xref: /linux/drivers/net/ethernet/intel/ixgbe/ixgbe_common.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2014 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
33 
34 #include "ixgbe.h"
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 					u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 					     u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 					     u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 						 u16 offset);
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59 
60 /* Base table for registers values that change by MAC */
61 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
62 	IXGBE_MVALS_INIT(8259X)
63 };
64 
65 /**
66  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
67  *  control
68  *  @hw: pointer to hardware structure
69  *
70  *  There are several phys that do not support autoneg flow control. This
71  *  function check the device id to see if the associated phy supports
72  *  autoneg flow control.
73  **/
74 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
75 {
76 	bool supported = false;
77 	ixgbe_link_speed speed;
78 	bool link_up;
79 
80 	switch (hw->phy.media_type) {
81 	case ixgbe_media_type_fiber:
82 		hw->mac.ops.check_link(hw, &speed, &link_up, false);
83 		/* if link is down, assume supported */
84 		if (link_up)
85 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
86 				true : false;
87 		else
88 			supported = true;
89 		break;
90 	case ixgbe_media_type_backplane:
91 		supported = true;
92 		break;
93 	case ixgbe_media_type_copper:
94 		/* only some copper devices support flow control autoneg */
95 		switch (hw->device_id) {
96 		case IXGBE_DEV_ID_82599_T3_LOM:
97 		case IXGBE_DEV_ID_X540T:
98 		case IXGBE_DEV_ID_X540T1:
99 		case IXGBE_DEV_ID_X550T:
100 		case IXGBE_DEV_ID_X550EM_X_10G_T:
101 			supported = true;
102 			break;
103 		default:
104 			break;
105 		}
106 	default:
107 		break;
108 	}
109 
110 	return supported;
111 }
112 
113 /**
114  *  ixgbe_setup_fc - Set up flow control
115  *  @hw: pointer to hardware structure
116  *
117  *  Called at init time to set up flow control.
118  **/
119 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
120 {
121 	s32 ret_val = 0;
122 	u32 reg = 0, reg_bp = 0;
123 	u16 reg_cu = 0;
124 	bool locked = false;
125 
126 	/*
127 	 * Validate the requested mode.  Strict IEEE mode does not allow
128 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
129 	 */
130 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
131 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
132 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
133 	}
134 
135 	/*
136 	 * 10gig parts do not have a word in the EEPROM to determine the
137 	 * default flow control setting, so we explicitly set it to full.
138 	 */
139 	if (hw->fc.requested_mode == ixgbe_fc_default)
140 		hw->fc.requested_mode = ixgbe_fc_full;
141 
142 	/*
143 	 * Set up the 1G and 10G flow control advertisement registers so the
144 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
145 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
146 	 */
147 	switch (hw->phy.media_type) {
148 	case ixgbe_media_type_backplane:
149 		/* some MAC's need RMW protection on AUTOC */
150 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
151 		if (ret_val)
152 			return ret_val;
153 
154 		/* only backplane uses autoc so fall though */
155 	case ixgbe_media_type_fiber:
156 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
157 
158 		break;
159 	case ixgbe_media_type_copper:
160 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
161 					MDIO_MMD_AN, &reg_cu);
162 		break;
163 	default:
164 		break;
165 	}
166 
167 	/*
168 	 * The possible values of fc.requested_mode are:
169 	 * 0: Flow control is completely disabled
170 	 * 1: Rx flow control is enabled (we can receive pause frames,
171 	 *    but not send pause frames).
172 	 * 2: Tx flow control is enabled (we can send pause frames but
173 	 *    we do not support receiving pause frames).
174 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
175 	 * other: Invalid.
176 	 */
177 	switch (hw->fc.requested_mode) {
178 	case ixgbe_fc_none:
179 		/* Flow control completely disabled by software override. */
180 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
181 		if (hw->phy.media_type == ixgbe_media_type_backplane)
182 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
183 				    IXGBE_AUTOC_ASM_PAUSE);
184 		else if (hw->phy.media_type == ixgbe_media_type_copper)
185 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
186 		break;
187 	case ixgbe_fc_tx_pause:
188 		/*
189 		 * Tx Flow control is enabled, and Rx Flow control is
190 		 * disabled by software override.
191 		 */
192 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
193 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
194 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
195 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
196 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
197 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
198 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
199 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
200 		}
201 		break;
202 	case ixgbe_fc_rx_pause:
203 		/*
204 		 * Rx Flow control is enabled and Tx Flow control is
205 		 * disabled by software override. Since there really
206 		 * isn't a way to advertise that we are capable of RX
207 		 * Pause ONLY, we will advertise that we support both
208 		 * symmetric and asymmetric Rx PAUSE, as such we fall
209 		 * through to the fc_full statement.  Later, we will
210 		 * disable the adapter's ability to send PAUSE frames.
211 		 */
212 	case ixgbe_fc_full:
213 		/* Flow control (both Rx and Tx) is enabled by SW override. */
214 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
215 		if (hw->phy.media_type == ixgbe_media_type_backplane)
216 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
217 				  IXGBE_AUTOC_ASM_PAUSE;
218 		else if (hw->phy.media_type == ixgbe_media_type_copper)
219 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
220 		break;
221 	default:
222 		hw_dbg(hw, "Flow control param set incorrectly\n");
223 		return IXGBE_ERR_CONFIG;
224 	}
225 
226 	if (hw->mac.type != ixgbe_mac_X540) {
227 		/*
228 		 * Enable auto-negotiation between the MAC & PHY;
229 		 * the MAC will advertise clause 37 flow control.
230 		 */
231 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
232 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
233 
234 		/* Disable AN timeout */
235 		if (hw->fc.strict_ieee)
236 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
237 
238 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
239 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
240 	}
241 
242 	/*
243 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
244 	 * and copper. There is no need to set the PCS1GCTL register.
245 	 *
246 	 */
247 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
248 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
249 		 * LESM is on, likewise reset_pipeline requries the lock as
250 		 * it also writes AUTOC.
251 		 */
252 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
253 		if (ret_val)
254 			return ret_val;
255 
256 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
257 		   ixgbe_device_supports_autoneg_fc(hw)) {
258 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
259 				      MDIO_MMD_AN, reg_cu);
260 	}
261 
262 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
263 	return ret_val;
264 }
265 
266 /**
267  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
268  *  @hw: pointer to hardware structure
269  *
270  *  Starts the hardware by filling the bus info structure and media type, clears
271  *  all on chip counters, initializes receive address registers, multicast
272  *  table, VLAN filter table, calls routine to set up link and flow control
273  *  settings, and leaves transmit and receive units disabled and uninitialized
274  **/
275 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
276 {
277 	s32 ret_val;
278 	u32 ctrl_ext;
279 
280 	/* Set the media type */
281 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
282 
283 	/* Identify the PHY */
284 	hw->phy.ops.identify(hw);
285 
286 	/* Clear the VLAN filter table */
287 	hw->mac.ops.clear_vfta(hw);
288 
289 	/* Clear statistics registers */
290 	hw->mac.ops.clear_hw_cntrs(hw);
291 
292 	/* Set No Snoop Disable */
293 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
294 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
295 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
296 	IXGBE_WRITE_FLUSH(hw);
297 
298 	/* Setup flow control */
299 	ret_val = ixgbe_setup_fc(hw);
300 	if (!ret_val)
301 		return 0;
302 
303 	/* Clear adapter stopped flag */
304 	hw->adapter_stopped = false;
305 
306 	return ret_val;
307 }
308 
309 /**
310  *  ixgbe_start_hw_gen2 - Init sequence for common device family
311  *  @hw: pointer to hw structure
312  *
313  * Performs the init sequence common to the second generation
314  * of 10 GbE devices.
315  * Devices in the second generation:
316  *     82599
317  *     X540
318  **/
319 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
320 {
321 	u32 i;
322 
323 	/* Clear the rate limiters */
324 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
325 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
326 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
327 	}
328 	IXGBE_WRITE_FLUSH(hw);
329 
330 #ifndef CONFIG_SPARC
331 	/* Disable relaxed ordering */
332 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
333 		u32 regval;
334 
335 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
336 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
337 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
338 	}
339 
340 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
341 		u32 regval;
342 
343 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
344 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
345 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
346 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
347 	}
348 #endif
349 	return 0;
350 }
351 
352 /**
353  *  ixgbe_init_hw_generic - Generic hardware initialization
354  *  @hw: pointer to hardware structure
355  *
356  *  Initialize the hardware by resetting the hardware, filling the bus info
357  *  structure and media type, clears all on chip counters, initializes receive
358  *  address registers, multicast table, VLAN filter table, calls routine to set
359  *  up link and flow control settings, and leaves transmit and receive units
360  *  disabled and uninitialized
361  **/
362 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
363 {
364 	s32 status;
365 
366 	/* Reset the hardware */
367 	status = hw->mac.ops.reset_hw(hw);
368 
369 	if (status == 0) {
370 		/* Start the HW */
371 		status = hw->mac.ops.start_hw(hw);
372 	}
373 
374 	return status;
375 }
376 
377 /**
378  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
379  *  @hw: pointer to hardware structure
380  *
381  *  Clears all hardware statistics counters by reading them from the hardware
382  *  Statistics counters are clear on read.
383  **/
384 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
385 {
386 	u16 i = 0;
387 
388 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
389 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
390 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
391 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
392 	for (i = 0; i < 8; i++)
393 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
394 
395 	IXGBE_READ_REG(hw, IXGBE_MLFC);
396 	IXGBE_READ_REG(hw, IXGBE_MRFC);
397 	IXGBE_READ_REG(hw, IXGBE_RLEC);
398 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
399 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
400 	if (hw->mac.type >= ixgbe_mac_82599EB) {
401 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
402 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
403 	} else {
404 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
405 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
406 	}
407 
408 	for (i = 0; i < 8; i++) {
409 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
410 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
411 		if (hw->mac.type >= ixgbe_mac_82599EB) {
412 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
413 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
414 		} else {
415 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
416 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
417 		}
418 	}
419 	if (hw->mac.type >= ixgbe_mac_82599EB)
420 		for (i = 0; i < 8; i++)
421 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
422 	IXGBE_READ_REG(hw, IXGBE_PRC64);
423 	IXGBE_READ_REG(hw, IXGBE_PRC127);
424 	IXGBE_READ_REG(hw, IXGBE_PRC255);
425 	IXGBE_READ_REG(hw, IXGBE_PRC511);
426 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
427 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
428 	IXGBE_READ_REG(hw, IXGBE_GPRC);
429 	IXGBE_READ_REG(hw, IXGBE_BPRC);
430 	IXGBE_READ_REG(hw, IXGBE_MPRC);
431 	IXGBE_READ_REG(hw, IXGBE_GPTC);
432 	IXGBE_READ_REG(hw, IXGBE_GORCL);
433 	IXGBE_READ_REG(hw, IXGBE_GORCH);
434 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
435 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
436 	if (hw->mac.type == ixgbe_mac_82598EB)
437 		for (i = 0; i < 8; i++)
438 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
439 	IXGBE_READ_REG(hw, IXGBE_RUC);
440 	IXGBE_READ_REG(hw, IXGBE_RFC);
441 	IXGBE_READ_REG(hw, IXGBE_ROC);
442 	IXGBE_READ_REG(hw, IXGBE_RJC);
443 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
444 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
445 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
446 	IXGBE_READ_REG(hw, IXGBE_TORL);
447 	IXGBE_READ_REG(hw, IXGBE_TORH);
448 	IXGBE_READ_REG(hw, IXGBE_TPR);
449 	IXGBE_READ_REG(hw, IXGBE_TPT);
450 	IXGBE_READ_REG(hw, IXGBE_PTC64);
451 	IXGBE_READ_REG(hw, IXGBE_PTC127);
452 	IXGBE_READ_REG(hw, IXGBE_PTC255);
453 	IXGBE_READ_REG(hw, IXGBE_PTC511);
454 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
455 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
456 	IXGBE_READ_REG(hw, IXGBE_MPTC);
457 	IXGBE_READ_REG(hw, IXGBE_BPTC);
458 	for (i = 0; i < 16; i++) {
459 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
460 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
461 		if (hw->mac.type >= ixgbe_mac_82599EB) {
462 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
463 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
464 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
465 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
466 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
467 		} else {
468 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
469 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
470 		}
471 	}
472 
473 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
474 		if (hw->phy.id == 0)
475 			hw->phy.ops.identify(hw);
476 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
477 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
478 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
479 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
480 	}
481 
482 	return 0;
483 }
484 
485 /**
486  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
487  *  @hw: pointer to hardware structure
488  *  @pba_num: stores the part number string from the EEPROM
489  *  @pba_num_size: part number string buffer length
490  *
491  *  Reads the part number string from the EEPROM.
