1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2024 Intel Corporation. */ 3 4 #include "ixgbe_common.h" 5 #include "ixgbe_e610.h" 6 #include "ixgbe_x550.h" 7 #include "ixgbe_type.h" 8 #include "ixgbe_x540.h" 9 #include "ixgbe_mbx.h" 10 #include "ixgbe_phy.h" 11 12 /** 13 * ixgbe_should_retry_aci_send_cmd_execute - decide if ACI command should 14 * be resent 15 * @opcode: ACI opcode 16 * 17 * Check if ACI command should be sent again depending on the provided opcode. 18 * It may happen when CSR is busy during link state changes. 19 * 20 * Return: true if the sending command routine should be repeated, 21 * otherwise false. 22 */ 23 static bool ixgbe_should_retry_aci_send_cmd_execute(u16 opcode) 24 { 25 switch (opcode) { 26 case ixgbe_aci_opc_disable_rxen: 27 case ixgbe_aci_opc_get_phy_caps: 28 case ixgbe_aci_opc_get_link_status: 29 case ixgbe_aci_opc_get_link_topo: 30 return true; 31 } 32 33 return false; 34 } 35 36 /** 37 * ixgbe_aci_send_cmd_execute - execute sending FW Admin Command to FW Admin 38 * Command Interface 39 * @hw: pointer to the HW struct 40 * @desc: descriptor describing the command 41 * @buf: buffer to use for indirect commands (NULL for direct commands) 42 * @buf_size: size of buffer for indirect commands (0 for direct commands) 43 * 44 * Admin Command is sent using CSR by setting descriptor and buffer in specific 45 * registers. 46 * 47 * Return: the exit code of the operation. 48 * * - 0 - success. 49 * * - -EIO - CSR mechanism is not enabled. 50 * * - -EBUSY - CSR mechanism is busy. 51 * * - -EINVAL - buf_size is too big or 52 * invalid argument buf or buf_size. 53 * * - -ETIME - Admin Command X command timeout. 54 * * - -EIO - Admin Command X invalid state of HICR register or 55 * Admin Command failed because of bad opcode was returned or 56 * Admin Command failed with error Y. 57 */ 58 static int ixgbe_aci_send_cmd_execute(struct ixgbe_hw *hw, 59 struct ixgbe_aci_desc *desc, 60 void *buf, u16 buf_size) 61 { 62 u16 opcode, buf_tail_size = buf_size % 4; 63 u32 *raw_desc = (u32 *)desc; 64 u32 hicr, i, buf_tail = 0; 65 bool valid_buf = false; 66 67 hw->aci.last_status = IXGBE_ACI_RC_OK; 68 69 /* It's necessary to check if mechanism is enabled */ 70 hicr = IXGBE_READ_REG(hw, IXGBE_PF_HICR); 71 72 if (!(hicr & IXGBE_PF_HICR_EN)) 73 return -EIO; 74 75 if (hicr & IXGBE_PF_HICR_C) { 76 hw->aci.last_status = IXGBE_ACI_RC_EBUSY; 77 return -EBUSY; 78 } 79 80 opcode = le16_to_cpu(desc->opcode); 81 82 if (buf_size > IXGBE_ACI_MAX_BUFFER_SIZE) 83 return -EINVAL; 84 85 if (buf) 86 desc->flags |= cpu_to_le16(IXGBE_ACI_FLAG_BUF); 87 88 if (desc->flags & cpu_to_le16(IXGBE_ACI_FLAG_BUF)) { 89 if ((buf && !buf_size) || 90 (!buf && buf_size)) 91 return -EINVAL; 92 if (buf && buf_size) 93 valid_buf = true; 94 } 95 96 if (valid_buf) { 97 if (buf_tail_size) 98 memcpy(&buf_tail, buf + buf_size - buf_tail_size, 99 buf_tail_size); 100 101 if (((buf_size + 3) & ~0x3) > IXGBE_ACI_LG_BUF) 102 desc->flags |= cpu_to_le16(IXGBE_ACI_FLAG_LB); 103 104 desc->datalen = cpu_to_le16(buf_size); 105 106 if (desc->flags & cpu_to_le16(IXGBE_ACI_FLAG_RD)) { 107 for (i = 0; i < buf_size / 4; i++) 108 IXGBE_WRITE_REG(hw, IXGBE_PF_HIBA(i), ((u32 *)buf)[i]); 109 if (buf_tail_size) 110 IXGBE_WRITE_REG(hw, IXGBE_PF_HIBA(i), buf_tail); 111 } 112 } 113 114 /* Descriptor is written to specific registers */ 115 for (i = 0; i < IXGBE_ACI_DESC_SIZE_IN_DWORDS; i++) 116 IXGBE_WRITE_REG(hw, IXGBE_PF_HIDA(i), raw_desc[i]); 117 118 /* SW has to set PF_HICR.C bit and clear PF_HICR.SV and 119 * PF_HICR_EV 120 */ 121 hicr = (IXGBE_READ_REG(hw, IXGBE_PF_HICR) | IXGBE_PF_HICR_C) & 122 ~(IXGBE_PF_HICR_SV | IXGBE_PF_HICR_EV); 123 IXGBE_WRITE_REG(hw, IXGBE_PF_HICR, hicr); 124 125 #define MAX_SLEEP_RESP_US 1000 126 #define MAX_TMOUT_RESP_SYNC_US 100000000 127 128 /* Wait for sync Admin Command response */ 129 read_poll_timeout(IXGBE_READ_REG, hicr, 130 (hicr & IXGBE_PF_HICR_SV) || 131 !(hicr & IXGBE_PF_HICR_C), 132 MAX_SLEEP_RESP_US, MAX_TMOUT_RESP_SYNC_US, true, hw, 133 IXGBE_PF_HICR); 134 135 #define MAX_TMOUT_RESP_ASYNC_US 150000000 136 137 /* Wait for async Admin Command response */ 138 read_poll_timeout(IXGBE_READ_REG, hicr, 139 (hicr & IXGBE_PF_HICR_EV) || 140 !(hicr & IXGBE_PF_HICR_C), 141 MAX_SLEEP_RESP_US, MAX_TMOUT_RESP_ASYNC_US, true, hw, 142 IXGBE_PF_HICR); 143 144 /* Read sync Admin Command response */ 145 if ((hicr & IXGBE_PF_HICR_SV)) { 146 for (i = 0; i < IXGBE_ACI_DESC_SIZE_IN_DWORDS; i++) { 147 raw_desc[i] = IXGBE_READ_REG(hw, IXGBE_PF_HIDA(i)); 148 raw_desc[i] = raw_desc[i]; 149 } 150 } 151 152 /* Read async Admin Command response */ 153 if ((hicr & IXGBE_PF_HICR_EV) && !(hicr & IXGBE_PF_HICR_C)) { 154 for (i = 0; i < IXGBE_ACI_DESC_SIZE_IN_DWORDS; i++) { 155 raw_desc[i] = IXGBE_READ_REG(hw, IXGBE_PF_HIDA_2(i)); 156 raw_desc[i] = raw_desc[i]; 157 } 158 } 159 160 /* Handle timeout and invalid state of HICR register */ 161 if (hicr & IXGBE_PF_HICR_C) 162 return -ETIME; 163 164 if (!(hicr & IXGBE_PF_HICR_SV) && !(hicr & IXGBE_PF_HICR_EV)) 165 return -EIO; 166 167 /* For every command other than 0x0014 treat opcode mismatch 168 * as an error. Response to 0x0014 command read from HIDA_2 169 * is a descriptor of an event which is expected to contain 170 * different opcode than the command. 171 */ 172 if (desc->opcode != cpu_to_le16(opcode) && 173 opcode != ixgbe_aci_opc_get_fw_event) 174 return -EIO; 175 176 if (desc->retval) { 177 hw->aci.last_status = (enum ixgbe_aci_err) 178 le16_to_cpu(desc->retval); 179 return -EIO; 180 } 181 182 /* Write a response values to a buf */ 183 if (valid_buf) { 184 for (i = 0; i < buf_size / 4; i++) 185 ((u32 *)buf)[i] = IXGBE_READ_REG(hw, IXGBE_PF_HIBA(i)); 186 if (buf_tail_size) { 187 buf_tail = IXGBE_READ_REG(hw, IXGBE_PF_HIBA(i)); 188 memcpy(buf + buf_size - buf_tail_size, &buf_tail, 189 buf_tail_size); 190 } 191 } 192 193 return 0; 194 } 195 196 /** 197 * ixgbe_aci_send_cmd - send FW Admin Command to FW Admin Command Interface 198 * @hw: pointer to the HW struct 199 * @desc: descriptor describing the command 200 * @buf: buffer to use for indirect commands (NULL for direct commands) 201 * @buf_size: size of buffer for indirect commands (0 for direct commands) 202 * 203 * Helper function to send FW Admin Commands to the FW Admin Command Interface. 204 * 205 * Retry sending the FW Admin Command multiple times to the FW ACI 206 * if the EBUSY Admin Command error is returned. 207 * 208 * Return: the exit code of the operation. 209 */ 210 int ixgbe_aci_send_cmd(struct ixgbe_hw *hw, struct ixgbe_aci_desc *desc, 211 void *buf, u16 buf_size) 212 { 213 u16 opcode = le16_to_cpu(desc->opcode); 214 struct ixgbe_aci_desc desc_cpy; 215 enum ixgbe_aci_err last_status; 216 u8 idx = 0, *buf_cpy = NULL; 217 bool is_cmd_for_retry; 218 unsigned long timeout; 219 int err; 220 221 is_cmd_for_retry = ixgbe_should_retry_aci_send_cmd_execute(opcode); 222 if (is_cmd_for_retry) { 223 if (buf) { 224 buf_cpy = kmalloc(buf_size, GFP_KERNEL); 225 if (!buf_cpy) 226 return -ENOMEM; 227 *buf_cpy = *(u8 *)buf; 228 } 229 desc_cpy = *desc; 230 } 231 232 timeout = jiffies + msecs_to_jiffies(IXGBE_ACI_SEND_TIMEOUT_MS); 233 do { 234 mutex_lock(&hw->aci.lock); 235 err = ixgbe_aci_send_cmd_execute(hw, desc, buf, buf_size); 236 last_status = hw->aci.last_status; 237 mutex_unlock(&hw->aci.lock); 238 239 if (!is_cmd_for_retry || !err || 240 last_status != IXGBE_ACI_RC_EBUSY) 241 break; 242 243 if (buf) 244 memcpy(buf, buf_cpy, buf_size); 245 *desc = desc_cpy; 246 247 msleep(IXGBE_ACI_SEND_DELAY_TIME_MS); 248 } while (++idx < IXGBE_ACI_SEND_MAX_EXECUTE && 249 time_before(jiffies, timeout)); 250 251 kfree(buf_cpy); 252 253 return err; 254 } 255 256 /** 257 * ixgbe_aci_check_event_pending - check if there are any pending events 258 * @hw: pointer to the HW struct 259 * 260 * Determine if there are any pending events. 261 * 262 * Return: true if there are any currently pending events 263 * otherwise false. 264 */ 265 bool ixgbe_aci_check_event_pending(struct ixgbe_hw *hw) 266 { 267 u32 ep_bit_mask = hw->bus.func ? GL_FWSTS_EP_PF1 : GL_FWSTS_EP_PF0; 268 u32 fwsts = IXGBE_READ_REG(hw, GL_FWSTS); 269 270 return (fwsts & ep_bit_mask) ? true : false; 271 } 272 273 /** 274 * ixgbe_aci_get_event - get an event from ACI 275 * @hw: pointer to the HW struct 276 * @e: event information structure 277 * @pending: optional flag signaling that there are more pending events 278 * 279 * Obtain an event from ACI and return its content 280 * through 'e' using ACI command (0x0014). 281 * Provide information if there are more events 282 * to retrieve through 'pending'. 283 * 284 * Return: the exit code of the operation. 285 */ 286 int ixgbe_aci_get_event(struct ixgbe_hw *hw, struct ixgbe_aci_event *e, 287 bool *pending) 288 { 289 struct ixgbe_aci_desc desc; 290 int err; 291 292 if (!e || (!e->msg_buf && e->buf_len)) 293 return -EINVAL; 294 295 mutex_lock(&hw->aci.lock); 296 297 /* Check if there are any events pending */ 298 if (!ixgbe_aci_check_event_pending(hw)) { 299 err = -ENOENT; 300 goto aci_get_event_exit; 301 } 302 303 /* Obtain pending event */ 304 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_fw_event); 305 err = ixgbe_aci_send_cmd_execute(hw, &desc, e->msg_buf, e->buf_len); 306 if (err) 307 goto aci_get_event_exit; 308 309 /* Returned 0x0014 opcode indicates that no event was obtained */ 310 if (desc.opcode == cpu_to_le16(ixgbe_aci_opc_get_fw_event)) { 311 err = -ENOENT; 312 goto aci_get_event_exit; 313 } 314 315 /* Determine size of event data */ 316 e->msg_len = min_t(u16, le16_to_cpu(desc.datalen), e->buf_len); 317 /* Write event descriptor to event info structure */ 318 memcpy(&e->desc, &desc, sizeof(e->desc)); 319 320 /* Check if there are any further events pending */ 321 if (pending) 322 *pending = ixgbe_aci_check_event_pending(hw); 323 324 aci_get_event_exit: 325 mutex_unlock(&hw->aci.lock); 326 327 return err; 328 } 329 330 /** 331 * ixgbe_fill_dflt_direct_cmd_desc - fill ACI descriptor with default values. 332 * @desc: pointer to the temp descriptor (non DMA mem) 333 * @opcode: the opcode can be used to decide which flags to turn off or on 334 * 335 * Helper function to fill the descriptor desc with default values 336 * and the provided opcode. 337 */ 338 void ixgbe_fill_dflt_direct_cmd_desc(struct ixgbe_aci_desc *desc, u16 opcode) 339 { 340 /* Zero out the desc. */ 341 memset(desc, 0, sizeof(*desc)); 342 desc->opcode = cpu_to_le16(opcode); 343 desc->flags = cpu_to_le16(IXGBE_ACI_FLAG_SI); 344 } 345 346 /** 347 * ixgbe_aci_get_fw_ver - Get the firmware version 348 * @hw: pointer to the HW struct 349 * 350 * Get the firmware version using ACI command (0x0001). 351 * 352 * Return: the exit code of the operation. 353 */ 354 static int ixgbe_aci_get_fw_ver(struct ixgbe_hw *hw) 355 { 356 struct ixgbe_aci_cmd_get_ver *resp; 357 struct ixgbe_aci_desc desc; 358 int err; 359 360 resp = &desc.params.get_ver; 361 362 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_ver); 363 364 err = ixgbe_aci_send_cmd(hw, &desc, NULL, 0); 365 if (!err) { 366 hw->fw_branch = resp->fw_branch; 367 hw->fw_maj_ver = resp->fw_major; 368 hw->fw_min_ver = resp->fw_minor; 369 hw->fw_patch = resp->fw_patch; 370 hw->fw_build = le32_to_cpu(resp->fw_build); 371 hw->api_branch = resp->api_branch; 372 hw->api_maj_ver = resp->api_major; 373 hw->api_min_ver = resp->api_minor; 374 hw->api_patch = resp->api_patch; 375 } 376 377 return err; 378 } 379 380 /** 381 * ixgbe_aci_req_res - request a common resource 382 * @hw: pointer to the HW struct 383 * @res: resource ID 384 * @access: access type 385 * @sdp_number: resource number 386 * @timeout: the maximum time in ms that the driver may hold the resource 387 * 388 * Requests a common resource using the ACI command (0x0008). 389 * Specifies the maximum time the driver may hold the resource. 390 * If the requested resource is currently occupied by some other driver, 391 * a busy return value is returned and the timeout field value indicates the 392 * maximum time the current owner has to free it. 393 * 394 * Return: the exit code of the operation. 395 */ 396 static int ixgbe_aci_req_res(struct ixgbe_hw *hw, enum ixgbe_aci_res_ids res, 397 enum ixgbe_aci_res_access_type access, 398 u8 sdp_number, u32 *timeout) 399 { 400 struct ixgbe_aci_cmd_req_res *cmd_resp; 401 struct ixgbe_aci_desc desc; 402 int err; 403 404 cmd_resp = &desc.params.res_owner; 405 406 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_req_res); 407 408 cmd_resp->res_id = cpu_to_le16(res); 409 cmd_resp->access_type = cpu_to_le16(access); 410 cmd_resp->res_number = cpu_to_le32(sdp_number); 411 cmd_resp->timeout = cpu_to_le32(*timeout); 412 *timeout = 0; 413 414 err = ixgbe_aci_send_cmd(hw, &desc, NULL, 0); 415 416 /* If the resource is held by some other driver, the command completes 417 * with a busy return value and the timeout field indicates the maximum 418 * time the current owner of the resource has to free it. 419 */ 420 if (!err || hw->aci.last_status == IXGBE_ACI_RC_EBUSY) 421 *timeout = le32_to_cpu(cmd_resp->timeout); 422 423 return err; 424 } 425 426 /** 427 * ixgbe_aci_release_res - release a common resource using ACI 428 * @hw: pointer to the HW struct 429 * @res: resource ID 430 * @sdp_number: resource number 431 * 432 * Release a common resource using ACI command (0x0009). 433 * 434 * Return: the exit code of the operation. 435 */ 436 static int ixgbe_aci_release_res(struct ixgbe_hw *hw, 437 enum ixgbe_aci_res_ids res, u8 sdp_number) 438 { 439 struct ixgbe_aci_cmd_req_res *cmd; 440 struct ixgbe_aci_desc desc; 441 442 cmd = &desc.params.res_owner; 443 444 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_release_res); 445 446 cmd->res_id = cpu_to_le16(res); 447 cmd->res_number = cpu_to_le32(sdp_number); 448 449 return ixgbe_aci_send_cmd(hw, &desc, NULL, 0); 450 } 451 452 /** 453 * ixgbe_acquire_res - acquire the ownership of a resource 454 * @hw: pointer to the HW structure 455 * @res: resource ID 456 * @access: access type (read or write) 457 * @timeout: timeout in milliseconds 458 * 459 * Make an attempt to acquire the ownership of a resource using 460 * the ixgbe_aci_req_res to utilize ACI. 461 * In case if some other driver has previously acquired the resource and 462 * performed any necessary updates, the -EALREADY is returned, 463 * and the caller does not obtain the resource and has no further work to do. 464 * If needed, the function will poll until the current lock owner timeouts. 465 * 466 * Return: the exit code of the operation. 467 */ 468 int ixgbe_acquire_res(struct ixgbe_hw *hw, enum ixgbe_aci_res_ids res, 469 enum ixgbe_aci_res_access_type access, u32 timeout) 470 { 471 #define IXGBE_RES_POLLING_DELAY_MS 10 472 u32 delay = IXGBE_RES_POLLING_DELAY_MS; 473 u32 res_timeout = timeout; 474 u32 retry_timeout; 475 int err; 476 477 err = ixgbe_aci_req_res(hw, res, access, 0, &res_timeout); 478 479 /* A return code of -EALREADY means that another driver has 480 * previously acquired the resource and performed any necessary updates; 481 * in this case the caller does not obtain the resource and has no 482 * further work to do. 483 */ 484 if (err == -EALREADY) 485 return err; 486 487 /* If necessary, poll until the current lock owner timeouts. 488 * Set retry_timeout to the timeout value reported by the FW in the 489 * response to the "Request Resource Ownership" (0x0008) Admin Command 490 * as it indicates the maximum time the current owner of the resource 491 * is allowed to hold it. 492 */ 493 retry_timeout = res_timeout; 494 while (err && retry_timeout && res_timeout) { 495 msleep(delay); 496 retry_timeout = (retry_timeout > delay) ? 497 retry_timeout - delay : 0; 498 err = ixgbe_aci_req_res(hw, res, access, 0, &res_timeout); 499 500 /* Success - lock acquired. 