return ixgbe_get_orom_ver_info(hw, IXGBE_INACTIVE_FLASH_BANK, orom);
3089 }
3090 
3091 /**
3092  * ixgbe_get_nvm_ver_info - Read NVM version information
3093  * @hw: pointer to the HW struct
3094  * @bank: whether to read from the active or inactive flash bank
3095  * @nvm: pointer to NVM info structure
3096  *
3097  * Read the NVM EETRACK ID and map version of the main NVM image bank, filling
3098  * in the nvm info structure.
3099  *
3100  * Return: the exit code of the operation.
3101  */
3102 static int ixgbe_get_nvm_ver_info(struct ixgbe_hw *hw,
3103 				  enum ixgbe_bank_select bank,
3104 				  struct ixgbe_nvm_info *nvm)
3105 {
3106 	u16 eetrack_lo, eetrack_hi, ver;
3107 	int err;
3108 
3109 	err = ixgbe_read_nvm_sr_copy(hw, bank,
3110 				     IXGBE_E610_SR_NVM_DEV_STARTER_VER, &ver);
3111 	if (err)
3112 		return err;
3113 
3114 	nvm->major = FIELD_GET(IXGBE_E610_NVM_VER_HI_MASK, ver);
3115 	nvm->minor = FIELD_GET(IXGBE_E610_NVM_VER_LO_MASK, ver);
3116 
3117 	err = ixgbe_read_nvm_sr_copy(hw, bank, IXGBE_E610_SR_NVM_EETRACK_LO,
3118 				     &eetrack_lo);
3119 	if (err)
3120 		return err;
3121 
3122 	err = ixgbe_read_nvm_sr_copy(hw, bank, IXGBE_E610_SR_NVM_EETRACK_HI,
3123 				     &eetrack_hi);
3124 	if (err)
3125 		return err;
3126 
3127 	nvm->eetrack = (eetrack_hi << 16) | eetrack_lo;
3128 
3129 	ixgbe_get_nvm_srev(hw, bank, &nvm->srev);
3130 
3131 	return 0;
3132 }
3133 
3134 /**
3135  * ixgbe_get_inactive_nvm_ver - Read Option ROM version from the inactive bank
3136  * @hw: pointer to the HW structure
3137  * @nvm: storage for Option ROM version information
3138  *
3139  * Read the NVM EETRACK ID, Map version, and security revision of the
3140  * inactive NVM bank. Used to access version data for a pending update that
3141  * has not yet been activated.
3142  *
3143  * Return: the exit code of the operation.
3144  */
3145 int ixgbe_get_inactive_nvm_ver(struct ixgbe_hw *hw, struct ixgbe_nvm_info *nvm)
3146 {
3147 	return ixgbe_get_nvm_ver_info(hw, IXGBE_INACTIVE_FLASH_BANK, nvm);
3148 }
3149 
3150 /**
3151  * ixgbe_get_netlist_info - Read the netlist version information
3152  * @hw: pointer to the HW struct
3153  * @bank: whether to read from the active or inactive flash bank
3154  * @netlist: pointer to netlist version info structure
3155  *
3156  * Get the netlist version information from the requested bank. Reads the Link
3157  * Topology section to find the Netlist ID block and extract the relevant
3158  * information into the netlist version structure.
3159  *
3160  * Return: the exit code of the operation.
3161  */
3162 static int ixgbe_get_netlist_info(struct ixgbe_hw *hw,
3163 				  enum ixgbe_bank_select bank,
3164 				  struct ixgbe_netlist_info *netlist)
3165 {
3166 	u16 module_id, length, node_count, i;
3167 	u16 *id_blk;
3168 	int err;
3169 
3170 	err = ixgbe_read_netlist_module(hw, bank, IXGBE_NETLIST_TYPE_OFFSET,
3171 					&module_id);
3172 	if (err)
3173 		return err;
3174 
3175 	if (module_id != IXGBE_NETLIST_LINK_TOPO_MOD_ID)
3176 		return -EIO;
3177 
3178 	err = ixgbe_read_netlist_module(hw, bank, IXGBE_LINK_TOPO_MODULE_LEN,
3179 					&length);
3180 	if (err)
3181 		return err;
3182 
3183 	/* Sanity check that we have at least enough words to store the
3184 	 * netlist ID block.