492  **/
493 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
494 				  u32 pba_num_size)
495 {
496 	s32 ret_val;
497 	u16 data;
498 	u16 pba_ptr;
499 	u16 offset;
500 	u16 length;
501 
502 	if (pba_num == NULL) {
503 		hw_dbg(hw, "PBA string buffer was null\n");
504 		return IXGBE_ERR_INVALID_ARGUMENT;
505 	}
506 
507 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
508 	if (ret_val) {
509 		hw_dbg(hw, "NVM Read Error\n");
510 		return ret_val;
511 	}
512 
513 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
514 	if (ret_val) {
515 		hw_dbg(hw, "NVM Read Error\n");
516 		return ret_val;
517 	}
518 
519 	/*
520 	 * if data is not ptr guard the PBA must be in legacy format which
521 	 * means pba_ptr is actually our second data word for the PBA number
522 	 * and we can decode it into an ascii string
523 	 */
524 	if (data != IXGBE_PBANUM_PTR_GUARD) {
525 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
526 
527 		/* we will need 11 characters to store the PBA */
528 		if (pba_num_size < 11) {
529 			hw_dbg(hw, "PBA string buffer too small\n");
530 			return IXGBE_ERR_NO_SPACE;
531 		}
532 
533 		/* extract hex string from data and pba_ptr */
534 		pba_num[0] = (data >> 12) & 0xF;
535 		pba_num[1] = (data >> 8) & 0xF;
536 		pba_num[2] = (data >> 4) & 0xF;
537 		pba_num[3] = data & 0xF;
538 		pba_num[4] = (pba_ptr >> 12) & 0xF;
539 		pba_num[5] = (pba_ptr >> 8) & 0xF;
540 		pba_num[6] = '-';
541 		pba_num[7] = 0;
542 		pba_num[8] = (pba_ptr >> 4) & 0xF;
543 		pba_num[9] = pba_ptr & 0xF;
544 
545 		/* put a null character on the end of our string */
546 		pba_num[10] = '\0';
547 
548 		/* switch all the data but the '-' to hex char */
549 		for (offset = 0; offset < 10; offset++) {
550 			if (pba_num[offset] < 0xA)
551 				pba_num[offset] += '0';
552 			else if (pba_num[offset] < 0x10)
553 				pba_num[offset] += 'A' - 0xA;
554 		}
555 
556 		return 0;
557 	}
558 
559 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
560 	if (ret_val) {
561 		hw_dbg(hw, "NVM Read Error\n");
562 		return ret_val;
563 	}
564 
565 	if (length == 0xFFFF || length == 0) {
566 		hw_dbg(hw, "NVM PBA number section invalid length\n");
567 		return IXGBE_ERR_PBA_SECTION;
568 	}
569 
570 	/* check if pba_num buffer is big enough */
571 	if (pba_num_size  < (((u32)length * 2) - 1)) {
572 		hw_dbg(hw, "PBA string buffer too small\n");
573 		return IXGBE_ERR_NO_SPACE;
574 	}
575 
576 	/* trim pba length from start of string */
577 	pba_ptr++;
578 	length--;
579 
580 	for (offset = 0; offset < length; offset++) {
581 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
582 		if (ret_val) {
583 			hw_dbg(hw, "NVM Read Error\n");
584 			return ret_val;
585 		}
586 		pba_num[offset * 2] = (u8)(data >> 8);
587 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
588 	}
589 	pba_num[offset * 2] = '\0';
590 
591 	return 0;
592 }
593 
594 /**
595  *  ixgbe_get_mac_addr_generic - Generic get MAC address
596  *  @hw: pointer to hardware structure
597  *  @mac_addr: Adapter MAC address
598  *
599  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
600  *  A reset of the adapter must be performed prior to calling this function
601  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
602  **/
603 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
604 {
605 	u32 rar_high;
606 	u32 rar_low;
607 	u16 i;
608 
609 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
610 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
611 
612 	for (i = 0; i < 4; i++)
613 		mac_addr[i] = (u8)(rar_low >> (i*8));
614 
615 	for (i = 0; i < 2; i++)
616 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
617 
618 	return 0;
619 }
620 
621 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
622 {
623 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
624 	case IXGBE_PCI_LINK_WIDTH_1:
625 		return ixgbe_bus_width_pcie_x1;
626 	case IXGBE_PCI_LINK_WIDTH_2:
627 		return ixgbe_bus_width_pcie_x2;
628 	case IXGBE_PCI_LINK_WIDTH_4:
629 		return ixgbe_bus_width_pcie_x4;
630 	case IXGBE_PCI_LINK_WIDTH_8:
631 		return ixgbe_bus_width_pcie_x8;
632 	default:
633 		return ixgbe_bus_width_unknown;
634 	}
635 }
636 
637 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
638 {
639 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
640 	case IXGBE_PCI_LINK_SPEED_2500:
641 		return ixgbe_bus_speed_2500;
642 	case IXGBE_PCI_LINK_SPEED_5000:
643 		return ixgbe_bus_speed_5000;
644 	case IXGBE_PCI_LINK_SPEED_8000:
645 		return ixgbe_bus_speed_8000;
646 	default:
647 		return ixgbe_bus_speed_unknown;
648 	}
649 }
650 
651 /**
652  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
653  *  @hw: pointer to hardware structure
654  *
655  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
656  **/
657 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
658 {
659 	u16 link_status;
660 
661 	hw->bus.type = ixgbe_bus_type_pci_express;
662 
663 	/* Get the negotiated link width and speed from PCI config space */
664 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
665 
666 	hw->bus.width = ixgbe_convert_bus_width(link_status);
667 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
668 
669 	hw->mac.ops.set_lan_id(hw);
670 
671 	return 0;
672 }
673 
674 /**
675  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
676  *  @hw: pointer to the HW structure
677  *
678  *  Determines the LAN function id by reading memory-mapped registers
679  *  and swaps the port value if requested.
680  **/
681 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
682 {
683 	struct ixgbe_bus_info *bus = &hw->bus;
684 	u32 reg;
685 
686 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
687 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
688 	bus->lan_id = bus->func;
689 
690 	/* check for a port swap */
691 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
692 	if (reg & IXGBE_FACTPS_LFS)
693 		bus->func ^= 0x1;
694 }
695 
696 /**
697  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
698  *  @hw: pointer to hardware structure
699  *
700  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
701  *  disables transmit and receive units. The adapter_stopped flag is used by
702  *  the shared code and drivers to determine if the adapter is in a stopped
703  *  state and should not touch the hardware.
704  **/
705 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
706 {
707 	u32 reg_val;
708 	u16 i;
709 
710 	/*
711 	 * Set the adapter_stopped flag so other driver functions stop touching
712 	 * the hardware
713 	 */
714 	hw->adapter_stopped = true;
715 
716 	/* Disable the receive unit */
717 	hw->mac.ops.disable_rx(hw);
718 
719 	/* Clear interrupt mask to stop interrupts from being generated */
720 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
721 
722 	/* Clear any pending interrupts, flush previous writes */
723 	IXGBE_READ_REG(hw, IXGBE_EICR);
724 
725 	/* Disable the transmit unit.  Each queue must be disabled. */
726 	for (i = 0; i < hw->mac.max_tx_queues; i++)
727 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
728 
729 	/* Disable the receive unit by stopping each queue */
730 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
731 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
732 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
733 		reg_val |= IXGBE_RXDCTL_SWFLSH;
734 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
735 	}
736 
737 	/* flush all queues disables */
738 	IXGBE_WRITE_FLUSH(hw);
739 	usleep_range(1000, 2000);
740 
741 	/*
742 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
743 	 * access and verify no pending requests
744 	 */
745 	return ixgbe_disable_pcie_master(hw);
746 }
747 
748 /**
749  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
750  *  @hw: pointer to hardware structure
751  *  @index: led number to turn on
752  **/
753 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
754 {
755 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
756 
757 	/* To turn on the LED, set mode to ON. */
758 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
759 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
760 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
761 	IXGBE_WRITE_FLUSH(hw);
762 
763 	return 0;
764 }
765 
766 /**
767  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
768  *  @hw: pointer to hardware structure
769  *  @index: led number to turn off
770  **/
771 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
772 {
773 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
774 
775 	/* To turn off the LED, set mode to OFF. */
776 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
777 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
778 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
779 	IXGBE_WRITE_FLUSH(hw);
780 
781 	return 0;
782 }
783 
784 /**
785  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
786  *  @hw: pointer to hardware structure
787  *
788  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
789  *  ixgbe_hw struct in order to set up EEPROM access.
790  **/
791 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
792 {
793 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
794 	u32 eec;
795 	u16 eeprom_size;
796 
797 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
798 		eeprom->type = ixgbe_eeprom_none;
799 		/* Set default semaphore delay to 10ms which is a well
800 		 * tested value */
801 		eeprom->semaphore_delay = 10;
802 		/* Clear EEPROM page size, it will be initialized as needed */
803 		eeprom->word_page_size = 0;
804 
805 		/*
806 		 * Check for EEPROM present first.
807 		 * If not present leave as none
808 		 */
809 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
810 		if (eec & IXGBE_EEC_PRES) {
811 			eeprom->type = ixgbe_eeprom_spi;
812 
813 			/*
814 			 * SPI EEPROM is assumed here.  This code would need to
815 			 * change if a future EEPROM is not SPI.
816 			 */
817 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
818 					    IXGBE_EEC_SIZE_SHIFT);
819 			eeprom->word_size = 1 << (eeprom_size +
820 						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
821 		}
822 
823 		if (eec & IXGBE_EEC_ADDR_SIZE)
824 			eeprom->address_bits = 16;
825 		else
826 			eeprom->address_bits = 8;
827 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
828 		       eeprom->type, eeprom->word_size, eeprom->address_bits);
829 	}
830 
831 	return 0;
832 }
833 
834 /**
835  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
836  *  @hw: pointer to hardware structure
837  *  @offset: offset within the EEPROM to write
838  *  @words: number of words
839  *  @data: 16 bit word(s) to write to EEPROM
840  *
841  *  Reads 16 bit word(s) from EEPROM through bit-bang method
842  **/
843 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
844 					       u16 words, u16 *data)
845 {
846 	s32 status;
847 	u16 i, count;
848 
849 	hw->eeprom.ops.init_params(hw);
850 
851 	if (words == 0)
852 		return IXGBE_ERR_INVALID_ARGUMENT;
853 
854 	if (offset + words > hw->eeprom.word_size)
855 		return IXGBE_ERR_EEPROM;
856 
857 	/*
858 	 * The EEPROM page size cannot be queried from the chip. We do lazy
859 	 * initialization. It is worth to do that when we write large buffer.
860 	 */
861 	if ((hw->eeprom.word_page_size == 0) &&
862 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
863 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
864 
865 	/*
866 	 * We cannot hold synchronization semaphores for too long
867 	 * to avoid other entity starvation. However it is more efficient
868 	 * to read in bursts than synchronizing access for each word.
869 	 */
870 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
871 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
872 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
873 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
874 							    count, &data[i]);
875 
876 		if (status != 0)
877 			break;
878 	}
879 
880 	return status;
881 }
882 
883 /**
884  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
885  *  @hw: pointer to hardware structure
886  *  @offset: offset within the EEPROM to be written to
887  *  @words: number of word(s)
888  *  @data: 16 bit word(s) to be written to the EEPROM
889  *
890  *  If ixgbe_eeprom_update_checksum is not called after this function, the
891  *  EEPROM will most likely contain an invalid checksum.
892  **/
893 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
894 					      u16 words, u16 *data)
895 {
896 	s32 status;
897 	u16 word;
898 	u16 page_size;
899 	u16 i;
900 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
901 
902 	/* Prepare the EEPROM for writing  */
903 	status = ixgbe_acquire_eeprom(hw);
904 	if (status)
905 		return status;
906 
907 	if (ixgbe_ready_eeprom(hw) != 0) {
908 		ixgbe_release_eeprom(hw);
909 		return IXGBE_ERR_EEPROM;
910 	}
911 
912 	for (i = 0; i < words; i++) {
913 		ixgbe_standby_eeprom(hw);
914 
915 		/* Send the WRITE ENABLE command (8 bit opcode) */
916 		ixgbe_shift_out_eeprom_bits(hw,
917 					    IXGBE_EEPROM_WREN_OPCODE_SPI,
918 					    IXGBE_EEPROM_OPCODE_BITS);
919 
920 		ixgbe_standby_eeprom(hw);
921 
922 		/* Some SPI eeproms use the 8th address bit embedded
923 		 * in the opcode
924 		 */
925 		if ((hw->eeprom.address_bits == 8) &&
926 		    ((offset + i) >= 128))
927 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
928 
929 		/* Send the Write command (8-bit opcode + addr) */
930 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
931 					    IXGBE_EEPROM_OPCODE_BITS);
932 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
933 					    hw->eeprom.address_bits);
934 
935 		page_size = hw->eeprom.word_page_size;
936 
937 		/* Send the data in burst via SPI */
938 		do {
939 			word = data[i];
940 			word = (word >> 8) | (word << 8);
941 			ixgbe_shift_out_eeprom_bits(hw, word, 16);
942 
943 			if (page_size == 0)
944 				break;
945 
946 			/* do not wrap around page */
947 			if (((offset + i) & (page_size - 1)) ==
948 			    (page_size - 1))
949 				break;
950 		} while (++i < words);
951 
952 		ixgbe_standby_eeprom(hw);
953 		usleep_range(10000, 20000);
954 	}
955 	/* Done with writing - release the EEPROM */
956 	ixgbe_release_eeprom(hw);
957 
958 	return 0;
959 }
960 
961 /**
962  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
963  *  @hw: pointer to hardware structure
964  *  @offset: offset within the EEPROM to be written to
965  *  @data: 16 bit word to be written to the EEPROM
966  *
967  *  If ixgbe_eeprom_update_checksum is not called after this function, the
968  *  EEPROM will most likely contain an invalid checksum.
969  **/
970 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
971 {
972 	hw->eeprom.ops.init_params(hw);
973 
974 	if (offset >= hw->eeprom.word_size)
975 		return IXGBE_ERR_EEPROM;
976 
977 	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
978 }
979 
980 /**
981  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
982  *  @hw: pointer to hardware structure
983  *  @offset: offset within the EEPROM to be read
984  *  @words: number of word(s)
985  *  @data: read 16 bit words(s) from EEPROM
986  *
987  *  Reads 16 bit word(s) from EEPROM through bit-bang method
988  **/
989 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
990 					      u16 words, u16 *data)
991 {
992 	s32 status;
993 	u16 i, count;
994 
995 	hw->eeprom.ops.init_params(hw);
996 
997 	if (words == 0)
998 		return IXGBE_ERR_INVALID_ARGUMENT;
999 
1000 	if (offset + words > hw->eeprom.word_size)
1001 		return IXGBE_ERR_EEPROM;
1002 
1003 	/*
1004 	 * We cannot hold synchronization semaphores for too long
1005 	 * to avoid other entity starvation. However it is more efficient
1006 	 * to read in bursts than synchronizing access for each word.
