1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 2024 Intel Corporation. */ 3 4 #include "ixgbe_common.h" 5 #include "ixgbe_e610.h" 6 #include "ixgbe_x550.h" 7 #include "ixgbe_type.h" 8 #include "ixgbe_x540.h" 9 #include "ixgbe_mbx.h" 10 #include "ixgbe_phy.h" 11 12 /** 13 * ixgbe_should_retry_aci_send_cmd_execute - decide if ACI command should 14 * be resent 15 * @opcode: ACI opcode 16 * 17 * Check if ACI command should be sent again depending on the provided opcode. 18 * It may happen when CSR is busy during link state changes. 19 * 20 * Return: true if the sending command routine should be repeated, 21 * otherwise false. 22 */ 23 static bool ixgbe_should_retry_aci_send_cmd_execute(u16 opcode) 24 { 25 switch (opcode) { 26 case ixgbe_aci_opc_disable_rxen: 27 case ixgbe_aci_opc_get_phy_caps: 28 case ixgbe_aci_opc_get_link_status: 29 case ixgbe_aci_opc_get_link_topo: 30 return true; 31 } 32 33 return false; 34 } 35 36 /** 37 * ixgbe_aci_send_cmd_execute - execute sending FW Admin Command to FW Admin 38 * Command Interface 39 * @hw: pointer to the HW struct 40 * @desc: descriptor describing the command 41 * @buf: buffer to use for indirect commands (NULL for direct commands) 42 * @buf_size: size of buffer for indirect commands (0 for direct commands) 43 * 44 * Admin Command is sent using CSR by setting descriptor and buffer in specific 45 * registers. 46 * 47 * Return: the exit code of the operation. 48 * * - 0 - success. 49 * * - -EIO - CSR mechanism is not enabled. 50 * * - -EBUSY - CSR mechanism is busy. 51 * * - -EINVAL - buf_size is too big or 52 * invalid argument buf or buf_size. 53 * * - -ETIME - Admin Command X command timeout. 54 * * - -EIO - Admin Command X invalid state of HICR register or 55 * Admin Command failed because of bad opcode was returned or 56 * Admin Command failed with error Y. 57 */ 58 static int ixgbe_aci_send_cmd_execute(struct ixgbe_hw *hw, 59 struct ixgbe_aci_desc *desc, 60 void *buf, u16 buf_size) 61 { 62 u16 opcode, buf_tail_size = buf_size % 4; 63 u32 *raw_desc = (u32 *)desc; 64 u32 hicr, i, buf_tail = 0; 65 bool valid_buf = false; 66 67 hw->aci.last_status = IXGBE_ACI_RC_OK; 68 69 /* It's necessary to check if mechanism is enabled */ 70 hicr = IXGBE_READ_REG(hw, IXGBE_PF_HICR); 71 72 if (!(hicr & IXGBE_PF_HICR_EN)) 73 return -EIO; 74 75 if (hicr & IXGBE_PF_HICR_C) { 76 hw->aci.last_status = IXGBE_ACI_RC_EBUSY; 77 return -EBUSY; 78 } 79 80 opcode = le16_to_cpu(desc->opcode); 81 82 if (buf_size > IXGBE_ACI_MAX_BUFFER_SIZE) 83 return -EINVAL; 84 85 if (buf) 86 desc->flags |= cpu_to_le16(IXGBE_ACI_FLAG_BUF); 87 88 if (desc->flags & cpu_to_le16(IXGBE_ACI_FLAG_BUF)) { 89 if ((buf && !buf_size) || 90 (!buf && buf_size)) 91 return -EINVAL; 92 if (buf && buf_size) 93 valid_buf = true; 94 } 95 96 if (valid_buf) { 97 if (buf_tail_size) 98 memcpy(&buf_tail, buf + buf_size - buf_tail_size, 99 buf_tail_size); 100 101 if (((buf_size + 3) & ~0x3) > IXGBE_ACI_LG_BUF) 102 desc->flags |= cpu_to_le16(IXGBE_ACI_FLAG_LB); 103 104 desc->datalen = cpu_to_le16(buf_size); 105 106 if (desc->flags & cpu_to_le16(IXGBE_ACI_FLAG_RD)) { 107 for (i = 0; i < buf_size / 4; i++) 108 IXGBE_WRITE_REG(hw, IXGBE_PF_HIBA(i), ((u32 *)buf)[i]); 109 if (buf_tail_size) 110 IXGBE_WRITE_REG(hw, IXGBE_PF_HIBA(i), buf_tail); 111 } 112 } 113 114 /* Descriptor is written to specific registers */ 115 for (i = 0; i < IXGBE_ACI_DESC_SIZE_IN_DWORDS; i++) 116 IXGBE_WRITE_REG(hw, IXGBE_PF_HIDA(i), raw_desc[i]); 117 118 /* SW has to set PF_HICR.C bit and clear PF_HICR.SV and 119 * PF_HICR_EV 120 */ 121 hicr = (IXGBE_READ_REG(hw, IXGBE_PF_HICR) | IXGBE_PF_HICR_C) & 122 ~(IXGBE_PF_HICR_SV | IXGBE_PF_HICR_EV); 123 IXGBE_WRITE_REG(hw, IXGBE_PF_HICR, hicr); 124 125 #define MAX_SLEEP_RESP_US 1000 126 #define MAX_TMOUT_RESP_SYNC_US 100000000 127 128 /* Wait for sync Admin Command response */ 129 read_poll_timeout(IXGBE_READ_REG, hicr, 130 (hicr & IXGBE_PF_HICR_SV) || 131 !(hicr & IXGBE_PF_HICR_C), 132 MAX_SLEEP_RESP_US, MAX_TMOUT_RESP_SYNC_US, true, hw, 133 IXGBE_PF_HICR); 134 135 #define MAX_TMOUT_RESP_ASYNC_US 150000000 136 137 /* Wait for async Admin Command response */ 138 read_poll_timeout(IXGBE_READ_REG, hicr, 139 (hicr & IXGBE_PF_HICR_EV) || 140 !(hicr & IXGBE_PF_HICR_C), 141 MAX_SLEEP_RESP_US, MAX_TMOUT_RESP_ASYNC_US, true, hw, 142 IXGBE_PF_HICR); 143 144 /* Read sync Admin Command response */ 145 if ((hicr & IXGBE_PF_HICR_SV)) { 146 for (i = 0; i < IXGBE_ACI_DESC_SIZE_IN_DWORDS; i++) { 147 raw_desc[i] = IXGBE_READ_REG(hw, IXGBE_PF_HIDA(i)); 148 raw_desc[i] = raw_desc[i]; 149 } 150 } 151 152 /* Read async Admin Command response */ 153 if ((hicr & IXGBE_PF_HICR_EV) && !(hicr & IXGBE_PF_HICR_C)) { 154 for (i = 0; i < IXGBE_ACI_DESC_SIZE_IN_DWORDS; i++) { 155 raw_desc[i] = IXGBE_READ_REG(hw, IXGBE_PF_HIDA_2(i)); 156 raw_desc[i] = raw_desc[i]; 157 } 158 } 159 160 /* Handle timeout and invalid state of HICR register */ 161 if (hicr & IXGBE_PF_HICR_C) 162 return -ETIME; 163 164 if (!(hicr & IXGBE_PF_HICR_SV) && !(hicr & IXGBE_PF_HICR_EV)) 165 return -EIO; 166 167 /* For every command other than 0x0014 treat opcode mismatch 168 * as an error. Response to 0x0014 command read from HIDA_2 169 * is a descriptor of an event which is expected to contain 170 * different opcode than the command. 171 */ 172 if (desc->opcode != cpu_to_le16(opcode) && 173 opcode != ixgbe_aci_opc_get_fw_event) 174 return -EIO; 175 176 if (desc->retval) { 177 hw->aci.last_status = (enum ixgbe_aci_err) 178 le16_to_cpu(desc->retval); 179 return -EIO; 180 } 181 182 /* Write a response values to a buf */ 183 if (valid_buf) { 184 for (i = 0; i < buf_size / 4; i++) 185 ((u32 *)buf)[i] = IXGBE_READ_REG(hw, IXGBE_PF_HIBA(i)); 186 if (buf_tail_size) { 187 buf_tail = IXGBE_READ_REG(hw, IXGBE_PF_HIBA(i)); 188 memcpy(buf + buf_size - buf_tail_size, &buf_tail, 189 buf_tail_size); 190 } 191 } 192 193 return 0; 194 } 195 196 /** 197 * ixgbe_aci_send_cmd - send FW Admin Command to FW Admin Command Interface 198 * @hw: pointer to the HW struct 199 * @desc: descriptor describing the command 200 * @buf: buffer to use for indirect commands (NULL for direct commands) 201 * @buf_size: size of buffer for indirect commands (0 for direct commands) 202 * 203 * Helper function to send FW Admin Commands to the FW Admin Command Interface. 204 * 205 * Retry sending the FW Admin Command multiple times to the FW ACI 206 * if the EBUSY Admin Command error is returned. 207 * 208 * Return: the exit code of the operation. 209 */ 210 int ixgbe_aci_send_cmd(struct ixgbe_hw *hw, struct ixgbe_aci_desc *desc, 211 void *buf, u16 buf_size) 212 { 213 u16 opcode = le16_to_cpu(desc->opcode); 214 struct ixgbe_aci_desc desc_cpy; 215 enum ixgbe_aci_err last_status; 216 u8 idx = 0, *buf_cpy = NULL; 217 bool is_cmd_for_retry; 218 unsigned long timeout; 219 int err; 220 221 is_cmd_for_retry = ixgbe_should_retry_aci_send_cmd_execute(opcode); 222 if (is_cmd_for_retry) { 223 if (buf) { 224 buf_cpy = kmalloc(buf_size, GFP_KERNEL); 225 if (!buf_cpy) 226 return -ENOMEM; 227 *buf_cpy = *(u8 *)buf; 228 } 229 desc_cpy = *desc; 230 } 231 232 timeout = jiffies + msecs_to_jiffies(IXGBE_ACI_SEND_TIMEOUT_MS); 233 do { 234 mutex_lock(&hw->aci.lock); 235 err = ixgbe_aci_send_cmd_execute(hw, desc, buf, buf_size); 236 last_status = hw->aci.last_status; 237 mutex_unlock(&hw->aci.lock); 238 239 if (!is_cmd_for_retry || !err || 240 last_status != IXGBE_ACI_RC_EBUSY) 241 break; 242 243 if (buf) 244 memcpy(buf, buf_cpy, buf_size); 245 *desc = desc_cpy; 246 247 msleep(IXGBE_ACI_SEND_DELAY_TIME_MS); 248 } while (++idx < IXGBE_ACI_SEND_MAX_EXECUTE && 249 time_before(jiffies, timeout)); 250 251 kfree(buf_cpy); 252 253 return err; 254 } 255 256 /** 257 * ixgbe_aci_check_event_pending - check if there are any pending events 258 * @hw: pointer to the HW struct 259 * 260 * Determine if there are any pending events. 261 * 262 * Return: true if there are any currently pending events 263 * otherwise false. 264 */ 265 bool ixgbe_aci_check_event_pending(struct ixgbe_hw *hw) 266 { 267 u32 ep_bit_mask = hw->bus.func ? GL_FWSTS_EP_PF1 : GL_FWSTS_EP_PF0; 268 u32 fwsts = IXGBE_READ_REG(hw, GL_FWSTS); 269 270 return (fwsts & ep_bit_mask) ? true : false; 271 } 272 273 /** 274 * ixgbe_aci_get_event - get an event from ACI 275 * @hw: pointer to the HW struct 276 * @e: event information structure 277 * @pending: optional flag signaling that there are more pending events 278 * 279 * Obtain an event from ACI and return its content 280 * through 'e' using ACI command (0x0014). 281 * Provide information if there are more events 282 * to retrieve through 'pending'. 283 * 284 * Return: the exit code of the operation. 285 */ 286 int ixgbe_aci_get_event(struct ixgbe_hw *hw, struct ixgbe_aci_event *e, 287 bool *pending) 288 { 289 struct ixgbe_aci_desc desc; 290 int err; 291 292 if (!e || (!e->msg_buf && e->buf_len)) 293 return -EINVAL; 294 295 mutex_lock(&hw->aci.lock); 296 297 /* Check if there are any events pending */ 298 if (!ixgbe_aci_check_event_pending(hw)) { 299 err = -ENOENT; 300 goto aci_get_event_exit; 301 } 302 303 /* Obtain pending event */ 304 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_fw_event); 305 err = ixgbe_aci_send_cmd_execute(hw, &desc, e->msg_buf, e->buf_len); 306 if (err) 307 goto aci_get_event_exit; 308 309 /* Returned 0x0014 opcode indicates that no event was obtained */ 310 if (desc.opcode == cpu_to_le16(ixgbe_aci_opc_get_fw_event)) { 311 err = -ENOENT; 312 goto aci_get_event_exit; 313 } 314 315 /* Determine size of event data */ 316 e->msg_len = min_t(u16, le16_to_cpu(desc.datalen), e->buf_len); 317 /* Write event descriptor to event info structure */ 318 memcpy(&e->desc, &desc, sizeof(e->desc)); 319 320 /* Check if there are any further events pending */ 321 if (pending) 322 *pending = ixgbe_aci_check_event_pending(hw); 323 324 aci_get_event_exit: 325 mutex_unlock(&hw->aci.lock); 326 327 return err; 328 } 329 330 /** 331 * ixgbe_fill_dflt_direct_cmd_desc - fill ACI descriptor with default values. 332 * @desc: pointer to the temp descriptor (non DMA mem) 333 * @opcode: the opcode can be used to decide which flags to turn off or on 334 * 335 * Helper function to fill the descriptor desc with default values 336 * and the provided opcode. 337 */ 338 void ixgbe_fill_dflt_direct_cmd_desc(struct ixgbe_aci_desc *desc, u16 opcode) 339 { 340 /* Zero out the desc. */ 341 memset(desc, 0, sizeof(*desc)); 342 desc->opcode = cpu_to_le16(opcode); 343 desc->flags = cpu_to_le16(IXGBE_ACI_FLAG_SI); 344 } 345 346 /** 347 * ixgbe_aci_req_res - request a common resource 348 * @hw: pointer to the HW struct 349 * @res: resource ID 350 * @access: access type 351 * @sdp_number: resource number 352 * @timeout: the maximum time in ms that the driver may hold the resource 353 * 354 * Requests a common resource using the ACI command (0x0008). 