xref: /linux/drivers/net/ethernet/intel/ixgbe/ixgbe_common.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2016 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
33 
34 #include "ixgbe.h"
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 					u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 					     u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 					     u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 						 u16 offset);
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59 
60 /* Base table for registers values that change by MAC */
61 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
62 	IXGBE_MVALS_INIT(8259X)
63 };
64 
65 /**
66  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
67  *  control
68  *  @hw: pointer to hardware structure
69  *
70  *  There are several phys that do not support autoneg flow control. This
71  *  function check the device id to see if the associated phy supports
72  *  autoneg flow control.
73  **/
74 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
75 {
76 	bool supported = false;
77 	ixgbe_link_speed speed;
78 	bool link_up;
79 
80 	switch (hw->phy.media_type) {
81 	case ixgbe_media_type_fiber:
82 		hw->mac.ops.check_link(hw, &speed, &link_up, false);
83 		/* if link is down, assume supported */
84 		if (link_up)
85 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
86 				true : false;
87 		else
88 			supported = true;
89 		break;
90 	case ixgbe_media_type_backplane:
91 		supported = true;
92 		break;
93 	case ixgbe_media_type_copper:
94 		/* only some copper devices support flow control autoneg */
95 		switch (hw->device_id) {
96 		case IXGBE_DEV_ID_82599_T3_LOM:
97 		case IXGBE_DEV_ID_X540T:
98 		case IXGBE_DEV_ID_X540T1:
99 		case IXGBE_DEV_ID_X550T:
100 		case IXGBE_DEV_ID_X550T1:
101 		case IXGBE_DEV_ID_X550EM_X_10G_T:
102 		case IXGBE_DEV_ID_X550EM_A_10G_T:
103 		case IXGBE_DEV_ID_X550EM_A_1G_T:
104 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
105 			supported = true;
106 			break;
107 		default:
108 			break;
109 		}
110 	default:
111 		break;
112 	}
113 
114 	return supported;
115 }
116 
117 /**
118  *  ixgbe_setup_fc_generic - Set up flow control
119  *  @hw: pointer to hardware structure
120  *
121  *  Called at init time to set up flow control.
122  **/
123 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
124 {
125 	s32 ret_val = 0;
126 	u32 reg = 0, reg_bp = 0;
127 	u16 reg_cu = 0;
128 	bool locked = false;
129 
130 	/*
131 	 * Validate the requested mode.  Strict IEEE mode does not allow
132 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
133 	 */
134 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
135 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
136 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
137 	}
138 
139 	/*
140 	 * 10gig parts do not have a word in the EEPROM to determine the
141 	 * default flow control setting, so we explicitly set it to full.
142 	 */
143 	if (hw->fc.requested_mode == ixgbe_fc_default)
144 		hw->fc.requested_mode = ixgbe_fc_full;
145 
146 	/*
147 	 * Set up the 1G and 10G flow control advertisement registers so the
148 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
149 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
150 	 */
151 	switch (hw->phy.media_type) {
152 	case ixgbe_media_type_backplane:
153 		/* some MAC's need RMW protection on AUTOC */
154 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
155 		if (ret_val)
156 			return ret_val;
157 
158 		/* only backplane uses autoc so fall though */
159 	case ixgbe_media_type_fiber:
160 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
161 
162 		break;
163 	case ixgbe_media_type_copper:
164 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
165 					MDIO_MMD_AN, &reg_cu);
166 		break;
167 	default:
168 		break;
169 	}
170 
171 	/*
172 	 * The possible values of fc.requested_mode are:
173 	 * 0: Flow control is completely disabled
174 	 * 1: Rx flow control is enabled (we can receive pause frames,
175 	 *    but not send pause frames).
176 	 * 2: Tx flow control is enabled (we can send pause frames but
177 	 *    we do not support receiving pause frames).
178 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
179 	 * other: Invalid.
180 	 */
181 	switch (hw->fc.requested_mode) {
182 	case ixgbe_fc_none:
183 		/* Flow control completely disabled by software override. */
184 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
185 		if (hw->phy.media_type == ixgbe_media_type_backplane)
186 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
187 				    IXGBE_AUTOC_ASM_PAUSE);
188 		else if (hw->phy.media_type == ixgbe_media_type_copper)
189 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
190 		break;
191 	case ixgbe_fc_tx_pause:
192 		/*
193 		 * Tx Flow control is enabled, and Rx Flow control is
194 		 * disabled by software override.
195 		 */
196 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
197 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
198 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
199 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
200 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
201 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
202 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
203 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
204 		}
205 		break;
206 	case ixgbe_fc_rx_pause:
207 		/*
208 		 * Rx Flow control is enabled and Tx Flow control is
209 		 * disabled by software override. Since there really
210 		 * isn't a way to advertise that we are capable of RX
211 		 * Pause ONLY, we will advertise that we support both
212 		 * symmetric and asymmetric Rx PAUSE, as such we fall
213 		 * through to the fc_full statement.  Later, we will
214 		 * disable the adapter's ability to send PAUSE frames.
215 		 */
216 	case ixgbe_fc_full:
217 		/* Flow control (both Rx and Tx) is enabled by SW override. */
218 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
219 		if (hw->phy.media_type == ixgbe_media_type_backplane)
220 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
221 				  IXGBE_AUTOC_ASM_PAUSE;
222 		else if (hw->phy.media_type == ixgbe_media_type_copper)
223 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
224 		break;
225 	default:
226 		hw_dbg(hw, "Flow control param set incorrectly\n");
227 		return IXGBE_ERR_CONFIG;
228 	}
229 
230 	if (hw->mac.type != ixgbe_mac_X540) {
231 		/*
232 		 * Enable auto-negotiation between the MAC & PHY;
233 		 * the MAC will advertise clause 37 flow control.
234 		 */
235 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
236 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
237 
238 		/* Disable AN timeout */
239 		if (hw->fc.strict_ieee)
240 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
241 
242 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
243 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
244 	}
245 
246 	/*
247 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
248 	 * and copper. There is no need to set the PCS1GCTL register.
249 	 *
250 	 */
251 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
252 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
253 		 * LESM is on, likewise reset_pipeline requries the lock as
254 		 * it also writes AUTOC.
255 		 */
256 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
257 		if (ret_val)
258 			return ret_val;
259 
260 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
261 		   ixgbe_device_supports_autoneg_fc(hw)) {
262 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
263 				      MDIO_MMD_AN, reg_cu);
264 	}
265 
266 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
267 	return ret_val;
268 }
269 
270 /**
271  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
272  *  @hw: pointer to hardware structure
273  *
274  *  Starts the hardware by filling the bus info structure and media type, clears
275  *  all on chip counters, initializes receive address registers, multicast
276  *  table, VLAN filter table, calls routine to set up link and flow control
277  *  settings, and leaves transmit and receive units disabled and uninitialized
278  **/
279 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
280 {
281 	s32 ret_val;
282 	u32 ctrl_ext;
283 	u16 device_caps;
284 
285 	/* Set the media type */
286 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
287 
288 	/* Identify the PHY */
289 	hw->phy.ops.identify(hw);
290 
291 	/* Clear the VLAN filter table */
292 	hw->mac.ops.clear_vfta(hw);
293 
294 	/* Clear statistics registers */
295 	hw->mac.ops.clear_hw_cntrs(hw);
296 
297 	/* Set No Snoop Disable */
298 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
299 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
300 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
301 	IXGBE_WRITE_FLUSH(hw);
302 
303 	/* Setup flow control if method for doing so */
304 	if (hw->mac.ops.setup_fc) {
305 		ret_val = hw->mac.ops.setup_fc(hw);
306 		if (ret_val)
307 			return ret_val;
308 	}
309 
310 	/* Cashe bit indicating need for crosstalk fix */
311 	switch (hw->mac.type) {
312 	case ixgbe_mac_82599EB:
313 	case ixgbe_mac_X550EM_x:
314 	case ixgbe_mac_x550em_a:
315 		hw->mac.ops.get_device_caps(hw, &device_caps);
316 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
317 			hw->need_crosstalk_fix = false;
318 		else
319 			hw->need_crosstalk_fix = true;
320 		break;
321 	default:
322 		hw->need_crosstalk_fix = false;
323 		break;
324 	}
325 
326 	/* Clear adapter stopped flag */
327 	hw->adapter_stopped = false;
328 
329 	return 0;
330 }
331 
332 /**
333  *  ixgbe_start_hw_gen2 - Init sequence for common device family
334  *  @hw: pointer to hw structure
335  *
336  * Performs the init sequence common to the second generation
337  * of 10 GbE devices.
338  * Devices in the second generation:
339  *     82599
340  *     X540
341  **/
342 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
343 {
344 	u32 i;
345 
346 	/* Clear the rate limiters */
347 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
348 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
349 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
350 	}
351 	IXGBE_WRITE_FLUSH(hw);
352 
353 #ifndef CONFIG_ARCH_WANT_RELAX_ORDER
354 	/* Disable relaxed ordering */
355 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
356 		u32 regval;
357 
358 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
359 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
360 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
361 	}
362 
363 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
364 		u32 regval;
365 
366 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
367 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
368 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
369 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
370 	}
371 #endif
372 	return 0;
373 }
374 
375 /**
376  *  ixgbe_init_hw_generic - Generic hardware initialization
377  *  @hw: pointer to hardware structure
378  *
379  *  Initialize the hardware by resetting the hardware, filling the bus info
380  *  structure and media type, clears all on chip counters, initializes receive
381  *  address registers, multicast table, VLAN filter table, calls routine to set
382  *  up link and flow control settings, and leaves transmit and receive units
383  *  disabled and uninitialized
384  **/
385 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
386 {
387 	s32 status;
388 
389 	/* Reset the hardware */
390 	status = hw->mac.ops.reset_hw(hw);
391 
392 	if (status == 0) {
393 		/* Start the HW */
394 		status = hw->mac.ops.start_hw(hw);
395 	}
396 
397 	/* Initialize the LED link active for LED blink support */
398 	hw->mac.ops.init_led_link_act(hw);
399 
400 	return status;
401 }
402 
403 /**
404  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
405  *  @hw: pointer to hardware structure
406  *
407  *  Clears all hardware statistics counters by reading them from the hardware
408  *  Statistics counters are clear on read.
409  **/
410 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
411 {
412 	u16 i = 0;
413 
414 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
415 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
416 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
417 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
418 	for (i = 0; i < 8; i++)
419 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
420 
421 	IXGBE_READ_REG(hw, IXGBE_MLFC);
422 	IXGBE_READ_REG(hw, IXGBE_MRFC);
423 	IXGBE_READ_REG(hw, IXGBE_RLEC);
424 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
425 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
426 	if (hw->mac.type >= ixgbe_mac_82599EB) {
427 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
428 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
429 	} else {
430 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
431 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
432 	}
433 
434 	for (i = 0; i < 8; i++) {
435 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
436 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
437 		if (hw->mac.type >= ixgbe_mac_82599EB) {
438 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
439 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
440 		} else {
441 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
442 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
443 		}
444 	}
445 	if (hw->mac.type >= ixgbe_mac_82599EB)
446 		for (i = 0; i < 8; i++)
447 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
448 	IXGBE_READ_REG(hw, IXGBE_PRC64);
449 	IXGBE_READ_REG(hw, IXGBE_PRC127);
450 	IXGBE_READ_REG(hw, IXGBE_PRC255);
451 	IXGBE_READ_REG(hw, IXGBE_PRC511);
452 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
453 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
454 	IXGBE_READ_REG(hw, IXGBE_GPRC);
455 	IXGBE_READ_REG(hw, IXGBE_BPRC);
456 	IXGBE_READ_REG(hw, IXGBE_MPRC);
457 	IXGBE_READ_REG(hw, IXGBE_GPTC);
458 	IXGBE_READ_REG(hw, IXGBE_GORCL);
459 	IXGBE_READ_REG(hw, IXGBE_GORCH);
460 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
461 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
462 	if (hw->mac.type == ixgbe_mac_82598EB)
463 		for (i = 0; i < 8; i++)
464 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
465 	IXGBE_READ_REG(hw, IXGBE_RUC);
466 	IXGBE_READ_REG(hw, IXGBE_RFC);
467 	IXGBE_READ_REG(hw, IXGBE_ROC);
468 	IXGBE_READ_REG(hw, IXGBE_RJC);
469 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
470 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
471 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
472 	IXGBE_READ_REG(hw, IXGBE_TORL);
473 	IXGBE_READ_REG(hw, IXGBE_TORH);
474 	IXGBE_READ_REG(hw, IXGBE_TPR);
475 	IXGBE_READ_REG(hw, IXGBE_TPT);
476 	IXGBE_READ_REG(hw, IXGBE_PTC64);
477 	IXGBE_READ_REG(hw, IXGBE_PTC127);
478 	IXGBE_READ_REG(hw, IXGBE_PTC255);
479 	IXGBE_READ_REG(hw, IXGBE_PTC511);
480 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
481 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
482 	IXGBE_READ_REG(hw, IXGBE_MPTC);
483 	IXGBE_READ_REG(hw, IXGBE_BPTC);
484 	for (i = 0; i < 16; i++) {
485 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
486 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
487 		if (hw->mac.type >= ixgbe_mac_82599EB) {
488 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
489 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
490 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
491 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
492 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
493 		} else {
494 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
495 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
496 		}
497 	}
498 
499 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
500 		if (hw->phy.id == 0)
501 			hw->phy.ops.identify(hw);
502 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
503 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
504 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
505 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
506 	}
507 
508 	return 0;
509 }
510 
511 /**
512  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
513  *  @hw: pointer to hardware structure
514  *  @pba_num: stores the part number string from the EEPROM
515  *  @pba_num_size: part number string buffer length
516  *
517  *  Reads the part number string from the EEPROM.