1007 	 */
1008 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1009 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1010 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1011 
1012 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1013 							   count, &data[i]);
1014 
1015 		if (status)
1016 			return status;
1017 	}
1018 
1019 	return 0;
1020 }
1021 
1022 /**
1023  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1024  *  @hw: pointer to hardware structure
1025  *  @offset: offset within the EEPROM to be read
1026  *  @words: number of word(s)
1027  *  @data: read 16 bit word(s) from EEPROM
1028  *
1029  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1030  **/
1031 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1032 					     u16 words, u16 *data)
1033 {
1034 	s32 status;
1035 	u16 word_in;
1036 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1037 	u16 i;
1038 
1039 	/* Prepare the EEPROM for reading  */
1040 	status = ixgbe_acquire_eeprom(hw);
1041 	if (status)
1042 		return status;
1043 
1044 	if (ixgbe_ready_eeprom(hw) != 0) {
1045 		ixgbe_release_eeprom(hw);
1046 		return IXGBE_ERR_EEPROM;
1047 	}
1048 
1049 	for (i = 0; i < words; i++) {
1050 		ixgbe_standby_eeprom(hw);
1051 		/* Some SPI eeproms use the 8th address bit embedded
1052 		 * in the opcode
1053 		 */
1054 		if ((hw->eeprom.address_bits == 8) &&
1055 		    ((offset + i) >= 128))
1056 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1057 
1058 		/* Send the READ command (opcode + addr) */
1059 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1060 					    IXGBE_EEPROM_OPCODE_BITS);
1061 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1062 					    hw->eeprom.address_bits);
1063 
1064 		/* Read the data. */
1065 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1066 		data[i] = (word_in >> 8) | (word_in << 8);
1067 	}
1068 
1069 	/* End this read operation */
1070 	ixgbe_release_eeprom(hw);
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1077  *  @hw: pointer to hardware structure
1078  *  @offset: offset within the EEPROM to be read
1079  *  @data: read 16 bit value from EEPROM
1080  *
1081  *  Reads 16 bit value from EEPROM through bit-bang method
1082  **/
1083 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1084 				       u16 *data)
1085 {
1086 	hw->eeprom.ops.init_params(hw);
1087 
1088 	if (offset >= hw->eeprom.word_size)
1089 		return IXGBE_ERR_EEPROM;
1090 
1091 	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1092 }
1093 
1094 /**
1095  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1096  *  @hw: pointer to hardware structure
1097  *  @offset: offset of word in the EEPROM to read
1098  *  @words: number of word(s)
1099  *  @data: 16 bit word(s) from the EEPROM
1100  *
1101  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1102  **/
1103 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1104 				   u16 words, u16 *data)
1105 {
1106 	u32 eerd;
1107 	s32 status;
1108 	u32 i;
1109 
1110 	hw->eeprom.ops.init_params(hw);
1111 
1112 	if (words == 0)
1113 		return IXGBE_ERR_INVALID_ARGUMENT;
1114 
1115 	if (offset >= hw->eeprom.word_size)
1116 		return IXGBE_ERR_EEPROM;
1117 
1118 	for (i = 0; i < words; i++) {
1119 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1120 		       IXGBE_EEPROM_RW_REG_START;
1121 
1122 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1123 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1124 
1125 		if (status == 0) {
1126 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1127 				   IXGBE_EEPROM_RW_REG_DATA);
1128 		} else {
1129 			hw_dbg(hw, "Eeprom read timed out\n");
1130 			return status;
1131 		}
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 /**
1138  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1139  *  @hw: pointer to hardware structure
1140  *  @offset: offset within the EEPROM to be used as a scratch pad
1141  *
1142  *  Discover EEPROM page size by writing marching data at given offset.
1143  *  This function is called only when we are writing a new large buffer
1144  *  at given offset so the data would be overwritten anyway.
1145  **/
1146 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1147 						 u16 offset)
1148 {
1149 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1150 	s32 status;
1151 	u16 i;
1152 
1153 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1154 		data[i] = i;
1155 
1156 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1157 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1158 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1159 	hw->eeprom.word_page_size = 0;
1160 	if (status)
1161 		return status;
1162 
1163 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1164 	if (status)
1165 		return status;
1166 
1167 	/*
1168 	 * When writing in burst more than the actual page size
1169 	 * EEPROM address wraps around current page.
1170 	 */
1171 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1172 
1173 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1174 	       hw->eeprom.word_page_size);
1175 	return 0;
1176 }
1177 
1178 /**
1179  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1180  *  @hw: pointer to hardware structure
1181  *  @offset: offset of  word in the EEPROM to read
1182  *  @data: word read from the EEPROM
1183  *
1184  *  Reads a 16 bit word from the EEPROM using the EERD register.
1185  **/
1186 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1187 {
1188 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1189 }
1190 
1191 /**
1192  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1193  *  @hw: pointer to hardware structure
1194  *  @offset: offset of  word in the EEPROM to write
1195  *  @words: number of words
1196  *  @data: word(s) write to the EEPROM
1197  *
1198  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1199  **/
1200 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1201 				    u16 words, u16 *data)
1202 {
1203 	u32 eewr;
1204 	s32 status;
1205 	u16 i;
1206 
1207 	hw->eeprom.ops.init_params(hw);
1208 
1209 	if (words == 0)
1210 		return IXGBE_ERR_INVALID_ARGUMENT;
1211 
1212 	if (offset >= hw->eeprom.word_size)
1213 		return IXGBE_ERR_EEPROM;
1214 
1215 	for (i = 0; i < words; i++) {
1216 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1217 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1218 		       IXGBE_EEPROM_RW_REG_START;
1219 
1220 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1221 		if (status) {
1222 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1223 			return status;
1224 		}
1225 
1226 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1227 
1228 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1229 		if (status) {
1230 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1231 			return status;
1232 		}
1233 	}
1234 
1235 	return 0;
1236 }
1237 
1238 /**
1239  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1240  *  @hw: pointer to hardware structure
1241  *  @offset: offset of  word in the EEPROM to write
1242  *  @data: word write to the EEPROM
1243  *
1244  *  Write a 16 bit word to the EEPROM using the EEWR register.
1245  **/
1246 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1247 {
1248 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1249 }
1250 
1251 /**
1252  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1253  *  @hw: pointer to hardware structure
1254  *  @ee_reg: EEPROM flag for polling
1255  *
1256  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1257  *  read or write is done respectively.
1258  **/
1259 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1260 {
1261 	u32 i;
1262 	u32 reg;
1263 
1264 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1265 		if (ee_reg == IXGBE_NVM_POLL_READ)
1266 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1267 		else
1268 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1269 
1270 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1271 			return 0;
1272 		}
1273 		udelay(5);
1274 	}
1275 	return IXGBE_ERR_EEPROM;
1276 }
1277 
1278 /**
1279  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1280  *  @hw: pointer to hardware structure
1281  *
1282  *  Prepares EEPROM for access using bit-bang method. This function should
1283  *  be called before issuing a command to the EEPROM.
1284  **/
1285 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1286 {
1287 	u32 eec;
1288 	u32 i;
1289 
1290 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1291 		return IXGBE_ERR_SWFW_SYNC;
1292 
1293 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1294 
1295 	/* Request EEPROM Access */
1296 	eec |= IXGBE_EEC_REQ;
1297 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1298 
1299 	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1300 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1301 		if (eec & IXGBE_EEC_GNT)
1302 			break;
1303 		udelay(5);
1304 	}
1305 
1306 	/* Release if grant not acquired */
1307 	if (!(eec & IXGBE_EEC_GNT)) {
1308 		eec &= ~IXGBE_EEC_REQ;
1309 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1310 		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1311 
1312 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1313 		return IXGBE_ERR_EEPROM;
1314 	}
1315 
1316 	/* Setup EEPROM for Read/Write */
1317 	/* Clear CS and SK */
1318 	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1319 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1320 	IXGBE_WRITE_FLUSH(hw);
1321 	udelay(1);
1322 	return 0;
1323 }
1324 
1325 /**
1326  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1327  *  @hw: pointer to hardware structure
1328  *
1329  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1330  **/
1331 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1332 {
1333 	u32 timeout = 2000;
1334 	u32 i;
1335 	u32 swsm;
1336 
1337 	/* Get SMBI software semaphore between device drivers first */
1338 	for (i = 0; i < timeout; i++) {
1339 		/*
1340 		 * If the SMBI bit is 0 when we read it, then the bit will be
1341 		 * set and we have the semaphore
1342 		 */
1343 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1344 		if (!(swsm & IXGBE_SWSM_SMBI))
1345 			break;
1346 		usleep_range(50, 100);
1347 	}
1348 
1349 	if (i == timeout) {
1350 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1351 		/* this release is particularly important because our attempts
1352 		 * above to get the semaphore may have succeeded, and if there
1353 		 * was a timeout, we should unconditionally clear the semaphore
1354 		 * bits to free the driver to make progress
1355 		 */
1356 		ixgbe_release_eeprom_semaphore(hw);
1357 
1358 		usleep_range(50, 100);
1359 		/* one last try
1360 		 * If the SMBI bit is 0 when we read it, then the bit will be
1361 		 * set and we have the semaphore
1362 		 */
1363 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1364 		if (swsm & IXGBE_SWSM_SMBI) {
1365 			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1366 			return IXGBE_ERR_EEPROM;
1367 		}
1368 	}
1369 
1370 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1371 	for (i = 0; i < timeout; i++) {
1372 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1373 
1374 		/* Set the SW EEPROM semaphore bit to request access */
1375 		swsm |= IXGBE_SWSM_SWESMBI;
1376 		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1377 
1378 		/* If we set the bit successfully then we got the
1379 		 * semaphore.
1380 		 */
1381 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1382 		if (swsm & IXGBE_SWSM_SWESMBI)
1383 			break;
1384 
1385 		usleep_range(50, 100);
1386 	}
1387 
1388 	/* Release semaphores and return error if SW EEPROM semaphore
1389 	 * was not granted because we don't have access to the EEPROM
1390 	 */
1391 	if (i >= timeout) {
1392 		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1393 		ixgbe_release_eeprom_semaphore(hw);
1394 		return IXGBE_ERR_EEPROM;
1395 	}
1396 
1397 	return 0;
1398 }
1399 
1400 /**
1401  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1402  *  @hw: pointer to hardware structure
1403  *
1404  *  This function clears hardware semaphore bits.
1405  **/
1406 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1407 {
1408 	u32 swsm;
1409 
1410 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1411 
1412 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1413 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1414 	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1415 	IXGBE_WRITE_FLUSH(hw);
1416 }
1417 
1418 /**
1419  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1420  *  @hw: pointer to hardware structure
1421  **/
1422 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1423 {
1424 	u16 i;
1425 	u8 spi_stat_reg;
1426 
1427 	/*
1428 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1429 	 * EEPROM will signal that the command has been completed by clearing
1430 	 * bit 0 of the internal status register.  If it's not cleared within
1431 	 * 5 milliseconds, then error out.
1432 	 */
1433 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1434 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1435 					    IXGBE_EEPROM_OPCODE_BITS);
1436 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1437 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1438 			break;
1439 
1440 		udelay(5);
1441 		ixgbe_standby_eeprom(hw);
1442 	}
1443 
1444 	/*
1445 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1446 	 * devices (and only 0-5mSec on 5V devices)
1447 	 */
1448 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1449 		hw_dbg(hw, "SPI EEPROM Status error\n");
1450 		return IXGBE_ERR_EEPROM;
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 /**
1457  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1458  *  @hw: pointer to hardware structure
1459  **/
1460 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1461 {
1462 	u32 eec;
1463 
1464 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1465 
1466 	/* Toggle CS to flush commands */
1467 	eec |= IXGBE_EEC_CS;
1468 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1469 	IXGBE_WRITE_FLUSH(hw);
1470 	udelay(1);
1471 	eec &= ~IXGBE_EEC_CS;
1472 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1473 	IXGBE_WRITE_FLUSH(hw);
1474 	udelay(1);
1475 }
1476 
1477 /**
1478  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1479  *  @hw: pointer to hardware structure
1480  *  @data: data to send to the EEPROM
1481  *  @count: number of bits to shift out
1482  **/
1483 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1484 					u16 count)
1485 {
1486 	u32 eec;
1487 	u32 mask;
1488 	u32 i;
1489 
1490 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1491 
1492 	/*
1493 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1494 	 * one bit at a time.  Determine the starting bit based on count
1495 	 */
1496 	mask = 0x01 << (count - 1);
1497 
1498 	for (i = 0; i < count; i++) {
1499 		/*
1500 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1501 		 * "1", and then raising and then lowering the clock (the SK
1502 		 * bit controls the clock input to the EEPROM).  A "0" is
1503 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1504 		 * raising and then lowering the clock.