3185 	 */
3186 	if (length < IXGBE_NETLIST_ID_BLK_SIZE)
3187 		return -EIO;
3188 
3189 	err = ixgbe_read_netlist_module(hw, bank, IXGBE_LINK_TOPO_NODE_COUNT,
3190 					&node_count);
3191 	if (err)
3192 		return err;
3193 
3194 	node_count &= IXGBE_LINK_TOPO_NODE_COUNT_M;
3195 
3196 	id_blk = kcalloc(IXGBE_NETLIST_ID_BLK_SIZE, sizeof(*id_blk), GFP_KERNEL);
3197 	if (!id_blk)
3198 		return -ENOMEM;
3199 
3200 	/* Read out the entire Netlist ID Block at once. */
3201 	err = ixgbe_read_flash_module(hw, bank, IXGBE_E610_SR_NETLIST_BANK_PTR,
3202 				      IXGBE_NETLIST_ID_BLK_OFFSET(node_count) *
3203 				      sizeof(*id_blk), (u8 *)id_blk,
3204 				      IXGBE_NETLIST_ID_BLK_SIZE *
3205 				      sizeof(*id_blk));
3206 	if (err)
3207 		goto free_id_blk;
3208 
3209 	for (i = 0; i < IXGBE_NETLIST_ID_BLK_SIZE; i++)
3210 		id_blk[i] = le16_to_cpu(((__le16 *)id_blk)[i]);
3211 
3212 	netlist->major = id_blk[IXGBE_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16 |
3213 			 id_blk[IXGBE_NETLIST_ID_BLK_MAJOR_VER_LOW];
3214 	netlist->minor = id_blk[IXGBE_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16 |
3215 			 id_blk[IXGBE_NETLIST_ID_BLK_MINOR_VER_LOW];
3216 	netlist->type = id_blk[IXGBE_NETLIST_ID_BLK_TYPE_HIGH] << 16 |
3217 			id_blk[IXGBE_NETLIST_ID_BLK_TYPE_LOW];
3218 	netlist->rev = id_blk[IXGBE_NETLIST_ID_BLK_REV_HIGH] << 16 |
3219 		       id_blk[IXGBE_NETLIST_ID_BLK_REV_LOW];
3220 	netlist->cust_ver = id_blk[IXGBE_NETLIST_ID_BLK_CUST_VER];
3221 	/* Read the left most 4 bytes of SHA */
3222 	netlist->hash = id_blk[IXGBE_NETLIST_ID_BLK_SHA_HASH_WORD(15)] << 16 |
3223 			id_blk[IXGBE_NETLIST_ID_BLK_SHA_HASH_WORD(14)];
3224 
3225 free_id_blk:
3226 	kfree(id_blk);
3227 	return err;
3228 }
3229 
3230 /**
3231  * ixgbe_get_inactive_netlist_ver - Read netlist version from the inactive bank
3232  * @hw: pointer to the HW struct
3233  * @netlist: pointer to netlist version info structure
3234  *
3235  * Read the netlist version data from the inactive netlist bank. Used to
3236  * extract version data of a pending flash update in order to display the
3237  * version data.
3238  *
3239  * Return: the exit code of the operation.
3240  */
3241 int ixgbe_get_inactive_netlist_ver(struct ixgbe_hw *hw,
3242 				   struct ixgbe_netlist_info *netlist)
3243 {
3244 	return ixgbe_get_netlist_info(hw, IXGBE_INACTIVE_FLASH_BANK, netlist);
3245 }
3246 
3247 /**
3248  * ixgbe_get_flash_data - get flash data
3249  * @hw: pointer to the HW struct
3250  *
3251  * Read and populate flash data such as Shadow RAM size,
3252  * max_timeout and blank_nvm_mode
3253  *
3254  * Return: the exit code of the operation.
3255  */
3256 int ixgbe_get_flash_data(struct ixgbe_hw *hw)
3257 {
3258 	struct ixgbe_flash_info *flash = &hw->flash;
3259 	u32 fla, gens_stat;
3260 	u8 sr_size;
3261 	int err;
3262 
3263 	/* The SR size is stored regardless of the NVM programming mode
3264 	 * as the blank mode may be used in the factory line.