501 * -EALREADY - lock free, no work to do. 502 */ 503 if (!err || err == -EALREADY) 504 break; 505 } 506 507 return err; 508 } 509 510 /** 511 * ixgbe_release_res - release a common resource 512 * @hw: pointer to the HW structure 513 * @res: resource ID 514 * 515 * Release a common resource using ixgbe_aci_release_res. 516 */ 517 void ixgbe_release_res(struct ixgbe_hw *hw, enum ixgbe_aci_res_ids res) 518 { 519 u32 total_delay = 0; 520 int err; 521 522 err = ixgbe_aci_release_res(hw, res, 0); 523 524 /* There are some rare cases when trying to release the resource 525 * results in an admin command timeout, so handle them correctly. 526 */ 527 while (err == -ETIME && 528 total_delay < IXGBE_ACI_RELEASE_RES_TIMEOUT) { 529 usleep_range(1000, 1500); 530 err = ixgbe_aci_release_res(hw, res, 0); 531 total_delay++; 532 } 533 } 534 535 /** 536 * ixgbe_parse_e610_caps - Parse common device/function capabilities 537 * @hw: pointer to the HW struct 538 * @caps: pointer to common capabilities structure 539 * @elem: the capability element to parse 540 * @prefix: message prefix for tracing capabilities 541 * 542 * Given a capability element, extract relevant details into the common 543 * capability structure. 544 * 545 * Return: true if the capability matches one of the common capability ids, 546 * false otherwise. 547 */ 548 static bool ixgbe_parse_e610_caps(struct ixgbe_hw *hw, 549 struct ixgbe_hw_caps *caps, 550 struct ixgbe_aci_cmd_list_caps_elem *elem, 551 const char *prefix) 552 { 553 u32 logical_id = le32_to_cpu(elem->logical_id); 554 u32 phys_id = le32_to_cpu(elem->phys_id); 555 u32 number = le32_to_cpu(elem->number); 556 u16 cap = le16_to_cpu(elem->cap); 557 558 switch (cap) { 559 case IXGBE_ACI_CAPS_VALID_FUNCTIONS: 560 caps->valid_functions = number; 561 break; 562 case IXGBE_ACI_CAPS_SRIOV: 563 caps->sr_iov_1_1 = (number == 1); 564 break; 565 case IXGBE_ACI_CAPS_VMDQ: 566 caps->vmdq = (number == 1); 567 break; 568 case IXGBE_ACI_CAPS_DCB: 569 caps->dcb = (number == 1); 570 caps->active_tc_bitmap = logical_id; 571 caps->maxtc = phys_id; 572 break; 573 case IXGBE_ACI_CAPS_RSS: 574 caps->rss_table_size = number; 575 caps->rss_table_entry_width = logical_id; 576 break; 577 case IXGBE_ACI_CAPS_RXQS: 578 caps->num_rxq = number; 579 caps->rxq_first_id = phys_id; 580 break; 581 case IXGBE_ACI_CAPS_TXQS: 582 caps->num_txq = number; 583 caps->txq_first_id = phys_id; 584 break; 585 case IXGBE_ACI_CAPS_MSIX: 586 caps->num_msix_vectors = number; 587 caps->msix_vector_first_id = phys_id; 588 break; 589 case IXGBE_ACI_CAPS_NVM_VER: 590 break; 591 case IXGBE_ACI_CAPS_PENDING_NVM_VER: 592 caps->nvm_update_pending_nvm = true; 593 break; 594 case IXGBE_ACI_CAPS_PENDING_OROM_VER: 595 caps->nvm_update_pending_orom = true; 596 break; 597 case IXGBE_ACI_CAPS_PENDING_NET_VER: 598 caps->nvm_update_pending_netlist = true; 599 break; 600 case IXGBE_ACI_CAPS_NVM_MGMT: 601 caps->nvm_unified_update = 602 (number & IXGBE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ? 603 true : false; 604 break; 605 case IXGBE_ACI_CAPS_MAX_MTU: 606 caps->max_mtu = number; 607 break; 608 case IXGBE_ACI_CAPS_PCIE_RESET_AVOIDANCE: 609 caps->pcie_reset_avoidance = (number > 0); 610 break; 611 case IXGBE_ACI_CAPS_POST_UPDATE_RESET_RESTRICT: 612 caps->reset_restrict_support = (number == 1); 613 break; 614 case IXGBE_ACI_CAPS_EXT_TOPO_DEV_IMG0: 615 case IXGBE_ACI_CAPS_EXT_TOPO_DEV_IMG1: 616 case IXGBE_ACI_CAPS_EXT_TOPO_DEV_IMG2: 617 case IXGBE_ACI_CAPS_EXT_TOPO_DEV_IMG3: 618 { 619 u8 index = cap - IXGBE_ACI_CAPS_EXT_TOPO_DEV_IMG0; 620 621 caps->ext_topo_dev_img_ver_high[index] = number; 622 caps->ext_topo_dev_img_ver_low[index] = logical_id; 623 caps->ext_topo_dev_img_part_num[index] = 624 FIELD_GET(IXGBE_EXT_TOPO_DEV_IMG_PART_NUM_M, phys_id); 625 caps->ext_topo_dev_img_load_en[index] = 626 (phys_id & IXGBE_EXT_TOPO_DEV_IMG_LOAD_EN) != 0; 627 caps->ext_topo_dev_img_prog_en[index] = 628 (phys_id & IXGBE_EXT_TOPO_DEV_IMG_PROG_EN) != 0; 629 break; 630 } 631 default: 632 /* Not one of the recognized common capabilities */ 633 return false; 634 } 635 636 return true; 637 } 638 639 /** 640 * ixgbe_parse_valid_functions_cap - Parse IXGBE_ACI_CAPS_VALID_FUNCTIONS caps 641 * @hw: pointer to the HW struct 642 * @dev_p: pointer to device capabilities structure 643 * @cap: capability element to parse 644 * 645 * Parse IXGBE_ACI_CAPS_VALID_FUNCTIONS for device capabilities. 646 */ 647 static void 648 ixgbe_parse_valid_functions_cap(struct ixgbe_hw *hw, 649 struct ixgbe_hw_dev_caps *dev_p, 650 struct ixgbe_aci_cmd_list_caps_elem *cap) 651 { 652 dev_p->num_funcs = hweight32(le32_to_cpu(cap->number)); 653 } 654 655 /** 656 * ixgbe_parse_vf_dev_caps - Parse IXGBE_ACI_CAPS_VF device caps 657 * @hw: pointer to the HW struct 658 * @dev_p: pointer to device capabilities structure 659 * @cap: capability element to parse 660 * 661 * Parse IXGBE_ACI_CAPS_VF for device capabilities. 662 */ 663 static void ixgbe_parse_vf_dev_caps(struct ixgbe_hw *hw, 664 struct ixgbe_hw_dev_caps *dev_p, 665 struct ixgbe_aci_cmd_list_caps_elem *cap) 666 { 667 dev_p->num_vfs_exposed = le32_to_cpu(cap->number); 668 } 669 670 /** 671 * ixgbe_parse_vsi_dev_caps - Parse IXGBE_ACI_CAPS_VSI device caps 672 * @hw: pointer to the HW struct 673 * @dev_p: pointer to device capabilities structure 674 * @cap: capability element to parse 675 * 676 * Parse IXGBE_ACI_CAPS_VSI for device capabilities. 677 */ 678 static void ixgbe_parse_vsi_dev_caps(struct ixgbe_hw *hw, 679 struct ixgbe_hw_dev_caps *dev_p, 680 struct ixgbe_aci_cmd_list_caps_elem *cap) 681 { 682 dev_p->num_vsi_allocd_to_host = le32_to_cpu(cap->number); 683 } 684 685 /** 686 * ixgbe_parse_fdir_dev_caps - Parse IXGBE_ACI_CAPS_FD device caps 687 * @hw: pointer to the HW struct 688 * @dev_p: pointer to device capabilities structure 689 * @cap: capability element to parse 690 * 691 * Parse IXGBE_ACI_CAPS_FD for device capabilities. 692 */ 693 static void ixgbe_parse_fdir_dev_caps(struct ixgbe_hw *hw, 694 struct ixgbe_hw_dev_caps *dev_p, 695 struct ixgbe_aci_cmd_list_caps_elem *cap) 696 { 697 dev_p->num_flow_director_fltr = le32_to_cpu(cap->number); 698 } 699 700 /** 701 * ixgbe_parse_dev_caps - Parse device capabilities 702 * @hw: pointer to the HW struct 703 * @dev_p: pointer to device capabilities structure 704 * @buf: buffer containing the device capability records 705 * @cap_count: the number of capabilities 706 * 707 * Helper device to parse device (0x000B) capabilities list. For 708 * capabilities shared between device and function, this relies on 709 * ixgbe_parse_e610_caps. 710 * 711 * Loop through the list of provided capabilities and extract the relevant 712 * data into the device capabilities structured. 713 */ 714 static void ixgbe_parse_dev_caps(struct ixgbe_hw *hw, 715 struct ixgbe_hw_dev_caps *dev_p, 716 void *buf, u32 cap_count) 717 { 718 struct ixgbe_aci_cmd_list_caps_elem *cap_resp; 719 u32 i; 720 721 cap_resp = (struct ixgbe_aci_cmd_list_caps_elem *)buf; 722 723 memset(dev_p, 0, sizeof(*dev_p)); 724 725 for (i = 0; i < cap_count; i++) { 726 u16 cap = le16_to_cpu(cap_resp[i].cap); 727 728 ixgbe_parse_e610_caps(hw, &dev_p->common_cap, &cap_resp[i], 729 "dev caps"); 730 731 switch (cap) { 732 case IXGBE_ACI_CAPS_VALID_FUNCTIONS: 733 ixgbe_parse_valid_functions_cap(hw, dev_p, 734 &cap_resp[i]); 735 break; 736 case IXGBE_ACI_CAPS_VF: 737 ixgbe_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]); 738 break; 739 case IXGBE_ACI_CAPS_VSI: 740 ixgbe_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]); 741 break; 742 case IXGBE_ACI_CAPS_FD: 743 ixgbe_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]); 744 break; 745 default: 746 /* Don't list common capabilities as unknown */ 747 break; 748 } 749 } 750 } 751 752 /** 753 * ixgbe_parse_vf_func_caps - Parse IXGBE_ACI_CAPS_VF function caps 754 * @hw: pointer to the HW struct 755 * @func_p: pointer to function capabilities structure 756 * @cap: pointer to the capability element to parse 757 * 758 * Extract function capabilities for IXGBE_ACI_CAPS_VF. 759 */ 760 static void ixgbe_parse_vf_func_caps(struct ixgbe_hw *hw, 761 struct ixgbe_hw_func_caps *func_p, 762 struct ixgbe_aci_cmd_list_caps_elem *cap) 763 { 764 func_p->num_allocd_vfs = le32_to_cpu(cap->number); 765 func_p->vf_base_id = le32_to_cpu(cap->logical_id); 766 } 767 768 /** 769 * ixgbe_get_num_per_func - determine number of resources per PF 770 * @hw: pointer to the HW structure 771 * @max: value to be evenly split between each PF 772 * 773 * Determine the number of valid functions by going through the bitmap returned 774 * from parsing capabilities and use this to calculate the number of resources 775 * per PF based on the max value passed in. 776 * 777 * Return: the number of resources per PF or 0, if no PH are available. 778 */ 779 static u32 ixgbe_get_num_per_func(struct ixgbe_hw *hw, u32 max) 780 { 781 #define IXGBE_CAPS_VALID_FUNCS_M GENMASK(7, 0) 782 u8 funcs = hweight8(hw->dev_caps.common_cap.valid_functions & 783 IXGBE_CAPS_VALID_FUNCS_M); 784 785 return funcs ? (max / funcs) : 0; 786 } 787 788 /** 789 * ixgbe_parse_vsi_func_caps - Parse IXGBE_ACI_CAPS_VSI function caps 790 * @hw: pointer to the HW struct 791 * @func_p: pointer to function capabilities structure 792 * @cap: pointer to the capability element to parse 793 * 794 * Extract function capabilities for IXGBE_ACI_CAPS_VSI. 795 */ 796 static void ixgbe_parse_vsi_func_caps(struct ixgbe_hw *hw, 797 struct ixgbe_hw_func_caps *func_p, 798 struct ixgbe_aci_cmd_list_caps_elem *cap) 799 { 800 func_p->guar_num_vsi = ixgbe_get_num_per_func(hw, IXGBE_MAX_VSI); 801 } 802 803 /** 804 * ixgbe_parse_func_caps - Parse function capabilities 805 * @hw: pointer to the HW struct 806 * @func_p: pointer to function capabilities structure 807 * @buf: buffer containing the function capability records 808 * @cap_count: the number of capabilities 809 * 810 * Helper function to parse function (0x000A) capabilities list. For 811 * capabilities shared between device and function, this relies on 812 * ixgbe_parse_e610_caps. 813 * 814 * Loop through the list of provided capabilities and extract the relevant 815 * data into the function capabilities structured. 816 */ 817 static void ixgbe_parse_func_caps(struct ixgbe_hw *hw, 818 struct ixgbe_hw_func_caps *func_p, 819 void *buf, u32 cap_count) 820 { 821 struct ixgbe_aci_cmd_list_caps_elem *cap_resp; 822 u32 i; 823 824 cap_resp = (struct ixgbe_aci_cmd_list_caps_elem *)buf; 825 826 memset(func_p, 0, sizeof(*func_p)); 827 828 for (i = 0; i < cap_count; i++) { 829 u16 cap = le16_to_cpu(cap_resp[i].cap); 830 831 ixgbe_parse_e610_caps(hw, &func_p->common_cap, 832 &cap_resp[i], "func caps"); 833 834 switch (cap) { 835 case IXGBE_ACI_CAPS_VF: 836 ixgbe_parse_vf_func_caps(hw, func_p, &cap_resp[i]); 837 break; 838 case IXGBE_ACI_CAPS_VSI: 839 ixgbe_parse_vsi_func_caps(hw, func_p, &cap_resp[i]); 840 break; 841 default: 842 /* Don't list common capabilities as unknown */ 843 break; 844 } 845 } 846 } 847 848 /** 849 * ixgbe_aci_list_caps - query function/device capabilities 850 * @hw: pointer to the HW struct 851 * @buf: a buffer to hold the capabilities 852 * @buf_size: size of the buffer 853 * @cap_count: if not NULL, set to the number of capabilities reported 854 * @opc: capabilities type to discover, device or function 855 * 856 * Get the function (0x000A) or device (0x000B) capabilities description from 857 * firmware and store it in the buffer. 858 * 859 * If the cap_count pointer is not NULL, then it is set to the number of 860 * capabilities firmware will report. Note that if the buffer size is too 861 * small, it is possible the command will return -ENOMEM. The 862 * cap_count will still be updated in this case. It is recommended that the 863 * buffer size be set to IXGBE_ACI_MAX_BUFFER_SIZE (the largest possible 864 * buffer that firmware could return) to avoid this. 865 * 866 * Return: the exit code of the operation. 867 * Exit code of -ENOMEM means the buffer size is too small. 868 */ 869 int ixgbe_aci_list_caps(struct ixgbe_hw *hw, void *buf, u16 buf_size, 870 u32 *cap_count, enum ixgbe_aci_opc opc) 871 { 872 struct ixgbe_aci_cmd_list_caps *cmd; 873 struct ixgbe_aci_desc desc; 874 int err; 875 876 cmd = &desc.params.get_cap; 877 878 if (opc != ixgbe_aci_opc_list_func_caps && 879 opc != ixgbe_aci_opc_list_dev_caps) 880 return -EINVAL; 881 882 ixgbe_fill_dflt_direct_cmd_desc(&desc, opc); 883 err = ixgbe_aci_send_cmd(hw, &desc, buf, buf_size); 884 885 if (cap_count) 886 *cap_count = le32_to_cpu(cmd->count); 887 888 return err; 889 } 890 891 /** 892 * ixgbe_discover_dev_caps - Read and extract device capabilities 893 * @hw: pointer to the hardware structure 894 * @dev_caps: pointer to device capabilities structure 895 * 896 * Read the device capabilities and extract them into the dev_caps structure 897 * for later use. 898 * 899 * Return: the exit code of the operation. 900 */ 901 int ixgbe_discover_dev_caps(struct ixgbe_hw *hw, 902 struct ixgbe_hw_dev_caps *dev_caps) 903 { 904 u32 cap_count; 905 u8 *cbuf; 906 int err; 907 908 cbuf = kzalloc(IXGBE_ACI_MAX_BUFFER_SIZE, GFP_KERNEL); 909 if (!cbuf) 910 return -ENOMEM; 911 912 /* Although the driver doesn't know the number of capabilities the 913 * device will return, we can simply send a 4KB buffer, the maximum 914 * possible size that firmware can return. 915 */ 916 cap_count = IXGBE_ACI_MAX_BUFFER_SIZE / 917 sizeof(struct ixgbe_aci_cmd_list_caps_elem); 918 919 err = ixgbe_aci_list_caps(hw, cbuf, IXGBE_ACI_MAX_BUFFER_SIZE, 920 &cap_count, 921 ixgbe_aci_opc_list_dev_caps); 922 if (!err) 923 ixgbe_parse_dev_caps(hw, dev_caps, cbuf, cap_count); 924 925 kfree(cbuf); 926 927 return 0; 928 } 929 930 /** 931 * ixgbe_discover_func_caps - Read and extract function capabilities 932 * @hw: pointer to the hardware structure 933 * @func_caps: pointer to function capabilities structure 934 * 935 * Read the function capabilities and extract them into the func_caps structure 936 * for later use. 937 * 938 * Return: the exit code of the operation. 939 */ 940 int ixgbe_discover_func_caps(struct ixgbe_hw *hw, 941 struct ixgbe_hw_func_caps *func_caps) 942 { 943 u32 cap_count; 944 u8 *cbuf; 945 int err; 946 947 cbuf = kzalloc(IXGBE_ACI_MAX_BUFFER_SIZE, GFP_KERNEL); 948 if (!cbuf) 949 return -ENOMEM; 950 951 /* Although the driver doesn't know the number of capabilities the 952 * device will return, we can simply send a 4KB buffer, the maximum 953 * possible size that firmware can return. 954 */ 955 cap_count = IXGBE_ACI_MAX_BUFFER_SIZE / 956 sizeof(struct ixgbe_aci_cmd_list_caps_elem); 957 958 err = ixgbe_aci_list_caps(hw, cbuf, IXGBE_ACI_MAX_BUFFER_SIZE, 959 &cap_count, 960 ixgbe_aci_opc_list_func_caps); 961 if (!err) 962 ixgbe_parse_func_caps(hw, func_caps, cbuf, cap_count); 963 964 kfree(cbuf); 965 966 return 0; 967 } 968 969 /** 970 * ixgbe_get_caps - get info about the HW 971 * @hw: pointer to the hardware structure 972 * 973 * Retrieve both device and function capabilities. 974 * 975 * Return: the exit code of the operation. 976 */ 977 int ixgbe_get_caps(struct ixgbe_hw *hw) 978 { 979 int err; 980 981 err = ixgbe_discover_dev_caps(hw, &hw->dev_caps); 982 if (err) 983 return err; 984 985 return ixgbe_discover_func_caps(hw, &hw->func_caps); 986 } 987 988 /** 989 * ixgbe_aci_disable_rxen - disable RX 990 * @hw: pointer to the HW struct 991 * 992 * Request a safe disable of Receive Enable using ACI command (0x000C). 993 * 994 * Return: the exit code of the operation. 995 */ 996 int ixgbe_aci_disable_rxen(struct ixgbe_hw *hw) 997 { 998 struct ixgbe_aci_cmd_disable_rxen *cmd; 999 struct ixgbe_aci_desc desc; 1000 1001 cmd = &desc.params.disable_rxen; 1002 1003 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_disable_rxen); 1004 1005 cmd->lport_num = hw->bus.func; 1006 1007 return ixgbe_aci_send_cmd(hw, &desc, NULL, 0); 1008 } 1009 1010 /** 1011 * ixgbe_aci_get_phy_caps - returns PHY capabilities 1012 * @hw: pointer to the HW struct 1013 * @qual_mods: report qualified modules 1014 * @report_mode: report mode capabilities 1015 * @pcaps: structure for PHY capabilities to be filled 1016 * 1017 * Returns the various PHY capabilities supported on the Port 1018 * using ACI command (0x0600). 