355 * Specifies the maximum time the driver may hold the resource. 356 * If the requested resource is currently occupied by some other driver, 357 * a busy return value is returned and the timeout field value indicates the 358 * maximum time the current owner has to free it. 359 * 360 * Return: the exit code of the operation. 361 */ 362 static int ixgbe_aci_req_res(struct ixgbe_hw *hw, enum ixgbe_aci_res_ids res, 363 enum ixgbe_aci_res_access_type access, 364 u8 sdp_number, u32 *timeout) 365 { 366 struct ixgbe_aci_cmd_req_res *cmd_resp; 367 struct ixgbe_aci_desc desc; 368 int err; 369 370 cmd_resp = &desc.params.res_owner; 371 372 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_req_res); 373 374 cmd_resp->res_id = cpu_to_le16(res); 375 cmd_resp->access_type = cpu_to_le16(access); 376 cmd_resp->res_number = cpu_to_le32(sdp_number); 377 cmd_resp->timeout = cpu_to_le32(*timeout); 378 *timeout = 0; 379 380 err = ixgbe_aci_send_cmd(hw, &desc, NULL, 0); 381 382 /* If the resource is held by some other driver, the command completes 383 * with a busy return value and the timeout field indicates the maximum 384 * time the current owner of the resource has to free it. 385 */ 386 if (!err || hw->aci.last_status == IXGBE_ACI_RC_EBUSY) 387 *timeout = le32_to_cpu(cmd_resp->timeout); 388 389 return err; 390 } 391 392 /** 393 * ixgbe_aci_release_res - release a common resource using ACI 394 * @hw: pointer to the HW struct 395 * @res: resource ID 396 * @sdp_number: resource number 397 * 398 * Release a common resource using ACI command (0x0009). 399 * 400 * Return: the exit code of the operation. 401 */ 402 static int ixgbe_aci_release_res(struct ixgbe_hw *hw, 403 enum ixgbe_aci_res_ids res, u8 sdp_number) 404 { 405 struct ixgbe_aci_cmd_req_res *cmd; 406 struct ixgbe_aci_desc desc; 407 408 cmd = &desc.params.res_owner; 409 410 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_release_res); 411 412 cmd->res_id = cpu_to_le16(res); 413 cmd->res_number = cpu_to_le32(sdp_number); 414 415 return ixgbe_aci_send_cmd(hw, &desc, NULL, 0); 416 } 417 418 /** 419 * ixgbe_acquire_res - acquire the ownership of a resource 420 * @hw: pointer to the HW structure 421 * @res: resource ID 422 * @access: access type (read or write) 423 * @timeout: timeout in milliseconds 424 * 425 * Make an attempt to acquire the ownership of a resource using 426 * the ixgbe_aci_req_res to utilize ACI. 427 * In case if some other driver has previously acquired the resource and 428 * performed any necessary updates, the -EALREADY is returned, 429 * and the caller does not obtain the resource and has no further work to do. 430 * If needed, the function will poll until the current lock owner timeouts. 431 * 432 * Return: the exit code of the operation. 433 */ 434 int ixgbe_acquire_res(struct ixgbe_hw *hw, enum ixgbe_aci_res_ids res, 435 enum ixgbe_aci_res_access_type access, u32 timeout) 436 { 437 #define IXGBE_RES_POLLING_DELAY_MS 10 438 u32 delay = IXGBE_RES_POLLING_DELAY_MS; 439 u32 res_timeout = timeout; 440 u32 retry_timeout; 441 int err; 442 443 err = ixgbe_aci_req_res(hw, res, access, 0, &res_timeout); 444 445 /* A return code of -EALREADY means that another driver has 446 * previously acquired the resource and performed any necessary updates; 447 * in this case the caller does not obtain the resource and has no 448 * further work to do. 449 */ 450 if (err == -EALREADY) 451 return err; 452 453 /* If necessary, poll until the current lock owner timeouts. 454 * Set retry_timeout to the timeout value reported by the FW in the 455 * response to the "Request Resource Ownership" (0x0008) Admin Command 456 * as it indicates the maximum time the current owner of the resource 457 * is allowed to hold it. 458 */ 459 retry_timeout = res_timeout; 460 while (err && retry_timeout && res_timeout) { 461 msleep(delay); 462 retry_timeout = (retry_timeout > delay) ? 463 retry_timeout - delay : 0; 464 err = ixgbe_aci_req_res(hw, res, access, 0, &res_timeout); 465 466 /* Success - lock acquired. 467 * -EALREADY - lock free, no work to do. 468 */ 469 if (!err || err == -EALREADY) 470 break; 471 } 472 473 return err; 474 } 475 476 /** 477 * ixgbe_release_res - release a common resource 478 * @hw: pointer to the HW structure 479 * @res: resource ID 480 * 481 * Release a common resource using ixgbe_aci_release_res. 482 */ 483 void ixgbe_release_res(struct ixgbe_hw *hw, enum ixgbe_aci_res_ids res) 484 { 485 u32 total_delay = 0; 486 int err; 487 488 err = ixgbe_aci_release_res(hw, res, 0); 489 490 /* There are some rare cases when trying to release the resource 491 * results in an admin command timeout, so handle them correctly. 492 */ 493 while (err == -ETIME && 494 total_delay < IXGBE_ACI_RELEASE_RES_TIMEOUT) { 495 usleep_range(1000, 1500); 496 err = ixgbe_aci_release_res(hw, res, 0); 497 total_delay++; 498 } 499 } 500 501 /** 502 * ixgbe_parse_e610_caps - Parse common device/function capabilities 503 * @hw: pointer to the HW struct 504 * @caps: pointer to common capabilities structure 505 * @elem: the capability element to parse 506 * @prefix: message prefix for tracing capabilities 507 * 508 * Given a capability element, extract relevant details into the common 509 * capability structure. 510 * 511 * Return: true if the capability matches one of the common capability ids, 512 * false otherwise. 513 */ 514 static bool ixgbe_parse_e610_caps(struct ixgbe_hw *hw, 515 struct ixgbe_hw_caps *caps, 516 struct ixgbe_aci_cmd_list_caps_elem *elem, 517 const char *prefix) 518 { 519 u32 logical_id = le32_to_cpu(elem->logical_id); 520 u32 phys_id = le32_to_cpu(elem->phys_id); 521 u32 number = le32_to_cpu(elem->number); 522 u16 cap = le16_to_cpu(elem->cap); 523 524 switch (cap) { 525 case IXGBE_ACI_CAPS_VALID_FUNCTIONS: 526 caps->valid_functions = number; 527 break; 528 case IXGBE_ACI_CAPS_SRIOV: 529 caps->sr_iov_1_1 = (number == 1); 530 break; 531 case IXGBE_ACI_CAPS_VMDQ: 532 caps->vmdq = (number == 1); 533 break; 534 case IXGBE_ACI_CAPS_DCB: 535 caps->dcb = (number == 1); 536 caps->active_tc_bitmap = logical_id; 537 caps->maxtc = phys_id; 538 break; 539 case IXGBE_ACI_CAPS_RSS: 540 caps->rss_table_size = number; 541 caps->rss_table_entry_width = logical_id; 542 break; 543 case IXGBE_ACI_CAPS_RXQS: 544 caps->num_rxq = number; 545 caps->rxq_first_id = phys_id; 546 break; 547 case IXGBE_ACI_CAPS_TXQS: 548 caps->num_txq = number; 549 caps->txq_first_id = phys_id; 550 break; 551 case IXGBE_ACI_CAPS_MSIX: 552 caps->num_msix_vectors = number; 553 caps->msix_vector_first_id = phys_id; 554 break; 555 case IXGBE_ACI_CAPS_NVM_VER: 556 break; 557 case IXGBE_ACI_CAPS_MAX_MTU: 558 caps->max_mtu = number; 559 break; 560 case IXGBE_ACI_CAPS_PCIE_RESET_AVOIDANCE: 561 caps->pcie_reset_avoidance = (number > 0); 562 break; 563 case IXGBE_ACI_CAPS_POST_UPDATE_RESET_RESTRICT: 564 caps->reset_restrict_support = (number == 1); 565 break; 566 case IXGBE_ACI_CAPS_EXT_TOPO_DEV_IMG0: 567 case IXGBE_ACI_CAPS_EXT_TOPO_DEV_IMG1: 568 case IXGBE_ACI_CAPS_EXT_TOPO_DEV_IMG2: 569 case IXGBE_ACI_CAPS_EXT_TOPO_DEV_IMG3: 570 { 571 u8 index = cap - IXGBE_ACI_CAPS_EXT_TOPO_DEV_IMG0; 572 573 caps->ext_topo_dev_img_ver_high[index] = number; 574 caps->ext_topo_dev_img_ver_low[index] = logical_id; 575 caps->ext_topo_dev_img_part_num[index] = 576 FIELD_GET(IXGBE_EXT_TOPO_DEV_IMG_PART_NUM_M, phys_id); 577 caps->ext_topo_dev_img_load_en[index] = 578 (phys_id & IXGBE_EXT_TOPO_DEV_IMG_LOAD_EN) != 0; 579 caps->ext_topo_dev_img_prog_en[index] = 580 (phys_id & IXGBE_EXT_TOPO_DEV_IMG_PROG_EN) != 0; 581 break; 582 } 583 default: 584 /* Not one of the recognized common capabilities */ 585 return false; 586 } 587 588 return true; 589 } 590 591 /** 592 * ixgbe_parse_valid_functions_cap - Parse IXGBE_ACI_CAPS_VALID_FUNCTIONS caps 593 * @hw: pointer to the HW struct 594 * @dev_p: pointer to device capabilities structure 595 * @cap: capability element to parse 596 * 597 * Parse IXGBE_ACI_CAPS_VALID_FUNCTIONS for device capabilities. 598 */ 599 static void 600 ixgbe_parse_valid_functions_cap(struct ixgbe_hw *hw, 601 struct ixgbe_hw_dev_caps *dev_p, 602 struct ixgbe_aci_cmd_list_caps_elem *cap) 603 { 604 dev_p->num_funcs = hweight32(le32_to_cpu(cap->number)); 605 } 606 607 /** 608 * ixgbe_parse_vf_dev_caps - Parse IXGBE_ACI_CAPS_VF device caps 609 * @hw: pointer to the HW struct 610 * @dev_p: pointer to device capabilities structure 611 * @cap: capability element to parse 612 * 613 * Parse IXGBE_ACI_CAPS_VF for device capabilities. 614 */ 615 static void ixgbe_parse_vf_dev_caps(struct ixgbe_hw *hw, 616 struct ixgbe_hw_dev_caps *dev_p, 617 struct ixgbe_aci_cmd_list_caps_elem *cap) 618 { 619 dev_p->num_vfs_exposed = le32_to_cpu(cap->number); 620 } 621 622 /** 623 * ixgbe_parse_vsi_dev_caps - Parse IXGBE_ACI_CAPS_VSI device caps 624 * @hw: pointer to the HW struct 625 * @dev_p: pointer to device capabilities structure 626 * @cap: capability element to parse 627 * 628 * Parse IXGBE_ACI_CAPS_VSI for device capabilities. 629 */ 630 static void ixgbe_parse_vsi_dev_caps(struct ixgbe_hw *hw, 631 struct ixgbe_hw_dev_caps *dev_p, 632 struct ixgbe_aci_cmd_list_caps_elem *cap) 633 { 634 dev_p->num_vsi_allocd_to_host = le32_to_cpu(cap->number); 635 } 636 637 /** 638 * ixgbe_parse_fdir_dev_caps - Parse IXGBE_ACI_CAPS_FD device caps 639 * @hw: pointer to the HW struct 640 * @dev_p: pointer to device capabilities structure 641 * @cap: capability element to parse 642 * 643 * Parse IXGBE_ACI_CAPS_FD for device capabilities. 644 */ 645 static void ixgbe_parse_fdir_dev_caps(struct ixgbe_hw *hw, 646 struct ixgbe_hw_dev_caps *dev_p, 647 struct ixgbe_aci_cmd_list_caps_elem *cap) 648 { 649 dev_p->num_flow_director_fltr = le32_to_cpu(cap->number); 650 } 651 652 /** 653 * ixgbe_parse_dev_caps - Parse device capabilities 654 * @hw: pointer to the HW struct 655 * @dev_p: pointer to device capabilities structure 656 * @buf: buffer containing the device capability records 657 * @cap_count: the number of capabilities 658 * 659 * Helper device to parse device (0x000B) capabilities list. For 660 * capabilities shared between device and function, this relies on 661 * ixgbe_parse_e610_caps. 662 * 663 * Loop through the list of provided capabilities and extract the relevant 664 * data into the device capabilities structured. 