3265 	 */
3266 	gens_stat = IXGBE_READ_REG(hw, GLNVM_GENS);
3267 	sr_size = FIELD_GET(GLNVM_GENS_SR_SIZE_M, gens_stat);
3268 
3269 	/* Switching to words (sr_size contains power of 2) */
3270 	flash->sr_words = BIT(sr_size) * (SZ_1K / sizeof(u16));
3271 
3272 	/* Check if we are in the normal or blank NVM programming mode */
3273 	fla = IXGBE_READ_REG(hw, IXGBE_GLNVM_FLA);
3274 	if (fla & IXGBE_GLNVM_FLA_LOCKED_M) {
3275 		flash->blank_nvm_mode = false;
3276 	} else {
3277 		flash->blank_nvm_mode = true;
3278 		return -EIO;
3279 	}
3280 
3281 	err = ixgbe_discover_flash_size(hw);
3282 	if (err)
3283 		return err;
3284 
3285 	err = ixgbe_determine_active_flash_banks(hw);
3286 	if (err)
3287 		return err;
3288 
3289 	err = ixgbe_get_nvm_ver_info(hw, IXGBE_ACTIVE_FLASH_BANK,
3290 				     &flash->nvm);
3291 	if (err)
3292 		return err;
3293 
3294 	err = ixgbe_get_orom_ver_info(hw, IXGBE_ACTIVE_FLASH_BANK,
3295 				      &flash->orom);
3296 	if (err)
3297 		return err;
3298 
3299 	err = ixgbe_get_netlist_info(hw, IXGBE_ACTIVE_FLASH_BANK,
3300 				     &flash->netlist);
3301 	return err;
3302 }
3303 
3304 /**
3305  * ixgbe_aci_nvm_update_empr - update NVM using EMPR
3306  * @hw: pointer to the HW struct
3307  *
3308  * Force EMP reset using ACI command (0x0709). This command allows SW to
3309  * request an EMPR to activate new FW.
3310  *
3311  * Return: the exit code of the operation.
3312  */
3313 int ixgbe_aci_nvm_update_empr(struct ixgbe_hw *hw)
3314 {
3315 	struct ixgbe_aci_desc desc;
3316 
3317 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_update_empr);
3318 
3319 	return ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
3320 }
3321 
3322 /* ixgbe_nvm_set_pkg_data - NVM set package data
3323  * @hw: pointer to the HW struct
3324  * @del_pkg_data_flag: If is set then the current pkg_data store by FW
3325  *		       is deleted.
3326  *		       If bit is set to 1, then buffer should be size 0.
3327  * @data: pointer to buffer
3328  * @length: length of the buffer
3329  *
3330  * Set package data using ACI command (0x070A).
3331  * This command is equivalent to the reception of
3332  * a PLDM FW Update GetPackageData cmd. This command should be sent
3333  * as part of the NVM update as the first cmd in the flow.
3334  *
3335  * Return: the exit code of the operation.
3336  */
3337 int ixgbe_nvm_set_pkg_data(struct ixgbe_hw *hw, bool del_pkg_data_flag,
3338 			   u8 *data, u16 length)
3339 {
3340 	struct ixgbe_aci_cmd_nvm_pkg_data *cmd;
3341 	struct ixgbe_aci_desc desc;
3342 
3343 	if (length != 0 && !data)
3344 		return -EINVAL;
3345 
3346 	cmd = &desc.params.pkg_data;
3347 
3348 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_pkg_data);
3349 	desc.flags |= cpu_to_le16(IXGBE_ACI_FLAG_RD);
3350 
3351 	if (del_pkg_data_flag)
3352 		cmd->cmd_flags |= IXGBE_ACI_NVM_PKG_DELETE;
3353 
3354 	return ixgbe_aci_send_cmd(hw, &desc, data, length);
3355 }
3356 
3357 /* ixgbe_nvm_pass_component_tbl - NVM pass component table
3358  * @hw: pointer to the HW struct
3359  * @data: pointer to buffer
3360  * @length: length of the buffer
3361  * @transfer_flag: parameter for determining stage of the update
3362  * @comp_response: a pointer to the response from the 0x070B ACI.
3363  * @comp_response_code: a pointer to the response code from the 0x070B ACI.
3364  *
3365  * Pass component table using ACI command (0x070B). This command is equivalent
3366  * to the reception of a PLDM FW Update PassComponentTable cmd.
3367  * This command should be sent once per component. It can be only sent after
3368  * Set Package Data cmd and before actual update. FW will assume these
3369  * commands are going to be sent until the TransferFlag is set to End or
3370  * StartAndEnd.
3371  *
3372  * Return: the exit code of the operation.
3373  */
3374 int ixgbe_nvm_pass_component_tbl(struct ixgbe_hw *hw, u8 *data, u16 length,
3375 				 u8 transfer_flag, u8 *comp_response,
3376 				 u8 *comp_response_code)
3377 {
3378 	struct ixgbe_aci_cmd_nvm_pass_comp_tbl *cmd;
3379 	struct ixgbe_aci_desc desc;
3380 	int err;
3381 
3382 	if (!data || !comp_response || !comp_response_code)
3383 		return -EINVAL;
3384 
3385 	cmd = &desc.params.pass_comp_tbl;
3386 
3387 	ixgbe_fill_dflt_direct_cmd_desc(&desc,
3388 					ixgbe_aci_opc_nvm_pass_component_tbl);
3389 	desc.flags |= cpu_to_le16(IXGBE_ACI_FLAG_RD);
3390 
3391 	cmd->transfer_flag = transfer_flag;
3392 	err = ixgbe_aci_send_cmd(hw, &desc, data, length);
3393 	if (!err) {
3394 		*comp_response = cmd->component_response;
3395 		*comp_response_code = cmd->component_response_code;
3396 	}
3397 
3398 	return err;
3399 }
3400 
3401 /**
3402  * ixgbe_read_sr_word_aci - Reads Shadow RAM via ACI
3403  * @hw: pointer to the HW structure
3404  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
3405  * @data: word read from the Shadow RAM
3406  *
3407  * Reads one 16 bit word from the Shadow RAM using ixgbe_read_flat_nvm.
