xref: /linux/drivers/net/ethernet/intel/ixgbe/ixgbe_common.c (revision c895f6f703ad7dd2f99e751d9884b0aa5d0eea25)
1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2016 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
33 
34 #include "ixgbe.h"
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 					u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 					     u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 					     u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 						 u16 offset);
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59 
60 /* Base table for registers values that change by MAC */
61 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
62 	IXGBE_MVALS_INIT(8259X)
63 };
64 
65 /**
66  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
67  *  control
68  *  @hw: pointer to hardware structure
69  *
70  *  There are several phys that do not support autoneg flow control. This
71  *  function check the device id to see if the associated phy supports
72  *  autoneg flow control.
73  **/
74 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
75 {
76 	bool supported = false;
77 	ixgbe_link_speed speed;
78 	bool link_up;
79 
80 	switch (hw->phy.media_type) {
81 	case ixgbe_media_type_fiber:
82 		/* flow control autoneg black list */
83 		switch (hw->device_id) {
84 		case IXGBE_DEV_ID_X550EM_A_SFP:
85 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
86 			supported = false;
87 			break;
88 		default:
89 			hw->mac.ops.check_link(hw, &speed, &link_up, false);
90 			/* if link is down, assume supported */
91 			if (link_up)
92 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
93 				true : false;
94 			else
95 				supported = true;
96 		}
97 
98 		break;
99 	case ixgbe_media_type_backplane:
100 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
101 			supported = false;
102 		else
103 			supported = true;
104 		break;
105 	case ixgbe_media_type_copper:
106 		/* only some copper devices support flow control autoneg */
107 		switch (hw->device_id) {
108 		case IXGBE_DEV_ID_82599_T3_LOM:
109 		case IXGBE_DEV_ID_X540T:
110 		case IXGBE_DEV_ID_X540T1:
111 		case IXGBE_DEV_ID_X550T:
112 		case IXGBE_DEV_ID_X550T1:
113 		case IXGBE_DEV_ID_X550EM_X_10G_T:
114 		case IXGBE_DEV_ID_X550EM_A_10G_T:
115 		case IXGBE_DEV_ID_X550EM_A_1G_T:
116 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
117 			supported = true;
118 			break;
119 		default:
120 			break;
121 		}
122 	default:
123 		break;
124 	}
125 
126 	if (!supported)
127 		hw_dbg(hw, "Device %x does not support flow control autoneg\n",
128 		       hw->device_id);
129 
130 	return supported;
131 }
132 
133 /**
134  *  ixgbe_setup_fc_generic - Set up flow control
135  *  @hw: pointer to hardware structure
136  *
137  *  Called at init time to set up flow control.
138  **/
139 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
140 {
141 	s32 ret_val = 0;
142 	u32 reg = 0, reg_bp = 0;
143 	u16 reg_cu = 0;
144 	bool locked = false;
145 
146 	/*
147 	 * Validate the requested mode.  Strict IEEE mode does not allow
148 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
149 	 */
150 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
151 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
152 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
153 	}
154 
155 	/*
156 	 * 10gig parts do not have a word in the EEPROM to determine the
157 	 * default flow control setting, so we explicitly set it to full.
158 	 */
159 	if (hw->fc.requested_mode == ixgbe_fc_default)
160 		hw->fc.requested_mode = ixgbe_fc_full;
161 
162 	/*
163 	 * Set up the 1G and 10G flow control advertisement registers so the
164 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
165 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
166 	 */
167 	switch (hw->phy.media_type) {
168 	case ixgbe_media_type_backplane:
169 		/* some MAC's need RMW protection on AUTOC */
170 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
171 		if (ret_val)
172 			return ret_val;
173 
174 		/* fall through - only backplane uses autoc */
175 	case ixgbe_media_type_fiber:
176 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
177 
178 		break;
179 	case ixgbe_media_type_copper:
180 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
181 					MDIO_MMD_AN, &reg_cu);
182 		break;
183 	default:
184 		break;
185 	}
186 
187 	/*
188 	 * The possible values of fc.requested_mode are:
189 	 * 0: Flow control is completely disabled
190 	 * 1: Rx flow control is enabled (we can receive pause frames,
191 	 *    but not send pause frames).
192 	 * 2: Tx flow control is enabled (we can send pause frames but
193 	 *    we do not support receiving pause frames).
194 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
195 	 * other: Invalid.