665 */ 666 static void ixgbe_parse_dev_caps(struct ixgbe_hw *hw, 667 struct ixgbe_hw_dev_caps *dev_p, 668 void *buf, u32 cap_count) 669 { 670 struct ixgbe_aci_cmd_list_caps_elem *cap_resp; 671 u32 i; 672 673 cap_resp = (struct ixgbe_aci_cmd_list_caps_elem *)buf; 674 675 memset(dev_p, 0, sizeof(*dev_p)); 676 677 for (i = 0; i < cap_count; i++) { 678 u16 cap = le16_to_cpu(cap_resp[i].cap); 679 680 ixgbe_parse_e610_caps(hw, &dev_p->common_cap, &cap_resp[i], 681 "dev caps"); 682 683 switch (cap) { 684 case IXGBE_ACI_CAPS_VALID_FUNCTIONS: 685 ixgbe_parse_valid_functions_cap(hw, dev_p, 686 &cap_resp[i]); 687 break; 688 case IXGBE_ACI_CAPS_VF: 689 ixgbe_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]); 690 break; 691 case IXGBE_ACI_CAPS_VSI: 692 ixgbe_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]); 693 break; 694 case IXGBE_ACI_CAPS_FD: 695 ixgbe_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]); 696 break; 697 default: 698 /* Don't list common capabilities as unknown */ 699 break; 700 } 701 } 702 } 703 704 /** 705 * ixgbe_parse_vf_func_caps - Parse IXGBE_ACI_CAPS_VF function caps 706 * @hw: pointer to the HW struct 707 * @func_p: pointer to function capabilities structure 708 * @cap: pointer to the capability element to parse 709 * 710 * Extract function capabilities for IXGBE_ACI_CAPS_VF. 711 */ 712 static void ixgbe_parse_vf_func_caps(struct ixgbe_hw *hw, 713 struct ixgbe_hw_func_caps *func_p, 714 struct ixgbe_aci_cmd_list_caps_elem *cap) 715 { 716 func_p->num_allocd_vfs = le32_to_cpu(cap->number); 717 func_p->vf_base_id = le32_to_cpu(cap->logical_id); 718 } 719 720 /** 721 * ixgbe_get_num_per_func - determine number of resources per PF 722 * @hw: pointer to the HW structure 723 * @max: value to be evenly split between each PF 724 * 725 * Determine the number of valid functions by going through the bitmap returned 726 * from parsing capabilities and use this to calculate the number of resources 727 * per PF based on the max value passed in. 728 * 729 * Return: the number of resources per PF or 0, if no PH are available. 730 */ 731 static u32 ixgbe_get_num_per_func(struct ixgbe_hw *hw, u32 max) 732 { 733 #define IXGBE_CAPS_VALID_FUNCS_M GENMASK(7, 0) 734 u8 funcs = hweight8(hw->dev_caps.common_cap.valid_functions & 735 IXGBE_CAPS_VALID_FUNCS_M); 736 737 return funcs ? (max / funcs) : 0; 738 } 739 740 /** 741 * ixgbe_parse_vsi_func_caps - Parse IXGBE_ACI_CAPS_VSI function caps 742 * @hw: pointer to the HW struct 743 * @func_p: pointer to function capabilities structure 744 * @cap: pointer to the capability element to parse 745 * 746 * Extract function capabilities for IXGBE_ACI_CAPS_VSI. 747 */ 748 static void ixgbe_parse_vsi_func_caps(struct ixgbe_hw *hw, 749 struct ixgbe_hw_func_caps *func_p, 750 struct ixgbe_aci_cmd_list_caps_elem *cap) 751 { 752 func_p->guar_num_vsi = ixgbe_get_num_per_func(hw, IXGBE_MAX_VSI); 753 } 754 755 /** 756 * ixgbe_parse_func_caps - Parse function capabilities 757 * @hw: pointer to the HW struct 758 * @func_p: pointer to function capabilities structure 759 * @buf: buffer containing the function capability records 760 * @cap_count: the number of capabilities 761 * 762 * Helper function to parse function (0x000A) capabilities list. For 763 * capabilities shared between device and function, this relies on 764 * ixgbe_parse_e610_caps. 765 * 766 * Loop through the list of provided capabilities and extract the relevant 767 * data into the function capabilities structured. 768 */ 769 static void ixgbe_parse_func_caps(struct ixgbe_hw *hw, 770 struct ixgbe_hw_func_caps *func_p, 771 void *buf, u32 cap_count) 772 { 773 struct ixgbe_aci_cmd_list_caps_elem *cap_resp; 774 u32 i; 775 776 cap_resp = (struct ixgbe_aci_cmd_list_caps_elem *)buf; 777 778 memset(func_p, 0, sizeof(*func_p)); 779 780 for (i = 0; i < cap_count; i++) { 781 u16 cap = le16_to_cpu(cap_resp[i].cap); 782 783 ixgbe_parse_e610_caps(hw, &func_p->common_cap, 784 &cap_resp[i], "func caps"); 785 786 switch (cap) { 787 case IXGBE_ACI_CAPS_VF: 788 ixgbe_parse_vf_func_caps(hw, func_p, &cap_resp[i]); 789 break; 790 case IXGBE_ACI_CAPS_VSI: 791 ixgbe_parse_vsi_func_caps(hw, func_p, &cap_resp[i]); 792 break; 793 default: 794 /* Don't list common capabilities as unknown */ 795 break; 796 } 797 } 798 } 799 800 /** 801 * ixgbe_aci_list_caps - query function/device capabilities 802 * @hw: pointer to the HW struct 803 * @buf: a buffer to hold the capabilities 804 * @buf_size: size of the buffer 805 * @cap_count: if not NULL, set to the number of capabilities reported 806 * @opc: capabilities type to discover, device or function 807 * 808 * Get the function (0x000A) or device (0x000B) capabilities description from 809 * firmware and store it in the buffer. 810 * 811 * If the cap_count pointer is not NULL, then it is set to the number of 812 * capabilities firmware will report. Note that if the buffer size is too 813 * small, it is possible the command will return -ENOMEM. The 814 * cap_count will still be updated in this case. It is recommended that the 815 * buffer size be set to IXGBE_ACI_MAX_BUFFER_SIZE (the largest possible 816 * buffer that firmware could return) to avoid this. 817 * 818 * Return: the exit code of the operation. 819 * Exit code of -ENOMEM means the buffer size is too small. 820 */ 821 int ixgbe_aci_list_caps(struct ixgbe_hw *hw, void *buf, u16 buf_size, 822 u32 *cap_count, enum ixgbe_aci_opc opc) 823 { 824 struct ixgbe_aci_cmd_list_caps *cmd; 825 struct ixgbe_aci_desc desc; 826 int err; 827 828 cmd = &desc.params.get_cap; 829 830 if (opc != ixgbe_aci_opc_list_func_caps && 831 opc != ixgbe_aci_opc_list_dev_caps) 832 return -EINVAL; 833 834 ixgbe_fill_dflt_direct_cmd_desc(&desc, opc); 835 err = ixgbe_aci_send_cmd(hw, &desc, buf, buf_size); 836 837 if (cap_count) 838 *cap_count = le32_to_cpu(cmd->count); 839 840 return err; 841 } 842 843 /** 844 * ixgbe_discover_dev_caps - Read and extract device capabilities 845 * @hw: pointer to the hardware structure 846 * @dev_caps: pointer to device capabilities structure 847 * 848 * Read the device capabilities and extract them into the dev_caps structure 849 * for later use. 850 * 851 * Return: the exit code of the operation. 852 */ 853 int ixgbe_discover_dev_caps(struct ixgbe_hw *hw, 854 struct ixgbe_hw_dev_caps *dev_caps) 855 { 856 u32 cap_count; 857 u8 *cbuf; 858 int err; 859 860 cbuf = kzalloc(IXGBE_ACI_MAX_BUFFER_SIZE, GFP_KERNEL); 861 if (!cbuf) 862 return -ENOMEM; 863 864 /* Although the driver doesn't know the number of capabilities the 865 * device will return, we can simply send a 4KB buffer, the maximum 866 * possible size that firmware can return. 867 */ 868 cap_count = IXGBE_ACI_MAX_BUFFER_SIZE / 869 sizeof(struct ixgbe_aci_cmd_list_caps_elem); 870 871 err = ixgbe_aci_list_caps(hw, cbuf, IXGBE_ACI_MAX_BUFFER_SIZE, 872 &cap_count, 873 ixgbe_aci_opc_list_dev_caps); 874 if (!err) 875 ixgbe_parse_dev_caps(hw, dev_caps, cbuf, cap_count); 876 877 kfree(cbuf); 878 879 return 0; 880 } 881 882 /** 883 * ixgbe_discover_func_caps - Read and extract function capabilities 884 * @hw: pointer to the hardware structure 885 * @func_caps: pointer to function capabilities structure 886 * 887 * Read the function capabilities and extract them into the func_caps structure 888 * for later use. 889 * 890 * Return: the exit code of the operation. 891 */ 892 int ixgbe_discover_func_caps(struct ixgbe_hw *hw, 893 struct ixgbe_hw_func_caps *func_caps) 894 { 895 u32 cap_count; 896 u8 *cbuf; 897 int err; 898 899 cbuf = kzalloc(IXGBE_ACI_MAX_BUFFER_SIZE, GFP_KERNEL); 900 if (!cbuf) 901 return -ENOMEM; 902 903 /* Although the driver doesn't know the number of capabilities the 904 * device will return, we can simply send a 4KB buffer, the maximum 905 * possible size that firmware can return. 906 */ 907 cap_count = IXGBE_ACI_MAX_BUFFER_SIZE / 908 sizeof(struct ixgbe_aci_cmd_list_caps_elem); 909 910 err = ixgbe_aci_list_caps(hw, cbuf, IXGBE_ACI_MAX_BUFFER_SIZE, 911 &cap_count, 912 ixgbe_aci_opc_list_func_caps); 913 if (!err) 914 ixgbe_parse_func_caps(hw, func_caps, cbuf, cap_count); 915 916 kfree(cbuf); 917 918 return 0; 919 } 920 921 /** 922 * ixgbe_get_caps - get info about the HW 923 * @hw: pointer to the hardware structure 924 * 925 * Retrieve both device and function capabilities. 926 * 927 * Return: the exit code of the operation. 928 */ 929 int ixgbe_get_caps(struct ixgbe_hw *hw) 930 { 931 int err; 932 933 err = ixgbe_discover_dev_caps(hw, &hw->dev_caps); 934 if (err) 935 return err; 936 937 return ixgbe_discover_func_caps(hw, &hw->func_caps); 938 } 939 940 /** 941 * ixgbe_aci_disable_rxen - disable RX 942 * @hw: pointer to the HW struct 943 * 944 * Request a safe disable of Receive Enable using ACI command (0x000C). 945 * 946 * Return: the exit code of the operation. 947 */ 948 int ixgbe_aci_disable_rxen(struct ixgbe_hw *hw) 949 { 950 struct ixgbe_aci_cmd_disable_rxen *cmd; 951 struct ixgbe_aci_desc desc; 952 953 cmd = &desc.params.disable_rxen; 954 955 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_disable_rxen); 956 957 cmd->lport_num = hw->bus.func; 958 959 return ixgbe_aci_send_cmd(hw, &desc, NULL, 0); 960 } 961 962 /** 963 * ixgbe_aci_get_phy_caps - returns PHY capabilities 964 * @hw: pointer to the HW struct 965 * @qual_mods: report qualified modules 966 * @report_mode: report mode capabilities 967 * @pcaps: structure for PHY capabilities to be filled 968 * 969 * Returns the various PHY capabilities supported on the Port 970 * using ACI command (0x0600). 971 * 972 * Return: the exit code of the operation. 973 */ 974 int ixgbe_aci_get_phy_caps(struct ixgbe_hw *hw, bool qual_mods, u8 report_mode, 975 struct ixgbe_aci_cmd_get_phy_caps_data *pcaps) 976 { 977 struct ixgbe_aci_cmd_get_phy_caps *cmd; 978 u16 pcaps_size = sizeof(*pcaps); 979 struct ixgbe_aci_desc desc; 980 int err; 981 982 cmd = &desc.params.get_phy; 983 984 if (!pcaps || (report_mode & ~IXGBE_ACI_REPORT_MODE_M)) 985 return -EINVAL; 986 987 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_phy_caps); 988 989 if (qual_mods) 990 cmd->param0 |= cpu_to_le16(IXGBE_ACI_GET_PHY_RQM); 991 992 cmd->param0 |= cpu_to_le16(report_mode); 993 err = ixgbe_aci_send_cmd(hw, &desc, pcaps, pcaps_size); 994 if (!err && report_mode == IXGBE_ACI_REPORT_TOPO_CAP_MEDIA) { 995 hw->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low); 996 hw->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high); 997 memcpy(hw->link.link_info.module_type, &pcaps->module_type, 998 sizeof(hw->link.link_info.module_type)); 999 } 1000 1001 return err; 1002 } 1003 1004 /** 1005 * ixgbe_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data 1006 * @caps: PHY ability structure to copy data from 1007 * @cfg: PHY configuration structure to copy data to 1008 * 1009 * Helper function to copy data from PHY capabilities data structure 1010 * to PHY configuration data structure 1011 */ 1012 void ixgbe_copy_phy_caps_to_cfg(struct ixgbe_aci_cmd_get_phy_caps_data *caps, 1013 struct ixgbe_aci_cmd_set_phy_cfg_data *cfg) 1014 { 1015 if (!caps || !cfg) 1016 return; 1017 1018 memset(cfg, 0, sizeof(*cfg)); 1019 cfg->phy_type_low = caps->phy_type_low; 1020 cfg->phy_type_high = caps->phy_type_high; 1021 cfg->caps = caps->caps; 1022 cfg->low_power_ctrl_an = caps->low_power_ctrl_an; 1023 cfg->eee_cap = caps->eee_cap; 1024 cfg->eeer_value = caps->eeer_value; 1025 cfg->link_fec_opt = caps->link_fec_options; 1026 cfg->module_compliance_enforcement = 1027 caps->module_compliance_enforcement; 1028 } 1029 1030 /** 1031 * ixgbe_aci_set_phy_cfg - set PHY configuration 1032 * @hw: pointer to the HW struct 1033 * @cfg: structure with PHY configuration data to be set 1034 * 1035 * Set the various PHY configuration parameters supported on the Port 1036 * using ACI command (0x0601). 