xref: /linux/drivers/net/ethernet/intel/ixgbe/ixgbe_common.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2011 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31 #include <linux/netdevice.h>
32 
33 #include "ixgbe.h"
34 #include "ixgbe_common.h"
35 #include "ixgbe_phy.h"
36 
37 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
38 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
39 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
40 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
41 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
43                                         u16 count);
44 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
45 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
48 
49 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
50 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw);
51 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw);
52 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw);
53 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw);
54 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
55 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm);
56 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num);
57 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
58 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
59 					     u16 words, u16 *data);
60 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
61 					     u16 words, u16 *data);
62 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
63 						 u16 offset);
64 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
65 
66 /**
67  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
68  *  @hw: pointer to hardware structure
69  *
70  *  Starts the hardware by filling the bus info structure and media type, clears
71  *  all on chip counters, initializes receive address registers, multicast
72  *  table, VLAN filter table, calls routine to set up link and flow control
73  *  settings, and leaves transmit and receive units disabled and uninitialized
74  **/
75 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
76 {
77 	u32 ctrl_ext;
78 
79 	/* Set the media type */
80 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
81 
82 	/* Identify the PHY */
83 	hw->phy.ops.identify(hw);
84 
85 	/* Clear the VLAN filter table */
86 	hw->mac.ops.clear_vfta(hw);
87 
88 	/* Clear statistics registers */
89 	hw->mac.ops.clear_hw_cntrs(hw);
90 
91 	/* Set No Snoop Disable */
92 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
93 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
94 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
95 	IXGBE_WRITE_FLUSH(hw);
96 
97 	/* Setup flow control */
98 	ixgbe_setup_fc(hw, 0);
99 
100 	/* Clear adapter stopped flag */
101 	hw->adapter_stopped = false;
102 
103 	return 0;
104 }
105 
106 /**
107  *  ixgbe_start_hw_gen2 - Init sequence for common device family
108  *  @hw: pointer to hw structure
109  *
110  * Performs the init sequence common to the second generation
111  * of 10 GbE devices.
112  * Devices in the second generation:
113  *     82599
114  *     X540
115  **/
116 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
117 {
118 	u32 i;
119 	u32 regval;
120 
121 	/* Clear the rate limiters */
122 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
123 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
124 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
125 	}
126 	IXGBE_WRITE_FLUSH(hw);
127 
128 	/* Disable relaxed ordering */
129 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
130 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
131 		regval &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
132 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
133 	}
134 
135 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
136 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
137 		regval &= ~(IXGBE_DCA_RXCTRL_DESC_WRO_EN |
138 					IXGBE_DCA_RXCTRL_DESC_HSRO_EN);
139 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
140 	}
141 
142 	return 0;
143 }
144 
145 /**
146  *  ixgbe_init_hw_generic - Generic hardware initialization
147  *  @hw: pointer to hardware structure
148  *
149  *  Initialize the hardware by resetting the hardware, filling the bus info
150  *  structure and media type, clears all on chip counters, initializes receive
151  *  address registers, multicast table, VLAN filter table, calls routine to set
152  *  up link and flow control settings, and leaves transmit and receive units
153  *  disabled and uninitialized
154  **/
155 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
156 {
157 	s32 status;
158 
159 	/* Reset the hardware */
160 	status = hw->mac.ops.reset_hw(hw);
161 
162 	if (status == 0) {
163 		/* Start the HW */
164 		status = hw->mac.ops.start_hw(hw);
165 	}
166 
167 	return status;
168 }
169 
170 /**
171  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
172  *  @hw: pointer to hardware structure
173  *
174  *  Clears all hardware statistics counters by reading them from the hardware
175  *  Statistics counters are clear on read.
176  **/
177 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
178 {
179 	u16 i = 0;
180 
181 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
182 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
183 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
184 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
185 	for (i = 0; i < 8; i++)
186 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
187 
188 	IXGBE_READ_REG(hw, IXGBE_MLFC);
189 	IXGBE_READ_REG(hw, IXGBE_MRFC);
190 	IXGBE_READ_REG(hw, IXGBE_RLEC);
191 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
192 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
193 	if (hw->mac.type >= ixgbe_mac_82599EB) {
194 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
195 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
196 	} else {
197 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
198 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
199 	}
200 
201 	for (i = 0; i < 8; i++) {
202 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
203 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
204 		if (hw->mac.type >= ixgbe_mac_82599EB) {
205 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
206 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
207 		} else {
208 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
209 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
210 		}
211 	}
212 	if (hw->mac.type >= ixgbe_mac_82599EB)
213 		for (i = 0; i < 8; i++)
214 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
215 	IXGBE_READ_REG(hw, IXGBE_PRC64);
216 	IXGBE_READ_REG(hw, IXGBE_PRC127);
217 	IXGBE_READ_REG(hw, IXGBE_PRC255);
218 	IXGBE_READ_REG(hw, IXGBE_PRC511);
219 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
220 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
221 	IXGBE_READ_REG(hw, IXGBE_GPRC);
222 	IXGBE_READ_REG(hw, IXGBE_BPRC);
223 	IXGBE_READ_REG(hw, IXGBE_MPRC);
224 	IXGBE_READ_REG(hw, IXGBE_GPTC);
225 	IXGBE_READ_REG(hw, IXGBE_GORCL);
226 	IXGBE_READ_REG(hw, IXGBE_GORCH);
227 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
228 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
229 	if (hw->mac.type == ixgbe_mac_82598EB)
230 		for (i = 0; i < 8; i++)
231 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
232 	IXGBE_READ_REG(hw, IXGBE_RUC);
233 	IXGBE_READ_REG(hw, IXGBE_RFC);
234 	IXGBE_READ_REG(hw, IXGBE_ROC);
235 	IXGBE_READ_REG(hw, IXGBE_RJC);
236 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
237 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
238 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
239 	IXGBE_READ_REG(hw, IXGBE_TORL);
240 	IXGBE_READ_REG(hw, IXGBE_TORH);
241 	IXGBE_READ_REG(hw, IXGBE_TPR);
242 	IXGBE_READ_REG(hw, IXGBE_TPT);
243 	IXGBE_READ_REG(hw, IXGBE_PTC64);
244 	IXGBE_READ_REG(hw, IXGBE_PTC127);
245 	IXGBE_READ_REG(hw, IXGBE_PTC255);
246 	IXGBE_READ_REG(hw, IXGBE_PTC511);
247 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
248 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
249 	IXGBE_READ_REG(hw, IXGBE_MPTC);
250 	IXGBE_READ_REG(hw, IXGBE_BPTC);
251 	for (i = 0; i < 16; i++) {
252 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
253 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
254 		if (hw->mac.type >= ixgbe_mac_82599EB) {
255 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
256 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
257 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
258 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
259 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
260 		} else {
261 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
262 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
263 		}
264 	}
265 
266 	if (hw->mac.type == ixgbe_mac_X540) {
267 		if (hw->phy.id == 0)
268 			hw->phy.ops.identify(hw);
269 		hw->phy.ops.read_reg(hw, 0x3, IXGBE_PCRC8ECL, &i);
270 		hw->phy.ops.read_reg(hw, 0x3, IXGBE_PCRC8ECH, &i);
271 		hw->phy.ops.read_reg(hw, 0x3, IXGBE_LDPCECL, &i);
272 		hw->phy.ops.read_reg(hw, 0x3, IXGBE_LDPCECH, &i);
273 	}
274 
275 	return 0;
276 }
277 
278 /**
279  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
280  *  @hw: pointer to hardware structure
281  *  @pba_num: stores the part number string from the EEPROM
282  *  @pba_num_size: part number string buffer length
283  *
284  *  Reads the part number string from the EEPROM.
285  **/
286 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
287                                   u32 pba_num_size)
288 {
289 	s32 ret_val;
290 	u16 data;
291 	u16 pba_ptr;
292 	u16 offset;
293 	u16 length;
294 
295 	if (pba_num == NULL) {
296 		hw_dbg(hw, "PBA string buffer was null\n");
297 		return IXGBE_ERR_INVALID_ARGUMENT;
298 	}
299 
300 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
301 	if (ret_val) {
302 		hw_dbg(hw, "NVM Read Error\n");
303 		return ret_val;
304 	}
305 
306 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
307 	if (ret_val) {
308 		hw_dbg(hw, "NVM Read Error\n");
309 		return ret_val;
310 	}
311 
312 	/*
313 	 * if data is not ptr guard the PBA must be in legacy format which
314 	 * means pba_ptr is actually our second data word for the PBA number
315 	 * and we can decode it into an ascii string
316 	 */
317 	if (data != IXGBE_PBANUM_PTR_GUARD) {
318 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
319 
320 		/* we will need 11 characters to store the PBA */
321 		if (pba_num_size < 11) {
322 			hw_dbg(hw, "PBA string buffer too small\n");
323 			return IXGBE_ERR_NO_SPACE;
324 		}
325 
326 		/* extract hex string from data and pba_ptr */
327 		pba_num[0] = (data >> 12) & 0xF;
328 		pba_num[1] = (data >> 8) & 0xF;
329 		pba_num[2] = (data >> 4) & 0xF;
330 		pba_num[3] = data & 0xF;
331 		pba_num[4] = (pba_ptr >> 12) & 0xF;
332 		pba_num[5] = (pba_ptr >> 8) & 0xF;
333 		pba_num[6] = '-';
334 		pba_num[7] = 0;
335 		pba_num[8] = (pba_ptr >> 4) & 0xF;
336 		pba_num[9] = pba_ptr & 0xF;
337 
338 		/* put a null character on the end of our string */
339 		pba_num[10] = '\0';
340 
341 		/* switch all the data but the '-' to hex char */
342 		for (offset = 0; offset < 10; offset++) {
343 			if (pba_num[offset] < 0xA)
344 				pba_num[offset] += '0';
345 			else if (pba_num[offset] < 0x10)
346 				pba_num[offset] += 'A' - 0xA;
347 		}
348 
349 		return 0;
350 	}
351 
352 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
353 	if (ret_val) {
354 		hw_dbg(hw, "NVM Read Error\n");
355 		return ret_val;
356 	}
357 
358 	if (length == 0xFFFF || length == 0) {
359 		hw_dbg(hw, "NVM PBA number section invalid length\n");
360 		return IXGBE_ERR_PBA_SECTION;
361 	}
362 
363 	/* check if pba_num buffer is big enough */
364 	if (pba_num_size  < (((u32)length * 2) - 1)) {
365 		hw_dbg(hw, "PBA string buffer too small\n");
366 		return IXGBE_ERR_NO_SPACE;
367 	}
368 
369 	/* trim pba length from start of string */
370 	pba_ptr++;
371 	length--;
372 
373 	for (offset = 0; offset < length; offset++) {
374 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
375 		if (ret_val) {
376 			hw_dbg(hw, "NVM Read Error\n");
377 			return ret_val;
378 		}
379 		pba_num[offset * 2] = (u8)(data >> 8);
380 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
381 	}
382 	pba_num[offset * 2] = '\0';
383 
384 	return 0;
385 }
386 
387 /**
388  *  ixgbe_get_mac_addr_generic - Generic get MAC address
389  *  @hw: pointer to hardware structure
390  *  @mac_addr: Adapter MAC address
391  *
392  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
393  *  A reset of the adapter must be performed prior to calling this function
394  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
395  **/
396 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
397 {
398 	u32 rar_high;
399 	u32 rar_low;
400 	u16 i;
401 
402 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
403 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
404 
405 	for (i = 0; i < 4; i++)
406 		mac_addr[i] = (u8)(rar_low >> (i*8));
407 
408 	for (i = 0; i < 2; i++)
409 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
410 
411 	return 0;
412 }
413 
414 /**
415  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
416  *  @hw: pointer to hardware structure
417  *
418  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
419  **/
420 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
421 {
422 	struct ixgbe_adapter *adapter = hw->back;
423 	struct ixgbe_mac_info *mac = &hw->mac;
424 	u16 link_status;
425 
426 	hw->bus.type = ixgbe_bus_type_pci_express;
427 
428 	/* Get the negotiated link width and speed from PCI config space */
429 	pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
430 	                     &link_status);
431 
432 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
433 	case IXGBE_PCI_LINK_WIDTH_1:
434 		hw->bus.width = ixgbe_bus_width_pcie_x1;
435 		break;
436 	case IXGBE_PCI_LINK_WIDTH_2:
437 		hw->bus.width = ixgbe_bus_width_pcie_x2;
438 		break;
439 	case IXGBE_PCI_LINK_WIDTH_4:
440 		hw->bus.width = ixgbe_bus_width_pcie_x4;
441 		break;
442 	case IXGBE_PCI_LINK_WIDTH_8:
443 		hw->bus.width = ixgbe_bus_width_pcie_x8;
444 		break;
445 	default:
446 		hw->bus.width = ixgbe_bus_width_unknown;
447 		break;
448 	}
449 
450 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
451 	case IXGBE_PCI_LINK_SPEED_2500:
452 		hw->bus.speed = ixgbe_bus_speed_2500;
453 		break;
454 	case IXGBE_PCI_LINK_SPEED_5000:
455 		hw->bus.speed = ixgbe_bus_speed_5000;
456 		break;
457 	default:
458 		hw->bus.speed = ixgbe_bus_speed_unknown;
459 		break;
460 	}
461 
462 	mac->ops.set_lan_id(hw);
463 
464 	return 0;
465 }
466 
467 /**
468  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
469  *  @hw: pointer to the HW structure
470  *
471  *  Determines the LAN function id by reading memory-mapped registers
472  *  and swaps the port value if requested.