196 	 */
197 	switch (hw->fc.requested_mode) {
198 	case ixgbe_fc_none:
199 		/* Flow control completely disabled by software override. */
200 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
201 		if (hw->phy.media_type == ixgbe_media_type_backplane)
202 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
203 				    IXGBE_AUTOC_ASM_PAUSE);
204 		else if (hw->phy.media_type == ixgbe_media_type_copper)
205 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
206 		break;
207 	case ixgbe_fc_tx_pause:
208 		/*
209 		 * Tx Flow control is enabled, and Rx Flow control is
210 		 * disabled by software override.
211 		 */
212 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
213 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
214 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
215 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
216 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
217 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
218 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
219 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
220 		}
221 		break;
222 	case ixgbe_fc_rx_pause:
223 		/*
224 		 * Rx Flow control is enabled and Tx Flow control is
225 		 * disabled by software override. Since there really
226 		 * isn't a way to advertise that we are capable of RX
227 		 * Pause ONLY, we will advertise that we support both
228 		 * symmetric and asymmetric Rx PAUSE, as such we fall
229 		 * through to the fc_full statement.  Later, we will
230 		 * disable the adapter's ability to send PAUSE frames.
231 		 */
232 	case ixgbe_fc_full:
233 		/* Flow control (both Rx and Tx) is enabled by SW override. */
234 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
235 		if (hw->phy.media_type == ixgbe_media_type_backplane)
236 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
237 				  IXGBE_AUTOC_ASM_PAUSE;
238 		else if (hw->phy.media_type == ixgbe_media_type_copper)
239 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
240 		break;
241 	default:
242 		hw_dbg(hw, "Flow control param set incorrectly\n");
243 		return IXGBE_ERR_CONFIG;
244 	}
245 
246 	if (hw->mac.type != ixgbe_mac_X540) {
247 		/*
248 		 * Enable auto-negotiation between the MAC & PHY;
249 		 * the MAC will advertise clause 37 flow control.
250 		 */
251 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
252 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
253 
254 		/* Disable AN timeout */
255 		if (hw->fc.strict_ieee)
256 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
257 
258 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
259 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
260 	}
261 
262 	/*
263 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
264 	 * and copper. There is no need to set the PCS1GCTL register.
265 	 *
266 	 */
267 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
268 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
269 		 * LESM is on, likewise reset_pipeline requries the lock as
270 		 * it also writes AUTOC.
271 		 */
272 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
273 		if (ret_val)
274 			return ret_val;
275 
276 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
277 		   ixgbe_device_supports_autoneg_fc(hw)) {
278 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
279 				      MDIO_MMD_AN, reg_cu);
280 	}
281 
282 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
283 	return ret_val;
284 }
285 
286 /**
287  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
288  *  @hw: pointer to hardware structure
289  *
290  *  Starts the hardware by filling the bus info structure and media type, clears
291  *  all on chip counters, initializes receive address registers, multicast
292  *  table, VLAN filter table, calls routine to set up link and flow control
293  *  settings, and leaves transmit and receive units disabled and uninitialized
294  **/
295 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
296 {
297 	s32 ret_val;
298 	u32 ctrl_ext;
299 	u16 device_caps;
300 
301 	/* Set the media type */
302 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
303 
304 	/* Identify the PHY */
305 	hw->phy.ops.identify(hw);
306 
307 	/* Clear the VLAN filter table */
308 	hw->mac.ops.clear_vfta(hw);
309 
310 	/* Clear statistics registers */
311 	hw->mac.ops.clear_hw_cntrs(hw);
312 
313 	/* Set No Snoop Disable */
314 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
315 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
316 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
317 	IXGBE_WRITE_FLUSH(hw);
318 
319 	/* Setup flow control if method for doing so */
320 	if (hw->mac.ops.setup_fc) {
321 		ret_val = hw->mac.ops.setup_fc(hw);
322 		if (ret_val)
323 			return ret_val;
324 	}
325 
326 	/* Cashe bit indicating need for crosstalk fix */
327 	switch (hw->mac.type) {
328 	case ixgbe_mac_82599EB:
329 	case ixgbe_mac_X550EM_x:
330 	case ixgbe_mac_x550em_a:
331 		hw->mac.ops.get_device_caps(hw, &device_caps);
332 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
333 			hw->need_crosstalk_fix = false;
334 		else
335 			hw->need_crosstalk_fix = true;
336 		break;
337 	default:
338 		hw->need_crosstalk_fix = false;
339 		break;
340 	}
341 
342 	/* Clear adapter stopped flag */
343 	hw->adapter_stopped = false;
344 
345 	return 0;
346 }
347 
348 /**
349  *  ixgbe_start_hw_gen2 - Init sequence for common device family
350  *  @hw: pointer to hw structure
351  *
352  * Performs the init sequence common to the second generation
353  * of 10 GbE devices.