1037 * One or more of the Set PHY config parameters may be ignored in an MFP 1038 * mode as the PF may not have the privilege to set some of the PHY Config 1039 * parameters. 1040 * 1041 * Return: the exit code of the operation. 1042 */ 1043 int ixgbe_aci_set_phy_cfg(struct ixgbe_hw *hw, 1044 struct ixgbe_aci_cmd_set_phy_cfg_data *cfg) 1045 { 1046 struct ixgbe_aci_desc desc; 1047 int err; 1048 1049 if (!cfg) 1050 return -EINVAL; 1051 1052 /* Ensure that only valid bits of cfg->caps can be turned on. */ 1053 cfg->caps &= IXGBE_ACI_PHY_ENA_VALID_MASK; 1054 1055 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_set_phy_cfg); 1056 desc.params.set_phy.lport_num = hw->bus.func; 1057 desc.flags |= cpu_to_le16(IXGBE_ACI_FLAG_RD); 1058 1059 err = ixgbe_aci_send_cmd(hw, &desc, cfg, sizeof(*cfg)); 1060 if (!err) 1061 hw->phy.curr_user_phy_cfg = *cfg; 1062 1063 return err; 1064 } 1065 1066 /** 1067 * ixgbe_aci_set_link_restart_an - set up link and restart AN 1068 * @hw: pointer to the HW struct 1069 * @ena_link: if true: enable link, if false: disable link 1070 * 1071 * Function sets up the link and restarts the Auto-Negotiation over the link. 1072 * 1073 * Return: the exit code of the operation. 1074 */ 1075 int ixgbe_aci_set_link_restart_an(struct ixgbe_hw *hw, bool ena_link) 1076 { 1077 struct ixgbe_aci_cmd_restart_an *cmd; 1078 struct ixgbe_aci_desc desc; 1079 1080 cmd = &desc.params.restart_an; 1081 1082 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_restart_an); 1083 1084 cmd->cmd_flags = IXGBE_ACI_RESTART_AN_LINK_RESTART; 1085 cmd->lport_num = hw->bus.func; 1086 if (ena_link) 1087 cmd->cmd_flags |= IXGBE_ACI_RESTART_AN_LINK_ENABLE; 1088 else 1089 cmd->cmd_flags &= ~IXGBE_ACI_RESTART_AN_LINK_ENABLE; 1090 1091 return ixgbe_aci_send_cmd(hw, &desc, NULL, 0); 1092 } 1093 1094 /** 1095 * ixgbe_is_media_cage_present - check if media cage is present 1096 * @hw: pointer to the HW struct 1097 * 1098 * Identify presence of media cage using the ACI command (0x06E0). 1099 * 1100 * Return: true if media cage is present, else false. If no cage, then 1101 * media type is backplane or BASE-T. 1102 */ 1103 static bool ixgbe_is_media_cage_present(struct ixgbe_hw *hw) 1104 { 1105 struct ixgbe_aci_cmd_get_link_topo *cmd; 1106 struct ixgbe_aci_desc desc; 1107 1108 cmd = &desc.params.get_link_topo; 1109 1110 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_link_topo); 1111 1112 cmd->addr.topo_params.node_type_ctx = 1113 FIELD_PREP(IXGBE_ACI_LINK_TOPO_NODE_CTX_M, 1114 IXGBE_ACI_LINK_TOPO_NODE_CTX_PORT); 1115 1116 /* Set node type. */ 1117 cmd->addr.topo_params.node_type_ctx |= 1118 FIELD_PREP(IXGBE_ACI_LINK_TOPO_NODE_TYPE_M, 1119 IXGBE_ACI_LINK_TOPO_NODE_TYPE_CAGE); 1120 1121 /* Node type cage can be used to determine if cage is present. If AQC 1122 * returns error (ENOENT), then no cage present. If no cage present then 1123 * connection type is backplane or BASE-T. 1124 */ 1125 return ixgbe_aci_get_netlist_node(hw, cmd, NULL, NULL); 1126 } 1127 1128 /** 1129 * ixgbe_get_media_type_from_phy_type - Gets media type based on phy type 1130 * @hw: pointer to the HW struct 1131 * 1132 * Try to identify the media type based on the phy type. 1133 * If more than one media type, the ixgbe_media_type_unknown is returned. 1134 * First, phy_type_low is checked, then phy_type_high. 1135 * If none are identified, the ixgbe_media_type_unknown is returned 1136 * 1137 * Return: type of a media based on phy type in form of enum. 1138 */ 1139 static enum ixgbe_media_type 1140 ixgbe_get_media_type_from_phy_type(struct ixgbe_hw *hw) 1141 { 1142 struct ixgbe_link_status *hw_link_info; 1143 1144 if (!hw) 1145 return ixgbe_media_type_unknown; 1146 1147 hw_link_info = &hw->link.link_info; 1148 if (hw_link_info->phy_type_low && hw_link_info->phy_type_high) 1149 /* If more than one media type is selected, report unknown */ 1150 return ixgbe_media_type_unknown; 1151 1152 if (hw_link_info->phy_type_low) { 1153 /* 1G SGMII is a special case where some DA cable PHYs 1154 * may show this as an option when it really shouldn't 1155 * be since SGMII is meant to be between a MAC and a PHY 1156 * in a backplane. Try to detect this case and handle it 1157 */ 1158 if (hw_link_info->phy_type_low == IXGBE_PHY_TYPE_LOW_1G_SGMII && 1159 (hw_link_info->module_type[IXGBE_ACI_MOD_TYPE_IDENT] == 1160 IXGBE_ACI_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE || 1161 hw_link_info->module_type[IXGBE_ACI_MOD_TYPE_IDENT] == 1162 IXGBE_ACI_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE)) 1163 return ixgbe_media_type_da; 1164 1165 switch (hw_link_info->phy_type_low) { 1166 case IXGBE_PHY_TYPE_LOW_1000BASE_SX: 1167 case IXGBE_PHY_TYPE_LOW_1000BASE_LX: 1168 case IXGBE_PHY_TYPE_LOW_10GBASE_SR: 1169 case IXGBE_PHY_TYPE_LOW_10GBASE_LR: 1170 case IXGBE_PHY_TYPE_LOW_25GBASE_SR: 1171 case IXGBE_PHY_TYPE_LOW_25GBASE_LR: 1172 return ixgbe_media_type_fiber; 1173 case IXGBE_PHY_TYPE_LOW_10G_SFI_AOC_ACC: 1174 case IXGBE_PHY_TYPE_LOW_25G_AUI_AOC_ACC: 1175 return ixgbe_media_type_fiber; 1176 case IXGBE_PHY_TYPE_LOW_100BASE_TX: 1177 case IXGBE_PHY_TYPE_LOW_1000BASE_T: 1178 case IXGBE_PHY_TYPE_LOW_2500BASE_T: 1179 case IXGBE_PHY_TYPE_LOW_5GBASE_T: 1180 case IXGBE_PHY_TYPE_LOW_10GBASE_T: 1181 case IXGBE_PHY_TYPE_LOW_25GBASE_T: 1182 return ixgbe_media_type_copper; 1183 case IXGBE_PHY_TYPE_LOW_10G_SFI_DA: 1184 case IXGBE_PHY_TYPE_LOW_25GBASE_CR: 1185 case IXGBE_PHY_TYPE_LOW_25GBASE_CR_S: 1186 case IXGBE_PHY_TYPE_LOW_25GBASE_CR1: 1187 return ixgbe_media_type_da; 1188 case IXGBE_PHY_TYPE_LOW_25G_AUI_C2C: 1189 if (ixgbe_is_media_cage_present(hw)) 1190 return ixgbe_media_type_aui; 1191 fallthrough; 1192 case IXGBE_PHY_TYPE_LOW_1000BASE_KX: 1193 case IXGBE_PHY_TYPE_LOW_2500BASE_KX: 1194 case IXGBE_PHY_TYPE_LOW_2500BASE_X: 1195 case IXGBE_PHY_TYPE_LOW_5GBASE_KR: 1196 case IXGBE_PHY_TYPE_LOW_10GBASE_KR_CR1: 1197 case IXGBE_PHY_TYPE_LOW_10G_SFI_C2C: 1198 case IXGBE_PHY_TYPE_LOW_25GBASE_KR: 1199 case IXGBE_PHY_TYPE_LOW_25GBASE_KR1: 1200 case IXGBE_PHY_TYPE_LOW_25GBASE_KR_S: 1201 return ixgbe_media_type_backplane; 1202 } 1203 } else { 1204 switch (hw_link_info->phy_type_high) { 1205 case IXGBE_PHY_TYPE_HIGH_10BASE_T: 1206 return ixgbe_media_type_copper; 1207 } 1208 } 1209 return ixgbe_media_type_unknown; 1210 } 1211 1212 /** 1213 * ixgbe_update_link_info - update status of the HW network link 1214 * @hw: pointer to the HW struct 1215 * 1216 * Update the status of the HW network link. 1217 * 1218 * Return: the exit code of the operation. 1219 */ 1220 int ixgbe_update_link_info(struct ixgbe_hw *hw) 1221 { 1222 struct ixgbe_aci_cmd_get_phy_caps_data *pcaps; 1223 struct ixgbe_link_status *li; 1224 int err; 1225 1226 if (!hw) 1227 return -EINVAL; 1228 1229 li = &hw->link.link_info; 1230 1231 err = ixgbe_aci_get_link_info(hw, true, NULL); 1232 if (err) 1233 return err; 1234 1235 if (!(li->link_info & IXGBE_ACI_MEDIA_AVAILABLE)) 1236 return 0; 1237 1238 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL); 1239 if (!pcaps) 1240 return -ENOMEM; 1241 1242 err = ixgbe_aci_get_phy_caps(hw, false, IXGBE_ACI_REPORT_TOPO_CAP_MEDIA, 1243 pcaps); 1244 1245 if (!err) 1246 memcpy(li->module_type, &pcaps->module_type, 1247 sizeof(li->module_type)); 1248 1249 kfree(pcaps); 1250 1251 return err; 1252 } 1253 1254 /** 1255 * ixgbe_get_link_status - get status of the HW network link 1256 * @hw: pointer to the HW struct 1257 * @link_up: pointer to bool (true/false = linkup/linkdown) 1258 * 1259 * Variable link_up is true if link is up, false if link is down. 1260 * The variable link_up is invalid if status is non zero. As a 1261 * result of this call, link status reporting becomes enabled 1262 * 1263 * Return: the exit code of the operation. 1264 */ 1265 int ixgbe_get_link_status(struct ixgbe_hw *hw, bool *link_up) 1266 { 1267 if (!hw || !link_up) 1268 return -EINVAL; 1269 1270 if (hw->link.get_link_info) { 1271 int err = ixgbe_update_link_info(hw); 1272 1273 if (err) 1274 return err; 1275 } 1276 1277 *link_up = hw->link.link_info.link_info & IXGBE_ACI_LINK_UP; 1278 1279 return 0; 1280 } 1281 1282 /** 1283 * ixgbe_aci_get_link_info - get the link status 1284 * @hw: pointer to the HW struct 1285 * @ena_lse: enable/disable LinkStatusEvent reporting 1286 * @link: pointer to link status structure - optional 1287 * 1288 * Get the current Link Status using ACI command (0x607). 1289 * The current link can be optionally provided to update 1290 * the status. 1291 * 1292 * Return: the link status of the adapter. 1293 */ 1294 int ixgbe_aci_get_link_info(struct ixgbe_hw *hw, bool ena_lse, 1295 struct ixgbe_link_status *link) 1296 { 1297 struct ixgbe_aci_cmd_get_link_status_data link_data = {}; 1298 struct ixgbe_aci_cmd_get_link_status *resp; 1299 struct ixgbe_link_status *li_old, *li; 1300 struct ixgbe_fc_info *hw_fc_info; 1301 struct ixgbe_aci_desc desc; 1302 bool tx_pause, rx_pause; 1303 u8 cmd_flags; 1304 int err; 1305 1306 if (!hw) 1307 return -EINVAL; 1308 1309 li_old = &hw->link.link_info_old; 1310 li = &hw->link.link_info; 1311 hw_fc_info = &hw->fc; 1312 1313 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_link_status); 1314 cmd_flags = (ena_lse) ? IXGBE_ACI_LSE_ENA : IXGBE_ACI_LSE_DIS; 1315 resp = &desc.params.get_link_status; 1316 resp->cmd_flags = cpu_to_le16(cmd_flags); 1317 resp->lport_num = hw->bus.func; 1318 1319 err = ixgbe_aci_send_cmd(hw, &desc, &link_data, sizeof(link_data)); 1320 if (err) 1321 return err; 1322 1323 /* Save off old link status information. */ 1324 *li_old = *li; 1325 1326 /* Update current link status information. */ 1327 li->link_speed = le16_to_cpu(link_data.link_speed); 1328 li->phy_type_low = le64_to_cpu(link_data.phy_type_low); 1329 li->phy_type_high = le64_to_cpu(link_data.phy_type_high); 1330 li->link_info = link_data.link_info; 1331 li->link_cfg_err = link_data.link_cfg_err; 1332 li->an_info = link_data.an_info; 1333 li->ext_info = link_data.ext_info; 1334 li->max_frame_size = le16_to_cpu(link_data.max_frame_size); 1335 li->fec_info = link_data.cfg & IXGBE_ACI_FEC_MASK; 1336 li->topo_media_conflict = link_data.topo_media_conflict; 1337 li->pacing = link_data.cfg & (IXGBE_ACI_CFG_PACING_M | 1338 IXGBE_ACI_CFG_PACING_TYPE_M); 1339 1340 /* Update fc info. */ 1341 tx_pause = !!