518  **/
519 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
520 				  u32 pba_num_size)
521 {
522 	s32 ret_val;
523 	u16 data;
524 	u16 pba_ptr;
525 	u16 offset;
526 	u16 length;
527 
528 	if (pba_num == NULL) {
529 		hw_dbg(hw, "PBA string buffer was null\n");
530 		return IXGBE_ERR_INVALID_ARGUMENT;
531 	}
532 
533 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
534 	if (ret_val) {
535 		hw_dbg(hw, "NVM Read Error\n");
536 		return ret_val;
537 	}
538 
539 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
540 	if (ret_val) {
541 		hw_dbg(hw, "NVM Read Error\n");
542 		return ret_val;
543 	}
544 
545 	/*
546 	 * if data is not ptr guard the PBA must be in legacy format which
547 	 * means pba_ptr is actually our second data word for the PBA number
548 	 * and we can decode it into an ascii string
549 	 */
550 	if (data != IXGBE_PBANUM_PTR_GUARD) {
551 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
552 
553 		/* we will need 11 characters to store the PBA */
554 		if (pba_num_size < 11) {
555 			hw_dbg(hw, "PBA string buffer too small\n");
556 			return IXGBE_ERR_NO_SPACE;
557 		}
558 
559 		/* extract hex string from data and pba_ptr */
560 		pba_num[0] = (data >> 12) & 0xF;
561 		pba_num[1] = (data >> 8) & 0xF;
562 		pba_num[2] = (data >> 4) & 0xF;
563 		pba_num[3] = data & 0xF;
564 		pba_num[4] = (pba_ptr >> 12) & 0xF;
565 		pba_num[5] = (pba_ptr >> 8) & 0xF;
566 		pba_num[6] = '-';
567 		pba_num[7] = 0;
568 		pba_num[8] = (pba_ptr >> 4) & 0xF;
569 		pba_num[9] = pba_ptr & 0xF;
570 
571 		/* put a null character on the end of our string */
572 		pba_num[10] = '\0';
573 
574 		/* switch all the data but the '-' to hex char */
575 		for (offset = 0; offset < 10; offset++) {
576 			if (pba_num[offset] < 0xA)
577 				pba_num[offset] += '0';
578 			else if (pba_num[offset] < 0x10)
579 				pba_num[offset] += 'A' - 0xA;
580 		}
581 
582 		return 0;
583 	}
584 
585 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
586 	if (ret_val) {
587 		hw_dbg(hw, "NVM Read Error\n");
588 		return ret_val;
589 	}
590 
591 	if (length == 0xFFFF || length == 0) {
592 		hw_dbg(hw, "NVM PBA number section invalid length\n");
593 		return IXGBE_ERR_PBA_SECTION;
594 	}
595 
596 	/* check if pba_num buffer is big enough */
597 	if (pba_num_size  < (((u32)length * 2) - 1)) {
598 		hw_dbg(hw, "PBA string buffer too small\n");
599 		return IXGBE_ERR_NO_SPACE;
600 	}
601 
602 	/* trim pba length from start of string */
603 	pba_ptr++;
604 	length--;
605 
606 	for (offset = 0; offset < length; offset++) {
607 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
608 		if (ret_val) {
609 			hw_dbg(hw, "NVM Read Error\n");
610 			return ret_val;
611 		}
612 		pba_num[offset * 2] = (u8)(data >> 8);
613 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
614 	}
615 	pba_num[offset * 2] = '\0';
616 
617 	return 0;
618 }
619 
620 /**
621  *  ixgbe_get_mac_addr_generic - Generic get MAC address
622  *  @hw: pointer to hardware structure
623  *  @mac_addr: Adapter MAC address
624  *
625  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
626  *  A reset of the adapter must be performed prior to calling this function
627  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
628  **/
629 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
630 {
631 	u32 rar_high;
632 	u32 rar_low;
633 	u16 i;
634 
635 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
636 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
637 
638 	for (i = 0; i < 4; i++)
639 		mac_addr[i] = (u8)(rar_low >> (i*8));
640 
641 	for (i = 0; i < 2; i++)
642 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
643 
644 	return 0;
645 }
646 
647 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
648 {
649 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
650 	case IXGBE_PCI_LINK_WIDTH_1:
651 		return ixgbe_bus_width_pcie_x1;
652 	case IXGBE_PCI_LINK_WIDTH_2:
653 		return ixgbe_bus_width_pcie_x2;
654 	case IXGBE_PCI_LINK_WIDTH_4:
655 		return ixgbe_bus_width_pcie_x4;
656 	case IXGBE_PCI_LINK_WIDTH_8:
657 		return ixgbe_bus_width_pcie_x8;
658 	default:
659 		return ixgbe_bus_width_unknown;
660 	}
661 }
662 
663 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
664 {
665 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
666 	case IXGBE_PCI_LINK_SPEED_2500:
667 		return ixgbe_bus_speed_2500;
668 	case IXGBE_PCI_LINK_SPEED_5000:
669 		return ixgbe_bus_speed_5000;
670 	case IXGBE_PCI_LINK_SPEED_8000:
671 		return ixgbe_bus_speed_8000;
672 	default:
673 		return ixgbe_bus_speed_unknown;
674 	}
675 }
676 
677 /**
678  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
679  *  @hw: pointer to hardware structure
680  *
681  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
682  **/
683 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
684 {
685 	u16 link_status;
686 
687 	hw->bus.type = ixgbe_bus_type_pci_express;
688 
689 	/* Get the negotiated link width and speed from PCI config space */
690 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
691 
692 	hw->bus.width = ixgbe_convert_bus_width(link_status);
693 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
694 
695 	hw->mac.ops.set_lan_id(hw);
696 
697 	return 0;
698 }
699 
700 /**
701  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
702  *  @hw: pointer to the HW structure
703  *
704  *  Determines the LAN function id by reading memory-mapped registers
705  *  and swaps the port value if requested.
706  **/
707 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
708 {
709 	struct ixgbe_bus_info *bus = &hw->bus;
710 	u16 ee_ctrl_4;
711 	u32 reg;
712 
713 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
714 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
715 	bus->lan_id = bus->func;
716 
717 	/* check for a port swap */
718 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
719 	if (reg & IXGBE_FACTPS_LFS)
720 		bus->func ^= 0x1;
721 
722 	/* Get MAC instance from EEPROM for configuring CS4227 */
723 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
724 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
725 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
726 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
727 	}
728 }
729 
730 /**
731  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
732  *  @hw: pointer to hardware structure
733  *
734  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
735  *  disables transmit and receive units. The adapter_stopped flag is used by
736  *  the shared code and drivers to determine if the adapter is in a stopped
737  *  state and should not touch the hardware.
738  **/
739 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
740 {
741 	u32 reg_val;
742 	u16 i;
743 
744 	/*
745 	 * Set the adapter_stopped flag so other driver functions stop touching
746 	 * the hardware
747 	 */
748 	hw->adapter_stopped = true;
749 
750 	/* Disable the receive unit */
751 	hw->mac.ops.disable_rx(hw);
752 
753 	/* Clear interrupt mask to stop interrupts from being generated */
754 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
755 
756 	/* Clear any pending interrupts, flush previous writes */
757 	IXGBE_READ_REG(hw, IXGBE_EICR);
758 
759 	/* Disable the transmit unit.  Each queue must be disabled. */
760 	for (i = 0; i < hw->mac.max_tx_queues; i++)
761 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
762 
763 	/* Disable the receive unit by stopping each queue */
764 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
765 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
766 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
767 		reg_val |= IXGBE_RXDCTL_SWFLSH;
768 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
769 	}
770 
771 	/* flush all queues disables */
772 	IXGBE_WRITE_FLUSH(hw);
773 	usleep_range(1000, 2000);
774 
775 	/*
776 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
777 	 * access and verify no pending requests
778 	 */
779 	return ixgbe_disable_pcie_master(hw);
780 }
781 
782 /**
783  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
784  *  @hw: pointer to hardware structure
785  *
786  *  Store the index for the link active LED. This will be used to support
787  *  blinking the LED.
788  **/
789 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
790 {
791 	struct ixgbe_mac_info *mac = &hw->mac;
792 	u32 led_reg, led_mode;
793 	u16 i;
794 
795 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
796 
797 	/* Get LED link active from the LEDCTL register */
798 	for (i = 0; i < 4; i++) {
799 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
800 
801 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
802 		    IXGBE_LED_LINK_ACTIVE) {
803 			mac->led_link_act = i;
804 			return 0;
805 		}
806 	}
807 
808 	/* If LEDCTL register does not have the LED link active set, then use
809 	 * known MAC defaults.
810 	 */
811 	switch (hw->mac.type) {
812 	case ixgbe_mac_x550em_a:
813 		mac->led_link_act = 0;
814 		break;
815 	case ixgbe_mac_X550EM_x:
816 		mac->led_link_act = 1;
817 		break;
818 	default:
819 		mac->led_link_act = 2;
820 	}
821 
822 	return 0;
823 }
824 
825 /**
826  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
827  *  @hw: pointer to hardware structure
828  *  @index: led number to turn on
829  **/
830 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
831 {
832 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
833 
834 	if (index > 3)
835 		return IXGBE_ERR_PARAM;
836 
837 	/* To turn on the LED, set mode to ON. */
838 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
839 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
840 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
841 	IXGBE_WRITE_FLUSH(hw);
842 
843 	return 0;
844 }
845 
846 /**
847  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
848  *  @hw: pointer to hardware structure
849  *  @index: led number to turn off
850  **/
851 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
852 {
853 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
854 
855 	if (index > 3)
856 		return IXGBE_ERR_PARAM;
857 
858 	/* To turn off the LED, set mode to OFF. */
859 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
860 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
861 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
862 	IXGBE_WRITE_FLUSH(hw);
863 
864 	return 0;
865 }
866 
867 /**
868  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
869  *  @hw: pointer to hardware structure
870  *
871  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
872  *  ixgbe_hw struct in order to set up EEPROM access.
873  **/
874 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
875 {
876 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
877 	u32 eec;
878 	u16 eeprom_size;
879 
880 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
881 		eeprom->type = ixgbe_eeprom_none;
882 		/* Set default semaphore delay to 10ms which is a well
883 		 * tested value */
884 		eeprom->semaphore_delay = 10;
885 		/* Clear EEPROM page size, it will be initialized as needed */
886 		eeprom->word_page_size = 0;
887 
888 		/*
889 		 * Check for EEPROM present first.
890 		 * If not present leave as none
891 		 */
892 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
893 		if (eec & IXGBE_EEC_PRES) {
894 			eeprom->type = ixgbe_eeprom_spi;
895 
896 			/*
897 			 * SPI EEPROM is assumed here.  This code would need to
898 			 * change if a future EEPROM is not SPI.
899 			 */
900 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
901 					    IXGBE_EEC_SIZE_SHIFT);
902 			eeprom->word_size = BIT(eeprom_size +
903 						 IXGBE_EEPROM_WORD_SIZE_SHIFT);
904 		}
905 
906 		if (eec & IXGBE_EEC_ADDR_SIZE)
907 			eeprom->address_bits = 16;
908 		else
909 			eeprom->address_bits = 8;
910 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
911 		       eeprom->type, eeprom->word_size, eeprom->address_bits);
912 	}
913 
914 	return 0;
915 }
916 
917 /**
918  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
919  *  @hw: pointer to hardware structure
920  *  @offset: offset within the EEPROM to write
921  *  @words: number of words
922  *  @data: 16 bit word(s) to write to EEPROM
923  *
924  *  Reads 16 bit word(s) from EEPROM through bit-bang method
925  **/
926 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
927 					       u16 words, u16 *data)
928 {
929 	s32 status;
930 	u16 i, count;
931 
932 	hw->eeprom.ops.init_params(hw);
933 
934 	if (words == 0)
935 		return IXGBE_ERR_INVALID_ARGUMENT;
936 
937 	if (offset + words > hw->eeprom.word_size)
938 		return IXGBE_ERR_EEPROM;
939 
940 	/*
941 	 * The EEPROM page size cannot be queried from the chip. We do lazy
942 	 * initialization. It is worth to do that when we write large buffer.
943 	 */
944 	if ((hw->eeprom.word_page_size == 0) &&
945 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
946 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
947 
948 	/*
949 	 * We cannot hold synchronization semaphores for too long
950 	 * to avoid other entity starvation. However it is more efficient
951 	 * to read in bursts than synchronizing access for each word.
952 	 */
953 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
954 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
955 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
956 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
957 							    count, &data[i]);
958 
959 		if (status != 0)
960 			break;
961 	}
962 
963 	return status;
964 }
965 
966 /**
967  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
968  *  @hw: pointer to hardware structure
969  *  @offset: offset within the EEPROM to be written to
970  *  @words: number of word(s)
971  *  @data: 16 bit word(s) to be written to the EEPROM
972  *
973  *  If ixgbe_eeprom_update_checksum is not called after this function, the
974  *  EEPROM will most likely contain an invalid checksum.
975  **/
976 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
977 					      u16 words, u16 *data)
978 {
979 	s32 status;
980 	u16 word;
981 	u16 page_size;
982 	u16 i;
983 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
984 
985 	/* Prepare the EEPROM for writing  */
986 	status = ixgbe_acquire_eeprom(hw);
987 	if (status)
988 		return status;
989 
990 	if (ixgbe_ready_eeprom(hw) != 0) {
991 		ixgbe_release_eeprom(hw);
992 		return IXGBE_ERR_EEPROM;
993 	}
994 
995 	for (i = 0; i < words; i++) {
996 		ixgbe_standby_eeprom(hw);
997 
998 		/* Send the WRITE ENABLE command (8 bit opcode) */
999 		ixgbe_shift_out_eeprom_bits(hw,
1000 					    IXGBE_EEPROM_WREN_OPCODE_SPI,
1001 					    IXGBE_EEPROM_OPCODE_BITS);
1002 
1003 		ixgbe_standby_eeprom(hw);
1004 
1005 		/* Some SPI eeproms use the 8th address bit embedded
1006 		 * in the opcode
1007 		 */
1008 		if ((hw->eeprom.address_bits == 8) &&
1009 		    ((offset + i) >= 128))
1010 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1011 
1012 		/* Send the Write command (8-bit opcode + addr) */
1013 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1014 					    IXGBE_EEPROM_OPCODE_BITS);
1015 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1016 					    hw->eeprom.address_bits);
1017 
1018 		page_size = hw->eeprom.word_page_size;
1019 
1020 		/* Send the data in burst via SPI */
1021 		do {
1022 			word = data[i];
1023 			word = (word >> 8) | (word << 8);
1024 			ixgbe_shift_out_eeprom_bits(hw, word, 16);
1025 
1026 			if (page_size == 0)
1027 				break;
1028 
1029 			/* do not wrap around page */
1030 			if (((offset + i) & (page_size - 1)) ==
1031 			    (page_size - 1))
1032 				break;
1033 		} while (++i < words);
1034 
1035 		ixgbe_standby_eeprom(hw);
1036 		usleep_range(10000, 20000);
1037 	}
1038 	/* Done with writing - release the EEPROM */
1039 	ixgbe_release_eeprom(hw);
1040 
1041 	return 0;
1042 }
1043 
1044 /**
1045  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1046  *  @hw: pointer to hardware structure
1047  *  @offset: offset within the EEPROM to be written to
1048  *  @data: 16 bit word to be written to the EEPROM
1049  *
1050  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1051  *  EEPROM will most likely contain an invalid checksum.
1052  **/
1053 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1054 {
1055 	hw->eeprom.ops.init_params(hw);
1056 
1057 	if (offset >= hw->eeprom.word_size)
1058 		return IXGBE_ERR_EEPROM;
1059 
1060 	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1061 }
1062 
1063 /**
1064  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1065  *  @hw: pointer to hardware structure
1066  *  @offset: offset within the EEPROM to be read
1067  *  @words: number of word(s)
1068  *  @data: read 16 bit words(s) from EEPROM
1069  *
1070  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1071  **/
1072 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1073 					      u16 words, u16 *data)
1074 {
1075 	s32 status;
1076 	u16 i, count;
1077 
1078 	hw->eeprom.ops.init_params(hw);
1079 
1080 	if (words == 0)
1081 		return IXGBE_ERR_INVALID_ARGUMENT;
1082 
1083 	if (offset + words > hw->eeprom.word_size)
1084 		return IXGBE_ERR_EEPROM;
1085 
1086 	/*
1087 	 * We cannot hold synchronization semaphores for too long
1088 	 * to avoid other entity starvation. However it is more efficient
1089 	 * to read in bursts than synchronizing access for each word.