1019 * 1020 * Return: the exit code of the operation. 1021 */ 1022 int ixgbe_aci_get_phy_caps(struct ixgbe_hw *hw, bool qual_mods, u8 report_mode, 1023 struct ixgbe_aci_cmd_get_phy_caps_data *pcaps) 1024 { 1025 struct ixgbe_aci_cmd_get_phy_caps *cmd; 1026 u16 pcaps_size = sizeof(*pcaps); 1027 struct ixgbe_aci_desc desc; 1028 int err; 1029 1030 cmd = &desc.params.get_phy; 1031 1032 if (!pcaps || (report_mode & ~IXGBE_ACI_REPORT_MODE_M)) 1033 return -EINVAL; 1034 1035 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_phy_caps); 1036 1037 if (qual_mods) 1038 cmd->param0 |= cpu_to_le16(IXGBE_ACI_GET_PHY_RQM); 1039 1040 cmd->param0 |= cpu_to_le16(report_mode); 1041 err = ixgbe_aci_send_cmd(hw, &desc, pcaps, pcaps_size); 1042 if (!err && report_mode == IXGBE_ACI_REPORT_TOPO_CAP_MEDIA) { 1043 hw->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low); 1044 hw->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high); 1045 memcpy(hw->link.link_info.module_type, &pcaps->module_type, 1046 sizeof(hw->link.link_info.module_type)); 1047 } 1048 1049 return err; 1050 } 1051 1052 /** 1053 * ixgbe_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data 1054 * @caps: PHY ability structure to copy data from 1055 * @cfg: PHY configuration structure to copy data to 1056 * 1057 * Helper function to copy data from PHY capabilities data structure 1058 * to PHY configuration data structure 1059 */ 1060 void ixgbe_copy_phy_caps_to_cfg(struct ixgbe_aci_cmd_get_phy_caps_data *caps, 1061 struct ixgbe_aci_cmd_set_phy_cfg_data *cfg) 1062 { 1063 if (!caps || !cfg) 1064 return; 1065 1066 memset(cfg, 0, sizeof(*cfg)); 1067 cfg->phy_type_low = caps->phy_type_low; 1068 cfg->phy_type_high = caps->phy_type_high; 1069 cfg->caps = caps->caps; 1070 cfg->low_power_ctrl_an = caps->low_power_ctrl_an; 1071 cfg->eee_cap = caps->eee_cap; 1072 cfg->eeer_value = caps->eeer_value; 1073 cfg->link_fec_opt = caps->link_fec_options; 1074 cfg->module_compliance_enforcement = 1075 caps->module_compliance_enforcement; 1076 } 1077 1078 /** 1079 * ixgbe_aci_set_phy_cfg - set PHY configuration 1080 * @hw: pointer to the HW struct 1081 * @cfg: structure with PHY configuration data to be set 1082 * 1083 * Set the various PHY configuration parameters supported on the Port 1084 * using ACI command (0x0601). 1085 * One or more of the Set PHY config parameters may be ignored in an MFP 1086 * mode as the PF may not have the privilege to set some of the PHY Config 1087 * parameters. 1088 * 1089 * Return: the exit code of the operation. 1090 */ 1091 int ixgbe_aci_set_phy_cfg(struct ixgbe_hw *hw, 1092 struct ixgbe_aci_cmd_set_phy_cfg_data *cfg) 1093 { 1094 struct ixgbe_aci_desc desc; 1095 int err; 1096 1097 if (!cfg) 1098 return -EINVAL; 1099 1100 /* Ensure that only valid bits of cfg->caps can be turned on. */ 1101 cfg->caps &= IXGBE_ACI_PHY_ENA_VALID_MASK; 1102 1103 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_set_phy_cfg); 1104 desc.params.set_phy.lport_num = hw->bus.func; 1105 desc.flags |= cpu_to_le16(IXGBE_ACI_FLAG_RD); 1106 1107 err = ixgbe_aci_send_cmd(hw, &desc, cfg, sizeof(*cfg)); 1108 if (!err) 1109 hw->phy.curr_user_phy_cfg = *cfg; 1110 1111 return err; 1112 } 1113 1114 /** 1115 * ixgbe_aci_set_link_restart_an - set up link and restart AN 1116 * @hw: pointer to the HW struct 1117 * @ena_link: if true: enable link, if false: disable link 1118 * 1119 * Function sets up the link and restarts the Auto-Negotiation over the link. 1120 * 1121 * Return: the exit code of the operation. 1122 */ 1123 int ixgbe_aci_set_link_restart_an(struct ixgbe_hw *hw, bool ena_link) 1124 { 1125 struct ixgbe_aci_cmd_restart_an *cmd; 1126 struct ixgbe_aci_desc desc; 1127 1128 cmd = &desc.params.restart_an; 1129 1130 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_restart_an); 1131 1132 cmd->cmd_flags = IXGBE_ACI_RESTART_AN_LINK_RESTART; 1133 cmd->lport_num = hw->bus.func; 1134 if (ena_link) 1135 cmd->cmd_flags |= IXGBE_ACI_RESTART_AN_LINK_ENABLE; 1136 else 1137 cmd->cmd_flags &= ~IXGBE_ACI_RESTART_AN_LINK_ENABLE; 1138 1139 return ixgbe_aci_send_cmd(hw, &desc, NULL, 0); 1140 } 1141 1142 /** 1143 * ixgbe_is_media_cage_present - check if media cage is present 1144 * @hw: pointer to the HW struct 1145 * 1146 * Identify presence of media cage using the ACI command (0x06E0). 1147 * 1148 * Return: true if media cage is present, else false. If no cage, then 1149 * media type is backplane or BASE-T. 1150 */ 1151 static bool ixgbe_is_media_cage_present(struct ixgbe_hw *hw) 1152 { 1153 struct ixgbe_aci_cmd_get_link_topo *cmd; 1154 struct ixgbe_aci_desc desc; 1155 1156 cmd = &desc.params.get_link_topo; 1157 1158 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_link_topo); 1159 1160 cmd->addr.topo_params.node_type_ctx = 1161 FIELD_PREP(IXGBE_ACI_LINK_TOPO_NODE_CTX_M, 1162 IXGBE_ACI_LINK_TOPO_NODE_CTX_PORT); 1163 1164 /* Set node type. */ 1165 cmd->addr.topo_params.node_type_ctx |= 1166 FIELD_PREP(IXGBE_ACI_LINK_TOPO_NODE_TYPE_M, 1167 IXGBE_ACI_LINK_TOPO_NODE_TYPE_CAGE); 1168 1169 /* Node type cage can be used to determine if cage is present. If AQC 1170 * returns error (ENOENT), then no cage present. If no cage present then 1171 * connection type is backplane or BASE-T. 1172 */ 1173 return !ixgbe_aci_get_netlist_node(hw, cmd, NULL, NULL); 1174 } 1175 1176 /** 1177 * ixgbe_get_media_type_from_phy_type - Gets media type based on phy type 1178 * @hw: pointer to the HW struct 1179 * 1180 * Try to identify the media type based on the phy type. 1181 * If more than one media type, the ixgbe_media_type_unknown is returned. 1182 * First, phy_type_low is checked, then phy_type_high. 1183 * If none are identified, the ixgbe_media_type_unknown is returned 1184 * 1185 * Return: type of a media based on phy type in form of enum. 1186 */ 1187 static enum ixgbe_media_type 1188 ixgbe_get_media_type_from_phy_type(struct ixgbe_hw *hw) 1189 { 1190 struct ixgbe_link_status *hw_link_info; 1191 1192 if (!hw) 1193 return ixgbe_media_type_unknown; 1194 1195 hw_link_info = &hw->link.link_info; 1196 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high) 1197 /* If more than one media type is selected, report unknown */ 1198 return ixgbe_media_type_unknown; 1199 1200 if (hw_link_info->phy_type_low) { 1201 /* 1G SGMII is a special case where some DA cable PHYs 1202 * may show this as an option when it really shouldn't 1203 * be since SGMII is meant to be between a MAC and a PHY 1204 * in a backplane. Try to detect this case and handle it 1205 */ 1206 if (hw_link_info->phy_type_low == IXGBE_PHY_TYPE_LOW_1G_SGMII && 1207 (hw_link_info->module_type[IXGBE_ACI_MOD_TYPE_IDENT] == 1208 IXGBE_ACI_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE || 1209 hw_link_info->module_type[IXGBE_ACI_MOD_TYPE_IDENT] == 1210 IXGBE_ACI_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE)) 1211 return ixgbe_media_type_da; 1212 1213 switch (hw_link_info->phy_type_low) { 1214 case IXGBE_PHY_TYPE_LOW_1000BASE_SX: 1215 case IXGBE_PHY_TYPE_LOW_1000BASE_LX: 1216 case IXGBE_PHY_TYPE_LOW_10GBASE_SR: 1217 case IXGBE_PHY_TYPE_LOW_10GBASE_LR: 1218 case IXGBE_PHY_TYPE_LOW_25GBASE_SR: 1219 case IXGBE_PHY_TYPE_LOW_25GBASE_LR: 1220 return ixgbe_media_type_fiber; 1221 case IXGBE_PHY_TYPE_LOW_10G_SFI_AOC_ACC: 1222 case IXGBE_PHY_TYPE_LOW_25G_AUI_AOC_ACC: 1223 return ixgbe_media_type_fiber; 1224 case IXGBE_PHY_TYPE_LOW_100BASE_TX: 1225 case IXGBE_PHY_TYPE_LOW_1000BASE_T: 1226 case IXGBE_PHY_TYPE_LOW_2500BASE_T: 1227 case IXGBE_PHY_TYPE_LOW_5GBASE_T: 1228 case IXGBE_PHY_TYPE_LOW_10GBASE_T: 1229 case IXGBE_PHY_TYPE_LOW_25GBASE_T: 1230 return ixgbe_media_type_copper; 1231 case IXGBE_PHY_TYPE_LOW_10G_SFI_DA: 1232 case IXGBE_PHY_TYPE_LOW_25GBASE_CR: 1233 case IXGBE_PHY_TYPE_LOW_25GBASE_CR_S: 1234 case IXGBE_PHY_TYPE_LOW_25GBASE_CR1: 1235 return ixgbe_media_type_da; 1236 case IXGBE_PHY_TYPE_LOW_25G_AUI_C2C: 1237 if (ixgbe_is_media_cage_present(hw)) 1238 return ixgbe_media_type_aui; 1239 fallthrough; 1240 case IXGBE_PHY_TYPE_LOW_1000BASE_KX: 1241 case IXGBE_PHY_TYPE_LOW_2500BASE_KX: 1242 case IXGBE_PHY_TYPE_LOW_2500BASE_X: 1243 case IXGBE_PHY_TYPE_LOW_5GBASE_KR: 1244 case IXGBE_PHY_TYPE_LOW_10GBASE_KR_CR1: 1245 case IXGBE_PHY_TYPE_LOW_10G_SFI_C2C: 1246 case IXGBE_PHY_TYPE_LOW_25GBASE_KR: 1247 case IXGBE_PHY_TYPE_LOW_25GBASE_KR1: 1248 case IXGBE_PHY_TYPE_LOW_25GBASE_KR_S: 1249 return ixgbe_media_type_backplane; 1250 } 1251 } else { 1252 switch (hw_link_info->phy_type_high) { 1253 case IXGBE_PHY_TYPE_HIGH_10BASE_T: 1254 return ixgbe_media_type_copper; 1255 } 1256 } 1257 return ixgbe_media_type_unknown; 1258 } 1259 1260 /** 1261 * ixgbe_update_link_info - update status of the HW network link 1262 * @hw: pointer to the HW struct 1263 * 1264 * Update the status of the HW network link. 1265 * 1266 * Return: the exit code of the operation. 1267 */ 1268 int ixgbe_update_link_info(struct ixgbe_hw *hw) 1269 { 1270 struct ixgbe_aci_cmd_get_phy_caps_data *pcaps; 1271 struct ixgbe_link_status *li; 1272 int err; 1273 1274 if (!hw) 1275 return -EINVAL; 1276 1277 li = &hw->link.link_info; 1278 1279 err = ixgbe_aci_get_link_info(hw, true, NULL); 1280 if (err) 1281 return err; 1282 1283 if (!(li->link_info & IXGBE_ACI_MEDIA_AVAILABLE)) 1284 return 0; 1285 1286 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1287 if (!pcaps) 1288 return -ENOMEM; 1289 1290 err = ixgbe_aci_get_phy_caps(hw, false, IXGBE_ACI_REPORT_TOPO_CAP_MEDIA, 1291 pcaps); 1292 1293 if (!err) 1294 memcpy(li->module_type, &pcaps->module_type, 1295 sizeof(li->module_type)); 1296 1297 kfree(pcaps); 1298 1299 return err; 1300 } 1301 1302 /** 1303 * ixgbe_get_link_status - get status of the HW network link 1304 * @hw: pointer to the HW struct 1305 * @link_up: pointer to bool (true/false = linkup/linkdown) 1306 * 1307 * Variable link_up is true if link is up, false if link is down. 1308 * The variable link_up is invalid if status is non zero. As a 1309 * result of this call, link status reporting becomes enabled 1310 * 1311 * Return: the exit code of the operation. 1312 */ 1313 int ixgbe_get_link_status(struct ixgbe_hw *hw, bool *link_up) 1314 { 1315 if (!hw || !link_up) 1316 return -EINVAL; 1317 1318 if (hw->link.get_link_info) { 1319 int err = ixgbe_update_link_info(hw); 1320 1321 if (err) 1322 return err; 1323 } 1324 1325 *link_up = hw->link.link_info.link_info & IXGBE_ACI_LINK_UP; 1326 1327 return 0; 1328 } 1329 1330 /** 1331 * ixgbe_aci_get_link_info - get the link status 1332 * @hw: pointer to the HW struct 1333 * @ena_lse: enable/disable LinkStatusEvent reporting 1334 * @link: pointer to link status structure - optional 1335 * 1336 * Get the current Link Status using ACI command (0x607). 1337 * The current link can be optionally provided to update 1338 * the status. 1339 * 1340 * Return: the link status of the adapter. 1341 */ 1342 int ixgbe_aci_get_link_info(struct ixgbe_hw *hw, bool ena_lse, 1343 struct ixgbe_link_status *link) 1344 { 1345 struct ixgbe_aci_cmd_get_link_status_data link_data = {}; 1346 struct ixgbe_aci_cmd_get_link_status *resp; 1347 struct ixgbe_link_status *li_old, *li; 1348 struct ixgbe_fc_info *hw_fc_info; 1349 struct ixgbe_aci_desc desc; 1350 bool tx_pause, rx_pause; 1351 u8 cmd_flags; 1352 int err; 1353 1354 if (!hw) 1355 return -EINVAL; 1356 1357 li_old = &hw->link.link_info_old; 1358 li = &hw->link.link_info; 1359 hw_fc_info = &hw->fc; 1360 1361 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_link_status); 1362 cmd_flags = (ena_lse) ? IXGBE_ACI_LSE_ENA : IXGBE_ACI_LSE_DIS; 1363 resp = &desc.params.get_link_status; 1364 resp->cmd_flags = cpu_to_le16(cmd_flags); 1365 resp->lport_num = hw->bus.func; 1366 1367 err = ixgbe_aci_send_cmd(hw, &desc, &link_data, sizeof(link_data)); 1368 if (err) 1369 return err; 1370 1371 /* Save off old link status information. */ 1372 *li_old = *li; 1373 1374 /* Update current link status information. */ 1375 li->link_speed = le16_to_cpu(link_data.link_speed); 1376 li->phy_type_low = le64_to_cpu(link_data.phy_type_low); 1377 li->phy_type_high = le64_to_cpu(link_data.phy_type_high); 1378 li->link_info = link_data.link_info; 1379 li->link_cfg_err = link_data.link_cfg_err; 1380 li->an_info = link_data.an_info; 1381 li->ext_info = link_data.ext_info; 1382 li->max_frame_size = le16_to_cpu(link_data.max_frame_size); 1383 li->fec_info = link_data.cfg & IXGBE_ACI_FEC_MASK; 1384 li->topo_media_conflict = link_data.topo_media_conflict; 1385 li->pacing = link_data.cfg & (IXGBE_ACI_CFG_PACING_M | 1386 IXGBE_ACI_CFG_PACING_TYPE_M); 1387 1388 /* Update fc info. */ 1389 tx_pause = !!(link_data.an_info & IXGBE_ACI_LINK_PAUSE_TX); 1390 rx_pause = !!(link_data.an_info & IXGBE_ACI_LINK_PAUSE_RX); 1391 if (tx_pause && rx_pause) 1392 hw_fc_info->current_mode = ixgbe_fc_full; 1393 else if (tx_pause) 1394 hw_fc_info->current_mode = ixgbe_fc_tx_pause; 1395 else if (rx_pause) 1396 hw_fc_info->current_mode = ixgbe_fc_rx_pause; 1397 else 1398 hw_fc_info->current_mode = ixgbe_fc_none; 1399 1400 li->lse_ena = !!(le16_to_cpu(resp->cmd_flags) & 1401 IXGBE_ACI_LSE_IS_ENABLED); 1402 1403 /* Save link status information. */ 1404 if (link) 1405 *link = *li; 1406 1407 /* Flag cleared so calling functions don't call AQ again. */ 1408 hw->link.get_link_info = false; 1409 1410 return 0; 1411 } 1412 1413 /** 1414 * ixgbe_aci_set_event_mask - set event mask 1415 * @hw: pointer to the HW struct 1416 * @port_num: port number of the physical function 1417 * @mask: event mask to be set 1418 * 1419 * Set the event mask using ACI command (0x0613). 1420 * 1421 * Return: the exit code of the operation. 1422 */ 1423 int ixgbe_aci_set_event_mask(struct ixgbe_hw *hw, u8 port_num, u16 mask) 1424 { 1425 struct ixgbe_aci_cmd_set_event_mask *cmd; 1426 struct ixgbe_aci_desc desc; 1427 1428 cmd = &desc.params.set_event_mask; 1429 1430 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_set_event_mask); 1431 1432 cmd->lport_num = port_num; 1433 1434 cmd->event_mask = cpu_to_le16(mask); 1435 return ixgbe_aci_send_cmd(hw, &desc, NULL, 0); 1436 } 1437 1438 /** 1439 * ixgbe_configure_lse - enable/disable link status events 1440 * @hw: pointer to the HW struct 1441 * @activate: true for enable lse, false otherwise 1442 * @mask: event mask to be set; a set bit means deactivation of the 1443 * corresponding event 1444 * 1445 * Set the event mask and then enable or disable link status events 1446 * 1447 * Return: the exit code of the operation. 1448 */ 1449 int ixgbe_configure_lse(struct ixgbe_hw *hw, bool activate, u16 mask) 1450 { 1451 int err; 1452 1453 err = ixgbe_aci_set_event_mask(hw, (u8)hw->bus.func, mask); 1454 if (err) 1455 return err; 1456 1457 /* Enabling link status events generation by fw. */ 1458 return ixgbe_aci_get_link_info(hw, activate, NULL); 1459 } 1460 1461 /** 1462 * ixgbe_start_hw_e610 - Prepare hardware for Tx/Rx 1463 * @hw: pointer to hardware structure 1464 * 1465 * Get firmware version and start the hardware using the generic 1466 * start_hw() and ixgbe_start_hw_gen2() functions. 1467 * 1468 * Return: the exit code of the operation. 1469 */ 1470 static int ixgbe_start_hw_e610(struct ixgbe_hw *hw) 1471 { 1472 int err; 1473 1474 err = ixgbe_aci_get_fw_ver(hw); 1475 if (err) 1476 return err; 1477 1478 err = ixgbe_start_hw_generic(hw); 1479 if (err) 1480 return err; 1481 1482 ixgbe_start_hw_gen2(hw); 1483 1484 return 0; 1485 } 1486 1487 /** 1488 * ixgbe_get_media_type_e610 - Gets media type 1489 * @hw: pointer to the HW struct 1490 * 1491 * In order to get the media type, the function gets PHY 1492 * capabilities and later on use them to identify the PHY type 1493 * checking phy_type_high and phy_type_low. 1494 * 1495 * Return: the type of media in form of ixgbe_media_type enum 1496 * or ixgbe_media_type_unknown in case of an error. 