473  **/
474 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
475 {
476 	struct ixgbe_bus_info *bus = &hw->bus;
477 	u32 reg;
478 
479 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
480 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
481 	bus->lan_id = bus->func;
482 
483 	/* check for a port swap */
484 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
485 	if (reg & IXGBE_FACTPS_LFS)
486 		bus->func ^= 0x1;
487 }
488 
489 /**
490  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
491  *  @hw: pointer to hardware structure
492  *
493  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
494  *  disables transmit and receive units. The adapter_stopped flag is used by
495  *  the shared code and drivers to determine if the adapter is in a stopped
496  *  state and should not touch the hardware.
497  **/
498 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
499 {
500 	u32 reg_val;
501 	u16 i;
502 
503 	/*
504 	 * Set the adapter_stopped flag so other driver functions stop touching
505 	 * the hardware
506 	 */
507 	hw->adapter_stopped = true;
508 
509 	/* Disable the receive unit */
510 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
511 
512 	/* Clear interrupt mask to stop interrupts from being generated */
513 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
514 
515 	/* Clear any pending interrupts, flush previous writes */
516 	IXGBE_READ_REG(hw, IXGBE_EICR);
517 
518 	/* Disable the transmit unit.  Each queue must be disabled. */
519 	for (i = 0; i < hw->mac.max_tx_queues; i++)
520 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
521 
522 	/* Disable the receive unit by stopping each queue */
523 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
524 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
525 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
526 		reg_val |= IXGBE_RXDCTL_SWFLSH;
527 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
528 	}
529 
530 	/* flush all queues disables */
531 	IXGBE_WRITE_FLUSH(hw);
532 	usleep_range(1000, 2000);
533 
534 	/*
535 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
536 	 * access and verify no pending requests
537 	 */
538 	return ixgbe_disable_pcie_master(hw);
539 }
540 
541 /**
542  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
543  *  @hw: pointer to hardware structure
544  *  @index: led number to turn on
545  **/
546 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
547 {
548 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
549 
550 	/* To turn on the LED, set mode to ON. */
551 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
552 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
553 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
554 	IXGBE_WRITE_FLUSH(hw);
555 
556 	return 0;
557 }
558 
559 /**
560  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
561  *  @hw: pointer to hardware structure
562  *  @index: led number to turn off
563  **/
564 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
565 {
566 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
567 
568 	/* To turn off the LED, set mode to OFF. */
569 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
570 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
571 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
572 	IXGBE_WRITE_FLUSH(hw);
573 
574 	return 0;
575 }
576 
577 /**
578  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
579  *  @hw: pointer to hardware structure
580  *
581  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
582  *  ixgbe_hw struct in order to set up EEPROM access.
583  **/
584 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
585 {
586 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
587 	u32 eec;
588 	u16 eeprom_size;
589 
590 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
591 		eeprom->type = ixgbe_eeprom_none;
592 		/* Set default semaphore delay to 10ms which is a well
593 		 * tested value */
594 		eeprom->semaphore_delay = 10;
595 		/* Clear EEPROM page size, it will be initialized as needed */
596 		eeprom->word_page_size = 0;
597 
598 		/*
599 		 * Check for EEPROM present first.
600 		 * If not present leave as none
601 		 */
602 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
603 		if (eec & IXGBE_EEC_PRES) {
604 			eeprom->type = ixgbe_eeprom_spi;
605 
606 			/*
607 			 * SPI EEPROM is assumed here.  This code would need to
608 			 * change if a future EEPROM is not SPI.
609 			 */
610 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
611 					    IXGBE_EEC_SIZE_SHIFT);
612 			eeprom->word_size = 1 << (eeprom_size +
613 						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
614 		}
615 
616 		if (eec & IXGBE_EEC_ADDR_SIZE)
617 			eeprom->address_bits = 16;
618 		else
619 			eeprom->address_bits = 8;
620 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
621 			  "%d\n", eeprom->type, eeprom->word_size,
622 			  eeprom->address_bits);
623 	}
624 
625 	return 0;
626 }
627 
628 /**
629  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
630  *  @hw: pointer to hardware structure
631  *  @offset: offset within the EEPROM to write
632  *  @words: number of words
633  *  @data: 16 bit word(s) to write to EEPROM
634  *
635  *  Reads 16 bit word(s) from EEPROM through bit-bang method
636  **/
637 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
638 					       u16 words, u16 *data)
639 {
640 	s32 status = 0;
641 	u16 i, count;
642 
643 	hw->eeprom.ops.init_params(hw);
644 
645 	if (words == 0) {
646 		status = IXGBE_ERR_INVALID_ARGUMENT;
647 		goto out;
648 	}
649 
650 	if (offset + words > hw->eeprom.word_size) {
651 		status = IXGBE_ERR_EEPROM;
652 		goto out;
653 	}
654 
655 	/*
656 	 * The EEPROM page size cannot be queried from the chip. We do lazy
657 	 * initialization. It is worth to do that when we write large buffer.
658 	 */
659 	if ((hw->eeprom.word_page_size == 0) &&
660 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
661 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
662 
663 	/*
664 	 * We cannot hold synchronization semaphores for too long
665 	 * to avoid other entity starvation. However it is more efficient
666 	 * to read in bursts than synchronizing access for each word.
667 	 */
668 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
669 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
670 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
671 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
672 							    count, &data[i]);
673 
674 		if (status != 0)
675 			break;
676 	}
677 
678 out:
679 	return status;
680 }
681 
682 /**
683  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
684  *  @hw: pointer to hardware structure
685  *  @offset: offset within the EEPROM to be written to
686  *  @words: number of word(s)
687  *  @data: 16 bit word(s) to be written to the EEPROM
688  *
689  *  If ixgbe_eeprom_update_checksum is not called after this function, the
690  *  EEPROM will most likely contain an invalid checksum.
691  **/
692 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
693 					      u16 words, u16 *data)
694 {
695 	s32 status;
696 	u16 word;
697 	u16 page_size;
698 	u16 i;
699 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
700 
701 	/* Prepare the EEPROM for writing  */
702 	status = ixgbe_acquire_eeprom(hw);
703 
704 	if (status == 0) {
705 		if (ixgbe_ready_eeprom(hw) != 0) {
706 			ixgbe_release_eeprom(hw);
707 			status = IXGBE_ERR_EEPROM;
708 		}
709 	}
710 
711 	if (status == 0) {
712 		for (i = 0; i < words; i++) {
713 			ixgbe_standby_eeprom(hw);
714 
715 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
716 			ixgbe_shift_out_eeprom_bits(hw,
717 						  IXGBE_EEPROM_WREN_OPCODE_SPI,
718 						  IXGBE_EEPROM_OPCODE_BITS);
719 
720 			ixgbe_standby_eeprom(hw);
721 
722 			/*
723 			 * Some SPI eeproms use the 8th address bit embedded
724 			 * in the opcode
725 			 */
726 			if ((hw->eeprom.address_bits == 8) &&
727 			    ((offset + i) >= 128))
728 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
729 
730 			/* Send the Write command (8-bit opcode + addr) */
731 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
732 						    IXGBE_EEPROM_OPCODE_BITS);
733 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
734 						    hw->eeprom.address_bits);
735 
736 			page_size = hw->eeprom.word_page_size;
737 
738 			/* Send the data in burst via SPI*/
739 			do {
740 				word = data[i];
741 				word = (word >> 8) | (word << 8);
742 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
743 
744 				if (page_size == 0)
745 					break;
746 
747 				/* do not wrap around page */
748 				if (((offset + i) & (page_size - 1)) ==
749 				    (page_size - 1))
750 					break;
751 			} while (++i < words);
752 
753 			ixgbe_standby_eeprom(hw);
754 			usleep_range(10000, 20000);
755 		}
756 		/* Done with writing - release the EEPROM */
757 		ixgbe_release_eeprom(hw);
758 	}
759 
760 	return status;
761 }
762 
763 /**
764  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
765  *  @hw: pointer to hardware structure
766  *  @offset: offset within the EEPROM to be written to
767  *  @data: 16 bit word to be written to the EEPROM
768  *
769  *  If ixgbe_eeprom_update_checksum is not called after this function, the
770  *  EEPROM will most likely contain an invalid checksum.
771  **/
772 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
773 {
774 	s32 status;
775 
776 	hw->eeprom.ops.init_params(hw);
777 
778 	if (offset >= hw->eeprom.word_size) {
779 		status = IXGBE_ERR_EEPROM;
780 		goto out;
781 	}
782 
783 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
784 
785 out:
786 	return status;
787 }
788 
789 /**
790  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
791  *  @hw: pointer to hardware structure
792  *  @offset: offset within the EEPROM to be read
793  *  @words: number of word(s)
794  *  @data: read 16 bit words(s) from EEPROM
795  *
796  *  Reads 16 bit word(s) from EEPROM through bit-bang method
797  **/
798 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
799 					      u16 words, u16 *data)
800 {
801 	s32 status = 0;
802 	u16 i, count;
803 
804 	hw->eeprom.ops.init_params(hw);
805 
806 	if (words == 0) {
807 		status = IXGBE_ERR_INVALID_ARGUMENT;
808 		goto out;
809 	}
810 
811 	if (offset + words > hw->eeprom.word_size) {
812 		status = IXGBE_ERR_EEPROM;
813 		goto out;
814 	}
815 
816 	/*
817 	 * We cannot hold synchronization semaphores for too long
818 	 * to avoid other entity starvation. However it is more efficient
819 	 * to read in bursts than synchronizing access for each word.
820 	 */
821 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
822 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
823 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
824 
825 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
826 							   count, &data[i]);
827 
828 		if (status != 0)
829 			break;
830 	}
831 
832 out:
833 	return status;
834 }
835 
836 /**
837  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
838  *  @hw: pointer to hardware structure
839  *  @offset: offset within the EEPROM to be read
840  *  @words: number of word(s)
841  *  @data: read 16 bit word(s) from EEPROM
842  *
843  *  Reads 16 bit word(s) from EEPROM through bit-bang method
844  **/
845 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
846 					     u16 words, u16 *data)
847 {
848 	s32 status;
849 	u16 word_in;
850 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
851 	u16 i;
852 
853 	/* Prepare the EEPROM for reading  */
854 	status = ixgbe_acquire_eeprom(hw);
855 
856 	if (status == 0) {
857 		if (ixgbe_ready_eeprom(hw) != 0) {
858 			ixgbe_release_eeprom(hw);
859 			status = IXGBE_ERR_EEPROM;
860 		}
861 	}
862 
863 	if (status == 0) {
864 		for (i = 0; i < words; i++) {
865 			ixgbe_standby_eeprom(hw);
866 			/*
867 			 * Some SPI eeproms use the 8th address bit embedded
868 			 * in the opcode
869 			 */
870 			if ((hw->eeprom.address_bits == 8) &&
871 			    ((offset + i) >= 128))
872 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
873 
874 			/* Send the READ command (opcode + addr) */
875 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
876 						    IXGBE_EEPROM_OPCODE_BITS);
877 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
878 						    hw->eeprom.address_bits);
879 
880 			/* Read the data. */
881 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
882 			data[i] = (word_in >> 8) | (word_in << 8);
883 		}
884 
885 		/* End this read operation */
886 		ixgbe_release_eeprom(hw);
887 	}
888 
889 	return status;
890 }
891 
892 /**
893  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
894  *  @hw: pointer to hardware structure
895  *  @offset: offset within the EEPROM to be read
896  *  @data: read 16 bit value from EEPROM
897  *
898  *  Reads 16 bit value from EEPROM through bit-bang method
899  **/
900 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
901 				       u16 *data)
902 {
903 	s32 status;
904 
905 	hw->eeprom.ops.init_params(hw);
906 
907 	if (offset >= hw->eeprom.word_size) {
908 		status = IXGBE_ERR_EEPROM;
909 		goto out;
910 	}
911 
912 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
913 
914 out:
915 	return status;
916 }
917 
918 /**
919  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
920  *  @hw: pointer to hardware structure
921  *  @offset: offset of word in the EEPROM to read
922  *  @words: number of word(s)
923  *  @data: 16 bit word(s) from the EEPROM
924  *
925  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
926  **/
927 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
928 				   u16 words, u16 *data)
929 {
930 	u32 eerd;
931 	s32 status = 0;
932 	u32 i;
933 
934 	hw->eeprom.ops.init_params(hw);
935 
936 	if (words == 0) {
937 		status = IXGBE_ERR_INVALID_ARGUMENT;
938 		goto out;
939 	}
940 
941 	if (offset >= hw->eeprom.word_size) {
942 		status = IXGBE_ERR_EEPROM;
943 		goto out;
944 	}
945 
946 	for (i = 0; i < words; i++) {
947 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
948 		       IXGBE_EEPROM_RW_REG_START;
949 
950 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
951 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
952 
953 		if (status == 0) {
954 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
955 				   IXGBE_EEPROM_RW_REG_DATA);
956 		} else {
957 			hw_dbg(hw, "Eeprom read timed out\n");
958 			goto out;
959 		}
960 	}
961 out:
962 	return status;
963 }
964 
965 /**
966  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
967  *  @hw: pointer to hardware structure
968  *  @offset: offset within the EEPROM to be used as a scratch pad
969  *
970  *  Discover EEPROM page size by writing marching data at given offset.