354  * Devices in the second generation:
355  *     82599
356  *     X540
357  **/
358 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
359 {
360 	u32 i;
361 
362 	/* Clear the rate limiters */
363 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
364 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
365 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
366 	}
367 	IXGBE_WRITE_FLUSH(hw);
368 
369 	return 0;
370 }
371 
372 /**
373  *  ixgbe_init_hw_generic - Generic hardware initialization
374  *  @hw: pointer to hardware structure
375  *
376  *  Initialize the hardware by resetting the hardware, filling the bus info
377  *  structure and media type, clears all on chip counters, initializes receive
378  *  address registers, multicast table, VLAN filter table, calls routine to set
379  *  up link and flow control settings, and leaves transmit and receive units
380  *  disabled and uninitialized
381  **/
382 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
383 {
384 	s32 status;
385 
386 	/* Reset the hardware */
387 	status = hw->mac.ops.reset_hw(hw);
388 
389 	if (status == 0) {
390 		/* Start the HW */
391 		status = hw->mac.ops.start_hw(hw);
392 	}
393 
394 	/* Initialize the LED link active for LED blink support */
395 	if (hw->mac.ops.init_led_link_act)
396 		hw->mac.ops.init_led_link_act(hw);
397 
398 	return status;
399 }
400 
401 /**
402  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
403  *  @hw: pointer to hardware structure
404  *
405  *  Clears all hardware statistics counters by reading them from the hardware
406  *  Statistics counters are clear on read.
407  **/
408 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
409 {
410 	u16 i = 0;
411 
412 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
413 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
414 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
415 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
416 	for (i = 0; i < 8; i++)
417 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
418 
419 	IXGBE_READ_REG(hw, IXGBE_MLFC);
420 	IXGBE_READ_REG(hw, IXGBE_MRFC);
421 	IXGBE_READ_REG(hw, IXGBE_RLEC);
422 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
423 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
424 	if (hw->mac.type >= ixgbe_mac_82599EB) {
425 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
426 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
427 	} else {
428 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
429 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
430 	}
431 
432 	for (i = 0; i < 8; i++) {
433 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
434 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
435 		if (hw->mac.type >= ixgbe_mac_82599EB) {
436 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
437 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
438 		} else {
439 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
440 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
441 		}
442 	}
443 	if (hw->mac.type >= ixgbe_mac_82599EB)
444 		for (i = 0; i < 8; i++)
445 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
446 	IXGBE_READ_REG(hw, IXGBE_PRC64);
447 	IXGBE_READ_REG(hw, IXGBE_PRC127);
448 	IXGBE_READ_REG(hw, IXGBE_PRC255);
449 	IXGBE_READ_REG(hw, IXGBE_PRC511);
450 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
451 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
452 	IXGBE_READ_REG(hw, IXGBE_GPRC);
453 	IXGBE_READ_REG(hw, IXGBE_BPRC);
454 	IXGBE_READ_REG(hw, IXGBE_MPRC);
455 	IXGBE_READ_REG(hw, IXGBE_GPTC);
456 	IXGBE_READ_REG(hw, IXGBE_GORCL);
457 	IXGBE_READ_REG(hw, IXGBE_GORCH);
458 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
459 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
460 	if (hw->mac.type == ixgbe_mac_82598EB)
461 		for (i = 0; i < 8; i++)
462 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
463 	IXGBE_READ_REG(hw, IXGBE_RUC);
464 	IXGBE_READ_REG(hw, IXGBE_RFC);
465 	IXGBE_READ_REG(hw, IXGBE_ROC);
466 	IXGBE_READ_REG(hw, IXGBE_RJC);
467 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
468 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
469 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
470 	IXGBE_READ_REG(hw, IXGBE_TORL);
471 	IXGBE_READ_REG(hw, IXGBE_TORH);
472 	IXGBE_READ_REG(hw, IXGBE_TPR);
473 	IXGBE_READ_REG(hw, IXGBE_TPT);
474 	IXGBE_READ_REG(hw, IXGBE_PTC64);
475 	IXGBE_READ_REG(hw, IXGBE_PTC127);
476 	IXGBE_READ_REG(hw, IXGBE_PTC255);
477 	IXGBE_READ_REG(hw, IXGBE_PTC511);
478 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
479 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
480 	IXGBE_READ_REG(hw, IXGBE_MPTC);
481 	IXGBE_READ_REG(hw, IXGBE_BPTC);
482 	for (i = 0; i < 16; i++) {
483 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
484 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
485 		if (hw->mac.type >= ixgbe_mac_82599EB) {
486 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
487 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
488 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
489 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
490 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
491 		} else {
492 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
493 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
494 		}
495 	}
496 
497 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
498 		if (hw->phy.id == 0)
499 			hw->phy.ops.identify(hw);
500 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
501 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
502 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
503 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
504 	}
505 
506 	return 0;
507 }
508 
509 /**
510  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
511  *  @hw: pointer to hardware structure
512  *  @pba_num: stores the part number string from the EEPROM
513  *  @pba_num_size: part number string buffer length
514  *
515  *  Reads the part number string from the EEPROM.