1505 		 */
1506 		if (data & mask)
1507 			eec |= IXGBE_EEC_DI;
1508 		else
1509 			eec &= ~IXGBE_EEC_DI;
1510 
1511 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1512 		IXGBE_WRITE_FLUSH(hw);
1513 
1514 		udelay(1);
1515 
1516 		ixgbe_raise_eeprom_clk(hw, &eec);
1517 		ixgbe_lower_eeprom_clk(hw, &eec);
1518 
1519 		/*
1520 		 * Shift mask to signify next bit of data to shift in to the
1521 		 * EEPROM
1522 		 */
1523 		mask = mask >> 1;
1524 	}
1525 
1526 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1527 	eec &= ~IXGBE_EEC_DI;
1528 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1529 	IXGBE_WRITE_FLUSH(hw);
1530 }
1531 
1532 /**
1533  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1534  *  @hw: pointer to hardware structure
1535  **/
1536 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1537 {
1538 	u32 eec;
1539 	u32 i;
1540 	u16 data = 0;
1541 
1542 	/*
1543 	 * In order to read a register from the EEPROM, we need to shift
1544 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1545 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1546 	 * the value of the "DO" bit.  During this "shifting in" process the
1547 	 * "DI" bit should always be clear.
1548 	 */
1549 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1550 
1551 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1552 
1553 	for (i = 0; i < count; i++) {
1554 		data = data << 1;
1555 		ixgbe_raise_eeprom_clk(hw, &eec);
1556 
1557 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1558 
1559 		eec &= ~(IXGBE_EEC_DI);
1560 		if (eec & IXGBE_EEC_DO)
1561 			data |= 1;
1562 
1563 		ixgbe_lower_eeprom_clk(hw, &eec);
1564 	}
1565 
1566 	return data;
1567 }
1568 
1569 /**
1570  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1571  *  @hw: pointer to hardware structure
1572  *  @eec: EEC register's current value
1573  **/
1574 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1575 {
1576 	/*
1577 	 * Raise the clock input to the EEPROM
1578 	 * (setting the SK bit), then delay
1579 	 */
1580 	*eec = *eec | IXGBE_EEC_SK;
1581 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1582 	IXGBE_WRITE_FLUSH(hw);
1583 	udelay(1);
1584 }
1585 
1586 /**
1587  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1588  *  @hw: pointer to hardware structure
1589  *  @eecd: EECD's current value
1590  **/
1591 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1592 {
1593 	/*
1594 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1595 	 * delay
1596 	 */
1597 	*eec = *eec & ~IXGBE_EEC_SK;
1598 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1599 	IXGBE_WRITE_FLUSH(hw);
1600 	udelay(1);
1601 }
1602 
1603 /**
1604  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1605  *  @hw: pointer to hardware structure
1606  **/
1607 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1608 {
1609 	u32 eec;
1610 
1611 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1612 
1613 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1614 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1615 
1616 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1617 	IXGBE_WRITE_FLUSH(hw);
1618 
1619 	udelay(1);
1620 
1621 	/* Stop requesting EEPROM access */
1622 	eec &= ~IXGBE_EEC_REQ;
1623 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1624 
1625 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1626 
1627 	/*
1628 	 * Delay before attempt to obtain semaphore again to allow FW
1629 	 * access. semaphore_delay is in ms we need us for usleep_range
1630 	 */
1631 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1632 		     hw->eeprom.semaphore_delay * 2000);
1633 }
1634 
1635 /**
1636  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1637  *  @hw: pointer to hardware structure
1638  **/
1639 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1640 {
1641 	u16 i;
1642 	u16 j;
1643 	u16 checksum = 0;
1644 	u16 length = 0;
1645 	u16 pointer = 0;
1646 	u16 word = 0;
1647 
1648 	/* Include 0x0-0x3F in the checksum */
1649 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1650 		if (hw->eeprom.ops.read(hw, i, &word)) {
1651 			hw_dbg(hw, "EEPROM read failed\n");
1652 			break;
1653 		}
1654 		checksum += word;
1655 	}
1656 
1657 	/* Include all data from pointers except for the fw pointer */
1658 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1659 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1660 			hw_dbg(hw, "EEPROM read failed\n");
1661 			return IXGBE_ERR_EEPROM;
1662 		}
1663 
1664 		/* If the pointer seems invalid */
1665 		if (pointer == 0xFFFF || pointer == 0)
1666 			continue;
1667 
1668 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1669 			hw_dbg(hw, "EEPROM read failed\n");
1670 			return IXGBE_ERR_EEPROM;
1671 		}
1672 
1673 		if (length == 0xFFFF || length == 0)
1674 			continue;
1675 
1676 		for (j = pointer + 1; j <= pointer + length; j++) {
1677 			if (hw->eeprom.ops.read(hw, j, &word)) {
1678 				hw_dbg(hw, "EEPROM read failed\n");
1679 				return IXGBE_ERR_EEPROM;
1680 			}
1681 			checksum += word;
1682 		}
1683 	}
1684 
1685 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1686 
1687 	return (s32)checksum;
1688 }
1689 
1690 /**
1691  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1692  *  @hw: pointer to hardware structure
1693  *  @checksum_val: calculated checksum
1694  *
1695  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1696  *  caller does not need checksum_val, the value can be NULL.
1697  **/
1698 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1699 					   u16 *checksum_val)
1700 {
1701 	s32 status;
1702 	u16 checksum;
1703 	u16 read_checksum = 0;
1704 
1705 	/*
1706 	 * Read the first word from the EEPROM. If this times out or fails, do
1707 	 * not continue or we could be in for a very long wait while every
1708 	 * EEPROM read fails
1709 	 */
1710 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1711 	if (status) {
1712 		hw_dbg(hw, "EEPROM read failed\n");
1713 		return status;
1714 	}
1715 
1716 	status = hw->eeprom.ops.calc_checksum(hw);
1717 	if (status < 0)
1718 		return status;
1719 
1720 	checksum = (u16)(status & 0xffff);
1721 
1722 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1723 	if (status) {
1724 		hw_dbg(hw, "EEPROM read failed\n");
1725 		return status;
1726 	}
1727 
1728 	/* Verify read checksum from EEPROM is the same as
1729 	 * calculated checksum
1730 	 */
1731 	if (read_checksum != checksum)
1732 		status = IXGBE_ERR_EEPROM_CHECKSUM;
1733 
1734 	/* If the user cares, return the calculated checksum */
1735 	if (checksum_val)
1736 		*checksum_val = checksum;
1737 
1738 	return status;
1739 }
1740 
1741 /**
1742  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1743  *  @hw: pointer to hardware structure
1744  **/
1745 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1746 {
1747 	s32 status;
1748 	u16 checksum;
1749 
1750 	/*
1751 	 * Read the first word from the EEPROM. If this times out or fails, do
1752 	 * not continue or we could be in for a very long wait while every
1753 	 * EEPROM read fails
1754 	 */
1755 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1756 	if (status) {
1757 		hw_dbg(hw, "EEPROM read failed\n");
1758 		return status;
1759 	}
1760 
1761 	status = hw->eeprom.ops.calc_checksum(hw);
1762 	if (status < 0)
1763 		return status;
1764 
1765 	checksum = (u16)(status & 0xffff);
1766 
1767 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1768 
1769 	return status;
1770 }
1771 
1772 /**
1773  *  ixgbe_set_rar_generic - Set Rx address register
1774  *  @hw: pointer to hardware structure
1775  *  @index: Receive address register to write
1776  *  @addr: Address to put into receive address register
1777  *  @vmdq: VMDq "set" or "pool" index
1778  *  @enable_addr: set flag that address is active
1779  *
1780  *  Puts an ethernet address into a receive address register.
1781  **/
1782 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1783 			  u32 enable_addr)
1784 {
1785 	u32 rar_low, rar_high;
1786 	u32 rar_entries = hw->mac.num_rar_entries;
1787 
1788 	/* Make sure we are using a valid rar index range */
1789 	if (index >= rar_entries) {
1790 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1791 		return IXGBE_ERR_INVALID_ARGUMENT;
1792 	}
1793 
1794 	/* setup VMDq pool selection before this RAR gets enabled */
1795 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1796 
1797 	/*
1798 	 * HW expects these in little endian so we reverse the byte
1799 	 * order from network order (big endian) to little endian
1800 	 */
1801 	rar_low = ((u32)addr[0] |
1802 		   ((u32)addr[1] << 8) |
1803 		   ((u32)addr[2] << 16) |
1804 		   ((u32)addr[3] << 24));
1805 	/*
1806 	 * Some parts put the VMDq setting in the extra RAH bits,
1807 	 * so save everything except the lower 16 bits that hold part
1808 	 * of the address and the address valid bit.
1809 	 */
1810 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1811 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1812 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1813 
1814 	if (enable_addr != 0)
1815 		rar_high |= IXGBE_RAH_AV;
1816 
1817 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1818 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1819 
1820 	return 0;
1821 }
1822 
1823 /**
1824  *  ixgbe_clear_rar_generic - Remove Rx address register
1825  *  @hw: pointer to hardware structure
1826  *  @index: Receive address register to write
1827  *
1828  *  Clears an ethernet address from a receive address register.
1829  **/
1830 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1831 {
1832 	u32 rar_high;
1833 	u32 rar_entries = hw->mac.num_rar_entries;
1834 
1835 	/* Make sure we are using a valid rar index range */
1836 	if (index >= rar_entries) {
1837 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1838 		return IXGBE_ERR_INVALID_ARGUMENT;
1839 	}
1840 
1841 	/*
1842 	 * Some parts put the VMDq setting in the extra RAH bits,
1843 	 * so save everything except the lower 16 bits that hold part
1844 	 * of the address and the address valid bit.
1845 	 */
1846 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1847 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1848 
1849 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1850 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1851 
1852 	/* clear VMDq pool/queue selection for this RAR */
1853 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1854 
1855 	return 0;
1856 }
1857 
1858 /**
1859  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1860  *  @hw: pointer to hardware structure
1861  *
1862  *  Places the MAC address in receive address register 0 and clears the rest
1863  *  of the receive address registers. Clears the multicast table. Assumes
1864  *  the receiver is in reset when the routine is called.
1865  **/
1866 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1867 {
1868 	u32 i;
1869 	u32 rar_entries = hw->mac.num_rar_entries;
1870 
1871 	/*
1872 	 * If the current mac address is valid, assume it is a software override
1873 	 * to the permanent address.
1874 	 * Otherwise, use the permanent address from the eeprom.
1875 	 */
1876 	if (!is_valid_ether_addr(hw->mac.addr)) {
1877 		/* Get the MAC address from the RAR0 for later reference */
1878 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1879 
1880 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1881 	} else {
1882 		/* Setup the receive address. */
1883 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1884 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1885 
1886 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1887 
1888 		/*  clear VMDq pool/queue selection for RAR 0 */
1889 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1890 	}
1891 	hw->addr_ctrl.overflow_promisc = 0;
1892 
1893 	hw->addr_ctrl.rar_used_count = 1;
1894 
1895 	/* Zero out the other receive addresses. */
1896 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1897 	for (i = 1; i < rar_entries; i++) {
1898 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1899 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1900 	}
1901 
1902 	/* Clear the MTA */
1903 	hw->addr_ctrl.mta_in_use = 0;
1904 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1905 
1906 	hw_dbg(hw, " Clearing MTA\n");
1907 	for (i = 0; i < hw->mac.mcft_size; i++)
1908 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1909 
1910 	if (hw->mac.ops.init_uta_tables)
1911 		hw->mac.ops.init_uta_tables(hw);
1912 
1913 	return 0;
1914 }
1915 
1916 /**
1917  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1918  *  @hw: pointer to hardware structure
1919  *  @mc_addr: the multicast address
1920  *
1921  *  Extracts the 12 bits, from a multicast address, to determine which
1922  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1923  *  incoming rx multicast addresses, to determine the bit-vector to check in
1924  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1925  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1926  *  to mc_filter_type.
1927  **/
1928 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1929 {
1930 	u32 vector = 0;
1931 
1932 	switch (hw->mac.mc_filter_type) {
1933 	case 0:   /* use bits [47:36] of the address */
1934 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1935 		break;
1936 	case 1:   /* use bits [46:35] of the address */
1937 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1938 		break;
1939 	case 2:   /* use bits [45:34] of the address */
1940 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1941 		break;
1942 	case 3:   /* use bits [43:32] of the address */
1943 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1944 		break;
1945 	default:  /* Invalid mc_filter_type */
1946 		hw_dbg(hw, "MC filter type param set incorrectly\n");
1947 		break;
1948 	}
1949 
1950 	/* vector can only be 12-bits or boundary will be exceeded */
1951 	vector &= 0xFFF;
1952 	return vector;
1953 }
1954 
1955 /**
1956  *  ixgbe_set_mta - Set bit-vector in multicast table
1957  *  @hw: pointer to hardware structure
1958  *  @hash_value: Multicast address hash value
1959  *
1960  *  Sets the bit-vector in the multicast table.
1961  **/
1962 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1963 {
1964 	u32 vector;
1965 	u32 vector_bit;
1966 	u32 vector_reg;
1967 
1968 	hw->addr_ctrl.mta_in_use++;
1969 
1970 	vector = ixgbe_mta_vector(hw, mc_addr);
1971 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1972 
1973 	/*
1974 	 * The MTA is a register array of 128 32-bit registers. It is treated
1975 	 * like an array of 4096 bits.  We want to set bit
1976 	 * BitArray[vector_value]. So we figure out what register the bit is
1977 	 * in, read it, OR in the new bit, then write back the new value.  The
1978 	 * register is determined by the upper 7 bits of the vector value and
1979 	 * the bit within that register are determined by the lower 5 bits of
1980 	 * the value.
1981 	 */
1982 	vector_reg = (vector >> 5) & 0x7F;
1983 	vector_bit = vector & 0x1F;
1984 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1985 }
1986 
1987 /**
1988  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1989  *  @hw: pointer to hardware structure
1990  *  @netdev: pointer to net device structure
1991  *
1992  *  The given list replaces any existing list. Clears the MC addrs from receive
1993  *  address registers and the multicast table. Uses unused receive address
1994  *  registers for the first multicast addresses, and hashes the rest into the
1995  *  multicast table.
