xref: /linux/drivers/net/ethernet/intel/ixgbe/ixgbe_e610.c (revision 4654ec6194b22af73c797508c72710e2e2bba4ad)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2024 Intel Corporation. */
3 
4 #include "ixgbe_common.h"
5 #include "ixgbe_e610.h"
6 #include "ixgbe_x550.h"
7 #include "ixgbe_type.h"
8 #include "ixgbe_x540.h"
9 #include "ixgbe_mbx.h"
10 #include "ixgbe_phy.h"
11 
12 /**
13  * ixgbe_should_retry_aci_send_cmd_execute - decide if ACI command should
14  * be resent
15  * @opcode: ACI opcode
16  *
17  * Check if ACI command should be sent again depending on the provided opcode.
18  * It may happen when CSR is busy during link state changes.
19  *
20  * Return: true if the sending command routine should be repeated,
21  * otherwise false.
22  */
23 static bool ixgbe_should_retry_aci_send_cmd_execute(u16 opcode)
24 {
25 	switch (opcode) {
26 	case ixgbe_aci_opc_disable_rxen:
27 	case ixgbe_aci_opc_get_phy_caps:
28 	case ixgbe_aci_opc_get_link_status:
29 	case ixgbe_aci_opc_get_link_topo:
30 		return true;
31 	}
32 
33 	return false;
34 }
35 
36 /**
37  * ixgbe_aci_send_cmd_execute - execute sending FW Admin Command to FW Admin
38  * Command Interface
39  * @hw: pointer to the HW struct
40  * @desc: descriptor describing the command
41  * @buf: buffer to use for indirect commands (NULL for direct commands)
42  * @buf_size: size of buffer for indirect commands (0 for direct commands)
43  *
44  * Admin Command is sent using CSR by setting descriptor and buffer in specific
45  * registers.
46  *
47  * Return: the exit code of the operation.
48  * * - 0 - success.
49  * * - -EIO - CSR mechanism is not enabled.
50  * * - -EBUSY - CSR mechanism is busy.
51  * * - -EINVAL - buf_size is too big or
52  * invalid argument buf or buf_size.
53  * * - -ETIME - Admin Command X command timeout.
54  * * - -EIO - Admin Command X invalid state of HICR register or
55  * Admin Command failed because of bad opcode was returned or
56  * Admin Command failed with error Y.
57  */
58 static int ixgbe_aci_send_cmd_execute(struct ixgbe_hw *hw,
59 				      struct ixgbe_aci_desc *desc,
60 				      void *buf, u16 buf_size)
61 {
62 	u16 opcode, buf_tail_size = buf_size % 4;
63 	u32 *raw_desc = (u32 *)desc;
64 	u32 hicr, i, buf_tail = 0;
65 	bool valid_buf = false;
66 
67 	hw->aci.last_status = IXGBE_ACI_RC_OK;
68 
69 	/* It's necessary to check if mechanism is enabled */
70 	hicr = IXGBE_READ_REG(hw, IXGBE_PF_HICR);
71 
72 	if (!(hicr & IXGBE_PF_HICR_EN))
73 		return -EIO;
74 
75 	if (hicr & IXGBE_PF_HICR_C) {
76 		hw->aci.last_status = IXGBE_ACI_RC_EBUSY;
77 		return -EBUSY;
78 	}
79 
80 	opcode = le16_to_cpu(desc->opcode);
81 
82 	if (buf_size > IXGBE_ACI_MAX_BUFFER_SIZE)
83 		return -EINVAL;
84 
85 	if (buf)
86 		desc->flags |= cpu_to_le16(IXGBE_ACI_FLAG_BUF);
87 
88 	if (desc->flags & cpu_to_le16(IXGBE_ACI_FLAG_BUF)) {
89 		if ((buf && !buf_size) ||
90 		    (!buf && buf_size))
91 			return -EINVAL;
92 		if (buf && buf_size)
93 			valid_buf = true;
94 	}
95 
96 	if (valid_buf) {
97 		if (buf_tail_size)
98 			memcpy(&buf_tail, buf + buf_size - buf_tail_size,
99 			       buf_tail_size);
100 
101 		if (((buf_size + 3) & ~0x3) > IXGBE_ACI_LG_BUF)
102 			desc->flags |= cpu_to_le16(IXGBE_ACI_FLAG_LB);
103 
104 		desc->datalen = cpu_to_le16(buf_size);
105 
106 		if (desc->flags & cpu_to_le16(IXGBE_ACI_FLAG_RD)) {
107 			for (i = 0; i < buf_size / 4; i++)
108 				IXGBE_WRITE_REG(hw, IXGBE_PF_HIBA(i), ((u32 *)buf)[i]);
109 			if (buf_tail_size)
110 				IXGBE_WRITE_REG(hw, IXGBE_PF_HIBA(i), buf_tail);
111 		}
112 	}
113 
114 	/* Descriptor is written to specific registers */
115 	for (i = 0; i < IXGBE_ACI_DESC_SIZE_IN_DWORDS; i++)
116 		IXGBE_WRITE_REG(hw, IXGBE_PF_HIDA(i), raw_desc[i]);
117 
118 	/* SW has to set PF_HICR.C bit and clear PF_HICR.SV and
119 	 * PF_HICR_EV
120 	 */
121 	hicr = (IXGBE_READ_REG(hw, IXGBE_PF_HICR) | IXGBE_PF_HICR_C) &
122 	       ~(IXGBE_PF_HICR_SV | IXGBE_PF_HICR_EV);
123 	IXGBE_WRITE_REG(hw, IXGBE_PF_HICR, hicr);
124 
125 #define MAX_SLEEP_RESP_US 1000
126 #define MAX_TMOUT_RESP_SYNC_US 100000000
127 
128 	/* Wait for sync Admin Command response */
129 	read_poll_timeout(IXGBE_READ_REG, hicr,
130 			  (hicr & IXGBE_PF_HICR_SV) ||
131 			  !(hicr & IXGBE_PF_HICR_C),
132 			  MAX_SLEEP_RESP_US, MAX_TMOUT_RESP_SYNC_US, true, hw,
133 			  IXGBE_PF_HICR);
134 
135 #define MAX_TMOUT_RESP_ASYNC_US 150000000
136 
137 	/* Wait for async Admin Command response */
138 	read_poll_timeout(IXGBE_READ_REG, hicr,
139 			  (hicr & IXGBE_PF_HICR_EV) ||
140 			  !(hicr & IXGBE_PF_HICR_C),
141 			  MAX_SLEEP_RESP_US, MAX_TMOUT_RESP_ASYNC_US, true, hw,
142 			  IXGBE_PF_HICR);
143 
144 	/* Read sync Admin Command response */
145 	if ((hicr & IXGBE_PF_HICR_SV)) {
146 		for (i = 0; i < IXGBE_ACI_DESC_SIZE_IN_DWORDS; i++) {
147 			raw_desc[i] = IXGBE_READ_REG(hw, IXGBE_PF_HIDA(i));
148 			raw_desc[i] = raw_desc[i];
149 		}
150 	}
151 
152 	/* Read async Admin Command response */
153 	if ((hicr & IXGBE_PF_HICR_EV) && !(hicr & IXGBE_PF_HICR_C)) {
154 		for (i = 0; i < IXGBE_ACI_DESC_SIZE_IN_DWORDS; i++) {
155 			raw_desc[i] = IXGBE_READ_REG(hw, IXGBE_PF_HIDA_2(i));
156 			raw_desc[i] = raw_desc[i];
157 		}
158 	}
159 
160 	/* Handle timeout and invalid state of HICR register */
161 	if (hicr & IXGBE_PF_HICR_C)
162 		return -ETIME;
163 
164 	if (!(hicr & IXGBE_PF_HICR_SV) && !(hicr & IXGBE_PF_HICR_EV))
165 		return -EIO;
166 
167 	/* For every command other than 0x0014 treat opcode mismatch
168 	 * as an error. Response to 0x0014 command read from HIDA_2
169 	 * is a descriptor of an event which is expected to contain
170 	 * different opcode than the command.
171 	 */
172 	if (desc->opcode != cpu_to_le16(opcode) &&
173 	    opcode != ixgbe_aci_opc_get_fw_event)
174 		return -EIO;
175 
176 	if (desc->retval) {
177 		hw->aci.last_status = (enum ixgbe_aci_err)
178 			le16_to_cpu(desc->retval);
179 		return -EIO;
180 	}
181 
182 	/* Write a response values to a buf */
183 	if (valid_buf) {
184 		for (i = 0; i < buf_size / 4; i++)
185 			((u32 *)buf)[i] = IXGBE_READ_REG(hw, IXGBE_PF_HIBA(i));
186 		if (buf_tail_size) {
187 			buf_tail = IXGBE_READ_REG(hw, IXGBE_PF_HIBA(i));
188 			memcpy(buf + buf_size - buf_tail_size, &buf_tail,
189 			       buf_tail_size);
190 		}
191 	}
192 
193 	return 0;
194 }
195 
196 /**
197  * ixgbe_aci_send_cmd - send FW Admin Command to FW Admin Command Interface
198  * @hw: pointer to the HW struct
199  * @desc: descriptor describing the command
200  * @buf: buffer to use for indirect commands (NULL for direct commands)
201  * @buf_size: size of buffer for indirect commands (0 for direct commands)
202  *
203  * Helper function to send FW Admin Commands to the FW Admin Command Interface.
204  *
205  * Retry sending the FW Admin Command multiple times to the FW ACI
206  * if the EBUSY Admin Command error is returned.
207  *
208  * Return: the exit code of the operation.
209  */
210 int ixgbe_aci_send_cmd(struct ixgbe_hw *hw, struct ixgbe_aci_desc *desc,
211 		       void *buf, u16 buf_size)
212 {
213 	u16 opcode = le16_to_cpu(desc->opcode);
214 	struct ixgbe_aci_desc desc_cpy;
215 	enum ixgbe_aci_err last_status;
216 	u8 idx = 0, *buf_cpy = NULL;
217 	bool is_cmd_for_retry;
218 	unsigned long timeout;
219 	int err;
220 
221 	is_cmd_for_retry = ixgbe_should_retry_aci_send_cmd_execute(opcode);
222 	if (is_cmd_for_retry) {
223 		if (buf) {
224 			buf_cpy = kmalloc(buf_size, GFP_KERNEL);
225 			if (!buf_cpy)
226 				return -ENOMEM;
227 			*buf_cpy = *(u8 *)buf;
228 		}
229 		desc_cpy = *desc;
230 	}
231 
232 	timeout = jiffies + msecs_to_jiffies(IXGBE_ACI_SEND_TIMEOUT_MS);
233 	do {
234 		mutex_lock(&hw->aci.lock);
235 		err = ixgbe_aci_send_cmd_execute(hw, desc, buf, buf_size);
236 		last_status = hw->aci.last_status;
237 		mutex_unlock(&hw->aci.lock);
238 
239 		if (!is_cmd_for_retry || !err ||
240 		    last_status != IXGBE_ACI_RC_EBUSY)
241 			break;
242 
243 		if (buf)
244 			memcpy(buf, buf_cpy, buf_size);
245 		*desc = desc_cpy;
246 
247 		msleep(IXGBE_ACI_SEND_DELAY_TIME_MS);
248 	} while (++idx < IXGBE_ACI_SEND_MAX_EXECUTE &&
249 		 time_before(jiffies, timeout));
250 
251 	kfree(buf_cpy);
252 
253 	return err;
254 }
255 
256 /**
257  * ixgbe_aci_check_event_pending - check if there are any pending events
258  * @hw: pointer to the HW struct
259  *
260  * Determine if there are any pending events.
261  *
262  * Return: true if there are any currently pending events
263  * otherwise false.
264  */
265 bool ixgbe_aci_check_event_pending(struct ixgbe_hw *hw)
266 {
267 	u32 ep_bit_mask = hw->bus.func ? GL_FWSTS_EP_PF1 : GL_FWSTS_EP_PF0;
268 	u32 fwsts = IXGBE_READ_REG(hw, GL_FWSTS);
269 
270 	return (fwsts & ep_bit_mask) ? true : false;
271 }
272 
273 /**
274  * ixgbe_aci_get_event - get an event from ACI
275  * @hw: pointer to the HW struct
276  * @e: event information structure
277  * @pending: optional flag signaling that there are more pending events
278  *
279  * Obtain an event from ACI and return its content
280  * through 'e' using ACI command (0x0014).
281  * Provide information if there are more events
282  * to retrieve through 'pending'.
283  *
284  * Return: the exit code of the operation.
285  */
286 int ixgbe_aci_get_event(struct ixgbe_hw *hw, struct ixgbe_aci_event *e,
287 			bool *pending)
288 {
289 	struct ixgbe_aci_desc desc;
290 	int err;
291 
292 	if (!e || (!e->msg_buf && e->buf_len))
293 		return -EINVAL;
294 
295 	mutex_lock(&hw->aci.lock);
296 
297 	/* Check if there are any events pending */
298 	if (!ixgbe_aci_check_event_pending(hw)) {
299 		err = -ENOENT;
300 		goto aci_get_event_exit;
301 	}
302 
303 	/* Obtain pending event */
304 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_fw_event);
305 	err = ixgbe_aci_send_cmd_execute(hw, &desc, e->msg_buf, e->buf_len);
306 	if (err)
307 		goto aci_get_event_exit;
308 
309 	/* Returned 0x0014 opcode indicates that no event was obtained */
310 	if (desc.opcode == cpu_to_le16(ixgbe_aci_opc_get_fw_event)) {
311 		err = -ENOENT;
312 		goto aci_get_event_exit;
313 	}
314 
315 	/* Determine size of event data */
316 	e->msg_len = min_t(u16, le16_to_cpu(desc.datalen), e->buf_len);
317 	/* Write event descriptor to event info structure */
318 	memcpy(&e->desc, &desc, sizeof(e->desc));
319 
320 	/* Check if there are any further events pending */
321 	if (pending)
322 		*pending = ixgbe_aci_check_event_pending(hw);
323 
324 aci_get_event_exit:
325 	mutex_unlock(&hw->aci.lock);
326 
327 	return err;
328 }
329 
330 /**
331  * ixgbe_fill_dflt_direct_cmd_desc - fill ACI descriptor with default values.
332  * @desc: pointer to the temp descriptor (non DMA mem)
333  * @opcode: the opcode can be used to decide which flags to turn off or on
334  *
335  * Helper function to fill the descriptor desc with default values
336  * and the provided opcode.
337  */
338 void ixgbe_fill_dflt_direct_cmd_desc(struct ixgbe_aci_desc *desc, u16 opcode)
339 {
340 	/* Zero out the desc. */
341 	memset(desc, 0, sizeof(*desc));
342 	desc->opcode = cpu_to_le16(opcode);
343 	desc->flags = cpu_to_le16(IXGBE_ACI_FLAG_SI);
344 }
345 
346 /**
347  * ixgbe_aci_get_fw_ver - Get the firmware version
348  * @hw: pointer to the HW struct
349  *
350  * Get the firmware version using ACI command (0x0001).
351  *
352  * Return: the exit code of the operation.
353  */
354 static int ixgbe_aci_get_fw_ver(struct ixgbe_hw *hw)
355 {
356 	struct ixgbe_aci_cmd_get_ver *resp;
357 	struct ixgbe_aci_desc desc;
358 	int err;
359 
360 	resp = &desc.params.get_ver;
361 
362 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_ver);
363 
364 	err = ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
365 	if (!err) {
366 		hw->fw_branch = resp->fw_branch;
367 		hw->fw_maj_ver = resp->fw_major;
368 		hw->fw_min_ver = resp->fw_minor;
369 		hw->fw_patch = resp->fw_patch;
370 		hw->fw_build = le32_to_cpu(resp->fw_build);
371 		hw->api_branch = resp->api_branch;
372 		hw->api_maj_ver = resp->api_major;
373 		hw->api_min_ver = resp->api_minor;
374 		hw->api_patch = resp->api_patch;
375 	}
376 
377 	return err;
378 }
379 
380 /**
381  * ixgbe_aci_req_res - request a common resource
382  * @hw: pointer to the HW struct
383  * @res: resource ID
384  * @access: access type
385  * @sdp_number: resource number
386  * @timeout: the maximum time in ms that the driver may hold the resource
387  *
388  * Requests a common resource using the ACI command (0x0008).
389  * Specifies the maximum time the driver may hold the resource.
390  * If the requested resource is currently occupied by some other driver,
391  * a busy return value is returned and the timeout field value indicates the
392  * maximum time the current owner has to free it.
393  *
394  * Return: the exit code of the operation.
395  */
396 static int ixgbe_aci_req_res(struct ixgbe_hw *hw, enum ixgbe_aci_res_ids res,
397 			     enum ixgbe_aci_res_access_type access,
398 			     u8 sdp_number, u32 *timeout)
399 {
400 	struct ixgbe_aci_cmd_req_res *cmd_resp;
401 	struct ixgbe_aci_desc desc;
402 	int err;
403 
404 	cmd_resp = &desc.params.res_owner;
405 
406 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_req_res);
407 
408 	cmd_resp->res_id = cpu_to_le16(res);
409 	cmd_resp->access_type = cpu_to_le16(access);
410 	cmd_resp->res_number = cpu_to_le32(sdp_number);
411 	cmd_resp->timeout = cpu_to_le32(*timeout);
412 	*timeout = 0;
413 
414 	err = ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
415 
416 	/* If the resource is held by some other driver, the command completes
417 	 * with a busy return value and the timeout field indicates the maximum
418 	 * time the current owner of the resource has to free it.
419 	 */
420 	if (!err || hw->aci.last_status == IXGBE_ACI_RC_EBUSY)
421 		*timeout = le32_to_cpu(cmd_resp->timeout);
422 
423 	return err;
424 }
425 
426 /**
427  * ixgbe_aci_release_res - release a common resource using ACI
428  * @hw: pointer to the HW struct
429  * @res: resource ID
430  * @sdp_number: resource number
431  *
432  * Release a common resource using ACI command (0x0009).
433  *
434  * Return: the exit code of the operation.
435  */
436 static int ixgbe_aci_release_res(struct ixgbe_hw *hw,
437 				 enum ixgbe_aci_res_ids res, u8 sdp_number)
438 {
439 	struct ixgbe_aci_cmd_req_res *cmd;
440 	struct ixgbe_aci_desc desc;
441 
442 	cmd = &desc.params.res_owner;
443 
444 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_release_res);
445 
446 	cmd->res_id = cpu_to_le16(res);
447 	cmd->res_number = cpu_to_le32(sdp_number);
448 
449 	return ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
450 }
451 
452 /**
453  * ixgbe_acquire_res - acquire the ownership of a resource
454  * @hw: pointer to the HW structure
455  * @res: resource ID
456  * @access: access type (read or write)
457  * @timeout: timeout in milliseconds
458  *
459  * Make an attempt to acquire the ownership of a resource using
460  * the ixgbe_aci_req_res to utilize ACI.