3408  *
3409  * Return: the exit code of the operation.
3410  */
3411 int ixgbe_read_sr_word_aci(struct ixgbe_hw  *hw, u16 offset, u16 *data)
3412 {
3413 	u32 bytes = sizeof(u16);
3414 	u16 data_local;
3415 	int err;
3416 
3417 	err = ixgbe_read_flat_nvm(hw, offset * sizeof(u16), &bytes,
3418 				  (u8 *)&data_local, true);
3419 	if (err)
3420 		return err;
3421 
3422 	*data = data_local;
3423 	return 0;
3424 }
3425 
3426 /**
3427  * ixgbe_read_flat_nvm - Read portion of NVM by flat offset
3428  * @hw: pointer to the HW struct
3429  * @offset: offset from beginning of NVM
3430  * @length: (in) number of bytes to read; (out) number of bytes actually read
3431  * @data: buffer to return data in (sized to fit the specified length)
3432  * @read_shadow_ram: if true, read from shadow RAM instead of NVM
3433  *
3434  * Reads a portion of the NVM, as a flat memory space. This function correctly
3435  * breaks read requests across Shadow RAM sectors, prevents Shadow RAM size
3436  * from being exceeded in case of Shadow RAM read requests and ensures that no
3437  * single read request exceeds the maximum 4KB read for a single admin command.
3438  *
3439  * Returns an error code on failure. Note that the data pointer may be
3440  * partially updated if some reads succeed before a failure.
3441  *
3442  * Return: the exit code of the operation.
3443  */
3444 int ixgbe_read_flat_nvm(struct ixgbe_hw  *hw, u32 offset, u32 *length,
3445 			u8 *data, bool read_shadow_ram)
3446 {
3447 	u32 inlen = *length;
3448 	u32 bytes_read = 0;
3449 	bool last_cmd;
3450 	int err;
3451 
3452 	/* Verify the length of the read if this is for the Shadow RAM */
3453 	if (read_shadow_ram && ((offset + inlen) >
3454 				(hw->eeprom.word_size * 2u)))
3455 		return -EINVAL;
3456 
3457 	do {
3458 		u32 read_size, sector_offset;
3459 
3460 		/* ixgbe_aci_read_nvm cannot read more than 4KB at a time.
3461 		 * Additionally, a read from the Shadow RAM may not cross over
3462 		 * a sector boundary. Conveniently, the sector size is also 4KB.
3463 		 */
3464 		sector_offset = offset % IXGBE_ACI_MAX_BUFFER_SIZE;
3465 		read_size = min_t(u32,
3466 				  IXGBE_ACI_MAX_BUFFER_SIZE - sector_offset,
3467 				  inlen - bytes_read);
3468 
3469 		last_cmd = !(bytes_read + read_size < inlen);
3470 
3471 		/* ixgbe_aci_read_nvm takes the length as a u16. Our read_size
3472 		 * is calculated using a u32, but the IXGBE_ACI_MAX_BUFFER_SIZE
3473 		 * maximum size guarantees that it will fit within the 2 bytes.
3474 		 */
3475 		err = ixgbe_aci_read_nvm(hw, IXGBE_ACI_NVM_START_POINT,
3476 					 offset, (u16)read_size,
3477 					 data + bytes_read, last_cmd,
3478 					 read_shadow_ram);
3479 		if (err)
3480 			break;
3481 
3482 		bytes_read += read_size;
3483 		offset += read_size;
3484 	} while (!last_cmd);
3485 
3486 	*length = bytes_read;
3487 	return err;
3488 }
3489 
3490 /**
3491  * ixgbe_read_sr_buf_aci - Read Shadow RAM buffer via ACI
3492  * @hw: pointer to the HW structure
3493  * @offset: offset of the Shadow RAM words to read (0x000000 - 0x001FFF)
3494  * @words: (in) number of words to read; (out) number of words actually read
3495  * @data: words read from the Shadow RAM
3496  *
3497  * Read 16 bit words (data buf) from the Shadow RAM. Acquire/release the NVM
3498  * ownership.