1996  **/
1997 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1998 				      struct net_device *netdev)
1999 {
2000 	struct netdev_hw_addr *ha;
2001 	u32 i;
2002 
2003 	/*
2004 	 * Set the new number of MC addresses that we are being requested to
2005 	 * use.
2006 	 */
2007 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2008 	hw->addr_ctrl.mta_in_use = 0;
2009 
2010 	/* Clear mta_shadow */
2011 	hw_dbg(hw, " Clearing MTA\n");
2012 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2013 
2014 	/* Update mta shadow */
2015 	netdev_for_each_mc_addr(ha, netdev) {
2016 		hw_dbg(hw, " Adding the multicast addresses:\n");
2017 		ixgbe_set_mta(hw, ha->addr);
2018 	}
2019 
2020 	/* Enable mta */
2021 	for (i = 0; i < hw->mac.mcft_size; i++)
2022 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2023 				      hw->mac.mta_shadow[i]);
2024 
2025 	if (hw->addr_ctrl.mta_in_use > 0)
2026 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2027 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2028 
2029 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2030 	return 0;
2031 }
2032 
2033 /**
2034  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2035  *  @hw: pointer to hardware structure
2036  *
2037  *  Enables multicast address in RAR and the use of the multicast hash table.
2038  **/
2039 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2040 {
2041 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2042 
2043 	if (a->mta_in_use > 0)
2044 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2045 				hw->mac.mc_filter_type);
2046 
2047 	return 0;
2048 }
2049 
2050 /**
2051  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2052  *  @hw: pointer to hardware structure
2053  *
2054  *  Disables multicast address in RAR and the use of the multicast hash table.
2055  **/
2056 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2057 {
2058 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2059 
2060 	if (a->mta_in_use > 0)
2061 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2062 
2063 	return 0;
2064 }
2065 
2066 /**
2067  *  ixgbe_fc_enable_generic - Enable flow control
2068  *  @hw: pointer to hardware structure
2069  *
2070  *  Enable flow control according to the current settings.
2071  **/
2072 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2073 {
2074 	u32 mflcn_reg, fccfg_reg;
2075 	u32 reg;
2076 	u32 fcrtl, fcrth;
2077 	int i;
2078 
2079 	/* Validate the water mark configuration. */
2080 	if (!hw->fc.pause_time)
2081 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2082 
2083 	/* Low water mark of zero causes XOFF floods */
2084 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2085 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2086 		    hw->fc.high_water[i]) {
2087 			if (!hw->fc.low_water[i] ||
2088 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2089 				hw_dbg(hw, "Invalid water mark configuration\n");
2090 				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2091 			}
2092 		}
2093 	}
2094 
2095 	/* Negotiate the fc mode to use */
2096 	ixgbe_fc_autoneg(hw);
2097 
2098 	/* Disable any previous flow control settings */
2099 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2100 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2101 
2102 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2103 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2104 
2105 	/*
2106 	 * The possible values of fc.current_mode are:
2107 	 * 0: Flow control is completely disabled
2108 	 * 1: Rx flow control is enabled (we can receive pause frames,
2109 	 *    but not send pause frames).
2110 	 * 2: Tx flow control is enabled (we can send pause frames but
2111 	 *    we do not support receiving pause frames).
2112 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2113 	 * other: Invalid.
2114 	 */
2115 	switch (hw->fc.current_mode) {
2116 	case ixgbe_fc_none:
2117 		/*
2118 		 * Flow control is disabled by software override or autoneg.
2119 		 * The code below will actually disable it in the HW.
2120 		 */
2121 		break;
2122 	case ixgbe_fc_rx_pause:
2123 		/*
2124 		 * Rx Flow control is enabled and Tx Flow control is
2125 		 * disabled by software override. Since there really
2126 		 * isn't a way to advertise that we are capable of RX
2127 		 * Pause ONLY, we will advertise that we support both
2128 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2129 		 * disable the adapter's ability to send PAUSE frames.
2130 		 */
2131 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2132 		break;
2133 	case ixgbe_fc_tx_pause:
2134 		/*
2135 		 * Tx Flow control is enabled, and Rx Flow control is
2136 		 * disabled by software override.
2137 		 */
2138 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2139 		break;
2140 	case ixgbe_fc_full:
2141 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2142 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2143 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2144 		break;
2145 	default:
2146 		hw_dbg(hw, "Flow control param set incorrectly\n");
2147 		return IXGBE_ERR_CONFIG;
2148 	}
2149 
2150 	/* Set 802.3x based flow control settings. */
2151 	mflcn_reg |= IXGBE_MFLCN_DPF;
2152 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2153 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2154 
2155 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2156 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2157 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2158 		    hw->fc.high_water[i]) {
2159 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2160 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2161 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2162 		} else {
2163 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2164 			/*
2165 			 * In order to prevent Tx hangs when the internal Tx
2166 			 * switch is enabled we must set the high water mark
2167 			 * to the maximum FCRTH value.  This allows the Tx
2168 			 * switch to function even under heavy Rx workloads.
2169 			 */
2170 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2171 		}
2172 
2173 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2174 	}
2175 
2176 	/* Configure pause time (2 TCs per register) */
2177 	reg = hw->fc.pause_time * 0x00010001;
2178 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2179 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2180 
2181 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2182 
2183 	return 0;
2184 }
2185 
2186 /**
2187  *  ixgbe_negotiate_fc - Negotiate flow control
2188  *  @hw: pointer to hardware structure
2189  *  @adv_reg: flow control advertised settings
2190  *  @lp_reg: link partner's flow control settings
2191  *  @adv_sym: symmetric pause bit in advertisement
2192  *  @adv_asm: asymmetric pause bit in advertisement
2193  *  @lp_sym: symmetric pause bit in link partner advertisement
2194  *  @lp_asm: asymmetric pause bit in link partner advertisement
2195  *
2196  *  Find the intersection between advertised settings and link partner's
2197  *  advertised settings
2198  **/
2199 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2200 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2201 {
2202 	if ((!(adv_reg)) ||  (!(lp_reg)))
2203 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2204 
2205 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2206 		/*
2207 		 * Now we need to check if the user selected Rx ONLY
2208 		 * of pause frames.  In this case, we had to advertise
2209 		 * FULL flow control because we could not advertise RX
2210 		 * ONLY. Hence, we must now check to see if we need to
2211 		 * turn OFF the TRANSMISSION of PAUSE frames.
2212 		 */
2213 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2214 			hw->fc.current_mode = ixgbe_fc_full;
2215 			hw_dbg(hw, "Flow Control = FULL.\n");
2216 		} else {
2217 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2218 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2219 		}
2220 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2221 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2222 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2223 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2224 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2225 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2226 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2227 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2228 	} else {
2229 		hw->fc.current_mode = ixgbe_fc_none;
2230 		hw_dbg(hw, "Flow Control = NONE.\n");
2231 	}
2232 	return 0;
2233 }
2234 
2235 /**
2236  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2237  *  @hw: pointer to hardware structure
2238  *
2239  *  Enable flow control according on 1 gig fiber.
2240  **/
2241 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2242 {
2243 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2244 	s32 ret_val;
2245 
2246 	/*
2247 	 * On multispeed fiber at 1g, bail out if
2248 	 * - link is up but AN did not complete, or if
2249 	 * - link is up and AN completed but timed out
2250 	 */
2251 
2252 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2253 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2254 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2255 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2256 
2257 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2258 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2259 
2260 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2261 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2262 			       IXGBE_PCS1GANA_ASM_PAUSE,
2263 			       IXGBE_PCS1GANA_SYM_PAUSE,
2264 			       IXGBE_PCS1GANA_ASM_PAUSE);
2265 
2266 	return ret_val;
2267 }
2268 
2269 /**
2270  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2271  *  @hw: pointer to hardware structure
2272  *
2273  *  Enable flow control according to IEEE clause 37.
2274  **/
2275 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2276 {
2277 	u32 links2, anlp1_reg, autoc_reg, links;
2278 	s32 ret_val;
2279 
2280 	/*
2281 	 * On backplane, bail out if
2282 	 * - backplane autoneg was not completed, or if
2283 	 * - we are 82599 and link partner is not AN enabled
2284 	 */
2285 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2286 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2287 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2288 
2289 	if (hw->mac.type == ixgbe_mac_82599EB) {
2290 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2291 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2292 			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2293 	}
2294 	/*
2295 	 * Read the 10g AN autoc and LP ability registers and resolve
2296 	 * local flow control settings accordingly
2297 	 */
2298 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2299 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2300 
2301 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2302 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2303 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2304 
2305 	return ret_val;
2306 }
2307 
2308 /**
2309  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2310  *  @hw: pointer to hardware structure
2311  *
2312  *  Enable flow control according to IEEE clause 37.
2313  **/
2314 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2315 {
2316 	u16 technology_ability_reg = 0;
2317 	u16 lp_technology_ability_reg = 0;
2318 
2319 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2320 			     MDIO_MMD_AN,
2321 			     &technology_ability_reg);
2322 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2323 			     MDIO_MMD_AN,
2324 			     &lp_technology_ability_reg);
2325 
2326 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2327 				  (u32)lp_technology_ability_reg,
2328 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2329 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2330 }
2331 
2332 /**
2333  *  ixgbe_fc_autoneg - Configure flow control
2334  *  @hw: pointer to hardware structure
2335  *
2336  *  Compares our advertised flow control capabilities to those advertised by
2337  *  our link partner, and determines the proper flow control mode to use.
2338  **/
2339 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2340 {
2341 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2342 	ixgbe_link_speed speed;
2343 	bool link_up;
2344 
2345 	/*
2346 	 * AN should have completed when the cable was plugged in.
2347 	 * Look for reasons to bail out.  Bail out if:
2348 	 * - FC autoneg is disabled, or if
2349 	 * - link is not up.
2350 	 *
2351 	 * Since we're being called from an LSC, link is already known to be up.
2352 	 * So use link_up_wait_to_complete=false.
2353 	 */
2354 	if (hw->fc.disable_fc_autoneg)
2355 		goto out;
2356 
2357 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2358 	if (!link_up)
2359 		goto out;
2360 
2361 	switch (hw->phy.media_type) {
2362 	/* Autoneg flow control on fiber adapters */
2363 	case ixgbe_media_type_fiber:
2364 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2365 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2366 		break;
2367 
2368 	/* Autoneg flow control on backplane adapters */
2369 	case ixgbe_media_type_backplane:
2370 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2371 		break;
2372 
2373 	/* Autoneg flow control on copper adapters */
2374 	case ixgbe_media_type_copper:
2375 		if (ixgbe_device_supports_autoneg_fc(hw))
2376 			ret_val = ixgbe_fc_autoneg_copper(hw);
2377 		break;
2378 
2379 	default:
2380 		break;
2381 	}
2382 
2383 out:
2384 	if (ret_val == 0) {
2385 		hw->fc.fc_was_autonegged = true;
2386 	} else {
2387 		hw->fc.fc_was_autonegged = false;
2388 		hw->fc.current_mode = hw->fc.requested_mode;
2389 	}
2390 }
2391 
2392 /**
2393  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2394  * @hw: pointer to hardware structure
2395  *
2396  * System-wide timeout range is encoded in PCIe Device Control2 register.
2397  *
2398  *  Add 10% to specified maximum and return the number of times to poll for
2399  *  completion timeout, in units of 100 microsec.  Never return less than
2400  *  800 = 80 millisec.
2401  **/
2402 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2403 {
2404 	s16 devctl2;
2405 	u32 pollcnt;
2406 
2407 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2408 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2409 
2410 	switch (devctl2) {
2411 	case IXGBE_PCIDEVCTRL2_65_130ms:
2412 		 pollcnt = 1300;         /* 130 millisec */
2413 		break;
2414 	case IXGBE_PCIDEVCTRL2_260_520ms:
2415 		pollcnt = 5200;         /* 520 millisec */
2416 		break;
2417 	case IXGBE_PCIDEVCTRL2_1_2s:
2418 		pollcnt = 20000;        /* 2 sec */
2419 		break;
2420 	case IXGBE_PCIDEVCTRL2_4_8s:
2421 		pollcnt = 80000;        /* 8 sec */
2422 		break;
2423 	case IXGBE_PCIDEVCTRL2_17_34s:
2424 		pollcnt = 34000;        /* 34 sec */
2425 		break;
2426 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2427 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2428 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2429 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2430 	default:
2431 		pollcnt = 800;          /* 80 millisec minimum */
2432 		break;
2433 	}
2434 
2435 	/* add 10% to spec maximum */
2436 	return (pollcnt * 11) / 10;
2437 }
2438 
2439 /**
2440  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2441  *  @hw: pointer to hardware structure
2442  *
2443  *  Disables PCI-Express master access and verifies there are no pending
2444  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2445  *  bit hasn't caused the master requests to be disabled, else 0
2446  *  is returned signifying master requests disabled.
2447  **/
2448 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2449 {
2450 	u32 i, poll;
2451 	u16 value;
2452 
2453 	/* Always set this bit to ensure any future transactions are blocked */
2454 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2455 
2456 	/* Exit if master requests are blocked */
2457 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2458 	    ixgbe_removed(hw->hw_addr))
2459 		return 0;
2460 
2461 	/* Poll for master request bit to clear */
2462 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2463 		udelay(100);
2464 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2465 			return 0;
2466 	}
2467 
2468 	/*
2469 	 * Two consecutive resets are required via CTRL.RST per datasheet
2470 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2471 	 * of this need.  The first reset prevents new master requests from
2472 	 * being issued by our device.  We then must wait 1usec or more for any
2473 	 * remaining completions from the PCIe bus to trickle in, and then reset
2474 	 * again to clear out any effects they may have had on our device.