(link_data.an_info & IXGBE_ACI_LINK_PAUSE_TX); 1342 rx_pause = !!(link_data.an_info & IXGBE_ACI_LINK_PAUSE_RX); 1343 if (tx_pause && rx_pause) 1344 hw_fc_info->current_mode = ixgbe_fc_full; 1345 else if (tx_pause) 1346 hw_fc_info->current_mode = ixgbe_fc_tx_pause; 1347 else if (rx_pause) 1348 hw_fc_info->current_mode = ixgbe_fc_rx_pause; 1349 else 1350 hw_fc_info->current_mode = ixgbe_fc_none; 1351 1352 li->lse_ena = !!(le16_to_cpu(resp->cmd_flags) & 1353 IXGBE_ACI_LSE_IS_ENABLED); 1354 1355 /* Save link status information. */ 1356 if (link) 1357 *link = *li; 1358 1359 /* Flag cleared so calling functions don't call AQ again. */ 1360 hw->link.get_link_info = false; 1361 1362 return 0; 1363 } 1364 1365 /** 1366 * ixgbe_aci_set_event_mask - set event mask 1367 * @hw: pointer to the HW struct 1368 * @port_num: port number of the physical function 1369 * @mask: event mask to be set 1370 * 1371 * Set the event mask using ACI command (0x0613). 1372 * 1373 * Return: the exit code of the operation. 1374 */ 1375 int ixgbe_aci_set_event_mask(struct ixgbe_hw *hw, u8 port_num, u16 mask) 1376 { 1377 struct ixgbe_aci_cmd_set_event_mask *cmd; 1378 struct ixgbe_aci_desc desc; 1379 1380 cmd = &desc.params.set_event_mask; 1381 1382 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_set_event_mask); 1383 1384 cmd->lport_num = port_num; 1385 1386 cmd->event_mask = cpu_to_le16(mask); 1387 return ixgbe_aci_send_cmd(hw, &desc, NULL, 0); 1388 } 1389 1390 /** 1391 * ixgbe_configure_lse - enable/disable link status events 1392 * @hw: pointer to the HW struct 1393 * @activate: true for enable lse, false otherwise 1394 * @mask: event mask to be set; a set bit means deactivation of the 1395 * corresponding event 1396 * 1397 * Set the event mask and then enable or disable link status events 1398 * 1399 * Return: the exit code of the operation. 1400 */ 1401 int ixgbe_configure_lse(struct ixgbe_hw *hw, bool activate, u16 mask) 1402 { 1403 int err; 1404 1405 err = ixgbe_aci_set_event_mask(hw, (u8)hw->bus.func, mask); 1406 if (err) 1407 return err; 1408 1409 /* Enabling link status events generation by fw. */ 1410 return ixgbe_aci_get_link_info(hw, activate, NULL); 1411 } 1412 1413 /** 1414 * ixgbe_get_media_type_e610 - Gets media type 1415 * @hw: pointer to the HW struct 1416 * 1417 * In order to get the media type, the function gets PHY 1418 * capabilities and later on use them to identify the PHY type 1419 * checking phy_type_high and phy_type_low. 1420 * 1421 * Return: the type of media in form of ixgbe_media_type enum 1422 * or ixgbe_media_type_unknown in case of an error. 1423 */ 1424 enum ixgbe_media_type ixgbe_get_media_type_e610(struct ixgbe_hw *hw) 1425 { 1426 struct ixgbe_aci_cmd_get_phy_caps_data pcaps; 1427 int rc; 1428 1429 rc = ixgbe_update_link_info(hw); 1430 if (rc) 1431 return ixgbe_media_type_unknown; 1432 1433 /* If there is no link but PHY (dongle) is available SW should use 1434 * Get PHY Caps admin command instead of Get Link Status, find most 1435 * significant bit that is set in PHY types reported by the command 1436 * and use it to discover media type. 1437 */ 1438 if (!(hw->link.link_info.link_info & IXGBE_ACI_LINK_UP) && 1439 (hw->link.link_info.link_info & IXGBE_ACI_MEDIA_AVAILABLE)) { 1440 int highest_bit; 1441 1442 /* Get PHY Capabilities */ 1443 rc = ixgbe_aci_get_phy_caps(hw, false, 1444 IXGBE_ACI_REPORT_TOPO_CAP_MEDIA, 1445 &pcaps); 1446 if (rc) 1447 return ixgbe_media_type_unknown; 1448 1449 highest_bit = fls64(le64_to_cpu(pcaps.phy_type_high)); 1450 if (highest_bit) { 1451 hw->link.link_info.phy_type_high = 1452 BIT_ULL(highest_bit - 1); 1453 hw->link.link_info.phy_type_low = 0; 1454 } else { 1455 highest_bit = fls64(le64_to_cpu(pcaps.phy_type_low)); 1456 if (highest_bit) 1457 hw->link.link_info.phy_type_low = 1458 BIT_ULL(highest_bit - 1); 1459 } 1460 } 1461 1462 /* Based on link status or search above try to discover media type. */ 1463 hw->phy.media_type = ixgbe_get_media_type_from_phy_type(hw); 1464 1465 return hw->phy.media_type; 1466 } 1467 1468 /** 1469 * ixgbe_setup_link_e610 - Set up link 1470 * @hw: pointer to hardware structure 1471 * @speed: new link speed 1472 * @autoneg_wait: true when waiting for completion is needed 1473 * 1474 * Set up the link with the specified speed. 1475 * 1476 * Return: the exit code of the operation. 1477 */ 1478 int ixgbe_setup_link_e610(struct ixgbe_hw *hw, ixgbe_link_speed speed, 1479 bool autoneg_wait) 1480 { 1481 /* Simply request FW to perform proper PHY setup */ 1482 return hw->phy.ops.setup_link_speed(hw, speed, autoneg_wait); 1483 } 1484 1485 /** 1486 * ixgbe_check_link_e610 - Determine link and speed status 1487 * @hw: pointer to hardware structure 1488 * @speed: pointer to link speed 1489 * @link_up: true when link is up 1490 * @link_up_wait_to_complete: bool used to wait for link up or not 1491 * 1492 * Determine if the link is up and the current link speed 1493 * using ACI command (0x0607). 1494 * 1495 * Return: the exit code of the operation. 1496 */ 1497 int ixgbe_check_link_e610(struct ixgbe_hw *hw, ixgbe_link_speed *speed, 1498 bool *link_up, bool link_up_wait_to_complete) 1499 { 1500 int err; 1501 u32 i; 1502 1503 if (!speed || !link_up) 1504 return -EINVAL; 1505 1506 /* Set get_link_info flag to ensure that fresh 1507 * link information will be obtained from FW 1508 * by sending Get Link Status admin command. 1509 */ 1510 hw->link.get_link_info = true; 1511 1512 /* Update link information in adapter context. */ 1513 err = ixgbe_get_link_status(hw, link_up); 1514 if (err) 1515 return err; 1516 1517 /* Wait for link up if it was requested. */ 1518 if (link_up_wait_to_complete && !(*link_up)) { 1519 for (i = 0; i < hw->mac.max_link_up_time; i++) { 1520 msleep(100); 1521 hw->link.get_link_info = true; 1522 err = ixgbe_get_link_status(hw, link_up); 1523 if (err) 1524 return err; 1525 if (*link_up) 1526 break; 1527 } 1528 } 1529 1530 /* Use link information in adapter context updated by the call 1531 * to ixgbe_get_link_status() to determine current link speed. 1532 * Link speed information is valid only when link up was 1533 * reported by FW. 1534 */ 1535 if (*link_up) { 1536 switch (hw->link.link_info.link_speed) { 1537 case IXGBE_ACI_LINK_SPEED_10MB: 1538 *speed = IXGBE_LINK_SPEED_10_FULL; 1539 break; 1540 case IXGBE_ACI_LINK_SPEED_100MB: 1541 *speed = IXGBE_LINK_SPEED_100_FULL; 1542 break; 1543 case IXGBE_ACI_LINK_SPEED_1000MB: 1544 *speed = IXGBE_LINK_SPEED_1GB_FULL; 1545 break; 1546 case IXGBE_ACI_LINK_SPEED_2500MB: 1547 *speed = IXGBE_LINK_SPEED_2_5GB_FULL; 1548 break; 1549 case IXGBE_ACI_LINK_SPEED_5GB: 1550 *speed = IXGBE_LINK_SPEED_5GB_FULL; 1551 break; 1552 case IXGBE_ACI_LINK_SPEED_10GB: 1553 *speed = IXGBE_LINK_SPEED_10GB_FULL; 1554 break; 1555 default: 1556 *speed = IXGBE_LINK_SPEED_UNKNOWN; 1557 break; 1558 } 1559 } else { 1560 *speed = IXGBE_LINK_SPEED_UNKNOWN; 1561 } 1562 1563 return 0; 1564 } 1565 1566 /** 1567 * ixgbe_get_link_capabilities_e610 - Determine link capabilities 1568 * @hw: pointer to hardware structure 1569 * @speed: pointer to link speed 1570 * @autoneg: true when autoneg or autotry is enabled 1571 * 1572 * Determine speed and AN parameters of a link. 1573 * 1574 * Return: the exit code of the operation. 1575 */ 1576 int ixgbe_get_link_capabilities_e610(struct ixgbe_hw *hw, 1577 ixgbe_link_speed *speed, 1578 bool *autoneg) 1579 { 1580 if (!speed || !autoneg) 1581 return -EINVAL; 1582 1583 *autoneg = true; 1584 *speed = hw->phy.speeds_supported; 1585 1586 return 0; 1587 } 1588 1589 /** 1590 * ixgbe_cfg_phy_fc - Configure PHY Flow Control (FC) data based on FC mode 1591 * @hw: pointer to hardware structure 1592 * @cfg: PHY configuration data to set FC mode 1593 * @req_mode: FC mode to configure 1594 * 1595 * Configures PHY Flow Control according to the provided configuration. 1596 * 1597 * Return: the exit code of the operation. 1598 */ 1599 int ixgbe_cfg_phy_fc(struct ixgbe_hw *hw, 1600 struct ixgbe_aci_cmd_set_phy_cfg_data *cfg, 1601 enum ixgbe_fc_mode req_mode) 1602 { 1603 u8 pause_mask = 0x0; 1604 1605 if (!cfg) 1606 return -EINVAL; 1607 1608 switch (req_mode) { 1609 case ixgbe_fc_full: 1610 pause_mask |= IXGBE_ACI_PHY_EN_TX_LINK_PAUSE; 1611 pause_mask |= IXGBE_ACI_PHY_EN_RX_LINK_PAUSE; 1612 break; 1613 case ixgbe_fc_rx_pause: 1614 pause_mask |= IXGBE_ACI_PHY_EN_RX_LINK_PAUSE; 1615 break; 1616 case ixgbe_fc_tx_pause: 1617 pause_mask |= IXGBE_ACI_PHY_EN_TX_LINK_PAUSE; 1618 break; 1619 default: 1620 break; 1621 } 1622 1623 /* Clear the old pause settings. */ 1624 cfg->caps &= ~(IXGBE_ACI_PHY_EN_TX_LINK_PAUSE | 1625 IXGBE_ACI_PHY_EN_RX_LINK_PAUSE); 1626 1627 /* Set the new capabilities. */ 1628 cfg->caps |= pause_mask; 1629 1630 return 0; 1631 } 1632 1633 /** 1634 * ixgbe_setup_fc_e610 - Set up flow control 1635 * @hw: pointer to hardware structure 1636 * 1637 * Set up flow control. This has to be done during init time. 1638 * 1639 * Return: the exit code of the operation. 1640 */ 1641 int ixgbe_setup_fc_e610(struct ixgbe_hw *hw) 1642 { 1643 struct ixgbe_aci_cmd_get_phy_caps_data pcaps = {}; 1644 struct ixgbe_aci_cmd_set_phy_cfg_data cfg = {}; 1645 int err; 1646 1647 /* Get the current PHY config */ 1648 err = ixgbe_aci_get_phy_caps(hw, false, 1649 IXGBE_ACI_REPORT_ACTIVE_CFG, &pcaps); 1650 if (err) 1651 return err; 1652 1653 ixgbe_copy_phy_caps_to_cfg(&pcaps, &cfg); 1654 1655 /* Configure the set PHY data */ 1656 err = ixgbe_cfg_phy_fc(hw, &cfg, hw->fc.requested_mode); 1657 if (err) 1658 return err; 1659 1660 /* If the capabilities have changed, then set the new config */ 1661 if (cfg.caps != pcaps.caps) { 1662 cfg.caps |= IXGBE_ACI_PHY_ENA_AUTO_LINK_UPDT; 1663 1664 err = ixgbe_aci_set_phy_cfg(hw, &cfg); 1665 if (err) 1666 return err; 1667 } 1668 1669 return err; 1670 } 1671 1672 /** 1673 * ixgbe_fc_autoneg_e610 - Configure flow control 1674 * @hw: pointer to hardware structure 1675 * 1676 * Configure Flow Control. 1677 */ 1678 void ixgbe_fc_autoneg_e610(struct ixgbe_hw *hw) 1679 { 1680 int err; 1681 1682 /* Get current link err. 1683 * Current FC mode will be stored in the hw context. 1684 */ 1685 err = ixgbe_aci_get_link_info(hw, false, NULL); 1686 if (err) 1687 goto no_autoneg; 1688 1689 /* Check if the link is up */ 1690 if (!(hw->link.link_info.link_info & IXGBE_ACI_LINK_UP)) 1691 goto no_autoneg; 1692 1693 /* Check if auto-negotiation has completed */ 1694 if (!