3499  *
3500  * Return: the operation exit code.
3501  */
3502 int ixgbe_read_sr_buf_aci(struct ixgbe_hw *hw, u16 offset, u16 *words,
3503 			  u16 *data)
3504 {
3505 	u32 bytes = *words * 2;
3506 	int err;
3507 
3508 	err = ixgbe_read_flat_nvm(hw, offset * 2, &bytes, (u8 *)data, true);
3509 	if (err)
3510 		return err;
3511 
3512 	*words = bytes / 2;
3513 
3514 	for (int i = 0; i < *words; i++)
3515 		data[i] = le16_to_cpu(((__le16 *)data)[i]);
3516 
3517 	return 0;
3518 }
3519 
3520 /**
3521  * ixgbe_read_ee_aci_e610 - Read EEPROM word using the admin command.
3522  * @hw: pointer to hardware structure
3523  * @offset: offset of  word in the EEPROM to read
3524  * @data: word read from the EEPROM
3525  *
3526  * Reads a 16 bit word from the EEPROM using the ACI.
3527  * If the EEPROM params are not initialized, the function
3528  * initialize them before proceeding with reading.
3529  * The function acquires and then releases the NVM ownership.
3530  *
3531  * Return: the exit code of the operation.
3532  */
3533 int ixgbe_read_ee_aci_e610(struct ixgbe_hw *hw, u16 offset, u16 *data)
3534 {
3535 	int err;
3536 
3537 	if (hw->eeprom.type == ixgbe_eeprom_uninitialized) {
3538 		err = hw->eeprom.ops.init_params(hw);
3539 		if (err)
3540 			return err;
3541 	}
3542 
3543 	err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ);
3544 	if (err)
3545 		return err;
3546 
3547 	err = ixgbe_read_sr_word_aci(hw, offset, data);
3548 	ixgbe_release_nvm(hw);
3549 
3550 	return err;
3551 }
3552 
3553 /**
3554  * ixgbe_read_ee_aci_buffer_e610 - Read EEPROM words via ACI
3555  * @hw: pointer to hardware structure
3556  * @offset: offset of words in the EEPROM to read
3557  * @words: number of words to read
3558  * @data: words to read from the EEPROM
3559  *
3560  * Read 16 bit words from the EEPROM via the ACI. Initialize the EEPROM params
3561  * prior to the read. Acquire/release the NVM ownership.
3562  *
3563  * Return: the operation exit code.
3564  */
3565 int ixgbe_read_ee_aci_buffer_e610(struct ixgbe_hw *hw, u16 offset,
3566 				  u16 words, u16 *data)
3567 {
3568 	int err;
3569 
3570 	if (hw->eeprom.type == ixgbe_eeprom_uninitialized) {
3571 		err = hw->eeprom.ops.init_params(hw);
3572 		if (err)
3573 			return err;
3574 	}
3575 
3576 	err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ);
3577 	if (err)
3578 		return err;
3579 
3580 	err = ixgbe_read_sr_buf_aci(hw, offset, &words, data);
3581 	ixgbe_release_nvm(hw);
3582 
3583 	return err;
3584 }
3585 
3586 /**
3587  * ixgbe_validate_eeprom_checksum_e610 - Validate EEPROM checksum
3588  * @hw: pointer to hardware structure
3589  * @checksum_val: calculated checksum
3590  *
3591  * Performs checksum calculation and validates the EEPROM checksum. If the
3592  * caller does not need checksum_val, the value can be NULL.
3593  * If the EEPROM params are not initialized, the function
3594  * initialize them before proceeding.
3595  * The function acquires and then releases the NVM ownership.
3596  *
3597  * Return: the exit code of the operation.
3598  */
3599 int ixgbe_validate_eeprom_checksum_e610(struct ixgbe_hw *hw, u16 *checksum_val)
3600 {
3601 	int err;
3602 
3603 	if (hw->eeprom.type == ixgbe_eeprom_uninitialized) {
3604 		err = hw->eeprom.ops.init_params(hw);
3605 		if (err)
3606 			return err;
3607 	}
3608 
3609 	err = ixgbe_nvm_validate_checksum(hw);
3610 	if (err)
3611 		return err;
3612 
3613 	if (checksum_val) {
3614 		u16 tmp_checksum;
3615 
3616 		err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ);
3617 		if (err)
3618 			return err;
3619 
3620 		err = ixgbe_read_sr_word_aci(hw, IXGBE_E610_SR_SW_CHECKSUM_WORD,
3621 					     &tmp_checksum);
3622 		ixgbe_release_nvm(hw);
3623 
3624 		if (!err)
3625 			*checksum_val = tmp_checksum;
3626 	}
3627 
3628 	return err;
3629 }
3630 
3631 /**
3632  * ixgbe_reset_hw_e610 - Perform hardware reset
3633  * @hw: pointer to hardware structure
3634  *
3635  * Resets the hardware by resetting the transmit and receive units, masks
3636  * and clears all interrupts, and performs a reset.