971  *  This function is called only when we are writing a new large buffer
972  *  at given offset so the data would be overwritten anyway.
973  **/
974 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
975 						 u16 offset)
976 {
977 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
978 	s32 status = 0;
979 	u16 i;
980 
981 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
982 		data[i] = i;
983 
984 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
985 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
986 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
987 	hw->eeprom.word_page_size = 0;
988 	if (status != 0)
989 		goto out;
990 
991 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
992 	if (status != 0)
993 		goto out;
994 
995 	/*
996 	 * When writing in burst more than the actual page size
997 	 * EEPROM address wraps around current page.
998 	 */
999 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1000 
1001 	hw_dbg(hw, "Detected EEPROM page size = %d words.",
1002 	       hw->eeprom.word_page_size);
1003 out:
1004 	return status;
1005 }
1006 
1007 /**
1008  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1009  *  @hw: pointer to hardware structure
1010  *  @offset: offset of  word in the EEPROM to read
1011  *  @data: word read from the EEPROM
1012  *
1013  *  Reads a 16 bit word from the EEPROM using the EERD register.
1014  **/
1015 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1016 {
1017 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1018 }
1019 
1020 /**
1021  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1022  *  @hw: pointer to hardware structure
1023  *  @offset: offset of  word in the EEPROM to write
1024  *  @words: number of words
1025  *  @data: word(s) write to the EEPROM
1026  *
1027  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1028  **/
1029 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1030 				    u16 words, u16 *data)
1031 {
1032 	u32 eewr;
1033 	s32 status = 0;
1034 	u16 i;
1035 
1036 	hw->eeprom.ops.init_params(hw);
1037 
1038 	if (words == 0) {
1039 		status = IXGBE_ERR_INVALID_ARGUMENT;
1040 		goto out;
1041 	}
1042 
1043 	if (offset >= hw->eeprom.word_size) {
1044 		status = IXGBE_ERR_EEPROM;
1045 		goto out;
1046 	}
1047 
1048 	for (i = 0; i < words; i++) {
1049 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1050 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1051 		       IXGBE_EEPROM_RW_REG_START;
1052 
1053 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1054 		if (status != 0) {
1055 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1056 			goto out;
1057 		}
1058 
1059 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1060 
1061 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1062 		if (status != 0) {
1063 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1064 			goto out;
1065 		}
1066 	}
1067 
1068 out:
1069 	return status;
1070 }
1071 
1072 /**
1073  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1074  *  @hw: pointer to hardware structure
1075  *  @offset: offset of  word in the EEPROM to write
1076  *  @data: word write to the EEPROM
1077  *
1078  *  Write a 16 bit word to the EEPROM using the EEWR register.
1079  **/
1080 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1081 {
1082 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1083 }
1084 
1085 /**
1086  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1087  *  @hw: pointer to hardware structure
1088  *  @ee_reg: EEPROM flag for polling
1089  *
1090  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1091  *  read or write is done respectively.
1092  **/
1093 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1094 {
1095 	u32 i;
1096 	u32 reg;
1097 	s32 status = IXGBE_ERR_EEPROM;
1098 
1099 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1100 		if (ee_reg == IXGBE_NVM_POLL_READ)
1101 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1102 		else
1103 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1104 
1105 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1106 			status = 0;
1107 			break;
1108 		}
1109 		udelay(5);
1110 	}
1111 	return status;
1112 }
1113 
1114 /**
1115  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1116  *  @hw: pointer to hardware structure
1117  *
1118  *  Prepares EEPROM for access using bit-bang method. This function should
1119  *  be called before issuing a command to the EEPROM.
1120  **/
1121 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1122 {
1123 	s32 status = 0;
1124 	u32 eec;
1125 	u32 i;
1126 
1127 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1128 		status = IXGBE_ERR_SWFW_SYNC;
1129 
1130 	if (status == 0) {
1131 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1132 
1133 		/* Request EEPROM Access */
1134 		eec |= IXGBE_EEC_REQ;
1135 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1136 
1137 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1138 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1139 			if (eec & IXGBE_EEC_GNT)
1140 				break;
1141 			udelay(5);
1142 		}
1143 
1144 		/* Release if grant not acquired */
1145 		if (!(eec & IXGBE_EEC_GNT)) {
1146 			eec &= ~IXGBE_EEC_REQ;
1147 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1148 			hw_dbg(hw, "Could not acquire EEPROM grant\n");
1149 
1150 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1151 			status = IXGBE_ERR_EEPROM;
1152 		}
1153 
1154 		/* Setup EEPROM for Read/Write */
1155 		if (status == 0) {
1156 			/* Clear CS and SK */
1157 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1158 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1159 			IXGBE_WRITE_FLUSH(hw);
1160 			udelay(1);
1161 		}
1162 	}
1163 	return status;
1164 }
1165 
1166 /**
1167  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1168  *  @hw: pointer to hardware structure
1169  *
1170  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1171  **/
1172 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1173 {
1174 	s32 status = IXGBE_ERR_EEPROM;
1175 	u32 timeout = 2000;
1176 	u32 i;
1177 	u32 swsm;
1178 
1179 	/* Get SMBI software semaphore between device drivers first */
1180 	for (i = 0; i < timeout; i++) {
1181 		/*
1182 		 * If the SMBI bit is 0 when we read it, then the bit will be
1183 		 * set and we have the semaphore
1184 		 */
1185 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1186 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1187 			status = 0;
1188 			break;
1189 		}
1190 		udelay(50);
1191 	}
1192 
1193 	if (i == timeout) {
1194 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
1195 		       "not granted.\n");
1196 		/*
1197 		 * this release is particularly important because our attempts
1198 		 * above to get the semaphore may have succeeded, and if there
1199 		 * was a timeout, we should unconditionally clear the semaphore
1200 		 * bits to free the driver to make progress
1201 		 */
1202 		ixgbe_release_eeprom_semaphore(hw);
1203 
1204 		udelay(50);
1205 		/*
1206 		 * one last try
1207 		 * If the SMBI bit is 0 when we read it, then the bit will be
1208 		 * set and we have the semaphore
1209 		 */
1210 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1211 		if (!(swsm & IXGBE_SWSM_SMBI))
1212 			status = 0;
1213 	}
1214 
1215 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1216 	if (status == 0) {
1217 		for (i = 0; i < timeout; i++) {
1218 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1219 
1220 			/* Set the SW EEPROM semaphore bit to request access */
1221 			swsm |= IXGBE_SWSM_SWESMBI;
1222 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1223 
1224 			/*
1225 			 * If we set the bit successfully then we got the
1226 			 * semaphore.
1227 			 */
1228 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1229 			if (swsm & IXGBE_SWSM_SWESMBI)
1230 				break;
1231 
1232 			udelay(50);
1233 		}
1234 
1235 		/*
1236 		 * Release semaphores and return error if SW EEPROM semaphore
1237 		 * was not granted because we don't have access to the EEPROM
1238 		 */
1239 		if (i >= timeout) {
1240 			hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
1241 			       "not granted.\n");
1242 			ixgbe_release_eeprom_semaphore(hw);
1243 			status = IXGBE_ERR_EEPROM;
1244 		}
1245 	} else {
1246 		hw_dbg(hw, "Software semaphore SMBI between device drivers "
1247 		       "not granted.\n");
1248 	}
1249 
1250 	return status;
1251 }
1252 
1253 /**
1254  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1255  *  @hw: pointer to hardware structure
1256  *
1257  *  This function clears hardware semaphore bits.
1258  **/
1259 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1260 {
1261 	u32 swsm;
1262 
1263 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1264 
1265 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1266 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1267 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1268 	IXGBE_WRITE_FLUSH(hw);
1269 }
1270 
1271 /**
1272  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1273  *  @hw: pointer to hardware structure
1274  **/
1275 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1276 {
1277 	s32 status = 0;
1278 	u16 i;
1279 	u8 spi_stat_reg;
1280 
1281 	/*
1282 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1283 	 * EEPROM will signal that the command has been completed by clearing
1284 	 * bit 0 of the internal status register.  If it's not cleared within
1285 	 * 5 milliseconds, then error out.
1286 	 */
1287 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1288 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1289 		                            IXGBE_EEPROM_OPCODE_BITS);
1290 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1291 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1292 			break;
1293 
1294 		udelay(5);
1295 		ixgbe_standby_eeprom(hw);
1296 	}
1297 
1298 	/*
1299 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1300 	 * devices (and only 0-5mSec on 5V devices)
1301 	 */
1302 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1303 		hw_dbg(hw, "SPI EEPROM Status error\n");
1304 		status = IXGBE_ERR_EEPROM;
1305 	}
1306 
1307 	return status;
1308 }
1309 
1310 /**
1311  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1312  *  @hw: pointer to hardware structure
1313  **/
1314 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1315 {
1316 	u32 eec;
1317 
1318 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1319 
1320 	/* Toggle CS to flush commands */
1321 	eec |= IXGBE_EEC_CS;
1322 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1323 	IXGBE_WRITE_FLUSH(hw);
1324 	udelay(1);
1325 	eec &= ~IXGBE_EEC_CS;
1326 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1327 	IXGBE_WRITE_FLUSH(hw);
1328 	udelay(1);
1329 }
1330 
1331 /**
1332  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1333  *  @hw: pointer to hardware structure
1334  *  @data: data to send to the EEPROM
1335  *  @count: number of bits to shift out
1336  **/
1337 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1338                                         u16 count)
1339 {
1340 	u32 eec;
1341 	u32 mask;
1342 	u32 i;
1343 
1344 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1345 
1346 	/*
1347 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1348 	 * one bit at a time.  Determine the starting bit based on count
1349 	 */
1350 	mask = 0x01 << (count - 1);
1351 
1352 	for (i = 0; i < count; i++) {
1353 		/*
1354 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1355 		 * "1", and then raising and then lowering the clock (the SK
1356 		 * bit controls the clock input to the EEPROM).  A "0" is
1357 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1358 		 * raising and then lowering the clock.
1359 		 */
1360 		if (data & mask)
1361 			eec |= IXGBE_EEC_DI;
1362 		else
1363 			eec &= ~IXGBE_EEC_DI;
1364 
1365 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1366 		IXGBE_WRITE_FLUSH(hw);
1367 
1368 		udelay(1);
1369 
1370 		ixgbe_raise_eeprom_clk(hw, &eec);
1371 		ixgbe_lower_eeprom_clk(hw, &eec);
1372 
1373 		/*
1374 		 * Shift mask to signify next bit of data to shift in to the
1375 		 * EEPROM
1376 		 */
1377 		mask = mask >> 1;
1378 	}
1379 
1380 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1381 	eec &= ~IXGBE_EEC_DI;
1382 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1383 	IXGBE_WRITE_FLUSH(hw);
1384 }
1385 
1386 /**
1387  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1388  *  @hw: pointer to hardware structure
1389  **/
1390 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1391 {
1392 	u32 eec;
1393 	u32 i;
1394 	u16 data = 0;
1395 
1396 	/*
1397 	 * In order to read a register from the EEPROM, we need to shift
1398 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1399 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1400 	 * the value of the "DO" bit.  During this "shifting in" process the
1401 	 * "DI" bit should always be clear.