1090 	 */
1091 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1092 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1093 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1094 
1095 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1096 							   count, &data[i]);
1097 
1098 		if (status)
1099 			return status;
1100 	}
1101 
1102 	return 0;
1103 }
1104 
1105 /**
1106  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1107  *  @hw: pointer to hardware structure
1108  *  @offset: offset within the EEPROM to be read
1109  *  @words: number of word(s)
1110  *  @data: read 16 bit word(s) from EEPROM
1111  *
1112  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1113  **/
1114 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1115 					     u16 words, u16 *data)
1116 {
1117 	s32 status;
1118 	u16 word_in;
1119 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1120 	u16 i;
1121 
1122 	/* Prepare the EEPROM for reading  */
1123 	status = ixgbe_acquire_eeprom(hw);
1124 	if (status)
1125 		return status;
1126 
1127 	if (ixgbe_ready_eeprom(hw) != 0) {
1128 		ixgbe_release_eeprom(hw);
1129 		return IXGBE_ERR_EEPROM;
1130 	}
1131 
1132 	for (i = 0; i < words; i++) {
1133 		ixgbe_standby_eeprom(hw);
1134 		/* Some SPI eeproms use the 8th address bit embedded
1135 		 * in the opcode
1136 		 */
1137 		if ((hw->eeprom.address_bits == 8) &&
1138 		    ((offset + i) >= 128))
1139 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1140 
1141 		/* Send the READ command (opcode + addr) */
1142 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1143 					    IXGBE_EEPROM_OPCODE_BITS);
1144 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1145 					    hw->eeprom.address_bits);
1146 
1147 		/* Read the data. */
1148 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1149 		data[i] = (word_in >> 8) | (word_in << 8);
1150 	}
1151 
1152 	/* End this read operation */
1153 	ixgbe_release_eeprom(hw);
1154 
1155 	return 0;
1156 }
1157 
1158 /**
1159  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1160  *  @hw: pointer to hardware structure
1161  *  @offset: offset within the EEPROM to be read
1162  *  @data: read 16 bit value from EEPROM
1163  *
1164  *  Reads 16 bit value from EEPROM through bit-bang method
1165  **/
1166 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1167 				       u16 *data)
1168 {
1169 	hw->eeprom.ops.init_params(hw);
1170 
1171 	if (offset >= hw->eeprom.word_size)
1172 		return IXGBE_ERR_EEPROM;
1173 
1174 	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1175 }
1176 
1177 /**
1178  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1179  *  @hw: pointer to hardware structure
1180  *  @offset: offset of word in the EEPROM to read
1181  *  @words: number of word(s)
1182  *  @data: 16 bit word(s) from the EEPROM
1183  *
1184  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1185  **/
1186 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1187 				   u16 words, u16 *data)
1188 {
1189 	u32 eerd;
1190 	s32 status;
1191 	u32 i;
1192 
1193 	hw->eeprom.ops.init_params(hw);
1194 
1195 	if (words == 0)
1196 		return IXGBE_ERR_INVALID_ARGUMENT;
1197 
1198 	if (offset >= hw->eeprom.word_size)
1199 		return IXGBE_ERR_EEPROM;
1200 
1201 	for (i = 0; i < words; i++) {
1202 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1203 		       IXGBE_EEPROM_RW_REG_START;
1204 
1205 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1206 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1207 
1208 		if (status == 0) {
1209 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1210 				   IXGBE_EEPROM_RW_REG_DATA);
1211 		} else {
1212 			hw_dbg(hw, "Eeprom read timed out\n");
1213 			return status;
1214 		}
1215 	}
1216 
1217 	return 0;
1218 }
1219 
1220 /**
1221  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1222  *  @hw: pointer to hardware structure
1223  *  @offset: offset within the EEPROM to be used as a scratch pad
1224  *
1225  *  Discover EEPROM page size by writing marching data at given offset.
1226  *  This function is called only when we are writing a new large buffer
1227  *  at given offset so the data would be overwritten anyway.
1228  **/
1229 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1230 						 u16 offset)
1231 {
1232 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1233 	s32 status;
1234 	u16 i;
1235 
1236 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1237 		data[i] = i;
1238 
1239 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1240 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1241 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1242 	hw->eeprom.word_page_size = 0;
1243 	if (status)
1244 		return status;
1245 
1246 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1247 	if (status)
1248 		return status;
1249 
1250 	/*
1251 	 * When writing in burst more than the actual page size
1252 	 * EEPROM address wraps around current page.
1253 	 */
1254 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1255 
1256 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1257 	       hw->eeprom.word_page_size);
1258 	return 0;
1259 }
1260 
1261 /**
1262  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1263  *  @hw: pointer to hardware structure
1264  *  @offset: offset of  word in the EEPROM to read
1265  *  @data: word read from the EEPROM
1266  *
1267  *  Reads a 16 bit word from the EEPROM using the EERD register.
1268  **/
1269 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1270 {
1271 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1272 }
1273 
1274 /**
1275  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1276  *  @hw: pointer to hardware structure
1277  *  @offset: offset of  word in the EEPROM to write
1278  *  @words: number of words
1279  *  @data: word(s) write to the EEPROM
1280  *
1281  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1282  **/
1283 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1284 				    u16 words, u16 *data)
1285 {
1286 	u32 eewr;
1287 	s32 status;
1288 	u16 i;
1289 
1290 	hw->eeprom.ops.init_params(hw);
1291 
1292 	if (words == 0)
1293 		return IXGBE_ERR_INVALID_ARGUMENT;
1294 
1295 	if (offset >= hw->eeprom.word_size)
1296 		return IXGBE_ERR_EEPROM;
1297 
1298 	for (i = 0; i < words; i++) {
1299 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1300 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1301 		       IXGBE_EEPROM_RW_REG_START;
1302 
1303 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1304 		if (status) {
1305 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1306 			return status;
1307 		}
1308 
1309 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1310 
1311 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1312 		if (status) {
1313 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1314 			return status;
1315 		}
1316 	}
1317 
1318 	return 0;
1319 }
1320 
1321 /**
1322  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1323  *  @hw: pointer to hardware structure
1324  *  @offset: offset of  word in the EEPROM to write
1325  *  @data: word write to the EEPROM
1326  *
1327  *  Write a 16 bit word to the EEPROM using the EEWR register.
1328  **/
1329 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1330 {
1331 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1332 }
1333 
1334 /**
1335  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1336  *  @hw: pointer to hardware structure
1337  *  @ee_reg: EEPROM flag for polling
1338  *
1339  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1340  *  read or write is done respectively.
1341  **/
1342 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1343 {
1344 	u32 i;
1345 	u32 reg;
1346 
1347 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1348 		if (ee_reg == IXGBE_NVM_POLL_READ)
1349 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1350 		else
1351 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1352 
1353 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1354 			return 0;
1355 		}
1356 		udelay(5);
1357 	}
1358 	return IXGBE_ERR_EEPROM;
1359 }
1360 
1361 /**
1362  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1363  *  @hw: pointer to hardware structure
1364  *
1365  *  Prepares EEPROM for access using bit-bang method. This function should
1366  *  be called before issuing a command to the EEPROM.
1367  **/
1368 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1369 {
1370 	u32 eec;
1371 	u32 i;
1372 
1373 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1374 		return IXGBE_ERR_SWFW_SYNC;
1375 
1376 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1377 
1378 	/* Request EEPROM Access */
1379 	eec |= IXGBE_EEC_REQ;
1380 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1381 
1382 	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1383 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1384 		if (eec & IXGBE_EEC_GNT)
1385 			break;
1386 		udelay(5);
1387 	}
1388 
1389 	/* Release if grant not acquired */
1390 	if (!(eec & IXGBE_EEC_GNT)) {
1391 		eec &= ~IXGBE_EEC_REQ;
1392 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1393 		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1394 
1395 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1396 		return IXGBE_ERR_EEPROM;
1397 	}
1398 
1399 	/* Setup EEPROM for Read/Write */
1400 	/* Clear CS and SK */
1401 	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1402 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1403 	IXGBE_WRITE_FLUSH(hw);
1404 	udelay(1);
1405 	return 0;
1406 }
1407 
1408 /**
1409  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1410  *  @hw: pointer to hardware structure
1411  *
1412  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1413  **/
1414 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1415 {
1416 	u32 timeout = 2000;
1417 	u32 i;
1418 	u32 swsm;
1419 
1420 	/* Get SMBI software semaphore between device drivers first */
1421 	for (i = 0; i < timeout; i++) {
1422 		/*
1423 		 * If the SMBI bit is 0 when we read it, then the bit will be
1424 		 * set and we have the semaphore
1425 		 */
1426 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1427 		if (!(swsm & IXGBE_SWSM_SMBI))
1428 			break;
1429 		usleep_range(50, 100);
1430 	}
1431 
1432 	if (i == timeout) {
1433 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1434 		/* this release is particularly important because our attempts
1435 		 * above to get the semaphore may have succeeded, and if there
1436 		 * was a timeout, we should unconditionally clear the semaphore
1437 		 * bits to free the driver to make progress
1438 		 */
1439 		ixgbe_release_eeprom_semaphore(hw);
1440 
1441 		usleep_range(50, 100);
1442 		/* one last try
1443 		 * If the SMBI bit is 0 when we read it, then the bit will be
1444 		 * set and we have the semaphore
1445 		 */
1446 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1447 		if (swsm & IXGBE_SWSM_SMBI) {
1448 			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1449 			return IXGBE_ERR_EEPROM;
1450 		}
1451 	}
1452 
1453 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1454 	for (i = 0; i < timeout; i++) {
1455 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1456 
1457 		/* Set the SW EEPROM semaphore bit to request access */
1458 		swsm |= IXGBE_SWSM_SWESMBI;
1459 		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1460 
1461 		/* If we set the bit successfully then we got the
1462 		 * semaphore.
1463 		 */
1464 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1465 		if (swsm & IXGBE_SWSM_SWESMBI)
1466 			break;
1467 
1468 		usleep_range(50, 100);
1469 	}
1470 
1471 	/* Release semaphores and return error if SW EEPROM semaphore
1472 	 * was not granted because we don't have access to the EEPROM
1473 	 */
1474 	if (i >= timeout) {
1475 		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1476 		ixgbe_release_eeprom_semaphore(hw);
1477 		return IXGBE_ERR_EEPROM;
1478 	}
1479 
1480 	return 0;
1481 }
1482 
1483 /**
1484  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1485  *  @hw: pointer to hardware structure
1486  *
1487  *  This function clears hardware semaphore bits.
1488  **/
1489 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1490 {
1491 	u32 swsm;
1492 
1493 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1494 
1495 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1496 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1497 	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1498 	IXGBE_WRITE_FLUSH(hw);
1499 }
1500 
1501 /**
1502  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1503  *  @hw: pointer to hardware structure
1504  **/
1505 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1506 {
1507 	u16 i;
1508 	u8 spi_stat_reg;
1509 
1510 	/*
1511 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1512 	 * EEPROM will signal that the command has been completed by clearing
1513 	 * bit 0 of the internal status register.  If it's not cleared within
1514 	 * 5 milliseconds, then error out.
1515 	 */
1516 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1517 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1518 					    IXGBE_EEPROM_OPCODE_BITS);
1519 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1520 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1521 			break;
1522 
1523 		udelay(5);
1524 		ixgbe_standby_eeprom(hw);
1525 	}
1526 
1527 	/*
1528 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1529 	 * devices (and only 0-5mSec on 5V devices)
1530 	 */
1531 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1532 		hw_dbg(hw, "SPI EEPROM Status error\n");
1533 		return IXGBE_ERR_EEPROM;
1534 	}
1535 
1536 	return 0;
1537 }
1538 
1539 /**
1540  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1541  *  @hw: pointer to hardware structure
1542  **/
1543 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1544 {
1545 	u32 eec;
1546 
1547 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1548 
1549 	/* Toggle CS to flush commands */
1550 	eec |= IXGBE_EEC_CS;
1551 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1552 	IXGBE_WRITE_FLUSH(hw);
1553 	udelay(1);
1554 	eec &= ~IXGBE_EEC_CS;
1555 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1556 	IXGBE_WRITE_FLUSH(hw);
1557 	udelay(1);
1558 }
1559 
1560 /**
1561  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1562  *  @hw: pointer to hardware structure
1563  *  @data: data to send to the EEPROM
1564  *  @count: number of bits to shift out
1565  **/
1566 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1567 					u16 count)
1568 {
1569 	u32 eec;
1570 	u32 mask;
1571 	u32 i;
1572 
1573 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1574 
1575 	/*
1576 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1577 	 * one bit at a time.  Determine the starting bit based on count
1578 	 */
1579 	mask = BIT(count - 1);
1580 
1581 	for (i = 0; i < count; i++) {
1582 		/*
1583 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1584 		 * "1", and then raising and then lowering the clock (the SK
1585 		 * bit controls the clock input to the EEPROM).  A "0" is
1586 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1587 		 * raising and then lowering the clock.
1588 		 */
1589 		if (data & mask)
1590 			eec |= IXGBE_EEC_DI;
1591 		else
1592 			eec &= ~IXGBE_EEC_DI;
1593 
1594 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1595 		IXGBE_WRITE_FLUSH(hw);
1596 
1597 		udelay(1);
1598 
1599 		ixgbe_raise_eeprom_clk(hw, &eec);
1600 		ixgbe_lower_eeprom_clk(hw, &eec);
1601 
1602 		/*
1603 		 * Shift mask to signify next bit of data to shift in to the
1604 		 * EEPROM
1605 		 */
1606 		mask = mask >> 1;
1607 	}
1608 
1609 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1610 	eec &= ~IXGBE_EEC_DI;
1611 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1612 	IXGBE_WRITE_FLUSH(hw);
1613 }
1614 
1615 /**
1616  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1617  *  @hw: pointer to hardware structure
1618  **/
1619 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1620 {
1621 	u32 eec;
1622 	u32 i;
1623 	u16 data = 0;
1624 
1625 	/*
1626 	 * In order to read a register from the EEPROM, we need to shift
1627 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1628 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1629 	 * the value of the "DO" bit.  During this "shifting in" process the
1630 	 * "DI" bit should always be clear.