461  * In case if some other driver has previously acquired the resource and
462  * performed any necessary updates, the -EALREADY is returned,
463  * and the caller does not obtain the resource and has no further work to do.
464  * If needed, the function will poll until the current lock owner timeouts.
465  *
466  * Return: the exit code of the operation.
467  */
468 int ixgbe_acquire_res(struct ixgbe_hw *hw, enum ixgbe_aci_res_ids res,
469 		      enum ixgbe_aci_res_access_type access, u32 timeout)
470 {
471 #define IXGBE_RES_POLLING_DELAY_MS	10
472 	u32 delay = IXGBE_RES_POLLING_DELAY_MS;
473 	u32 res_timeout = timeout;
474 	u32 retry_timeout;
475 	int err;
476 
477 	err = ixgbe_aci_req_res(hw, res, access, 0, &res_timeout);
478 
479 	/* A return code of -EALREADY means that another driver has
480 	 * previously acquired the resource and performed any necessary updates;
481 	 * in this case the caller does not obtain the resource and has no
482 	 * further work to do.
483 	 */
484 	if (err == -EALREADY)
485 		return err;
486 
487 	/* If necessary, poll until the current lock owner timeouts.
488 	 * Set retry_timeout to the timeout value reported by the FW in the
489 	 * response to the "Request Resource Ownership" (0x0008) Admin Command
490 	 * as it indicates the maximum time the current owner of the resource
491 	 * is allowed to hold it.
492 	 */
493 	retry_timeout = res_timeout;
494 	while (err && retry_timeout && res_timeout) {
495 		msleep(delay);
496 		retry_timeout = (retry_timeout > delay) ?
497 			retry_timeout - delay : 0;
498 		err = ixgbe_aci_req_res(hw, res, access, 0, &res_timeout);
499 
500 		/* Success - lock acquired.
501 		 * -EALREADY - lock free, no work to do.
502 		 */
503 		if (!err || err == -EALREADY)
504 			break;
505 	}
506 
507 	return err;
508 }
509 
510 /**
511  * ixgbe_release_res - release a common resource
512  * @hw: pointer to the HW structure
513  * @res: resource ID
514  *
515  * Release a common resource using ixgbe_aci_release_res.
516  */
517 void ixgbe_release_res(struct ixgbe_hw *hw, enum ixgbe_aci_res_ids res)
518 {
519 	u32 total_delay = 0;
520 	int err;
521 
522 	err = ixgbe_aci_release_res(hw, res, 0);
523 
524 	/* There are some rare cases when trying to release the resource
525 	 * results in an admin command timeout, so handle them correctly.
526 	 */
527 	while (err == -ETIME &&
528 	       total_delay < IXGBE_ACI_RELEASE_RES_TIMEOUT) {
529 		usleep_range(1000, 1500);
530 		err = ixgbe_aci_release_res(hw, res, 0);
531 		total_delay++;
532 	}
533 }
534 
535 /**
536  * ixgbe_parse_e610_caps - Parse common device/function capabilities
537  * @hw: pointer to the HW struct
538  * @caps: pointer to common capabilities structure
539  * @elem: the capability element to parse
540  * @prefix: message prefix for tracing capabilities
541  *
542  * Given a capability element, extract relevant details into the common
543  * capability structure.
544  *
545  * Return: true if the capability matches one of the common capability ids,
546  * false otherwise.
547  */
548 static bool ixgbe_parse_e610_caps(struct ixgbe_hw *hw,
549 				  struct ixgbe_hw_caps *caps,
550 				  struct ixgbe_aci_cmd_list_caps_elem *elem,
551 				  const char *prefix)
552 {
553 	u32 logical_id = le32_to_cpu(elem->logical_id);
554 	u32 phys_id = le32_to_cpu(elem->phys_id);
555 	u32 number = le32_to_cpu(elem->number);
556 	u16 cap = le16_to_cpu(elem->cap);
557 
558 	switch (cap) {
559 	case IXGBE_ACI_CAPS_VALID_FUNCTIONS:
560 		caps->valid_functions = number;
561 		break;
562 	case IXGBE_ACI_CAPS_SRIOV:
563 		caps->sr_iov_1_1 = (number == 1);
564 		break;
565 	case IXGBE_ACI_CAPS_VMDQ:
566 		caps->vmdq = (number == 1);
567 		break;
568 	case IXGBE_ACI_CAPS_DCB:
569 		caps->dcb = (number == 1);
570 		caps->active_tc_bitmap = logical_id;
571 		caps->maxtc = phys_id;
572 		break;
573 	case IXGBE_ACI_CAPS_RSS:
574 		caps->rss_table_size = number;
575 		caps->rss_table_entry_width = logical_id;
576 		break;
577 	case IXGBE_ACI_CAPS_RXQS:
578 		caps->num_rxq = number;
579 		caps->rxq_first_id = phys_id;
580 		break;
581 	case IXGBE_ACI_CAPS_TXQS:
582 		caps->num_txq = number;
583 		caps->txq_first_id = phys_id;
584 		break;
585 	case IXGBE_ACI_CAPS_MSIX:
586 		caps->num_msix_vectors = number;
587 		caps->msix_vector_first_id = phys_id;
588 		break;
589 	case IXGBE_ACI_CAPS_NVM_VER:
590 		break;
591 	case IXGBE_ACI_CAPS_MAX_MTU:
592 		caps->max_mtu = number;
593 		break;
594 	case IXGBE_ACI_CAPS_PCIE_RESET_AVOIDANCE:
595 		caps->pcie_reset_avoidance = (number > 0);
596 		break;
597 	case IXGBE_ACI_CAPS_POST_UPDATE_RESET_RESTRICT:
598 		caps->reset_restrict_support = (number == 1);
599 		break;
600 	case IXGBE_ACI_CAPS_EXT_TOPO_DEV_IMG0:
601 	case IXGBE_ACI_CAPS_EXT_TOPO_DEV_IMG1:
602 	case IXGBE_ACI_CAPS_EXT_TOPO_DEV_IMG2:
603 	case IXGBE_ACI_CAPS_EXT_TOPO_DEV_IMG3:
604 	{
605 		u8 index = cap - IXGBE_ACI_CAPS_EXT_TOPO_DEV_IMG0;
606 
607 		caps->ext_topo_dev_img_ver_high[index] = number;
608 		caps->ext_topo_dev_img_ver_low[index] = logical_id;
609 		caps->ext_topo_dev_img_part_num[index] =
610 			FIELD_GET(IXGBE_EXT_TOPO_DEV_IMG_PART_NUM_M, phys_id);
611 		caps->ext_topo_dev_img_load_en[index] =
612 			(phys_id & IXGBE_EXT_TOPO_DEV_IMG_LOAD_EN) != 0;
613 		caps->ext_topo_dev_img_prog_en[index] =
614 			(phys_id & IXGBE_EXT_TOPO_DEV_IMG_PROG_EN) != 0;
615 		break;
616 	}
617 	default:
618 		/* Not one of the recognized common capabilities */
619 		return false;
620 	}
621 
622 	return true;
623 }
624 
625 /**
626  * ixgbe_parse_valid_functions_cap - Parse IXGBE_ACI_CAPS_VALID_FUNCTIONS caps
627  * @hw: pointer to the HW struct
628  * @dev_p: pointer to device capabilities structure
629  * @cap: capability element to parse
630  *
631  * Parse IXGBE_ACI_CAPS_VALID_FUNCTIONS for device capabilities.
632  */
633 static void
634 ixgbe_parse_valid_functions_cap(struct ixgbe_hw *hw,
635 				struct ixgbe_hw_dev_caps *dev_p,
636 				struct ixgbe_aci_cmd_list_caps_elem *cap)
637 {
638 	dev_p->num_funcs = hweight32(le32_to_cpu(cap->number));
639 }
640 
641 /**
642  * ixgbe_parse_vf_dev_caps - Parse IXGBE_ACI_CAPS_VF device caps
643  * @hw: pointer to the HW struct
644  * @dev_p: pointer to device capabilities structure
645  * @cap: capability element to parse
646  *
647  * Parse IXGBE_ACI_CAPS_VF for device capabilities.
648  */
649 static void ixgbe_parse_vf_dev_caps(struct ixgbe_hw *hw,
650 				    struct ixgbe_hw_dev_caps *dev_p,
651 				    struct ixgbe_aci_cmd_list_caps_elem *cap)
652 {
653 	dev_p->num_vfs_exposed = le32_to_cpu(cap->number);
654 }
655 
656 /**
657  * ixgbe_parse_vsi_dev_caps - Parse IXGBE_ACI_CAPS_VSI device caps
658  * @hw: pointer to the HW struct
659  * @dev_p: pointer to device capabilities structure
660  * @cap: capability element to parse
661  *
662  * Parse IXGBE_ACI_CAPS_VSI for device capabilities.
663  */
664 static void ixgbe_parse_vsi_dev_caps(struct ixgbe_hw *hw,
665 				     struct ixgbe_hw_dev_caps *dev_p,
666 				     struct ixgbe_aci_cmd_list_caps_elem *cap)
667 {
668 	dev_p->num_vsi_allocd_to_host = le32_to_cpu(cap->number);
669 }
670 
671 /**
672  * ixgbe_parse_fdir_dev_caps - Parse IXGBE_ACI_CAPS_FD device caps
673  * @hw: pointer to the HW struct
674  * @dev_p: pointer to device capabilities structure
675  * @cap: capability element to parse
676  *
677  * Parse IXGBE_ACI_CAPS_FD for device capabilities.
678  */
679 static void ixgbe_parse_fdir_dev_caps(struct ixgbe_hw *hw,
680 				      struct ixgbe_hw_dev_caps *dev_p,
681 				      struct ixgbe_aci_cmd_list_caps_elem *cap)
682 {
683 	dev_p->num_flow_director_fltr = le32_to_cpu(cap->number);
684 }
685 
686 /**
687  * ixgbe_parse_dev_caps - Parse device capabilities
688  * @hw: pointer to the HW struct
689  * @dev_p: pointer to device capabilities structure
690  * @buf: buffer containing the device capability records
691  * @cap_count: the number of capabilities
692  *
693  * Helper device to parse device (0x000B) capabilities list. For
694  * capabilities shared between device and function, this relies on
695  * ixgbe_parse_e610_caps.
696  *
697  * Loop through the list of provided capabilities and extract the relevant
698  * data into the device capabilities structured.
699  */
700 static void ixgbe_parse_dev_caps(struct ixgbe_hw *hw,
701 				 struct ixgbe_hw_dev_caps *dev_p,
702 				 void *buf, u32 cap_count)
703 {
704 	struct ixgbe_aci_cmd_list_caps_elem *cap_resp;
705 	u32 i;
706 
707 	cap_resp = (struct ixgbe_aci_cmd_list_caps_elem *)buf;
708 
709 	memset(dev_p, 0, sizeof(*dev_p));
710 
711 	for (i = 0; i < cap_count; i++) {
712 		u16 cap = le16_to_cpu(cap_resp[i].cap);
713 
714 		ixgbe_parse_e610_caps(hw, &dev_p->common_cap, &cap_resp[i],
715 				      "dev caps");
716 
717 		switch (cap) {
718 		case IXGBE_ACI_CAPS_VALID_FUNCTIONS:
719 			ixgbe_parse_valid_functions_cap(hw, dev_p,
720 							&cap_resp[i]);
721 			break;
722 		case IXGBE_ACI_CAPS_VF:
723 			ixgbe_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
724 			break;
725 		case IXGBE_ACI_CAPS_VSI:
726 			ixgbe_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
727 			break;
728 		case  IXGBE_ACI_CAPS_FD:
729 			ixgbe_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
730 			break;
731 		default:
732 			/* Don't list common capabilities as unknown */
733 			break;
734 		}
735 	}
736 }
737 
738 /**
739  * ixgbe_parse_vf_func_caps - Parse IXGBE_ACI_CAPS_VF function caps
740  * @hw: pointer to the HW struct
741  * @func_p: pointer to function capabilities structure
742  * @cap: pointer to the capability element to parse
743  *
744  * Extract function capabilities for IXGBE_ACI_CAPS_VF.
745  */
746 static void ixgbe_parse_vf_func_caps(struct ixgbe_hw *hw,
747 				     struct ixgbe_hw_func_caps *func_p,
748 				     struct ixgbe_aci_cmd_list_caps_elem *cap)
749 {
750 	func_p->num_allocd_vfs = le32_to_cpu(cap->number);
751 	func_p->vf_base_id = le32_to_cpu(cap->logical_id);
752 }
753 
754 /**
755  * ixgbe_get_num_per_func - determine number of resources per PF
756  * @hw: pointer to the HW structure
757  * @max: value to be evenly split between each PF
758  *
759  * Determine the number of valid functions by going through the bitmap returned
760  * from parsing capabilities and use this to calculate the number of resources
761  * per PF based on the max value passed in.
762  *
763  * Return: the number of resources per PF or 0, if no PH are available.
764  */
765 static u32 ixgbe_get_num_per_func(struct ixgbe_hw *hw, u32 max)
766 {
767 #define IXGBE_CAPS_VALID_FUNCS_M	GENMASK(7, 0)
768 	u8 funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
769 			    IXGBE_CAPS_VALID_FUNCS_M);
770 
771 	return funcs ? (max / funcs) : 0;
772 }
773 
774 /**
775  * ixgbe_parse_vsi_func_caps - Parse IXGBE_ACI_CAPS_VSI function caps
776  * @hw: pointer to the HW struct
777  * @func_p: pointer to function capabilities structure
778  * @cap: pointer to the capability element to parse
779  *
780  * Extract function capabilities for IXGBE_ACI_CAPS_VSI.
781  */
782 static void ixgbe_parse_vsi_func_caps(struct ixgbe_hw *hw,
783 				      struct ixgbe_hw_func_caps *func_p,
784 				      struct ixgbe_aci_cmd_list_caps_elem *cap)
785 {
786 	func_p->guar_num_vsi = ixgbe_get_num_per_func(hw, IXGBE_MAX_VSI);
787 }
788 
789 /**
790  * ixgbe_parse_func_caps - Parse function capabilities
791  * @hw: pointer to the HW struct
792  * @func_p: pointer to function capabilities structure
793  * @buf: buffer containing the function capability records
794  * @cap_count: the number of capabilities
795  *
796  * Helper function to parse function (0x000A) capabilities list. For
797  * capabilities shared between device and function, this relies on
798  * ixgbe_parse_e610_caps.
799  *
800  * Loop through the list of provided capabilities and extract the relevant
801  * data into the function capabilities structured.
802  */
803 static void ixgbe_parse_func_caps(struct ixgbe_hw *hw,
804 				  struct ixgbe_hw_func_caps *func_p,
805 				  void *buf, u32 cap_count)
806 {
807 	struct ixgbe_aci_cmd_list_caps_elem *cap_resp;
808 	u32 i;
809 
810 	cap_resp = (struct ixgbe_aci_cmd_list_caps_elem *)buf;
811 
812 	memset(func_p, 0, sizeof(*func_p));
813 
814 	for (i = 0; i < cap_count; i++) {
815 		u16 cap = le16_to_cpu(cap_resp[i].cap);
816 
817 		ixgbe_parse_e610_caps(hw, &func_p->common_cap,
818 				      &cap_resp[i], "func caps");
819 
820 		switch (cap) {
821 		case IXGBE_ACI_CAPS_VF:
822 			ixgbe_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
823 			break;
824 		case IXGBE_ACI_CAPS_VSI:
825 			ixgbe_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
826 			break;
827 		default:
828 			/* Don't list common capabilities as unknown */
829 			break;
830 		}
831 	}
832 }
833 
834 /**
835  * ixgbe_aci_list_caps - query function/device capabilities
836  * @hw: pointer to the HW struct
837  * @buf: a buffer to hold the capabilities
838  * @buf_size: size of the buffer
839  * @cap_count: if not NULL, set to the number of capabilities reported
840  * @opc: capabilities type to discover, device or function
841  *
842  * Get the function (0x000A) or device (0x000B) capabilities description from
843  * firmware and store it in the buffer.
844  *
845  * If the cap_count pointer is not NULL, then it is set to the number of
846  * capabilities firmware will report. Note that if the buffer size is too
847  * small, it is possible the command will return -ENOMEM. The
848  * cap_count will still be updated in this case. It is recommended that the
849  * buffer size be set to IXGBE_ACI_MAX_BUFFER_SIZE (the largest possible
850  * buffer that firmware could return) to avoid this.
851  *
852  * Return: the exit code of the operation.
853  * Exit code of -ENOMEM means the buffer size is too small.
854  */
855 int ixgbe_aci_list_caps(struct ixgbe_hw *hw, void *buf, u16 buf_size,
856 			u32 *cap_count, enum ixgbe_aci_opc opc)
857 {
858 	struct ixgbe_aci_cmd_list_caps *cmd;
859 	struct ixgbe_aci_desc desc;
860 	int err;
861 
862 	cmd = &desc.params.get_cap;
863 
864 	if (opc != ixgbe_aci_opc_list_func_caps &&
865 	    opc != ixgbe_aci_opc_list_dev_caps)
866 		return -EINVAL;
867 
868 	ixgbe_fill_dflt_direct_cmd_desc(&desc, opc);
869 	err = ixgbe_aci_send_cmd(hw, &desc, buf, buf_size);
870 
871 	if (cap_count)
872 		*cap_count = le32_to_cpu(cmd->count);
873 
874 	return err;
875 }
876 
877 /**
878  * ixgbe_discover_dev_caps - Read and extract device capabilities
879  * @hw: pointer to the hardware structure
880  * @dev_caps: pointer to device capabilities structure
881  *
882  * Read the device capabilities and extract them into the dev_caps structure
883  * for later use.
884  *
885  * Return: the exit code of the operation.
886  */
887 int ixgbe_discover_dev_caps(struct ixgbe_hw *hw,
888 			    struct ixgbe_hw_dev_caps *dev_caps)
889 {
890 	u32 cap_count;
891 	u8 *cbuf;
892 	int err;
893 
894 	cbuf = kzalloc(IXGBE_ACI_MAX_BUFFER_SIZE, GFP_KERNEL);
895 	if (!cbuf)
896 		return -ENOMEM;
897 
898 	/* Although the driver doesn't know the number of capabilities the
899 	 * device will return, we can simply send a 4KB buffer, the maximum
900 	 * possible size that firmware can return.