1402 	 */
1403 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1404 
1405 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1406 
1407 	for (i = 0; i < count; i++) {
1408 		data = data << 1;
1409 		ixgbe_raise_eeprom_clk(hw, &eec);
1410 
1411 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1412 
1413 		eec &= ~(IXGBE_EEC_DI);
1414 		if (eec & IXGBE_EEC_DO)
1415 			data |= 1;
1416 
1417 		ixgbe_lower_eeprom_clk(hw, &eec);
1418 	}
1419 
1420 	return data;
1421 }
1422 
1423 /**
1424  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1425  *  @hw: pointer to hardware structure
1426  *  @eec: EEC register's current value
1427  **/
1428 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1429 {
1430 	/*
1431 	 * Raise the clock input to the EEPROM
1432 	 * (setting the SK bit), then delay
1433 	 */
1434 	*eec = *eec | IXGBE_EEC_SK;
1435 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1436 	IXGBE_WRITE_FLUSH(hw);
1437 	udelay(1);
1438 }
1439 
1440 /**
1441  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1442  *  @hw: pointer to hardware structure
1443  *  @eecd: EECD's current value
1444  **/
1445 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1446 {
1447 	/*
1448 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1449 	 * delay
1450 	 */
1451 	*eec = *eec & ~IXGBE_EEC_SK;
1452 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1453 	IXGBE_WRITE_FLUSH(hw);
1454 	udelay(1);
1455 }
1456 
1457 /**
1458  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1459  *  @hw: pointer to hardware structure
1460  **/
1461 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1462 {
1463 	u32 eec;
1464 
1465 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1466 
1467 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1468 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1469 
1470 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1471 	IXGBE_WRITE_FLUSH(hw);
1472 
1473 	udelay(1);
1474 
1475 	/* Stop requesting EEPROM access */
1476 	eec &= ~IXGBE_EEC_REQ;
1477 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1478 
1479 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1480 
1481 	/*
1482 	 * Delay before attempt to obtain semaphore again to allow FW
1483 	 * access. semaphore_delay is in ms we need us for usleep_range
1484 	 */
1485 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1486 		     hw->eeprom.semaphore_delay * 2000);
1487 }
1488 
1489 /**
1490  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1491  *  @hw: pointer to hardware structure
1492  **/
1493 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1494 {
1495 	u16 i;
1496 	u16 j;
1497 	u16 checksum = 0;
1498 	u16 length = 0;
1499 	u16 pointer = 0;
1500 	u16 word = 0;
1501 
1502 	/* Include 0x0-0x3F in the checksum */
1503 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1504 		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1505 			hw_dbg(hw, "EEPROM read failed\n");
1506 			break;
1507 		}
1508 		checksum += word;
1509 	}
1510 
1511 	/* Include all data from pointers except for the fw pointer */
1512 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1513 		hw->eeprom.ops.read(hw, i, &pointer);
1514 
1515 		/* Make sure the pointer seems valid */
1516 		if (pointer != 0xFFFF && pointer != 0) {
1517 			hw->eeprom.ops.read(hw, pointer, &length);
1518 
1519 			if (length != 0xFFFF && length != 0) {
1520 				for (j = pointer+1; j <= pointer+length; j++) {
1521 					hw->eeprom.ops.read(hw, j, &word);
1522 					checksum += word;
1523 				}
1524 			}
1525 		}
1526 	}
1527 
1528 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1529 
1530 	return checksum;
1531 }
1532 
1533 /**
1534  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1535  *  @hw: pointer to hardware structure
1536  *  @checksum_val: calculated checksum
1537  *
1538  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1539  *  caller does not need checksum_val, the value can be NULL.
1540  **/
1541 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1542                                            u16 *checksum_val)
1543 {
1544 	s32 status;
1545 	u16 checksum;
1546 	u16 read_checksum = 0;
1547 
1548 	/*
1549 	 * Read the first word from the EEPROM. If this times out or fails, do
1550 	 * not continue or we could be in for a very long wait while every
1551 	 * EEPROM read fails
1552 	 */
1553 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1554 
1555 	if (status == 0) {
1556 		checksum = hw->eeprom.ops.calc_checksum(hw);
1557 
1558 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1559 
1560 		/*
1561 		 * Verify read checksum from EEPROM is the same as
1562 		 * calculated checksum
1563 		 */
1564 		if (read_checksum != checksum)
1565 			status = IXGBE_ERR_EEPROM_CHECKSUM;
1566 
1567 		/* If the user cares, return the calculated checksum */
1568 		if (checksum_val)
1569 			*checksum_val = checksum;
1570 	} else {
1571 		hw_dbg(hw, "EEPROM read failed\n");
1572 	}
1573 
1574 	return status;
1575 }
1576 
1577 /**
1578  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1579  *  @hw: pointer to hardware structure
1580  **/
1581 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1582 {
1583 	s32 status;
1584 	u16 checksum;
1585 
1586 	/*
1587 	 * Read the first word from the EEPROM. If this times out or fails, do
1588 	 * not continue or we could be in for a very long wait while every
1589 	 * EEPROM read fails
1590 	 */
1591 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1592 
1593 	if (status == 0) {
1594 		checksum = hw->eeprom.ops.calc_checksum(hw);
1595 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1596 					      checksum);
1597 	} else {
1598 		hw_dbg(hw, "EEPROM read failed\n");
1599 	}
1600 
1601 	return status;
1602 }
1603 
1604 /**
1605  *  ixgbe_validate_mac_addr - Validate MAC address
1606  *  @mac_addr: pointer to MAC address.
1607  *
1608  *  Tests a MAC address to ensure it is a valid Individual Address
1609  **/
1610 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1611 {
1612 	s32 status = 0;
1613 
1614 	/* Make sure it is not a multicast address */
1615 	if (IXGBE_IS_MULTICAST(mac_addr))
1616 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1617 	/* Not a broadcast address */
1618 	else if (IXGBE_IS_BROADCAST(mac_addr))
1619 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1620 	/* Reject the zero address */
1621 	else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1622 	         mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
1623 		status = IXGBE_ERR_INVALID_MAC_ADDR;
1624 
1625 	return status;
1626 }
1627 
1628 /**
1629  *  ixgbe_set_rar_generic - Set Rx address register
1630  *  @hw: pointer to hardware structure
1631  *  @index: Receive address register to write
1632  *  @addr: Address to put into receive address register
1633  *  @vmdq: VMDq "set" or "pool" index
1634  *  @enable_addr: set flag that address is active
1635  *
1636  *  Puts an ethernet address into a receive address register.
1637  **/
1638 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1639                           u32 enable_addr)
1640 {
1641 	u32 rar_low, rar_high;
1642 	u32 rar_entries = hw->mac.num_rar_entries;
1643 
1644 	/* Make sure we are using a valid rar index range */
1645 	if (index >= rar_entries) {
1646 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1647 		return IXGBE_ERR_INVALID_ARGUMENT;
1648 	}
1649 
1650 	/* setup VMDq pool selection before this RAR gets enabled */
1651 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1652 
1653 	/*
1654 	 * HW expects these in little endian so we reverse the byte
1655 	 * order from network order (big endian) to little endian
1656 	 */
1657 	rar_low = ((u32)addr[0] |
1658 		   ((u32)addr[1] << 8) |
1659 		   ((u32)addr[2] << 16) |
1660 		   ((u32)addr[3] << 24));
1661 	/*
1662 	 * Some parts put the VMDq setting in the extra RAH bits,
1663 	 * so save everything except the lower 16 bits that hold part
1664 	 * of the address and the address valid bit.
1665 	 */
1666 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1667 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1668 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1669 
1670 	if (enable_addr != 0)
1671 		rar_high |= IXGBE_RAH_AV;
1672 
1673 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1674 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1675 
1676 	return 0;
1677 }
1678 
1679 /**
1680  *  ixgbe_clear_rar_generic - Remove Rx address register
1681  *  @hw: pointer to hardware structure
1682  *  @index: Receive address register to write
1683  *
1684  *  Clears an ethernet address from a receive address register.
1685  **/
1686 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1687 {
1688 	u32 rar_high;
1689 	u32 rar_entries = hw->mac.num_rar_entries;
1690 
1691 	/* Make sure we are using a valid rar index range */
1692 	if (index >= rar_entries) {
1693 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1694 		return IXGBE_ERR_INVALID_ARGUMENT;
1695 	}
1696 
1697 	/*
1698 	 * Some parts put the VMDq setting in the extra RAH bits,
1699 	 * so save everything except the lower 16 bits that hold part
1700 	 * of the address and the address valid bit.
1701 	 */
1702 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1703 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1704 
1705 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1706 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1707 
1708 	/* clear VMDq pool/queue selection for this RAR */
1709 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1710 
1711 	return 0;
1712 }
1713 
1714 /**
1715  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1716  *  @hw: pointer to hardware structure
1717  *
1718  *  Places the MAC address in receive address register 0 and clears the rest
1719  *  of the receive address registers. Clears the multicast table. Assumes
1720  *  the receiver is in reset when the routine is called.
1721  **/
1722 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1723 {
1724 	u32 i;
1725 	u32 rar_entries = hw->mac.num_rar_entries;
1726 
1727 	/*
1728 	 * If the current mac address is valid, assume it is a software override
1729 	 * to the permanent address.
1730 	 * Otherwise, use the permanent address from the eeprom.
1731 	 */
1732 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1733 	    IXGBE_ERR_INVALID_MAC_ADDR) {
1734 		/* Get the MAC address from the RAR0 for later reference */
1735 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1736 
1737 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1738 	} else {
1739 		/* Setup the receive address. */
1740 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1741 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1742 
1743 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1744 
1745 		/*  clear VMDq pool/queue selection for RAR 0 */
1746 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1747 	}
1748 	hw->addr_ctrl.overflow_promisc = 0;
1749 
1750 	hw->addr_ctrl.rar_used_count = 1;
1751 
1752 	/* Zero out the other receive addresses. */
1753 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1754 	for (i = 1; i < rar_entries; i++) {
1755 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1756 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1757 	}
1758 
1759 	/* Clear the MTA */
1760 	hw->addr_ctrl.mta_in_use = 0;
1761 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1762 
1763 	hw_dbg(hw, " Clearing MTA\n");
1764 	for (i = 0; i < hw->mac.mcft_size; i++)
1765 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1766 
1767 	if (hw->mac.ops.init_uta_tables)
1768 		hw->mac.ops.init_uta_tables(hw);
1769 
1770 	return 0;
1771 }
1772 
1773 /**
1774  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1775  *  @hw: pointer to hardware structure
1776  *  @mc_addr: the multicast address
1777  *
1778  *  Extracts the 12 bits, from a multicast address, to determine which
1779  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1780  *  incoming rx multicast addresses, to determine the bit-vector to check in
1781  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1782  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1783  *  to mc_filter_type.
1784  **/
1785 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1786 {
1787 	u32 vector = 0;
1788 
1789 	switch (hw->mac.mc_filter_type) {
1790 	case 0:   /* use bits [47:36] of the address */
1791 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1792 		break;
1793 	case 1:   /* use bits [46:35] of the address */
1794 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1795 		break;
1796 	case 2:   /* use bits [45:34] of the address */
1797 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1798 		break;
1799 	case 3:   /* use bits [43:32] of the address */
1800 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1801 		break;
1802 	default:  /* Invalid mc_filter_type */
1803 		hw_dbg(hw, "MC filter type param set incorrectly\n");
1804 		break;
1805 	}
1806 
1807 	/* vector can only be 12-bits or boundary will be exceeded */
1808 	vector &= 0xFFF;
1809 	return vector;
1810 }
1811 
1812 /**
1813  *  ixgbe_set_mta - Set bit-vector in multicast table
1814  *  @hw: pointer to hardware structure
1815  *  @hash_value: Multicast address hash value
1816  *
1817  *  Sets the bit-vector in the multicast table.