1497 */ 1498 enum ixgbe_media_type ixgbe_get_media_type_e610(struct ixgbe_hw *hw) 1499 { 1500 struct ixgbe_aci_cmd_get_phy_caps_data pcaps; 1501 int rc; 1502 1503 rc = ixgbe_update_link_info(hw); 1504 if (rc) 1505 return ixgbe_media_type_unknown; 1506 1507 /* If there is no link but PHY (dongle) is available SW should use 1508 * Get PHY Caps admin command instead of Get Link Status, find most 1509 * significant bit that is set in PHY types reported by the command 1510 * and use it to discover media type. 1511 */ 1512 if (!(hw->link.link_info.link_info & IXGBE_ACI_LINK_UP) && 1513 (hw->link.link_info.link_info & IXGBE_ACI_MEDIA_AVAILABLE)) { 1514 int highest_bit; 1515 1516 /* Get PHY Capabilities */ 1517 rc = ixgbe_aci_get_phy_caps(hw, false, 1518 IXGBE_ACI_REPORT_TOPO_CAP_MEDIA, 1519 &pcaps); 1520 if (rc) 1521 return ixgbe_media_type_unknown; 1522 1523 highest_bit = fls64(le64_to_cpu(pcaps.phy_type_high)); 1524 if (highest_bit) { 1525 hw->link.link_info.phy_type_high = 1526 BIT_ULL(highest_bit - 1); 1527 hw->link.link_info.phy_type_low = 0; 1528 } else { 1529 highest_bit = fls64(le64_to_cpu(pcaps.phy_type_low)); 1530 if (highest_bit) { 1531 hw->link.link_info.phy_type_low = 1532 BIT_ULL(highest_bit - 1); 1533 hw->link.link_info.phy_type_high = 0; 1534 } 1535 } 1536 } 1537 1538 /* Based on link status or search above try to discover media type. */ 1539 hw->phy.media_type = ixgbe_get_media_type_from_phy_type(hw); 1540 1541 return hw->phy.media_type; 1542 } 1543 1544 /** 1545 * ixgbe_setup_link_e610 - Set up link 1546 * @hw: pointer to hardware structure 1547 * @speed: new link speed 1548 * @autoneg_wait: true when waiting for completion is needed 1549 * 1550 * Set up the link with the specified speed. 1551 * 1552 * Return: the exit code of the operation. 1553 */ 1554 int ixgbe_setup_link_e610(struct ixgbe_hw *hw, ixgbe_link_speed speed, 1555 bool autoneg_wait) 1556 { 1557 /* Simply request FW to perform proper PHY setup */ 1558 return hw->phy.ops.setup_link_speed(hw, speed, autoneg_wait); 1559 } 1560 1561 /** 1562 * ixgbe_check_link_e610 - Determine link and speed status 1563 * @hw: pointer to hardware structure 1564 * @speed: pointer to link speed 1565 * @link_up: true when link is up 1566 * @link_up_wait_to_complete: bool used to wait for link up or not 1567 * 1568 * Determine if the link is up and the current link speed 1569 * using ACI command (0x0607). 1570 * 1571 * Return: the exit code of the operation. 1572 */ 1573 int ixgbe_check_link_e610(struct ixgbe_hw *hw, ixgbe_link_speed *speed, 1574 bool *link_up, bool link_up_wait_to_complete) 1575 { 1576 int err; 1577 u32 i; 1578 1579 if (!speed || !link_up) 1580 return -EINVAL; 1581 1582 /* Set get_link_info flag to ensure that fresh 1583 * link information will be obtained from FW 1584 * by sending Get Link Status admin command. 1585 */ 1586 hw->link.get_link_info = true; 1587 1588 /* Update link information in adapter context. */ 1589 err = ixgbe_get_link_status(hw, link_up); 1590 if (err) 1591 return err; 1592 1593 /* Wait for link up if it was requested. */ 1594 if (link_up_wait_to_complete && !(*link_up)) { 1595 for (i = 0; i < hw->mac.max_link_up_time; i++) { 1596 msleep(100); 1597 hw->link.get_link_info = true; 1598 err = ixgbe_get_link_status(hw, link_up); 1599 if (err) 1600 return err; 1601 if (*link_up) 1602 break; 1603 } 1604 } 1605 1606 /* Use link information in adapter context updated by the call 1607 * to ixgbe_get_link_status() to determine current link speed. 1608 * Link speed information is valid only when link up was 1609 * reported by FW. 1610 */ 1611 if (*link_up) { 1612 switch (hw->link.link_info.link_speed) { 1613 case IXGBE_ACI_LINK_SPEED_10MB: 1614 *speed = IXGBE_LINK_SPEED_10_FULL; 1615 break; 1616 case IXGBE_ACI_LINK_SPEED_100MB: 1617 *speed = IXGBE_LINK_SPEED_100_FULL; 1618 break; 1619 case IXGBE_ACI_LINK_SPEED_1000MB: 1620 *speed = IXGBE_LINK_SPEED_1GB_FULL; 1621 break; 1622 case IXGBE_ACI_LINK_SPEED_2500MB: 1623 *speed = IXGBE_LINK_SPEED_2_5GB_FULL; 1624 break; 1625 case IXGBE_ACI_LINK_SPEED_5GB: 1626 *speed = IXGBE_LINK_SPEED_5GB_FULL; 1627 break; 1628 case IXGBE_ACI_LINK_SPEED_10GB: 1629 *speed = IXGBE_LINK_SPEED_10GB_FULL; 1630 break; 1631 default: 1632 *speed = IXGBE_LINK_SPEED_UNKNOWN; 1633 break; 1634 } 1635 } else { 1636 *speed = IXGBE_LINK_SPEED_UNKNOWN; 1637 } 1638 1639 return 0; 1640 } 1641 1642 /** 1643 * ixgbe_get_link_capabilities_e610 - Determine link capabilities 1644 * @hw: pointer to hardware structure 1645 * @speed: pointer to link speed 1646 * @autoneg: true when autoneg or autotry is enabled 1647 * 1648 * Determine speed and AN parameters of a link. 1649 * 1650 * Return: the exit code of the operation. 1651 */ 1652 int ixgbe_get_link_capabilities_e610(struct ixgbe_hw *hw, 1653 ixgbe_link_speed *speed, 1654 bool *autoneg) 1655 { 1656 if (!speed || !autoneg) 1657 return -EINVAL; 1658 1659 *autoneg = true; 1660 *speed = hw->phy.speeds_supported; 1661 1662 return 0; 1663 } 1664 1665 /** 1666 * ixgbe_cfg_phy_fc - Configure PHY Flow Control (FC) data based on FC mode 1667 * @hw: pointer to hardware structure 1668 * @cfg: PHY configuration data to set FC mode 1669 * @req_mode: FC mode to configure 1670 * 1671 * Configures PHY Flow Control according to the provided configuration. 1672 * 1673 * Return: the exit code of the operation. 1674 */ 1675 int ixgbe_cfg_phy_fc(struct ixgbe_hw *hw, 1676 struct ixgbe_aci_cmd_set_phy_cfg_data *cfg, 1677 enum ixgbe_fc_mode req_mode) 1678 { 1679 u8 pause_mask = 0x0; 1680 1681 if (!cfg) 1682 return -EINVAL; 1683 1684 switch (req_mode) { 1685 case ixgbe_fc_full: 1686 pause_mask |= IXGBE_ACI_PHY_EN_TX_LINK_PAUSE; 1687 pause_mask |= IXGBE_ACI_PHY_EN_RX_LINK_PAUSE; 1688 break; 1689 case ixgbe_fc_rx_pause: 1690 pause_mask |= IXGBE_ACI_PHY_EN_RX_LINK_PAUSE; 1691 break; 1692 case ixgbe_fc_tx_pause: 1693 pause_mask |= IXGBE_ACI_PHY_EN_TX_LINK_PAUSE; 1694 break; 1695 default: 1696 break; 1697 } 1698 1699 /* Clear the old pause settings. */ 1700 cfg->caps &= ~(IXGBE_ACI_PHY_EN_TX_LINK_PAUSE | 1701 IXGBE_ACI_PHY_EN_RX_LINK_PAUSE); 1702 1703 /* Set the new capabilities. */ 1704 cfg->caps |= pause_mask; 1705 1706 return 0; 1707 } 1708 1709 /** 1710 * ixgbe_setup_fc_e610 - Set up flow control 1711 * @hw: pointer to hardware structure 1712 * 1713 * Set up flow control. This has to be done during init time. 1714 * 1715 * Return: the exit code of the operation. 1716 */ 1717 int ixgbe_setup_fc_e610(struct ixgbe_hw *hw) 1718 { 1719 struct ixgbe_aci_cmd_get_phy_caps_data pcaps = {}; 1720 struct ixgbe_aci_cmd_set_phy_cfg_data cfg = {}; 1721 int err; 1722 1723 /* Get the current PHY config */ 1724 err = ixgbe_aci_get_phy_caps(hw, false, 1725 IXGBE_ACI_REPORT_ACTIVE_CFG, &pcaps); 1726 if (err) 1727 return err; 1728 1729 ixgbe_copy_phy_caps_to_cfg(&pcaps, &cfg); 1730 1731 /* Configure the set PHY data */ 1732 err = ixgbe_cfg_phy_fc(hw, &cfg, hw->fc.requested_mode); 1733 if (err) 1734 return err; 1735 1736 /* If the capabilities have changed, then set the new config */ 1737 if (cfg.caps != pcaps.caps) { 1738 cfg.caps |= IXGBE_ACI_PHY_ENA_AUTO_LINK_UPDT; 1739 1740 err = ixgbe_aci_set_phy_cfg(hw, &cfg); 1741 if (err) 1742 return err; 1743 } 1744 1745 return err; 1746 } 1747 1748 /** 1749 * ixgbe_fc_autoneg_e610 - Configure flow control 1750 * @hw: pointer to hardware structure 1751 * 1752 * Configure Flow Control. 1753 */ 1754 void ixgbe_fc_autoneg_e610(struct ixgbe_hw *hw) 1755 { 1756 int err; 1757 1758 /* Get current link err. 1759 * Current FC mode will be stored in the hw context. 1760 */ 1761 err = ixgbe_aci_get_link_info(hw, false, NULL); 1762 if (err) 1763 goto no_autoneg; 1764 1765 /* Check if the link is up */ 1766 if (!(hw->link.link_info.link_info & IXGBE_ACI_LINK_UP)) 1767 goto no_autoneg; 1768 1769 /* Check if auto-negotiation has completed */ 1770 if (!(hw->link.link_info.an_info & IXGBE_ACI_AN_COMPLETED)) 1771 goto no_autoneg; 1772 1773 hw->fc.fc_was_autonegged = true; 1774 return; 1775 1776 no_autoneg: 1777 hw->fc.fc_was_autonegged = false; 1778 hw->fc.current_mode = hw->fc.requested_mode; 1779 } 1780 1781 /** 1782 * ixgbe_disable_rx_e610 - Disable RX unit 1783 * @hw: pointer to hardware structure 1784 * 1785 * Disable RX DMA unit on E610 with use of ACI command (0x000C). 1786 * 1787 * Return: the exit code of the operation. 1788 */ 1789 void ixgbe_disable_rx_e610(struct ixgbe_hw *hw) 1790 { 1791 u32 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL); 1792 u32 pfdtxgswc; 1793 int err; 1794 1795 if (!(rxctrl & IXGBE_RXCTRL_RXEN)) 1796 return; 1797 1798 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC); 1799 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) { 1800 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN; 1801 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc); 1802 hw->mac.set_lben = true; 1803 } else { 1804 hw->mac.set_lben = false; 1805 } 1806 1807 err = ixgbe_aci_disable_rxen(hw); 1808 1809 /* If we fail - disable RX using register write */ 1810 if (err) { 1811 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL); 1812 if (rxctrl & IXGBE_RXCTRL_RXEN) { 1813 rxctrl &= ~IXGBE_RXCTRL_RXEN; 1814 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl); 1815 } 1816 } 1817 } 1818 1819 /** 1820 * ixgbe_fw_recovery_mode_e610 - Check FW NVM recovery mode 1821 * @hw: pointer to hardware structure 1822 * 1823 * Check FW NVM recovery mode by reading the value of 1824 * the dedicated register. 1825 * 1826 * Return: true if FW is in recovery mode, otherwise false. 1827 */ 1828 static bool ixgbe_fw_recovery_mode_e610(struct ixgbe_hw *hw) 1829 { 1830 u32 fwsm = IXGBE_READ_REG(hw, IXGBE_GL_MNG_FWSM); 1831 1832 return !!(fwsm & IXGBE_GL_MNG_FWSM_RECOVERY_M); 1833 } 1834 1835 /** 1836 * ixgbe_fw_rollback_mode_e610 - Check FW NVM rollback mode 1837 * @hw: pointer to hardware structure 1838 * 1839 * Check FW NVM rollback mode by reading the value of 1840 * the dedicated register. 1841 * 1842 * Return: true if FW is in rollback mode, otherwise false. 1843 */ 1844 static bool ixgbe_fw_rollback_mode_e610(struct ixgbe_hw *hw) 1845 { 1846 u32 fwsm = IXGBE_READ_REG(hw, IXGBE_GL_MNG_FWSM); 1847 1848 return !!(fwsm & IXGBE_GL_MNG_FWSM_ROLLBACK_M); 1849 } 1850 1851 /** 1852 * ixgbe_init_phy_ops_e610 - PHY specific init 1853 * @hw: pointer to hardware structure 1854 * 1855 * Initialize any function pointers that were not able to be 1856 * set during init_shared_code because the PHY type was not known. 1857 * 1858 * Return: the exit code of the operation. 1859 */ 1860 int ixgbe_init_phy_ops_e610(struct ixgbe_hw *hw) 1861 { 1862 struct ixgbe_mac_info *mac = &hw->mac; 1863 struct ixgbe_phy_info *phy = &hw->phy; 1864 1865 if (mac->ops.get_media_type(hw) == ixgbe_media_type_copper) 1866 phy->ops.set_phy_power = ixgbe_set_phy_power_e610; 1867 else 1868 phy->ops.set_phy_power = NULL; 1869 1870 /* Identify the PHY */ 1871 return phy->ops.identify(hw); 1872 } 1873 1874 /** 1875 * ixgbe_identify_phy_e610 - Identify PHY 1876 * @hw: pointer to hardware structure 1877 * 1878 * Determine PHY type, supported speeds and PHY ID. 1879 * 1880 * Return: the exit code of the operation. 1881 */ 1882 int ixgbe_identify_phy_e610(struct ixgbe_hw *hw) 1883 { 1884 struct ixgbe_aci_cmd_get_phy_caps_data pcaps; 1885 u64 phy_type_low, phy_type_high; 1886 int err; 1887 1888 /* Set PHY type */ 1889 hw->phy.type = ixgbe_phy_fw; 1890 1891 err = ixgbe_aci_get_phy_caps(hw, false, 1892 IXGBE_ACI_REPORT_TOPO_CAP_MEDIA, &pcaps); 1893 if (err) 1894 return err; 1895 1896 if (!(pcaps.module_compliance_enforcement & 1897 IXGBE_ACI_MOD_ENFORCE_STRICT_MODE)) { 1898 /* Handle lenient mode */ 1899 err = ixgbe_aci_get_phy_caps(hw, false, 1900 IXGBE_ACI_REPORT_TOPO_CAP_NO_MEDIA, 1901 &pcaps); 1902 if (err) 1903 return err; 1904 } 1905 1906 /* Determine supported speeds */ 1907 hw->phy.speeds_supported = IXGBE_LINK_SPEED_UNKNOWN; 1908 phy_type_high = le64_to_cpu(pcaps.phy_type_high); 1909 phy_type_low = le64_to_cpu(pcaps.phy_type_low); 1910 1911 if (phy_type_high & IXGBE_PHY_TYPE_HIGH_10BASE_T || 1912 phy_type_high & IXGBE_PHY_TYPE_HIGH_10M_SGMII) 1913 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10_FULL; 1914 if (phy_type_low & IXGBE_PHY_TYPE_LOW_100BASE_TX || 1915 phy_type_low & IXGBE_PHY_TYPE_LOW_100M_SGMII || 1916 phy_type_high & IXGBE_PHY_TYPE_HIGH_100M_USXGMII) 1917 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL; 1918 if (phy_type_low & IXGBE_PHY_TYPE_LOW_1000BASE_T || 1919 phy_type_low & IXGBE_PHY_TYPE_LOW_1000BASE_SX || 1920 phy_type_low & IXGBE_PHY_TYPE_LOW_1000BASE_LX || 1921 phy_type_low & IXGBE_PHY_TYPE_LOW_1000BASE_KX || 1922 phy_type_low & IXGBE_PHY_TYPE_LOW_1G_SGMII || 1923 phy_type_high & IXGBE_PHY_TYPE_HIGH_1G_USXGMII) 1924 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL; 1925 if (phy_type_low & IXGBE_PHY_TYPE_LOW_10GBASE_T || 1926 phy_type_low & IXGBE_PHY_TYPE_LOW_10G_SFI_DA || 1927 phy_type_low & IXGBE_PHY_TYPE_LOW_10GBASE_SR || 1928 phy_type_low & IXGBE_PHY_TYPE_LOW_10GBASE_LR || 1929 phy_type_low & IXGBE_PHY_TYPE_LOW_10GBASE_KR_CR1 || 1930 phy_type_low & IXGBE_PHY_TYPE_LOW_10G_SFI_AOC_ACC || 1931 phy_type_low & IXGBE_PHY_TYPE_LOW_10G_SFI_C2C || 1932 phy_type_high & IXGBE_PHY_TYPE_HIGH_10G_USXGMII) 1933 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL; 1934 1935 /* 2.5 and 5 Gbps link speeds must be excluded from the 1936 * auto-negotiation set used during driver initialization due to 1937 * compatibility issues with certain switches. Those issues do not 1938 * exist in case of E610 2.5G SKU device (0x57b1). 1939 */ 1940 if (!hw->phy.autoneg_advertised && 1941 hw->device_id != IXGBE_DEV_ID_E610_2_5G_T) 1942 hw->phy.autoneg_advertised = hw->phy.speeds_supported; 1943 1944 if (phy_type_low & IXGBE_PHY_TYPE_LOW_2500BASE_T || 1945 phy_type_low & IXGBE_PHY_TYPE_LOW_2500BASE_X || 1946 phy_type_low & IXGBE_PHY_TYPE_LOW_2500BASE_KX || 1947 phy_type_high & IXGBE_PHY_TYPE_HIGH_2500M_SGMII || 1948 phy_type_high & IXGBE_PHY_TYPE_HIGH_2500M_USXGMII) 1949 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL; 1950 1951 if (!hw->phy.autoneg_advertised && 1952 hw->device_id == IXGBE_DEV_ID_E610_2_5G_T) 1953 hw->phy.autoneg_advertised = hw->phy.speeds_supported; 1954 1955 if (phy_type_low & IXGBE_PHY_TYPE_LOW_5GBASE_T || 1956 phy_type_low & IXGBE_PHY_TYPE_LOW_5GBASE_KR || 1957 phy_type_high & IXGBE_PHY_TYPE_HIGH_5G_USXGMII) 1958 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL; 1959 1960 /* Set PHY ID */ 1961 memcpy(&hw->phy.id, pcaps.phy_id_oui, sizeof(u32)); 1962 1963 hw->phy.eee_speeds_supported = IXGBE_LINK_SPEED_10_FULL | 1964 IXGBE_LINK_SPEED_100_FULL | 1965 IXGBE_LINK_SPEED_1GB_FULL; 1966 hw->phy.eee_speeds_advertised = hw->phy.eee_speeds_supported; 1967 1968 return 0; 1969 } 1970 1971 /** 1972 * ixgbe_identify_module_e610 - Identify SFP module type 1973 * @hw: pointer to hardware structure 1974 * 1975 * Identify the SFP module type. 1976 * 1977 * Return: the exit code of the operation. 