901 	 */
902 	cap_count = IXGBE_ACI_MAX_BUFFER_SIZE /
903 		    sizeof(struct ixgbe_aci_cmd_list_caps_elem);
904 
905 	err = ixgbe_aci_list_caps(hw, cbuf, IXGBE_ACI_MAX_BUFFER_SIZE,
906 				  &cap_count,
907 				  ixgbe_aci_opc_list_dev_caps);
908 	if (!err)
909 		ixgbe_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
910 
911 	kfree(cbuf);
912 
913 	return 0;
914 }
915 
916 /**
917  * ixgbe_discover_func_caps - Read and extract function capabilities
918  * @hw: pointer to the hardware structure
919  * @func_caps: pointer to function capabilities structure
920  *
921  * Read the function capabilities and extract them into the func_caps structure
922  * for later use.
923  *
924  * Return: the exit code of the operation.
925  */
926 int ixgbe_discover_func_caps(struct ixgbe_hw *hw,
927 			     struct ixgbe_hw_func_caps *func_caps)
928 {
929 	u32 cap_count;
930 	u8 *cbuf;
931 	int err;
932 
933 	cbuf = kzalloc(IXGBE_ACI_MAX_BUFFER_SIZE, GFP_KERNEL);
934 	if (!cbuf)
935 		return -ENOMEM;
936 
937 	/* Although the driver doesn't know the number of capabilities the
938 	 * device will return, we can simply send a 4KB buffer, the maximum
939 	 * possible size that firmware can return.
940 	 */
941 	cap_count = IXGBE_ACI_MAX_BUFFER_SIZE /
942 		    sizeof(struct ixgbe_aci_cmd_list_caps_elem);
943 
944 	err = ixgbe_aci_list_caps(hw, cbuf, IXGBE_ACI_MAX_BUFFER_SIZE,
945 				  &cap_count,
946 				  ixgbe_aci_opc_list_func_caps);
947 	if (!err)
948 		ixgbe_parse_func_caps(hw, func_caps, cbuf, cap_count);
949 
950 	kfree(cbuf);
951 
952 	return 0;
953 }
954 
955 /**
956  * ixgbe_get_caps - get info about the HW
957  * @hw: pointer to the hardware structure
958  *
959  * Retrieve both device and function capabilities.
960  *
961  * Return: the exit code of the operation.
962  */
963 int ixgbe_get_caps(struct ixgbe_hw *hw)
964 {
965 	int err;
966 
967 	err = ixgbe_discover_dev_caps(hw, &hw->dev_caps);
968 	if (err)
969 		return err;
970 
971 	return ixgbe_discover_func_caps(hw, &hw->func_caps);
972 }
973 
974 /**
975  * ixgbe_aci_disable_rxen - disable RX
976  * @hw: pointer to the HW struct
977  *
978  * Request a safe disable of Receive Enable using ACI command (0x000C).
979  *
980  * Return: the exit code of the operation.
981  */
982 int ixgbe_aci_disable_rxen(struct ixgbe_hw *hw)
983 {
984 	struct ixgbe_aci_cmd_disable_rxen *cmd;
985 	struct ixgbe_aci_desc desc;
986 
987 	cmd = &desc.params.disable_rxen;
988 
989 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_disable_rxen);
990 
991 	cmd->lport_num = hw->bus.func;
992 
993 	return ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
994 }
995 
996 /**
997  * ixgbe_aci_get_phy_caps - returns PHY capabilities
998  * @hw: pointer to the HW struct
999  * @qual_mods: report qualified modules
1000  * @report_mode: report mode capabilities
1001  * @pcaps: structure for PHY capabilities to be filled
1002  *
1003  * Returns the various PHY capabilities supported on the Port
1004  * using ACI command (0x0600).
1005  *
1006  * Return: the exit code of the operation.
1007  */
1008 int ixgbe_aci_get_phy_caps(struct ixgbe_hw *hw, bool qual_mods, u8 report_mode,
1009 			   struct ixgbe_aci_cmd_get_phy_caps_data *pcaps)
1010 {
1011 	struct ixgbe_aci_cmd_get_phy_caps *cmd;
1012 	u16 pcaps_size = sizeof(*pcaps);
1013 	struct ixgbe_aci_desc desc;
1014 	int err;
1015 
1016 	cmd = &desc.params.get_phy;
1017 
1018 	if (!pcaps || (report_mode & ~IXGBE_ACI_REPORT_MODE_M))
1019 		return -EINVAL;
1020 
1021 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_phy_caps);
1022 
1023 	if (qual_mods)
1024 		cmd->param0 |= cpu_to_le16(IXGBE_ACI_GET_PHY_RQM);
1025 
1026 	cmd->param0 |= cpu_to_le16(report_mode);
1027 	err = ixgbe_aci_send_cmd(hw, &desc, pcaps, pcaps_size);
1028 	if (!err && report_mode == IXGBE_ACI_REPORT_TOPO_CAP_MEDIA) {
1029 		hw->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
1030 		hw->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
1031 		memcpy(hw->link.link_info.module_type, &pcaps->module_type,
1032 		       sizeof(hw->link.link_info.module_type));
1033 	}
1034 
1035 	return err;
1036 }
1037 
1038 /**
1039  * ixgbe_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
1040  * @caps: PHY ability structure to copy data from
1041  * @cfg: PHY configuration structure to copy data to
1042  *
1043  * Helper function to copy data from PHY capabilities data structure
1044  * to PHY configuration data structure
1045  */
1046 void ixgbe_copy_phy_caps_to_cfg(struct ixgbe_aci_cmd_get_phy_caps_data *caps,
1047 				struct ixgbe_aci_cmd_set_phy_cfg_data *cfg)
1048 {
1049 	if (!caps || !cfg)
1050 		return;
1051 
1052 	memset(cfg, 0, sizeof(*cfg));
1053 	cfg->phy_type_low = caps->phy_type_low;
1054 	cfg->phy_type_high = caps->phy_type_high;
1055 	cfg->caps = caps->caps;
1056 	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
1057 	cfg->eee_cap = caps->eee_cap;
1058 	cfg->eeer_value = caps->eeer_value;
1059 	cfg->link_fec_opt = caps->link_fec_options;
1060 	cfg->module_compliance_enforcement =
1061 		caps->module_compliance_enforcement;
1062 }
1063 
1064 /**
1065  * ixgbe_aci_set_phy_cfg - set PHY configuration
1066  * @hw: pointer to the HW struct
1067  * @cfg: structure with PHY configuration data to be set
1068  *
1069  * Set the various PHY configuration parameters supported on the Port
1070  * using ACI command (0x0601).
1071  * One or more of the Set PHY config parameters may be ignored in an MFP
1072  * mode as the PF may not have the privilege to set some of the PHY Config
1073  * parameters.
1074  *
1075  * Return: the exit code of the operation.
1076  */
1077 int ixgbe_aci_set_phy_cfg(struct ixgbe_hw *hw,
1078 			  struct ixgbe_aci_cmd_set_phy_cfg_data *cfg)
1079 {
1080 	struct ixgbe_aci_desc desc;
1081 	int err;
1082 
1083 	if (!cfg)
1084 		return -EINVAL;
1085 
1086 	/* Ensure that only valid bits of cfg->caps can be turned on. */
1087 	cfg->caps &= IXGBE_ACI_PHY_ENA_VALID_MASK;
1088 
1089 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_set_phy_cfg);
1090 	desc.params.set_phy.lport_num = hw->bus.func;
1091 	desc.flags |= cpu_to_le16(IXGBE_ACI_FLAG_RD);
1092 
1093 	err = ixgbe_aci_send_cmd(hw, &desc, cfg, sizeof(*cfg));
1094 	if (!err)
1095 		hw->phy.curr_user_phy_cfg = *cfg;
1096 
1097 	return err;
1098 }
1099 
1100 /**
1101  * ixgbe_aci_set_link_restart_an - set up link and restart AN
1102  * @hw: pointer to the HW struct
1103  * @ena_link: if true: enable link, if false: disable link
1104  *
1105  * Function sets up the link and restarts the Auto-Negotiation over the link.
1106  *
1107  * Return: the exit code of the operation.
1108  */
1109 int ixgbe_aci_set_link_restart_an(struct ixgbe_hw *hw, bool ena_link)
1110 {
1111 	struct ixgbe_aci_cmd_restart_an *cmd;
1112 	struct ixgbe_aci_desc desc;
1113 
1114 	cmd = &desc.params.restart_an;
1115 
1116 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_restart_an);
1117 
1118 	cmd->cmd_flags = IXGBE_ACI_RESTART_AN_LINK_RESTART;
1119 	cmd->lport_num = hw->bus.func;
1120 	if (ena_link)
1121 		cmd->cmd_flags |= IXGBE_ACI_RESTART_AN_LINK_ENABLE;
1122 	else
1123 		cmd->cmd_flags &= ~IXGBE_ACI_RESTART_AN_LINK_ENABLE;
1124 
1125 	return ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
1126 }
1127 
1128 /**
1129  * ixgbe_is_media_cage_present - check if media cage is present
1130  * @hw: pointer to the HW struct
1131  *
1132  * Identify presence of media cage using the ACI command (0x06E0).
1133  *
1134  * Return: true if media cage is present, else false. If no cage, then
1135  * media type is backplane or BASE-T.
1136  */
1137 static bool ixgbe_is_media_cage_present(struct ixgbe_hw *hw)
1138 {
1139 	struct ixgbe_aci_cmd_get_link_topo *cmd;
1140 	struct ixgbe_aci_desc desc;
1141 
1142 	cmd = &desc.params.get_link_topo;
1143 
1144 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_link_topo);
1145 
1146 	cmd->addr.topo_params.node_type_ctx =
1147 		FIELD_PREP(IXGBE_ACI_LINK_TOPO_NODE_CTX_M,
1148 			   IXGBE_ACI_LINK_TOPO_NODE_CTX_PORT);
1149 
1150 	/* Set node type. */
1151 	cmd->addr.topo_params.node_type_ctx |=
1152 		FIELD_PREP(IXGBE_ACI_LINK_TOPO_NODE_TYPE_M,
1153 			   IXGBE_ACI_LINK_TOPO_NODE_TYPE_CAGE);
1154 
1155 	/* Node type cage can be used to determine if cage is present. If AQC
1156 	 * returns error (ENOENT), then no cage present. If no cage present then
1157 	 * connection type is backplane or BASE-T.
1158 	 */
1159 	return !ixgbe_aci_get_netlist_node(hw, cmd, NULL, NULL);
1160 }
1161 
1162 /**
1163  * ixgbe_get_media_type_from_phy_type - Gets media type based on phy type
1164  * @hw: pointer to the HW struct
1165  *
1166  * Try to identify the media type based on the phy type.
1167  * If more than one media type, the ixgbe_media_type_unknown is returned.
1168  * First, phy_type_low is checked, then phy_type_high.
1169  * If none are identified, the ixgbe_media_type_unknown is returned
1170  *
1171  * Return: type of a media based on phy type in form of enum.
1172  */
1173 static enum ixgbe_media_type
1174 ixgbe_get_media_type_from_phy_type(struct ixgbe_hw *hw)
1175 {
1176 	struct ixgbe_link_status *hw_link_info;
1177 
1178 	if (!hw)
1179 		return ixgbe_media_type_unknown;
1180 
1181 	hw_link_info = &hw->link.link_info;
1182 	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
1183 		/* If more than one media type is selected, report unknown */
1184 		return ixgbe_media_type_unknown;
1185 
1186 	if (hw_link_info->phy_type_low) {
1187 		/* 1G SGMII is a special case where some DA cable PHYs
1188 		 * may show this as an option when it really shouldn't
1189 		 * be since SGMII is meant to be between a MAC and a PHY
1190 		 * in a backplane. Try to detect this case and handle it
1191 		 */
1192 		if (hw_link_info->phy_type_low == IXGBE_PHY_TYPE_LOW_1G_SGMII &&
1193 		    (hw_link_info->module_type[IXGBE_ACI_MOD_TYPE_IDENT] ==
1194 		    IXGBE_ACI_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
1195 		    hw_link_info->module_type[IXGBE_ACI_MOD_TYPE_IDENT] ==
1196 		    IXGBE_ACI_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
1197 			return ixgbe_media_type_da;
1198 
1199 		switch (hw_link_info->phy_type_low) {
1200 		case IXGBE_PHY_TYPE_LOW_1000BASE_SX:
1201 		case IXGBE_PHY_TYPE_LOW_1000BASE_LX:
1202 		case IXGBE_PHY_TYPE_LOW_10GBASE_SR:
1203 		case IXGBE_PHY_TYPE_LOW_10GBASE_LR:
1204 		case IXGBE_PHY_TYPE_LOW_25GBASE_SR:
1205 		case IXGBE_PHY_TYPE_LOW_25GBASE_LR:
1206 			return ixgbe_media_type_fiber;
1207 		case IXGBE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
1208 		case IXGBE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
1209 			return ixgbe_media_type_fiber;
1210 		case IXGBE_PHY_TYPE_LOW_100BASE_TX:
1211 		case IXGBE_PHY_TYPE_LOW_1000BASE_T:
1212 		case IXGBE_PHY_TYPE_LOW_2500BASE_T:
1213 		case IXGBE_PHY_TYPE_LOW_5GBASE_T:
1214 		case IXGBE_PHY_TYPE_LOW_10GBASE_T:
1215 		case IXGBE_PHY_TYPE_LOW_25GBASE_T:
1216 			return ixgbe_media_type_copper;
1217 		case IXGBE_PHY_TYPE_LOW_10G_SFI_DA:
1218 		case IXGBE_PHY_TYPE_LOW_25GBASE_CR:
1219 		case IXGBE_PHY_TYPE_LOW_25GBASE_CR_S:
1220 		case IXGBE_PHY_TYPE_LOW_25GBASE_CR1:
1221 			return ixgbe_media_type_da;
1222 		case IXGBE_PHY_TYPE_LOW_25G_AUI_C2C:
1223 			if (ixgbe_is_media_cage_present(hw))
1224 				return ixgbe_media_type_aui;
1225 			fallthrough;
1226 		case IXGBE_PHY_TYPE_LOW_1000BASE_KX:
1227 		case IXGBE_PHY_TYPE_LOW_2500BASE_KX:
1228 		case IXGBE_PHY_TYPE_LOW_2500BASE_X:
1229 		case IXGBE_PHY_TYPE_LOW_5GBASE_KR:
1230 		case IXGBE_PHY_TYPE_LOW_10GBASE_KR_CR1:
1231 		case IXGBE_PHY_TYPE_LOW_10G_SFI_C2C:
1232 		case IXGBE_PHY_TYPE_LOW_25GBASE_KR:
1233 		case IXGBE_PHY_TYPE_LOW_25GBASE_KR1:
1234 		case IXGBE_PHY_TYPE_LOW_25GBASE_KR_S:
1235 			return ixgbe_media_type_backplane;
1236 		}
1237 	} else {
1238 		switch (hw_link_info->phy_type_high) {
1239 		case IXGBE_PHY_TYPE_HIGH_10BASE_T:
1240 			return ixgbe_media_type_copper;
1241 		}
1242 	}
1243 	return ixgbe_media_type_unknown;
1244 }
1245 
1246 /**
1247  * ixgbe_update_link_info - update status of the HW network link
1248  * @hw: pointer to the HW struct
1249  *
1250  * Update the status of the HW network link.
1251  *
1252  * Return: the exit code of the operation.
1253  */
1254 int ixgbe_update_link_info(struct ixgbe_hw *hw)
1255 {
1256 	struct ixgbe_aci_cmd_get_phy_caps_data *pcaps;
1257 	struct ixgbe_link_status *li;
1258 	int err;
1259 
1260 	if (!hw)
1261 		return -EINVAL;
1262 
1263 	li = &hw->link.link_info;
1264 
1265 	err = ixgbe_aci_get_link_info(hw, true, NULL);
1266 	if (err)
1267 		return err;
1268 
1269 	if (!(li->link_info & IXGBE_ACI_MEDIA_AVAILABLE))
1270 		return 0;
1271 
1272 	pcaps =	kzalloc(sizeof(*pcaps), GFP_KERNEL);
1273 	if (!pcaps)
1274 		return -ENOMEM;
1275 
1276 	err = ixgbe_aci_get_phy_caps(hw, false, IXGBE_ACI_REPORT_TOPO_CAP_MEDIA,
1277 				     pcaps);
1278 
1279 	if (!err)
1280 		memcpy(li->module_type, &pcaps->module_type,
1281 		       sizeof(li->module_type));
1282 
1283 	kfree(pcaps);
1284 
1285 	return err;
1286 }
1287 
1288 /**
1289  * ixgbe_get_link_status - get status of the HW network link
1290  * @hw: pointer to the HW struct
1291  * @link_up: pointer to bool (true/false = linkup/linkdown)
1292  *
1293  * Variable link_up is true if link is up, false if link is down.
1294  * The variable link_up is invalid if status is non zero. As a
1295  * result of this call, link status reporting becomes enabled
1296  *
1297  * Return: the exit code of the operation.
1298  */
1299 int ixgbe_get_link_status(struct ixgbe_hw *hw, bool *link_up)
1300 {
1301 	if (!hw || !link_up)
1302 		return -EINVAL;
1303 
1304 	if (hw->link.get_link_info) {
1305 		int err = ixgbe_update_link_info(hw);
1306 
1307 		if (err)
1308 			return err;
1309 	}
1310 
1311 	*link_up = hw->link.link_info.link_info & IXGBE_ACI_LINK_UP;
1312 
1313 	return 0;
1314 }
1315 
1316 /**
1317  * ixgbe_aci_get_link_info - get the link status
1318  * @hw: pointer to the HW struct
1319  * @ena_lse: enable/disable LinkStatusEvent reporting
1320  * @link: pointer to link status structure - optional
1321  *
1322  * Get the current Link Status using ACI command (0x607).
1323  * The current link can be optionally provided to update
1324  * the status.
1325  *
1326  * Return: the link status of the adapter.