1818  **/
1819 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1820 {
1821 	u32 vector;
1822 	u32 vector_bit;
1823 	u32 vector_reg;
1824 
1825 	hw->addr_ctrl.mta_in_use++;
1826 
1827 	vector = ixgbe_mta_vector(hw, mc_addr);
1828 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1829 
1830 	/*
1831 	 * The MTA is a register array of 128 32-bit registers. It is treated
1832 	 * like an array of 4096 bits.  We want to set bit
1833 	 * BitArray[vector_value]. So we figure out what register the bit is
1834 	 * in, read it, OR in the new bit, then write back the new value.  The
1835 	 * register is determined by the upper 7 bits of the vector value and
1836 	 * the bit within that register are determined by the lower 5 bits of
1837 	 * the value.
1838 	 */
1839 	vector_reg = (vector >> 5) & 0x7F;
1840 	vector_bit = vector & 0x1F;
1841 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1842 }
1843 
1844 /**
1845  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1846  *  @hw: pointer to hardware structure
1847  *  @netdev: pointer to net device structure
1848  *
1849  *  The given list replaces any existing list. Clears the MC addrs from receive
1850  *  address registers and the multicast table. Uses unused receive address
1851  *  registers for the first multicast addresses, and hashes the rest into the
1852  *  multicast table.
1853  **/
1854 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1855 				      struct net_device *netdev)
1856 {
1857 	struct netdev_hw_addr *ha;
1858 	u32 i;
1859 
1860 	/*
1861 	 * Set the new number of MC addresses that we are being requested to
1862 	 * use.
1863 	 */
1864 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1865 	hw->addr_ctrl.mta_in_use = 0;
1866 
1867 	/* Clear mta_shadow */
1868 	hw_dbg(hw, " Clearing MTA\n");
1869 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
1870 
1871 	/* Update mta shadow */
1872 	netdev_for_each_mc_addr(ha, netdev) {
1873 		hw_dbg(hw, " Adding the multicast addresses:\n");
1874 		ixgbe_set_mta(hw, ha->addr);
1875 	}
1876 
1877 	/* Enable mta */
1878 	for (i = 0; i < hw->mac.mcft_size; i++)
1879 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
1880 				      hw->mac.mta_shadow[i]);
1881 
1882 	if (hw->addr_ctrl.mta_in_use > 0)
1883 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1884 		                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1885 
1886 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
1887 	return 0;
1888 }
1889 
1890 /**
1891  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
1892  *  @hw: pointer to hardware structure
1893  *
1894  *  Enables multicast address in RAR and the use of the multicast hash table.
1895  **/
1896 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
1897 {
1898 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1899 
1900 	if (a->mta_in_use > 0)
1901 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
1902 		                hw->mac.mc_filter_type);
1903 
1904 	return 0;
1905 }
1906 
1907 /**
1908  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
1909  *  @hw: pointer to hardware structure
1910  *
1911  *  Disables multicast address in RAR and the use of the multicast hash table.
1912  **/
1913 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
1914 {
1915 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1916 
1917 	if (a->mta_in_use > 0)
1918 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1919 
1920 	return 0;
1921 }
1922 
1923 /**
1924  *  ixgbe_fc_enable_generic - Enable flow control
1925  *  @hw: pointer to hardware structure
1926  *  @packetbuf_num: packet buffer number (0-7)
1927  *
1928  *  Enable flow control according to the current settings.
1929  **/
1930 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
1931 {
1932 	s32 ret_val = 0;
1933 	u32 mflcn_reg, fccfg_reg;
1934 	u32 reg;
1935 	u32 fcrtl, fcrth;
1936 
1937 #ifdef CONFIG_DCB
1938 	if (hw->fc.requested_mode == ixgbe_fc_pfc)
1939 		goto out;
1940 
1941 #endif /* CONFIG_DCB */
1942 	/* Negotiate the fc mode to use */
1943 	ret_val = ixgbe_fc_autoneg(hw);
1944 	if (ret_val == IXGBE_ERR_FLOW_CONTROL)
1945 		goto out;
1946 
1947 	/* Disable any previous flow control settings */
1948 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
1949 	mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
1950 
1951 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
1952 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
1953 
1954 	/*
1955 	 * The possible values of fc.current_mode are:
1956 	 * 0: Flow control is completely disabled
1957 	 * 1: Rx flow control is enabled (we can receive pause frames,
1958 	 *    but not send pause frames).
1959 	 * 2: Tx flow control is enabled (we can send pause frames but
1960 	 *    we do not support receiving pause frames).
1961 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1962 #ifdef CONFIG_DCB
1963 	 * 4: Priority Flow Control is enabled.
1964 #endif
1965 	 * other: Invalid.
1966 	 */
1967 	switch (hw->fc.current_mode) {
1968 	case ixgbe_fc_none:
1969 		/*
1970 		 * Flow control is disabled by software override or autoneg.
1971 		 * The code below will actually disable it in the HW.
1972 		 */
1973 		break;
1974 	case ixgbe_fc_rx_pause:
1975 		/*
1976 		 * Rx Flow control is enabled and Tx Flow control is
1977 		 * disabled by software override. Since there really
1978 		 * isn't a way to advertise that we are capable of RX
1979 		 * Pause ONLY, we will advertise that we support both
1980 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
1981 		 * disable the adapter's ability to send PAUSE frames.
1982 		 */
1983 		mflcn_reg |= IXGBE_MFLCN_RFCE;
1984 		break;
1985 	case ixgbe_fc_tx_pause:
1986 		/*
1987 		 * Tx Flow control is enabled, and Rx Flow control is
1988 		 * disabled by software override.
1989 		 */
1990 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1991 		break;
1992 	case ixgbe_fc_full:
1993 		/* Flow control (both Rx and Tx) is enabled by SW override. */
1994 		mflcn_reg |= IXGBE_MFLCN_RFCE;
1995 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1996 		break;
1997 #ifdef CONFIG_DCB
1998 	case ixgbe_fc_pfc:
1999 		goto out;
2000 		break;
2001 #endif /* CONFIG_DCB */
2002 	default:
2003 		hw_dbg(hw, "Flow control param set incorrectly\n");
2004 		ret_val = IXGBE_ERR_CONFIG;
2005 		goto out;
2006 		break;
2007 	}
2008 
2009 	/* Set 802.3x based flow control settings. */
2010 	mflcn_reg |= IXGBE_MFLCN_DPF;
2011 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2012 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2013 
2014 	fcrth = hw->fc.high_water[packetbuf_num] << 10;
2015 	fcrtl = hw->fc.low_water << 10;
2016 
2017 	if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
2018 		fcrth |= IXGBE_FCRTH_FCEN;
2019 		if (hw->fc.send_xon)
2020 			fcrtl |= IXGBE_FCRTL_XONE;
2021 	}
2022 
2023 	IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), fcrth);
2024 	IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), fcrtl);
2025 
2026 	/* Configure pause time (2 TCs per register) */
2027 	reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
2028 	if ((packetbuf_num & 1) == 0)
2029 		reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
2030 	else
2031 		reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
2032 	IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
2033 
2034 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
2035 
2036 out:
2037 	return ret_val;
2038 }
2039 
2040 /**
2041  *  ixgbe_fc_autoneg - Configure flow control
2042  *  @hw: pointer to hardware structure
2043  *
2044  *  Compares our advertised flow control capabilities to those advertised by
2045  *  our link partner, and determines the proper flow control mode to use.
2046  **/
2047 s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2048 {
2049 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2050 	ixgbe_link_speed speed;
2051 	bool link_up;
2052 
2053 	if (hw->fc.disable_fc_autoneg)
2054 		goto out;
2055 
2056 	/*
2057 	 * AN should have completed when the cable was plugged in.
2058 	 * Look for reasons to bail out.  Bail out if:
2059 	 * - FC autoneg is disabled, or if
2060 	 * - link is not up.
2061 	 *
2062 	 * Since we're being called from an LSC, link is already known to be up.
2063 	 * So use link_up_wait_to_complete=false.
2064 	 */
2065 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2066 	if (!link_up) {
2067 		ret_val = IXGBE_ERR_FLOW_CONTROL;
2068 		goto out;
2069 	}
2070 
2071 	switch (hw->phy.media_type) {
2072 	/* Autoneg flow control on fiber adapters */
2073 	case ixgbe_media_type_fiber:
2074 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2075 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2076 		break;
2077 
2078 	/* Autoneg flow control on backplane adapters */
2079 	case ixgbe_media_type_backplane:
2080 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2081 		break;
2082 
2083 	/* Autoneg flow control on copper adapters */
2084 	case ixgbe_media_type_copper:
2085 		if (ixgbe_device_supports_autoneg_fc(hw) == 0)
2086 			ret_val = ixgbe_fc_autoneg_copper(hw);
2087 		break;
2088 
2089 	default:
2090 		break;
2091 	}
2092 
2093 out:
2094 	if (ret_val == 0) {
2095 		hw->fc.fc_was_autonegged = true;
2096 	} else {
2097 		hw->fc.fc_was_autonegged = false;
2098 		hw->fc.current_mode = hw->fc.requested_mode;
2099 	}
2100 	return ret_val;
2101 }
2102 
2103 /**
2104  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2105  *  @hw: pointer to hardware structure
2106  *
2107  *  Enable flow control according on 1 gig fiber.
2108  **/
2109 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2110 {
2111 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2112 	s32 ret_val;
2113 
2114 	/*
2115 	 * On multispeed fiber at 1g, bail out if
2116 	 * - link is up but AN did not complete, or if
2117 	 * - link is up and AN completed but timed out
2118 	 */
2119 
2120 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2121 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2122 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2123 		ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2124 		goto out;
2125 	}
2126 
2127 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2128 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2129 
2130 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2131 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2132 			       IXGBE_PCS1GANA_ASM_PAUSE,
2133 			       IXGBE_PCS1GANA_SYM_PAUSE,
2134 			       IXGBE_PCS1GANA_ASM_PAUSE);
2135 
2136 out:
2137 	return ret_val;
2138 }
2139 
2140 /**
2141  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2142  *  @hw: pointer to hardware structure
2143  *
2144  *  Enable flow control according to IEEE clause 37.
2145  **/
2146 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2147 {
2148 	u32 links2, anlp1_reg, autoc_reg, links;
2149 	s32 ret_val;
2150 
2151 	/*
2152 	 * On backplane, bail out if
2153 	 * - backplane autoneg was not completed, or if
2154 	 * - we are 82599 and link partner is not AN enabled
2155 	 */
2156 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2157 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2158 		hw->fc.fc_was_autonegged = false;
2159 		hw->fc.current_mode = hw->fc.requested_mode;
2160 		ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2161 		goto out;
2162 	}
2163 
2164 	if (hw->mac.type == ixgbe_mac_82599EB) {
2165 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2166 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2167 			hw->fc.fc_was_autonegged = false;
2168 			hw->fc.current_mode = hw->fc.requested_mode;
2169 			ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2170 			goto out;
2171 		}
2172 	}
2173 	/*
2174 	 * Read the 10g AN autoc and LP ability registers and resolve
2175 	 * local flow control settings accordingly
2176 	 */
2177 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2178 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2179 
2180 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2181 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2182 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2183 
2184 out:
2185 	return ret_val;
2186 }
2187 
2188 /**
2189  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2190  *  @hw: pointer to hardware structure
2191  *
2192  *  Enable flow control according to IEEE clause 37.
2193  **/
2194 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2195 {
2196 	u16 technology_ability_reg = 0;
2197 	u16 lp_technology_ability_reg = 0;
2198 
2199 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2200 			     MDIO_MMD_AN,
2201 			     &technology_ability_reg);
2202 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2203 			     MDIO_MMD_AN,
2204 			     &lp_technology_ability_reg);
2205 
2206 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2207 				  (u32)lp_technology_ability_reg,
2208 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2209 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2210 }
2211 
2212 /**
2213  *  ixgbe_negotiate_fc - Negotiate flow control
2214  *  @hw: pointer to hardware structure
2215  *  @adv_reg: flow control advertised settings
2216  *  @lp_reg: link partner's flow control settings
2217  *  @adv_sym: symmetric pause bit in advertisement
2218  *  @adv_asm: asymmetric pause bit in advertisement
2219  *  @lp_sym: symmetric pause bit in link partner advertisement
2220  *  @lp_asm: asymmetric pause bit in link partner advertisement
2221  *
2222  *  Find the intersection between advertised settings and link partner's
2223  *  advertised settings
2224  **/
2225 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2226 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2227 {
2228 	if ((!(adv_reg)) ||  (!(lp_reg)))
2229 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2230 
2231 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2232 		/*
2233 		 * Now we need to check if the user selected Rx ONLY
2234 		 * of pause frames.  In this case, we had to advertise
2235 		 * FULL flow control because we could not advertise RX
2236 		 * ONLY. Hence, we must now check to see if we need to
2237 		 * turn OFF the TRANSMISSION of PAUSE frames.