1631 	 */
1632 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1633 
1634 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1635 
1636 	for (i = 0; i < count; i++) {
1637 		data = data << 1;
1638 		ixgbe_raise_eeprom_clk(hw, &eec);
1639 
1640 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1641 
1642 		eec &= ~(IXGBE_EEC_DI);
1643 		if (eec & IXGBE_EEC_DO)
1644 			data |= 1;
1645 
1646 		ixgbe_lower_eeprom_clk(hw, &eec);
1647 	}
1648 
1649 	return data;
1650 }
1651 
1652 /**
1653  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1654  *  @hw: pointer to hardware structure
1655  *  @eec: EEC register's current value
1656  **/
1657 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1658 {
1659 	/*
1660 	 * Raise the clock input to the EEPROM
1661 	 * (setting the SK bit), then delay
1662 	 */
1663 	*eec = *eec | IXGBE_EEC_SK;
1664 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1665 	IXGBE_WRITE_FLUSH(hw);
1666 	udelay(1);
1667 }
1668 
1669 /**
1670  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1671  *  @hw: pointer to hardware structure
1672  *  @eecd: EECD's current value
1673  **/
1674 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1675 {
1676 	/*
1677 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1678 	 * delay
1679 	 */
1680 	*eec = *eec & ~IXGBE_EEC_SK;
1681 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1682 	IXGBE_WRITE_FLUSH(hw);
1683 	udelay(1);
1684 }
1685 
1686 /**
1687  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1688  *  @hw: pointer to hardware structure
1689  **/
1690 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1691 {
1692 	u32 eec;
1693 
1694 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1695 
1696 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1697 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1698 
1699 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1700 	IXGBE_WRITE_FLUSH(hw);
1701 
1702 	udelay(1);
1703 
1704 	/* Stop requesting EEPROM access */
1705 	eec &= ~IXGBE_EEC_REQ;
1706 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1707 
1708 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1709 
1710 	/*
1711 	 * Delay before attempt to obtain semaphore again to allow FW
1712 	 * access. semaphore_delay is in ms we need us for usleep_range
1713 	 */
1714 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1715 		     hw->eeprom.semaphore_delay * 2000);
1716 }
1717 
1718 /**
1719  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1720  *  @hw: pointer to hardware structure
1721  **/
1722 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1723 {
1724 	u16 i;
1725 	u16 j;
1726 	u16 checksum = 0;
1727 	u16 length = 0;
1728 	u16 pointer = 0;
1729 	u16 word = 0;
1730 
1731 	/* Include 0x0-0x3F in the checksum */
1732 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1733 		if (hw->eeprom.ops.read(hw, i, &word)) {
1734 			hw_dbg(hw, "EEPROM read failed\n");
1735 			break;
1736 		}
1737 		checksum += word;
1738 	}
1739 
1740 	/* Include all data from pointers except for the fw pointer */
1741 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1742 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1743 			hw_dbg(hw, "EEPROM read failed\n");
1744 			return IXGBE_ERR_EEPROM;
1745 		}
1746 
1747 		/* If the pointer seems invalid */
1748 		if (pointer == 0xFFFF || pointer == 0)
1749 			continue;
1750 
1751 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1752 			hw_dbg(hw, "EEPROM read failed\n");
1753 			return IXGBE_ERR_EEPROM;
1754 		}
1755 
1756 		if (length == 0xFFFF || length == 0)
1757 			continue;
1758 
1759 		for (j = pointer + 1; j <= pointer + length; j++) {
1760 			if (hw->eeprom.ops.read(hw, j, &word)) {
1761 				hw_dbg(hw, "EEPROM read failed\n");
1762 				return IXGBE_ERR_EEPROM;
1763 			}
1764 			checksum += word;
1765 		}
1766 	}
1767 
1768 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1769 
1770 	return (s32)checksum;
1771 }
1772 
1773 /**
1774  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1775  *  @hw: pointer to hardware structure
1776  *  @checksum_val: calculated checksum
1777  *
1778  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1779  *  caller does not need checksum_val, the value can be NULL.
1780  **/
1781 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1782 					   u16 *checksum_val)
1783 {
1784 	s32 status;
1785 	u16 checksum;
1786 	u16 read_checksum = 0;
1787 
1788 	/*
1789 	 * Read the first word from the EEPROM. If this times out or fails, do
1790 	 * not continue or we could be in for a very long wait while every
1791 	 * EEPROM read fails
1792 	 */
1793 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1794 	if (status) {
1795 		hw_dbg(hw, "EEPROM read failed\n");
1796 		return status;
1797 	}
1798 
1799 	status = hw->eeprom.ops.calc_checksum(hw);
1800 	if (status < 0)
1801 		return status;
1802 
1803 	checksum = (u16)(status & 0xffff);
1804 
1805 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1806 	if (status) {
1807 		hw_dbg(hw, "EEPROM read failed\n");
1808 		return status;
1809 	}
1810 
1811 	/* Verify read checksum from EEPROM is the same as
1812 	 * calculated checksum
1813 	 */
1814 	if (read_checksum != checksum)
1815 		status = IXGBE_ERR_EEPROM_CHECKSUM;
1816 
1817 	/* If the user cares, return the calculated checksum */
1818 	if (checksum_val)
1819 		*checksum_val = checksum;
1820 
1821 	return status;
1822 }
1823 
1824 /**
1825  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1826  *  @hw: pointer to hardware structure
1827  **/
1828 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1829 {
1830 	s32 status;
1831 	u16 checksum;
1832 
1833 	/*
1834 	 * Read the first word from the EEPROM. If this times out or fails, do
1835 	 * not continue or we could be in for a very long wait while every
1836 	 * EEPROM read fails
1837 	 */
1838 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1839 	if (status) {
1840 		hw_dbg(hw, "EEPROM read failed\n");
1841 		return status;
1842 	}
1843 
1844 	status = hw->eeprom.ops.calc_checksum(hw);
1845 	if (status < 0)
1846 		return status;
1847 
1848 	checksum = (u16)(status & 0xffff);
1849 
1850 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1851 
1852 	return status;
1853 }
1854 
1855 /**
1856  *  ixgbe_set_rar_generic - Set Rx address register
1857  *  @hw: pointer to hardware structure
1858  *  @index: Receive address register to write
1859  *  @addr: Address to put into receive address register
1860  *  @vmdq: VMDq "set" or "pool" index
1861  *  @enable_addr: set flag that address is active
1862  *
1863  *  Puts an ethernet address into a receive address register.
1864  **/
1865 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1866 			  u32 enable_addr)
1867 {
1868 	u32 rar_low, rar_high;
1869 	u32 rar_entries = hw->mac.num_rar_entries;
1870 
1871 	/* Make sure we are using a valid rar index range */
1872 	if (index >= rar_entries) {
1873 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1874 		return IXGBE_ERR_INVALID_ARGUMENT;
1875 	}
1876 
1877 	/* setup VMDq pool selection before this RAR gets enabled */
1878 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1879 
1880 	/*
1881 	 * HW expects these in little endian so we reverse the byte
1882 	 * order from network order (big endian) to little endian
1883 	 */
1884 	rar_low = ((u32)addr[0] |
1885 		   ((u32)addr[1] << 8) |
1886 		   ((u32)addr[2] << 16) |
1887 		   ((u32)addr[3] << 24));
1888 	/*
1889 	 * Some parts put the VMDq setting in the extra RAH bits,
1890 	 * so save everything except the lower 16 bits that hold part
1891 	 * of the address and the address valid bit.
1892 	 */
1893 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1894 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1895 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1896 
1897 	if (enable_addr != 0)
1898 		rar_high |= IXGBE_RAH_AV;
1899 
1900 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1901 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1902 
1903 	return 0;
1904 }
1905 
1906 /**
1907  *  ixgbe_clear_rar_generic - Remove Rx address register
1908  *  @hw: pointer to hardware structure
1909  *  @index: Receive address register to write
1910  *
1911  *  Clears an ethernet address from a receive address register.
1912  **/
1913 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1914 {
1915 	u32 rar_high;
1916 	u32 rar_entries = hw->mac.num_rar_entries;
1917 
1918 	/* Make sure we are using a valid rar index range */
1919 	if (index >= rar_entries) {
1920 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1921 		return IXGBE_ERR_INVALID_ARGUMENT;
1922 	}
1923 
1924 	/*
1925 	 * Some parts put the VMDq setting in the extra RAH bits,
1926 	 * so save everything except the lower 16 bits that hold part
1927 	 * of the address and the address valid bit.
1928 	 */
1929 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1930 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1931 
1932 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1933 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1934 
1935 	/* clear VMDq pool/queue selection for this RAR */
1936 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1937 
1938 	return 0;
1939 }
1940 
1941 /**
1942  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1943  *  @hw: pointer to hardware structure
1944  *
1945  *  Places the MAC address in receive address register 0 and clears the rest
1946  *  of the receive address registers. Clears the multicast table. Assumes
1947  *  the receiver is in reset when the routine is called.
1948  **/
1949 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1950 {
1951 	u32 i;
1952 	u32 rar_entries = hw->mac.num_rar_entries;
1953 
1954 	/*
1955 	 * If the current mac address is valid, assume it is a software override
1956 	 * to the permanent address.
1957 	 * Otherwise, use the permanent address from the eeprom.
1958 	 */
1959 	if (!is_valid_ether_addr(hw->mac.addr)) {
1960 		/* Get the MAC address from the RAR0 for later reference */
1961 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1962 
1963 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1964 	} else {
1965 		/* Setup the receive address. */
1966 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1967 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1968 
1969 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1970 	}
1971 
1972 	/*  clear VMDq pool/queue selection for RAR 0 */
1973 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1974 
1975 	hw->addr_ctrl.overflow_promisc = 0;
1976 
1977 	hw->addr_ctrl.rar_used_count = 1;
1978 
1979 	/* Zero out the other receive addresses. */
1980 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1981 	for (i = 1; i < rar_entries; i++) {
1982 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1983 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1984 	}
1985 
1986 	/* Clear the MTA */
1987 	hw->addr_ctrl.mta_in_use = 0;
1988 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1989 
1990 	hw_dbg(hw, " Clearing MTA\n");
1991 	for (i = 0; i < hw->mac.mcft_size; i++)
1992 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1993 
1994 	if (hw->mac.ops.init_uta_tables)
1995 		hw->mac.ops.init_uta_tables(hw);
1996 
1997 	return 0;
1998 }
1999 
2000 /**
2001  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2002  *  @hw: pointer to hardware structure
2003  *  @mc_addr: the multicast address
2004  *
2005  *  Extracts the 12 bits, from a multicast address, to determine which
2006  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2007  *  incoming rx multicast addresses, to determine the bit-vector to check in
2008  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2009  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2010  *  to mc_filter_type.
2011  **/
2012 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2013 {
2014 	u32 vector = 0;
2015 
2016 	switch (hw->mac.mc_filter_type) {
2017 	case 0:   /* use bits [47:36] of the address */
2018 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2019 		break;
2020 	case 1:   /* use bits [46:35] of the address */
2021 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2022 		break;
2023 	case 2:   /* use bits [45:34] of the address */
2024 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2025 		break;
2026 	case 3:   /* use bits [43:32] of the address */
2027 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2028 		break;
2029 	default:  /* Invalid mc_filter_type */
2030 		hw_dbg(hw, "MC filter type param set incorrectly\n");
2031 		break;
2032 	}
2033 
2034 	/* vector can only be 12-bits or boundary will be exceeded */
2035 	vector &= 0xFFF;
2036 	return vector;
2037 }
2038 
2039 /**
2040  *  ixgbe_set_mta - Set bit-vector in multicast table
2041  *  @hw: pointer to hardware structure
2042  *  @hash_value: Multicast address hash value
2043  *
2044  *  Sets the bit-vector in the multicast table.
2045  **/
2046 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2047 {
2048 	u32 vector;
2049 	u32 vector_bit;
2050 	u32 vector_reg;
2051 
2052 	hw->addr_ctrl.mta_in_use++;
2053 
2054 	vector = ixgbe_mta_vector(hw, mc_addr);
2055 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2056 
2057 	/*
2058 	 * The MTA is a register array of 128 32-bit registers. It is treated
2059 	 * like an array of 4096 bits.  We want to set bit
2060 	 * BitArray[vector_value]. So we figure out what register the bit is
2061 	 * in, read it, OR in the new bit, then write back the new value.  The
2062 	 * register is determined by the upper 7 bits of the vector value and
2063 	 * the bit within that register are determined by the lower 5 bits of
2064 	 * the value.
2065 	 */
2066 	vector_reg = (vector >> 5) & 0x7F;
2067 	vector_bit = vector & 0x1F;
2068 	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2069 }
2070 
2071 /**
2072  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2073  *  @hw: pointer to hardware structure
2074  *  @netdev: pointer to net device structure
2075  *
2076  *  The given list replaces any existing list. Clears the MC addrs from receive
2077  *  address registers and the multicast table. Uses unused receive address
2078  *  registers for the first multicast addresses, and hashes the rest into the
2079  *  multicast table.
2080  **/
2081 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2082 				      struct net_device *netdev)
2083 {
2084 	struct netdev_hw_addr *ha;
2085 	u32 i;
2086 
2087 	/*
2088 	 * Set the new number of MC addresses that we are being requested to
2089 	 * use.
2090 	 */
2091 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2092 	hw->addr_ctrl.mta_in_use = 0;
2093 
2094 	/* Clear mta_shadow */
2095 	hw_dbg(hw, " Clearing MTA\n");
2096 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2097 
2098 	/* Update mta shadow */
2099 	netdev_for_each_mc_addr(ha, netdev) {
2100 		hw_dbg(hw, " Adding the multicast addresses:\n");
2101 		ixgbe_set_mta(hw, ha->addr);
2102 	}
2103 
2104 	/* Enable mta */
2105 	for (i = 0; i < hw->mac.mcft_size; i++)
2106 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2107 				      hw->mac.mta_shadow[i]);
2108 
2109 	if (hw->addr_ctrl.mta_in_use > 0)
2110 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2111 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2112 
2113 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2114 	return 0;
2115 }
2116 
2117 /**
2118  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2119  *  @hw: pointer to hardware structure
2120  *
2121  *  Enables multicast address in RAR and the use of the multicast hash table.
2122  **/
2123 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2124 {
2125 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2126 
2127 	if (a->mta_in_use > 0)
2128 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2129 				hw->mac.mc_filter_type);
2130 
2131 	return 0;
2132 }
2133 
2134 /**
2135  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2136  *  @hw: pointer to hardware structure
2137  *
2138  *  Disables multicast address in RAR and the use of the multicast hash table.
2139  **/
2140 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2141 {
2142 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2143 
2144 	if (a->mta_in_use > 0)
2145 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2146 
2147 	return 0;
2148 }
2149 
2150 /**
2151  *  ixgbe_fc_enable_generic - Enable flow control
2152  *  @hw: pointer to hardware structure
2153  *
2154  *  Enable flow control according to the current settings.