(hw->link.link_info.an_info & IXGBE_ACI_AN_COMPLETED)) 1695 goto no_autoneg; 1696 1697 hw->fc.fc_was_autonegged = true; 1698 return; 1699 1700 no_autoneg: 1701 hw->fc.fc_was_autonegged = false; 1702 hw->fc.current_mode = hw->fc.requested_mode; 1703 } 1704 1705 /** 1706 * ixgbe_disable_rx_e610 - Disable RX unit 1707 * @hw: pointer to hardware structure 1708 * 1709 * Disable RX DMA unit on E610 with use of ACI command (0x000C). 1710 * 1711 * Return: the exit code of the operation. 1712 */ 1713 void ixgbe_disable_rx_e610(struct ixgbe_hw *hw) 1714 { 1715 u32 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL); 1716 u32 pfdtxgswc; 1717 int err; 1718 1719 if (!(rxctrl & IXGBE_RXCTRL_RXEN)) 1720 return; 1721 1722 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC); 1723 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) { 1724 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN; 1725 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc); 1726 hw->mac.set_lben = true; 1727 } else { 1728 hw->mac.set_lben = false; 1729 } 1730 1731 err = ixgbe_aci_disable_rxen(hw); 1732 1733 /* If we fail - disable RX using register write */ 1734 if (err) { 1735 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL); 1736 if (rxctrl & IXGBE_RXCTRL_RXEN) { 1737 rxctrl &= ~IXGBE_RXCTRL_RXEN; 1738 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl); 1739 } 1740 } 1741 } 1742 1743 /** 1744 * ixgbe_init_phy_ops_e610 - PHY specific init 1745 * @hw: pointer to hardware structure 1746 * 1747 * Initialize any function pointers that were not able to be 1748 * set during init_shared_code because the PHY type was not known. 1749 * 1750 * Return: the exit code of the operation. 1751 */ 1752 int ixgbe_init_phy_ops_e610(struct ixgbe_hw *hw) 1753 { 1754 struct ixgbe_mac_info *mac = &hw->mac; 1755 struct ixgbe_phy_info *phy = &hw->phy; 1756 1757 if (mac->ops.get_media_type(hw) == ixgbe_media_type_copper) 1758 phy->ops.set_phy_power = ixgbe_set_phy_power_e610; 1759 else 1760 phy->ops.set_phy_power = NULL; 1761 1762 /* Identify the PHY */ 1763 return phy->ops.identify(hw); 1764 } 1765 1766 /** 1767 * ixgbe_identify_phy_e610 - Identify PHY 1768 * @hw: pointer to hardware structure 1769 * 1770 * Determine PHY type, supported speeds and PHY ID. 1771 * 1772 * Return: the exit code of the operation. 1773 */ 1774 int ixgbe_identify_phy_e610(struct ixgbe_hw *hw) 1775 { 1776 struct ixgbe_aci_cmd_get_phy_caps_data pcaps; 1777 u64 phy_type_low, phy_type_high; 1778 int err; 1779 1780 /* Set PHY type */ 1781 hw->phy.type = ixgbe_phy_fw; 1782 1783 err = ixgbe_aci_get_phy_caps(hw, false, 1784 IXGBE_ACI_REPORT_TOPO_CAP_MEDIA, &pcaps); 1785 if (err) 1786 return err; 1787 1788 if (!(pcaps.module_compliance_enforcement & 1789 IXGBE_ACI_MOD_ENFORCE_STRICT_MODE)) { 1790 /* Handle lenient mode */ 1791 err = ixgbe_aci_get_phy_caps(hw, false, 1792 IXGBE_ACI_REPORT_TOPO_CAP_NO_MEDIA, 1793 &pcaps); 1794 if (err) 1795 return err; 1796 } 1797 1798 /* Determine supported speeds */ 1799 hw->phy.speeds_supported = IXGBE_LINK_SPEED_UNKNOWN; 1800 phy_type_high = le64_to_cpu(pcaps.phy_type_high); 1801 phy_type_low = le64_to_cpu(pcaps.phy_type_low); 1802 1803 if (phy_type_high & IXGBE_PHY_TYPE_HIGH_10BASE_T || 1804 phy_type_high & IXGBE_PHY_TYPE_HIGH_10M_SGMII) 1805 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10_FULL; 1806 if (phy_type_low & IXGBE_PHY_TYPE_LOW_100BASE_TX || 1807 phy_type_low & IXGBE_PHY_TYPE_LOW_100M_SGMII || 1808 phy_type_high & IXGBE_PHY_TYPE_HIGH_100M_USXGMII) 1809 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL; 1810 if (phy_type_low & IXGBE_PHY_TYPE_LOW_1000BASE_T || 1811 phy_type_low & IXGBE_PHY_TYPE_LOW_1000BASE_SX || 1812 phy_type_low & IXGBE_PHY_TYPE_LOW_1000BASE_LX || 1813 phy_type_low & IXGBE_PHY_TYPE_LOW_1000BASE_KX || 1814 phy_type_low & IXGBE_PHY_TYPE_LOW_1G_SGMII || 1815 phy_type_high & IXGBE_PHY_TYPE_HIGH_1G_USXGMII) 1816 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL; 1817 if (phy_type_low & IXGBE_PHY_TYPE_LOW_10GBASE_T || 1818 phy_type_low & IXGBE_PHY_TYPE_LOW_10G_SFI_DA || 1819 phy_type_low & IXGBE_PHY_TYPE_LOW_10GBASE_SR || 1820 phy_type_low & IXGBE_PHY_TYPE_LOW_10GBASE_LR || 1821 phy_type_low & IXGBE_PHY_TYPE_LOW_10GBASE_KR_CR1 || 1822 phy_type_low & IXGBE_PHY_TYPE_LOW_10G_SFI_AOC_ACC || 1823 phy_type_low & IXGBE_PHY_TYPE_LOW_10G_SFI_C2C || 1824 phy_type_high & IXGBE_PHY_TYPE_HIGH_10G_USXGMII) 1825 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL; 1826 1827 /* 2.5 and 5 Gbps link speeds must be excluded from the 1828 * auto-negotiation set used during driver initialization due to 1829 * compatibility issues with certain switches. Those issues do not 1830 * exist in case of E610 2.5G SKU device (0x57b1). 1831 */ 1832 if (!hw->phy.autoneg_advertised && 1833 hw->device_id != IXGBE_DEV_ID_E610_2_5G_T) 1834 hw->phy.autoneg_advertised = hw->phy.speeds_supported; 1835 1836 if (phy_type_low & IXGBE_PHY_TYPE_LOW_2500BASE_T || 1837 phy_type_low & IXGBE_PHY_TYPE_LOW_2500BASE_X || 1838 phy_type_low & IXGBE_PHY_TYPE_LOW_2500BASE_KX || 1839 phy_type_high & IXGBE_PHY_TYPE_HIGH_2500M_SGMII || 1840 phy_type_high & IXGBE_PHY_TYPE_HIGH_2500M_USXGMII) 1841 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL; 1842 1843 if (!hw->phy.autoneg_advertised && 1844 hw->device_id == IXGBE_DEV_ID_E610_2_5G_T) 1845 hw->phy.autoneg_advertised = hw->phy.speeds_supported; 1846 1847 if (phy_type_low & IXGBE_PHY_TYPE_LOW_5GBASE_T || 1848 phy_type_low & IXGBE_PHY_TYPE_LOW_5GBASE_KR || 1849 phy_type_high & IXGBE_PHY_TYPE_HIGH_5G_USXGMII) 1850 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL; 1851 1852 /* Set PHY ID */ 1853 memcpy(&hw->phy.id, pcaps.phy_id_oui, sizeof(u32)); 1854 1855 hw->phy.eee_speeds_supported = IXGBE_LINK_SPEED_10_FULL | 1856 IXGBE_LINK_SPEED_100_FULL | 1857 IXGBE_LINK_SPEED_1GB_FULL; 1858 hw->phy.eee_speeds_advertised = hw->phy.eee_speeds_supported; 1859 1860 return 0; 1861 } 1862 1863 /** 1864 * ixgbe_identify_module_e610 - Identify SFP module type 1865 * @hw: pointer to hardware structure 1866 * 1867 * Identify the SFP module type. 1868 * 1869 * Return: the exit code of the operation. 1870 */ 1871 int ixgbe_identify_module_e610(struct ixgbe_hw *hw) 1872 { 1873 bool media_available; 1874 u8 module_type; 1875 int err; 1876 1877 err = ixgbe_update_link_info(hw); 1878 if (err) 1879 return err; 1880 1881 media_available = 1882 (hw->link.link_info.link_info & IXGBE_ACI_MEDIA_AVAILABLE); 1883 1884 if (media_available) { 1885 hw->phy.sfp_type = ixgbe_sfp_type_unknown; 1886 1887 /* Get module type from hw context updated by 1888 * ixgbe_update_link_info() 1889 */ 1890 module_type = hw->link.link_info.module_type[IXGBE_ACI_MOD_TYPE_IDENT]; 1891 1892 if ((module_type & IXGBE_ACI_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE) || 1893 (module_type & IXGBE_ACI_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE)) { 1894 hw->phy.sfp_type = ixgbe_sfp_type_da_cu; 1895 } else if (module_type & IXGBE_ACI_MOD_TYPE_BYTE1_10G_BASE_SR) { 1896 hw->phy.sfp_type = ixgbe_sfp_type_sr; 1897 } else if ((module_type & IXGBE_ACI_MOD_TYPE_BYTE1_10G_BASE_LR) || 1898 (module_type & IXGBE_ACI_MOD_TYPE_BYTE1_10G_BASE_LRM)) { 1899 hw->phy.sfp_type = ixgbe_sfp_type_lr; 1900 } 1901 } else { 1902 hw->phy.sfp_type = ixgbe_sfp_type_not_present; 1903 return -ENOENT; 1904 } 1905 1906 return 0; 1907 } 1908 1909 /** 1910 * ixgbe_setup_phy_link_e610 - Sets up firmware-controlled PHYs 1911 * @hw: pointer to hardware structure 1912 * 1913 * Set the parameters for the firmware-controlled PHYs. 1914 * 1915 * Return: the exit code of the operation. 1916 */ 1917 int ixgbe_setup_phy_link_e610(struct ixgbe_hw *hw) 1918 { 1919 struct ixgbe_aci_cmd_get_phy_caps_data pcaps; 1920 struct ixgbe_aci_cmd_set_phy_cfg_data pcfg; 1921 u8 rmode = IXGBE_ACI_REPORT_TOPO_CAP_MEDIA; 1922 u64 sup_phy_type_low, sup_phy_type_high; 1923 u64 phy_type_low = 0, phy_type_high = 0; 1924 int err; 1925 1926 err = ixgbe_aci_get_link_info(hw, false, NULL); 1927 if (err) 1928 return err; 1929 1930 /* If media is not available get default config. */ 1931 if (!(hw->link.link_info.link_info & IXGBE_ACI_MEDIA_AVAILABLE)) 1932 rmode = IXGBE_ACI_REPORT_DFLT_CFG; 1933 1934 err = ixgbe_aci_get_phy_caps(hw, false, rmode, &pcaps); 1935 if (err) 1936 return err; 1937 1938 sup_phy_type_low = le64_to_cpu(pcaps.phy_type_low); 1939 sup_phy_type_high = le64_to_cpu(pcaps.phy_type_high); 1940 1941 /* Get Active configuration to avoid unintended changes. */ 1942 err = ixgbe_aci_get_phy_caps(hw, false, IXGBE_ACI_REPORT_ACTIVE_CFG, 1943 &pcaps); 1944 if (err) 1945 return err; 1946 1947 ixgbe_copy_phy_caps_to_cfg(&pcaps, &pcfg); 1948 1949 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10_FULL) { 1950 phy_type_high |= IXGBE_PHY_TYPE_HIGH_10BASE_T; 1951 phy_type_high |= IXGBE_PHY_TYPE_HIGH_10M_SGMII; 1952 } 1953 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) { 1954 phy_type_low |= IXGBE_PHY_TYPE_LOW_100BASE_TX; 1955 phy_type_low |= IXGBE_PHY_TYPE_LOW_100M_SGMII; 1956 phy_type_high |= IXGBE_PHY_TYPE_HIGH_100M_USXGMII; 1957 } 1958 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) { 1959 phy_type_low |= IXGBE_PHY_TYPE_LOW_1000BASE_T; 1960 phy_type_low |= IXGBE_PHY_TYPE_LOW_1000BASE_SX; 1961 phy_type_low |= IXGBE_PHY_TYPE_LOW_1000BASE_LX; 1962 phy_type_low |= IXGBE_PHY_TYPE_LOW_1000BASE_KX; 1963 phy_type_low |= IXGBE_PHY_TYPE_LOW_1G_SGMII; 1964 phy_type_high |= IXGBE_PHY_TYPE_HIGH_1G_USXGMII; 1965 } 1966 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_2_5GB_FULL) { 1967 phy_type_low |= IXGBE_PHY_TYPE_LOW_2500BASE_T; 1968 phy_type_low |= IXGBE_PHY_TYPE_LOW_2500BASE_X; 1969 phy_type_low |= IXGBE_PHY_TYPE_LOW_2500BASE_KX; 1970 phy_type_high |= IXGBE_PHY_TYPE_HIGH_2500M_SGMII; 1971 phy_type_high |= IXGBE_PHY_TYPE_HIGH_2500M_USXGMII; 1972 } 1973 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) { 1974 phy_type_low |= IXGBE_PHY_TYPE_LOW_5GBASE_T; 1975 phy_type_low |= IXGBE_PHY_TYPE_LOW_5GBASE_KR; 1976 phy_type_high |= IXGBE_PHY_TYPE_HIGH_5G_USXGMII; 1977 } 1978 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) { 1979 phy_type_low |= IXGBE_PHY_TYPE_LOW_10GBASE_T; 1980 phy_type_low |= IXGBE_PHY_TYPE_LOW_10G_SFI_DA; 1981 phy_type_low |= IXGBE_PHY_TYPE_LOW_10GBASE_SR; 1982 phy_type_low |= IXGBE_PHY_TYPE_LOW_10GBASE_LR; 1983 phy_type_low |= IXGBE_PHY_TYPE_LOW_10GBASE_KR_CR1; 1984 phy_type_low |= IXGBE_PHY_TYPE_LOW_10G_SFI_AOC_ACC; 1985 phy_type_low |= IXGBE_PHY_TYPE_LOW_10G_SFI_C2C; 1986 phy_type_high |= IXGBE_PHY_TYPE_HIGH_10G_USXGMII; 1987 } 1988 1989 /* Mask the set values to avoid requesting unsupported link types. */ 1990 phy_type_low &= sup_phy_type_low; 1991 pcfg.phy_type_low = cpu_to_le64(phy_type_low); 1992 phy_type_high &= sup_phy_type_high; 1993 pcfg.phy_type_high = cpu_to_le64(phy_type_high); 1994 1995 if (pcfg.phy_type_high != pcaps.phy_type_high || 1996 pcfg.phy_type_low != pcaps.phy_type_low || 1997 pcfg.caps != pcaps.caps) { 1998 pcfg.caps |= IXGBE_ACI_PHY_ENA_LINK; 1999 pcfg.caps |= IXGBE_ACI_PHY_ENA_AUTO_LINK_UPDT; 2000 2001 err = ixgbe_aci_set_phy_cfg(hw, &pcfg); 2002 if (err) 2003 return err; 2004 } 2005 2006 return 0; 2007 } 2008 2009 /** 2010 * ixgbe_set_phy_power_e610 - Control power for copper PHY 2011 * @hw: pointer to hardware structure 2012 * @on: true for on, false for off 2013 * 2014 * Set the power on/off of the PHY 2015 * by getting its capabilities and setting the appropriate 2016 * configuration parameters. 