1327  */
1328 int ixgbe_aci_get_link_info(struct ixgbe_hw *hw, bool ena_lse,
1329 			    struct ixgbe_link_status *link)
1330 {
1331 	struct ixgbe_aci_cmd_get_link_status_data link_data = {};
1332 	struct ixgbe_aci_cmd_get_link_status *resp;
1333 	struct ixgbe_link_status *li_old, *li;
1334 	struct ixgbe_fc_info *hw_fc_info;
1335 	struct ixgbe_aci_desc desc;
1336 	bool tx_pause, rx_pause;
1337 	u8 cmd_flags;
1338 	int err;
1339 
1340 	if (!hw)
1341 		return -EINVAL;
1342 
1343 	li_old = &hw->link.link_info_old;
1344 	li = &hw->link.link_info;
1345 	hw_fc_info = &hw->fc;
1346 
1347 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_link_status);
1348 	cmd_flags = (ena_lse) ? IXGBE_ACI_LSE_ENA : IXGBE_ACI_LSE_DIS;
1349 	resp = &desc.params.get_link_status;
1350 	resp->cmd_flags = cpu_to_le16(cmd_flags);
1351 	resp->lport_num = hw->bus.func;
1352 
1353 	err = ixgbe_aci_send_cmd(hw, &desc, &link_data, sizeof(link_data));
1354 	if (err)
1355 		return err;
1356 
1357 	/* Save off old link status information. */
1358 	*li_old = *li;
1359 
1360 	/* Update current link status information. */
1361 	li->link_speed = le16_to_cpu(link_data.link_speed);
1362 	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
1363 	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
1364 	li->link_info = link_data.link_info;
1365 	li->link_cfg_err = link_data.link_cfg_err;
1366 	li->an_info = link_data.an_info;
1367 	li->ext_info = link_data.ext_info;
1368 	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
1369 	li->fec_info = link_data.cfg & IXGBE_ACI_FEC_MASK;
1370 	li->topo_media_conflict = link_data.topo_media_conflict;
1371 	li->pacing = link_data.cfg & (IXGBE_ACI_CFG_PACING_M |
1372 				      IXGBE_ACI_CFG_PACING_TYPE_M);
1373 
1374 	/* Update fc info. */
1375 	tx_pause = !!(link_data.an_info & IXGBE_ACI_LINK_PAUSE_TX);
1376 	rx_pause = !!(link_data.an_info & IXGBE_ACI_LINK_PAUSE_RX);
1377 	if (tx_pause && rx_pause)
1378 		hw_fc_info->current_mode = ixgbe_fc_full;
1379 	else if (tx_pause)
1380 		hw_fc_info->current_mode = ixgbe_fc_tx_pause;
1381 	else if (rx_pause)
1382 		hw_fc_info->current_mode = ixgbe_fc_rx_pause;
1383 	else
1384 		hw_fc_info->current_mode = ixgbe_fc_none;
1385 
1386 	li->lse_ena = !!(le16_to_cpu(resp->cmd_flags) &
1387 			 IXGBE_ACI_LSE_IS_ENABLED);
1388 
1389 	/* Save link status information. */
1390 	if (link)
1391 		*link = *li;
1392 
1393 	/* Flag cleared so calling functions don't call AQ again. */
1394 	hw->link.get_link_info = false;
1395 
1396 	return 0;
1397 }
1398 
1399 /**
1400  * ixgbe_aci_set_event_mask - set event mask
1401  * @hw: pointer to the HW struct
1402  * @port_num: port number of the physical function
1403  * @mask: event mask to be set
1404  *
1405  * Set the event mask using ACI command (0x0613).
1406  *
1407  * Return: the exit code of the operation.
1408  */
1409 int ixgbe_aci_set_event_mask(struct ixgbe_hw *hw, u8 port_num, u16 mask)
1410 {
1411 	struct ixgbe_aci_cmd_set_event_mask *cmd;
1412 	struct ixgbe_aci_desc desc;
1413 
1414 	cmd = &desc.params.set_event_mask;
1415 
1416 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_set_event_mask);
1417 
1418 	cmd->lport_num = port_num;
1419 
1420 	cmd->event_mask = cpu_to_le16(mask);
1421 	return ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
1422 }
1423 
1424 /**
1425  * ixgbe_configure_lse - enable/disable link status events
1426  * @hw: pointer to the HW struct
1427  * @activate: true for enable lse, false otherwise
1428  * @mask: event mask to be set; a set bit means deactivation of the
1429  * corresponding event
1430  *
1431  * Set the event mask and then enable or disable link status events
1432  *
1433  * Return: the exit code of the operation.
1434  */
1435 int ixgbe_configure_lse(struct ixgbe_hw *hw, bool activate, u16 mask)
1436 {
1437 	int err;
1438 
1439 	err = ixgbe_aci_set_event_mask(hw, (u8)hw->bus.func, mask);
1440 	if (err)
1441 		return err;
1442 
1443 	/* Enabling link status events generation by fw. */
1444 	return ixgbe_aci_get_link_info(hw, activate, NULL);
1445 }
1446 
1447 /**
1448  * ixgbe_start_hw_e610 - Prepare hardware for Tx/Rx
1449  * @hw: pointer to hardware structure
1450  *
1451  * Get firmware version and start the hardware using the generic
1452  * start_hw() and ixgbe_start_hw_gen2() functions.
1453  *
1454  * Return: the exit code of the operation.
1455  */
1456 static int ixgbe_start_hw_e610(struct ixgbe_hw *hw)
1457 {
1458 	int err;
1459 
1460 	err = ixgbe_aci_get_fw_ver(hw);
1461 	if (err)
1462 		return err;
1463 
1464 	err = ixgbe_start_hw_generic(hw);
1465 	if (err)
1466 		return err;
1467 
1468 	ixgbe_start_hw_gen2(hw);
1469 
1470 	return 0;
1471 }
1472 
1473 /**
1474  * ixgbe_get_media_type_e610 - Gets media type
1475  * @hw: pointer to the HW struct
1476  *
1477  * In order to get the media type, the function gets PHY
1478  * capabilities and later on use them to identify the PHY type
1479  * checking phy_type_high and phy_type_low.
1480  *
1481  * Return: the type of media in form of ixgbe_media_type enum
1482  * or ixgbe_media_type_unknown in case of an error.
1483  */
1484 enum ixgbe_media_type ixgbe_get_media_type_e610(struct ixgbe_hw *hw)
1485 {
1486 	struct ixgbe_aci_cmd_get_phy_caps_data pcaps;
1487 	int rc;
1488 
1489 	rc = ixgbe_update_link_info(hw);
1490 	if (rc)
1491 		return ixgbe_media_type_unknown;
1492 
1493 	/* If there is no link but PHY (dongle) is available SW should use
1494 	 * Get PHY Caps admin command instead of Get Link Status, find most
1495 	 * significant bit that is set in PHY types reported by the command
1496 	 * and use it to discover media type.
1497 	 */
1498 	if (!(hw->link.link_info.link_info & IXGBE_ACI_LINK_UP) &&
1499 	    (hw->link.link_info.link_info & IXGBE_ACI_MEDIA_AVAILABLE)) {
1500 		int highest_bit;
1501 
1502 		/* Get PHY Capabilities */
1503 		rc = ixgbe_aci_get_phy_caps(hw, false,
1504 					    IXGBE_ACI_REPORT_TOPO_CAP_MEDIA,
1505 					    &pcaps);
1506 		if (rc)
1507 			return ixgbe_media_type_unknown;
1508 
1509 		highest_bit = fls64(le64_to_cpu(pcaps.phy_type_high));
1510 		if (highest_bit) {
1511 			hw->link.link_info.phy_type_high =
1512 				BIT_ULL(highest_bit - 1);
1513 			hw->link.link_info.phy_type_low = 0;
1514 		} else {
1515 			highest_bit = fls64(le64_to_cpu(pcaps.phy_type_low));
1516 			if (highest_bit) {
1517 				hw->link.link_info.phy_type_low =
1518 					BIT_ULL(highest_bit - 1);
1519 				hw->link.link_info.phy_type_high = 0;
1520 			}
1521 		}
1522 	}
1523 
1524 	/* Based on link status or search above try to discover media type. */
1525 	hw->phy.media_type = ixgbe_get_media_type_from_phy_type(hw);
1526 
1527 	return hw->phy.media_type;
1528 }
1529 
1530 /**
1531  * ixgbe_setup_link_e610 - Set up link
1532  * @hw: pointer to hardware structure
1533  * @speed: new link speed
1534  * @autoneg_wait: true when waiting for completion is needed
1535  *
1536  * Set up the link with the specified speed.
1537  *
1538  * Return: the exit code of the operation.
1539  */
1540 int ixgbe_setup_link_e610(struct ixgbe_hw *hw, ixgbe_link_speed speed,
1541 			  bool autoneg_wait)
1542 {
1543 	/* Simply request FW to perform proper PHY setup */
1544 	return hw->phy.ops.setup_link_speed(hw, speed, autoneg_wait);
1545 }
1546 
1547 /**
1548  * ixgbe_check_link_e610 - Determine link and speed status
1549  * @hw: pointer to hardware structure
1550  * @speed: pointer to link speed
1551  * @link_up: true when link is up
1552  * @link_up_wait_to_complete: bool used to wait for link up or not
1553  *
1554  * Determine if the link is up and the current link speed
1555  * using ACI command (0x0607).
1556  *
1557  * Return: the exit code of the operation.
1558  */
1559 int ixgbe_check_link_e610(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1560 			  bool *link_up, bool link_up_wait_to_complete)
1561 {
1562 	int err;
1563 	u32 i;
1564 
1565 	if (!speed || !link_up)
1566 		return -EINVAL;
1567 
1568 	/* Set get_link_info flag to ensure that fresh
1569 	 * link information will be obtained from FW
1570 	 * by sending Get Link Status admin command.
1571 	 */
1572 	hw->link.get_link_info = true;
1573 
1574 	/* Update link information in adapter context. */
1575 	err = ixgbe_get_link_status(hw, link_up);
1576 	if (err)
1577 		return err;
1578 
1579 	/* Wait for link up if it was requested. */
1580 	if (link_up_wait_to_complete && !(*link_up)) {
1581 		for (i = 0; i < hw->mac.max_link_up_time; i++) {
1582 			msleep(100);
1583 			hw->link.get_link_info = true;
1584 			err = ixgbe_get_link_status(hw, link_up);
1585 			if (err)
1586 				return err;
1587 			if (*link_up)
1588 				break;
1589 		}
1590 	}
1591 
1592 	/* Use link information in adapter context updated by the call
1593 	 * to ixgbe_get_link_status() to determine current link speed.
1594 	 * Link speed information is valid only when link up was
1595 	 * reported by FW.
1596 	 */
1597 	if (*link_up) {
1598 		switch (hw->link.link_info.link_speed) {
1599 		case IXGBE_ACI_LINK_SPEED_10MB:
1600 			*speed = IXGBE_LINK_SPEED_10_FULL;
1601 			break;
1602 		case IXGBE_ACI_LINK_SPEED_100MB:
1603 			*speed = IXGBE_LINK_SPEED_100_FULL;
1604 			break;
1605 		case IXGBE_ACI_LINK_SPEED_1000MB:
1606 			*speed = IXGBE_LINK_SPEED_1GB_FULL;
1607 			break;
1608 		case IXGBE_ACI_LINK_SPEED_2500MB:
1609 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
1610 			break;
1611 		case IXGBE_ACI_LINK_SPEED_5GB:
1612 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
1613 			break;
1614 		case IXGBE_ACI_LINK_SPEED_10GB:
1615 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
1616 			break;
1617 		default:
1618 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
1619 			break;
1620 		}
1621 	} else {
1622 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
1623 	}
1624 
1625 	return 0;
1626 }
1627 
1628 /**
1629  * ixgbe_get_link_capabilities_e610 - Determine link capabilities
1630  * @hw: pointer to hardware structure
1631  * @speed: pointer to link speed
1632  * @autoneg: true when autoneg or autotry is enabled
1633  *
1634  * Determine speed and AN parameters of a link.
1635  *
1636  * Return: the exit code of the operation.
1637  */
1638 int ixgbe_get_link_capabilities_e610(struct ixgbe_hw *hw,
1639 				     ixgbe_link_speed *speed,
1640 				     bool *autoneg)
1641 {
1642 	if (!speed || !autoneg)
1643 		return -EINVAL;
1644 
1645 	*autoneg = true;
1646 	*speed = hw->phy.speeds_supported;
1647 
1648 	return 0;
1649 }
1650 
1651 /**
1652  * ixgbe_cfg_phy_fc - Configure PHY Flow Control (FC) data based on FC mode
1653  * @hw: pointer to hardware structure
1654  * @cfg: PHY configuration data to set FC mode
1655  * @req_mode: FC mode to configure
1656  *
1657  * Configures PHY Flow Control according to the provided configuration.
1658  *
1659  * Return: the exit code of the operation.
1660  */
1661 int ixgbe_cfg_phy_fc(struct ixgbe_hw *hw,
1662 		     struct ixgbe_aci_cmd_set_phy_cfg_data *cfg,
1663 		     enum ixgbe_fc_mode req_mode)
1664 {
1665 	u8 pause_mask = 0x0;
1666 
1667 	if (!cfg)
1668 		return -EINVAL;
1669 
1670 	switch (req_mode) {
1671 	case ixgbe_fc_full:
1672 		pause_mask |= IXGBE_ACI_PHY_EN_TX_LINK_PAUSE;
1673 		pause_mask |= IXGBE_ACI_PHY_EN_RX_LINK_PAUSE;
1674 		break;
1675 	case ixgbe_fc_rx_pause:
1676 		pause_mask |= IXGBE_ACI_PHY_EN_RX_LINK_PAUSE;
1677 		break;
1678 	case ixgbe_fc_tx_pause:
1679 		pause_mask |= IXGBE_ACI_PHY_EN_TX_LINK_PAUSE;
1680 		break;
1681 	default:
1682 		break;
1683 	}
1684 
1685 	/* Clear the old pause settings. */
1686 	cfg->caps &= ~(IXGBE_ACI_PHY_EN_TX_LINK_PAUSE |
1687 		IXGBE_ACI_PHY_EN_RX_LINK_PAUSE);
1688 
1689 	/* Set the new capabilities. */
1690 	cfg->caps |= pause_mask;
1691 
1692 	return 0;
1693 }
1694 
1695 /**
1696  * ixgbe_setup_fc_e610 - Set up flow control
1697  * @hw: pointer to hardware structure
1698  *
1699  * Set up flow control. This has to be done during init time.
1700  *
1701  * Return: the exit code of the operation.
1702  */
1703 int ixgbe_setup_fc_e610(struct ixgbe_hw *hw)
1704 {
1705 	struct ixgbe_aci_cmd_get_phy_caps_data pcaps = {};
1706 	struct ixgbe_aci_cmd_set_phy_cfg_data cfg = {};
1707 	int err;
1708 
1709 	/* Get the current PHY config */
1710 	err = ixgbe_aci_get_phy_caps(hw, false,
1711 				     IXGBE_ACI_REPORT_ACTIVE_CFG, &pcaps);
1712 	if (err)
1713 		return err;
1714 
1715 	ixgbe_copy_phy_caps_to_cfg(&pcaps, &cfg);
1716 
1717 	/* Configure the set PHY data */
1718 	err = ixgbe_cfg_phy_fc(hw, &cfg, hw->fc.requested_mode);
1719 	if (err)
1720 		return err;
1721 
1722 	/* If the capabilities have changed, then set the new config */
1723 	if (cfg.caps != pcaps.caps) {
1724 		cfg.caps |= IXGBE_ACI_PHY_ENA_AUTO_LINK_UPDT;
1725 
1726 		err = ixgbe_aci_set_phy_cfg(hw, &cfg);
1727 		if (err)
1728 			return err;
1729 	}
1730 
1731 	return err;
1732 }
1733 
1734 /**
1735  * ixgbe_fc_autoneg_e610 - Configure flow control
1736  * @hw: pointer to hardware structure
1737  *
1738  * Configure Flow Control.
1739  */
1740 void ixgbe_fc_autoneg_e610(struct ixgbe_hw *hw)
1741 {
1742 	int err;
1743 
1744 	/* Get current link err.
1745 	 * Current FC mode will be stored in the hw context.
1746 	 */
1747 	err = ixgbe_aci_get_link_info(hw, false, NULL);
1748 	if (err)
1749 		goto no_autoneg;
1750 
1751 	/* Check if the link is up */
1752 	if (!(hw->link.link_info.link_info & IXGBE_ACI_LINK_UP))
1753 		goto no_autoneg;
1754 
1755 	/* Check if auto-negotiation has completed */
1756 	if (!(hw->link.link_info.an_info & IXGBE_ACI_AN_COMPLETED))
1757 		goto no_autoneg;
1758 
1759 	hw->fc.fc_was_autonegged = true;
1760 	return;
1761 
1762 no_autoneg:
1763 	hw->fc.fc_was_autonegged = false;
1764 	hw->fc.current_mode = hw->fc.requested_mode;
1765 }
1766 
1767 /**
1768  * ixgbe_disable_rx_e610 - Disable RX unit
1769  * @hw: pointer to hardware structure
1770  *
1771  * Disable RX DMA unit on E610 with use of ACI command (0x000C).
1772  *
1773  * Return: the exit code of the operation.
1774  */
1775 void ixgbe_disable_rx_e610(struct ixgbe_hw *hw)
1776 {
1777 	u32 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
1778 	u32 pfdtxgswc;
1779 	int err;
1780 
1781 	if (!(rxctrl & IXGBE_RXCTRL_RXEN))
1782 		return;
1783 
1784 	pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
1785 	if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
1786 		pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
1787 		IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
1788 		hw->mac.set_lben = true;
1789 	} else {
1790 		hw->mac.set_lben = false;
1791 	}
1792 
1793 	err = ixgbe_aci_disable_rxen(hw);
1794 
1795 	/* If we fail - disable RX using register write */
1796 	if (err) {
1797 		rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
1798 		if (rxctrl & IXGBE_RXCTRL_RXEN) {
1799 			rxctrl &= ~IXGBE_RXCTRL_RXEN;
1800 			IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
1801 		}
1802 	}
1803 }
1804 
1805 /**
1806  * ixgbe_init_phy_ops_e610 - PHY specific init
1807  * @hw: pointer to hardware structure
1808  *
1809  * Initialize any function pointers that were not able to be
1810  * set during init_shared_code because the PHY type was not known.
1811  *
1812  * Return: the exit code of the operation.
1813  */
1814 int ixgbe_init_phy_ops_e610(struct ixgbe_hw *hw)
1815 {
1816 	struct ixgbe_mac_info *mac = &hw->mac;
1817 	struct ixgbe_phy_info *phy = &hw->phy;
1818 
1819 	if (mac->ops.get_media_type(hw) == ixgbe_media_type_copper)
1820 		phy->ops.set_phy_power = ixgbe_set_phy_power_e610;
1821 	else
1822 		phy->ops.set_phy_power = NULL;
1823 
1824 	/* Identify the PHY */
1825 	return phy->ops.identify(hw);
1826 }
1827 
1828 /**
1829  * ixgbe_identify_phy_e610 - Identify PHY
1830  * @hw: pointer to hardware structure
1831  *
1832  * Determine PHY type, supported speeds and PHY ID.
1833  *
1834  * Return: the exit code of the operation.