2155  **/
2156 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2157 {
2158 	u32 mflcn_reg, fccfg_reg;
2159 	u32 reg;
2160 	u32 fcrtl, fcrth;
2161 	int i;
2162 
2163 	/* Validate the water mark configuration. */
2164 	if (!hw->fc.pause_time)
2165 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2166 
2167 	/* Low water mark of zero causes XOFF floods */
2168 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2169 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2170 		    hw->fc.high_water[i]) {
2171 			if (!hw->fc.low_water[i] ||
2172 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2173 				hw_dbg(hw, "Invalid water mark configuration\n");
2174 				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2175 			}
2176 		}
2177 	}
2178 
2179 	/* Negotiate the fc mode to use */
2180 	hw->mac.ops.fc_autoneg(hw);
2181 
2182 	/* Disable any previous flow control settings */
2183 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2184 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2185 
2186 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2187 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2188 
2189 	/*
2190 	 * The possible values of fc.current_mode are:
2191 	 * 0: Flow control is completely disabled
2192 	 * 1: Rx flow control is enabled (we can receive pause frames,
2193 	 *    but not send pause frames).
2194 	 * 2: Tx flow control is enabled (we can send pause frames but
2195 	 *    we do not support receiving pause frames).
2196 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2197 	 * other: Invalid.
2198 	 */
2199 	switch (hw->fc.current_mode) {
2200 	case ixgbe_fc_none:
2201 		/*
2202 		 * Flow control is disabled by software override or autoneg.
2203 		 * The code below will actually disable it in the HW.
2204 		 */
2205 		break;
2206 	case ixgbe_fc_rx_pause:
2207 		/*
2208 		 * Rx Flow control is enabled and Tx Flow control is
2209 		 * disabled by software override. Since there really
2210 		 * isn't a way to advertise that we are capable of RX
2211 		 * Pause ONLY, we will advertise that we support both
2212 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2213 		 * disable the adapter's ability to send PAUSE frames.
2214 		 */
2215 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2216 		break;
2217 	case ixgbe_fc_tx_pause:
2218 		/*
2219 		 * Tx Flow control is enabled, and Rx Flow control is
2220 		 * disabled by software override.
2221 		 */
2222 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2223 		break;
2224 	case ixgbe_fc_full:
2225 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2226 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2227 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2228 		break;
2229 	default:
2230 		hw_dbg(hw, "Flow control param set incorrectly\n");
2231 		return IXGBE_ERR_CONFIG;
2232 	}
2233 
2234 	/* Set 802.3x based flow control settings. */
2235 	mflcn_reg |= IXGBE_MFLCN_DPF;
2236 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2237 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2238 
2239 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2240 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2241 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2242 		    hw->fc.high_water[i]) {
2243 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2244 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2245 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2246 		} else {
2247 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2248 			/*
2249 			 * In order to prevent Tx hangs when the internal Tx
2250 			 * switch is enabled we must set the high water mark
2251 			 * to the Rx packet buffer size - 24KB.  This allows
2252 			 * the Tx switch to function even under heavy Rx
2253 			 * workloads.
2254 			 */
2255 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2256 		}
2257 
2258 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2259 	}
2260 
2261 	/* Configure pause time (2 TCs per register) */
2262 	reg = hw->fc.pause_time * 0x00010001;
2263 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2264 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2265 
2266 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2267 
2268 	return 0;
2269 }
2270 
2271 /**
2272  *  ixgbe_negotiate_fc - Negotiate flow control
2273  *  @hw: pointer to hardware structure
2274  *  @adv_reg: flow control advertised settings
2275  *  @lp_reg: link partner's flow control settings
2276  *  @adv_sym: symmetric pause bit in advertisement
2277  *  @adv_asm: asymmetric pause bit in advertisement
2278  *  @lp_sym: symmetric pause bit in link partner advertisement
2279  *  @lp_asm: asymmetric pause bit in link partner advertisement
2280  *
2281  *  Find the intersection between advertised settings and link partner's
2282  *  advertised settings
2283  **/
2284 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2285 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2286 {
2287 	if ((!(adv_reg)) ||  (!(lp_reg)))
2288 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2289 
2290 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2291 		/*
2292 		 * Now we need to check if the user selected Rx ONLY
2293 		 * of pause frames.  In this case, we had to advertise
2294 		 * FULL flow control because we could not advertise RX
2295 		 * ONLY. Hence, we must now check to see if we need to
2296 		 * turn OFF the TRANSMISSION of PAUSE frames.
2297 		 */
2298 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2299 			hw->fc.current_mode = ixgbe_fc_full;
2300 			hw_dbg(hw, "Flow Control = FULL.\n");
2301 		} else {
2302 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2303 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2304 		}
2305 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2306 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2307 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2308 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2309 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2310 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2311 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2312 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2313 	} else {
2314 		hw->fc.current_mode = ixgbe_fc_none;
2315 		hw_dbg(hw, "Flow Control = NONE.\n");
2316 	}
2317 	return 0;
2318 }
2319 
2320 /**
2321  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2322  *  @hw: pointer to hardware structure
2323  *
2324  *  Enable flow control according on 1 gig fiber.
2325  **/
2326 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2327 {
2328 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2329 	s32 ret_val;
2330 
2331 	/*
2332 	 * On multispeed fiber at 1g, bail out if
2333 	 * - link is up but AN did not complete, or if
2334 	 * - link is up and AN completed but timed out
2335 	 */
2336 
2337 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2338 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2339 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2340 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2341 
2342 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2343 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2344 
2345 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2346 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2347 			       IXGBE_PCS1GANA_ASM_PAUSE,
2348 			       IXGBE_PCS1GANA_SYM_PAUSE,
2349 			       IXGBE_PCS1GANA_ASM_PAUSE);
2350 
2351 	return ret_val;
2352 }
2353 
2354 /**
2355  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2356  *  @hw: pointer to hardware structure
2357  *
2358  *  Enable flow control according to IEEE clause 37.
2359  **/
2360 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2361 {
2362 	u32 links2, anlp1_reg, autoc_reg, links;
2363 	s32 ret_val;
2364 
2365 	/*
2366 	 * On backplane, bail out if
2367 	 * - backplane autoneg was not completed, or if
2368 	 * - we are 82599 and link partner is not AN enabled
2369 	 */
2370 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2371 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2372 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2373 
2374 	if (hw->mac.type == ixgbe_mac_82599EB) {
2375 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2376 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2377 			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2378 	}
2379 	/*
2380 	 * Read the 10g AN autoc and LP ability registers and resolve
2381 	 * local flow control settings accordingly
2382 	 */
2383 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2384 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2385 
2386 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2387 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2388 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2389 
2390 	return ret_val;
2391 }
2392 
2393 /**
2394  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2395  *  @hw: pointer to hardware structure
2396  *
2397  *  Enable flow control according to IEEE clause 37.
2398  **/
2399 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2400 {
2401 	u16 technology_ability_reg = 0;
2402 	u16 lp_technology_ability_reg = 0;
2403 
2404 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2405 			     MDIO_MMD_AN,
2406 			     &technology_ability_reg);
2407 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2408 			     MDIO_MMD_AN,
2409 			     &lp_technology_ability_reg);
2410 
2411 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2412 				  (u32)lp_technology_ability_reg,
2413 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2414 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2415 }
2416 
2417 /**
2418  *  ixgbe_fc_autoneg - Configure flow control
2419  *  @hw: pointer to hardware structure
2420  *
2421  *  Compares our advertised flow control capabilities to those advertised by
2422  *  our link partner, and determines the proper flow control mode to use.
2423  **/
2424 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2425 {
2426 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2427 	ixgbe_link_speed speed;
2428 	bool link_up;
2429 
2430 	/*
2431 	 * AN should have completed when the cable was plugged in.
2432 	 * Look for reasons to bail out.  Bail out if:
2433 	 * - FC autoneg is disabled, or if
2434 	 * - link is not up.
2435 	 *
2436 	 * Since we're being called from an LSC, link is already known to be up.
2437 	 * So use link_up_wait_to_complete=false.
2438 	 */
2439 	if (hw->fc.disable_fc_autoneg)
2440 		goto out;
2441 
2442 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2443 	if (!link_up)
2444 		goto out;
2445 
2446 	switch (hw->phy.media_type) {
2447 	/* Autoneg flow control on fiber adapters */
2448 	case ixgbe_media_type_fiber:
2449 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2450 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2451 		break;
2452 
2453 	/* Autoneg flow control on backplane adapters */
2454 	case ixgbe_media_type_backplane:
2455 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2456 		break;
2457 
2458 	/* Autoneg flow control on copper adapters */
2459 	case ixgbe_media_type_copper:
2460 		if (ixgbe_device_supports_autoneg_fc(hw))
2461 			ret_val = ixgbe_fc_autoneg_copper(hw);
2462 		break;
2463 
2464 	default:
2465 		break;
2466 	}
2467 
2468 out:
2469 	if (ret_val == 0) {
2470 		hw->fc.fc_was_autonegged = true;
2471 	} else {
2472 		hw->fc.fc_was_autonegged = false;
2473 		hw->fc.current_mode = hw->fc.requested_mode;
2474 	}
2475 }
2476 
2477 /**
2478  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2479  * @hw: pointer to hardware structure
2480  *
2481  * System-wide timeout range is encoded in PCIe Device Control2 register.
2482  *
2483  *  Add 10% to specified maximum and return the number of times to poll for
2484  *  completion timeout, in units of 100 microsec.  Never return less than
2485  *  800 = 80 millisec.
2486  **/
2487 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2488 {
2489 	s16 devctl2;
2490 	u32 pollcnt;
2491 
2492 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2493 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2494 
2495 	switch (devctl2) {
2496 	case IXGBE_PCIDEVCTRL2_65_130ms:
2497 		 pollcnt = 1300;         /* 130 millisec */
2498 		break;
2499 	case IXGBE_PCIDEVCTRL2_260_520ms:
2500 		pollcnt = 5200;         /* 520 millisec */
2501 		break;
2502 	case IXGBE_PCIDEVCTRL2_1_2s:
2503 		pollcnt = 20000;        /* 2 sec */
2504 		break;
2505 	case IXGBE_PCIDEVCTRL2_4_8s:
2506 		pollcnt = 80000;        /* 8 sec */
2507 		break;
2508 	case IXGBE_PCIDEVCTRL2_17_34s:
2509 		pollcnt = 34000;        /* 34 sec */
2510 		break;
2511 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2512 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2513 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2514 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2515 	default:
2516 		pollcnt = 800;          /* 80 millisec minimum */
2517 		break;
2518 	}
2519 
2520 	/* add 10% to spec maximum */
2521 	return (pollcnt * 11) / 10;
2522 }
2523 
2524 /**
2525  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2526  *  @hw: pointer to hardware structure
2527  *
2528  *  Disables PCI-Express master access and verifies there are no pending
2529  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2530  *  bit hasn't caused the master requests to be disabled, else 0
2531  *  is returned signifying master requests disabled.
2532  **/
2533 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2534 {
2535 	u32 i, poll;
2536 	u16 value;
2537 
2538 	/* Always set this bit to ensure any future transactions are blocked */
2539 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2540 
2541 	/* Poll for bit to read as set */
2542 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2543 		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2544 			break;
2545 		usleep_range(100, 120);
2546 	}
2547 	if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2548 		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2549 		goto gio_disable_fail;
2550 	}
2551 
2552 	/* Exit if master requests are blocked */
2553 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2554 	    ixgbe_removed(hw->hw_addr))
2555 		return 0;
2556 
2557 	/* Poll for master request bit to clear */
2558 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2559 		udelay(100);
2560 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2561 			return 0;
2562 	}
2563 
2564 	/*
2565 	 * Two consecutive resets are required via CTRL.RST per datasheet
2566 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2567 	 * of this need.  The first reset prevents new master requests from
2568 	 * being issued by our device.  We then must wait 1usec or more for any
2569 	 * remaining completions from the PCIe bus to trickle in, and then reset
2570 	 * again to clear out any effects they may have had on our device.
2571 	 */
2572 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2573 gio_disable_fail:
2574 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2575 
2576 	if (hw->mac.type >= ixgbe_mac_X550)
2577 		return 0;
2578 
2579 	/*
2580 	 * Before proceeding, make sure that the PCIe block does not have
2581 	 * transactions pending.
2582 	 */
2583 	poll = ixgbe_pcie_timeout_poll(hw);
2584 	for (i = 0; i < poll; i++) {
2585 		udelay(100);
2586 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2587 		if (ixgbe_removed(hw->hw_addr))
2588 			return 0;
2589 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2590 			return 0;
2591 	}
2592 
2593 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2594 	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2595 }
2596 
2597 /**
2598  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2599  *  @hw: pointer to hardware structure
2600  *  @mask: Mask to specify which semaphore to acquire
2601  *
2602  *  Acquires the SWFW semaphore through the GSSR register for the specified
2603  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2604  **/
2605 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2606 {
2607 	u32 gssr = 0;
2608 	u32 swmask = mask;
2609 	u32 fwmask = mask << 5;
2610 	u32 timeout = 200;
2611 	u32 i;
2612 
2613 	for (i = 0; i < timeout; i++) {
2614 		/*
2615 		 * SW NVM semaphore bit is used for access to all
2616 		 * SW_FW_SYNC bits (not just NVM)
2617 		 */
2618 		if (ixgbe_get_eeprom_semaphore(hw))
2619 			return IXGBE_ERR_SWFW_SYNC;
2620 
2621 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2622 		if (!(gssr & (fwmask | swmask))) {
2623 			gssr |= swmask;
2624 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2625 			ixgbe_release_eeprom_semaphore(hw);
2626 			return 0;
2627 		} else {
2628 			/* Resource is currently in use by FW or SW */
2629 			ixgbe_release_eeprom_semaphore(hw);
2630 			usleep_range(5000, 10000);
2631 		}
2632 	}
2633 
2634 	/* If time expired clear the bits holding the lock and retry */
2635 	if (gssr & (fwmask | swmask))
2636 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2637 
2638 	usleep_range(5000, 10000);
2639 	return IXGBE_ERR_SWFW_SYNC;
2640 }
2641 
2642 /**
2643  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2644  *  @hw: pointer to hardware structure
2645  *  @mask: Mask to specify which semaphore to release
2646  *
2647  *  Releases the SWFW semaphore through the GSSR register for the specified
2648  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2649  **/
2650 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2651 {
2652 	u32 gssr;
2653 	u32 swmask = mask;
2654 
2655 	ixgbe_get_eeprom_semaphore(hw);
2656 
2657 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2658 	gssr &= ~swmask;
2659 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2660 
2661 	ixgbe_release_eeprom_semaphore(hw);
2662 }
2663 
2664 /**
2665  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2666  * @hw: pointer to hardware structure
2667  * @reg_val: Value we read from AUTOC
2668  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2669  *	    true in this the generic case.
2670  *
2671  * The default case requires no protection so just to the register read.
2672  **/
2673 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2674 {
2675 	*locked = false;
2676 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2677 	return 0;
2678 }
2679 
2680 /**
2681  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2682  * @hw: pointer to hardware structure
2683  * @reg_val: value to write to AUTOC
2684  * @locked: bool to indicate whether the SW/FW lock was already taken by
2685  *	    previous read.