3637  *
3638  * Return: the exit code of the operation.
3639  */
3640 int ixgbe_reset_hw_e610(struct ixgbe_hw *hw)
3641 {
3642 	u32 swfw_mask = hw->phy.phy_semaphore_mask;
3643 	u32 ctrl, i;
3644 	int err;
3645 
3646 	/* Call adapter stop to disable tx/rx and clear interrupts */
3647 	err = hw->mac.ops.stop_adapter(hw);
3648 	if (err)
3649 		goto reset_hw_out;
3650 
3651 	/* Flush pending Tx transactions. */
3652 	ixgbe_clear_tx_pending(hw);
3653 
3654 	hw->phy.ops.init(hw);
3655 mac_reset_top:
3656 	err = hw->mac.ops.acquire_swfw_sync(hw, swfw_mask);
3657 	if (err)
3658 		return -EBUSY;
3659 	ctrl = IXGBE_CTRL_RST;
3660 	ctrl |= IXGBE_READ_REG(hw, IXGBE_CTRL);
3661 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, ctrl);
3662 	IXGBE_WRITE_FLUSH(hw);
3663 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
3664 
3665 	/* Poll for reset bit to self-clear indicating reset is complete */
3666 	for (i = 0; i < 10; i++) {
3667 		udelay(1);
3668 		ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
3669 		if (!(ctrl & IXGBE_CTRL_RST_MASK))
3670 			break;
3671 	}
3672 
3673 	if (ctrl & IXGBE_CTRL_RST_MASK) {
3674 		struct ixgbe_adapter *adapter = container_of(hw, struct ixgbe_adapter,
3675 							     hw);
3676 
3677 		err = -EIO;
3678 		netdev_err(adapter->netdev, "Reset polling failed to complete.");
3679 	}
3680 
3681 	/* Double resets are required for recovery from certain error
3682 	 * conditions. Between resets, it is necessary to stall to allow time
3683 	 * for any pending HW events to complete.
3684 	 */
3685 	msleep(100);
3686 	if (hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED) {
3687 		hw->mac.flags &= ~IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3688 		goto mac_reset_top;
3689 	}
3690 
3691 	/* Set the Rx packet buffer size. */
3692 	IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(0), GENMASK(18, 17));
3693 
3694 	/* Store the permanent mac address */
3695 	hw->mac.ops.get_mac_addr(hw, hw->mac.perm_addr);
3696 
3697 	/* Maximum number of Receive Address Registers. */
3698 #define IXGBE_MAX_NUM_RAR		128
3699 
3700 	/* Store MAC address from RAR0, clear receive address registers, and
3701 	 * clear the multicast table.  Also reset num_rar_entries to the
3702 	 * maximum number of Receive Address Registers, since we modify this
3703 	 * value when programming the SAN MAC address.
3704 	 */
3705 	hw->mac.num_rar_entries = IXGBE_MAX_NUM_RAR;
3706 	hw->mac.ops.init_rx_addrs(hw);
3707 
3708 	/* Initialize bus function number */
3709 	hw->mac.ops.set_lan_id(hw);
3710 
3711 reset_hw_out:
3712 	return err;
3713 }
3714 
3715 /**
3716  * ixgbe_get_pfa_module_tlv - Read sub module TLV from NVM PFA
3717  * @hw: pointer to hardware structure
3718  * @module_tlv: pointer to module TLV to return
3719  * @module_tlv_len: pointer to module TLV length to return
3720  * @module_type: module type requested
3721  *
3722  * Find the requested sub module TLV type from the Preserved Field
3723  * Area (PFA) and returns the TLV pointer and length. The caller can
3724  * use these to read the variable length TLV value.
3725  *
3726  * Return: the exit code of the operation.
3727  */
3728 static int ixgbe_get_pfa_module_tlv(struct ixgbe_hw *hw, u16 *module_tlv,
3729 				    u16 *module_tlv_len, u16 module_type)
3730 {
3731 	u16 pfa_len, pfa_ptr, pfa_end_ptr;
3732 	u16 next_tlv;
3733 	int err;
3734 
3735 	err = ixgbe_read_ee_aci_e610(hw, IXGBE_E610_SR_PFA_PTR, &pfa_ptr);
3736 	if (err)
3737 		return err;
3738 
3739 	err = ixgbe_read_ee_aci_e610(hw, pfa_ptr, &pfa_len);
3740 	if (err)
3741 		return err;
3742 
3743 	/* Starting with first TLV after PFA length, iterate through the list
3744 	 * of TLVs to find the requested one.