1835  */
1836 int ixgbe_identify_phy_e610(struct ixgbe_hw *hw)
1837 {
1838 	struct ixgbe_aci_cmd_get_phy_caps_data pcaps;
1839 	u64 phy_type_low, phy_type_high;
1840 	int err;
1841 
1842 	/* Set PHY type */
1843 	hw->phy.type = ixgbe_phy_fw;
1844 
1845 	err = ixgbe_aci_get_phy_caps(hw, false,
1846 				     IXGBE_ACI_REPORT_TOPO_CAP_MEDIA, &pcaps);
1847 	if (err)
1848 		return err;
1849 
1850 	if (!(pcaps.module_compliance_enforcement &
1851 	      IXGBE_ACI_MOD_ENFORCE_STRICT_MODE)) {
1852 		/* Handle lenient mode */
1853 		err = ixgbe_aci_get_phy_caps(hw, false,
1854 					     IXGBE_ACI_REPORT_TOPO_CAP_NO_MEDIA,
1855 					     &pcaps);
1856 		if (err)
1857 			return err;
1858 	}
1859 
1860 	/* Determine supported speeds */
1861 	hw->phy.speeds_supported = IXGBE_LINK_SPEED_UNKNOWN;
1862 	phy_type_high = le64_to_cpu(pcaps.phy_type_high);
1863 	phy_type_low = le64_to_cpu(pcaps.phy_type_low);
1864 
1865 	if (phy_type_high & IXGBE_PHY_TYPE_HIGH_10BASE_T ||
1866 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_10M_SGMII)
1867 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10_FULL;
1868 	if (phy_type_low  & IXGBE_PHY_TYPE_LOW_100BASE_TX ||
1869 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_100M_SGMII ||
1870 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_100M_USXGMII)
1871 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
1872 	if (phy_type_low  & IXGBE_PHY_TYPE_LOW_1000BASE_T  ||
1873 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_1000BASE_SX ||
1874 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_1000BASE_LX ||
1875 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_1000BASE_KX ||
1876 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_1G_SGMII    ||
1877 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_1G_USXGMII)
1878 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
1879 	if (phy_type_low  & IXGBE_PHY_TYPE_LOW_10GBASE_T       ||
1880 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_10G_SFI_DA      ||
1881 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_10GBASE_SR      ||
1882 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_10GBASE_LR      ||
1883 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_10GBASE_KR_CR1  ||
1884 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_10G_SFI_AOC_ACC ||
1885 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_10G_SFI_C2C     ||
1886 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_10G_USXGMII)
1887 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
1888 
1889 	/* 2.5 and 5 Gbps link speeds must be excluded from the
1890 	 * auto-negotiation set used during driver initialization due to
1891 	 * compatibility issues with certain switches. Those issues do not
1892 	 * exist in case of E610 2.5G SKU device (0x57b1).
1893 	 */
1894 	if (!hw->phy.autoneg_advertised &&
1895 	    hw->device_id != IXGBE_DEV_ID_E610_2_5G_T)
1896 		hw->phy.autoneg_advertised = hw->phy.speeds_supported;
1897 
1898 	if (phy_type_low  & IXGBE_PHY_TYPE_LOW_2500BASE_T   ||
1899 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_2500BASE_X   ||
1900 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_2500BASE_KX  ||
1901 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_2500M_SGMII ||
1902 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_2500M_USXGMII)
1903 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
1904 
1905 	if (!hw->phy.autoneg_advertised &&
1906 	    hw->device_id == IXGBE_DEV_ID_E610_2_5G_T)
1907 		hw->phy.autoneg_advertised = hw->phy.speeds_supported;
1908 
1909 	if (phy_type_low  & IXGBE_PHY_TYPE_LOW_5GBASE_T  ||
1910 	    phy_type_low  & IXGBE_PHY_TYPE_LOW_5GBASE_KR ||
1911 	    phy_type_high & IXGBE_PHY_TYPE_HIGH_5G_USXGMII)
1912 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
1913 
1914 	/* Set PHY ID */
1915 	memcpy(&hw->phy.id, pcaps.phy_id_oui, sizeof(u32));
1916 
1917 	hw->phy.eee_speeds_supported = IXGBE_LINK_SPEED_10_FULL |
1918 				       IXGBE_LINK_SPEED_100_FULL |
1919 				       IXGBE_LINK_SPEED_1GB_FULL;
1920 	hw->phy.eee_speeds_advertised = hw->phy.eee_speeds_supported;
1921 
1922 	return 0;
1923 }
1924 
1925 /**
1926  * ixgbe_identify_module_e610 - Identify SFP module type
1927  * @hw: pointer to hardware structure
1928  *
1929  * Identify the SFP module type.
1930  *
1931  * Return: the exit code of the operation.
1932  */
1933 int ixgbe_identify_module_e610(struct ixgbe_hw *hw)
1934 {
1935 	bool media_available;
1936 	u8 module_type;
1937 	int err;
1938 
1939 	err = ixgbe_update_link_info(hw);
1940 	if (err)
1941 		return err;
1942 
1943 	media_available =
1944 		(hw->link.link_info.link_info & IXGBE_ACI_MEDIA_AVAILABLE);
1945 
1946 	if (media_available) {
1947 		hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1948 
1949 		/* Get module type from hw context updated by
1950 		 * ixgbe_update_link_info()
1951 		 */
1952 		module_type = hw->link.link_info.module_type[IXGBE_ACI_MOD_TYPE_IDENT];
1953 
1954 		if ((module_type & IXGBE_ACI_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE) ||
1955 		    (module_type & IXGBE_ACI_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE)) {
1956 			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1957 		} else if (module_type & IXGBE_ACI_MOD_TYPE_BYTE1_10G_BASE_SR) {
1958 			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1959 		} else if ((module_type & IXGBE_ACI_MOD_TYPE_BYTE1_10G_BASE_LR) ||
1960 			   (module_type & IXGBE_ACI_MOD_TYPE_BYTE1_10G_BASE_LRM)) {
1961 			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1962 		}
1963 	} else {
1964 		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1965 		return -ENOENT;
1966 	}
1967 
1968 	return 0;
1969 }
1970 
1971 /**
1972  * ixgbe_setup_phy_link_e610 - Sets up firmware-controlled PHYs
1973  * @hw: pointer to hardware structure
1974  *
1975  * Set the parameters for the firmware-controlled PHYs.
1976  *
1977  * Return: the exit code of the operation.
1978  */
1979 int ixgbe_setup_phy_link_e610(struct ixgbe_hw *hw)
1980 {
1981 	struct ixgbe_aci_cmd_get_phy_caps_data pcaps;
1982 	struct ixgbe_aci_cmd_set_phy_cfg_data pcfg;
1983 	u8 rmode = IXGBE_ACI_REPORT_TOPO_CAP_MEDIA;
1984 	u64 sup_phy_type_low, sup_phy_type_high;
1985 	u64 phy_type_low = 0, phy_type_high = 0;
1986 	int err;
1987 
1988 	err = ixgbe_aci_get_link_info(hw, false, NULL);
1989 	if (err)
1990 		return err;
1991 
1992 	/* If media is not available get default config. */
1993 	if (!(hw->link.link_info.link_info & IXGBE_ACI_MEDIA_AVAILABLE))
1994 		rmode = IXGBE_ACI_REPORT_DFLT_CFG;
1995 
1996 	err = ixgbe_aci_get_phy_caps(hw, false, rmode, &pcaps);
1997 	if (err)
1998 		return err;
1999 
2000 	sup_phy_type_low = le64_to_cpu(pcaps.phy_type_low);
2001 	sup_phy_type_high = le64_to_cpu(pcaps.phy_type_high);
2002 
2003 	/* Get Active configuration to avoid unintended changes. */
2004 	err = ixgbe_aci_get_phy_caps(hw, false, IXGBE_ACI_REPORT_ACTIVE_CFG,
2005 				     &pcaps);
2006 	if (err)
2007 		return err;
2008 
2009 	ixgbe_copy_phy_caps_to_cfg(&pcaps, &pcfg);
2010 
2011 	if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10_FULL) {
2012 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_10BASE_T;
2013 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_10M_SGMII;
2014 	}
2015 	if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) {
2016 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_100BASE_TX;
2017 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_100M_SGMII;
2018 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_100M_USXGMII;
2019 	}
2020 	if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) {
2021 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_1000BASE_T;
2022 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_1000BASE_SX;
2023 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_1000BASE_LX;
2024 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_1000BASE_KX;
2025 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_1G_SGMII;
2026 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_1G_USXGMII;
2027 	}
2028 	if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_2_5GB_FULL) {
2029 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_2500BASE_T;
2030 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_2500BASE_X;
2031 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_2500BASE_KX;
2032 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_2500M_SGMII;
2033 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_2500M_USXGMII;
2034 	}
2035 	if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) {
2036 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_5GBASE_T;
2037 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_5GBASE_KR;
2038 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_5G_USXGMII;
2039 	}
2040 	if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) {
2041 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10GBASE_T;
2042 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10G_SFI_DA;
2043 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10GBASE_SR;
2044 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10GBASE_LR;
2045 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10GBASE_KR_CR1;
2046 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10G_SFI_AOC_ACC;
2047 		phy_type_low  |= IXGBE_PHY_TYPE_LOW_10G_SFI_C2C;
2048 		phy_type_high |= IXGBE_PHY_TYPE_HIGH_10G_USXGMII;
2049 	}
2050 
2051 	/* Mask the set values to avoid requesting unsupported link types. */
2052 	phy_type_low &= sup_phy_type_low;
2053 	pcfg.phy_type_low = cpu_to_le64(phy_type_low);
2054 	phy_type_high &= sup_phy_type_high;
2055 	pcfg.phy_type_high = cpu_to_le64(phy_type_high);
2056 
2057 	if (pcfg.phy_type_high != pcaps.phy_type_high ||
2058 	    pcfg.phy_type_low != pcaps.phy_type_low ||
2059 	    pcfg.caps != pcaps.caps) {
2060 		pcfg.caps |= IXGBE_ACI_PHY_ENA_LINK;
2061 		pcfg.caps |= IXGBE_ACI_PHY_ENA_AUTO_LINK_UPDT;
2062 
2063 		err = ixgbe_aci_set_phy_cfg(hw, &pcfg);
2064 		if (err)
2065 			return err;
2066 	}
2067 
2068 	return 0;
2069 }
2070 
2071 /**
2072  * ixgbe_set_phy_power_e610 - Control power for copper PHY
2073  * @hw: pointer to hardware structure
2074  * @on: true for on, false for off
2075  *
2076  * Set the power on/off of the PHY
2077  * by getting its capabilities and setting the appropriate
2078  * configuration parameters.
2079  *
2080  * Return: the exit code of the operation.
2081  */
2082 int ixgbe_set_phy_power_e610(struct ixgbe_hw *hw, bool on)
2083 {
2084 	struct ixgbe_aci_cmd_get_phy_caps_data phy_caps = {};
2085 	struct ixgbe_aci_cmd_set_phy_cfg_data phy_cfg = {};
2086 	int err;
2087 
2088 	err = ixgbe_aci_get_phy_caps(hw, false,
2089 				     IXGBE_ACI_REPORT_ACTIVE_CFG,
2090 				     &phy_caps);
2091 	if (err)
2092 		return err;
2093 
2094 	ixgbe_copy_phy_caps_to_cfg(&phy_caps, &phy_cfg);
2095 
2096 	if (on)
2097 		phy_cfg.caps &= ~IXGBE_ACI_PHY_ENA_LOW_POWER;
2098 	else
2099 		phy_cfg.caps |= IXGBE_ACI_PHY_ENA_LOW_POWER;
2100 
2101 	/* PHY is already in requested power mode. */
2102 	if (phy_caps.caps == phy_cfg.caps)
2103 		return 0;
2104 
2105 	phy_cfg.caps |= IXGBE_ACI_PHY_ENA_LINK;
2106 	phy_cfg.caps |= IXGBE_ACI_PHY_ENA_AUTO_LINK_UPDT;
2107 
2108 	return ixgbe_aci_set_phy_cfg(hw, &phy_cfg);
2109 }
2110 
2111 /**
2112  * ixgbe_enter_lplu_e610 - Transition to low power states
2113  * @hw: pointer to hardware structure
2114  *
2115  * Configures Low Power Link Up on transition to low power states
2116  * (from D0 to non-D0). Link is required to enter LPLU so avoid resetting the
2117  * X557 PHY immediately prior to entering LPLU.
2118  *
2119  * Return: the exit code of the operation.
2120  */
2121 int ixgbe_enter_lplu_e610(struct ixgbe_hw *hw)
2122 {
2123 	struct ixgbe_aci_cmd_get_phy_caps_data phy_caps = {};
2124 	struct ixgbe_aci_cmd_set_phy_cfg_data phy_cfg = {};
2125 	int err;
2126 
2127 	err = ixgbe_aci_get_phy_caps(hw, false,
2128 				     IXGBE_ACI_REPORT_ACTIVE_CFG,
2129 				     &phy_caps);
2130 	if (err)
2131 		return err;
2132 
2133 	ixgbe_copy_phy_caps_to_cfg(&phy_caps, &phy_cfg);
2134 
2135 	phy_cfg.low_power_ctrl_an |= IXGBE_ACI_PHY_EN_D3COLD_LOW_POWER_AUTONEG;
2136 
2137 	return ixgbe_aci_set_phy_cfg(hw, &phy_cfg);
2138 }
2139 
2140 /**
2141  * ixgbe_init_eeprom_params_e610 - Initialize EEPROM params
2142  * @hw: pointer to hardware structure
2143  *
2144  * Initialize the EEPROM parameters ixgbe_eeprom_info within the ixgbe_hw
2145  * struct in order to set up EEPROM access.
2146  *
2147  * Return: the operation exit code.
2148  */
2149 int ixgbe_init_eeprom_params_e610(struct ixgbe_hw *hw)
2150 {
2151 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
2152 	u32 gens_stat;
2153 	u8 sr_size;
2154 
2155 	if (eeprom->type != ixgbe_eeprom_uninitialized)
2156 		return 0;
2157 
2158 	eeprom->type = ixgbe_flash;
2159 
2160 	gens_stat = IXGBE_READ_REG(hw, GLNVM_GENS);
2161 	sr_size = FIELD_GET(GLNVM_GENS_SR_SIZE_M, gens_stat);
2162 
2163 	/* Switching to words (sr_size contains power of 2). */
2164 	eeprom->word_size = BIT(sr_size) * IXGBE_SR_WORDS_IN_1KB;
2165 
2166 	hw_dbg(hw, "Eeprom params: type = %d, size = %d\n", eeprom->type,
2167 	       eeprom->word_size);
2168 
2169 	return 0;
2170 }
2171 
2172 /**
2173  * ixgbe_aci_get_netlist_node - get a node handle
2174  * @hw: pointer to the hw struct
2175  * @cmd: get_link_topo AQ structure
2176  * @node_part_number: output node part number if node found
2177  * @node_handle: output node handle parameter if node found
2178  *
2179  * Get the netlist node and assigns it to
2180  * the provided handle using ACI command (0x06E0).
2181  *
2182  * Return: the exit code of the operation.
2183  */
2184 int ixgbe_aci_get_netlist_node(struct ixgbe_hw *hw,
2185 			       struct ixgbe_aci_cmd_get_link_topo *cmd,
2186 			       u8 *node_part_number, u16 *node_handle)
2187 {
2188 	struct ixgbe_aci_desc desc;
2189 
2190 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_link_topo);
2191 	desc.params.get_link_topo = *cmd;
2192 
2193 	if (ixgbe_aci_send_cmd(hw, &desc, NULL, 0))
2194 		return -EOPNOTSUPP;
2195 
2196 	if (node_handle)
2197 		*node_handle =
2198 			le16_to_cpu(desc.params.get_link_topo.addr.handle);
2199 	if (node_part_number)
2200 		*node_part_number = desc.params.get_link_topo.node_part_num;
2201 
2202 	return 0;
2203 }
2204 
2205 /**
2206  * ixgbe_acquire_nvm - Generic request for acquiring the NVM ownership
2207  * @hw: pointer to the HW structure
2208  * @access: NVM access type (read or write)
2209  *
2210  * Request NVM ownership.
2211  *
2212  * Return: the exit code of the operation.
2213  */
2214 int ixgbe_acquire_nvm(struct ixgbe_hw *hw,
2215 		      enum ixgbe_aci_res_access_type access)
2216 {
2217 	u32 fla;
2218 
2219 	/* Skip if we are in blank NVM programming mode */
2220 	fla = IXGBE_READ_REG(hw, IXGBE_GLNVM_FLA);
2221 	if ((fla & IXGBE_GLNVM_FLA_LOCKED_M) == 0)
2222 		return 0;
2223 
2224 	return ixgbe_acquire_res(hw, IXGBE_NVM_RES_ID, access,
2225 				 IXGBE_NVM_TIMEOUT);
2226 }
2227 
2228 /**
2229  * ixgbe_release_nvm - Generic request for releasing the NVM ownership
2230  * @hw: pointer to the HW structure
2231  *
2232  * Release NVM ownership.
2233  */
2234 void ixgbe_release_nvm(struct ixgbe_hw *hw)
2235 {
2236 	u32 fla;
2237 
2238 	/* Skip if we are in blank NVM programming mode */
2239 	fla = IXGBE_READ_REG(hw, IXGBE_GLNVM_FLA);
2240 	if ((fla & IXGBE_GLNVM_FLA_LOCKED_M) == 0)
2241 		return;
2242 
2243 	ixgbe_release_res(hw, IXGBE_NVM_RES_ID);
2244 }
2245 
2246 /**
2247  * ixgbe_aci_read_nvm - read NVM
2248  * @hw: pointer to the HW struct
2249  * @module_typeid: module pointer location in words from the NVM beginning
2250  * @offset: byte offset from the module beginning
2251  * @length: length of the section to be read (in bytes from the offset)
2252  * @data: command buffer (size [bytes] = length)
2253  * @last_command: tells if this is the last command in a series
2254  * @read_shadow_ram: tell if this is a shadow RAM read
2255  *
2256  * Read the NVM using ACI command (0x0701).
2257  *
2258  * Return: the exit code of the operation.
2259  */
2260 int ixgbe_aci_read_nvm(struct ixgbe_hw *hw, u16 module_typeid, u32 offset,
2261 		       u16 length, void *data, bool last_command,
2262 		       bool read_shadow_ram)
2263 {
2264 	struct ixgbe_aci_cmd_nvm *cmd;
2265 	struct ixgbe_aci_desc desc;
2266 
2267 	if (offset > IXGBE_ACI_NVM_MAX_OFFSET)
2268 		return -EINVAL;
2269 
2270 	cmd = &desc.params.nvm;
2271 
2272 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_read);
2273 
2274 	if (!read_shadow_ram && module_typeid == IXGBE_ACI_NVM_START_POINT)
2275 		cmd->cmd_flags |= IXGBE_ACI_NVM_FLASH_ONLY;
2276 
2277 	/* If this is the last command in a series, set the proper flag. */
2278 	if (last_command)
2279 		cmd->cmd_flags |= IXGBE_ACI_NVM_LAST_CMD;
2280 	cmd->module_typeid = cpu_to_le16(module_typeid);
2281 	cmd->offset_low = cpu_to_le16(offset & 0xFFFF);
2282 	cmd->offset_high = (offset >> 16) & 0xFF;
2283 	cmd->length = cpu_to_le16(length);
2284 
2285 	return ixgbe_aci_send_cmd(hw, &desc, data, length);
2286 }
2287 
2288 /**
2289  * ixgbe_nvm_validate_checksum - validate checksum
2290  * @hw: pointer to the HW struct
2291  *
2292  * Verify NVM PFA checksum validity using ACI command (0x0706).