2475 	 */
2476 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2477 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2478 
2479 	/*
2480 	 * Before proceeding, make sure that the PCIe block does not have
2481 	 * transactions pending.
2482 	 */
2483 	poll = ixgbe_pcie_timeout_poll(hw);
2484 	for (i = 0; i < poll; i++) {
2485 		udelay(100);
2486 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2487 		if (ixgbe_removed(hw->hw_addr))
2488 			return 0;
2489 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2490 			return 0;
2491 	}
2492 
2493 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2494 	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2495 }
2496 
2497 /**
2498  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2499  *  @hw: pointer to hardware structure
2500  *  @mask: Mask to specify which semaphore to acquire
2501  *
2502  *  Acquires the SWFW semaphore through the GSSR register for the specified
2503  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2504  **/
2505 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2506 {
2507 	u32 gssr = 0;
2508 	u32 swmask = mask;
2509 	u32 fwmask = mask << 5;
2510 	u32 timeout = 200;
2511 	u32 i;
2512 
2513 	for (i = 0; i < timeout; i++) {
2514 		/*
2515 		 * SW NVM semaphore bit is used for access to all
2516 		 * SW_FW_SYNC bits (not just NVM)
2517 		 */
2518 		if (ixgbe_get_eeprom_semaphore(hw))
2519 			return IXGBE_ERR_SWFW_SYNC;
2520 
2521 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2522 		if (!(gssr & (fwmask | swmask))) {
2523 			gssr |= swmask;
2524 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2525 			ixgbe_release_eeprom_semaphore(hw);
2526 			return 0;
2527 		} else {
2528 			/* Resource is currently in use by FW or SW */
2529 			ixgbe_release_eeprom_semaphore(hw);
2530 			usleep_range(5000, 10000);
2531 		}
2532 	}
2533 
2534 	/* If time expired clear the bits holding the lock and retry */
2535 	if (gssr & (fwmask | swmask))
2536 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2537 
2538 	usleep_range(5000, 10000);
2539 	return IXGBE_ERR_SWFW_SYNC;
2540 }
2541 
2542 /**
2543  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2544  *  @hw: pointer to hardware structure
2545  *  @mask: Mask to specify which semaphore to release
2546  *
2547  *  Releases the SWFW semaphore through the GSSR register for the specified
2548  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2549  **/
2550 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2551 {
2552 	u32 gssr;
2553 	u32 swmask = mask;
2554 
2555 	ixgbe_get_eeprom_semaphore(hw);
2556 
2557 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2558 	gssr &= ~swmask;
2559 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2560 
2561 	ixgbe_release_eeprom_semaphore(hw);
2562 }
2563 
2564 /**
2565  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2566  * @hw: pointer to hardware structure
2567  * @reg_val: Value we read from AUTOC
2568  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2569  *	    true in this the generic case.
2570  *
2571  * The default case requires no protection so just to the register read.
2572  **/
2573 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2574 {
2575 	*locked = false;
2576 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2577 	return 0;
2578 }
2579 
2580 /**
2581  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2582  * @hw: pointer to hardware structure
2583  * @reg_val: value to write to AUTOC
2584  * @locked: bool to indicate whether the SW/FW lock was already taken by
2585  *	    previous read.
2586  **/
2587 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2588 {
2589 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2590 	return 0;
2591 }
2592 
2593 /**
2594  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2595  *  @hw: pointer to hardware structure
2596  *
2597  *  Stops the receive data path and waits for the HW to internally
2598  *  empty the Rx security block.
2599  **/
2600 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2601 {
2602 #define IXGBE_MAX_SECRX_POLL 40
2603 	int i;
2604 	int secrxreg;
2605 
2606 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2607 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2608 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2609 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2610 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2611 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2612 			break;
2613 		else
2614 			/* Use interrupt-safe sleep just in case */
2615 			udelay(1000);
2616 	}
2617 
2618 	/* For informational purposes only */
2619 	if (i >= IXGBE_MAX_SECRX_POLL)
2620 		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2621 
2622 	return 0;
2623 
2624 }
2625 
2626 /**
2627  *  ixgbe_enable_rx_buff - Enables the receive data path
2628  *  @hw: pointer to hardware structure
2629  *
2630  *  Enables the receive data path
2631  **/
2632 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2633 {
2634 	int secrxreg;
2635 
2636 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2637 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2638 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2639 	IXGBE_WRITE_FLUSH(hw);
2640 
2641 	return 0;
2642 }
2643 
2644 /**
2645  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2646  *  @hw: pointer to hardware structure
2647  *  @regval: register value to write to RXCTRL
2648  *
2649  *  Enables the Rx DMA unit
2650  **/
2651 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2652 {
2653 	if (regval & IXGBE_RXCTRL_RXEN)
2654 		hw->mac.ops.enable_rx(hw);
2655 	else
2656 		hw->mac.ops.disable_rx(hw);
2657 
2658 	return 0;
2659 }
2660 
2661 /**
2662  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2663  *  @hw: pointer to hardware structure
2664  *  @index: led number to blink
2665  **/
2666 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2667 {
2668 	ixgbe_link_speed speed = 0;
2669 	bool link_up = false;
2670 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2671 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2672 	bool locked = false;
2673 	s32 ret_val;
2674 
2675 	/*
2676 	 * Link must be up to auto-blink the LEDs;
2677 	 * Force it if link is down.
2678 	 */
2679 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2680 
2681 	if (!link_up) {
2682 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2683 		if (ret_val)
2684 			return ret_val;
2685 
2686 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2687 		autoc_reg |= IXGBE_AUTOC_FLU;
2688 
2689 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2690 		if (ret_val)
2691 			return ret_val;
2692 
2693 		IXGBE_WRITE_FLUSH(hw);
2694 
2695 		usleep_range(10000, 20000);
2696 	}
2697 
2698 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2699 	led_reg |= IXGBE_LED_BLINK(index);
2700 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2701 	IXGBE_WRITE_FLUSH(hw);
2702 
2703 	return 0;
2704 }
2705 
2706 /**
2707  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2708  *  @hw: pointer to hardware structure
2709  *  @index: led number to stop blinking
2710  **/
2711 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2712 {
2713 	u32 autoc_reg = 0;
2714 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2715 	bool locked = false;
2716 	s32 ret_val;
2717 
2718 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2719 	if (ret_val)
2720 		return ret_val;
2721 
2722 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2723 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2724 
2725 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2726 	if (ret_val)
2727 		return ret_val;
2728 
2729 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2730 	led_reg &= ~IXGBE_LED_BLINK(index);
2731 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2732 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2733 	IXGBE_WRITE_FLUSH(hw);
2734 
2735 	return 0;
2736 }
2737 
2738 /**
2739  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2740  *  @hw: pointer to hardware structure
2741  *  @san_mac_offset: SAN MAC address offset
2742  *
2743  *  This function will read the EEPROM location for the SAN MAC address
2744  *  pointer, and returns the value at that location.  This is used in both
2745  *  get and set mac_addr routines.
2746  **/
2747 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2748 					u16 *san_mac_offset)
2749 {
2750 	s32 ret_val;
2751 
2752 	/*
2753 	 * First read the EEPROM pointer to see if the MAC addresses are
2754 	 * available.
2755 	 */
2756 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2757 				      san_mac_offset);
2758 	if (ret_val)
2759 		hw_err(hw, "eeprom read at offset %d failed\n",
2760 		       IXGBE_SAN_MAC_ADDR_PTR);
2761 
2762 	return ret_val;
2763 }
2764 
2765 /**
2766  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2767  *  @hw: pointer to hardware structure
2768  *  @san_mac_addr: SAN MAC address
2769  *
2770  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2771  *  per-port, so set_lan_id() must be called before reading the addresses.
2772  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2773  *  upon for non-SFP connections, so we must call it here.
2774  **/
2775 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2776 {
2777 	u16 san_mac_data, san_mac_offset;
2778 	u8 i;
2779 	s32 ret_val;
2780 
2781 	/*
2782 	 * First read the EEPROM pointer to see if the MAC addresses are
2783 	 * available.  If they're not, no point in calling set_lan_id() here.
2784 	 */
2785 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2786 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2787 
2788 		goto san_mac_addr_clr;
2789 
2790 	/* make sure we know which port we need to program */
2791 	hw->mac.ops.set_lan_id(hw);
2792 	/* apply the port offset to the address offset */
2793 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2794 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2795 	for (i = 0; i < 3; i++) {
2796 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2797 					      &san_mac_data);
2798 		if (ret_val) {
2799 			hw_err(hw, "eeprom read at offset %d failed\n",
2800 			       san_mac_offset);
2801 			goto san_mac_addr_clr;
2802 		}
2803 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2804 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2805 		san_mac_offset++;
2806 	}
2807 	return 0;
2808 
2809 san_mac_addr_clr:
2810 	/* No addresses available in this EEPROM.  It's not necessarily an
2811 	 * error though, so just wipe the local address and return.
2812 	 */
2813 	for (i = 0; i < 6; i++)
2814 		san_mac_addr[i] = 0xFF;
2815 	return ret_val;
2816 }
2817 
2818 /**
2819  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2820  *  @hw: pointer to hardware structure
2821  *
2822  *  Read PCIe configuration space, and get the MSI-X vector count from
2823  *  the capabilities table.
2824  **/
2825 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2826 {
2827 	u16 msix_count;
2828 	u16 max_msix_count;
2829 	u16 pcie_offset;
2830 
2831 	switch (hw->mac.type) {
2832 	case ixgbe_mac_82598EB:
2833 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2834 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2835 		break;
2836 	case ixgbe_mac_82599EB:
2837 	case ixgbe_mac_X540:
2838 	case ixgbe_mac_X550:
2839 	case ixgbe_mac_X550EM_x:
2840 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2841 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2842 		break;
2843 	default:
2844 		return 1;
2845 	}
2846 
2847 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2848 	if (ixgbe_removed(hw->hw_addr))
2849 		msix_count = 0;
2850 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2851 
2852 	/* MSI-X count is zero-based in HW */
2853 	msix_count++;
2854 
2855 	if (msix_count > max_msix_count)
2856 		msix_count = max_msix_count;
2857 
2858 	return msix_count;
2859 }
2860 
2861 /**
2862  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2863  *  @hw: pointer to hardware struct
2864  *  @rar: receive address register index to disassociate
2865  *  @vmdq: VMDq pool index to remove from the rar
2866  **/
2867 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2868 {
2869 	u32 mpsar_lo, mpsar_hi;
2870 	u32 rar_entries = hw->mac.num_rar_entries;
2871 
2872 	/* Make sure we are using a valid rar index range */
2873 	if (rar >= rar_entries) {
2874 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2875 		return IXGBE_ERR_INVALID_ARGUMENT;
2876 	}
2877 
2878 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2879 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2880 
2881 	if (ixgbe_removed(hw->hw_addr))
2882 		return 0;
2883 
2884 	if (!mpsar_lo && !mpsar_hi)
2885 		return 0;
2886 
2887 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2888 		if (mpsar_lo) {
2889 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2890 			mpsar_lo = 0;
2891 		}
2892 		if (mpsar_hi) {
2893 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2894 			mpsar_hi = 0;
2895 		}
2896 	} else if (vmdq < 32) {
2897 		mpsar_lo &= ~(1 << vmdq);
2898 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2899 	} else {
2900 		mpsar_hi &= ~(1 << (vmdq - 32));
2901 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2902 	}
2903 
2904 	/* was that the last pool using this rar? */
2905 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2906 		hw->mac.ops.clear_rar(hw, rar);
2907 	return 0;
2908 }
2909 
2910 /**
2911  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2912  *  @hw: pointer to hardware struct
2913  *  @rar: receive address register index to associate with a VMDq index
2914  *  @vmdq: VMDq pool index
2915  **/
2916 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2917 {
2918 	u32 mpsar;
2919 	u32 rar_entries = hw->mac.num_rar_entries;
2920 
2921 	/* Make sure we are using a valid rar index range */
2922 	if (rar >= rar_entries) {
2923 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2924 		return IXGBE_ERR_INVALID_ARGUMENT;
2925 	}
2926 
2927 	if (vmdq < 32) {
2928 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2929 		mpsar |= 1 << vmdq;
2930 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2931 	} else {
2932 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2933 		mpsar |= 1 << (vmdq - 32);
2934 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2935 	}
2936 	return 0;
2937 }
2938 
2939 /**
2940  *  This function should only be involved in the IOV mode.
2941  *  In IOV mode, Default pool is next pool after the number of
2942  *  VFs advertized and not 0.
2943  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2944  *
2945  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2946  *  @hw: pointer to hardware struct
2947  *  @vmdq: VMDq pool index
2948  **/
2949 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2950 {
2951 	u32 rar = hw->mac.san_mac_rar_index;
2952 
2953 	if (vmdq < 32) {
2954 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2955 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2956 	} else {
2957 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2958 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2959 	}
2960 
2961 	return 0;
2962 }
2963 
2964 /**
2965  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2966  *  @hw: pointer to hardware structure
2967  **/
2968 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2969 {
2970 	int i;
2971 
2972 	for (i = 0; i < 128; i++)
2973 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2974 
2975 	return 0;
2976 }
2977 
2978 /**
2979  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2980  *  @hw: pointer to hardware structure
2981  *  @vlan: VLAN id to write to VLAN filter
2982  *
2983  *  return the VLVF index where this VLAN id should be placed
2984  *
2985  **/
2986 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2987 {
2988 	u32 bits = 0;
2989 	u32 first_empty_slot = 0;
2990 	s32 regindex;
2991 
2992 	/* short cut the special case */
2993 	if (vlan == 0)
2994 		return 0;
2995 
2996 	/*
2997 	  * Search for the vlan id in the VLVF entries. Save off the first empty
2998 	  * slot found along the way
2999 	  */
3000 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3001 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3002 		if (!bits && !(first_empty_slot))
3003 			first_empty_slot = regindex;
3004 		else if ((bits & 0x0FFF) == vlan)
3005 			break;
3006 	}
3007 
3008 	/*
3009 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3010 	  * in the VLVF. Else use the first empty VLVF register for this
3011 	  * vlan id.