3745 	 */
3746 	next_tlv = pfa_ptr + 1;
3747 	pfa_end_ptr = pfa_ptr + pfa_len;
3748 	while (next_tlv < pfa_end_ptr) {
3749 		u16 tlv_sub_module_type, tlv_len;
3750 
3751 		/* Read TLV type */
3752 		err = ixgbe_read_ee_aci_e610(hw, next_tlv,
3753 					     &tlv_sub_module_type);
3754 		if (err)
3755 			break;
3756 
3757 		/* Read TLV length */
3758 		err = ixgbe_read_ee_aci_e610(hw, next_tlv + 1, &tlv_len);
3759 		if (err)
3760 			break;
3761 
3762 		if (tlv_sub_module_type == module_type) {
3763 			if (tlv_len) {
3764 				*module_tlv = next_tlv;
3765 				*module_tlv_len = tlv_len;
3766 				return 0;
3767 			}
3768 			return -EIO;
3769 		}
3770 		/* Check next TLV, i.e. current TLV pointer + length + 2 words
3771 		 * (for current TLV's type and length).
3772 		 */
3773 		next_tlv = next_tlv + tlv_len + 2;
3774 	}
3775 	/* Module does not exist */
3776 	return -ENODATA;
3777 }
3778 
3779 /**
3780  * ixgbe_read_pba_string_e610 - Read PBA string from NVM
3781  * @hw: pointer to hardware structure
3782  * @pba_num: stores the part number string from the NVM
3783  * @pba_num_size: part number string buffer length
3784  *
3785  * Read the part number string from the NVM.
3786  *
3787  * Return: the exit code of the operation.
3788  */
3789 static int ixgbe_read_pba_string_e610(struct ixgbe_hw *hw, u8 *pba_num,
3790 				      u32 pba_num_size)
3791 {
3792 	u16 pba_tlv, pba_tlv_len;
3793 	u16 pba_word, pba_size;
3794 	int err;
3795 
3796 	*pba_num = '\0';
3797 
3798 	err = ixgbe_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len,
3799 				       IXGBE_E610_SR_PBA_BLOCK_PTR);
3800 	if (err)
3801 		return err;
3802 
3803 	/* pba_size is the next word */
3804 	err = ixgbe_read_ee_aci_e610(hw, (pba_tlv + 2), &pba_size);
3805 	if (err)
3806 		return err;
3807 
3808 	if (pba_tlv_len < pba_size)
3809 		return -EINVAL;
3810 
3811 	/* Subtract one to get PBA word count (PBA Size word is included in
3812 	 * total size).
3813 	 */
3814 	pba_size--;
3815 
3816 	if (pba_num_size < (((u32)pba_size * 2) + 1))
3817 		return -EINVAL;
3818 
3819 	for (u16 i = 0; i < pba_size; i++) {
3820 		err = ixgbe_read_ee_aci_e610(hw, (pba_tlv + 2 + 1) + i,
3821 					     &pba_word);
3822 		if (err)
3823 			return err;
3824 
3825 		pba_num[(i * 2)] = FIELD_GET(IXGBE_E610_SR_PBA_BLOCK_MASK,
3826 					     pba_word);
3827 		pba_num[(i * 2) + 1] = pba_word & 0xFF;
3828 	}
3829 
3830 	pba_num[(pba_size * 2)] = '\0';
3831 
3832 	return err;
3833 }
3834 
3835 static const struct ixgbe_mac_operations mac_ops_e610 = {
3836 	.init_hw			= ixgbe_init_hw_generic,
3837 	.start_hw			= ixgbe_start_hw_e610,
3838 	.clear_hw_cntrs			= ixgbe_clear_hw_cntrs_generic,
3839 	.enable_rx_dma			= ixgbe_enable_rx_dma_generic,
3840 	.get_mac_addr			= ixgbe_get_mac_addr_generic,
3841 	.get_device_caps		= ixgbe_get_device_caps_generic,
3842 	.stop_adapter			= ixgbe_stop_adapter_generic,
3843 	.set_lan_id			= ixgbe_set_lan_id_multi_port_pcie,
3844 	.set_rxpba			= ixgbe_set_rxpba_generic,
3845 	.check_link			= ixgbe_check_link_e610,
3846 	.blink_led_start		= ixgbe_blink_led_start_X540,