2293  * If the checksum verification failed, IXGBE_ERR_NVM_CHECKSUM is returned.
2294  * The function acquires and then releases the NVM ownership.
2295  *
2296  * Return: the exit code of the operation.
2297  */
2298 int ixgbe_nvm_validate_checksum(struct ixgbe_hw *hw)
2299 {
2300 	struct ixgbe_aci_cmd_nvm_checksum *cmd;
2301 	struct ixgbe_aci_desc desc;
2302 	int err;
2303 
2304 	err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ);
2305 	if (err)
2306 		return err;
2307 
2308 	cmd = &desc.params.nvm_checksum;
2309 
2310 	ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_checksum);
2311 	cmd->flags = IXGBE_ACI_NVM_CHECKSUM_VERIFY;
2312 
2313 	err = ixgbe_aci_send_cmd(hw, &desc, NULL, 0);
2314 
2315 	ixgbe_release_nvm(hw);
2316 
2317 	if (!err && cmd->checksum !=
2318 		cpu_to_le16(IXGBE_ACI_NVM_CHECKSUM_CORRECT)) {
2319 		struct ixgbe_adapter *adapter = container_of(hw, struct ixgbe_adapter,
2320 							     hw);
2321 
2322 		err = -EIO;
2323 		netdev_err(adapter->netdev, "Invalid Shadow Ram checksum");
2324 	}
2325 
2326 	return err;
2327 }
2328 
2329 /**
2330  * ixgbe_discover_flash_size - Discover the available flash size
2331  * @hw: pointer to the HW struct
2332  *
2333  * The device flash could be up to 16MB in size. However, it is possible that
2334  * the actual size is smaller. Use bisection to determine the accessible size
2335  * of flash memory.
2336  *
2337  * Return: the exit code of the operation.
2338  */
2339 static int ixgbe_discover_flash_size(struct ixgbe_hw *hw)
2340 {
2341 	u32 min_size = 0, max_size = IXGBE_ACI_NVM_MAX_OFFSET + 1;
2342 	int err;
2343 
2344 	err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ);
2345 	if (err)
2346 		return err;
2347 
2348 	while ((max_size - min_size) > 1) {
2349 		u32 offset = (max_size + min_size) / 2;
2350 		u32 len = 1;
2351 		u8 data;
2352 
2353 		err = ixgbe_read_flat_nvm(hw, offset, &len, &data, false);
2354 		if (err == -EIO &&
2355 		    hw->aci.last_status == IXGBE_ACI_RC_EINVAL) {
2356 			err = 0;
2357 			max_size = offset;
2358 		} else if (!err) {
2359 			min_size = offset;
2360 		} else {
2361 			/* an unexpected error occurred */
2362 			goto err_read_flat_nvm;
2363 		}
2364 	}
2365 
2366 	hw->flash.flash_size = max_size;
2367 
2368 err_read_flat_nvm:
2369 	ixgbe_release_nvm(hw);
2370 
2371 	return err;
2372 }
2373 
2374 /**
2375  * ixgbe_read_sr_base_address - Read the value of a Shadow RAM pointer word
2376  * @hw: pointer to the HW structure
2377  * @offset: the word offset of the Shadow RAM word to read
2378  * @pointer: pointer value read from Shadow RAM
2379  *
2380  * Read the given Shadow RAM word, and convert it to a pointer value specified
2381  * in bytes. This function assumes the specified offset is a valid pointer
2382  * word.
2383  *
2384  * Each pointer word specifies whether it is stored in word size or 4KB
2385  * sector size by using the highest bit. The reported pointer value will be in
2386  * bytes, intended for flat NVM reads.
2387  *
2388  * Return: the exit code of the operation.
2389  */
2390 static int ixgbe_read_sr_base_address(struct ixgbe_hw *hw, u16 offset,
2391 				      u32 *pointer)
2392 {
2393 	u16 value;
2394 	int err;
2395 
2396 	err = ixgbe_read_ee_aci_e610(hw, offset, &value);
2397 	if (err)
2398 		return err;
2399 
2400 	/* Determine if the pointer is in 4KB or word units */
2401 	if (value & IXGBE_SR_NVM_PTR_4KB_UNITS)
2402 		*pointer = (value & ~IXGBE_SR_NVM_PTR_4KB_UNITS) * SZ_4K;
2403 	else
2404 		*pointer = value * sizeof(u16);
2405 
2406 	return 0;
2407 }
2408 
2409 /**
2410  * ixgbe_read_sr_area_size - Read an area size from a Shadow RAM word
2411  * @hw: pointer to the HW structure
2412  * @offset: the word offset of the Shadow RAM to read
2413  * @size: size value read from the Shadow RAM
2414  *
2415  * Read the given Shadow RAM word, and convert it to an area size value
2416  * specified in bytes. This function assumes the specified offset is a valid
2417  * area size word.
2418  *
2419  * Each area size word is specified in 4KB sector units. This function reports
2420  * the size in bytes, intended for flat NVM reads.
2421  *
2422  * Return: the exit code of the operation.
2423  */
2424 static int ixgbe_read_sr_area_size(struct ixgbe_hw *hw, u16 offset, u32 *size)
2425 {
2426 	u16 value;
2427 	int err;
2428 
2429 	err = ixgbe_read_ee_aci_e610(hw, offset, &value);
2430 	if (err)
2431 		return err;
2432 
2433 	/* Area sizes are always specified in 4KB units */
2434 	*size = value * SZ_4K;
2435 
2436 	return 0;
2437 }
2438 
2439 /**
2440  * ixgbe_determine_active_flash_banks - Discover active bank for each module
2441  * @hw: pointer to the HW struct
2442  *
2443  * Read the Shadow RAM control word and determine which banks are active for
2444  * the NVM, OROM, and Netlist modules. Also read and calculate the associated
2445  * pointer and size. These values are then cached into the ixgbe_flash_info
2446  * structure for later use in order to calculate the correct offset to read
2447  * from the active module.
2448  *
2449  * Return: the exit code of the operation.
2450  */
2451 static int ixgbe_determine_active_flash_banks(struct ixgbe_hw *hw)
2452 {
2453 	struct ixgbe_bank_info *banks = &hw->flash.banks;
2454 	u16 ctrl_word;
2455 	int err;
2456 
2457 	err = ixgbe_read_ee_aci_e610(hw, IXGBE_E610_SR_NVM_CTRL_WORD,
2458 				     &ctrl_word);
2459 	if (err)
2460 		return err;
2461 
2462 	if (FIELD_GET(IXGBE_SR_CTRL_WORD_1_M, ctrl_word) !=
2463 	    IXGBE_SR_CTRL_WORD_VALID)
2464 		return -ENODATA;
2465 
2466 	if (!(ctrl_word & IXGBE_SR_CTRL_WORD_NVM_BANK))
2467 		banks->nvm_bank = IXGBE_1ST_FLASH_BANK;
2468 	else
2469 		banks->nvm_bank = IXGBE_2ND_FLASH_BANK;
2470 
2471 	if (!(ctrl_word & IXGBE_SR_CTRL_WORD_OROM_BANK))
2472 		banks->orom_bank = IXGBE_1ST_FLASH_BANK;
2473 	else
2474 		banks->orom_bank = IXGBE_2ND_FLASH_BANK;
2475 
2476 	if (!(ctrl_word & IXGBE_SR_CTRL_WORD_NETLIST_BANK))
2477 		banks->netlist_bank = IXGBE_1ST_FLASH_BANK;
2478 	else
2479 		banks->netlist_bank = IXGBE_2ND_FLASH_BANK;
2480 
2481 	err = ixgbe_read_sr_base_address(hw, IXGBE_E610_SR_1ST_NVM_BANK_PTR,
2482 					 &banks->nvm_ptr);
2483 	if (err)
2484 		return err;
2485 
2486 	err = ixgbe_read_sr_area_size(hw, IXGBE_E610_SR_NVM_BANK_SIZE,
2487 				      &banks->nvm_size);
2488 	if (err)
2489 		return err;
2490 
2491 	err = ixgbe_read_sr_base_address(hw, IXGBE_E610_SR_1ST_OROM_BANK_PTR,
2492 					 &banks->orom_ptr);
2493 	if (err)
2494 		return err;
2495 
2496 	err = ixgbe_read_sr_area_size(hw, IXGBE_E610_SR_OROM_BANK_SIZE,
2497 				      &banks->orom_size);
2498 	if (err)
2499 		return err;
2500 
2501 	err = ixgbe_read_sr_base_address(hw, IXGBE_E610_SR_NETLIST_BANK_PTR,
2502 					 &banks->netlist_ptr);
2503 	if (err)
2504 		return err;
2505 
2506 	err = ixgbe_read_sr_area_size(hw, IXGBE_E610_SR_NETLIST_BANK_SIZE,
2507 				      &banks->netlist_size);
2508 
2509 	return err;
2510 }
2511 
2512 /**
2513  * ixgbe_get_flash_bank_offset - Get offset into requested flash bank
2514  * @hw: pointer to the HW structure
2515  * @bank: whether to read from the active or inactive flash bank
2516  * @module: the module to read from
2517  *
2518  * Based on the module, lookup the module offset from the beginning of the
2519  * flash.
2520  *
2521  * Return: the flash offset. Note that a value of zero is invalid and must be
2522  * treated as an error.
2523  */
2524 static int ixgbe_get_flash_bank_offset(struct ixgbe_hw *hw,
2525 				       enum ixgbe_bank_select bank,
2526 				       u16 module)
2527 {
2528 	struct ixgbe_bank_info *banks = &hw->flash.banks;
2529 	enum ixgbe_flash_bank active_bank;
2530 	bool second_bank_active;
2531 	u32 offset, size;
2532 
2533 	switch (module) {
2534 	case IXGBE_E610_SR_1ST_NVM_BANK_PTR:
2535 		offset = banks->nvm_ptr;
2536 		size = banks->nvm_size;
2537 		active_bank = banks->nvm_bank;
2538 		break;
2539 	case IXGBE_E610_SR_1ST_OROM_BANK_PTR:
2540 		offset = banks->orom_ptr;
2541 		size = banks->orom_size;
2542 		active_bank = banks->orom_bank;
2543 		break;
2544 	case IXGBE_E610_SR_NETLIST_BANK_PTR:
2545 		offset = banks->netlist_ptr;
2546 		size = banks->netlist_size;
2547 		active_bank = banks->netlist_bank;
2548 		break;
2549 	default:
2550 		return 0;
2551 	}
2552 
2553 	switch (active_bank) {
2554 	case IXGBE_1ST_FLASH_BANK:
2555 		second_bank_active = false;
2556 		break;
2557 	case IXGBE_2ND_FLASH_BANK:
2558 		second_bank_active = true;
2559 		break;
2560 	default:
2561 		return 0;
2562 	}
2563 
2564 	/* The second flash bank is stored immediately following the first
2565 	 * bank. Based on whether the 1st or 2nd bank is active, and whether
2566 	 * we want the active or inactive bank, calculate the desired offset.
2567 	 */
2568 	switch (bank) {
2569 	case IXGBE_ACTIVE_FLASH_BANK:
2570 		return offset + (second_bank_active ? size : 0);
2571 	case IXGBE_INACTIVE_FLASH_BANK:
2572 		return offset + (second_bank_active ? 0 : size);
2573 	}
2574 
2575 	return 0;
2576 }
2577 
2578 /**
2579  * ixgbe_read_flash_module - Read a word from one of the main NVM modules
2580  * @hw: pointer to the HW structure
2581  * @bank: which bank of the module to read
2582  * @module: the module to read
2583  * @offset: the offset into the module in bytes
2584  * @data: storage for the word read from the flash
2585  * @length: bytes of data to read
2586  *
2587  * Read data from the specified flash module. The bank parameter indicates
2588  * whether or not to read from the active bank or the inactive bank of that
2589  * module.
2590  *
2591  * The word will be read using flat NVM access, and relies on the
2592  * hw->flash.banks data being setup by ixgbe_determine_active_flash_banks()
2593  * during initialization.
2594  *
2595  * Return: the exit code of the operation.
2596  */
2597 static int ixgbe_read_flash_module(struct ixgbe_hw *hw,
2598 				   enum ixgbe_bank_select bank,
2599 				   u16 module, u32 offset, u8 *data, u32 length)
2600 {
2601 	u32 start;
2602 	int err;
2603 
2604 	start = ixgbe_get_flash_bank_offset(hw, bank, module);
2605 	if (!start)
2606 		return -EINVAL;
2607 
2608 	err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ);
2609 	if (err)
2610 		return err;
2611 
2612 	err = ixgbe_read_flat_nvm(hw, start + offset, &length, data, false);
2613 
2614 	ixgbe_release_nvm(hw);
2615 
2616 	return err;
2617 }
2618 
2619 /**
2620  * ixgbe_read_nvm_module - Read from the active main NVM module
2621  * @hw: pointer to the HW structure
2622  * @bank: whether to read from active or inactive NVM module
2623  * @offset: offset into the NVM module to read, in words
2624  * @data: storage for returned word value
2625  *
2626  * Read the specified word from the active NVM module. This includes the CSS
2627  * header at the start of the NVM module.
2628  *
2629  * Return: the exit code of the operation.
2630  */
2631 static int ixgbe_read_nvm_module(struct ixgbe_hw *hw,
2632 				 enum ixgbe_bank_select bank,
2633 				 u32 offset, u16 *data)
2634 {
2635 	__le16 data_local;
2636 	int err;
2637 
2638 	err = ixgbe_read_flash_module(hw, bank, IXGBE_E610_SR_1ST_NVM_BANK_PTR,
2639 				      offset * sizeof(data_local),
2640 				      (u8 *)&data_local,
2641 				      sizeof(data_local));
2642 	if (!err)
2643 		*data = le16_to_cpu(data_local);
2644 
2645 	return err;
2646 }
2647 
2648 /**
2649  * ixgbe_read_netlist_module - Read data from the netlist module area
2650  * @hw: pointer to the HW structure
2651  * @bank: whether to read from the active or inactive module
2652  * @offset: offset into the netlist to read from
2653  * @data: storage for returned word value
2654  *
2655  * Read a word from the specified netlist bank.
2656  *
2657  * Return: the exit code of the operation.
2658  */
2659 static int ixgbe_read_netlist_module(struct ixgbe_hw *hw,
2660 				     enum ixgbe_bank_select bank,
2661 				     u32 offset, u16 *data)
2662 {
2663 	__le16 data_local;
2664 	int err;
2665 
2666 	err = ixgbe_read_flash_module(hw, bank, IXGBE_E610_SR_NETLIST_BANK_PTR,
2667 				      offset * sizeof(data_local),
2668 				      (u8 *)&data_local, sizeof(data_local));
2669 	if (!err)
2670 		*data = le16_to_cpu(data_local);
2671 
2672 	return err;
2673 }
2674 
2675 /**
2676  * ixgbe_read_orom_module - Read from the active Option ROM module
2677  * @hw: pointer to the HW structure
2678  * @bank: whether to read from active or inactive OROM module
2679  * @offset: offset into the OROM module to read, in words
2680  * @data: storage for returned word value
2681  *
2682  * Read the specified word from the active Option ROM module of the flash.
2683  * Note that unlike the NVM module, the CSS data is stored at the end of the
2684  * module instead of at the beginning.
2685  *
2686  * Return: the exit code of the operation.
2687  */
2688 static int ixgbe_read_orom_module(struct ixgbe_hw *hw,
2689 				  enum ixgbe_bank_select bank,
2690 				  u32 offset, u16 *data)
2691 {
2692 	__le16 data_local;
2693 	int err;
2694 
2695 	err = ixgbe_read_flash_module(hw, bank, IXGBE_E610_SR_1ST_OROM_BANK_PTR,
2696 				      offset * sizeof(data_local),
2697 				      (u8 *)&data_local, sizeof(data_local));
2698 	if (!err)
2699 		*data = le16_to_cpu(data_local);
2700 
2701 	return err;
2702 }
2703 
2704 /**
2705  * ixgbe_get_nvm_css_hdr_len - Read the CSS header length
2706  * @hw: pointer to the HW struct
2707  * @bank: whether to read from the active or inactive flash bank
2708  * @hdr_len: storage for header length in words
2709  *
2710  * Read the CSS header length from the NVM CSS header and add the
2711  * Authentication header size, and then convert to words.
2712  *
2713  * Return: the exit code of the operation.
2714  */
2715 static int ixgbe_get_nvm_css_hdr_len(struct ixgbe_hw *hw,
2716 				     enum ixgbe_bank_select bank,
2717 				     u32 *hdr_len)
2718 {
2719 	u16 hdr_len_l, hdr_len_h;
2720 	u32 hdr_len_dword;
2721 	int err;
2722 
2723 	err = ixgbe_read_nvm_module(hw, bank, IXGBE_NVM_CSS_HDR_LEN_L,
2724 				    &hdr_len_l);
2725 	if (err)
2726 		return err;
2727 
2728 	err = ixgbe_read_nvm_module(hw, bank, IXGBE_NVM_CSS_HDR_LEN_H,
2729 				    &hdr_len_h);
2730 	if (err)
2731 		return err;
2732 
2733 	/* CSS header length is in DWORD, so convert to words and add
2734 	 * authentication header size.
2735 	 */
2736 	hdr_len_dword = (hdr_len_h << 16) | hdr_len_l;
2737 	*hdr_len = hdr_len_dword * 2 + IXGBE_NVM_AUTH_HEADER_LEN;
2738 
2739 	return 0;
2740 }
2741 
2742 /**
2743  * ixgbe_read_nvm_sr_copy - Read a word from the Shadow RAM copy
2744  * @hw: pointer to the HW structure
2745  * @bank: whether to read from the active or inactive NVM module
2746  * @offset: offset into the Shadow RAM copy to read, in words
2747  * @data: storage for returned word value
2748  *
2749  * Read the specified word from the copy of the Shadow RAM found in the
2750  * specified NVM module.
2751  *
2752  * Return: the exit code of the operation.