3012 	  */
3013 	if (regindex >= IXGBE_VLVF_ENTRIES) {
3014 		if (first_empty_slot)
3015 			regindex = first_empty_slot;
3016 		else {
3017 			hw_dbg(hw, "No space in VLVF.\n");
3018 			regindex = IXGBE_ERR_NO_SPACE;
3019 		}
3020 	}
3021 
3022 	return regindex;
3023 }
3024 
3025 /**
3026  *  ixgbe_set_vfta_generic - Set VLAN filter table
3027  *  @hw: pointer to hardware structure
3028  *  @vlan: VLAN id to write to VLAN filter
3029  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3030  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3031  *
3032  *  Turn on/off specified VLAN in the VLAN filter table.
3033  **/
3034 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3035 			   bool vlan_on)
3036 {
3037 	s32 regindex;
3038 	u32 bitindex;
3039 	u32 vfta;
3040 	u32 bits;
3041 	u32 vt;
3042 	u32 targetbit;
3043 	bool vfta_changed = false;
3044 
3045 	if (vlan > 4095)
3046 		return IXGBE_ERR_PARAM;
3047 
3048 	/*
3049 	 * this is a 2 part operation - first the VFTA, then the
3050 	 * VLVF and VLVFB if VT Mode is set
3051 	 * We don't write the VFTA until we know the VLVF part succeeded.
3052 	 */
3053 
3054 	/* Part 1
3055 	 * The VFTA is a bitstring made up of 128 32-bit registers
3056 	 * that enable the particular VLAN id, much like the MTA:
3057 	 *    bits[11-5]: which register
3058 	 *    bits[4-0]:  which bit in the register
3059 	 */
3060 	regindex = (vlan >> 5) & 0x7F;
3061 	bitindex = vlan & 0x1F;
3062 	targetbit = (1 << bitindex);
3063 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3064 
3065 	if (vlan_on) {
3066 		if (!(vfta & targetbit)) {
3067 			vfta |= targetbit;
3068 			vfta_changed = true;
3069 		}
3070 	} else {
3071 		if ((vfta & targetbit)) {
3072 			vfta &= ~targetbit;
3073 			vfta_changed = true;
3074 		}
3075 	}
3076 
3077 	/* Part 2
3078 	 * If VT Mode is set
3079 	 *   Either vlan_on
3080 	 *     make sure the vlan is in VLVF
3081 	 *     set the vind bit in the matching VLVFB
3082 	 *   Or !vlan_on
3083 	 *     clear the pool bit and possibly the vind
3084 	 */
3085 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3086 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3087 		s32 vlvf_index;
3088 
3089 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3090 		if (vlvf_index < 0)
3091 			return vlvf_index;
3092 
3093 		if (vlan_on) {
3094 			/* set the pool bit */
3095 			if (vind < 32) {
3096 				bits = IXGBE_READ_REG(hw,
3097 						IXGBE_VLVFB(vlvf_index*2));
3098 				bits |= (1 << vind);
3099 				IXGBE_WRITE_REG(hw,
3100 						IXGBE_VLVFB(vlvf_index*2),
3101 						bits);
3102 			} else {
3103 				bits = IXGBE_READ_REG(hw,
3104 						IXGBE_VLVFB((vlvf_index*2)+1));
3105 				bits |= (1 << (vind-32));
3106 				IXGBE_WRITE_REG(hw,
3107 						IXGBE_VLVFB((vlvf_index*2)+1),
3108 						bits);
3109 			}
3110 		} else {
3111 			/* clear the pool bit */
3112 			if (vind < 32) {
3113 				bits = IXGBE_READ_REG(hw,
3114 						IXGBE_VLVFB(vlvf_index*2));
3115 				bits &= ~(1 << vind);
3116 				IXGBE_WRITE_REG(hw,
3117 						IXGBE_VLVFB(vlvf_index*2),
3118 						bits);
3119 				bits |= IXGBE_READ_REG(hw,
3120 						IXGBE_VLVFB((vlvf_index*2)+1));
3121 			} else {
3122 				bits = IXGBE_READ_REG(hw,
3123 						IXGBE_VLVFB((vlvf_index*2)+1));
3124 				bits &= ~(1 << (vind-32));
3125 				IXGBE_WRITE_REG(hw,
3126 						IXGBE_VLVFB((vlvf_index*2)+1),
3127 						bits);
3128 				bits |= IXGBE_READ_REG(hw,
3129 						IXGBE_VLVFB(vlvf_index*2));
3130 			}
3131 		}
3132 
3133 		/*
3134 		 * If there are still bits set in the VLVFB registers
3135 		 * for the VLAN ID indicated we need to see if the
3136 		 * caller is requesting that we clear the VFTA entry bit.
3137 		 * If the caller has requested that we clear the VFTA
3138 		 * entry bit but there are still pools/VFs using this VLAN
3139 		 * ID entry then ignore the request.  We're not worried
3140 		 * about the case where we're turning the VFTA VLAN ID
3141 		 * entry bit on, only when requested to turn it off as
3142 		 * there may be multiple pools and/or VFs using the
3143 		 * VLAN ID entry.  In that case we cannot clear the
3144 		 * VFTA bit until all pools/VFs using that VLAN ID have also
3145 		 * been cleared.  This will be indicated by "bits" being
3146 		 * zero.
3147 		 */
3148 		if (bits) {
3149 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3150 					(IXGBE_VLVF_VIEN | vlan));
3151 			if (!vlan_on) {
3152 				/* someone wants to clear the vfta entry
3153 				 * but some pools/VFs are still using it.
3154 				 * Ignore it. */
3155 				vfta_changed = false;
3156 			}
3157 		} else {
3158 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3159 		}
3160 	}
3161 
3162 	if (vfta_changed)
3163 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3164 
3165 	return 0;
3166 }
3167 
3168 /**
3169  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3170  *  @hw: pointer to hardware structure
3171  *
3172  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3173  **/
3174 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3175 {
3176 	u32 offset;
3177 
3178 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3179 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3180 
3181 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3182 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3183 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3184 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3185 	}
3186 
3187 	return 0;
3188 }
3189 
3190 /**
3191  *  ixgbe_check_mac_link_generic - Determine link and speed status
3192  *  @hw: pointer to hardware structure
3193  *  @speed: pointer to link speed
3194  *  @link_up: true when link is up
3195  *  @link_up_wait_to_complete: bool used to wait for link up or not
3196  *
3197  *  Reads the links register to determine if link is up and the current speed
3198  **/
3199 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3200 				 bool *link_up, bool link_up_wait_to_complete)
3201 {
3202 	u32 links_reg, links_orig;
3203 	u32 i;
3204 
3205 	/* clear the old state */
3206 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3207 
3208 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3209 
3210 	if (links_orig != links_reg) {
3211 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3212 		       links_orig, links_reg);
3213 	}
3214 
3215 	if (link_up_wait_to_complete) {
3216 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3217 			if (links_reg & IXGBE_LINKS_UP) {
3218 				*link_up = true;
3219 				break;
3220 			} else {
3221 				*link_up = false;
3222 			}
3223 			msleep(100);
3224 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3225 		}
3226 	} else {
3227 		if (links_reg & IXGBE_LINKS_UP)
3228 			*link_up = true;
3229 		else
3230 			*link_up = false;
3231 	}
3232 
3233 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3234 	case IXGBE_LINKS_SPEED_10G_82599:
3235 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3236 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3237 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3238 		else
3239 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3240 		break;
3241 	case IXGBE_LINKS_SPEED_1G_82599:
3242 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3243 		break;
3244 	case IXGBE_LINKS_SPEED_100_82599:
3245 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3246 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3247 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3248 		else
3249 			*speed = IXGBE_LINK_SPEED_100_FULL;
3250 		break;
3251 	default:
3252 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3253 	}
3254 
3255 	return 0;
3256 }
3257 
3258 /**
3259  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3260  *  the EEPROM
3261  *  @hw: pointer to hardware structure
3262  *  @wwnn_prefix: the alternative WWNN prefix
3263  *  @wwpn_prefix: the alternative WWPN prefix
3264  *
3265  *  This function will read the EEPROM from the alternative SAN MAC address
3266  *  block to check the support for the alternative WWNN/WWPN prefix support.
3267  **/
3268 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3269 					u16 *wwpn_prefix)
3270 {
3271 	u16 offset, caps;
3272 	u16 alt_san_mac_blk_offset;
3273 
3274 	/* clear output first */
3275 	*wwnn_prefix = 0xFFFF;
3276 	*wwpn_prefix = 0xFFFF;
3277 
3278 	/* check if alternative SAN MAC is supported */
3279 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3280 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3281 		goto wwn_prefix_err;
3282 
3283 	if ((alt_san_mac_blk_offset == 0) ||
3284 	    (alt_san_mac_blk_offset == 0xFFFF))
3285 		return 0;
3286 
3287 	/* check capability in alternative san mac address block */
3288 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3289 	if (hw->eeprom.ops.read(hw, offset, &caps))
3290 		goto wwn_prefix_err;
3291 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3292 		return 0;
3293 
3294 	/* get the corresponding prefix for WWNN/WWPN */
3295 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3296 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3297 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3298 
3299 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3300 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3301 		goto wwn_prefix_err;
3302 
3303 	return 0;
3304 
3305 wwn_prefix_err:
3306 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3307 	return 0;
3308 }
3309 
3310 /**
3311  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3312  *  @hw: pointer to hardware structure
3313  *  @enable: enable or disable switch for anti-spoofing
3314  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3315  *
3316  **/
3317 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3318 {
3319 	int j;
3320 	int pf_target_reg = pf >> 3;
3321 	int pf_target_shift = pf % 8;
3322 	u32 pfvfspoof = 0;
3323 
3324 	if (hw->mac.type == ixgbe_mac_82598EB)
3325 		return;
3326 
3327 	if (enable)
3328 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3329 
3330 	/*
3331 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3332 	 * MAC anti-spoof enables in each register array element.
3333 	 */
3334 	for (j = 0; j < pf_target_reg; j++)
3335 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3336 
3337 	/*
3338 	 * The PF should be allowed to spoof so that it can support
3339 	 * emulation mode NICs.  Do not set the bits assigned to the PF
3340 	 */
3341 	pfvfspoof &= (1 << pf_target_shift) - 1;
3342 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3343 
3344 	/*
3345 	 * Remaining pools belong to the PF so they do not need to have
3346 	 * anti-spoofing enabled.
3347 	 */
3348 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3349 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3350 }
3351 
3352 /**
3353  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3354  *  @hw: pointer to hardware structure
3355  *  @enable: enable or disable switch for VLAN anti-spoofing
3356  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3357  *
3358  **/
3359 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3360 {
3361 	int vf_target_reg = vf >> 3;
3362 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3363 	u32 pfvfspoof;
3364 
3365 	if (hw->mac.type == ixgbe_mac_82598EB)
3366 		return;
3367 
3368 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3369 	if (enable)
3370 		pfvfspoof |= (1 << vf_target_shift);
3371 	else
3372 		pfvfspoof &= ~(1 << vf_target_shift);
3373 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3374 }
3375 
3376 /**
3377  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3378  *  @hw: pointer to hardware structure
3379  *  @device_caps: the EEPROM word with the extra device capabilities
3380  *
3381  *  This function will read the EEPROM location for the device capabilities,
3382  *  and return the word through device_caps.
3383  **/
3384 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3385 {
3386 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3387 
3388 	return 0;
3389 }
3390 
3391 /**
3392  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3393  * @hw: pointer to hardware structure
3394  * @num_pb: number of packet buffers to allocate
3395  * @headroom: reserve n KB of headroom
3396  * @strategy: packet buffer allocation strategy
3397  **/
3398 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3399 			     int num_pb,
3400 			     u32 headroom,
3401 			     int strategy)
3402 {
3403 	u32 pbsize = hw->mac.rx_pb_size;
3404 	int i = 0;
3405 	u32 rxpktsize, txpktsize, txpbthresh;
3406 
3407 	/* Reserve headroom */
3408 	pbsize -= headroom;
3409 
3410 	if (!num_pb)
3411 		num_pb = 1;
3412 
3413 	/* Divide remaining packet buffer space amongst the number
3414 	 * of packet buffers requested using supplied strategy.
3415 	 */
3416 	switch (strategy) {
3417 	case (PBA_STRATEGY_WEIGHTED):
3418 		/* pba_80_48 strategy weight first half of packet buffer with
3419 		 * 5/8 of the packet buffer space.
3420 		 */
3421 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3422 		pbsize -= rxpktsize * (num_pb / 2);
3423 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3424 		for (; i < (num_pb / 2); i++)
3425 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3426 		/* Fall through to configure remaining packet buffers */
3427 	case (PBA_STRATEGY_EQUAL):
3428 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3429 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3430 		for (; i < num_pb; i++)
3431 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3432 		break;
3433 	default:
3434 		break;
3435 	}
3436 
3437 	/*
3438 	 * Setup Tx packet buffer and threshold equally for all TCs
3439 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3440 	 * 10 since the largest packet we support is just over 9K.