1978 */ 1979 int ixgbe_identify_module_e610(struct ixgbe_hw *hw) 1980 { 1981 bool media_available; 1982 u8 module_type; 1983 int err; 1984 1985 err = ixgbe_update_link_info(hw); 1986 if (err) 1987 return err; 1988 1989 media_available = 1990 (hw->link.link_info.link_info & IXGBE_ACI_MEDIA_AVAILABLE); 1991 1992 if (media_available) { 1993 hw->phy.sfp_type = ixgbe_sfp_type_unknown; 1994 1995 /* Get module type from hw context updated by 1996 * ixgbe_update_link_info() 1997 */ 1998 module_type = hw->link.link_info.module_type[IXGBE_ACI_MOD_TYPE_IDENT]; 1999 2000 if ((module_type & IXGBE_ACI_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE) || 2001 (module_type & IXGBE_ACI_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE)) { 2002 hw->phy.sfp_type = ixgbe_sfp_type_da_cu; 2003 } else if (module_type & IXGBE_ACI_MOD_TYPE_BYTE1_10G_BASE_SR) { 2004 hw->phy.sfp_type = ixgbe_sfp_type_sr; 2005 } else if ((module_type & IXGBE_ACI_MOD_TYPE_BYTE1_10G_BASE_LR) || 2006 (module_type & IXGBE_ACI_MOD_TYPE_BYTE1_10G_BASE_LRM)) { 2007 hw->phy.sfp_type = ixgbe_sfp_type_lr; 2008 } 2009 } else { 2010 hw->phy.sfp_type = ixgbe_sfp_type_not_present; 2011 return -ENOENT; 2012 } 2013 2014 return 0; 2015 } 2016 2017 /** 2018 * ixgbe_setup_phy_link_e610 - Sets up firmware-controlled PHYs 2019 * @hw: pointer to hardware structure 2020 * 2021 * Set the parameters for the firmware-controlled PHYs. 2022 * 2023 * Return: the exit code of the operation. 2024 */ 2025 int ixgbe_setup_phy_link_e610(struct ixgbe_hw *hw) 2026 { 2027 struct ixgbe_aci_cmd_get_phy_caps_data pcaps; 2028 struct ixgbe_aci_cmd_set_phy_cfg_data pcfg; 2029 u8 rmode = IXGBE_ACI_REPORT_TOPO_CAP_MEDIA; 2030 u64 sup_phy_type_low, sup_phy_type_high; 2031 u64 phy_type_low = 0, phy_type_high = 0; 2032 int err; 2033 2034 err = ixgbe_aci_get_link_info(hw, false, NULL); 2035 if (err) 2036 return err; 2037 2038 /* If media is not available get default config. */ 2039 if (!(hw->link.link_info.link_info & IXGBE_ACI_MEDIA_AVAILABLE)) 2040 rmode = IXGBE_ACI_REPORT_DFLT_CFG; 2041 2042 err = ixgbe_aci_get_phy_caps(hw, false, rmode, &pcaps); 2043 if (err) 2044 return err; 2045 2046 sup_phy_type_low = le64_to_cpu(pcaps.phy_type_low); 2047 sup_phy_type_high = le64_to_cpu(pcaps.phy_type_high); 2048 2049 /* Get Active configuration to avoid unintended changes. */ 2050 err = ixgbe_aci_get_phy_caps(hw, false, IXGBE_ACI_REPORT_ACTIVE_CFG, 2051 &pcaps); 2052 if (err) 2053 return err; 2054 2055 ixgbe_copy_phy_caps_to_cfg(&pcaps, &pcfg); 2056 2057 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10_FULL) { 2058 phy_type_high |= IXGBE_PHY_TYPE_HIGH_10BASE_T; 2059 phy_type_high |= IXGBE_PHY_TYPE_HIGH_10M_SGMII; 2060 } 2061 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) { 2062 phy_type_low |= IXGBE_PHY_TYPE_LOW_100BASE_TX; 2063 phy_type_low |= IXGBE_PHY_TYPE_LOW_100M_SGMII; 2064 phy_type_high |= IXGBE_PHY_TYPE_HIGH_100M_USXGMII; 2065 } 2066 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) { 2067 phy_type_low |= IXGBE_PHY_TYPE_LOW_1000BASE_T; 2068 phy_type_low |= IXGBE_PHY_TYPE_LOW_1000BASE_SX; 2069 phy_type_low |= IXGBE_PHY_TYPE_LOW_1000BASE_LX; 2070 phy_type_low |= IXGBE_PHY_TYPE_LOW_1000BASE_KX; 2071 phy_type_low |= IXGBE_PHY_TYPE_LOW_1G_SGMII; 2072 phy_type_high |= IXGBE_PHY_TYPE_HIGH_1G_USXGMII; 2073 } 2074 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_2_5GB_FULL) { 2075 phy_type_low |= IXGBE_PHY_TYPE_LOW_2500BASE_T; 2076 phy_type_low |= IXGBE_PHY_TYPE_LOW_2500BASE_X; 2077 phy_type_low |= IXGBE_PHY_TYPE_LOW_2500BASE_KX; 2078 phy_type_high |= IXGBE_PHY_TYPE_HIGH_2500M_SGMII; 2079 phy_type_high |= IXGBE_PHY_TYPE_HIGH_2500M_USXGMII; 2080 } 2081 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) { 2082 phy_type_low |= IXGBE_PHY_TYPE_LOW_5GBASE_T; 2083 phy_type_low |= IXGBE_PHY_TYPE_LOW_5GBASE_KR; 2084 phy_type_high |= IXGBE_PHY_TYPE_HIGH_5G_USXGMII; 2085 } 2086 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) { 2087 phy_type_low |= IXGBE_PHY_TYPE_LOW_10GBASE_T; 2088 phy_type_low |= IXGBE_PHY_TYPE_LOW_10G_SFI_DA; 2089 phy_type_low |= IXGBE_PHY_TYPE_LOW_10GBASE_SR; 2090 phy_type_low |= IXGBE_PHY_TYPE_LOW_10GBASE_LR; 2091 phy_type_low |= IXGBE_PHY_TYPE_LOW_10GBASE_KR_CR1; 2092 phy_type_low |= IXGBE_PHY_TYPE_LOW_10G_SFI_AOC_ACC; 2093 phy_type_low |= IXGBE_PHY_TYPE_LOW_10G_SFI_C2C; 2094 phy_type_high |= IXGBE_PHY_TYPE_HIGH_10G_USXGMII; 2095 } 2096 2097 /* Mask the set values to avoid requesting unsupported link types. */ 2098 phy_type_low &= sup_phy_type_low; 2099 pcfg.phy_type_low = cpu_to_le64(phy_type_low); 2100 phy_type_high &= sup_phy_type_high; 2101 pcfg.phy_type_high = cpu_to_le64(phy_type_high); 2102 2103 if (pcfg.phy_type_high != pcaps.phy_type_high || 2104 pcfg.phy_type_low != pcaps.phy_type_low || 2105 pcfg.caps != pcaps.caps) { 2106 pcfg.caps |= IXGBE_ACI_PHY_ENA_LINK; 2107 pcfg.caps |= IXGBE_ACI_PHY_ENA_AUTO_LINK_UPDT; 2108 2109 err = ixgbe_aci_set_phy_cfg(hw, &pcfg); 2110 if (err) 2111 return err; 2112 } 2113 2114 return 0; 2115 } 2116 2117 /** 2118 * ixgbe_set_phy_power_e610 - Control power for copper PHY 2119 * @hw: pointer to hardware structure 2120 * @on: true for on, false for off 2121 * 2122 * Set the power on/off of the PHY 2123 * by getting its capabilities and setting the appropriate 2124 * configuration parameters. 2125 * 2126 * Return: the exit code of the operation. 2127 */ 2128 int ixgbe_set_phy_power_e610(struct ixgbe_hw *hw, bool on) 2129 { 2130 struct ixgbe_aci_cmd_get_phy_caps_data phy_caps = {}; 2131 struct ixgbe_aci_cmd_set_phy_cfg_data phy_cfg = {}; 2132 int err; 2133 2134 err = ixgbe_aci_get_phy_caps(hw, false, 2135 IXGBE_ACI_REPORT_ACTIVE_CFG, 2136 &phy_caps); 2137 if (err) 2138 return err; 2139 2140 ixgbe_copy_phy_caps_to_cfg(&phy_caps, &phy_cfg); 2141 2142 if (on) 2143 phy_cfg.caps &= ~IXGBE_ACI_PHY_ENA_LOW_POWER; 2144 else 2145 phy_cfg.caps |= IXGBE_ACI_PHY_ENA_LOW_POWER; 2146 2147 /* PHY is already in requested power mode. */ 2148 if (phy_caps.caps == phy_cfg.caps) 2149 return 0; 2150 2151 phy_cfg.caps |= IXGBE_ACI_PHY_ENA_LINK; 2152 phy_cfg.caps |= IXGBE_ACI_PHY_ENA_AUTO_LINK_UPDT; 2153 2154 return ixgbe_aci_set_phy_cfg(hw, &phy_cfg); 2155 } 2156 2157 /** 2158 * ixgbe_enter_lplu_e610 - Transition to low power states 2159 * @hw: pointer to hardware structure 2160 * 2161 * Configures Low Power Link Up on transition to low power states 2162 * (from D0 to non-D0). Link is required to enter LPLU so avoid resetting the 2163 * X557 PHY immediately prior to entering LPLU. 2164 * 2165 * Return: the exit code of the operation. 2166 */ 2167 int ixgbe_enter_lplu_e610(struct ixgbe_hw *hw) 2168 { 2169 struct ixgbe_aci_cmd_get_phy_caps_data phy_caps = {}; 2170 struct ixgbe_aci_cmd_set_phy_cfg_data phy_cfg = {}; 2171 int err; 2172 2173 err = ixgbe_aci_get_phy_caps(hw, false, 2174 IXGBE_ACI_REPORT_ACTIVE_CFG, 2175 &phy_caps); 2176 if (err) 2177 return err; 2178 2179 ixgbe_copy_phy_caps_to_cfg(&phy_caps, &phy_cfg); 2180 2181 phy_cfg.low_power_ctrl_an |= IXGBE_ACI_PHY_EN_D3COLD_LOW_POWER_AUTONEG; 2182 2183 return ixgbe_aci_set_phy_cfg(hw, &phy_cfg); 2184 } 2185 2186 /** 2187 * ixgbe_init_eeprom_params_e610 - Initialize EEPROM params 2188 * @hw: pointer to hardware structure 2189 * 2190 * Initialize the EEPROM parameters ixgbe_eeprom_info within the ixgbe_hw 2191 * struct in order to set up EEPROM access. 2192 * 2193 * Return: the operation exit code. 2194 */ 2195 int ixgbe_init_eeprom_params_e610(struct ixgbe_hw *hw) 2196 { 2197 struct ixgbe_eeprom_info *eeprom = &hw->eeprom; 2198 u32 gens_stat; 2199 u8 sr_size; 2200 2201 if (eeprom->type != ixgbe_eeprom_uninitialized) 2202 return 0; 2203 2204 eeprom->type = ixgbe_flash; 2205 2206 gens_stat = IXGBE_READ_REG(hw, GLNVM_GENS); 2207 sr_size = FIELD_GET(GLNVM_GENS_SR_SIZE_M, gens_stat); 2208 2209 /* Switching to words (sr_size contains power of 2). */ 2210 eeprom->word_size = BIT(sr_size) * IXGBE_SR_WORDS_IN_1KB; 2211 2212 hw_dbg(hw, "Eeprom params: type = %d, size = %d\n", eeprom->type, 2213 eeprom->word_size); 2214 2215 return 0; 2216 } 2217 2218 /** 2219 * ixgbe_aci_get_netlist_node - get a node handle 2220 * @hw: pointer to the hw struct 2221 * @cmd: get_link_topo AQ structure 2222 * @node_part_number: output node part number if node found 2223 * @node_handle: output node handle parameter if node found 2224 * 2225 * Get the netlist node and assigns it to 2226 * the provided handle using ACI command (0x06E0). 2227 * 2228 * Return: the exit code of the operation. 2229 */ 2230 int ixgbe_aci_get_netlist_node(struct ixgbe_hw *hw, 2231 struct ixgbe_aci_cmd_get_link_topo *cmd, 2232 u8 *node_part_number, u16 *node_handle) 2233 { 2234 struct ixgbe_aci_desc desc; 2235 2236 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_link_topo); 2237 desc.params.get_link_topo = *cmd; 2238 2239 if (ixgbe_aci_send_cmd(hw, &desc, NULL, 0)) 2240 return -EOPNOTSUPP; 2241 2242 if (node_handle) 2243 *node_handle = 2244 le16_to_cpu(desc.params.get_link_topo.addr.handle); 2245 if (node_part_number) 2246 *node_part_number = desc.params.get_link_topo.node_part_num; 2247 2248 return 0; 2249 } 2250 2251 /** 2252 * ixgbe_acquire_nvm - Generic request for acquiring the NVM ownership 2253 * @hw: pointer to the HW structure 2254 * @access: NVM access type (read or write) 2255 * 2256 * Request NVM ownership. 2257 * 2258 * Return: the exit code of the operation. 2259 */ 2260 int ixgbe_acquire_nvm(struct ixgbe_hw *hw, 2261 enum ixgbe_aci_res_access_type access) 2262 { 2263 u32 fla; 2264 2265 /* Skip if we are in blank NVM programming mode */ 2266 fla = IXGBE_READ_REG(hw, IXGBE_GLNVM_FLA); 2267 if ((fla & IXGBE_GLNVM_FLA_LOCKED_M) == 0) 2268 return 0; 2269 2270 return ixgbe_acquire_res(hw, IXGBE_NVM_RES_ID, access, 2271 IXGBE_NVM_TIMEOUT); 2272 } 2273 2274 /** 2275 * ixgbe_release_nvm - Generic request for releasing the NVM ownership 2276 * @hw: pointer to the HW structure 2277 * 2278 * Release NVM ownership. 2279 */ 2280 void ixgbe_release_nvm(struct ixgbe_hw *hw) 2281 { 2282 u32 fla; 2283 2284 /* Skip if we are in blank NVM programming mode */ 2285 fla = IXGBE_READ_REG(hw, IXGBE_GLNVM_FLA); 2286 if ((fla & IXGBE_GLNVM_FLA_LOCKED_M) == 0) 2287 return; 2288 2289 ixgbe_release_res(hw, IXGBE_NVM_RES_ID); 2290 } 2291 2292 /** 2293 * ixgbe_aci_read_nvm - read NVM 2294 * @hw: pointer to the HW struct 2295 * @module_typeid: module pointer location in words from the NVM beginning 2296 * @offset: byte offset from the module beginning 2297 * @length: length of the section to be read (in bytes from the offset) 2298 * @data: command buffer (size [bytes] = length) 2299 * @last_command: tells if this is the last command in a series 2300 * @read_shadow_ram: tell if this is a shadow RAM read 2301 * 2302 * Read the NVM using ACI command (0x0701). 2303 * 2304 * Return: the exit code of the operation. 2305 */ 2306 int ixgbe_aci_read_nvm(struct ixgbe_hw *hw, u16 module_typeid, u32 offset, 2307 u16 length, void *data, bool last_command, 2308 bool read_shadow_ram) 2309 { 2310 struct ixgbe_aci_cmd_nvm *cmd; 2311 struct ixgbe_aci_desc desc; 2312 2313 if (offset > IXGBE_ACI_NVM_MAX_OFFSET) 2314 return -EINVAL; 2315 2316 cmd = &desc.params.nvm; 2317 2318 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_read); 2319 2320 if (!read_shadow_ram && module_typeid == IXGBE_ACI_NVM_START_POINT) 2321 cmd->cmd_flags |= IXGBE_ACI_NVM_FLASH_ONLY; 2322 2323 /* If this is the last command in a series, set the proper flag. */ 2324 if (last_command) 2325 cmd->cmd_flags |= IXGBE_ACI_NVM_LAST_CMD; 2326 cmd->module_typeid = cpu_to_le16(module_typeid); 2327 cmd->offset_low = cpu_to_le16(offset & 0xFFFF); 2328 cmd->offset_high = (offset >> 16) & 0xFF; 2329 cmd->length = cpu_to_le16(length); 2330 2331 return ixgbe_aci_send_cmd(hw, &desc, data, length); 2332 } 2333 2334 /** 2335 * ixgbe_aci_erase_nvm - erase NVM sector 2336 * @hw: pointer to the HW struct 2337 * @module_typeid: module pointer location in words from the NVM beginning 2338 * 2339 * Erase the NVM sector using the ACI command (0x0702). 2340 * 2341 * Return: the exit code of the operation. 2342 */ 2343 int ixgbe_aci_erase_nvm(struct ixgbe_hw *hw, u16 module_typeid) 2344 { 2345 struct ixgbe_aci_cmd_nvm *cmd; 2346 struct ixgbe_aci_desc desc; 2347 __le16 len; 2348 int err; 2349 2350 /* Read a length value from SR, so module_typeid is equal to 0, 2351 * calculate offset where module size is placed from bytes to words 2352 * set last command and read from SR values to true. 2353 */ 2354 err = ixgbe_aci_read_nvm(hw, 0, 2 * module_typeid + 2, 2, &len, true, 2355 true); 2356 if (err) 2357 return err; 2358 2359 cmd = &desc.params.nvm; 2360 2361 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_erase); 2362 2363 cmd->module_typeid = cpu_to_le16(module_typeid); 2364 cmd->length = len; 2365 cmd->offset_low = 0; 2366 cmd->offset_high = 0; 2367 2368 return ixgbe_aci_send_cmd(hw, &desc, NULL, 0); 2369 } 2370 2371 /** 2372 * ixgbe_aci_update_nvm - update NVM 2373 * @hw: pointer to the HW struct 2374 * @module_typeid: module pointer location in words from the NVM beginning 2375 * @offset: byte offset from the module beginning 2376 * @length: length of the section to be written (in bytes from the offset) 2377 * @data: command buffer (size [bytes] = length) 2378 * @last_command: tells if this is the last command in a series 2379 * @command_flags: command parameters 2380 * 2381 * Update the NVM using the ACI command (0x0703). 2382 * 2383 * Return: the exit code of the operation. 2384 */ 2385 int ixgbe_aci_update_nvm(struct ixgbe_hw *hw, u16 module_typeid, 2386 u32 offset, u16 length, void *data, 2387 bool last_command, u8 command_flags) 2388 { 2389 struct ixgbe_aci_cmd_nvm *cmd; 2390 struct ixgbe_aci_desc desc; 2391 2392 cmd = &desc.params.nvm; 2393 2394 /* In offset the highest byte must be zeroed. */ 2395 if (offset & 0xFF000000) 2396 return -EINVAL; 2397 2398 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_write); 2399 2400 cmd->cmd_flags |= command_flags; 2401 2402 /* If this is the last command in a series, set the proper flag. */ 2403 if (last_command) 2404 cmd->cmd_flags |= IXGBE_ACI_NVM_LAST_CMD; 2405 cmd->module_typeid = cpu_to_le16(module_typeid); 2406 cmd->offset_low = cpu_to_le16(offset & 0xFFFF); 2407 cmd->offset_high = FIELD_GET(IXGBE_ACI_NVM_OFFSET_HI_U_MASK, offset); 2408 cmd->length = cpu_to_le16(length); 2409 2410 desc.flags |= cpu_to_le16(IXGBE_ACI_FLAG_RD); 2411 2412 return ixgbe_aci_send_cmd(hw, &desc, data, length); 2413 } 2414 2415 /** 2416 * ixgbe_nvm_write_activate - NVM activate write 2417 * @hw: pointer to the HW struct 2418 * @cmd_flags: flags for write activate command 2419 * @response_flags: response indicators from firmware 2420 * 2421 * Update the control word with the required banks' validity bits 2422 * and dumps the Shadow RAM to flash using ACI command (0x0707). 2423 * 2424 * cmd_flags controls which banks to activate, the preservation level to use 2425 * when activating the NVM bank, and whether an EMP reset is required for 2426 * activation. 2427 * 2428 * Note that the 16bit cmd_flags value is split between two separate 1 byte 2429 * flag values in the descriptor. 2430 * 2431 * On successful return of the firmware command, the response_flags variable 2432 * is updated with the flags reported by firmware indicating certain status, 2433 * such as whether EMP reset is enabled. 2434 * 2435 * Return: the exit code of the operation. 2436 */ 2437 int ixgbe_nvm_write_activate(struct ixgbe_hw *hw, u16 cmd_flags, 2438 u8 *response_flags) 2439 { 2440 struct ixgbe_aci_cmd_nvm *cmd; 2441 struct ixgbe_aci_desc desc; 2442 s32 err; 2443 2444 cmd = &desc.params.nvm; 2445 ixgbe_fill_dflt_direct_cmd_desc(&desc, 2446 ixgbe_aci_opc_nvm_write_activate); 2447 2448 cmd->cmd_flags = (u8)(cmd_flags & 0xFF); 2449 cmd->offset_high = (u8)FIELD_GET(IXGBE_ACI_NVM_OFFSET_HI_A_MASK, 2450 cmd_flags); 2451 2452 err = ixgbe_aci_send_cmd(hw, &desc, NULL, 0); 2453 if (!err && response_flags) 2454 *response_flags = cmd->cmd_flags; 2455 2456 return err; 2457 } 2458 2459 /** 2460 * ixgbe_nvm_validate_checksum - validate checksum 2461 * @hw: pointer to the HW struct 2462 * 2463 * Verify NVM PFA checksum validity using ACI command (0x0706). 2464 * If the checksum verification failed, IXGBE_ERR_NVM_CHECKSUM is returned. 2465 * The function acquires and then releases the NVM ownership. 2466 * 2467 * Return: the exit code of the operation. 