2753  */
2754 static int ixgbe_read_nvm_sr_copy(struct ixgbe_hw *hw,
2755 				  enum ixgbe_bank_select bank,
2756 				  u32 offset, u16 *data)
2757 {
2758 	u32 hdr_len;
2759 	int err;
2760 
2761 	err = ixgbe_get_nvm_css_hdr_len(hw, bank, &hdr_len);
2762 	if (err)
2763 		return err;
2764 
2765 	hdr_len = round_up(hdr_len, IXGBE_HDR_LEN_ROUNDUP);
2766 
2767 	return ixgbe_read_nvm_module(hw, bank, hdr_len + offset, data);
2768 }
2769 
2770 /**
2771  * ixgbe_get_nvm_srev - Read the security revision from the NVM CSS header
2772  * @hw: pointer to the HW struct
2773  * @bank: whether to read from the active or inactive flash bank
2774  * @srev: storage for security revision
2775  *
2776  * Read the security revision out of the CSS header of the active NVM module
2777  * bank.
2778  *
2779  * Return: the exit code of the operation.
2780  */
2781 static int ixgbe_get_nvm_srev(struct ixgbe_hw *hw,
2782 			      enum ixgbe_bank_select bank, u32 *srev)
2783 {
2784 	u16 srev_l, srev_h;
2785 	int err;
2786 
2787 	err = ixgbe_read_nvm_module(hw, bank, IXGBE_NVM_CSS_SREV_L, &srev_l);
2788 	if (err)
2789 		return err;
2790 
2791 	err = ixgbe_read_nvm_module(hw, bank, IXGBE_NVM_CSS_SREV_H, &srev_h);
2792 	if (err)
2793 		return err;
2794 
2795 	*srev = (srev_h << 16) | srev_l;
2796 
2797 	return 0;
2798 }
2799 
2800 /**
2801  * ixgbe_get_orom_civd_data - Get the combo version information from Option ROM
2802  * @hw: pointer to the HW struct
2803  * @bank: whether to read from the active or inactive flash module
2804  * @civd: storage for the Option ROM CIVD data.
2805  *
2806  * Searches through the Option ROM flash contents to locate the CIVD data for
2807  * the image.
2808  *
2809  * Return: the exit code of the operation.
2810  */
2811 static int
2812 ixgbe_get_orom_civd_data(struct ixgbe_hw *hw, enum ixgbe_bank_select bank,
2813 			 struct ixgbe_orom_civd_info *civd)
2814 {
2815 	struct ixgbe_orom_civd_info tmp;
2816 	u32 offset;
2817 	int err;
2818 
2819 	/* The CIVD section is located in the Option ROM aligned to 512 bytes.
2820 	 * The first 4 bytes must contain the ASCII characters "$CIV".
2821 	 * A simple modulo 256 sum of all of the bytes of the structure must
2822 	 * equal 0.
2823 	 */
2824 	for (offset = 0; (offset + SZ_512) <= hw->flash.banks.orom_size;
2825 	     offset += SZ_512) {
2826 		u8 sum = 0;
2827 		u32 i;
2828 
2829 		err = ixgbe_read_flash_module(hw, bank,
2830 					      IXGBE_E610_SR_1ST_OROM_BANK_PTR,
2831 					      offset,
2832 					      (u8 *)&tmp, sizeof(tmp));
2833 		if (err)
2834 			return err;
2835 
2836 		/* Skip forward until we find a matching signature */
2837 		if (memcmp(IXGBE_OROM_CIV_SIGNATURE, tmp.signature,
2838 			   sizeof(tmp.signature)))
2839 			continue;
2840 
2841 		/* Verify that the simple checksum is zero */
2842 		for (i = 0; i < sizeof(tmp); i++)
2843 			sum += ((u8 *)&tmp)[i];
2844 
2845 		if (sum)
2846 			return -EDOM;
2847 
2848 		*civd = tmp;
2849 		return 0;
2850 	}
2851 
2852 	return -ENODATA;
2853 }
2854 
2855 /**
2856  * ixgbe_get_orom_srev - Read the security revision from the OROM CSS header
2857  * @hw: pointer to the HW struct
2858  * @bank: whether to read from active or inactive flash module
2859  * @srev: storage for security revision
2860  *
2861  * Read the security revision out of the CSS header of the active OROM module
2862  * bank.
2863  *
2864  * Return: the exit code of the operation.
2865  */
2866 static int ixgbe_get_orom_srev(struct ixgbe_hw *hw,
2867 			       enum ixgbe_bank_select bank,
2868 			       u32 *srev)
2869 {
2870 	u32 orom_size_word = hw->flash.banks.orom_size / 2;
2871 	u32 css_start, hdr_len;
2872 	u16 srev_l, srev_h;
2873 	int err;
2874 
2875 	err = ixgbe_get_nvm_css_hdr_len(hw, bank, &hdr_len);
2876 	if (err)
2877 		return err;
2878 
2879 	if (orom_size_word < hdr_len)
2880 		return -EINVAL;
2881 
2882 	/* Calculate how far into the Option ROM the CSS header starts. Note
2883 	 * that ixgbe_read_orom_module takes a word offset.
2884 	 */
2885 	css_start = orom_size_word - hdr_len;
2886 	err = ixgbe_read_orom_module(hw, bank,
2887 				     css_start + IXGBE_NVM_CSS_SREV_L,
2888 				     &srev_l);
2889 	if (err)
2890 		return err;
2891 
2892 	err = ixgbe_read_orom_module(hw, bank,
2893 				     css_start + IXGBE_NVM_CSS_SREV_H,
2894 				     &srev_h);
2895 	if (err)
2896 		return err;
2897 
2898 	*srev = srev_h << 16 | srev_l;
2899 
2900 	return 0;
2901 }
2902 
2903 /**
2904  * ixgbe_get_orom_ver_info - Read Option ROM version information
2905  * @hw: pointer to the HW struct
2906  * @bank: whether to read from the active or inactive flash module
2907  * @orom: pointer to Option ROM info structure
2908  *
2909  * Read Option ROM version and security revision from the Option ROM flash
2910  * section.
2911  *
2912  * Return: the exit code of the operation.
2913  */
2914 static int ixgbe_get_orom_ver_info(struct ixgbe_hw *hw,
2915 				   enum ixgbe_bank_select bank,
2916 				   struct ixgbe_orom_info *orom)
2917 {
2918 	struct ixgbe_orom_civd_info civd;
2919 	u32 combo_ver;
2920 	int err;
2921 
2922 	err = ixgbe_get_orom_civd_data(hw, bank, &civd);
2923 	if (err)
2924 		return err;
2925 
2926 	combo_ver = le32_to_cpu(civd.combo_ver);
2927 
2928 	orom->major = (u8)FIELD_GET(IXGBE_OROM_VER_MASK, combo_ver);
2929 	orom->patch = (u8)FIELD_GET(IXGBE_OROM_VER_PATCH_MASK, combo_ver);
2930 	orom->build = (u16)FIELD_GET(IXGBE_OROM_VER_BUILD_MASK, combo_ver);
2931 
2932 	return ixgbe_get_orom_srev(hw, bank, &orom->srev);
2933 }
2934 
2935 /**
2936  * ixgbe_get_nvm_ver_info - Read NVM version information
2937  * @hw: pointer to the HW struct
2938  * @bank: whether to read from the active or inactive flash bank
2939  * @nvm: pointer to NVM info structure
2940  *
2941  * Read the NVM EETRACK ID and map version of the main NVM image bank, filling
2942  * in the nvm info structure.
2943  *
2944  * Return: the exit code of the operation.
2945  */
2946 static int ixgbe_get_nvm_ver_info(struct ixgbe_hw *hw,
2947 				  enum ixgbe_bank_select bank,
2948 				  struct ixgbe_nvm_info *nvm)
2949 {
2950 	u16 eetrack_lo, eetrack_hi, ver;
2951 	int err;
2952 
2953 	err = ixgbe_read_nvm_sr_copy(hw, bank,
2954 				     IXGBE_E610_SR_NVM_DEV_STARTER_VER, &ver);
2955 	if (err)
2956 		return err;
2957 
2958 	nvm->major = FIELD_GET(IXGBE_E610_NVM_VER_HI_MASK, ver);
2959 	nvm->minor = FIELD_GET(IXGBE_E610_NVM_VER_LO_MASK, ver);
2960 
2961 	err = ixgbe_read_nvm_sr_copy(hw, bank, IXGBE_E610_SR_NVM_EETRACK_LO,
2962 				     &eetrack_lo);
2963 	if (err)
2964 		return err;
2965 
2966 	err = ixgbe_read_nvm_sr_copy(hw, bank, IXGBE_E610_SR_NVM_EETRACK_HI,
2967 				     &eetrack_hi);
2968 	if (err)
2969 		return err;
2970 
2971 	nvm->eetrack = (eetrack_hi << 16) | eetrack_lo;
2972 
2973 	ixgbe_get_nvm_srev(hw, bank, &nvm->srev);
2974 
2975 	return 0;
2976 }
2977 
2978 /**
2979  * ixgbe_get_netlist_info - Read the netlist version information
2980  * @hw: pointer to the HW struct
2981  * @bank: whether to read from the active or inactive flash bank
2982  * @netlist: pointer to netlist version info structure
2983  *
2984  * Get the netlist version information from the requested bank. Reads the Link
2985  * Topology section to find the Netlist ID block and extract the relevant
2986  * information into the netlist version structure.
2987  *
2988  * Return: the exit code of the operation.
2989  */
2990 static int ixgbe_get_netlist_info(struct ixgbe_hw *hw,
2991 				  enum ixgbe_bank_select bank,
2992 				  struct ixgbe_netlist_info *netlist)
2993 {
2994 	u16 module_id, length, node_count, i;
2995 	u16 *id_blk;
2996 	int err;
2997 
2998 	err = ixgbe_read_netlist_module(hw, bank, IXGBE_NETLIST_TYPE_OFFSET,
2999 					&module_id);
3000 	if (err)
3001 		return err;
3002 
3003 	if (module_id != IXGBE_NETLIST_LINK_TOPO_MOD_ID)
3004 		return -EIO;
3005 
3006 	err = ixgbe_read_netlist_module(hw, bank, IXGBE_LINK_TOPO_MODULE_LEN,
3007 					&length);
3008 	if (err)
3009 		return err;
3010 
3011 	/* Sanity check that we have at least enough words to store the
3012 	 * netlist ID block.
3013 	 */
3014 	if (length < IXGBE_NETLIST_ID_BLK_SIZE)
3015 		return -EIO;
3016 
3017 	err = ixgbe_read_netlist_module(hw, bank, IXGBE_LINK_TOPO_NODE_COUNT,
3018 					&node_count);
3019 	if (err)
3020 		return err;
3021 
3022 	node_count &= IXGBE_LINK_TOPO_NODE_COUNT_M;
3023 
3024 	id_blk = kcalloc(IXGBE_NETLIST_ID_BLK_SIZE, sizeof(*id_blk), GFP_KERNEL);
3025 	if (!id_blk)
3026 		return -ENOMEM;
3027 
3028 	/* Read out the entire Netlist ID Block at once. */
3029 	err = ixgbe_read_flash_module(hw, bank, IXGBE_E610_SR_NETLIST_BANK_PTR,
3030 				      IXGBE_NETLIST_ID_BLK_OFFSET(node_count) *
3031 				      sizeof(*id_blk), (u8 *)id_blk,
3032 				      IXGBE_NETLIST_ID_BLK_SIZE *
3033 				      sizeof(*id_blk));
3034 	if (err)
3035 		goto free_id_blk;
3036 
3037 	for (i = 0; i < IXGBE_NETLIST_ID_BLK_SIZE; i++)
3038 		id_blk[i] = le16_to_cpu(((__le16 *)id_blk)[i]);
3039 
3040 	netlist->major = id_blk[IXGBE_NETLIST_ID_BLK_MAJOR_VER_HIGH] << 16 |
3041 			 id_blk[IXGBE_NETLIST_ID_BLK_MAJOR_VER_LOW];
3042 	netlist->minor = id_blk[IXGBE_NETLIST_ID_BLK_MINOR_VER_HIGH] << 16 |
3043 			 id_blk[IXGBE_NETLIST_ID_BLK_MINOR_VER_LOW];
3044 	netlist->type = id_blk[IXGBE_NETLIST_ID_BLK_TYPE_HIGH] << 16 |
3045 			id_blk[IXGBE_NETLIST_ID_BLK_TYPE_LOW];
3046 	netlist->rev = id_blk[IXGBE_NETLIST_ID_BLK_REV_HIGH] << 16 |
3047 		       id_blk[IXGBE_NETLIST_ID_BLK_REV_LOW];
3048 	netlist->cust_ver = id_blk[IXGBE_NETLIST_ID_BLK_CUST_VER];
3049 	/* Read the left most 4 bytes of SHA */
3050 	netlist->hash = id_blk[IXGBE_NETLIST_ID_BLK_SHA_HASH_WORD(15)] << 16 |
3051 			id_blk[IXGBE_NETLIST_ID_BLK_SHA_HASH_WORD(14)];
3052 
3053 free_id_blk:
3054 	kfree(id_blk);
3055 	return err;
3056 }
3057 
3058 /**
3059  * ixgbe_get_flash_data - get flash data
3060  * @hw: pointer to the HW struct
3061  *
3062  * Read and populate flash data such as Shadow RAM size,
3063  * max_timeout and blank_nvm_mode
3064  *
3065  * Return: the exit code of the operation.
3066  */
3067 int ixgbe_get_flash_data(struct ixgbe_hw *hw)
3068 {
3069 	struct ixgbe_flash_info *flash = &hw->flash;
3070 	u32 fla, gens_stat;
3071 	u8 sr_size;
3072 	int err;
3073 
3074 	/* The SR size is stored regardless of the NVM programming mode
3075 	 * as the blank mode may be used in the factory line.
3076 	 */
3077 	gens_stat = IXGBE_READ_REG(hw, GLNVM_GENS);
3078 	sr_size = FIELD_GET(GLNVM_GENS_SR_SIZE_M, gens_stat);
3079 
3080 	/* Switching to words (sr_size contains power of 2) */
3081 	flash->sr_words = BIT(sr_size) * (SZ_1K / sizeof(u16));
3082 
3083 	/* Check if we are in the normal or blank NVM programming mode */
3084 	fla = IXGBE_READ_REG(hw, IXGBE_GLNVM_FLA);
3085 	if (fla & IXGBE_GLNVM_FLA_LOCKED_M) {
3086 		flash->blank_nvm_mode = false;
3087 	} else {
3088 		flash->blank_nvm_mode = true;
3089 		return -EIO;
3090 	}
3091 
3092 	err = ixgbe_discover_flash_size(hw);
3093 	if (err)
3094 		return err;
3095 
3096 	err = ixgbe_determine_active_flash_banks(hw);
3097 	if (err)
3098 		return err;
3099 
3100 	err = ixgbe_get_nvm_ver_info(hw, IXGBE_ACTIVE_FLASH_BANK,
3101 				     &flash->nvm);
3102 	if (err)
3103 		return err;
3104 
3105 	err = ixgbe_get_orom_ver_info(hw, IXGBE_ACTIVE_FLASH_BANK,
3106 				      &flash->orom);
3107 	if (err)
3108 		return err;
3109 
3110 	err = ixgbe_get_netlist_info(hw, IXGBE_ACTIVE_FLASH_BANK,
3111 				     &flash->netlist);
3112 	return err;
3113 }
3114 
3115 /**
3116  * ixgbe_read_sr_word_aci - Reads Shadow RAM via ACI
3117  * @hw: pointer to the HW structure
3118  * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
3119  * @data: word read from the Shadow RAM
3120  *
3121  * Reads one 16 bit word from the Shadow RAM using ixgbe_read_flat_nvm.
3122  *
3123  * Return: the exit code of the operation.
3124  */
3125 int ixgbe_read_sr_word_aci(struct ixgbe_hw  *hw, u16 offset, u16 *data)
3126 {
3127 	u32 bytes = sizeof(u16);
3128 	u16 data_local;
3129 	int err;
3130 
3131 	err = ixgbe_read_flat_nvm(hw, offset * sizeof(u16), &bytes,
3132 				  (u8 *)&data_local, true);
3133 	if (err)
3134 		return err;
3135 
3136 	*data = data_local;
3137 	return 0;
3138 }
3139 
3140 /**
3141  * ixgbe_read_flat_nvm - Read portion of NVM by flat offset
3142  * @hw: pointer to the HW struct
3143  * @offset: offset from beginning of NVM
3144  * @length: (in) number of bytes to read; (out) number of bytes actually read
3145  * @data: buffer to return data in (sized to fit the specified length)
3146  * @read_shadow_ram: if true, read from shadow RAM instead of NVM
3147  *
3148  * Reads a portion of the NVM, as a flat memory space. This function correctly
3149  * breaks read requests across Shadow RAM sectors, prevents Shadow RAM size
3150  * from being exceeded in case of Shadow RAM read requests and ensures that no
3151  * single read request exceeds the maximum 4KB read for a single admin command.
3152  *
3153  * Returns an error code on failure. Note that the data pointer may be
3154  * partially updated if some reads succeed before a failure.
3155  *
3156  * Return: the exit code of the operation.
3157  */
3158 int ixgbe_read_flat_nvm(struct ixgbe_hw  *hw, u32 offset, u32 *length,
3159 			u8 *data, bool read_shadow_ram)
3160 {
3161 	u32 inlen = *length;
3162 	u32 bytes_read = 0;
3163 	bool last_cmd;
3164 	int err;
3165 
3166 	/* Verify the length of the read if this is for the Shadow RAM */
3167 	if (read_shadow_ram && ((offset + inlen) >
3168 				(hw->eeprom.word_size * 2u)))
3169 		return -EINVAL;
3170 
3171 	do {
3172 		u32 read_size, sector_offset;
3173 
3174 		/* ixgbe_aci_read_nvm cannot read more than 4KB at a time.
3175 		 * Additionally, a read from the Shadow RAM may not cross over
3176 		 * a sector boundary. Conveniently, the sector size is also 4KB.
3177 		 */
3178 		sector_offset = offset % IXGBE_ACI_MAX_BUFFER_SIZE;
3179 		read_size = min_t(u32,
3180 				  IXGBE_ACI_MAX_BUFFER_SIZE - sector_offset,
3181 				  inlen - bytes_read);
3182 
3183 		last_cmd = !(bytes_read + read_size < inlen);
3184 
3185 		/* ixgbe_aci_read_nvm takes the length as a u16. Our read_size
3186 		 * is calculated using a u32, but the IXGBE_ACI_MAX_BUFFER_SIZE
3187 		 * maximum size guarantees that it will fit within the 2 bytes.