2686  **/
2687 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2688 {
2689 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2690 	return 0;
2691 }
2692 
2693 /**
2694  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2695  *  @hw: pointer to hardware structure
2696  *
2697  *  Stops the receive data path and waits for the HW to internally
2698  *  empty the Rx security block.
2699  **/
2700 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2701 {
2702 #define IXGBE_MAX_SECRX_POLL 40
2703 	int i;
2704 	int secrxreg;
2705 
2706 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2707 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2708 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2709 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2710 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2711 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2712 			break;
2713 		else
2714 			/* Use interrupt-safe sleep just in case */
2715 			udelay(1000);
2716 	}
2717 
2718 	/* For informational purposes only */
2719 	if (i >= IXGBE_MAX_SECRX_POLL)
2720 		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2721 
2722 	return 0;
2723 
2724 }
2725 
2726 /**
2727  *  ixgbe_enable_rx_buff - Enables the receive data path
2728  *  @hw: pointer to hardware structure
2729  *
2730  *  Enables the receive data path
2731  **/
2732 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2733 {
2734 	u32 secrxreg;
2735 
2736 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2737 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2738 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2739 	IXGBE_WRITE_FLUSH(hw);
2740 
2741 	return 0;
2742 }
2743 
2744 /**
2745  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2746  *  @hw: pointer to hardware structure
2747  *  @regval: register value to write to RXCTRL
2748  *
2749  *  Enables the Rx DMA unit
2750  **/
2751 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2752 {
2753 	if (regval & IXGBE_RXCTRL_RXEN)
2754 		hw->mac.ops.enable_rx(hw);
2755 	else
2756 		hw->mac.ops.disable_rx(hw);
2757 
2758 	return 0;
2759 }
2760 
2761 /**
2762  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2763  *  @hw: pointer to hardware structure
2764  *  @index: led number to blink
2765  **/
2766 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2767 {
2768 	ixgbe_link_speed speed = 0;
2769 	bool link_up = false;
2770 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2771 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2772 	bool locked = false;
2773 	s32 ret_val;
2774 
2775 	if (index > 3)
2776 		return IXGBE_ERR_PARAM;
2777 
2778 	/*
2779 	 * Link must be up to auto-blink the LEDs;
2780 	 * Force it if link is down.
2781 	 */
2782 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2783 
2784 	if (!link_up) {
2785 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2786 		if (ret_val)
2787 			return ret_val;
2788 
2789 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2790 		autoc_reg |= IXGBE_AUTOC_FLU;
2791 
2792 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2793 		if (ret_val)
2794 			return ret_val;
2795 
2796 		IXGBE_WRITE_FLUSH(hw);
2797 
2798 		usleep_range(10000, 20000);
2799 	}
2800 
2801 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2802 	led_reg |= IXGBE_LED_BLINK(index);
2803 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2804 	IXGBE_WRITE_FLUSH(hw);
2805 
2806 	return 0;
2807 }
2808 
2809 /**
2810  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2811  *  @hw: pointer to hardware structure
2812  *  @index: led number to stop blinking
2813  **/
2814 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2815 {
2816 	u32 autoc_reg = 0;
2817 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2818 	bool locked = false;
2819 	s32 ret_val;
2820 
2821 	if (index > 3)
2822 		return IXGBE_ERR_PARAM;
2823 
2824 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2825 	if (ret_val)
2826 		return ret_val;
2827 
2828 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2829 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2830 
2831 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2832 	if (ret_val)
2833 		return ret_val;
2834 
2835 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2836 	led_reg &= ~IXGBE_LED_BLINK(index);
2837 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2838 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2839 	IXGBE_WRITE_FLUSH(hw);
2840 
2841 	return 0;
2842 }
2843 
2844 /**
2845  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2846  *  @hw: pointer to hardware structure
2847  *  @san_mac_offset: SAN MAC address offset
2848  *
2849  *  This function will read the EEPROM location for the SAN MAC address
2850  *  pointer, and returns the value at that location.  This is used in both
2851  *  get and set mac_addr routines.
2852  **/
2853 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2854 					u16 *san_mac_offset)
2855 {
2856 	s32 ret_val;
2857 
2858 	/*
2859 	 * First read the EEPROM pointer to see if the MAC addresses are
2860 	 * available.
2861 	 */
2862 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2863 				      san_mac_offset);
2864 	if (ret_val)
2865 		hw_err(hw, "eeprom read at offset %d failed\n",
2866 		       IXGBE_SAN_MAC_ADDR_PTR);
2867 
2868 	return ret_val;
2869 }
2870 
2871 /**
2872  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2873  *  @hw: pointer to hardware structure
2874  *  @san_mac_addr: SAN MAC address
2875  *
2876  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2877  *  per-port, so set_lan_id() must be called before reading the addresses.
2878  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2879  *  upon for non-SFP connections, so we must call it here.
2880  **/
2881 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2882 {
2883 	u16 san_mac_data, san_mac_offset;
2884 	u8 i;
2885 	s32 ret_val;
2886 
2887 	/*
2888 	 * First read the EEPROM pointer to see if the MAC addresses are
2889 	 * available.  If they're not, no point in calling set_lan_id() here.
2890 	 */
2891 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2892 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2893 
2894 		goto san_mac_addr_clr;
2895 
2896 	/* make sure we know which port we need to program */
2897 	hw->mac.ops.set_lan_id(hw);
2898 	/* apply the port offset to the address offset */
2899 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2900 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2901 	for (i = 0; i < 3; i++) {
2902 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2903 					      &san_mac_data);
2904 		if (ret_val) {
2905 			hw_err(hw, "eeprom read at offset %d failed\n",
2906 			       san_mac_offset);
2907 			goto san_mac_addr_clr;
2908 		}
2909 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2910 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2911 		san_mac_offset++;
2912 	}
2913 	return 0;
2914 
2915 san_mac_addr_clr:
2916 	/* No addresses available in this EEPROM.  It's not necessarily an
2917 	 * error though, so just wipe the local address and return.
2918 	 */
2919 	for (i = 0; i < 6; i++)
2920 		san_mac_addr[i] = 0xFF;
2921 	return ret_val;
2922 }
2923 
2924 /**
2925  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2926  *  @hw: pointer to hardware structure
2927  *
2928  *  Read PCIe configuration space, and get the MSI-X vector count from
2929  *  the capabilities table.
2930  **/
2931 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2932 {
2933 	u16 msix_count;
2934 	u16 max_msix_count;
2935 	u16 pcie_offset;
2936 
2937 	switch (hw->mac.type) {
2938 	case ixgbe_mac_82598EB:
2939 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2940 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2941 		break;
2942 	case ixgbe_mac_82599EB:
2943 	case ixgbe_mac_X540:
2944 	case ixgbe_mac_X550:
2945 	case ixgbe_mac_X550EM_x:
2946 	case ixgbe_mac_x550em_a:
2947 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2948 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2949 		break;
2950 	default:
2951 		return 1;
2952 	}
2953 
2954 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2955 	if (ixgbe_removed(hw->hw_addr))
2956 		msix_count = 0;
2957 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2958 
2959 	/* MSI-X count is zero-based in HW */
2960 	msix_count++;
2961 
2962 	if (msix_count > max_msix_count)
2963 		msix_count = max_msix_count;
2964 
2965 	return msix_count;
2966 }
2967 
2968 /**
2969  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2970  *  @hw: pointer to hardware struct
2971  *  @rar: receive address register index to disassociate
2972  *  @vmdq: VMDq pool index to remove from the rar
2973  **/
2974 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2975 {
2976 	u32 mpsar_lo, mpsar_hi;
2977 	u32 rar_entries = hw->mac.num_rar_entries;
2978 
2979 	/* Make sure we are using a valid rar index range */
2980 	if (rar >= rar_entries) {
2981 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2982 		return IXGBE_ERR_INVALID_ARGUMENT;
2983 	}
2984 
2985 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2986 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2987 
2988 	if (ixgbe_removed(hw->hw_addr))
2989 		return 0;
2990 
2991 	if (!mpsar_lo && !mpsar_hi)
2992 		return 0;
2993 
2994 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2995 		if (mpsar_lo) {
2996 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2997 			mpsar_lo = 0;
2998 		}
2999 		if (mpsar_hi) {
3000 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3001 			mpsar_hi = 0;
3002 		}
3003 	} else if (vmdq < 32) {
3004 		mpsar_lo &= ~BIT(vmdq);
3005 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3006 	} else {
3007 		mpsar_hi &= ~BIT(vmdq - 32);
3008 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3009 	}
3010 
3011 	/* was that the last pool using this rar? */
3012 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
3013 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
3014 		hw->mac.ops.clear_rar(hw, rar);
3015 
3016 	return 0;
3017 }
3018 
3019 /**
3020  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3021  *  @hw: pointer to hardware struct
3022  *  @rar: receive address register index to associate with a VMDq index
3023  *  @vmdq: VMDq pool index
3024  **/
3025 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3026 {
3027 	u32 mpsar;
3028 	u32 rar_entries = hw->mac.num_rar_entries;
3029 
3030 	/* Make sure we are using a valid rar index range */
3031 	if (rar >= rar_entries) {
3032 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3033 		return IXGBE_ERR_INVALID_ARGUMENT;
3034 	}
3035 
3036 	if (vmdq < 32) {
3037 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3038 		mpsar |= BIT(vmdq);
3039 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3040 	} else {
3041 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3042 		mpsar |= BIT(vmdq - 32);
3043 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3044 	}
3045 	return 0;
3046 }
3047 
3048 /**
3049  *  This function should only be involved in the IOV mode.
3050  *  In IOV mode, Default pool is next pool after the number of
3051  *  VFs advertized and not 0.
3052  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3053  *
3054  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3055  *  @hw: pointer to hardware struct
3056  *  @vmdq: VMDq pool index
3057  **/
3058 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3059 {
3060 	u32 rar = hw->mac.san_mac_rar_index;
3061 
3062 	if (vmdq < 32) {
3063 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3064 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3065 	} else {
3066 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3067 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3068 	}
3069 
3070 	return 0;
3071 }
3072 
3073 /**
3074  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3075  *  @hw: pointer to hardware structure
3076  **/
3077 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3078 {
3079 	int i;
3080 
3081 	for (i = 0; i < 128; i++)
3082 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3083 
3084 	return 0;
3085 }
3086 
3087 /**
3088  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3089  *  @hw: pointer to hardware structure
3090  *  @vlan: VLAN id to write to VLAN filter
3091  *
3092  *  return the VLVF index where this VLAN id should be placed
3093  *
3094  **/
3095 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3096 {
3097 	s32 regindex, first_empty_slot;
3098 	u32 bits;
3099 
3100 	/* short cut the special case */
3101 	if (vlan == 0)
3102 		return 0;
3103 
3104 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3105 	 * will simply bypass the VLVF if there are no entries present in the
3106 	 * VLVF that contain our VLAN
3107 	 */
3108 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3109 
3110 	/* add VLAN enable bit for comparison */
3111 	vlan |= IXGBE_VLVF_VIEN;
3112 
3113 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3114 	 * slot found along the way.
3115 	 *
3116 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3117 	 */
3118 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3119 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3120 		if (bits == vlan)
3121 			return regindex;
3122 		if (!first_empty_slot && !bits)
3123 			first_empty_slot = regindex;
3124 	}
3125 
3126 	/* If we are here then we didn't find the VLAN.  Return first empty
3127 	 * slot we found during our search, else error.
3128 	 */
3129 	if (!first_empty_slot)
3130 		hw_dbg(hw, "No space in VLVF.\n");
3131 
3132 	return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3133 }
3134 
3135 /**
3136  *  ixgbe_set_vfta_generic - Set VLAN filter table
3137  *  @hw: pointer to hardware structure
3138  *  @vlan: VLAN id to write to VLAN filter
3139  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3140  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3141  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3142  *
3143  *  Turn on/off specified VLAN in the VLAN filter table.
3144  **/
3145 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3146 			   bool vlan_on, bool vlvf_bypass)
3147 {
3148 	u32 regidx, vfta_delta, vfta, bits;
3149 	s32 vlvf_index;
3150 
3151 	if ((vlan > 4095) || (vind > 63))
3152 		return IXGBE_ERR_PARAM;
3153 
3154 	/*
3155 	 * this is a 2 part operation - first the VFTA, then the
3156 	 * VLVF and VLVFB if VT Mode is set
3157 	 * We don't write the VFTA until we know the VLVF part succeeded.
3158 	 */
3159 
3160 	/* Part 1
3161 	 * The VFTA is a bitstring made up of 128 32-bit registers
3162 	 * that enable the particular VLAN id, much like the MTA:
3163 	 *    bits[11-5]: which register
3164 	 *    bits[4-0]:  which bit in the register
3165 	 */
3166 	regidx = vlan / 32;
3167 	vfta_delta = BIT(vlan % 32);
3168 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3169 
3170 	/* vfta_delta represents the difference between the current value
3171 	 * of vfta and the value we want in the register.  Since the diff
3172 	 * is an XOR mask we can just update vfta using an XOR.
3173 	 */
3174 	vfta_delta &= vlan_on ? ~vfta : vfta;
3175 	vfta ^= vfta_delta;
3176 
3177 	/* Part 2
3178 	 * If VT Mode is set
3179 	 *   Either vlan_on
3180 	 *     make sure the vlan is in VLVF
3181 	 *     set the vind bit in the matching VLVFB
3182 	 *   Or !vlan_on
3183 	 *     clear the pool bit and possibly the vind
3184 	 */
3185 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3186 		goto vfta_update;
3187 
3188 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3189 	if (vlvf_index < 0) {
3190 		if (vlvf_bypass)
3191 			goto vfta_update;
3192 		return vlvf_index;
3193 	}
3194 
3195 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3196 
3197 	/* set the pool bit */
3198 	bits |= BIT(vind % 32);
3199 	if (vlan_on)
3200 		goto vlvf_update;
3201 
3202 	/* clear the pool bit */
3203 	bits ^= BIT(vind % 32);
3204 
3205 	if (!bits &&
3206 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3207 		/* Clear VFTA first, then disable VLVF.  Otherwise
3208 		 * we run the risk of stray packets leaking into
3209 		 * the PF via the default pool
3210 		 */
3211 		if (vfta_delta)
3212 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3213 
3214 		/* disable VLVF and clear remaining bit from pool */
3215 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3216 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3217 
3218 		return 0;
3219 	}
3220 
3221 	/* If there are still bits set in the VLVFB registers
3222 	 * for the VLAN ID indicated we need to see if the
3223 	 * caller is requesting that we clear the VFTA entry bit.
3224 	 * If the caller has requested that we clear the VFTA
3225 	 * entry bit but there are still pools/VFs using this VLAN
3226 	 * ID entry then ignore the request.  We're not worried
3227 	 * about the case where we're turning the VFTA VLAN ID
3228 	 * entry bit on, only when requested to turn it off as
3229 	 * there may be multiple pools and/or VFs using the
3230 	 * VLAN ID entry.  In that case we cannot clear the
3231 	 * VFTA bit until all pools/VFs using that VLAN ID have also
3232 	 * been cleared.  This will be indicated by "bits" being
3233 	 * zero.