2238 		 */
2239 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2240 			hw->fc.current_mode = ixgbe_fc_full;
2241 			hw_dbg(hw, "Flow Control = FULL.\n");
2242 		} else {
2243 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2244 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2245 		}
2246 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2247 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2248 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2249 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2250 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2251 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2252 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2253 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2254 	} else {
2255 		hw->fc.current_mode = ixgbe_fc_none;
2256 		hw_dbg(hw, "Flow Control = NONE.\n");
2257 	}
2258 	return 0;
2259 }
2260 
2261 /**
2262  *  ixgbe_setup_fc - Set up flow control
2263  *  @hw: pointer to hardware structure
2264  *
2265  *  Called at init time to set up flow control.
2266  **/
2267 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
2268 {
2269 	s32 ret_val = 0;
2270 	u32 reg = 0, reg_bp = 0;
2271 	u16 reg_cu = 0;
2272 
2273 #ifdef CONFIG_DCB
2274 	if (hw->fc.requested_mode == ixgbe_fc_pfc) {
2275 		hw->fc.current_mode = hw->fc.requested_mode;
2276 		goto out;
2277 	}
2278 
2279 #endif /* CONFIG_DCB */
2280 	/* Validate the packetbuf configuration */
2281 	if (packetbuf_num < 0 || packetbuf_num > 7) {
2282 		hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
2283 		       "is 0-7\n", packetbuf_num);
2284 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2285 		goto out;
2286 	}
2287 
2288 	/*
2289 	 * Validate the water mark configuration.  Zero water marks are invalid
2290 	 * because it causes the controller to just blast out fc packets.
2291 	 */
2292 	if (!hw->fc.low_water ||
2293 	    !hw->fc.high_water[packetbuf_num] ||
2294 	    !hw->fc.pause_time) {
2295 		hw_dbg(hw, "Invalid water mark configuration\n");
2296 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2297 		goto out;
2298 	}
2299 
2300 	/*
2301 	 * Validate the requested mode.  Strict IEEE mode does not allow
2302 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
2303 	 */
2304 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
2305 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict "
2306 		       "IEEE mode\n");
2307 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2308 		goto out;
2309 	}
2310 
2311 	/*
2312 	 * 10gig parts do not have a word in the EEPROM to determine the
2313 	 * default flow control setting, so we explicitly set it to full.
2314 	 */
2315 	if (hw->fc.requested_mode == ixgbe_fc_default)
2316 		hw->fc.requested_mode = ixgbe_fc_full;
2317 
2318 	/*
2319 	 * Set up the 1G and 10G flow control advertisement registers so the
2320 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
2321 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
2322 	 */
2323 
2324 	switch (hw->phy.media_type) {
2325 	case ixgbe_media_type_fiber:
2326 	case ixgbe_media_type_backplane:
2327 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2328 		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2329 		break;
2330 
2331 	case ixgbe_media_type_copper:
2332 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2333 					MDIO_MMD_AN, &reg_cu);
2334 		break;
2335 
2336 	default:
2337 		;
2338 	}
2339 
2340 	/*
2341 	 * The possible values of fc.requested_mode are:
2342 	 * 0: Flow control is completely disabled
2343 	 * 1: Rx flow control is enabled (we can receive pause frames,
2344 	 *    but not send pause frames).
2345 	 * 2: Tx flow control is enabled (we can send pause frames but
2346 	 *    we do not support receiving pause frames).
2347 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2348 #ifdef CONFIG_DCB
2349 	 * 4: Priority Flow Control is enabled.
2350 #endif
2351 	 * other: Invalid.
2352 	 */
2353 	switch (hw->fc.requested_mode) {
2354 	case ixgbe_fc_none:
2355 		/* Flow control completely disabled by software override. */
2356 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2357 		if (hw->phy.media_type == ixgbe_media_type_backplane)
2358 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
2359 				    IXGBE_AUTOC_ASM_PAUSE);
2360 		else if (hw->phy.media_type == ixgbe_media_type_copper)
2361 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2362 		break;
2363 	case ixgbe_fc_rx_pause:
2364 		/*
2365 		 * Rx Flow control is enabled and Tx Flow control is
2366 		 * disabled by software override. Since there really
2367 		 * isn't a way to advertise that we are capable of RX
2368 		 * Pause ONLY, we will advertise that we support both
2369 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2370 		 * disable the adapter's ability to send PAUSE frames.
2371 		 */
2372 		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2373 		if (hw->phy.media_type == ixgbe_media_type_backplane)
2374 			reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2375 				   IXGBE_AUTOC_ASM_PAUSE);
2376 		else if (hw->phy.media_type == ixgbe_media_type_copper)
2377 			reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2378 		break;
2379 	case ixgbe_fc_tx_pause:
2380 		/*
2381 		 * Tx Flow control is enabled, and Rx Flow control is
2382 		 * disabled by software override.
2383 		 */
2384 		reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
2385 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
2386 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
2387 			reg_bp |= (IXGBE_AUTOC_ASM_PAUSE);
2388 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE);
2389 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
2390 			reg_cu |= (IXGBE_TAF_ASM_PAUSE);
2391 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE);
2392 		}
2393 		break;
2394 	case ixgbe_fc_full:
2395 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2396 		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2397 		if (hw->phy.media_type == ixgbe_media_type_backplane)
2398 			reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2399 				   IXGBE_AUTOC_ASM_PAUSE);
2400 		else if (hw->phy.media_type == ixgbe_media_type_copper)
2401 			reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2402 		break;
2403 #ifdef CONFIG_DCB
2404 	case ixgbe_fc_pfc:
2405 		goto out;
2406 		break;
2407 #endif /* CONFIG_DCB */
2408 	default:
2409 		hw_dbg(hw, "Flow control param set incorrectly\n");
2410 		ret_val = IXGBE_ERR_CONFIG;
2411 		goto out;
2412 		break;
2413 	}
2414 
2415 	if (hw->mac.type != ixgbe_mac_X540) {
2416 		/*
2417 		 * Enable auto-negotiation between the MAC & PHY;
2418 		 * the MAC will advertise clause 37 flow control.
2419 		 */
2420 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
2421 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
2422 
2423 		/* Disable AN timeout */
2424 		if (hw->fc.strict_ieee)
2425 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
2426 
2427 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
2428 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
2429 	}
2430 
2431 	/*
2432 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
2433 	 * and copper. There is no need to set the PCS1GCTL register.
2434 	 *
2435 	 */
2436 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
2437 		reg_bp |= IXGBE_AUTOC_AN_RESTART;
2438 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
2439 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
2440 		    (ixgbe_device_supports_autoneg_fc(hw) == 0)) {
2441 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
2442 				      MDIO_MMD_AN, reg_cu);
2443 	}
2444 
2445 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
2446 out:
2447 	return ret_val;
2448 }
2449 
2450 /**
2451  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2452  *  @hw: pointer to hardware structure
2453  *
2454  *  Disables PCI-Express master access and verifies there are no pending
2455  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2456  *  bit hasn't caused the master requests to be disabled, else 0
2457  *  is returned signifying master requests disabled.
2458  **/
2459 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2460 {
2461 	struct ixgbe_adapter *adapter = hw->back;
2462 	s32 status = 0;
2463 	u32 i;
2464 	u16 value;
2465 
2466 	/* Always set this bit to ensure any future transactions are blocked */
2467 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2468 
2469 	/* Exit if master requests are blocked */
2470 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2471 		goto out;
2472 
2473 	/* Poll for master request bit to clear */
2474 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2475 		udelay(100);
2476 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2477 			goto out;
2478 	}
2479 
2480 	/*
2481 	 * Two consecutive resets are required via CTRL.RST per datasheet
2482 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2483 	 * of this need.  The first reset prevents new master requests from
2484 	 * being issued by our device.  We then must wait 1usec or more for any
2485 	 * remaining completions from the PCIe bus to trickle in, and then reset
2486 	 * again to clear out any effects they may have had on our device.
2487 	 */
2488 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2489 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2490 
2491 	/*
2492 	 * Before proceeding, make sure that the PCIe block does not have
2493 	 * transactions pending.
2494 	 */
2495 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2496 		udelay(100);
2497 		pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
2498 							 &value);
2499 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2500 			goto out;
2501 	}
2502 
2503 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2504 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2505 
2506 out:
2507 	return status;
2508 }
2509 
2510 /**
2511  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2512  *  @hw: pointer to hardware structure
2513  *  @mask: Mask to specify which semaphore to acquire
2514  *
2515  *  Acquires the SWFW semaphore through the GSSR register for the specified
2516  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2517  **/
2518 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2519 {
2520 	u32 gssr;
2521 	u32 swmask = mask;
2522 	u32 fwmask = mask << 5;
2523 	s32 timeout = 200;
2524 
2525 	while (timeout) {
2526 		/*
2527 		 * SW EEPROM semaphore bit is used for access to all
2528 		 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2529 		 */
2530 		if (ixgbe_get_eeprom_semaphore(hw))
2531 			return IXGBE_ERR_SWFW_SYNC;
2532 
2533 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2534 		if (!(gssr & (fwmask | swmask)))
2535 			break;
2536 
2537 		/*
2538 		 * Firmware currently using resource (fwmask) or other software
2539 		 * thread currently using resource (swmask)
2540 		 */
2541 		ixgbe_release_eeprom_semaphore(hw);
2542 		usleep_range(5000, 10000);
2543 		timeout--;
2544 	}
2545 
2546 	if (!timeout) {
2547 		hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2548 		return IXGBE_ERR_SWFW_SYNC;
2549 	}
2550 
2551 	gssr |= swmask;
2552 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2553 
2554 	ixgbe_release_eeprom_semaphore(hw);
2555 	return 0;
2556 }
2557 
2558 /**
2559  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2560  *  @hw: pointer to hardware structure
2561  *  @mask: Mask to specify which semaphore to release
2562  *
2563  *  Releases the SWFW semaphore through the GSSR register for the specified
2564  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2565  **/
2566 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2567 {
2568 	u32 gssr;
2569 	u32 swmask = mask;
2570 
2571 	ixgbe_get_eeprom_semaphore(hw);
2572 
2573 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2574 	gssr &= ~swmask;
2575 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2576 
2577 	ixgbe_release_eeprom_semaphore(hw);
2578 }
2579 
2580 /**
2581  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2582  *  @hw: pointer to hardware structure
2583  *  @regval: register value to write to RXCTRL
2584  *
2585  *  Enables the Rx DMA unit
2586  **/
2587 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2588 {
2589 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2590 
2591 	return 0;
2592 }
2593 
2594 /**
2595  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2596  *  @hw: pointer to hardware structure
2597  *  @index: led number to blink
2598  **/
2599 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2600 {
2601 	ixgbe_link_speed speed = 0;
2602 	bool link_up = 0;
2603 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2604 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2605 
2606 	/*
2607 	 * Link must be up to auto-blink the LEDs;
2608 	 * Force it if link is down.
2609 	 */
2610 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2611 
2612 	if (!link_up) {
2613 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2614 		autoc_reg |= IXGBE_AUTOC_FLU;
2615 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2616 		IXGBE_WRITE_FLUSH(hw);
2617 		usleep_range(10000, 20000);
2618 	}
2619 
2620 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2621 	led_reg |= IXGBE_LED_BLINK(index);
2622 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2623 	IXGBE_WRITE_FLUSH(hw);
2624 
2625 	return 0;
2626 }
2627 
2628 /**
2629  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2630  *  @hw: pointer to hardware structure
2631  *  @index: led number to stop blinking
2632  **/
2633 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2634 {
2635 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2636 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2637 
2638 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2639 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2640 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2641 
2642 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2643 	led_reg &= ~IXGBE_LED_BLINK(index);
2644 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2645 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2646 	IXGBE_WRITE_FLUSH(hw);
2647 
2648 	return 0;
2649 }
2650 
2651 /**
2652  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2653  *  @hw: pointer to hardware structure
2654  *  @san_mac_offset: SAN MAC address offset
2655  *
2656  *  This function will read the EEPROM location for the SAN MAC address
2657  *  pointer, and returns the value at that location.  This is used in both
2658  *  get and set mac_addr routines.
2659  **/
2660 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2661                                         u16 *san_mac_offset)
2662 {
2663 	/*
2664 	 * First read the EEPROM pointer to see if the MAC addresses are
2665 	 * available.