3188 		 */
3189 		err = ixgbe_aci_read_nvm(hw, IXGBE_ACI_NVM_START_POINT,
3190 					 offset, (u16)read_size,
3191 					 data + bytes_read, last_cmd,
3192 					 read_shadow_ram);
3193 		if (err)
3194 			break;
3195 
3196 		bytes_read += read_size;
3197 		offset += read_size;
3198 	} while (!last_cmd);
3199 
3200 	*length = bytes_read;
3201 	return err;
3202 }
3203 
3204 /**
3205  * ixgbe_read_sr_buf_aci - Read Shadow RAM buffer via ACI
3206  * @hw: pointer to the HW structure
3207  * @offset: offset of the Shadow RAM words to read (0x000000 - 0x001FFF)
3208  * @words: (in) number of words to read; (out) number of words actually read
3209  * @data: words read from the Shadow RAM
3210  *
3211  * Read 16 bit words (data buf) from the Shadow RAM. Acquire/release the NVM
3212  * ownership.
3213  *
3214  * Return: the operation exit code.
3215  */
3216 int ixgbe_read_sr_buf_aci(struct ixgbe_hw *hw, u16 offset, u16 *words,
3217 			  u16 *data)
3218 {
3219 	u32 bytes = *words * 2;
3220 	int err;
3221 
3222 	err = ixgbe_read_flat_nvm(hw, offset * 2, &bytes, (u8 *)data, true);
3223 	if (err)
3224 		return err;
3225 
3226 	*words = bytes / 2;
3227 
3228 	for (int i = 0; i < *words; i++)
3229 		data[i] = le16_to_cpu(((__le16 *)data)[i]);
3230 
3231 	return 0;
3232 }
3233 
3234 /**
3235  * ixgbe_read_ee_aci_e610 - Read EEPROM word using the admin command.
3236  * @hw: pointer to hardware structure
3237  * @offset: offset of  word in the EEPROM to read
3238  * @data: word read from the EEPROM
3239  *
3240  * Reads a 16 bit word from the EEPROM using the ACI.
3241  * If the EEPROM params are not initialized, the function
3242  * initialize them before proceeding with reading.
3243  * The function acquires and then releases the NVM ownership.
3244  *
3245  * Return: the exit code of the operation.
3246  */
3247 int ixgbe_read_ee_aci_e610(struct ixgbe_hw *hw, u16 offset, u16 *data)
3248 {
3249 	int err;
3250 
3251 	if (hw->eeprom.type == ixgbe_eeprom_uninitialized) {
3252 		err = hw->eeprom.ops.init_params(hw);
3253 		if (err)
3254 			return err;
3255 	}
3256 
3257 	err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ);
3258 	if (err)
3259 		return err;
3260 
3261 	err = ixgbe_read_sr_word_aci(hw, offset, data);
3262 	ixgbe_release_nvm(hw);
3263 
3264 	return err;
3265 }
3266 
3267 /**
3268  * ixgbe_read_ee_aci_buffer_e610 - Read EEPROM words via ACI
3269  * @hw: pointer to hardware structure
3270  * @offset: offset of words in the EEPROM to read
3271  * @words: number of words to read
3272  * @data: words to read from the EEPROM
3273  *
3274  * Read 16 bit words from the EEPROM via the ACI. Initialize the EEPROM params
3275  * prior to the read. Acquire/release the NVM ownership.
3276  *
3277  * Return: the operation exit code.
3278  */
3279 int ixgbe_read_ee_aci_buffer_e610(struct ixgbe_hw *hw, u16 offset,
3280 				  u16 words, u16 *data)
3281 {
3282 	int err;
3283 
3284 	if (hw->eeprom.type == ixgbe_eeprom_uninitialized) {
3285 		err = hw->eeprom.ops.init_params(hw);
3286 		if (err)
3287 			return err;
3288 	}
3289 
3290 	err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ);
3291 	if (err)
3292 		return err;
3293 
3294 	err = ixgbe_read_sr_buf_aci(hw, offset, &words, data);
3295 	ixgbe_release_nvm(hw);
3296 
3297 	return err;
3298 }
3299 
3300 /**
3301  * ixgbe_validate_eeprom_checksum_e610 - Validate EEPROM checksum
3302  * @hw: pointer to hardware structure
3303  * @checksum_val: calculated checksum
3304  *
3305  * Performs checksum calculation and validates the EEPROM checksum. If the
3306  * caller does not need checksum_val, the value can be NULL.
3307  * If the EEPROM params are not initialized, the function
3308  * initialize them before proceeding.
3309  * The function acquires and then releases the NVM ownership.
3310  *
3311  * Return: the exit code of the operation.
3312  */
3313 int ixgbe_validate_eeprom_checksum_e610(struct ixgbe_hw *hw, u16 *checksum_val)
3314 {
3315 	int err;
3316 
3317 	if (hw->eeprom.type == ixgbe_eeprom_uninitialized) {
3318 		err = hw->eeprom.ops.init_params(hw);
3319 		if (err)
3320 			return err;
3321 	}
3322 
3323 	err = ixgbe_nvm_validate_checksum(hw);
3324 	if (err)
3325 		return err;
3326 
3327 	if (checksum_val) {
3328 		u16 tmp_checksum;
3329 
3330 		err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ);
3331 		if (err)
3332 			return err;
3333 
3334 		err = ixgbe_read_sr_word_aci(hw, IXGBE_E610_SR_SW_CHECKSUM_WORD,
3335 					     &tmp_checksum);
3336 		ixgbe_release_nvm(hw);
3337 
3338 		if (!err)
3339 			*checksum_val = tmp_checksum;
3340 	}
3341 
3342 	return err;
3343 }
3344 
3345 /**
3346  * ixgbe_reset_hw_e610 - Perform hardware reset
3347  * @hw: pointer to hardware structure
3348  *
3349  * Resets the hardware by resetting the transmit and receive units, masks
3350  * and clears all interrupts, and performs a reset.
3351  *
3352  * Return: the exit code of the operation.
3353  */
3354 int ixgbe_reset_hw_e610(struct ixgbe_hw *hw)
3355 {
3356 	u32 swfw_mask = hw->phy.phy_semaphore_mask;
3357 	u32 ctrl, i;
3358 	int err;
3359 
3360 	/* Call adapter stop to disable tx/rx and clear interrupts */
3361 	err = hw->mac.ops.stop_adapter(hw);
3362 	if (err)
3363 		goto reset_hw_out;
3364 
3365 	/* Flush pending Tx transactions. */
3366 	ixgbe_clear_tx_pending(hw);
3367 
3368 	hw->phy.ops.init(hw);
3369 mac_reset_top:
3370 	err = hw->mac.ops.acquire_swfw_sync(hw, swfw_mask);
3371 	if (err)
3372 		return -EBUSY;
3373 	ctrl = IXGBE_CTRL_RST;
3374 	ctrl |= IXGBE_READ_REG(hw, IXGBE_CTRL);
3375 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, ctrl);
3376 	IXGBE_WRITE_FLUSH(hw);
3377 	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
3378 
3379 	/* Poll for reset bit to self-clear indicating reset is complete */
3380 	for (i = 0; i < 10; i++) {
3381 		udelay(1);
3382 		ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
3383 		if (!(ctrl & IXGBE_CTRL_RST_MASK))
3384 			break;
3385 	}
3386 
3387 	if (ctrl & IXGBE_CTRL_RST_MASK) {
3388 		struct ixgbe_adapter *adapter = container_of(hw, struct ixgbe_adapter,
3389 							     hw);
3390 
3391 		err = -EIO;
3392 		netdev_err(adapter->netdev, "Reset polling failed to complete.");
3393 	}
3394 
3395 	/* Double resets are required for recovery from certain error
3396 	 * conditions. Between resets, it is necessary to stall to allow time
3397 	 * for any pending HW events to complete.
3398 	 */
3399 	msleep(100);
3400 	if (hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED) {
3401 		hw->mac.flags &= ~IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
3402 		goto mac_reset_top;
3403 	}
3404 
3405 	/* Set the Rx packet buffer size. */
3406 	IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(0), GENMASK(18, 17));
3407 
3408 	/* Store the permanent mac address */
3409 	hw->mac.ops.get_mac_addr(hw, hw->mac.perm_addr);
3410 
3411 	/* Maximum number of Receive Address Registers. */
3412 #define IXGBE_MAX_NUM_RAR		128
3413 
3414 	/* Store MAC address from RAR0, clear receive address registers, and
3415 	 * clear the multicast table.  Also reset num_rar_entries to the
3416 	 * maximum number of Receive Address Registers, since we modify this
3417 	 * value when programming the SAN MAC address.
3418 	 */
3419 	hw->mac.num_rar_entries = IXGBE_MAX_NUM_RAR;
3420 	hw->mac.ops.init_rx_addrs(hw);
3421 
3422 	/* Initialize bus function number */
3423 	hw->mac.ops.set_lan_id(hw);
3424 
3425 reset_hw_out:
3426 	return err;
3427 }
3428 
3429 /**
3430  * ixgbe_get_pfa_module_tlv - Read sub module TLV from NVM PFA
3431  * @hw: pointer to hardware structure
3432  * @module_tlv: pointer to module TLV to return
3433  * @module_tlv_len: pointer to module TLV length to return
3434  * @module_type: module type requested
3435  *
3436  * Find the requested sub module TLV type from the Preserved Field
3437  * Area (PFA) and returns the TLV pointer and length. The caller can
3438  * use these to read the variable length TLV value.
3439  *
3440  * Return: the exit code of the operation.
3441  */
3442 static int ixgbe_get_pfa_module_tlv(struct ixgbe_hw *hw, u16 *module_tlv,
3443 				    u16 *module_tlv_len, u16 module_type)
3444 {
3445 	u16 pfa_len, pfa_ptr, pfa_end_ptr;
3446 	u16 next_tlv;
3447 	int err;
3448 
3449 	err = ixgbe_read_ee_aci_e610(hw, IXGBE_E610_SR_PFA_PTR, &pfa_ptr);
3450 	if (err)
3451 		return err;
3452 
3453 	err = ixgbe_read_ee_aci_e610(hw, pfa_ptr, &pfa_len);
3454 	if (err)
3455 		return err;
3456 
3457 	/* Starting with first TLV after PFA length, iterate through the list
3458 	 * of TLVs to find the requested one.
3459 	 */
3460 	next_tlv = pfa_ptr + 1;
3461 	pfa_end_ptr = pfa_ptr + pfa_len;
3462 	while (next_tlv < pfa_end_ptr) {
3463 		u16 tlv_sub_module_type, tlv_len;
3464 
3465 		/* Read TLV type */
3466 		err = ixgbe_read_ee_aci_e610(hw, next_tlv,
3467 					     &tlv_sub_module_type);
3468 		if (err)
3469 			break;
3470 
3471 		/* Read TLV length */
3472 		err = ixgbe_read_ee_aci_e610(hw, next_tlv + 1, &tlv_len);
3473 		if (err)
3474 			break;
3475 
3476 		if (tlv_sub_module_type == module_type) {
3477 			if (tlv_len) {
3478 				*module_tlv = next_tlv;
3479 				*module_tlv_len = tlv_len;
3480 				return 0;
3481 			}
3482 			return -EIO;
3483 		}
3484 		/* Check next TLV, i.e. current TLV pointer + length + 2 words
3485 		 * (for current TLV's type and length).
3486 		 */
3487 		next_tlv = next_tlv + tlv_len + 2;
3488 	}
3489 	/* Module does not exist */
3490 	return -ENODATA;
3491 }
3492 
3493 /**
3494  * ixgbe_read_pba_string_e610 - Read PBA string from NVM
3495  * @hw: pointer to hardware structure
3496  * @pba_num: stores the part number string from the NVM
3497  * @pba_num_size: part number string buffer length
3498  *
3499  * Read the part number string from the NVM.
3500  *
3501  * Return: the exit code of the operation.
3502  */
3503 static int ixgbe_read_pba_string_e610(struct ixgbe_hw *hw, u8 *pba_num,
3504 				      u32 pba_num_size)
3505 {
3506 	u16 pba_tlv, pba_tlv_len;
3507 	u16 pba_word, pba_size;
3508 	int err;
3509 
3510 	*pba_num = '\0';
3511 
3512 	err = ixgbe_get_pfa_module_tlv(hw, &pba_tlv, &pba_tlv_len,
3513 				       IXGBE_E610_SR_PBA_BLOCK_PTR);
3514 	if (err)
3515 		return err;
3516 
3517 	/* pba_size is the next word */
3518 	err = ixgbe_read_ee_aci_e610(hw, (pba_tlv + 2), &pba_size);
3519 	if (err)
3520 		return err;
3521 
3522 	if (pba_tlv_len < pba_size)
3523 		return -EINVAL;
3524 
3525 	/* Subtract one to get PBA word count (PBA Size word is included in
3526 	 * total size).
3527 	 */
3528 	pba_size--;
3529 
3530 	if (pba_num_size < (((u32)pba_size * 2) + 1))
3531 		return -EINVAL;
3532 
3533 	for (u16 i = 0; i < pba_size; i++) {
3534 		err = ixgbe_read_ee_aci_e610(hw, (pba_tlv + 2 + 1) + i,
3535 					     &pba_word);
3536 		if (err)
3537 			return err;
3538 
3539 		pba_num[(i * 2)] = FIELD_GET(IXGBE_E610_SR_PBA_BLOCK_MASK,
3540 					     pba_word);
3541 		pba_num[(i * 2) + 1] = pba_word & 0xFF;
3542 	}
3543 
3544 	pba_num[(pba_size * 2)] = '\0';
3545 
3546 	return err;
3547 }
3548 
3549 static const struct ixgbe_mac_operations mac_ops_e610 = {
3550 	.init_hw			= ixgbe_init_hw_generic,
3551 	.start_hw			= ixgbe_start_hw_e610,
3552 	.clear_hw_cntrs			= ixgbe_clear_hw_cntrs_generic,
3553 	.enable_rx_dma			= ixgbe_enable_rx_dma_generic,
3554 	.get_mac_addr			= ixgbe_get_mac_addr_generic,
3555 	.get_device_caps		= ixgbe_get_device_caps_generic,
3556 	.stop_adapter			= ixgbe_stop_adapter_generic,
3557 	.set_lan_id			= ixgbe_set_lan_id_multi_port_pcie,
3558 	.set_rxpba			= ixgbe_set_rxpba_generic,
3559 	.check_link			= ixgbe_check_link_e610,
3560 	.blink_led_start		= ixgbe_blink_led_start_X540,
3561 	.blink_led_stop			= ixgbe_blink_led_stop_X540,
3562 	.set_rar			= ixgbe_set_rar_generic,
3563 	.clear_rar			= ixgbe_clear_rar_generic,
3564 	.set_vmdq			= ixgbe_set_vmdq_generic,
3565 	.set_vmdq_san_mac		= ixgbe_set_vmdq_san_mac_generic,
3566 	.clear_vmdq			= ixgbe_clear_vmdq_generic,
3567 	.init_rx_addrs			= ixgbe_init_rx_addrs_generic,
3568 	.update_mc_addr_list		= ixgbe_update_mc_addr_list_generic,
3569 	.enable_mc			= ixgbe_enable_mc_generic,
3570 	.disable_mc			= ixgbe_disable_mc_generic,
3571 	.clear_vfta			= ixgbe_clear_vfta_generic,
3572 	.set_vfta			= ixgbe_set_vfta_generic,
3573 	.fc_enable			= ixgbe_fc_enable_generic,
3574 	.set_fw_drv_ver			= ixgbe_set_fw_drv_ver_x550,
3575 	.init_uta_tables		= ixgbe_init_uta_tables_generic,
3576 	.set_mac_anti_spoofing		= ixgbe_set_mac_anti_spoofing,
3577 	.set_vlan_anti_spoofing		= ixgbe_set_vlan_anti_spoofing,
3578 	.set_source_address_pruning	=
3579 				ixgbe_set_source_address_pruning_x550,
3580 	.set_ethertype_anti_spoofing	=
3581 				ixgbe_set_ethertype_anti_spoofing_x550,
3582 	.disable_rx_buff		= ixgbe_disable_rx_buff_generic,
3583 	.enable_rx_buff			= ixgbe_enable_rx_buff_generic,
3584 	.enable_rx			= ixgbe_enable_rx_generic,
3585 	.disable_rx			= ixgbe_disable_rx_e610,
3586 	.led_on				= ixgbe_led_on_generic,
3587 	.led_off			= ixgbe_led_off_generic,
3588 	.init_led_link_act		= ixgbe_init_led_link_act_generic,
3589 	.reset_hw			= ixgbe_reset_hw_e610,
3590 	.get_media_type			= ixgbe_get_media_type_e610,
3591 	.setup_link			= ixgbe_setup_link_e610,
3592 	.get_link_capabilities		= ixgbe_get_link_capabilities_e610,
3593 	.get_bus_info			= ixgbe_get_bus_info_generic,
3594 	.acquire_swfw_sync		= ixgbe_acquire_swfw_sync_X540,
3595 	.release_swfw_sync		= ixgbe_release_swfw_sync_X540,
3596 	.init_swfw_sync			= ixgbe_init_swfw_sync_X540,
3597 	.prot_autoc_read		= prot_autoc_read_generic,
3598 	.prot_autoc_write		= prot_autoc_write_generic,
3599 	.setup_fc			= ixgbe_setup_fc_e610,
3600 	.fc_autoneg			= ixgbe_fc_autoneg_e610,
3601 };
3602 
3603 static const struct ixgbe_phy_operations phy_ops_e610 = {
3604 	.init				= ixgbe_init_phy_ops_e610,
3605 	.identify			= ixgbe_identify_phy_e610,
3606 	.identify_sfp			= ixgbe_identify_module_e610,
3607 	.setup_link_speed		= ixgbe_setup_phy_link_speed_generic,
3608 	.setup_link			= ixgbe_setup_phy_link_e610,
3609 	.enter_lplu			= ixgbe_enter_lplu_e610,
3610 };
3611 
3612 static const struct ixgbe_eeprom_operations eeprom_ops_e610 = {
3613 	.read				= ixgbe_read_ee_aci_e610,
3614 	.read_buffer			= ixgbe_read_ee_aci_buffer_e610,
3615 	.validate_checksum		= ixgbe_validate_eeprom_checksum_e610,
3616 	.read_pba_string		= ixgbe_read_pba_string_e610,
3617 	.init_params			= ixgbe_init_eeprom_params_e610,
3618 };
3619 
3620 const struct ixgbe_info ixgbe_e610_info = {
3621 	.mac			= ixgbe_mac_e610,
3622 	.get_invariants		= ixgbe_get_invariants_X540,
3623 	.mac_ops		= &mac_ops_e610,
3624 	.eeprom_ops		= &eeprom_ops_e610,
3625 	.phy_ops		= &phy_ops_e610,
3626 	.mbx_ops		= &mbx_ops_generic,
3627 	.mvals			= ixgbe_mvals_x550em_a,
3628 };
3629