3234 	 */
3235 	vfta_delta = 0;
3236 
3237 vlvf_update:
3238 	/* record pool change and enable VLAN ID if not already enabled */
3239 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3240 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3241 
3242 vfta_update:
3243 	/* Update VFTA now that we are ready for traffic */
3244 	if (vfta_delta)
3245 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3246 
3247 	return 0;
3248 }
3249 
3250 /**
3251  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3252  *  @hw: pointer to hardware structure
3253  *
3254  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3255  **/
3256 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3257 {
3258 	u32 offset;
3259 
3260 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3261 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3262 
3263 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3264 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3265 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3266 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3267 	}
3268 
3269 	return 0;
3270 }
3271 
3272 /**
3273  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3274  *  @hw: pointer to hardware structure
3275  *
3276  *  Contains the logic to identify if we need to verify link for the
3277  *  crosstalk fix
3278  **/
3279 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3280 {
3281 	/* Does FW say we need the fix */
3282 	if (!hw->need_crosstalk_fix)
3283 		return false;
3284 
3285 	/* Only consider SFP+ PHYs i.e. media type fiber */
3286 	switch (hw->mac.ops.get_media_type(hw)) {
3287 	case ixgbe_media_type_fiber:
3288 	case ixgbe_media_type_fiber_qsfp:
3289 		break;
3290 	default:
3291 		return false;
3292 	}
3293 
3294 	return true;
3295 }
3296 
3297 /**
3298  *  ixgbe_check_mac_link_generic - Determine link and speed status
3299  *  @hw: pointer to hardware structure
3300  *  @speed: pointer to link speed
3301  *  @link_up: true when link is up
3302  *  @link_up_wait_to_complete: bool used to wait for link up or not
3303  *
3304  *  Reads the links register to determine if link is up and the current speed
3305  **/
3306 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3307 				 bool *link_up, bool link_up_wait_to_complete)
3308 {
3309 	u32 links_reg, links_orig;
3310 	u32 i;
3311 
3312 	/* If Crosstalk fix enabled do the sanity check of making sure
3313 	 * the SFP+ cage is full.
3314 	 */
3315 	if (ixgbe_need_crosstalk_fix(hw)) {
3316 		u32 sfp_cage_full;
3317 
3318 		switch (hw->mac.type) {
3319 		case ixgbe_mac_82599EB:
3320 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3321 					IXGBE_ESDP_SDP2;
3322 			break;
3323 		case ixgbe_mac_X550EM_x:
3324 		case ixgbe_mac_x550em_a:
3325 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3326 					IXGBE_ESDP_SDP0;
3327 			break;
3328 		default:
3329 			/* sanity check - No SFP+ devices here */
3330 			sfp_cage_full = false;
3331 			break;
3332 		}
3333 
3334 		if (!sfp_cage_full) {
3335 			*link_up = false;
3336 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
3337 			return 0;
3338 		}
3339 	}
3340 
3341 	/* clear the old state */
3342 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3343 
3344 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3345 
3346 	if (links_orig != links_reg) {
3347 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3348 		       links_orig, links_reg);
3349 	}
3350 
3351 	if (link_up_wait_to_complete) {
3352 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3353 			if (links_reg & IXGBE_LINKS_UP) {
3354 				*link_up = true;
3355 				break;
3356 			} else {
3357 				*link_up = false;
3358 			}
3359 			msleep(100);
3360 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3361 		}
3362 	} else {
3363 		if (links_reg & IXGBE_LINKS_UP)
3364 			*link_up = true;
3365 		else
3366 			*link_up = false;
3367 	}
3368 
3369 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3370 	case IXGBE_LINKS_SPEED_10G_82599:
3371 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3372 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3373 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3374 		else
3375 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3376 		break;
3377 	case IXGBE_LINKS_SPEED_1G_82599:
3378 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3379 		break;
3380 	case IXGBE_LINKS_SPEED_100_82599:
3381 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3382 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3383 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3384 		else
3385 			*speed = IXGBE_LINK_SPEED_100_FULL;
3386 		break;
3387 	case IXGBE_LINKS_SPEED_10_X550EM_A:
3388 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3389 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3390 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3391 			*speed = IXGBE_LINK_SPEED_10_FULL;
3392 		}
3393 		break;
3394 	default:
3395 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3396 	}
3397 
3398 	return 0;
3399 }
3400 
3401 /**
3402  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3403  *  the EEPROM
3404  *  @hw: pointer to hardware structure
3405  *  @wwnn_prefix: the alternative WWNN prefix
3406  *  @wwpn_prefix: the alternative WWPN prefix
3407  *
3408  *  This function will read the EEPROM from the alternative SAN MAC address
3409  *  block to check the support for the alternative WWNN/WWPN prefix support.
3410  **/
3411 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3412 					u16 *wwpn_prefix)
3413 {
3414 	u16 offset, caps;
3415 	u16 alt_san_mac_blk_offset;
3416 
3417 	/* clear output first */
3418 	*wwnn_prefix = 0xFFFF;
3419 	*wwpn_prefix = 0xFFFF;
3420 
3421 	/* check if alternative SAN MAC is supported */
3422 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3423 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3424 		goto wwn_prefix_err;
3425 
3426 	if ((alt_san_mac_blk_offset == 0) ||
3427 	    (alt_san_mac_blk_offset == 0xFFFF))
3428 		return 0;
3429 
3430 	/* check capability in alternative san mac address block */
3431 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3432 	if (hw->eeprom.ops.read(hw, offset, &caps))
3433 		goto wwn_prefix_err;
3434 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3435 		return 0;
3436 
3437 	/* get the corresponding prefix for WWNN/WWPN */
3438 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3439 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3440 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3441 
3442 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3443 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3444 		goto wwn_prefix_err;
3445 
3446 	return 0;
3447 
3448 wwn_prefix_err:
3449 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3450 	return 0;
3451 }
3452 
3453 /**
3454  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3455  *  @hw: pointer to hardware structure
3456  *  @enable: enable or disable switch for MAC anti-spoofing
3457  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3458  *
3459  **/
3460 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3461 {
3462 	int vf_target_reg = vf >> 3;
3463 	int vf_target_shift = vf % 8;
3464 	u32 pfvfspoof;
3465 
3466 	if (hw->mac.type == ixgbe_mac_82598EB)
3467 		return;
3468 
3469 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3470 	if (enable)
3471 		pfvfspoof |= BIT(vf_target_shift);
3472 	else
3473 		pfvfspoof &= ~BIT(vf_target_shift);
3474 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3475 }
3476 
3477 /**
3478  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3479  *  @hw: pointer to hardware structure
3480  *  @enable: enable or disable switch for VLAN anti-spoofing
3481  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3482  *
3483  **/
3484 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3485 {
3486 	int vf_target_reg = vf >> 3;
3487 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3488 	u32 pfvfspoof;
3489 
3490 	if (hw->mac.type == ixgbe_mac_82598EB)
3491 		return;
3492 
3493 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3494 	if (enable)
3495 		pfvfspoof |= BIT(vf_target_shift);
3496 	else
3497 		pfvfspoof &= ~BIT(vf_target_shift);
3498 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3499 }
3500 
3501 /**
3502  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3503  *  @hw: pointer to hardware structure
3504  *  @device_caps: the EEPROM word with the extra device capabilities
3505  *
3506  *  This function will read the EEPROM location for the device capabilities,
3507  *  and return the word through device_caps.
3508  **/
3509 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3510 {
3511 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3512 
3513 	return 0;
3514 }
3515 
3516 /**
3517  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3518  * @hw: pointer to hardware structure
3519  * @num_pb: number of packet buffers to allocate
3520  * @headroom: reserve n KB of headroom
3521  * @strategy: packet buffer allocation strategy
3522  **/
3523 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3524 			     int num_pb,
3525 			     u32 headroom,
3526 			     int strategy)
3527 {
3528 	u32 pbsize = hw->mac.rx_pb_size;
3529 	int i = 0;
3530 	u32 rxpktsize, txpktsize, txpbthresh;
3531 
3532 	/* Reserve headroom */
3533 	pbsize -= headroom;
3534 
3535 	if (!num_pb)
3536 		num_pb = 1;
3537 
3538 	/* Divide remaining packet buffer space amongst the number
3539 	 * of packet buffers requested using supplied strategy.
3540 	 */
3541 	switch (strategy) {
3542 	case (PBA_STRATEGY_WEIGHTED):
3543 		/* pba_80_48 strategy weight first half of packet buffer with
3544 		 * 5/8 of the packet buffer space.
3545 		 */
3546 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3547 		pbsize -= rxpktsize * (num_pb / 2);
3548 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3549 		for (; i < (num_pb / 2); i++)
3550 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3551 		/* Fall through to configure remaining packet buffers */
3552 	case (PBA_STRATEGY_EQUAL):
3553 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3554 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3555 		for (; i < num_pb; i++)
3556 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3557 		break;
3558 	default:
3559 		break;
3560 	}
3561 
3562 	/*
3563 	 * Setup Tx packet buffer and threshold equally for all TCs
3564 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3565 	 * 10 since the largest packet we support is just over 9K.
3566 	 */
3567 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3568 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3569 	for (i = 0; i < num_pb; i++) {
3570 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3571 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3572 	}
3573 
3574 	/* Clear unused TCs, if any, to zero buffer size*/
3575 	for (; i < IXGBE_MAX_PB; i++) {
3576 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3577 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3578 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3579 	}
3580 }
3581 
3582 /**
3583  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3584  *  @buffer: pointer to EEPROM
3585  *  @length: size of EEPROM to calculate a checksum for
3586  *
3587  *  Calculates the checksum for some buffer on a specified length.  The
3588  *  checksum calculated is returned.
3589  **/
3590 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3591 {
3592 	u32 i;
3593 	u8 sum = 0;
3594 
3595 	if (!buffer)
3596 		return 0;
3597 
3598 	for (i = 0; i < length; i++)
3599 		sum += buffer[i];
3600 
3601 	return (u8) (0 - sum);
3602 }
3603 
3604 /**
3605  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3606  *  @hw: pointer to the HW structure
3607  *  @buffer: command to write and where the return status will be placed
3608  *  @length: length of buffer, must be multiple of 4 bytes
3609  *  @timeout: time in ms to wait for command completion
3610  *
3611  *  Communicates with the manageability block. On success return 0
3612  *  else returns semaphore error when encountering an error acquiring
3613  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3614  *
3615  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3616  *  by the caller.
3617  **/
3618 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3619 		       u32 timeout)
3620 {
3621 	u32 hicr, i, fwsts;
3622 	u16 dword_len;
3623 
3624 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3625 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3626 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3627 	}
3628 
3629 	/* Set bit 9 of FWSTS clearing FW reset indication */
3630 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3631 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3632 
3633 	/* Check that the host interface is enabled. */
3634 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3635 	if (!(hicr & IXGBE_HICR_EN)) {
3636 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3637 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3638 	}
3639 
3640 	/* Calculate length in DWORDs. We must be DWORD aligned */
3641 	if (length % sizeof(u32)) {
3642 		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3643 		return IXGBE_ERR_INVALID_ARGUMENT;
3644 	}
3645 
3646 	dword_len = length >> 2;
3647 
3648 	/* The device driver writes the relevant command block
3649 	 * into the ram area.
3650 	 */
3651 	for (i = 0; i < dword_len; i++)
3652 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3653 				      i, cpu_to_le32(buffer[i]));
3654 
3655 	/* Setting this bit tells the ARC that a new command is pending. */
3656 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3657 
3658 	for (i = 0; i < timeout; i++) {
3659 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3660 		if (!(hicr & IXGBE_HICR_C))
3661 			break;
3662 		usleep_range(1000, 2000);
3663 	}
3664 
3665 	/* Check command successful completion. */
3666 	if ((timeout && i == timeout) ||
3667 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3668 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3669 
3670 	return 0;
3671 }
3672 
3673 /**
3674  *  ixgbe_host_interface_command - Issue command to manageability block
3675  *  @hw: pointer to the HW structure
3676  *  @buffer: contains the command to write and where the return status will
3677  *           be placed
3678  *  @length: length of buffer, must be multiple of 4 bytes
3679  *  @timeout: time in ms to wait for command completion
3680  *  @return_data: read and return data from the buffer (true) or not (false)
3681  *  Needed because FW structures are big endian and decoding of
3682  *  these fields can be 8 bit or 16 bit based on command. Decoding
3683  *  is not easily understood without making a table of commands.
3684  *  So we will leave this up to the caller to read back the data
3685  *  in these cases.
3686  *
3687  *  Communicates with the manageability block.  On success return 0
3688  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3689  **/
3690 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3691 				 u32 length, u32 timeout,
3692 				 bool return_data)
3693 {
3694 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3695 	union {
3696 		struct ixgbe_hic_hdr hdr;
3697 		u32 u32arr[1];
3698 	} *bp = buffer;
3699 	u16 buf_len, dword_len;
3700 	s32 status;
3701 	u32 bi;
3702 
3703 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3704 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3705 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3706 	}
3707 	/* Take management host interface semaphore */
3708 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3709 	if (status)
3710 		return status;
3711 
3712 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3713 	if (status)
3714 		goto rel_out;
3715 
3716 	if (!return_data)
3717 		goto rel_out;
3718 
3719 	/* Calculate length in DWORDs */
3720 	dword_len = hdr_size >> 2;
3721 
3722 	/* first pull in the header so we know the buffer length */
3723 	for (bi = 0; bi < dword_len; bi++) {
3724 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3725 		le32_to_cpus(&bp->u32arr[bi]);
3726 	}
3727 
3728 	/* If there is any thing in data position pull it in */
3729 	buf_len = bp->hdr.buf_len;
3730 	if (!buf_len)
3731 		goto rel_out;
3732 
3733 	if (length < round_up(buf_len, 4) + hdr_size) {
3734 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3735 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3736 		goto rel_out;
3737 	}
3738 
3739 	/* Calculate length in DWORDs, add 3 for odd lengths */
3740 	dword_len = (buf_len + 3) >> 2;
3741 
3742 	/* Pull in the rest of the buffer (bi is where we left off) */
3743 	for (; bi <= dword_len; bi++) {
3744 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3745 		le32_to_cpus(&bp->u32arr[bi]);
3746 	}
3747 
3748 rel_out:
3749 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3750 
3751 	return status;
3752 }
3753 
3754 /**
3755  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3756  *  @hw: pointer to the HW structure
3757  *  @maj: driver version major number
3758  *  @min: driver version minor number
3759  *  @build: driver version build number
3760  *  @sub: driver version sub build number
3761  *  @len: length of driver_ver string
3762  *  @driver_ver: driver string
3763  *
3764  *  Sends driver version number to firmware through the manageability
3765  *  block.  On success return 0
3766  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3767  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3768  **/
3769 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3770 				 u8 build, u8 sub, __always_unused u16 len,
3771 				 __always_unused const char *driver_ver)
3772 {
3773 	struct ixgbe_hic_drv_info fw_cmd;
3774 	int i;
3775 	s32 ret_val;
3776 
3777 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3778 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3779 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3780 	fw_cmd.port_num = hw->bus.func;
3781 	fw_cmd.ver_maj = maj;
3782 	fw_cmd.ver_min = min;
3783 	fw_cmd.ver_build = build;
3784 	fw_cmd.ver_sub = sub;
3785 	fw_cmd.hdr.checksum = 0;
3786 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3787 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3788 	fw_cmd.pad = 0;
3789 	fw_cmd.pad2 = 0;
3790 
3791 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3792 		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3793 						       sizeof(fw_cmd),
3794 						       IXGBE_HI_COMMAND_TIMEOUT,
3795 						       true);
3796 		if (ret_val != 0)
3797 			continue;
3798 
3799 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3800 		    FW_CEM_RESP_STATUS_SUCCESS)
3801 			ret_val = 0;
3802 		else
3803 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3804 
3805 		break;
3806 	}
3807 
3808 	return ret_val;
3809 }
3810 
3811 /**
3812  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3813  * @hw: pointer to the hardware structure
3814  *
3815  * The 82599 and x540 MACs can experience issues if TX work is still pending
3816  * when a reset occurs.  This function prevents this by flushing the PCIe
3817  * buffers on the system.