2468 */ 2469 int ixgbe_nvm_validate_checksum(struct ixgbe_hw *hw) 2470 { 2471 struct ixgbe_aci_cmd_nvm_checksum *cmd; 2472 struct ixgbe_aci_desc desc; 2473 int err; 2474 2475 err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ); 2476 if (err) 2477 return err; 2478 2479 cmd = &desc.params.nvm_checksum; 2480 2481 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_checksum); 2482 cmd->flags = IXGBE_ACI_NVM_CHECKSUM_VERIFY; 2483 2484 err = ixgbe_aci_send_cmd(hw, &desc, NULL, 0); 2485 2486 ixgbe_release_nvm(hw); 2487 2488 if (!err && cmd->checksum != 2489 cpu_to_le16(IXGBE_ACI_NVM_CHECKSUM_CORRECT)) { 2490 struct ixgbe_adapter *adapter = container_of(hw, struct ixgbe_adapter, 2491 hw); 2492 2493 err = -EIO; 2494 netdev_err(adapter->netdev, "Invalid Shadow Ram checksum"); 2495 } 2496 2497 return err; 2498 } 2499 2500 /** 2501 * ixgbe_discover_flash_size - Discover the available flash size 2502 * @hw: pointer to the HW struct 2503 * 2504 * The device flash could be up to 16MB in size. However, it is possible that 2505 * the actual size is smaller. Use bisection to determine the accessible size 2506 * of flash memory. 2507 * 2508 * Return: the exit code of the operation. 2509 */ 2510 static int ixgbe_discover_flash_size(struct ixgbe_hw *hw) 2511 { 2512 u32 min_size = 0, max_size = IXGBE_ACI_NVM_MAX_OFFSET + 1; 2513 int err; 2514 2515 err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ); 2516 if (err) 2517 return err; 2518 2519 while ((max_size - min_size) > 1) { 2520 u32 offset = (max_size + min_size) / 2; 2521 u32 len = 1; 2522 u8 data; 2523 2524 err = ixgbe_read_flat_nvm(hw, offset, &len, &data, false); 2525 if (err == -EIO && 2526 hw->aci.last_status == IXGBE_ACI_RC_EINVAL) { 2527 err = 0; 2528 max_size = offset; 2529 } else if (!err) { 2530 min_size = offset; 2531 } else { 2532 /* an unexpected error occurred */ 2533 goto err_read_flat_nvm; 2534 } 2535 } 2536 2537 hw->flash.flash_size = max_size; 2538 2539 err_read_flat_nvm: 2540 ixgbe_release_nvm(hw); 2541 2542 return err; 2543 } 2544 2545 /** 2546 * ixgbe_read_sr_base_address - Read the value of a Shadow RAM pointer word 2547 * @hw: pointer to the HW structure 2548 * @offset: the word offset of the Shadow RAM word to read 2549 * @pointer: pointer value read from Shadow RAM 2550 * 2551 * Read the given Shadow RAM word, and convert it to a pointer value specified 2552 * in bytes. This function assumes the specified offset is a valid pointer 2553 * word. 2554 * 2555 * Each pointer word specifies whether it is stored in word size or 4KB 2556 * sector size by using the highest bit. The reported pointer value will be in 2557 * bytes, intended for flat NVM reads. 2558 * 2559 * Return: the exit code of the operation. 2560 */ 2561 static int ixgbe_read_sr_base_address(struct ixgbe_hw *hw, u16 offset, 2562 u32 *pointer) 2563 { 2564 u16 value; 2565 int err; 2566 2567 err = ixgbe_read_ee_aci_e610(hw, offset, &value); 2568 if (err) 2569 return err; 2570 2571 /* Determine if the pointer is in 4KB or word units */ 2572 if (value & IXGBE_SR_NVM_PTR_4KB_UNITS) 2573 *pointer = (value & ~IXGBE_SR_NVM_PTR_4KB_UNITS) * SZ_4K; 2574 else 2575 *pointer = value * sizeof(u16); 2576 2577 return 0; 2578 } 2579 2580 /** 2581 * ixgbe_read_sr_area_size - Read an area size from a Shadow RAM word 2582 * @hw: pointer to the HW structure 2583 * @offset: the word offset of the Shadow RAM to read 2584 * @size: size value read from the Shadow RAM 2585 * 2586 * Read the given Shadow RAM word, and convert it to an area size value 2587 * specified in bytes. This function assumes the specified offset is a valid 2588 * area size word. 2589 * 2590 * Each area size word is specified in 4KB sector units. This function reports 2591 * the size in bytes, intended for flat NVM reads. 2592 * 2593 * Return: the exit code of the operation. 2594 */ 2595 static int ixgbe_read_sr_area_size(struct ixgbe_hw *hw, u16 offset, u32 *size) 2596 { 2597 u16 value; 2598 int err; 2599 2600 err = ixgbe_read_ee_aci_e610(hw, offset, &value); 2601 if (err) 2602 return err; 2603 2604 /* Area sizes are always specified in 4KB units */ 2605 *size = value * SZ_4K; 2606 2607 return 0; 2608 } 2609 2610 /** 2611 * ixgbe_determine_active_flash_banks - Discover active bank for each module 2612 * @hw: pointer to the HW struct 2613 * 2614 * Read the Shadow RAM control word and determine which banks are active for 2615 * the NVM, OROM, and Netlist modules. Also read and calculate the associated 2616 * pointer and size. These values are then cached into the ixgbe_flash_info 2617 * structure for later use in order to calculate the correct offset to read 2618 * from the active module. 2619 * 2620 * Return: the exit code of the operation. 2621 */ 2622 static int ixgbe_determine_active_flash_banks(struct ixgbe_hw *hw) 2623 { 2624 struct ixgbe_bank_info *banks = &hw->flash.banks; 2625 u16 ctrl_word; 2626 int err; 2627 2628 err = ixgbe_read_ee_aci_e610(hw, IXGBE_E610_SR_NVM_CTRL_WORD, 2629 &ctrl_word); 2630 if (err) 2631 return err; 2632 2633 if (FIELD_GET(IXGBE_SR_CTRL_WORD_1_M, ctrl_word) != 2634 IXGBE_SR_CTRL_WORD_VALID) 2635 return -ENODATA; 2636 2637 if (!(ctrl_word & IXGBE_SR_CTRL_WORD_NVM_BANK)) 2638 banks->nvm_bank = IXGBE_1ST_FLASH_BANK; 2639 else 2640 banks->nvm_bank = IXGBE_2ND_FLASH_BANK; 2641 2642 if (!(ctrl_word & IXGBE_SR_CTRL_WORD_OROM_BANK)) 2643 banks->orom_bank = IXGBE_1ST_FLASH_BANK; 2644 else 2645 banks->orom_bank = IXGBE_2ND_FLASH_BANK; 2646 2647 if (!(ctrl_word & IXGBE_SR_CTRL_WORD_NETLIST_BANK)) 2648 banks->netlist_bank = IXGBE_1ST_FLASH_BANK; 2649 else 2650 banks->netlist_bank = IXGBE_2ND_FLASH_BANK; 2651 2652 err = ixgbe_read_sr_base_address(hw, IXGBE_E610_SR_1ST_NVM_BANK_PTR, 2653 &banks->nvm_ptr); 2654 if (err) 2655 return err; 2656 2657 err = ixgbe_read_sr_area_size(hw, IXGBE_E610_SR_NVM_BANK_SIZE, 2658 &banks->nvm_size); 2659 if (err) 2660 return err; 2661 2662 err = ixgbe_read_sr_base_address(hw, IXGBE_E610_SR_1ST_OROM_BANK_PTR, 2663 &banks->orom_ptr); 2664 if (err) 2665 return err; 2666 2667 err = ixgbe_read_sr_area_size(hw, IXGBE_E610_SR_OROM_BANK_SIZE, 2668 &banks->orom_size); 2669 if (err) 2670 return err; 2671 2672 err = ixgbe_read_sr_base_address(hw, IXGBE_E610_SR_NETLIST_BANK_PTR, 2673 &banks->netlist_ptr); 2674 if (err) 2675 return err; 2676 2677 err = ixgbe_read_sr_area_size(hw, IXGBE_E610_SR_NETLIST_BANK_SIZE, 2678 &banks->netlist_size); 2679 2680 return err; 2681 } 2682 2683 /** 2684 * ixgbe_get_flash_bank_offset - Get offset into requested flash bank 2685 * @hw: pointer to the HW structure 2686 * @bank: whether to read from the active or inactive flash bank 2687 * @module: the module to read from 2688 * 2689 * Based on the module, lookup the module offset from the beginning of the 2690 * flash. 2691 * 2692 * Return: the flash offset. Note that a value of zero is invalid and must be 2693 * treated as an error. 2694 */ 2695 static int ixgbe_get_flash_bank_offset(struct ixgbe_hw *hw, 2696 enum ixgbe_bank_select bank, 2697 u16 module) 2698 { 2699 struct ixgbe_bank_info *banks = &hw->flash.banks; 2700 enum ixgbe_flash_bank active_bank; 2701 bool second_bank_active; 2702 u32 offset, size; 2703 2704 switch (module) { 2705 case IXGBE_E610_SR_1ST_NVM_BANK_PTR: 2706 offset = banks->nvm_ptr; 2707 size = banks->nvm_size; 2708 active_bank = banks->nvm_bank; 2709 break; 2710 case IXGBE_E610_SR_1ST_OROM_BANK_PTR: 2711 offset = banks->orom_ptr; 2712 size = banks->orom_size; 2713 active_bank = banks->orom_bank; 2714 break; 2715 case IXGBE_E610_SR_NETLIST_BANK_PTR: 2716 offset = banks->netlist_ptr; 2717 size = banks->netlist_size; 2718 active_bank = banks->netlist_bank; 2719 break; 2720 default: 2721 return 0; 2722 } 2723 2724 switch (active_bank) { 2725 case IXGBE_1ST_FLASH_BANK: 2726 second_bank_active = false; 2727 break; 2728 case IXGBE_2ND_FLASH_BANK: 2729 second_bank_active = true; 2730 break; 2731 default: 2732 return 0; 2733 } 2734 2735 /* The second flash bank is stored immediately following the first 2736 * bank. Based on whether the 1st or 2nd bank is active, and whether 2737 * we want the active or inactive bank, calculate the desired offset. 2738 */ 2739 switch (bank) { 2740 case IXGBE_ACTIVE_FLASH_BANK: 2741 return offset + (second_bank_active ? size : 0); 2742 case IXGBE_INACTIVE_FLASH_BANK: 2743 return offset + (second_bank_active ? 0 : size); 2744 } 2745 2746 return 0; 2747 } 2748 2749 /** 2750 * ixgbe_read_flash_module - Read a word from one of the main NVM modules 2751 * @hw: pointer to the HW structure 2752 * @bank: which bank of the module to read 2753 * @module: the module to read 2754 * @offset: the offset into the module in bytes 2755 * @data: storage for the word read from the flash 2756 * @length: bytes of data to read 2757 * 2758 * Read data from the specified flash module. The bank parameter indicates 2759 * whether or not to read from the active bank or the inactive bank of that 2760 * module. 2761 * 2762 * The word will be read using flat NVM access, and relies on the 2763 * hw->flash.banks data being setup by ixgbe_determine_active_flash_banks() 2764 * during initialization. 2765 * 2766 * Return: the exit code of the operation. 2767 */ 2768 static int ixgbe_read_flash_module(struct ixgbe_hw *hw, 2769 enum ixgbe_bank_select bank, 2770 u16 module, u32 offset, u8 *data, u32 length) 2771 { 2772 u32 start; 2773 int err; 2774 2775 start = ixgbe_get_flash_bank_offset(hw, bank, module); 2776 if (!start) 2777 return -EINVAL; 2778 2779 err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ); 2780 if (err) 2781 return err; 2782 2783 err = ixgbe_read_flat_nvm(hw, start + offset, &length, data, false); 2784 2785 ixgbe_release_nvm(hw); 2786 2787 return err; 2788 } 2789 2790 /** 2791 * ixgbe_read_nvm_module - Read from the active main NVM module 2792 * @hw: pointer to the HW structure 2793 * @bank: whether to read from active or inactive NVM module 2794 * @offset: offset into the NVM module to read, in words 2795 * @data: storage for returned word value 2796 * 2797 * Read the specified word from the active NVM module. This includes the CSS 2798 * header at the start of the NVM module. 2799 * 2800 * Return: the exit code of the operation. 2801 */ 2802 static int ixgbe_read_nvm_module(struct ixgbe_hw *hw, 2803 enum ixgbe_bank_select bank, 2804 u32 offset, u16 *data) 2805 { 2806 __le16 data_local; 2807 int err; 2808 2809 err = ixgbe_read_flash_module(hw, bank, IXGBE_E610_SR_1ST_NVM_BANK_PTR, 2810 offset * sizeof(data_local), 2811 (u8 *)&data_local, 2812 sizeof(data_local)); 2813 if (!err) 2814 *data = le16_to_cpu(data_local); 2815 2816 return err; 2817 } 2818 2819 /** 2820 * ixgbe_read_netlist_module - Read data from the netlist module area 2821 * @hw: pointer to the HW structure 2822 * @bank: whether to read from the active or inactive module 2823 * @offset: offset into the netlist to read from 2824 * @data: storage for returned word value 2825 * 2826 * Read a word from the specified netlist bank. 2827 * 2828 * Return: the exit code of the operation. 2829 */ 2830 static int ixgbe_read_netlist_module(struct ixgbe_hw *hw, 2831 enum ixgbe_bank_select bank, 2832 u32 offset, u16 *data) 2833 { 2834 __le16 data_local; 2835 int err; 2836 2837 err = ixgbe_read_flash_module(hw, bank, IXGBE_E610_SR_NETLIST_BANK_PTR, 2838 offset * sizeof(data_local), 2839 (u8 *)&data_local, sizeof(data_local)); 2840 if (!err) 2841 *data = le16_to_cpu(data_local); 2842 2843 return err; 2844 } 2845 2846 /** 2847 * ixgbe_read_orom_module - Read from the active Option ROM module 2848 * @hw: pointer to the HW structure 2849 * @bank: whether to read from active or inactive OROM module 2850 * @offset: offset into the OROM module to read, in words 2851 * @data: storage for returned word value 2852 * 2853 * Read the specified word from the active Option ROM module of the flash. 2854 * Note that unlike the NVM module, the CSS data is stored at the end of the 2855 * module instead of at the beginning. 2856 * 2857 * Return: the exit code of the operation. 2858 */ 2859 static int ixgbe_read_orom_module(struct ixgbe_hw *hw, 2860 enum ixgbe_bank_select bank, 2861 u32 offset, u16 *data) 2862 { 2863 __le16 data_local; 2864 int err; 2865 2866 err = ixgbe_read_flash_module(hw, bank, IXGBE_E610_SR_1ST_OROM_BANK_PTR, 2867 offset * sizeof(data_local), 2868 (u8 *)&data_local, sizeof(data_local)); 2869 if (!err) 2870 *data = le16_to_cpu(data_local); 2871 2872 return err; 2873 } 2874 2875 /** 2876 * ixgbe_get_nvm_css_hdr_len - Read the CSS header length 2877 * @hw: pointer to the HW struct 2878 * @bank: whether to read from the active or inactive flash bank 2879 * @hdr_len: storage for header length in words 2880 * 2881 * Read the CSS header length from the NVM CSS header and add the 2882 * Authentication header size, and then convert to words. 2883 * 2884 * Return: the exit code of the operation. 2885 */ 2886 static int ixgbe_get_nvm_css_hdr_len(struct ixgbe_hw *hw, 2887 enum ixgbe_bank_select bank, 2888 u32 *hdr_len) 2889 { 2890 u16 hdr_len_l, hdr_len_h; 2891 u32 hdr_len_dword; 2892 int err; 2893 2894 err = ixgbe_read_nvm_module(hw, bank, IXGBE_NVM_CSS_HDR_LEN_L, 2895 &hdr_len_l); 2896 if (err) 2897 return err; 2898 2899 err = ixgbe_read_nvm_module(hw, bank, IXGBE_NVM_CSS_HDR_LEN_H, 2900 &hdr_len_h); 2901 if (err) 2902 return err; 2903 2904 /* CSS header length is in DWORD, so convert to words and add 2905 * authentication header size. 2906 */ 2907 hdr_len_dword = (hdr_len_h << 16) | hdr_len_l; 2908 *hdr_len = hdr_len_dword * 2 + IXGBE_NVM_AUTH_HEADER_LEN; 2909 2910 return 0; 2911 } 2912 2913 /** 2914 * ixgbe_read_nvm_sr_copy - Read a word from the Shadow RAM copy 2915 * @hw: pointer to the HW structure 2916 * @bank: whether to read from the active or inactive NVM module 2917 * @offset: offset into the Shadow RAM copy to read, in words 2918 * @data: storage for returned word value 2919 * 2920 * Read the specified word from the copy of the Shadow RAM found in the 2921 * specified NVM module. 2922 * 2923 * Return: the exit code of the operation. 2924 */ 2925 static int ixgbe_read_nvm_sr_copy(struct ixgbe_hw *hw, 2926 enum ixgbe_bank_select bank, 2927 u32 offset, u16 *data) 2928 { 2929 u32 hdr_len; 2930 int err; 2931 2932 err = ixgbe_get_nvm_css_hdr_len(hw, bank, &hdr_len); 2933 if (err) 2934 return err; 2935 2936 hdr_len = round_up(hdr_len, IXGBE_HDR_LEN_ROUNDUP); 2937 2938 return ixgbe_read_nvm_module(hw, bank, hdr_len + offset, data); 2939 } 2940 2941 /** 2942 * ixgbe_get_nvm_srev - Read the security revision from the NVM CSS header 2943 * @hw: pointer to the HW struct 2944 * @bank: whether to read from the active or inactive flash bank 2945 * @srev: storage for security revision 2946 * 2947 * Read the security revision out of the CSS header of the active NVM module 2948 * bank. 2949 * 2950 * Return: the exit code of the operation. 2951 */ 2952 static int ixgbe_get_nvm_srev(struct ixgbe_hw *hw, 2953 enum ixgbe_bank_select bank, u32 *srev) 2954 { 2955 u16 srev_l, srev_h; 2956 int err; 2957 2958 err = ixgbe_read_nvm_module(hw, bank, IXGBE_NVM_CSS_SREV_L, &srev_l); 2959 if (err) 2960 return err; 2961 2962 err = ixgbe_read_nvm_module(hw, bank, IXGBE_NVM_CSS_SREV_H, &srev_h); 2963 if (err) 2964 return err; 2965 2966 *srev = (srev_h << 16) | srev_l; 2967 2968 return 0; 2969 } 2970 2971 /** 2972 * ixgbe_get_orom_civd_data - Get the combo version information from Option ROM 2973 * @hw: pointer to the HW struct 2974 * @bank: whether to read from the active or inactive flash module 2975 * @civd: storage for the Option ROM CIVD data. 2976 * 2977 * Searches through the Option ROM flash contents to locate the CIVD data for 2978 * the image. 2979 * 2980 * Return: the exit code of the operation. 2981 */ 2982 static int 2983 ixgbe_get_orom_civd_data(struct ixgbe_hw *hw, enum ixgbe_bank_select bank, 2984 struct ixgbe_orom_civd_info *civd) 2985 { 2986 struct ixgbe_orom_civd_info tmp; 2987 u32 offset; 2988 int err; 2989 2990 /* The CIVD section is located in the Option ROM aligned to 512 bytes. 