2017 * 2018 * Return: the exit code of the operation. 2019 */ 2020 int ixgbe_set_phy_power_e610(struct ixgbe_hw *hw, bool on) 2021 { 2022 struct ixgbe_aci_cmd_get_phy_caps_data phy_caps = {}; 2023 struct ixgbe_aci_cmd_set_phy_cfg_data phy_cfg = {}; 2024 int err; 2025 2026 err = ixgbe_aci_get_phy_caps(hw, false, 2027 IXGBE_ACI_REPORT_ACTIVE_CFG, 2028 &phy_caps); 2029 if (err) 2030 return err; 2031 2032 ixgbe_copy_phy_caps_to_cfg(&phy_caps, &phy_cfg); 2033 2034 if (on) 2035 phy_cfg.caps &= ~IXGBE_ACI_PHY_ENA_LOW_POWER; 2036 else 2037 phy_cfg.caps |= IXGBE_ACI_PHY_ENA_LOW_POWER; 2038 2039 /* PHY is already in requested power mode. */ 2040 if (phy_caps.caps == phy_cfg.caps) 2041 return 0; 2042 2043 phy_cfg.caps |= IXGBE_ACI_PHY_ENA_LINK; 2044 phy_cfg.caps |= IXGBE_ACI_PHY_ENA_AUTO_LINK_UPDT; 2045 2046 return ixgbe_aci_set_phy_cfg(hw, &phy_cfg); 2047 } 2048 2049 /** 2050 * ixgbe_enter_lplu_e610 - Transition to low power states 2051 * @hw: pointer to hardware structure 2052 * 2053 * Configures Low Power Link Up on transition to low power states 2054 * (from D0 to non-D0). Link is required to enter LPLU so avoid resetting the 2055 * X557 PHY immediately prior to entering LPLU. 2056 * 2057 * Return: the exit code of the operation. 2058 */ 2059 int ixgbe_enter_lplu_e610(struct ixgbe_hw *hw) 2060 { 2061 struct ixgbe_aci_cmd_get_phy_caps_data phy_caps = {}; 2062 struct ixgbe_aci_cmd_set_phy_cfg_data phy_cfg = {}; 2063 int err; 2064 2065 err = ixgbe_aci_get_phy_caps(hw, false, 2066 IXGBE_ACI_REPORT_ACTIVE_CFG, 2067 &phy_caps); 2068 if (err) 2069 return err; 2070 2071 ixgbe_copy_phy_caps_to_cfg(&phy_caps, &phy_cfg); 2072 2073 phy_cfg.low_power_ctrl_an |= IXGBE_ACI_PHY_EN_D3COLD_LOW_POWER_AUTONEG; 2074 2075 return ixgbe_aci_set_phy_cfg(hw, &phy_cfg); 2076 } 2077 2078 /** 2079 * ixgbe_init_eeprom_params_e610 - Initialize EEPROM params 2080 * @hw: pointer to hardware structure 2081 * 2082 * Initialize the EEPROM parameters ixgbe_eeprom_info within the ixgbe_hw 2083 * struct in order to set up EEPROM access. 2084 * 2085 * Return: the operation exit code. 2086 */ 2087 int ixgbe_init_eeprom_params_e610(struct ixgbe_hw *hw) 2088 { 2089 struct ixgbe_eeprom_info *eeprom = &hw->eeprom; 2090 u32 gens_stat; 2091 u8 sr_size; 2092 2093 if (eeprom->type != ixgbe_eeprom_uninitialized) 2094 return 0; 2095 2096 eeprom->type = ixgbe_flash; 2097 2098 gens_stat = IXGBE_READ_REG(hw, GLNVM_GENS); 2099 sr_size = FIELD_GET(GLNVM_GENS_SR_SIZE_M, gens_stat); 2100 2101 /* Switching to words (sr_size contains power of 2). */ 2102 eeprom->word_size = BIT(sr_size) * IXGBE_SR_WORDS_IN_1KB; 2103 2104 hw_dbg(hw, "Eeprom params: type = %d, size = %d\n", eeprom->type, 2105 eeprom->word_size); 2106 2107 return 0; 2108 } 2109 2110 /** 2111 * ixgbe_aci_get_netlist_node - get a node handle 2112 * @hw: pointer to the hw struct 2113 * @cmd: get_link_topo AQ structure 2114 * @node_part_number: output node part number if node found 2115 * @node_handle: output node handle parameter if node found 2116 * 2117 * Get the netlist node and assigns it to 2118 * the provided handle using ACI command (0x06E0). 2119 * 2120 * Return: the exit code of the operation. 2121 */ 2122 int ixgbe_aci_get_netlist_node(struct ixgbe_hw *hw, 2123 struct ixgbe_aci_cmd_get_link_topo *cmd, 2124 u8 *node_part_number, u16 *node_handle) 2125 { 2126 struct ixgbe_aci_desc desc; 2127 2128 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_get_link_topo); 2129 desc.params.get_link_topo = *cmd; 2130 2131 if (ixgbe_aci_send_cmd(hw, &desc, NULL, 0)) 2132 return -EOPNOTSUPP; 2133 2134 if (node_handle) 2135 *node_handle = 2136 le16_to_cpu(desc.params.get_link_topo.addr.handle); 2137 if (node_part_number) 2138 *node_part_number = desc.params.get_link_topo.node_part_num; 2139 2140 return 0; 2141 } 2142 2143 /** 2144 * ixgbe_acquire_nvm - Generic request for acquiring the NVM ownership 2145 * @hw: pointer to the HW structure 2146 * @access: NVM access type (read or write) 2147 * 2148 * Request NVM ownership. 2149 * 2150 * Return: the exit code of the operation. 2151 */ 2152 int ixgbe_acquire_nvm(struct ixgbe_hw *hw, 2153 enum ixgbe_aci_res_access_type access) 2154 { 2155 u32 fla; 2156 2157 /* Skip if we are in blank NVM programming mode */ 2158 fla = IXGBE_READ_REG(hw, IXGBE_GLNVM_FLA); 2159 if ((fla & IXGBE_GLNVM_FLA_LOCKED_M) == 0) 2160 return 0; 2161 2162 return ixgbe_acquire_res(hw, IXGBE_NVM_RES_ID, access, 2163 IXGBE_NVM_TIMEOUT); 2164 } 2165 2166 /** 2167 * ixgbe_release_nvm - Generic request for releasing the NVM ownership 2168 * @hw: pointer to the HW structure 2169 * 2170 * Release NVM ownership. 2171 */ 2172 void ixgbe_release_nvm(struct ixgbe_hw *hw) 2173 { 2174 u32 fla; 2175 2176 /* Skip if we are in blank NVM programming mode */ 2177 fla = IXGBE_READ_REG(hw, IXGBE_GLNVM_FLA); 2178 if ((fla & IXGBE_GLNVM_FLA_LOCKED_M) == 0) 2179 return; 2180 2181 ixgbe_release_res(hw, IXGBE_NVM_RES_ID); 2182 } 2183 2184 /** 2185 * ixgbe_aci_read_nvm - read NVM 2186 * @hw: pointer to the HW struct 2187 * @module_typeid: module pointer location in words from the NVM beginning 2188 * @offset: byte offset from the module beginning 2189 * @length: length of the section to be read (in bytes from the offset) 2190 * @data: command buffer (size [bytes] = length) 2191 * @last_command: tells if this is the last command in a series 2192 * @read_shadow_ram: tell if this is a shadow RAM read 2193 * 2194 * Read the NVM using ACI command (0x0701). 2195 * 2196 * Return: the exit code of the operation. 2197 */ 2198 int ixgbe_aci_read_nvm(struct ixgbe_hw *hw, u16 module_typeid, u32 offset, 2199 u16 length, void *data, bool last_command, 2200 bool read_shadow_ram) 2201 { 2202 struct ixgbe_aci_cmd_nvm *cmd; 2203 struct ixgbe_aci_desc desc; 2204 2205 if (offset > IXGBE_ACI_NVM_MAX_OFFSET) 2206 return -EINVAL; 2207 2208 cmd = &desc.params.nvm; 2209 2210 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_read); 2211 2212 if (!read_shadow_ram && module_typeid == IXGBE_ACI_NVM_START_POINT) 2213 cmd->cmd_flags |= IXGBE_ACI_NVM_FLASH_ONLY; 2214 2215 /* If this is the last command in a series, set the proper flag. */ 2216 if (last_command) 2217 cmd->cmd_flags |= IXGBE_ACI_NVM_LAST_CMD; 2218 cmd->module_typeid = cpu_to_le16(module_typeid); 2219 cmd->offset_low = cpu_to_le16(offset & 0xFFFF); 2220 cmd->offset_high = (offset >> 16) & 0xFF; 2221 cmd->length = cpu_to_le16(length); 2222 2223 return ixgbe_aci_send_cmd(hw, &desc, data, length); 2224 } 2225 2226 /** 2227 * ixgbe_nvm_validate_checksum - validate checksum 2228 * @hw: pointer to the HW struct 2229 * 2230 * Verify NVM PFA checksum validity using ACI command (0x0706). 2231 * If the checksum verification failed, IXGBE_ERR_NVM_CHECKSUM is returned. 2232 * The function acquires and then releases the NVM ownership. 2233 * 2234 * Return: the exit code of the operation. 2235 */ 2236 int ixgbe_nvm_validate_checksum(struct ixgbe_hw *hw) 2237 { 2238 struct ixgbe_aci_cmd_nvm_checksum *cmd; 2239 struct ixgbe_aci_desc desc; 2240 int err; 2241 2242 err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ); 2243 if (err) 2244 return err; 2245 2246 cmd = &desc.params.nvm_checksum; 2247 2248 ixgbe_fill_dflt_direct_cmd_desc(&desc, ixgbe_aci_opc_nvm_checksum); 2249 cmd->flags = IXGBE_ACI_NVM_CHECKSUM_VERIFY; 2250 2251 err = ixgbe_aci_send_cmd(hw, &desc, NULL, 0); 2252 2253 ixgbe_release_nvm(hw); 2254 2255 if (!err && cmd->checksum != 2256 cpu_to_le16(IXGBE_ACI_NVM_CHECKSUM_CORRECT)) { 2257 struct ixgbe_adapter *adapter = container_of(hw, struct ixgbe_adapter, 2258 hw); 2259 2260 err = -EIO; 2261 netdev_err(adapter->netdev, "Invalid Shadow Ram checksum"); 2262 } 2263 2264 return err; 2265 } 2266 2267 /** 2268 * ixgbe_read_sr_word_aci - Reads Shadow RAM via ACI 2269 * @hw: pointer to the HW structure 2270 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF) 2271 * @data: word read from the Shadow RAM 2272 * 2273 * Reads one 16 bit word from the Shadow RAM using ixgbe_read_flat_nvm. 2274 * 2275 * Return: the exit code of the operation. 2276 */ 2277 int ixgbe_read_sr_word_aci(struct ixgbe_hw *hw, u16 offset, u16 *data) 2278 { 2279 u32 bytes = sizeof(u16); 2280 u16 data_local; 2281 int err; 2282 2283 err = ixgbe_read_flat_nvm(hw, offset * sizeof(u16), &bytes, 2284 (u8 *)&data_local, true); 2285 if (err) 2286 return err; 2287 2288 *data = data_local; 2289 return 0; 2290 } 2291 2292 /** 2293 * ixgbe_read_flat_nvm - Read portion of NVM by flat offset 2294 * @hw: pointer to the HW struct 2295 * @offset: offset from beginning of NVM 2296 * @length: (in) number of bytes to read; (out) number of bytes actually read 2297 * @data: buffer to return data in (sized to fit the specified length) 2298 * @read_shadow_ram: if true, read from shadow RAM instead of NVM 2299 * 2300 * Reads a portion of the NVM, as a flat memory space. This function correctly 2301 * breaks read requests across Shadow RAM sectors, prevents Shadow RAM size 2302 * from being exceeded in case of Shadow RAM read requests and ensures that no 2303 * single read request exceeds the maximum 4KB read for a single admin command. 2304 * 2305 * Returns an error code on failure. Note that the data pointer may be 2306 * partially updated if some reads succeed before a failure. 2307 * 2308 * Return: the exit code of the operation. 2309 */ 2310 int ixgbe_read_flat_nvm(struct ixgbe_hw *hw, u32 offset, u32 *length, 2311 u8 *data, bool read_shadow_ram) 2312 { 2313 u32 inlen = *length; 2314 u32 bytes_read = 0; 2315 bool last_cmd; 2316 int err; 2317 2318 /* Verify the length of the read if this is for the Shadow RAM */ 2319 if (read_shadow_ram && ((offset + inlen) > 2320 (hw->eeprom.word_size * 2u))) 2321 return -EINVAL; 2322 2323 do { 2324 u32 read_size, sector_offset; 2325 2326 /* ixgbe_aci_read_nvm cannot read more than 4KB at a time. 2327 * Additionally, a read from the Shadow RAM may not cross over 2328 * a sector boundary. Conveniently, the sector size is also 4KB. 2329 */ 2330 sector_offset = offset % IXGBE_ACI_MAX_BUFFER_SIZE; 2331 read_size = min_t(u32, 2332 IXGBE_ACI_MAX_BUFFER_SIZE - sector_offset, 2333 inlen - bytes_read); 2334 2335 last_cmd = !