3818  **/
3819 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3820 {
3821 	u32 gcr_ext, hlreg0, i, poll;
3822 	u16 value;
3823 
3824 	/*
3825 	 * If double reset is not requested then all transactions should
3826 	 * already be clear and as such there is no work to do
3827 	 */
3828 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3829 		return;
3830 
3831 	/*
3832 	 * Set loopback enable to prevent any transmits from being sent
3833 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3834 	 * has already been cleared.
3835 	 */
3836 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3837 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3838 
3839 	/* wait for a last completion before clearing buffers */
3840 	IXGBE_WRITE_FLUSH(hw);
3841 	usleep_range(3000, 6000);
3842 
3843 	/* Before proceeding, make sure that the PCIe block does not have
3844 	 * transactions pending.
3845 	 */
3846 	poll = ixgbe_pcie_timeout_poll(hw);
3847 	for (i = 0; i < poll; i++) {
3848 		usleep_range(100, 200);
3849 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3850 		if (ixgbe_removed(hw->hw_addr))
3851 			break;
3852 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3853 			break;
3854 	}
3855 
3856 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3857 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3858 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3859 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3860 
3861 	/* Flush all writes and allow 20usec for all transactions to clear */
3862 	IXGBE_WRITE_FLUSH(hw);
3863 	udelay(20);
3864 
3865 	/* restore previous register values */
3866 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3867 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3868 }
3869 
3870 static const u8 ixgbe_emc_temp_data[4] = {
3871 	IXGBE_EMC_INTERNAL_DATA,
3872 	IXGBE_EMC_DIODE1_DATA,
3873 	IXGBE_EMC_DIODE2_DATA,
3874 	IXGBE_EMC_DIODE3_DATA
3875 };
3876 static const u8 ixgbe_emc_therm_limit[4] = {
3877 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3878 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3879 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3880 	IXGBE_EMC_DIODE3_THERM_LIMIT
3881 };
3882 
3883 /**
3884  *  ixgbe_get_ets_data - Extracts the ETS bit data
3885  *  @hw: pointer to hardware structure
3886  *  @ets_cfg: extected ETS data
3887  *  @ets_offset: offset of ETS data
3888  *
3889  *  Returns error code.
3890  **/
3891 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3892 			      u16 *ets_offset)
3893 {
3894 	s32 status;
3895 
3896 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3897 	if (status)
3898 		return status;
3899 
3900 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3901 		return IXGBE_NOT_IMPLEMENTED;
3902 
3903 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3904 	if (status)
3905 		return status;
3906 
3907 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3908 		return IXGBE_NOT_IMPLEMENTED;
3909 
3910 	return 0;
3911 }
3912 
3913 /**
3914  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3915  *  @hw: pointer to hardware structure
3916  *
3917  *  Returns the thermal sensor data structure
3918  **/
3919 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3920 {
3921 	s32 status;
3922 	u16 ets_offset;
3923 	u16 ets_cfg;
3924 	u16 ets_sensor;
3925 	u8  num_sensors;
3926 	u8  i;
3927 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3928 
3929 	/* Only support thermal sensors attached to physical port 0 */
3930 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3931 		return IXGBE_NOT_IMPLEMENTED;
3932 
3933 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3934 	if (status)
3935 		return status;
3936 
3937 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3938 	if (num_sensors > IXGBE_MAX_SENSORS)
3939 		num_sensors = IXGBE_MAX_SENSORS;
3940 
3941 	for (i = 0; i < num_sensors; i++) {
3942 		u8  sensor_index;
3943 		u8  sensor_location;
3944 
3945 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3946 					     &ets_sensor);
3947 		if (status)
3948 			return status;
3949 
3950 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3951 				IXGBE_ETS_DATA_INDEX_SHIFT);
3952 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3953 				   IXGBE_ETS_DATA_LOC_SHIFT);
3954 
3955 		if (sensor_location != 0) {
3956 			status = hw->phy.ops.read_i2c_byte(hw,
3957 					ixgbe_emc_temp_data[sensor_index],
3958 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3959 					&data->sensor[i].temp);
3960 			if (status)
3961 				return status;
3962 		}
3963 	}
3964 
3965 	return 0;
3966 }
3967 
3968 /**
3969  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3970  * @hw: pointer to hardware structure
3971  *
3972  * Inits the thermal sensor thresholds according to the NVM map
3973  * and save off the threshold and location values into mac.thermal_sensor_data
3974  **/
3975 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3976 {
3977 	s32 status;
3978 	u16 ets_offset;
3979 	u16 ets_cfg;
3980 	u16 ets_sensor;
3981 	u8  low_thresh_delta;
3982 	u8  num_sensors;
3983 	u8  therm_limit;
3984 	u8  i;
3985 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3986 
3987 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3988 
3989 	/* Only support thermal sensors attached to physical port 0 */
3990 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3991 		return IXGBE_NOT_IMPLEMENTED;
3992 
3993 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3994 	if (status)
3995 		return status;
3996 
3997 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3998 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3999 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
4000 	if (num_sensors > IXGBE_MAX_SENSORS)
4001 		num_sensors = IXGBE_MAX_SENSORS;
4002 
4003 	for (i = 0; i < num_sensors; i++) {
4004 		u8  sensor_index;
4005 		u8  sensor_location;
4006 
4007 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
4008 			hw_err(hw, "eeprom read at offset %d failed\n",
4009 			       ets_offset + 1 + i);
4010 			continue;
4011 		}
4012 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
4013 				IXGBE_ETS_DATA_INDEX_SHIFT);
4014 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4015 				   IXGBE_ETS_DATA_LOC_SHIFT);
4016 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4017 
4018 		hw->phy.ops.write_i2c_byte(hw,
4019 			ixgbe_emc_therm_limit[sensor_index],
4020 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4021 
4022 		if (sensor_location == 0)
4023 			continue;
4024 
4025 		data->sensor[i].location = sensor_location;
4026 		data->sensor[i].caution_thresh = therm_limit;
4027 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4028 	}
4029 
4030 	return 0;
4031 }
4032 
4033 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4034 {
4035 	u32 rxctrl;
4036 
4037 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4038 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4039 		if (hw->mac.type != ixgbe_mac_82598EB) {
4040 			u32 pfdtxgswc;
4041 
4042 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4043 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4044 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4045 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4046 				hw->mac.set_lben = true;
4047 			} else {
4048 				hw->mac.set_lben = false;
4049 			}
4050 		}
4051 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4052 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4053 	}
4054 }
4055 
4056 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4057 {
4058 	u32 rxctrl;
4059 
4060 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4061 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4062 
4063 	if (hw->mac.type != ixgbe_mac_82598EB) {
4064 		if (hw->mac.set_lben) {
4065 			u32 pfdtxgswc;
4066 
4067 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4068 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4069 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4070 			hw->mac.set_lben = false;
4071 		}
4072 	}
4073 }
4074 
4075 /** ixgbe_mng_present - returns true when management capability is present
4076  * @hw: pointer to hardware structure
4077  **/
4078 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4079 {
4080 	u32 fwsm;
4081 
4082 	if (hw->mac.type < ixgbe_mac_82599EB)
4083 		return false;
4084 
4085 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4086 	fwsm &= IXGBE_FWSM_MODE_MASK;
4087 	return fwsm == IXGBE_FWSM_FW_MODE_PT;
4088 }
4089 
4090 /**
4091  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4092  *  @hw: pointer to hardware structure
4093  *  @speed: new link speed
4094  *  @autoneg_wait_to_complete: true when waiting for completion is needed
4095  *
4096  *  Set the link speed in the MAC and/or PHY register and restarts link.
4097  */
4098 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4099 					  ixgbe_link_speed speed,
4100 					  bool autoneg_wait_to_complete)
4101 {
4102 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4103 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4104 	s32 status = 0;
4105 	u32 speedcnt = 0;
4106 	u32 i = 0;
4107 	bool autoneg, link_up = false;
4108 
4109 	/* Mask off requested but non-supported speeds */
4110 	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4111 	if (status)
4112 		return status;
4113 
4114 	speed &= link_speed;
4115 
4116 	/* Try each speed one by one, highest priority first.  We do this in
4117 	 * software because 10Gb fiber doesn't support speed autonegotiation.
4118 	 */
4119 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4120 		speedcnt++;
4121 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4122 
4123 		/* If we already have link at this speed, just jump out */
4124 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4125 						false);
4126 		if (status)
4127 			return status;
4128 
4129 		if (link_speed == IXGBE_LINK_SPEED_10GB_FULL && link_up)
4130 			goto out;
4131 
4132 		/* Set the module link speed */
4133 		switch (hw->phy.media_type) {
4134 		case ixgbe_media_type_fiber:
4135 			hw->mac.ops.set_rate_select_speed(hw,
4136 						    IXGBE_LINK_SPEED_10GB_FULL);
4137 			break;
4138 		case ixgbe_media_type_fiber_qsfp:
4139 			/* QSFP module automatically detects MAC link speed */
4140 			break;
4141 		default:
4142 			hw_dbg(hw, "Unexpected media type\n");
4143 			break;
4144 		}
4145 
4146 		/* Allow module to change analog characteristics (1G->10G) */
4147 		msleep(40);
4148 
4149 		status = hw->mac.ops.setup_mac_link(hw,
4150 						    IXGBE_LINK_SPEED_10GB_FULL,
4151 						    autoneg_wait_to_complete);
4152 		if (status)
4153 			return status;
4154 
4155 		/* Flap the Tx laser if it has not already been done */
4156 		if (hw->mac.ops.flap_tx_laser)
4157 			hw->mac.ops.flap_tx_laser(hw);
4158 
4159 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4160 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4161 		 * attempted.  82599 uses the same timing for 10g SFI.
4162 		 */
4163 		for (i = 0; i < 5; i++) {
4164 			/* Wait for the link partner to also set speed */
4165 			msleep(100);
4166 
4167 			/* If we have link, just jump out */
4168 			status = hw->mac.ops.check_link(hw, &link_speed,
4169 							&link_up, false);
4170 			if (status)
4171 				return status;
4172 
4173 			if (link_up)
4174 				goto out;
4175 		}
4176 	}
4177 
4178 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4179 		speedcnt++;
4180 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4181 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4182 
4183 		/* If we already have link at this speed, just jump out */
4184 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4185 						false);
4186 		if (status)
4187 			return status;
4188 
4189 		if (link_speed == IXGBE_LINK_SPEED_1GB_FULL && link_up)
4190 			goto out;
4191 
4192 		/* Set the module link speed */
4193 		switch (hw->phy.media_type) {
4194 		case ixgbe_media_type_fiber:
4195 			hw->mac.ops.set_rate_select_speed(hw,
4196 						     IXGBE_LINK_SPEED_1GB_FULL);
4197 			break;
4198 		case ixgbe_media_type_fiber_qsfp:
4199 			/* QSFP module automatically detects link speed */
4200 			break;
4201 		default:
4202 			hw_dbg(hw, "Unexpected media type\n");
4203 			break;
4204 		}
4205 
4206 		/* Allow module to change analog characteristics (10G->1G) */
4207 		msleep(40);
4208 
4209 		status = hw->mac.ops.setup_mac_link(hw,
4210 						    IXGBE_LINK_SPEED_1GB_FULL,
4211 						    autoneg_wait_to_complete);
4212 		if (status)
4213 			return status;
4214 
4215 		/* Flap the Tx laser if it has not already been done */
4216 		if (hw->mac.ops.flap_tx_laser)
4217 			hw->mac.ops.flap_tx_laser(hw);
4218 
4219 		/* Wait for the link partner to also set speed */
4220 		msleep(100);
4221 
4222 		/* If we have link, just jump out */
4223 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4224 						false);
4225 		if (status)
4226 			return status;
4227 
4228 		if (link_up)
4229 			goto out;
4230 	}
4231 
4232 	/* We didn't get link.  Configure back to the highest speed we tried,
4233 	 * (if there was more than one).  We call ourselves back with just the
4234 	 * single highest speed that the user requested.
4235 	 */
4236 	if (speedcnt > 1)
4237 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4238 						      highest_link_speed,
4239 						      autoneg_wait_to_complete);
4240 
4241 out:
4242 	/* Set autoneg_advertised value based on input link speed */
4243 	hw->phy.autoneg_advertised = 0;
4244 
4245 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4246 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4247 
4248 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4249 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4250 
4251 	return status;
4252 }
4253 
4254 /**
4255  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4256  *  @hw: pointer to hardware structure
4257  *  @speed: link speed to set
4258  *
4259  *  Set module link speed via the soft rate select.
4260  */
4261 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4262 				      ixgbe_link_speed speed)
4263 {
4264 	s32 status;
4265 	u8 rs, eeprom_data;
4266 
4267 	switch (speed) {
4268 	case IXGBE_LINK_SPEED_10GB_FULL:
4269 		/* one bit mask same as setting on */
4270 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4271 		break;
4272 	case IXGBE_LINK_SPEED_1GB_FULL:
4273 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4274 		break;
4275 	default:
4276 		hw_dbg(hw, "Invalid fixed module speed\n");
4277 		return;
4278 	}
4279 
4280 	/* Set RS0 */
4281 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4282 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4283 					   &eeprom_data);
4284 	if (status) {
4285 		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4286 		return;
4287 	}
4288 
4289 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4290 
4291 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4292 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4293 					    eeprom_data);
4294 	if (status) {
4295 		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4296 		return;
4297 	}
4298 }
4299