2991 * The first 4 bytes must contain the ASCII characters "$CIV". 2992 * A simple modulo 256 sum of all of the bytes of the structure must 2993 * equal 0. 2994 */ 2995 for (offset = 0; (offset + SZ_512) <= hw->flash.banks.orom_size; 2996 offset += SZ_512) { 2997 u8 sum = 0; 2998 u32 i; 2999 3000 err = ixgbe_read_flash_module(hw, bank, 3001 IXGBE_E610_SR_1ST_OROM_BANK_PTR, 3002 offset, 3003 (u8 *)&tmp, sizeof(tmp)); 3004 if (err) 3005 return err; 3006 3007 /* Skip forward until we find a matching signature */ 3008 if (memcmp(IXGBE_OROM_CIV_SIGNATURE, tmp.signature, 3009 sizeof(tmp.signature))) 3010 continue; 3011 3012 /* Verify that the simple checksum is zero */ 3013 for (i = 0; i < sizeof(tmp); i++) 3014 sum += ((u8 *)&tmp)[i]; 3015 3016 if (sum) 3017 return -EDOM; 3018 3019 *civd = tmp; 3020 return 0; 3021 } 3022 3023 return -ENODATA; 3024 } 3025 3026 /** 3027 * ixgbe_get_orom_srev - Read the security revision from the OROM CSS header 3028 * @hw: pointer to the HW struct 3029 * @bank: whether to read from active or inactive flash module 3030 * @srev: storage for security revision 3031 * 3032 * Read the security revision out of the CSS header of the active OROM module 3033 * bank. 3034 * 3035 * Return: the exit code of the operation. 3036 */ 3037 static int ixgbe_get_orom_srev(struct ixgbe_hw *hw, 3038 enum ixgbe_bank_select bank, 3039 u32 *srev) 3040 { 3041 u32 orom_size_word = hw->flash.banks.orom_size / 2; 3042 u32 css_start, hdr_len; 3043 u16 srev_l, srev_h; 3044 int err; 3045 3046 err = ixgbe_get_nvm_css_hdr_len(hw, bank, &hdr_len); 3047 if (err) 3048 return err; 3049 3050 if (orom_size_word < hdr_len) 3051 return -EINVAL; 3052 3053 /* Calculate how far into the Option ROM the CSS header starts. Note 3054 * that ixgbe_read_orom_module takes a word offset. 3055 */ 3056 css_start = orom_size_word - hdr_len; 3057 err = ixgbe_read_orom_module(hw, bank, 3058 css_start + IXGBE_NVM_CSS_SREV_L, 3059 &srev_l); 3060 if (err) 3061 return err; 3062 3063 err = ixgbe_read_orom_module(hw, bank, 3064 css_start + IXGBE_NVM_CSS_SREV_H, 3065 &srev_h); 3066 if (err) 3067 return err; 3068 3069 *srev = srev_h << 16 | srev_l; 3070 3071 return 0; 3072 } 3073 3074 /** 3075 * ixgbe_get_orom_ver_info - Read Option ROM version information 3076 * @hw: pointer to the HW struct 3077 * @bank: whether to read from the active or inactive flash module 3078 * @orom: pointer to Option ROM info structure 3079 * 3080 * Read Option ROM version and security revision from the Option ROM flash 3081 * section. 3082 * 3083 * Return: the exit code of the operation. 3084 */ 3085 static int ixgbe_get_orom_ver_info(struct ixgbe_hw *hw, 3086 enum ixgbe_bank_select bank, 3087 struct ixgbe_orom_info *orom) 3088 { 3089 struct ixgbe_orom_civd_info civd; 3090 u32 combo_ver; 3091 int err; 3092 3093 err = ixgbe_get_orom_civd_data(hw, bank, &civd); 3094 if (err) 3095 return err; 3096 3097 combo_ver = le32_to_cpu(civd.combo_ver); 3098 3099 orom->major = (u8)FIELD_GET(IXGBE_OROM_VER_MASK, combo_ver); 3100 orom->patch = (u8)FIELD_GET(IXGBE_OROM_VER_PATCH_MASK, combo_ver); 3101 orom->build = (u16)FIELD_GET(IXGBE_OROM_VER_BUILD_MASK, combo_ver); 3102 3103 return ixgbe_get_orom_srev(hw, bank, &orom->srev); 3104 } 3105 3106 /** 3107 * ixgbe_get_inactive_orom_ver - Read Option ROM version from the inactive bank 3108 * @hw: pointer to the HW structure 3109 * @orom: storage for Option ROM version information 3110 * 3111 * Read the Option ROM version and security revision data for the inactive 3112 * section of flash. Used to access version data for a pending update that has 3113 * not yet been activated. 3114 * 3115 * Return: the exit code of the operation. 3116 */ 3117 int ixgbe_get_inactive_orom_ver(struct ixgbe_hw *hw, 3118 struct ixgbe_orom_info *orom) 3119 { 3120 return ixgbe_get_orom_ver_info(hw, IXGBE_INACTIVE_FLASH_BANK, orom); 3121 } 3122 3123 /** 3124 * ixgbe_get_nvm_ver_info - Read NVM version information 3125 * @hw: pointer to the HW struct 3126 * @bank: whether to read from the active or inactive flash bank 3127 * @nvm: pointer to NVM info structure 3128 * 3129 * Read the NVM EETRACK ID and map version of the main NVM image bank, filling 3130 * in the nvm info structure. 3131 * 3132 * Return: the exit code of the operation. 3133 */ 3134 static int ixgbe_get_nvm_ver_info(struct ixgbe_hw *hw, 3135 enum ixgbe_bank_select bank, 3136 struct ixgbe_nvm_info *nvm) 3137 { 3138 u16 eetrack_lo, eetrack_hi, ver; 3139 int err; 3140 3141 err = ixgbe_read_nvm_sr_copy(hw, bank, 3142 IXGBE_E610_SR_NVM_DEV_STARTER_VER, &ver); 3143 if (err) 3144 return err; 3145 3146 nvm->major = FIELD_GET(IXGBE_E610_NVM_VER_HI_MASK, ver); 3147 nvm->minor = FIELD_GET(IXGBE_E610_NVM_VER_LO_MASK, ver); 3148 3149 err = ixgbe_read_nvm_sr_copy(hw, bank, IXGBE_E610_SR_NVM_EETRACK_LO, 3150 &eetrack_lo); 3151 if (err) 3152 return err; 3153 3154 err = ixgbe_read_nvm_sr_copy(hw, bank, IXGBE_E610_SR_NVM_EETRACK_HI, 3155 &eetrack_hi); 3156 if (err) 3157 return err; 3158 3159 nvm->eetrack = (eetrack_hi << 16) | eetrack_lo; 3160 3161 ixgbe_get_nvm_srev(hw, bank, &nvm->srev); 3162 3163 return 0; 3164 } 3165 3166 /** 3167 * ixgbe_get_inactive_nvm_ver - Read Option ROM version from the inactive bank 3168 * @hw: pointer to the HW structure 3169 * @nvm: storage for Option ROM version information 3170 * 3171 * Read the NVM EETRACK ID, Map version, and security revision of the 3172 * inactive NVM bank. Used to access version data for a pending update that 3173 * has not yet been activated. 3174 * 3175 * Return: the exit code of the operation. 3176 */ 3177 int ixgbe_get_inactive_nvm_ver(struct ixgbe_hw *hw, struct ixgbe_nvm_info *nvm) 3178 { 3179 return ixgbe_get_nvm_ver_info(hw, IXGBE_INACTIVE_FLASH_BANK, nvm); 3180 } 3181 3182 /** 3183 * ixgbe_get_active_nvm_ver - Read Option ROM version from the active bank 3184 * @hw: pointer to the HW structure 3185 * @nvm: storage for Option ROM version information 3186 * 3187 * Reads the NVM EETRACK ID, Map version, and security revision of the 3188 * active NVM bank. 3189 * 3190 * Return: the exit code of the operation. 3191 */ 3192 static int ixgbe_get_active_nvm_ver(struct ixgbe_hw *hw, 3193 struct ixgbe_nvm_info *nvm) 3194 { 3195 return ixgbe_get_nvm_ver_info(hw, IXGBE_ACTIVE_FLASH_BANK, nvm); 3196 } 3197 3198 /** 3199 * ixgbe_get_netlist_info - Read the netlist version information 3200 * @hw: pointer to the HW struct 3201 * @bank: whether to read from the active or inactive flash bank 3202 * @netlist: pointer to netlist version info structure 3203 * 3204 * Get the netlist version information from the requested bank. Reads the Link 3205 * Topology section to find the Netlist ID block and extract the relevant 3206 * information into the netlist version structure. 3207 * 3208 * Return: the exit code of the operation. 3209 */ 3210 static int ixgbe_get_netlist_info(struct ixgbe_hw *hw, 3211 enum ixgbe_bank_select bank, 3212 struct ixgbe_netlist_info *netlist) 3213 { 3214 u16 module_id, length, node_count, i; 3215 u16 *id_blk; 3216 int err; 3217 3218 err = ixgbe_read_netlist_module(hw, bank, IXGBE_NETLIST_TYPE_OFFSET, 3219 &module_id); 3220 if (err) 3221 return err; 3222 3223 if (module_id != IXGBE_NETLIST_LINK_TOPO_MOD_ID) 3224 return -EIO; 3225 3226 err = ixgbe_read_netlist_module(hw, bank, IXGBE_LINK_TOPO_MODULE_LEN, 3227 &length); 3228 if (err) 3229 return err; 3230 3231 /* Sanity check that we have at least enough words to store the 3232 * netlist ID block. 3233 */ 3234 if (length < IXGBE_NETLIST_ID_BLK_SIZE) 3235 return -EIO; 3236 3237 err = ixgbe_read_netlist_module(hw, bank, IXGBE_LINK_TOPO_NODE_COUNT, 3238 &node_count); 3239 if (err) 3240 return err; 3241 3242 node_count &= IXGBE_LINK_TOPO_NODE_COUNT_M; 3243 3244 id_blk = kcalloc(IXGBE_NETLIST_ID_BLK_SIZE, sizeof(*id_blk), GFP_KERNEL); 3245 if (!id_blk) 3246 return -ENOMEM; 3247 3248 /* Read out the entire Netlist ID Block at once. */ 3249 err = ixgbe_read_flash_module(hw, bank, IXGBE_E610_SR_NETLIST_BANK_PTR, 3250 IXGBE_NETLIST_ID_BLK_OFFSET(node_count) * 3251 sizeof(*id_blk), (u8 *)id_blk, 3252 IXGBE_NETLIST_ID_BLK_SIZE * 3253 sizeof(*id_blk)); 3254 if (err) 3255 goto free_id_blk; 3256 3257 for (i = 0; i < IXGBE_NETLIST_ID_BLK_SIZE; i++) 3258 id_blk[i] = le16_to_cpu(((__le16 *)id_blk)[i]); 3259 3260 netlist->major = id_blk[IXGBE_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16 | 3261 id_blk[IXGBE_NETLIST_ID_BLK_MAJOR_VER_LOW]; 3262 netlist->minor = id_blk[IXGBE_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16 | 3263 id_blk[IXGBE_NETLIST_ID_BLK_MINOR_VER_LOW]; 3264 netlist->type = id_blk[IXGBE_NETLIST_ID_BLK_TYPE_HIGH] << 16 | 3265 id_blk[IXGBE_NETLIST_ID_BLK_TYPE_LOW]; 3266 netlist->rev = id_blk[IXGBE_NETLIST_ID_BLK_REV_HIGH] << 16 | 3267 id_blk[IXGBE_NETLIST_ID_BLK_REV_LOW]; 3268 netlist->cust_ver = id_blk[IXGBE_NETLIST_ID_BLK_CUST_VER]; 3269 /* Read the left most 4 bytes of SHA */ 3270 netlist->hash = id_blk[IXGBE_NETLIST_ID_BLK_SHA_HASH_WORD(15)] << 16 | 3271 id_blk[IXGBE_NETLIST_ID_BLK_SHA_HASH_WORD(14)]; 3272 3273 free_id_blk: 3274 kfree(id_blk); 3275 return err; 3276 } 3277 3278 /** 3279 * ixgbe_get_inactive_netlist_ver - Read netlist version from the inactive bank 3280 * @hw: pointer to the HW struct 3281 * @netlist: pointer to netlist version info structure 3282 * 3283 * Read the netlist version data from the inactive netlist bank. Used to 3284 * extract version data of a pending flash update in order to display the 3285 * version data. 3286 * 3287 * Return: the exit code of the operation. 3288 */ 3289 int ixgbe_get_inactive_netlist_ver(struct ixgbe_hw *hw, 3290 struct ixgbe_netlist_info *netlist) 3291 { 3292 return ixgbe_get_netlist_info(hw, IXGBE_INACTIVE_FLASH_BANK, netlist); 3293 } 3294 3295 /** 3296 * ixgbe_get_flash_data - get flash data 3297 * @hw: pointer to the HW struct 3298 * 3299 * Read and populate flash data such as Shadow RAM size, 3300 * max_timeout and blank_nvm_mode 3301 * 3302 * Return: the exit code of the operation. 3303 */ 3304 int ixgbe_get_flash_data(struct ixgbe_hw *hw) 3305 { 3306 struct ixgbe_flash_info *flash = &hw->flash; 3307 u32 fla, gens_stat; 3308 u8 sr_size; 3309 int err; 3310 3311 /* The SR size is stored regardless of the NVM programming mode 3312 * as the blank mode may be used in the factory line. 3313 */ 3314 gens_stat = IXGBE_READ_REG(hw, GLNVM_GENS); 3315 sr_size = FIELD_GET(GLNVM_GENS_SR_SIZE_M, gens_stat); 3316 3317 /* Switching to words (sr_size contains power of 2) */ 3318 flash->sr_words = BIT(sr_size) * (SZ_1K / sizeof(u16)); 3319 3320 /* Check if we are in the normal or blank NVM programming mode */ 3321 fla = IXGBE_READ_REG(hw, IXGBE_GLNVM_FLA); 3322 if (fla & IXGBE_GLNVM_FLA_LOCKED_M) { 3323 flash->blank_nvm_mode = false; 3324 } else { 3325 flash->blank_nvm_mode = true; 3326 return -EIO; 3327 } 3328 3329 err = ixgbe_discover_flash_size(hw); 3330 if (err) 3331 return err; 3332 3333 err = ixgbe_determine_active_flash_banks(hw); 3334 if (err) 3335 return err; 3336 3337 err = ixgbe_get_nvm_ver_info(hw, IXGBE_ACTIVE_FLASH_BANK, 3338 &flash->nvm); 3339 if (err) 3340 return err; 3341 3342 err = ixgbe_get_orom_ver_info(hw, IXGBE_ACTIVE_FLASH_BANK, 3343 &flash->orom); 3344 if (err) 3345 return err; 3346 3347 err = ixgbe_get_netlist_info(hw, IXGBE_ACTIVE_FLASH_BANK, 3348 &flash->netlist); 3349 return err; 3350 } 3351 3352 /** 3353 * ixgbe_aci_nvm_update_empr - update NVM using EMPR 3354 * @hw: pointer to the HW struct 3355 * 3356 * Force EMP reset using ACI command (0x0709). This command allows SW to 3357 * request an EMPR to activate new FW. 3358 * 3359 * Return: the exit code of the operation. 3360 */ 3361 int ixgbe_aci_nvm_update_empr(struct ixgbe_hw *hw) 3362 { 3363 struct ixgbe_aci_desc desc; 3364 3365 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_update_empr); 3366 3367 return ixgbe_aci_send_cmd(hw, &desc, NULL, 0); 3368 } 3369 3370 /* ixgbe_nvm_set_pkg_data - NVM set package data 3371 * @hw: pointer to the HW struct 3372 * @del_pkg_data_flag: If is set then the current pkg_data store by FW 3373 * is deleted. 3374 * If bit is set to 1, then buffer should be size 0. 3375 * @data: pointer to buffer 3376 * @length: length of the buffer 3377 * 3378 * Set package data using ACI command (0x070A). 3379 * This command is equivalent to the reception of 3380 * a PLDM FW Update GetPackageData cmd. This command should be sent 3381 * as part of the NVM update as the first cmd in the flow. 3382 * 3383 * Return: the exit code of the operation. 3384 */ 3385 int ixgbe_nvm_set_pkg_data(struct ixgbe_hw *hw, bool del_pkg_data_flag, 3386 u8 *data, u16 length) 3387 { 3388 struct ixgbe_aci_cmd_nvm_pkg_data *cmd; 3389 struct ixgbe_aci_desc desc; 3390 3391 if (length != 0 && !data) 3392 return -EINVAL; 3393 3394 cmd = &desc.params.pkg_data; 3395 3396 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_pkg_data); 3397 desc.flags |= cpu_to_le16(IXGBE_ACI_FLAG_RD); 3398 3399 if (del_pkg_data_flag) 3400 cmd->cmd_flags |= IXGBE_ACI_NVM_PKG_DELETE; 3401 3402 return ixgbe_aci_send_cmd(hw, &desc, data, length); 3403 } 3404 3405 /* ixgbe_nvm_pass_component_tbl - NVM pass component table 3406 * @hw: pointer to the HW struct 3407 * @data: pointer to buffer 3408 * @length: length of the buffer 3409 * @transfer_flag: parameter for determining stage of the update 3410 * @comp_response: a pointer to the response from the 0x070B ACI. 3411 * @comp_response_code: a pointer to the response code from the 0x070B ACI. 3412 * 3413 * Pass component table using ACI command (0x070B). This command is equivalent 3414 * to the reception of a PLDM FW Update PassComponentTable cmd. 3415 * This command should be sent once per component. It can be only sent after 3416 * Set Package Data cmd and before actual update. FW will assume these 3417 * commands are going to be sent until the TransferFlag is set to End or 3418 * StartAndEnd. 3419 * 3420 * Return: the exit code of the operation. 3421 */ 3422 int ixgbe_nvm_pass_component_tbl(struct ixgbe_hw *hw, u8 *data, u16 length, 3423 u8 transfer_flag, u8 *comp_response, 3424 u8 *comp_response_code) 3425 { 3426 struct ixgbe_aci_cmd_nvm_pass_comp_tbl *cmd; 3427 struct ixgbe_aci_desc desc; 3428 int err; 3429 3430 if (!data || !comp_response || !comp_response_code) 3431 return -EINVAL; 3432 3433 cmd = &desc.params.pass_comp_tbl; 3434 3435 ixgbe_fill_dflt_direct_cmd_desc(&desc, 3436 ixgbe_aci_opc_nvm_pass_component_tbl); 3437 desc.flags |= cpu_to_le16(IXGBE_ACI_FLAG_RD); 3438 3439 cmd->transfer_flag = transfer_flag; 3440 err = ixgbe_aci_send_cmd(hw, &desc, data, length); 3441 if (!err) { 3442 *comp_response = cmd->component_response; 3443 *comp_response_code = cmd->component_response_code; 3444 } 3445 3446 return err; 3447 } 3448 3449 /** 3450 * ixgbe_read_sr_word_aci - Reads Shadow RAM via ACI 3451 * @hw: pointer to the HW structure 3452 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 3453 * @data: word read from the Shadow RAM 3454 * 3455 * Reads one 16 bit word from the Shadow RAM using ixgbe_read_flat_nvm. 3456 * 3457 * Return: the exit code of the operation. 3458 */ 3459 int ixgbe_read_sr_word_aci(struct ixgbe_hw *hw, u16 offset, u16 *data) 3460 { 3461 u32 bytes = sizeof(u16); 3462 u16 data_local; 3463 int err; 3464 3465 err = ixgbe_read_flat_nvm(hw, offset * sizeof(u16), &bytes, 3466 (u8 *)&data_local, true); 3467 if (err) 3468 return err; 3469 3470 *data = data_local; 3471 return 0; 3472 } 3473 3474 /** 3475 * ixgbe_read_flat_nvm - Read portion of NVM by flat offset 3476 * @hw: pointer to the HW struct 3477 * @offset: offset from beginning of NVM 3478 * @length: (in) number of bytes to read; (out) number of bytes actually read 3479 * @data: buffer to return data in (sized to fit the specified length) 3480 * @read_shadow_ram: if true, read from shadow RAM instead of NVM 3481 * 3482 * Reads a portion of the NVM, as a flat memory space. This function correctly 3483 * breaks read requests across Shadow RAM sectors, prevents Shadow RAM size 3484 * from being exceeded in case of Shadow RAM read requests and ensures that no 3485 * single read request exceeds the maximum 4KB read for a single admin command. 