2666 	 */
2667 	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2668 
2669 	return 0;
2670 }
2671 
2672 /**
2673  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2674  *  @hw: pointer to hardware structure
2675  *  @san_mac_addr: SAN MAC address
2676  *
2677  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2678  *  per-port, so set_lan_id() must be called before reading the addresses.
2679  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2680  *  upon for non-SFP connections, so we must call it here.
2681  **/
2682 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2683 {
2684 	u16 san_mac_data, san_mac_offset;
2685 	u8 i;
2686 
2687 	/*
2688 	 * First read the EEPROM pointer to see if the MAC addresses are
2689 	 * available.  If they're not, no point in calling set_lan_id() here.
2690 	 */
2691 	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2692 
2693 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2694 		/*
2695 		 * No addresses available in this EEPROM.  It's not an
2696 		 * error though, so just wipe the local address and return.
2697 		 */
2698 		for (i = 0; i < 6; i++)
2699 			san_mac_addr[i] = 0xFF;
2700 
2701 		goto san_mac_addr_out;
2702 	}
2703 
2704 	/* make sure we know which port we need to program */
2705 	hw->mac.ops.set_lan_id(hw);
2706 	/* apply the port offset to the address offset */
2707 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2708 	                 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2709 	for (i = 0; i < 3; i++) {
2710 		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2711 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2712 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2713 		san_mac_offset++;
2714 	}
2715 
2716 san_mac_addr_out:
2717 	return 0;
2718 }
2719 
2720 /**
2721  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2722  *  @hw: pointer to hardware structure
2723  *
2724  *  Read PCIe configuration space, and get the MSI-X vector count from
2725  *  the capabilities table.
2726  **/
2727 u32 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2728 {
2729 	struct ixgbe_adapter *adapter = hw->back;
2730 	u16 msix_count;
2731 	pci_read_config_word(adapter->pdev, IXGBE_PCIE_MSIX_82599_CAPS,
2732 	                     &msix_count);
2733 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2734 
2735 	/* MSI-X count is zero-based in HW, so increment to give proper value */
2736 	msix_count++;
2737 
2738 	return msix_count;
2739 }
2740 
2741 /**
2742  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2743  *  @hw: pointer to hardware struct
2744  *  @rar: receive address register index to disassociate
2745  *  @vmdq: VMDq pool index to remove from the rar
2746  **/
2747 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2748 {
2749 	u32 mpsar_lo, mpsar_hi;
2750 	u32 rar_entries = hw->mac.num_rar_entries;
2751 
2752 	/* Make sure we are using a valid rar index range */
2753 	if (rar >= rar_entries) {
2754 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2755 		return IXGBE_ERR_INVALID_ARGUMENT;
2756 	}
2757 
2758 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2759 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2760 
2761 	if (!mpsar_lo && !mpsar_hi)
2762 		goto done;
2763 
2764 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2765 		if (mpsar_lo) {
2766 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2767 			mpsar_lo = 0;
2768 		}
2769 		if (mpsar_hi) {
2770 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2771 			mpsar_hi = 0;
2772 		}
2773 	} else if (vmdq < 32) {
2774 		mpsar_lo &= ~(1 << vmdq);
2775 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2776 	} else {
2777 		mpsar_hi &= ~(1 << (vmdq - 32));
2778 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2779 	}
2780 
2781 	/* was that the last pool using this rar? */
2782 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2783 		hw->mac.ops.clear_rar(hw, rar);
2784 done:
2785 	return 0;
2786 }
2787 
2788 /**
2789  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2790  *  @hw: pointer to hardware struct
2791  *  @rar: receive address register index to associate with a VMDq index
2792  *  @vmdq: VMDq pool index
2793  **/
2794 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2795 {
2796 	u32 mpsar;
2797 	u32 rar_entries = hw->mac.num_rar_entries;
2798 
2799 	/* Make sure we are using a valid rar index range */
2800 	if (rar >= rar_entries) {
2801 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2802 		return IXGBE_ERR_INVALID_ARGUMENT;
2803 	}
2804 
2805 	if (vmdq < 32) {
2806 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2807 		mpsar |= 1 << vmdq;
2808 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2809 	} else {
2810 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2811 		mpsar |= 1 << (vmdq - 32);
2812 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2813 	}
2814 	return 0;
2815 }
2816 
2817 /**
2818  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2819  *  @hw: pointer to hardware structure
2820  **/
2821 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2822 {
2823 	int i;
2824 
2825 	for (i = 0; i < 128; i++)
2826 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2827 
2828 	return 0;
2829 }
2830 
2831 /**
2832  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2833  *  @hw: pointer to hardware structure
2834  *  @vlan: VLAN id to write to VLAN filter
2835  *
2836  *  return the VLVF index where this VLAN id should be placed
2837  *
2838  **/
2839 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2840 {
2841 	u32 bits = 0;
2842 	u32 first_empty_slot = 0;
2843 	s32 regindex;
2844 
2845 	/* short cut the special case */
2846 	if (vlan == 0)
2847 		return 0;
2848 
2849 	/*
2850 	  * Search for the vlan id in the VLVF entries. Save off the first empty
2851 	  * slot found along the way
2852 	  */
2853 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2854 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2855 		if (!bits && !(first_empty_slot))
2856 			first_empty_slot = regindex;
2857 		else if ((bits & 0x0FFF) == vlan)
2858 			break;
2859 	}
2860 
2861 	/*
2862 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2863 	  * in the VLVF. Else use the first empty VLVF register for this
2864 	  * vlan id.
2865 	  */
2866 	if (regindex >= IXGBE_VLVF_ENTRIES) {
2867 		if (first_empty_slot)
2868 			regindex = first_empty_slot;
2869 		else {
2870 			hw_dbg(hw, "No space in VLVF.\n");
2871 			regindex = IXGBE_ERR_NO_SPACE;
2872 		}
2873 	}
2874 
2875 	return regindex;
2876 }
2877 
2878 /**
2879  *  ixgbe_set_vfta_generic - Set VLAN filter table
2880  *  @hw: pointer to hardware structure
2881  *  @vlan: VLAN id to write to VLAN filter
2882  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2883  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
2884  *
2885  *  Turn on/off specified VLAN in the VLAN filter table.
2886  **/
2887 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2888                            bool vlan_on)
2889 {
2890 	s32 regindex;
2891 	u32 bitindex;
2892 	u32 vfta;
2893 	u32 bits;
2894 	u32 vt;
2895 	u32 targetbit;
2896 	bool vfta_changed = false;
2897 
2898 	if (vlan > 4095)
2899 		return IXGBE_ERR_PARAM;
2900 
2901 	/*
2902 	 * this is a 2 part operation - first the VFTA, then the
2903 	 * VLVF and VLVFB if VT Mode is set
2904 	 * We don't write the VFTA until we know the VLVF part succeeded.
2905 	 */
2906 
2907 	/* Part 1
2908 	 * The VFTA is a bitstring made up of 128 32-bit registers
2909 	 * that enable the particular VLAN id, much like the MTA:
2910 	 *    bits[11-5]: which register
2911 	 *    bits[4-0]:  which bit in the register
2912 	 */
2913 	regindex = (vlan >> 5) & 0x7F;
2914 	bitindex = vlan & 0x1F;
2915 	targetbit = (1 << bitindex);
2916 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
2917 
2918 	if (vlan_on) {
2919 		if (!(vfta & targetbit)) {
2920 			vfta |= targetbit;
2921 			vfta_changed = true;
2922 		}
2923 	} else {
2924 		if ((vfta & targetbit)) {
2925 			vfta &= ~targetbit;
2926 			vfta_changed = true;
2927 		}
2928 	}
2929 
2930 	/* Part 2
2931 	 * If VT Mode is set
2932 	 *   Either vlan_on
2933 	 *     make sure the vlan is in VLVF
2934 	 *     set the vind bit in the matching VLVFB
2935 	 *   Or !vlan_on
2936 	 *     clear the pool bit and possibly the vind
2937 	 */
2938 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
2939 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
2940 		s32 vlvf_index;
2941 
2942 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
2943 		if (vlvf_index < 0)
2944 			return vlvf_index;
2945 
2946 		if (vlan_on) {
2947 			/* set the pool bit */
2948 			if (vind < 32) {
2949 				bits = IXGBE_READ_REG(hw,
2950 						IXGBE_VLVFB(vlvf_index*2));
2951 				bits |= (1 << vind);
2952 				IXGBE_WRITE_REG(hw,
2953 						IXGBE_VLVFB(vlvf_index*2),
2954 						bits);
2955 			} else {
2956 				bits = IXGBE_READ_REG(hw,
2957 						IXGBE_VLVFB((vlvf_index*2)+1));
2958 				bits |= (1 << (vind-32));
2959 				IXGBE_WRITE_REG(hw,
2960 						IXGBE_VLVFB((vlvf_index*2)+1),
2961 						bits);
2962 			}
2963 		} else {
2964 			/* clear the pool bit */
2965 			if (vind < 32) {
2966 				bits = IXGBE_READ_REG(hw,
2967 						IXGBE_VLVFB(vlvf_index*2));
2968 				bits &= ~(1 << vind);
2969 				IXGBE_WRITE_REG(hw,
2970 						IXGBE_VLVFB(vlvf_index*2),
2971 						bits);
2972 				bits |= IXGBE_READ_REG(hw,
2973 						IXGBE_VLVFB((vlvf_index*2)+1));
2974 			} else {
2975 				bits = IXGBE_READ_REG(hw,
2976 						IXGBE_VLVFB((vlvf_index*2)+1));
2977 				bits &= ~(1 << (vind-32));
2978 				IXGBE_WRITE_REG(hw,
2979 						IXGBE_VLVFB((vlvf_index*2)+1),
2980 						bits);
2981 				bits |= IXGBE_READ_REG(hw,
2982 						IXGBE_VLVFB(vlvf_index*2));
2983 			}
2984 		}
2985 
2986 		/*
2987 		 * If there are still bits set in the VLVFB registers
2988 		 * for the VLAN ID indicated we need to see if the
2989 		 * caller is requesting that we clear the VFTA entry bit.
2990 		 * If the caller has requested that we clear the VFTA
2991 		 * entry bit but there are still pools/VFs using this VLAN
2992 		 * ID entry then ignore the request.  We're not worried
2993 		 * about the case where we're turning the VFTA VLAN ID
2994 		 * entry bit on, only when requested to turn it off as
2995 		 * there may be multiple pools and/or VFs using the
2996 		 * VLAN ID entry.  In that case we cannot clear the
2997 		 * VFTA bit until all pools/VFs using that VLAN ID have also
2998 		 * been cleared.  This will be indicated by "bits" being
2999 		 * zero.
3000 		 */
3001 		if (bits) {
3002 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3003 					(IXGBE_VLVF_VIEN | vlan));
3004 			if (!vlan_on) {
3005 				/* someone wants to clear the vfta entry
3006 				 * but some pools/VFs are still using it.
3007 				 * Ignore it. */
3008 				vfta_changed = false;
3009 			}
3010 		}
3011 		else
3012 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3013 	}
3014 
3015 	if (vfta_changed)
3016 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3017 
3018 	return 0;
3019 }
3020 
3021 /**
3022  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3023  *  @hw: pointer to hardware structure
3024  *
3025  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3026  **/
3027 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3028 {
3029 	u32 offset;
3030 
3031 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3032 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3033 
3034 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3035 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3036 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3037 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3038 	}
3039 
3040 	return 0;
3041 }
3042 
3043 /**
3044  *  ixgbe_check_mac_link_generic - Determine link and speed status
3045  *  @hw: pointer to hardware structure
3046  *  @speed: pointer to link speed
3047  *  @link_up: true when link is up
3048  *  @link_up_wait_to_complete: bool used to wait for link up or not
3049  *
3050  *  Reads the links register to determine if link is up and the current speed
3051  **/
3052 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3053 				 bool *link_up, bool link_up_wait_to_complete)
3054 {
3055 	u32 links_reg, links_orig;
3056 	u32 i;
3057 
3058 	/* clear the old state */
3059 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3060 
3061 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3062 
3063 	if (links_orig != links_reg) {
3064 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3065 		       links_orig, links_reg);
3066 	}
3067 
3068 	if (link_up_wait_to_complete) {
3069 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3070 			if (links_reg & IXGBE_LINKS_UP) {
3071 				*link_up = true;
3072 				break;
3073 			} else {
3074 				*link_up = false;
3075 			}
3076 			msleep(100);
3077 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3078 		}
3079 	} else {
3080 		if (links_reg & IXGBE_LINKS_UP)
3081 			*link_up = true;
3082 		else
3083 			*link_up = false;
3084 	}
3085 
3086 	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3087 	    IXGBE_LINKS_SPEED_10G_82599)
3088 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
3089 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3090 		 IXGBE_LINKS_SPEED_1G_82599)
3091 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3092 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3093 		 IXGBE_LINKS_SPEED_100_82599)
3094 		*speed = IXGBE_LINK_SPEED_100_FULL;
3095 	else
3096 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3097 
3098 	return 0;
3099 }
3100 
3101 /**
3102  *  ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from
3103  *  the EEPROM
3104  *  @hw: pointer to hardware structure
3105  *  @wwnn_prefix: the alternative WWNN prefix
3106  *  @wwpn_prefix: the alternative WWPN prefix
3107  *
3108  *  This function will read the EEPROM from the alternative SAN MAC address
3109  *  block to check the support for the alternative WWNN/WWPN prefix support.