3441 	 */
3442 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3443 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3444 	for (i = 0; i < num_pb; i++) {
3445 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3446 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3447 	}
3448 
3449 	/* Clear unused TCs, if any, to zero buffer size*/
3450 	for (; i < IXGBE_MAX_PB; i++) {
3451 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3452 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3453 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3454 	}
3455 }
3456 
3457 /**
3458  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3459  *  @buffer: pointer to EEPROM
3460  *  @length: size of EEPROM to calculate a checksum for
3461  *
3462  *  Calculates the checksum for some buffer on a specified length.  The
3463  *  checksum calculated is returned.
3464  **/
3465 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3466 {
3467 	u32 i;
3468 	u8 sum = 0;
3469 
3470 	if (!buffer)
3471 		return 0;
3472 
3473 	for (i = 0; i < length; i++)
3474 		sum += buffer[i];
3475 
3476 	return (u8) (0 - sum);
3477 }
3478 
3479 /**
3480  *  ixgbe_host_interface_command - Issue command to manageability block
3481  *  @hw: pointer to the HW structure
3482  *  @buffer: contains the command to write and where the return status will
3483  *           be placed
3484  *  @length: length of buffer, must be multiple of 4 bytes
3485  *  @timeout: time in ms to wait for command completion
3486  *  @return_data: read and return data from the buffer (true) or not (false)
3487  *  Needed because FW structures are big endian and decoding of
3488  *  these fields can be 8 bit or 16 bit based on command. Decoding
3489  *  is not easily understood without making a table of commands.
3490  *  So we will leave this up to the caller to read back the data
3491  *  in these cases.
3492  *
3493  *  Communicates with the manageability block.  On success return 0
3494  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3495  **/
3496 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3497 				 u32 length, u32 timeout,
3498 				 bool return_data)
3499 {
3500 	u32 hicr, i, bi, fwsts;
3501 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3502 	u16 buf_len, dword_len;
3503 
3504 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3505 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3506 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3507 	}
3508 
3509 	/* Set bit 9 of FWSTS clearing FW reset indication */
3510 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3511 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3512 
3513 	/* Check that the host interface is enabled. */
3514 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3515 	if ((hicr & IXGBE_HICR_EN) == 0) {
3516 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3517 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3518 	}
3519 
3520 	/* Calculate length in DWORDs. We must be DWORD aligned */
3521 	if ((length % (sizeof(u32))) != 0) {
3522 		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3523 		return IXGBE_ERR_INVALID_ARGUMENT;
3524 	}
3525 
3526 	dword_len = length >> 2;
3527 
3528 	/*
3529 	 * The device driver writes the relevant command block
3530 	 * into the ram area.
3531 	 */
3532 	for (i = 0; i < dword_len; i++)
3533 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3534 				      i, cpu_to_le32(buffer[i]));
3535 
3536 	/* Setting this bit tells the ARC that a new command is pending. */
3537 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3538 
3539 	for (i = 0; i < timeout; i++) {
3540 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3541 		if (!(hicr & IXGBE_HICR_C))
3542 			break;
3543 		usleep_range(1000, 2000);
3544 	}
3545 
3546 	/* Check command successful completion. */
3547 	if ((timeout != 0 && i == timeout) ||
3548 	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3549 		hw_dbg(hw, "Command has failed with no status valid.\n");
3550 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3551 	}
3552 
3553 	if (!return_data)
3554 		return 0;
3555 
3556 	/* Calculate length in DWORDs */
3557 	dword_len = hdr_size >> 2;
3558 
3559 	/* first pull in the header so we know the buffer length */
3560 	for (bi = 0; bi < dword_len; bi++) {
3561 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3562 		le32_to_cpus(&buffer[bi]);
3563 	}
3564 
3565 	/* If there is any thing in data position pull it in */
3566 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3567 	if (buf_len == 0)
3568 		return 0;
3569 
3570 	if (length < (buf_len + hdr_size)) {
3571 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3572 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3573 	}
3574 
3575 	/* Calculate length in DWORDs, add 3 for odd lengths */
3576 	dword_len = (buf_len + 3) >> 2;
3577 
3578 	/* Pull in the rest of the buffer (bi is where we left off)*/
3579 	for (; bi <= dword_len; bi++) {
3580 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3581 		le32_to_cpus(&buffer[bi]);
3582 	}
3583 
3584 	return 0;
3585 }
3586 
3587 /**
3588  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3589  *  @hw: pointer to the HW structure
3590  *  @maj: driver version major number
3591  *  @min: driver version minor number
3592  *  @build: driver version build number
3593  *  @sub: driver version sub build number
3594  *
3595  *  Sends driver version number to firmware through the manageability
3596  *  block.  On success return 0
3597  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3598  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3599  **/
3600 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3601 				 u8 build, u8 sub)
3602 {
3603 	struct ixgbe_hic_drv_info fw_cmd;
3604 	int i;
3605 	s32 ret_val;
3606 
3607 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM))
3608 		return IXGBE_ERR_SWFW_SYNC;
3609 
3610 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3611 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3612 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3613 	fw_cmd.port_num = (u8)hw->bus.func;
3614 	fw_cmd.ver_maj = maj;
3615 	fw_cmd.ver_min = min;
3616 	fw_cmd.ver_build = build;
3617 	fw_cmd.ver_sub = sub;
3618 	fw_cmd.hdr.checksum = 0;
3619 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3620 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3621 	fw_cmd.pad = 0;
3622 	fw_cmd.pad2 = 0;
3623 
3624 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3625 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3626 						       sizeof(fw_cmd),
3627 						       IXGBE_HI_COMMAND_TIMEOUT,
3628 						       true);
3629 		if (ret_val != 0)
3630 			continue;
3631 
3632 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3633 		    FW_CEM_RESP_STATUS_SUCCESS)
3634 			ret_val = 0;
3635 		else
3636 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3637 
3638 		break;
3639 	}
3640 
3641 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3642 	return ret_val;
3643 }
3644 
3645 /**
3646  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3647  * @hw: pointer to the hardware structure
3648  *
3649  * The 82599 and x540 MACs can experience issues if TX work is still pending
3650  * when a reset occurs.  This function prevents this by flushing the PCIe
3651  * buffers on the system.
3652  **/
3653 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3654 {
3655 	u32 gcr_ext, hlreg0, i, poll;
3656 	u16 value;
3657 
3658 	/*
3659 	 * If double reset is not requested then all transactions should
3660 	 * already be clear and as such there is no work to do
3661 	 */
3662 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3663 		return;
3664 
3665 	/*
3666 	 * Set loopback enable to prevent any transmits from being sent
3667 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3668 	 * has already been cleared.
3669 	 */
3670 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3671 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3672 
3673 	/* wait for a last completion before clearing buffers */
3674 	IXGBE_WRITE_FLUSH(hw);
3675 	usleep_range(3000, 6000);
3676 
3677 	/* Before proceeding, make sure that the PCIe block does not have
3678 	 * transactions pending.
3679 	 */
3680 	poll = ixgbe_pcie_timeout_poll(hw);
3681 	for (i = 0; i < poll; i++) {
3682 		usleep_range(100, 200);
3683 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3684 		if (ixgbe_removed(hw->hw_addr))
3685 			break;
3686 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3687 			break;
3688 	}
3689 
3690 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3691 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3692 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3693 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3694 
3695 	/* Flush all writes and allow 20usec for all transactions to clear */
3696 	IXGBE_WRITE_FLUSH(hw);
3697 	udelay(20);
3698 
3699 	/* restore previous register values */
3700 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3701 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3702 }
3703 
3704 static const u8 ixgbe_emc_temp_data[4] = {
3705 	IXGBE_EMC_INTERNAL_DATA,
3706 	IXGBE_EMC_DIODE1_DATA,
3707 	IXGBE_EMC_DIODE2_DATA,
3708 	IXGBE_EMC_DIODE3_DATA
3709 };
3710 static const u8 ixgbe_emc_therm_limit[4] = {
3711 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3712 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3713 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3714 	IXGBE_EMC_DIODE3_THERM_LIMIT
3715 };
3716 
3717 /**
3718  *  ixgbe_get_ets_data - Extracts the ETS bit data
3719  *  @hw: pointer to hardware structure
3720  *  @ets_cfg: extected ETS data
3721  *  @ets_offset: offset of ETS data
3722  *
3723  *  Returns error code.
3724  **/
3725 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3726 			      u16 *ets_offset)
3727 {
3728 	s32 status;
3729 
3730 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3731 	if (status)
3732 		return status;
3733 
3734 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3735 		return IXGBE_NOT_IMPLEMENTED;
3736 
3737 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3738 	if (status)
3739 		return status;
3740 
3741 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3742 		return IXGBE_NOT_IMPLEMENTED;
3743 
3744 	return 0;
3745 }
3746 
3747 /**
3748  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3749  *  @hw: pointer to hardware structure
3750  *
3751  *  Returns the thermal sensor data structure
3752  **/
3753 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3754 {
3755 	s32 status;
3756 	u16 ets_offset;
3757 	u16 ets_cfg;
3758 	u16 ets_sensor;
3759 	u8  num_sensors;
3760 	u8  i;
3761 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3762 
3763 	/* Only support thermal sensors attached to physical port 0 */
3764 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3765 		return IXGBE_NOT_IMPLEMENTED;
3766 
3767 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3768 	if (status)
3769 		return status;
3770 
3771 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3772 	if (num_sensors > IXGBE_MAX_SENSORS)
3773 		num_sensors = IXGBE_MAX_SENSORS;
3774 
3775 	for (i = 0; i < num_sensors; i++) {
3776 		u8  sensor_index;
3777 		u8  sensor_location;
3778 
3779 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3780 					     &ets_sensor);
3781 		if (status)
3782 			return status;
3783 
3784 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3785 				IXGBE_ETS_DATA_INDEX_SHIFT);
3786 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3787 				   IXGBE_ETS_DATA_LOC_SHIFT);
3788 
3789 		if (sensor_location != 0) {
3790 			status = hw->phy.ops.read_i2c_byte(hw,
3791 					ixgbe_emc_temp_data[sensor_index],
3792 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3793 					&data->sensor[i].temp);
3794 			if (status)
3795 				return status;
3796 		}
3797 	}
3798 
3799 	return 0;
3800 }
3801 
3802 /**
3803  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3804  * @hw: pointer to hardware structure
3805  *
3806  * Inits the thermal sensor thresholds according to the NVM map
3807  * and save off the threshold and location values into mac.thermal_sensor_data
3808  **/
3809 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3810 {
3811 	s32 status;
3812 	u16 ets_offset;
3813 	u16 ets_cfg;
3814 	u16 ets_sensor;
3815 	u8  low_thresh_delta;
3816 	u8  num_sensors;
3817 	u8  therm_limit;
3818 	u8  i;
3819 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3820 
3821 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3822 
3823 	/* Only support thermal sensors attached to physical port 0 */
3824 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3825 		return IXGBE_NOT_IMPLEMENTED;
3826 
3827 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3828 	if (status)
3829 		return status;
3830 
3831 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3832 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3833 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3834 	if (num_sensors > IXGBE_MAX_SENSORS)
3835 		num_sensors = IXGBE_MAX_SENSORS;
3836 
3837 	for (i = 0; i < num_sensors; i++) {
3838 		u8  sensor_index;
3839 		u8  sensor_location;
3840 
3841 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3842 			hw_err(hw, "eeprom read at offset %d failed\n",
3843 			       ets_offset + 1 + i);
3844 			continue;
3845 		}
3846 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3847 				IXGBE_ETS_DATA_INDEX_SHIFT);
3848 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3849 				   IXGBE_ETS_DATA_LOC_SHIFT);
3850 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3851 
3852 		hw->phy.ops.write_i2c_byte(hw,
3853 			ixgbe_emc_therm_limit[sensor_index],
3854 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3855 
3856 		if (sensor_location == 0)
3857 			continue;
3858 
3859 		data->sensor[i].location = sensor_location;
3860 		data->sensor[i].caution_thresh = therm_limit;
3861 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3862 	}
3863 
3864 	return 0;
3865 }
3866 
3867 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
3868 {
3869 	u32 rxctrl;
3870 
3871 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3872 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
3873 		if (hw->mac.type != ixgbe_mac_82598EB) {
3874 			u32 pfdtxgswc;
3875 
3876 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3877 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
3878 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
3879 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3880 				hw->mac.set_lben = true;
3881 			} else {
3882 				hw->mac.set_lben = false;
3883 			}
3884 		}
3885 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
3886 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
3887 	}
3888 }
3889 
3890 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
3891 {
3892 	u32 rxctrl;
3893 
3894 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3895 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
3896 
3897 	if (hw->mac.type != ixgbe_mac_82598EB) {
3898 		if (hw->mac.set_lben) {
3899 			u32 pfdtxgswc;
3900 
3901 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3902 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
3903 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3904 			hw->mac.set_lben = false;
3905 		}
3906 	}
3907 }
3908 
3909 /** ixgbe_mng_present - returns true when management capability is present
3910  * @hw: pointer to hardware structure
3911  **/
3912 bool ixgbe_mng_present(struct ixgbe_hw *hw)
3913 {
3914 	u32 fwsm;
3915 
3916 	if (hw->mac.type < ixgbe_mac_82599EB)
3917 		return false;
3918 
3919 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
3920 	fwsm &= IXGBE_FWSM_MODE_MASK;
3921 	return fwsm == IXGBE_FWSM_FW_MODE_PT;
3922 }
3923