(bytes_read + read_size < inlen); 2336 2337 /* ixgbe_aci_read_nvm takes the length as a u16. Our read_size 2338 * is calculated using a u32, but the IXGBE_ACI_MAX_BUFFER_SIZE 2339 * maximum size guarantees that it will fit within the 2 bytes. 2340 */ 2341 err = ixgbe_aci_read_nvm(hw, IXGBE_ACI_NVM_START_POINT, 2342 offset, (u16)read_size, 2343 data + bytes_read, last_cmd, 2344 read_shadow_ram); 2345 if (err) 2346 break; 2347 2348 bytes_read += read_size; 2349 offset += read_size; 2350 } while (!last_cmd); 2351 2352 *length = bytes_read; 2353 return err; 2354 } 2355 2356 /** 2357 * ixgbe_read_sr_buf_aci - Read Shadow RAM buffer via ACI 2358 * @hw: pointer to the HW structure 2359 * @offset: offset of the Shadow RAM words to read (0x000000 - 0x001FFF) 2360 * @words: (in) number of words to read; (out) number of words actually read 2361 * @data: words read from the Shadow RAM 2362 * 2363 * Read 16 bit words (data buf) from the Shadow RAM. Acquire/release the NVM 2364 * ownership. 2365 * 2366 * Return: the operation exit code. 2367 */ 2368 int ixgbe_read_sr_buf_aci(struct ixgbe_hw *hw, u16 offset, u16 *words, 2369 u16 *data) 2370 { 2371 u32 bytes = *words * 2; 2372 int err; 2373 2374 err = ixgbe_read_flat_nvm(hw, offset * 2, &bytes, (u8 *)data, true); 2375 if (err) 2376 return err; 2377 2378 *words = bytes / 2; 2379 2380 for (int i = 0; i < *words; i++) 2381 data[i] = le16_to_cpu(((__le16 *)data)[i]); 2382 2383 return 0; 2384 } 2385 2386 /** 2387 * ixgbe_read_ee_aci_e610 - Read EEPROM word using the admin command. 2388 * @hw: pointer to hardware structure 2389 * @offset: offset of word in the EEPROM to read 2390 * @data: word read from the EEPROM 2391 * 2392 * Reads a 16 bit word from the EEPROM using the ACI. 2393 * If the EEPROM params are not initialized, the function 2394 * initialize them before proceeding with reading. 2395 * The function acquires and then releases the NVM ownership. 2396 * 2397 * Return: the exit code of the operation. 2398 */ 2399 int ixgbe_read_ee_aci_e610(struct ixgbe_hw *hw, u16 offset, u16 *data) 2400 { 2401 int err; 2402 2403 if (hw->eeprom.type == ixgbe_eeprom_uninitialized) { 2404 err = hw->eeprom.ops.init_params(hw); 2405 if (err) 2406 return err; 2407 } 2408 2409 err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ); 2410 if (err) 2411 return err; 2412 2413 err = ixgbe_read_sr_word_aci(hw, offset, data); 2414 ixgbe_release_nvm(hw); 2415 2416 return err; 2417 } 2418 2419 /** 2420 * ixgbe_read_ee_aci_buffer_e610 - Read EEPROM words via ACI 2421 * @hw: pointer to hardware structure 2422 * @offset: offset of words in the EEPROM to read 2423 * @words: number of words to read 2424 * @data: words to read from the EEPROM 2425 * 2426 * Read 16 bit words from the EEPROM via the ACI. Initialize the EEPROM params 2427 * prior to the read. Acquire/release the NVM ownership. 2428 * 2429 * Return: the operation exit code. 2430 */ 2431 int ixgbe_read_ee_aci_buffer_e610(struct ixgbe_hw *hw, u16 offset, 2432 u16 words, u16 *data) 2433 { 2434 int err; 2435 2436 if (hw->eeprom.type == ixgbe_eeprom_uninitialized) { 2437 err = hw->eeprom.ops.init_params(hw); 2438 if (err) 2439 return err; 2440 } 2441 2442 err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ); 2443 if (err) 2444 return err; 2445 2446 err = ixgbe_read_sr_buf_aci(hw, offset, &words, data); 2447 ixgbe_release_nvm(hw); 2448 2449 return err; 2450 } 2451 2452 /** 2453 * ixgbe_validate_eeprom_checksum_e610 - Validate EEPROM checksum 2454 * @hw: pointer to hardware structure 2455 * @checksum_val: calculated checksum 2456 * 2457 * Performs checksum calculation and validates the EEPROM checksum. If the 2458 * caller does not need checksum_val, the value can be NULL. 2459 * If the EEPROM params are not initialized, the function 2460 * initialize them before proceeding. 2461 * The function acquires and then releases the NVM ownership. 2462 * 2463 * Return: the exit code of the operation. 2464 */ 2465 int ixgbe_validate_eeprom_checksum_e610(struct ixgbe_hw *hw, u16 *checksum_val) 2466 { 2467 int err; 2468 2469 if (hw->eeprom.type == ixgbe_eeprom_uninitialized) { 2470 err = hw->eeprom.ops.init_params(hw); 2471 if (err) 2472 return err; 2473 } 2474 2475 err = ixgbe_nvm_validate_checksum(hw); 2476 if (err) 2477 return err; 2478 2479 if (checksum_val) { 2480 u16 tmp_checksum; 2481 2482 err = ixgbe_acquire_nvm(hw, IXGBE_RES_READ); 2483 if (err) 2484 return err; 2485 2486 err = ixgbe_read_sr_word_aci(hw, E610_SR_SW_CHECKSUM_WORD, 2487 &tmp_checksum); 2488 ixgbe_release_nvm(hw); 2489 2490 if (!err) 2491 *checksum_val = tmp_checksum; 2492 } 2493 2494 return err; 2495 } 2496 2497 /** 2498 * ixgbe_reset_hw_e610 - Perform hardware reset 2499 * @hw: pointer to hardware structure 2500 * 2501 * Resets the hardware by resetting the transmit and receive units, masks 2502 * and clears all interrupts, and performs a reset. 2503 * 2504 * Return: the exit code of the operation. 2505 */ 2506 int ixgbe_reset_hw_e610(struct ixgbe_hw *hw) 2507 { 2508 u32 swfw_mask = hw->phy.phy_semaphore_mask; 2509 u32 ctrl, i; 2510 int err; 2511 2512 /* Call adapter stop to disable tx/rx and clear interrupts */ 2513 err = hw->mac.ops.stop_adapter(hw); 2514 if (err) 2515 goto reset_hw_out; 2516 2517 /* Flush pending Tx transactions. */ 2518 ixgbe_clear_tx_pending(hw); 2519 2520 hw->phy.ops.init(hw); 2521 mac_reset_top: 2522 err = hw->mac.ops.acquire_swfw_sync(hw, swfw_mask); 2523 if (err) 2524 return -EBUSY; 2525 ctrl = IXGBE_CTRL_RST; 2526 ctrl |= IXGBE_READ_REG(hw, IXGBE_CTRL); 2527 IXGBE_WRITE_REG(hw, IXGBE_CTRL, ctrl); 2528 IXGBE_WRITE_FLUSH(hw); 2529 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 2530 2531 /* Poll for reset bit to self-clear indicating reset is complete */ 2532 for (i = 0; i < 10; i++) { 2533 udelay(1); 2534 ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL); 2535 if (!(ctrl & IXGBE_CTRL_RST_MASK)) 2536 break; 2537 } 2538 2539 if (ctrl & IXGBE_CTRL_RST_MASK) { 2540 struct ixgbe_adapter *adapter = container_of(hw, struct ixgbe_adapter, 2541 hw); 2542 2543 err = -EIO; 2544 netdev_err(adapter->netdev, "Reset polling failed to complete."); 2545 } 2546 2547 /* Double resets are required for recovery from certain error 2548 * conditions. Between resets, it is necessary to stall to allow time 2549 * for any pending HW events to complete. 2550 */ 2551 msleep(100); 2552 if (hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED) { 2553 hw->mac.flags &= ~IXGBE_FLAGS_DOUBLE_RESET_REQUIRED; 2554 goto mac_reset_top; 2555 } 2556 2557 /* Set the Rx packet buffer size. */ 2558 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(0), GENMASK(18, 17)); 2559 2560 /* Store the permanent mac address */ 2561 hw->mac.ops.get_mac_addr(hw, hw->mac.perm_addr); 2562 2563 /* Maximum number of Receive Address Registers. */ 2564 #define IXGBE_MAX_NUM_RAR 128 2565 2566 /* Store MAC address from RAR0, clear receive address registers, and 2567 * clear the multicast table. Also reset num_rar_entries to the 2568 * maximum number of Receive Address Registers, since we modify this 2569 * value when programming the SAN MAC address. 2570 */ 2571 hw->mac.num_rar_entries = IXGBE_MAX_NUM_RAR; 2572 hw->mac.ops.init_rx_addrs(hw); 2573 2574 /* Initialize bus function number */ 2575 hw->mac.ops.set_lan_id(hw); 2576 2577 reset_hw_out: 2578 return err; 2579 } 2580 2581 static const struct ixgbe_mac_operations mac_ops_e610 = { 2582 .init_hw = ixgbe_init_hw_generic, 2583 .start_hw = ixgbe_start_hw_X540, 2584 .clear_hw_cntrs = ixgbe_clear_hw_cntrs_generic, 2585 .enable_rx_dma = ixgbe_enable_rx_dma_generic, 2586 .get_mac_addr = ixgbe_get_mac_addr_generic, 2587 .get_device_caps = ixgbe_get_device_caps_generic, 2588 .stop_adapter = ixgbe_stop_adapter_generic, 2589 .set_lan_id = ixgbe_set_lan_id_multi_port_pcie, 2590 .set_rxpba = ixgbe_set_rxpba_generic, 2591 .check_link = ixgbe_check_link_e610, 2592 .blink_led_start = ixgbe_blink_led_start_X540, 2593 .blink_led_stop = ixgbe_blink_led_stop_X540, 2594 .set_rar = ixgbe_set_rar_generic, 2595 .clear_rar = ixgbe_clear_rar_generic, 2596 .set_vmdq = ixgbe_set_vmdq_generic, 2597 .set_vmdq_san_mac = ixgbe_set_vmdq_san_mac_generic, 2598 .clear_vmdq = ixgbe_clear_vmdq_generic, 2599 .init_rx_addrs = ixgbe_init_rx_addrs_generic, 2600 .update_mc_addr_list = ixgbe_update_mc_addr_list_generic, 2601 .enable_mc = ixgbe_enable_mc_generic, 2602 .disable_mc = ixgbe_disable_mc_generic, 2603 .clear_vfta = ixgbe_clear_vfta_generic, 2604 .set_vfta = ixgbe_set_vfta_generic, 2605 .fc_enable = ixgbe_fc_enable_generic, 2606 .set_fw_drv_ver = ixgbe_set_fw_drv_ver_x550, 2607 .init_uta_tables = ixgbe_init_uta_tables_generic, 2608 .set_mac_anti_spoofing = ixgbe_set_mac_anti_spoofing, 2609 .set_vlan_anti_spoofing = ixgbe_set_vlan_anti_spoofing, 2610 .set_source_address_pruning = 2611 ixgbe_set_source_address_pruning_x550, 2612 .set_ethertype_anti_spoofing = 2613 ixgbe_set_ethertype_anti_spoofing_x550, 2614 .disable_rx_buff = ixgbe_disable_rx_buff_generic, 2615 .enable_rx_buff = ixgbe_enable_rx_buff_generic, 2616 .enable_rx = ixgbe_enable_rx_generic, 2617 .disable_rx = ixgbe_disable_rx_e610, 2618 .led_on = ixgbe_led_on_generic, 2619 .led_off = ixgbe_led_off_generic, 2620 .init_led_link_act = ixgbe_init_led_link_act_generic, 2621 .reset_hw = ixgbe_reset_hw_e610, 2622 .get_media_type = ixgbe_get_media_type_e610, 2623 .setup_link = ixgbe_setup_link_e610, 2624 .get_link_capabilities = ixgbe_get_link_capabilities_e610, 2625 .get_bus_info = ixgbe_get_bus_info_generic, 2626 .acquire_swfw_sync = ixgbe_acquire_swfw_sync_X540, 2627 .release_swfw_sync = ixgbe_release_swfw_sync_X540, 2628 .init_swfw_sync = ixgbe_init_swfw_sync_X540, 2629 .prot_autoc_read = prot_autoc_read_generic, 2630 .prot_autoc_write = prot_autoc_write_generic, 2631 .setup_fc = ixgbe_setup_fc_e610, 2632 .fc_autoneg = ixgbe_fc_autoneg_e610, 2633 }; 2634 2635 static const struct ixgbe_phy_operations phy_ops_e610 = { 2636 .init = ixgbe_init_phy_ops_e610, 2637 .identify = ixgbe_identify_phy_e610, 2638 .identify_sfp = ixgbe_identify_module_e610, 2639 .setup_link_speed = ixgbe_setup_phy_link_speed_generic, 2640 .setup_link = ixgbe_setup_phy_link_e610, 2641 .enter_lplu = ixgbe_enter_lplu_e610, 2642 }; 2643 2644 static const struct ixgbe_eeprom_operations eeprom_ops_e610 = { 2645 .read = ixgbe_read_ee_aci_e610, 2646 .read_buffer = ixgbe_read_ee_aci_buffer_e610, 2647 .validate_checksum = ixgbe_validate_eeprom_checksum_e610, 2648 }; 2649 2650 const struct ixgbe_info ixgbe_e610_info = { 2651 .mac = ixgbe_mac_e610, 2652 .get_invariants = ixgbe_get_invariants_X540, 2653 .mac_ops = &mac_ops_e610, 2654 .eeprom_ops = &eeprom_ops_e610, 2655 .phy_ops = &phy_ops_e610, 2656 .mbx_ops = &mbx_ops_generic, 2657 .mvals = ixgbe_mvals_x550em_a, 2658 }; 2659