3486 * 3487 * Returns an error code on failure. Note that the data pointer may be 3488 * partially updated if some reads succeed before a failure. 3489 * 3490 * Return: the exit code of the operation. 3491 */ 3492 int ixgbe_read_flat_nvm(struct ixgbe_hw *hw, u32 offset, u32 *length, 3493 u8 *data, bool read_shadow_ram) 3494 { 3495 u32 inlen = *length; 3496 u32 bytes_read = 0; 3497 bool last_cmd; 3498 int err; 3499 3500 /* Verify the length of the read if this is for the Shadow RAM */ 3501 if (read_shadow_ram && ((offset + inlen) > 3502 (hw->eeprom.word_size * 2u))) 3503 return -EINVAL; 3504 3505 do { 3506 u32 read_size, sector_offset; 3507 3508 /* ixgbe_aci_read_nvm cannot read more than 4KB at a time. 3509 * Additionally, a read from the Shadow RAM may not cross over 3510 * a sector boundary. Conveniently, the sector size is also 4KB. 3511 */ 3512 sector_offset = offset % IXGBE_ACI_MAX_BUFFER_SIZE; 3513 read_size = min_t(u32, 3514 IXGBE_ACI_MAX_BUFFER_SIZE - sector_offset, 3515 inlen - bytes_read); 3516 3517 last_cmd = !(bytes_read + read_size < inlen); 3518 3519 /* ixgbe_aci_read_nvm takes the length as a u16. Our read_size 3520 * is calculated using a u32, but the IXGBE_ACI_MAX_BUFFER_SIZE 3521 * maximum size guarantees that it will fit within the 2 bytes. 3522 */ 3523 err = ixgbe_aci_read_nvm(hw, IXGBE_ACI_NVM_START_POINT, 3524 offset, (u16)read_size, 3525 data + bytes_read, last_cmd, 3526 read_shadow_ram); 3527 if (err) 3528 break; 3529 3530 bytes_read += read_size; 3531 offset += read_size; 3532 } while (!last_cmd); 3533 3534 *length = bytes_read; 3535 return err; 3536 } 3537 3538 /** 3539 * ixgbe_read_sr_buf_aci - Read Shadow RAM buffer via ACI 3540 * @hw: pointer to the HW structure 3541 * @offset: offset of the Shadow RAM words to read (0x000000 - 0x001FFF) 3542 * @words: (in) number of words to read; (out) number of words actually read 3543 * @data: words read from the Shadow RAM 3544 * 3545 * Read 16 bit words (data buf) from the Shadow RAM. Acquire/release the NVM 3546 * ownership. 3547 * 3548 * Return: the operation exit code. 3549 */ 3550 int ixgbe_read_sr_buf_aci(struct ixgbe_hw *hw, u16 offset, u16 *words, 3551 u16 *data) 3552 { 3553 u32 bytes = *words * 2; 3554 int err; 3555 3556 err = ixgbe_read_flat_nvm(hw, offset * 2, &bytes, (u8 *)data, true); 3557 if (err) 3558 return err; 3559 3560 *words = bytes / 2; 3561 3562 for (int i = 0; i < *words; i++) 3563 data[i] = le16_to_cpu(((__le16 *)data)[i]); 3564 3565 return 0; 3566 } 3567 3568 /** 3569 * ixgbe_read_ee_aci_e610 - Read EEPROM word using the admin command. 3570 * @hw: pointer to hardware structure 3571 * @offset: offset of word in the EEPROM to read 3572 * @data: word read from the EEPROM 3573 * 3574 * Reads a 16 bit word from the EEPROM using the ACI. 3575 * If the EEPROM params are not initialized, the function 3576 * initialize them before proceeding with reading. 3577 * The function acquires and then releases the NVM ownership. 3578 * 3579 * Return: the exit code of the operation. 3580 */ 3581 int ixgbe_read_ee_aci_e610(struct ixgbe_hw *hw, u16 offset, u16 *data) 3582 { 3583 int err; 3584 3585 if (hw->eeprom.type == ixgbe_eeprom_uninitialized) { 3586 err = hw->eeprom.ops.init_params(hw); 3587 if (err) 3588 return err; 3589 } 3590 3591 err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ); 3592 if (err) 3593 return err; 3594 3595 err = ixgbe_read_sr_word_aci(hw, offset, data); 3596 ixgbe_release_nvm(hw); 3597 3598 return err; 3599 } 3600 3601 /** 3602 * ixgbe_read_ee_aci_buffer_e610 - Read EEPROM words via ACI 3603 * @hw: pointer to hardware structure 3604 * @offset: offset of words in the EEPROM to read 3605 * @words: number of words to read 3606 * @data: words to read from the EEPROM 3607 * 3608 * Read 16 bit words from the EEPROM via the ACI. Initialize the EEPROM params 3609 * prior to the read. Acquire/release the NVM ownership. 3610 * 3611 * Return: the operation exit code. 3612 */ 3613 int ixgbe_read_ee_aci_buffer_e610(struct ixgbe_hw *hw, u16 offset, 3614 u16 words, u16 *data) 3615 { 3616 int err; 3617 3618 if (hw->eeprom.type == ixgbe_eeprom_uninitialized) { 3619 err = hw->eeprom.ops.init_params(hw); 3620 if (err) 3621 return err; 3622 } 3623 3624 err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ); 3625 if (err) 3626 return err; 3627 3628 err = ixgbe_read_sr_buf_aci(hw, offset, &words, data); 3629 ixgbe_release_nvm(hw); 3630 3631 return err; 3632 } 3633 3634 /** 3635 * ixgbe_validate_eeprom_checksum_e610 - Validate EEPROM checksum 3636 * @hw: pointer to hardware structure 3637 * @checksum_val: calculated checksum 3638 * 3639 * Performs checksum calculation and validates the EEPROM checksum. If the 3640 * caller does not need checksum_val, the value can be NULL. 3641 * If the EEPROM params are not initialized, the function 3642 * initialize them before proceeding. 3643 * The function acquires and then releases the NVM ownership. 3644 * 3645 * Return: the exit code of the operation. 3646 */ 3647 int ixgbe_validate_eeprom_checksum_e610(struct ixgbe_hw *hw, u16 *checksum_val) 3648 { 3649 int err; 3650 3651 if (hw->eeprom.type == ixgbe_eeprom_uninitialized) { 3652 err = hw->eeprom.ops.init_params(hw); 3653 if (err) 3654 return err; 3655 } 3656 3657 err = ixgbe_nvm_validate_checksum(hw); 3658 if (err) 3659 return err; 3660 3661 if (checksum_val) { 3662 u16 tmp_checksum; 3663 3664 err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ); 3665 if (err) 3666 return err; 3667 3668 err = ixgbe_read_sr_word_aci(hw, IXGBE_E610_SR_SW_CHECKSUM_WORD, 3669 &tmp_checksum); 3670 ixgbe_release_nvm(hw); 3671 3672 if (!err) 3673 *checksum_val = tmp_checksum; 3674 } 3675 3676 return err; 3677 } 3678 3679 /** 3680 * ixgbe_reset_hw_e610 - Perform hardware reset 3681 * @hw: pointer to hardware structure 3682 * 3683 * Resets the hardware by resetting the transmit and receive units, masks 3684 * and clears all interrupts, and performs a reset. 3685 * 3686 * Return: the exit code of the operation. 3687 */ 3688 int ixgbe_reset_hw_e610(struct ixgbe_hw *hw) 3689 { 3690 u32 swfw_mask = hw->phy.phy_semaphore_mask; 3691 u32 ctrl, i; 3692 int err; 3693 3694 /* Call adapter stop to disable tx/rx and clear interrupts */ 3695 err = hw->mac.ops.stop_adapter(hw); 3696 if (err) 3697 goto reset_hw_out; 3698 3699 /* Flush pending Tx transactions. */ 3700 ixgbe_clear_tx_pending(hw); 3701 3702 hw->phy.ops.init(hw); 3703 mac_reset_top: 3704 err = hw->mac.ops.acquire_swfw_sync(hw, swfw_mask); 3705 if (err) 3706 return -EBUSY; 3707 ctrl = IXGBE_CTRL_RST; 3708 ctrl |= IXGBE_READ_REG(hw, IXGBE_CTRL); 3709 IXGBE_WRITE_REG(hw, IXGBE_CTRL, ctrl); 3710 IXGBE_WRITE_FLUSH(hw); 3711 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 3712 3713 /* Poll for reset bit to self-clear indicating reset is complete */ 3714 for (i = 0; i < 10; i++) { 3715 udelay(1); 3716 ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL); 3717 if (!(ctrl & IXGBE_CTRL_RST_MASK)) 3718 break; 3719 } 3720 3721 if (ctrl & IXGBE_CTRL_RST_MASK) { 3722 struct ixgbe_adapter *adapter = container_of(hw, struct ixgbe_adapter, 3723 hw); 3724 3725 err = -EIO; 3726 netdev_err(adapter->netdev, "Reset polling failed to complete."); 3727 } 3728 3729 /* Double resets are required for recovery from certain error 3730 * conditions. Between resets, it is necessary to stall to allow time 3731 * for any pending HW events to complete. 3732 */ 3733 msleep(100); 3734 if (hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED) { 3735 hw->mac.flags &= ~IXGBE_FLAGS_DOUBLE_RESET_REQUIRED; 3736 goto mac_reset_top; 3737 } 3738 3739 /* Set the Rx packet buffer size. */ 3740 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(0), GENMASK(18, 17)); 3741 3742 /* Store the permanent mac address */ 3743 hw->mac.ops.get_mac_addr(hw, hw->mac.perm_addr); 3744 3745 /* Maximum number of Receive Address Registers. */ 3746 #define IXGBE_MAX_NUM_RAR 128 3747 3748 /* Store MAC address from RAR0, clear receive address registers, and 3749 * clear the multicast table. Also reset num_rar_entries to the 3750 * maximum number of Receive Address Registers, since we modify this 3751 * value when programming the SAN MAC address. 3752 */ 3753 hw->mac.num_rar_entries = IXGBE_MAX_NUM_RAR; 3754 hw->mac.ops.init_rx_addrs(hw); 3755 3756 /* Initialize bus function number */ 3757 hw->mac.ops.set_lan_id(hw); 3758 3759 reset_hw_out: 3760 return err; 3761 } 3762 3763 /** 3764 * ixgbe_get_pfa_module_tlv - Read sub module TLV from NVM PFA 3765 * @hw: pointer to hardware structure 3766 * @module_tlv: pointer to module TLV to return 3767 * @module_tlv_len: pointer to module TLV length to return 3768 * @module_type: module type requested 3769 * 3770 * Find the requested sub module TLV type from the Preserved Field 3771 * Area (PFA) and returns the TLV pointer and length. The caller can 3772 * use these to read the variable length TLV value. 3773 * 3774 * Return: the exit code of the operation. 3775 */ 3776 static int ixgbe_get_pfa_module_tlv(struct ixgbe_hw *hw, u16 *module_tlv, 3777 u16 *module_tlv_len, u16 module_type) 3778 { 3779 u16 pfa_len, pfa_ptr, pfa_end_ptr; 3780 u16 next_tlv; 3781 int err; 3782 3783 err = ixgbe_read_ee_aci_e610(hw, IXGBE_E610_SR_PFA_PTR, &pfa_ptr); 3784 if (err) 3785 return err; 3786 3787 err = ixgbe_read_ee_aci_e610(hw, pfa_ptr, &pfa_len); 3788 if (err) 3789 return err; 3790 3791 /* Starting with first TLV after PFA length, iterate through the list 3792 * of TLVs to find the requested one. 3793 */ 3794 next_tlv = pfa_ptr + 1; 3795 pfa_end_ptr = pfa_ptr + pfa_len; 3796 while (next_tlv < pfa_end_ptr) { 3797 u16 tlv_sub_module_type, tlv_len; 3798 3799 /* Read TLV type */ 3800 err = ixgbe_read_ee_aci_e610(hw, next_tlv, 3801 &tlv_sub_module_type); 3802 if (err) 3803 break; 3804 3805 /* Read TLV length */ 3806 err = ixgbe_read_ee_aci_e610(hw, next_tlv + 1, &tlv_len); 3807 if (err) 3808 break; 3809 3810 if (tlv_sub_module_type == module_type) { 3811 if (tlv_len) { 3812 *module_tlv = next_tlv; 3813 *module_tlv_len = tlv_len; 3814 return 0; 3815 } 3816 return -EIO; 3817 } 3818 /* Check next TLV, i.e. current TLV pointer + length + 2 words 3819 * (for current TLV's type and length). 3820 */ 3821 next_tlv = next_tlv + tlv_len + 2; 3822 } 3823 /* Module does not exist */ 3824 return -ENODATA; 3825 } 3826 3827 /** 3828 * ixgbe_read_pba_string_e610 - Read PBA string from NVM 3829 * @hw: pointer to hardware structure 3830 * @pba_num: stores the part number string from the NVM 3831 * @pba_num_size: part number string buffer length 3832 * 3833 * Read the part number string from the NVM. 3834 * 3835 * Return: the exit code of the operation. 3836 */ 3837 static int ixgbe_read_pba_string_e610(struct ixgbe_hw *hw, u8 *pba_num, 3838 u32 pba_num_size) 3839 { 3840 u16 pba_tlv, pba_tlv_len; 3841 u16 pba_word, pba_size; 3842 int err; 3843 3844 *pba_num = '\0'; 3845 3846 err = ixgbe_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len, 3847 IXGBE_E610_SR_PBA_BLOCK_PTR); 3848 if (err) 3849 return err; 3850 3851 /* pba_size is the next word */ 3852 err = ixgbe_read_ee_aci_e610(hw, (pba_tlv + 2), &pba_size); 3853 if (err) 3854 return err; 3855 3856 if (pba_tlv_len < pba_size) 3857 return -EINVAL; 3858 3859 /* Subtract one to get PBA word count (PBA Size word is included in 3860 * total size). 3861 */ 3862 pba_size--; 3863 3864 if (pba_num_size < (((u32)pba_size * 2) + 1)) 3865 return -EINVAL; 3866 3867 for (u16 i = 0; i < pba_size; i++) { 3868 err = ixgbe_read_ee_aci_e610(hw, (pba_tlv + 2 + 1) + i, 3869 &pba_word); 3870 if (err) 3871 return err; 3872 3873 pba_num[(i * 2)] = FIELD_GET(IXGBE_E610_SR_PBA_BLOCK_MASK, 3874 pba_word); 3875 pba_num[(i * 2) + 1] = pba_word & 0xFF; 3876 } 3877 3878 pba_num[(pba_size * 2)] = '\0'; 3879 3880 return err; 3881 } 3882 3883 static const struct ixgbe_mac_operations mac_ops_e610 = { 3884 .init_hw = ixgbe_init_hw_generic, 3885 .start_hw = ixgbe_start_hw_e610, 3886 .clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic, 3887 .enable_rx_dma = ixgbe_enable_rx_dma_generic, 3888 .get_mac_addr = ixgbe_get_mac_addr_generic, 3889 .get_device_caps = ixgbe_get_device_caps_generic, 3890 .stop_adapter = ixgbe_stop_adapter_generic, 3891 .set_lan_id = ixgbe_set_lan_id_multi_port_pcie, 3892 .set_rxpba = ixgbe_set_rxpba_generic, 3893 .check_link = ixgbe_check_link_e610, 3894 .blink_led_start = ixgbe_blink_led_start_X540, 3895 .blink_led_stop = ixgbe_blink_led_stop_X540, 3896 .set_rar = ixgbe_set_rar_generic, 3897 .clear_rar = ixgbe_clear_rar_generic, 3898 .set_vmdq = ixgbe_set_vmdq_generic, 3899 .set_vmdq_san_mac = ixgbe_set_vmdq_san_mac_generic, 3900 .clear_vmdq = ixgbe_clear_vmdq_generic, 3901 .init_rx_addrs = ixgbe_init_rx_addrs_generic, 3902 .update_mc_addr_list = ixgbe_update_mc_addr_list_generic, 3903 .enable_mc = ixgbe_enable_mc_generic, 3904 .disable_mc = ixgbe_disable_mc_generic, 3905 .clear_vfta = ixgbe_clear_vfta_generic, 3906 .set_vfta = ixgbe_set_vfta_generic, 3907 .fc_enable = ixgbe_fc_enable_generic, 3908 .set_fw_drv_ver = ixgbe_set_fw_drv_ver_x550, 3909 .init_uta_tables = ixgbe_init_uta_tables_generic, 3910 .set_mac_anti_spoofing = ixgbe_set_mac_anti_spoofing, 3911 .set_vlan_anti_spoofing = ixgbe_set_vlan_anti_spoofing, 3912 .set_source_address_pruning = 3913 ixgbe_set_source_address_pruning_x550, 3914 .set_ethertype_anti_spoofing = 3915 ixgbe_set_ethertype_anti_spoofing_x550, 3916 .disable_rx_buff = ixgbe_disable_rx_buff_generic, 3917 .enable_rx_buff = ixgbe_enable_rx_buff_generic, 3918 .enable_rx = ixgbe_enable_rx_generic, 3919 .disable_rx = ixgbe_disable_rx_e610, 3920 .led_on = ixgbe_led_on_generic, 3921 .led_off = ixgbe_led_off_generic, 3922 .init_led_link_act = ixgbe_init_led_link_act_generic, 3923 .reset_hw = ixgbe_reset_hw_e610, 3924 .get_fw_ver = ixgbe_aci_get_fw_ver, 3925 .get_media_type = ixgbe_get_media_type_e610, 3926 .setup_link = ixgbe_setup_link_e610, 3927 .fw_recovery_mode = ixgbe_fw_recovery_mode_e610, 3928 .fw_rollback_mode = ixgbe_fw_rollback_mode_e610, 3929 .get_nvm_ver = ixgbe_get_active_nvm_ver, 3930 .get_link_capabilities = ixgbe_get_link_capabilities_e610, 3931 .get_bus_info = ixgbe_get_bus_info_generic, 3932 .acquire_swfw_sync = ixgbe_acquire_swfw_sync_X540, 3933 .release_swfw_sync = ixgbe_release_swfw_sync_X540, 3934 .init_swfw_sync = ixgbe_init_swfw_sync_X540, 3935 .prot_autoc_read = prot_autoc_read_generic, 3936 .prot_autoc_write = prot_autoc_write_generic, 3937 .setup_fc = ixgbe_setup_fc_e610, 3938 .fc_autoneg = ixgbe_fc_autoneg_e610, 3939 }; 3940 3941 static const struct ixgbe_phy_operations phy_ops_e610 = { 3942 .init = ixgbe_init_phy_ops_e610, 3943 .identify = ixgbe_identify_phy_e610, 3944 .identify_sfp = ixgbe_identify_module_e610, 3945 .setup_link_speed = ixgbe_setup_phy_link_speed_generic, 3946 .setup_link = ixgbe_setup_phy_link_e610, 3947 .enter_lplu = ixgbe_enter_lplu_e610, 3948 }; 3949 3950 static const struct ixgbe_eeprom_operations eeprom_ops_e610 = { 3951 .read = ixgbe_read_ee_aci_e610, 3952 .read_buffer = ixgbe_read_ee_aci_buffer_e610, 3953 .validate_checksum = ixgbe_validate_eeprom_checksum_e610, 3954 .read_pba_string = ixgbe_read_pba_string_e610, 3955 .init_params = ixgbe_init_eeprom_params_e610, 3956 }; 3957 3958 const struct ixgbe_info ixgbe_e610_info = { 3959 .mac = ixgbe_mac_e610, 3960 .get_invariants = ixgbe_get_invariants_X540, 3961 .mac_ops = &mac_ops_e610, 3962 .eeprom_ops = &eeprom_ops_e610, 3963 .phy_ops = &phy_ops_e610, 3964 .mbx_ops = &mbx_ops_generic, 3965 .mvals = ixgbe_mvals_x550em_a, 3966 }; 3967