3847 	.blink_led_stop			= ixgbe_blink_led_stop_X540,
3848 	.set_rar			= ixgbe_set_rar_generic,
3849 	.clear_rar			= ixgbe_clear_rar_generic,
3850 	.set_vmdq			= ixgbe_set_vmdq_generic,
3851 	.set_vmdq_san_mac		= ixgbe_set_vmdq_san_mac_generic,
3852 	.clear_vmdq			= ixgbe_clear_vmdq_generic,
3853 	.init_rx_addrs			= ixgbe_init_rx_addrs_generic,
3854 	.update_mc_addr_list		= ixgbe_update_mc_addr_list_generic,
3855 	.enable_mc			= ixgbe_enable_mc_generic,
3856 	.disable_mc			= ixgbe_disable_mc_generic,
3857 	.clear_vfta			= ixgbe_clear_vfta_generic,
3858 	.set_vfta			= ixgbe_set_vfta_generic,
3859 	.fc_enable			= ixgbe_fc_enable_generic,
3860 	.set_fw_drv_ver			= ixgbe_set_fw_drv_ver_x550,
3861 	.init_uta_tables		= ixgbe_init_uta_tables_generic,
3862 	.set_mac_anti_spoofing		= ixgbe_set_mac_anti_spoofing,
3863 	.set_vlan_anti_spoofing		= ixgbe_set_vlan_anti_spoofing,
3864 	.set_source_address_pruning	=
3865 				ixgbe_set_source_address_pruning_x550,
3866 	.set_ethertype_anti_spoofing	=
3867 				ixgbe_set_ethertype_anti_spoofing_x550,
3868 	.disable_rx_buff		= ixgbe_disable_rx_buff_generic,
3869 	.enable_rx_buff			= ixgbe_enable_rx_buff_generic,
3870 	.enable_rx			= ixgbe_enable_rx_generic,
3871 	.disable_rx			= ixgbe_disable_rx_e610,
3872 	.led_on				= ixgbe_led_on_generic,
3873 	.led_off			= ixgbe_led_off_generic,
3874 	.init_led_link_act		= ixgbe_init_led_link_act_generic,
3875 	.reset_hw			= ixgbe_reset_hw_e610,
3876 	.get_media_type			= ixgbe_get_media_type_e610,
3877 	.setup_link			= ixgbe_setup_link_e610,
3878 	.get_link_capabilities		= ixgbe_get_link_capabilities_e610,
3879 	.get_bus_info			= ixgbe_get_bus_info_generic,
3880 	.acquire_swfw_sync		= ixgbe_acquire_swfw_sync_X540,
3881 	.release_swfw_sync		= ixgbe_release_swfw_sync_X540,
3882 	.init_swfw_sync			= ixgbe_init_swfw_sync_X540,
3883 	.prot_autoc_read		= prot_autoc_read_generic,
3884 	.prot_autoc_write		= prot_autoc_write_generic,
3885 	.setup_fc			= ixgbe_setup_fc_e610,
3886 	.fc_autoneg			= ixgbe_fc_autoneg_e610,
3887 };
3888 
3889 static const struct ixgbe_phy_operations phy_ops_e610 = {
3890 	.init				= ixgbe_init_phy_ops_e610,
3891 	.identify			= ixgbe_identify_phy_e610,
3892 	.identify_sfp			= ixgbe_identify_module_e610,
3893 	.setup_link_speed		= ixgbe_setup_phy_link_speed_generic,
3894 	.setup_link			= ixgbe_setup_phy_link_e610,
3895 	.enter_lplu			= ixgbe_enter_lplu_e610,
3896 };
3897 
3898 static const struct ixgbe_eeprom_operations eeprom_ops_e610 = {
3899 	.read				= ixgbe_read_ee_aci_e610,
3900 	.read_buffer			= ixgbe_read_ee_aci_buffer_e610,
3901 	.validate_checksum		= ixgbe_validate_eeprom_checksum_e610,
3902 	.read_pba_string		= ixgbe_read_pba_string_e610,
3903 	.init_params			= ixgbe_init_eeprom_params_e610,
3904 };
3905 
3906 const struct ixgbe_info ixgbe_e610_info = {
3907 	.mac			= ixgbe_mac_e610,
3908 	.get_invariants		= ixgbe_get_invariants_X540,
3909 	.mac_ops		= &mac_ops_e610,
3910 	.eeprom_ops		= &eeprom_ops_e610,
3911 	.phy_ops		= &phy_ops_e610,
3912 	.mbx_ops		= &mbx_ops_generic,
3913 	.mvals			= ixgbe_mvals_x550em_a,
3914 };
3915