3110  **/
3111 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3112                                         u16 *wwpn_prefix)
3113 {
3114 	u16 offset, caps;
3115 	u16 alt_san_mac_blk_offset;
3116 
3117 	/* clear output first */
3118 	*wwnn_prefix = 0xFFFF;
3119 	*wwpn_prefix = 0xFFFF;
3120 
3121 	/* check if alternative SAN MAC is supported */
3122 	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3123 	                    &alt_san_mac_blk_offset);
3124 
3125 	if ((alt_san_mac_blk_offset == 0) ||
3126 	    (alt_san_mac_blk_offset == 0xFFFF))
3127 		goto wwn_prefix_out;
3128 
3129 	/* check capability in alternative san mac address block */
3130 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3131 	hw->eeprom.ops.read(hw, offset, &caps);
3132 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3133 		goto wwn_prefix_out;
3134 
3135 	/* get the corresponding prefix for WWNN/WWPN */
3136 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3137 	hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3138 
3139 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3140 	hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3141 
3142 wwn_prefix_out:
3143 	return 0;
3144 }
3145 
3146 /**
3147  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
3148  *  control
3149  *  @hw: pointer to hardware structure
3150  *
3151  *  There are several phys that do not support autoneg flow control. This
3152  *  function check the device id to see if the associated phy supports
3153  *  autoneg flow control.
3154  **/
3155 static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
3156 {
3157 
3158 	switch (hw->device_id) {
3159 	case IXGBE_DEV_ID_X540T:
3160 		return 0;
3161 	case IXGBE_DEV_ID_82599_T3_LOM:
3162 		return 0;
3163 	default:
3164 		return IXGBE_ERR_FC_NOT_SUPPORTED;
3165 	}
3166 }
3167 
3168 /**
3169  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3170  *  @hw: pointer to hardware structure
3171  *  @enable: enable or disable switch for anti-spoofing
3172  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3173  *
3174  **/
3175 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3176 {
3177 	int j;
3178 	int pf_target_reg = pf >> 3;
3179 	int pf_target_shift = pf % 8;
3180 	u32 pfvfspoof = 0;
3181 
3182 	if (hw->mac.type == ixgbe_mac_82598EB)
3183 		return;
3184 
3185 	if (enable)
3186 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3187 
3188 	/*
3189 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3190 	 * MAC anti-spoof enables in each register array element.
3191 	 */
3192 	for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3193 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3194 
3195 	/* If not enabling anti-spoofing then done */
3196 	if (!enable)
3197 		return;
3198 
3199 	/*
3200 	 * The PF should be allowed to spoof so that it can support
3201 	 * emulation mode NICs.  Reset the bit assigned to the PF
3202 	 */
3203 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
3204 	pfvfspoof ^= (1 << pf_target_shift);
3205 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
3206 }
3207 
3208 /**
3209  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3210  *  @hw: pointer to hardware structure
3211  *  @enable: enable or disable switch for VLAN anti-spoofing
3212  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3213  *
3214  **/
3215 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3216 {
3217 	int vf_target_reg = vf >> 3;
3218 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3219 	u32 pfvfspoof;
3220 
3221 	if (hw->mac.type == ixgbe_mac_82598EB)
3222 		return;
3223 
3224 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3225 	if (enable)
3226 		pfvfspoof |= (1 << vf_target_shift);
3227 	else
3228 		pfvfspoof &= ~(1 << vf_target_shift);
3229 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3230 }
3231 
3232 /**
3233  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3234  *  @hw: pointer to hardware structure
3235  *  @device_caps: the EEPROM word with the extra device capabilities
3236  *
3237  *  This function will read the EEPROM location for the device capabilities,
3238  *  and return the word through device_caps.
3239  **/
3240 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3241 {
3242 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3243 
3244 	return 0;
3245 }
3246 
3247 /**
3248  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3249  * @hw: pointer to hardware structure
3250  * @num_pb: number of packet buffers to allocate
3251  * @headroom: reserve n KB of headroom
3252  * @strategy: packet buffer allocation strategy
3253  **/
3254 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3255 			     int num_pb,
3256 			     u32 headroom,
3257 			     int strategy)
3258 {
3259 	u32 pbsize = hw->mac.rx_pb_size;
3260 	int i = 0;
3261 	u32 rxpktsize, txpktsize, txpbthresh;
3262 
3263 	/* Reserve headroom */
3264 	pbsize -= headroom;
3265 
3266 	if (!num_pb)
3267 		num_pb = 1;
3268 
3269 	/* Divide remaining packet buffer space amongst the number
3270 	 * of packet buffers requested using supplied strategy.
3271 	 */
3272 	switch (strategy) {
3273 	case (PBA_STRATEGY_WEIGHTED):
3274 		/* pba_80_48 strategy weight first half of packet buffer with
3275 		 * 5/8 of the packet buffer space.
3276 		 */
3277 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3278 		pbsize -= rxpktsize * (num_pb / 2);
3279 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3280 		for (; i < (num_pb / 2); i++)
3281 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3282 		/* Fall through to configure remaining packet buffers */
3283 	case (PBA_STRATEGY_EQUAL):
3284 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3285 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3286 		for (; i < num_pb; i++)
3287 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3288 		break;
3289 	default:
3290 		break;
3291 	}
3292 
3293 	/*
3294 	 * Setup Tx packet buffer and threshold equally for all TCs
3295 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3296 	 * 10 since the largest packet we support is just over 9K.
3297 	 */
3298 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3299 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3300 	for (i = 0; i < num_pb; i++) {
3301 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3302 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3303 	}
3304 
3305 	/* Clear unused TCs, if any, to zero buffer size*/
3306 	for (; i < IXGBE_MAX_PB; i++) {
3307 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3308 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3309 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3310 	}
3311 }
3312 
3313 /**
3314  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3315  *  @buffer: pointer to EEPROM
3316  *  @length: size of EEPROM to calculate a checksum for
3317  *  Calculates the checksum for some buffer on a specified length.  The
3318  *  checksum calculated is returned.
3319  **/
3320 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3321 {
3322 	u32 i;
3323 	u8 sum = 0;
3324 
3325 	if (!buffer)
3326 		return 0;
3327 
3328 	for (i = 0; i < length; i++)
3329 		sum += buffer[i];
3330 
3331 	return (u8) (0 - sum);
3332 }
3333 
3334 /**
3335  *  ixgbe_host_interface_command - Issue command to manageability block
3336  *  @hw: pointer to the HW structure
3337  *  @buffer: contains the command to write and where the return status will
3338  *           be placed
3339  *  @lenght: lenght of buffer, must be multiple of 4 bytes
3340  *
3341  *  Communicates with the manageability block.  On success return 0
3342  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3343  **/
3344 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3345 					u32 length)
3346 {
3347 	u32 hicr, i, bi;
3348 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3349 	u8 buf_len, dword_len;
3350 
3351 	s32 ret_val = 0;
3352 
3353 	if (length == 0 || length & 0x3 ||
3354 	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3355 		hw_dbg(hw, "Buffer length failure.\n");
3356 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3357 		goto out;
3358 	}
3359 
3360 	/* Check that the host interface is enabled. */
3361 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3362 	if ((hicr & IXGBE_HICR_EN) == 0) {
3363 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3364 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3365 		goto out;
3366 	}
3367 
3368 	/* Calculate length in DWORDs */
3369 	dword_len = length >> 2;
3370 
3371 	/*
3372 	 * The device driver writes the relevant command block
3373 	 * into the ram area.
3374 	 */
3375 	for (i = 0; i < dword_len; i++)
3376 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3377 				      i, cpu_to_le32(buffer[i]));
3378 
3379 	/* Setting this bit tells the ARC that a new command is pending. */
3380 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3381 
3382 	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3383 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3384 		if (!(hicr & IXGBE_HICR_C))
3385 			break;
3386 		usleep_range(1000, 2000);
3387 	}
3388 
3389 	/* Check command successful completion. */
3390 	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3391 	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3392 		hw_dbg(hw, "Command has failed with no status valid.\n");
3393 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3394 		goto out;
3395 	}
3396 
3397 	/* Calculate length in DWORDs */
3398 	dword_len = hdr_size >> 2;
3399 
3400 	/* first pull in the header so we know the buffer length */
3401 	for (bi = 0; bi < dword_len; bi++) {
3402 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3403 		le32_to_cpus(&buffer[bi]);
3404 	}
3405 
3406 	/* If there is any thing in data position pull it in */
3407 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3408 	if (buf_len == 0)
3409 		goto out;
3410 
3411 	if (length < (buf_len + hdr_size)) {
3412 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3413 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3414 		goto out;
3415 	}
3416 
3417 	/* Calculate length in DWORDs, add 3 for odd lengths */
3418 	dword_len = (buf_len + 3) >> 2;
3419 
3420 	/* Pull in the rest of the buffer (bi is where we left off)*/
3421 	for (; bi <= dword_len; bi++) {
3422 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3423 		le32_to_cpus(&buffer[bi]);
3424 	}
3425 
3426 out:
3427 	return ret_val;
3428 }
3429 
3430 /**
3431  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3432  *  @hw: pointer to the HW structure
3433  *  @maj: driver version major number
3434  *  @min: driver version minor number
3435  *  @build: driver version build number
3436  *  @sub: driver version sub build number
3437  *
3438  *  Sends driver version number to firmware through the manageability
3439  *  block.  On success return 0
3440  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3441  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3442  **/
3443 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3444 				 u8 build, u8 sub)
3445 {
3446 	struct ixgbe_hic_drv_info fw_cmd;
3447 	int i;
3448 	s32 ret_val = 0;
3449 
3450 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3451 		ret_val = IXGBE_ERR_SWFW_SYNC;
3452 		goto out;
3453 	}
3454 
3455 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3456 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3457 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3458 	fw_cmd.port_num = (u8)hw->bus.func;
3459 	fw_cmd.ver_maj = maj;
3460 	fw_cmd.ver_min = min;
3461 	fw_cmd.ver_build = build;
3462 	fw_cmd.ver_sub = sub;
3463 	fw_cmd.hdr.checksum = 0;
3464 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3465 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3466 	fw_cmd.pad = 0;
3467 	fw_cmd.pad2 = 0;
3468 
3469 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3470 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3471 						       sizeof(fw_cmd));
3472 		if (ret_val != 0)
3473 			continue;
3474 
3475 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3476 		    FW_CEM_RESP_STATUS_SUCCESS)
3477 			ret_val = 0;
3478 		else
3479 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3480 
3481 		break;
3482 	}
3483 
3484 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3485 out:
3486 	return ret_val;
3487 }
3488 
3489 /**
3490  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3491  * @hw: pointer to the hardware structure
3492  *
3493  * The 82599 and x540 MACs can experience issues if TX work is still pending
3494  * when a reset occurs.  This function prevents this by flushing the PCIe
3495  * buffers on the system.
3496  **/
3497 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3498 {
3499 	u32 gcr_ext, hlreg0;
3500 
3501 	/*
3502 	 * If double reset is not requested then all transactions should
3503 	 * already be clear and as such there is no work to do
3504 	 */
3505 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3506 		return;
3507 
3508 	/*
3509 	 * Set loopback enable to prevent any transmits from being sent
3510 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3511 	 * has already been cleared.
3512 	 */
3513 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3514 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3515 
3516 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3517 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3518 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3519 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3520 
3521 	/* Flush all writes and allow 20usec for all transactions to clear */
3522 	IXGBE_WRITE_FLUSH(hw);
3523 	udelay(20);
3524 
3525 	/* restore previous register values */
3526 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3527 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3528 }
3529