516  **/
517 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
518 				  u32 pba_num_size)
519 {
520 	s32 ret_val;
521 	u16 data;
522 	u16 pba_ptr;
523 	u16 offset;
524 	u16 length;
525 
526 	if (pba_num == NULL) {
527 		hw_dbg(hw, "PBA string buffer was null\n");
528 		return IXGBE_ERR_INVALID_ARGUMENT;
529 	}
530 
531 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
532 	if (ret_val) {
533 		hw_dbg(hw, "NVM Read Error\n");
534 		return ret_val;
535 	}
536 
537 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
538 	if (ret_val) {
539 		hw_dbg(hw, "NVM Read Error\n");
540 		return ret_val;
541 	}
542 
543 	/*
544 	 * if data is not ptr guard the PBA must be in legacy format which
545 	 * means pba_ptr is actually our second data word for the PBA number
546 	 * and we can decode it into an ascii string
547 	 */
548 	if (data != IXGBE_PBANUM_PTR_GUARD) {
549 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
550 
551 		/* we will need 11 characters to store the PBA */
552 		if (pba_num_size < 11) {
553 			hw_dbg(hw, "PBA string buffer too small\n");
554 			return IXGBE_ERR_NO_SPACE;
555 		}
556 
557 		/* extract hex string from data and pba_ptr */
558 		pba_num[0] = (data >> 12) & 0xF;
559 		pba_num[1] = (data >> 8) & 0xF;
560 		pba_num[2] = (data >> 4) & 0xF;
561 		pba_num[3] = data & 0xF;
562 		pba_num[4] = (pba_ptr >> 12) & 0xF;
563 		pba_num[5] = (pba_ptr >> 8) & 0xF;
564 		pba_num[6] = '-';
565 		pba_num[7] = 0;
566 		pba_num[8] = (pba_ptr >> 4) & 0xF;
567 		pba_num[9] = pba_ptr & 0xF;
568 
569 		/* put a null character on the end of our string */
570 		pba_num[10] = '\0';
571 
572 		/* switch all the data but the '-' to hex char */
573 		for (offset = 0; offset < 10; offset++) {
574 			if (pba_num[offset] < 0xA)
575 				pba_num[offset] += '0';
576 			else if (pba_num[offset] < 0x10)
577 				pba_num[offset] += 'A' - 0xA;
578 		}
579 
580 		return 0;
581 	}
582 
583 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
584 	if (ret_val) {
585 		hw_dbg(hw, "NVM Read Error\n");
586 		return ret_val;
587 	}
588 
589 	if (length == 0xFFFF || length == 0) {
590 		hw_dbg(hw, "NVM PBA number section invalid length\n");
591 		return IXGBE_ERR_PBA_SECTION;
592 	}
593 
594 	/* check if pba_num buffer is big enough */
595 	if (pba_num_size  < (((u32)length * 2) - 1)) {
596 		hw_dbg(hw, "PBA string buffer too small\n");
597 		return IXGBE_ERR_NO_SPACE;
598 	}
599 
600 	/* trim pba length from start of string */
601 	pba_ptr++;
602 	length--;
603 
604 	for (offset = 0; offset < length; offset++) {
605 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
606 		if (ret_val) {
607 			hw_dbg(hw, "NVM Read Error\n");
608 			return ret_val;
609 		}
610 		pba_num[offset * 2] = (u8)(data >> 8);
611 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
612 	}
613 	pba_num[offset * 2] = '\0';
614 
615 	return 0;
616 }
617 
618 /**
619  *  ixgbe_get_mac_addr_generic - Generic get MAC address
620  *  @hw: pointer to hardware structure
621  *  @mac_addr: Adapter MAC address
622  *
623  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
624  *  A reset of the adapter must be performed prior to calling this function
625  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
626  **/
627 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
628 {
629 	u32 rar_high;
630 	u32 rar_low;
631 	u16 i;
632 
633 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
634 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
635 
636 	for (i = 0; i < 4; i++)
637 		mac_addr[i] = (u8)(rar_low >> (i*8));
638 
639 	for (i = 0; i < 2; i++)
640 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
641 
642 	return 0;
643 }
644 
645 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
646 {
647 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
648 	case IXGBE_PCI_LINK_WIDTH_1:
649 		return ixgbe_bus_width_pcie_x1;
650 	case IXGBE_PCI_LINK_WIDTH_2:
651 		return ixgbe_bus_width_pcie_x2;
652 	case IXGBE_PCI_LINK_WIDTH_4:
653 		return ixgbe_bus_width_pcie_x4;
654 	case IXGBE_PCI_LINK_WIDTH_8:
655 		return ixgbe_bus_width_pcie_x8;
656 	default:
657 		return ixgbe_bus_width_unknown;
658 	}
659 }
660 
661 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
662 {
663 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
664 	case IXGBE_PCI_LINK_SPEED_2500:
665 		return ixgbe_bus_speed_2500;
666 	case IXGBE_PCI_LINK_SPEED_5000:
667 		return ixgbe_bus_speed_5000;
668 	case IXGBE_PCI_LINK_SPEED_8000:
669 		return ixgbe_bus_speed_8000;
670 	default:
671 		return ixgbe_bus_speed_unknown;
672 	}
673 }
674 
675 /**
676  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
677  *  @hw: pointer to hardware structure
678  *
679  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
680  **/
681 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
682 {
683 	u16 link_status;
684 
685 	hw->bus.type = ixgbe_bus_type_pci_express;
686 
687 	/* Get the negotiated link width and speed from PCI config space */
688 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
689 
690 	hw->bus.width = ixgbe_convert_bus_width(link_status);
691 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
692 
693 	hw->mac.ops.set_lan_id(hw);
694 
695 	return 0;
696 }
697 
698 /**
699  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
700  *  @hw: pointer to the HW structure
701  *
702  *  Determines the LAN function id by reading memory-mapped registers
703  *  and swaps the port value if requested.
704  **/
705 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
706 {
707 	struct ixgbe_bus_info *bus = &hw->bus;
708 	u16 ee_ctrl_4;
709 	u32 reg;
710 
711 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
712 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
713 	bus->lan_id = bus->func;
714 
715 	/* check for a port swap */
716 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
717 	if (reg & IXGBE_FACTPS_LFS)
718 		bus->func ^= 0x1;
719 
720 	/* Get MAC instance from EEPROM for configuring CS4227 */
721 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
722 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
723 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
724 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
725 	}
726 }
727 
728 /**
729  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
730  *  @hw: pointer to hardware structure
731  *
732  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
733  *  disables transmit and receive units. The adapter_stopped flag is used by
734  *  the shared code and drivers to determine if the adapter is in a stopped
735  *  state and should not touch the hardware.
736  **/
737 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
738 {
739 	u32 reg_val;
740 	u16 i;
741 
742 	/*
743 	 * Set the adapter_stopped flag so other driver functions stop touching
744 	 * the hardware
745 	 */
746 	hw->adapter_stopped = true;
747 
748 	/* Disable the receive unit */
749 	hw->mac.ops.disable_rx(hw);
750 
751 	/* Clear interrupt mask to stop interrupts from being generated */
752 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
753 
754 	/* Clear any pending interrupts, flush previous writes */
755 	IXGBE_READ_REG(hw, IXGBE_EICR);
756 
757 	/* Disable the transmit unit.  Each queue must be disabled. */
758 	for (i = 0; i < hw->mac.max_tx_queues; i++)
759 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
760 
761 	/* Disable the receive unit by stopping each queue */
762 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
763 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
764 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
765 		reg_val |= IXGBE_RXDCTL_SWFLSH;
766 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
767 	}
768 
769 	/* flush all queues disables */
770 	IXGBE_WRITE_FLUSH(hw);
771 	usleep_range(1000, 2000);
772 
773 	/*
774 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
775 	 * access and verify no pending requests
776 	 */
777 	return ixgbe_disable_pcie_master(hw);
778 }
779 
780 /**
781  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
782  *  @hw: pointer to hardware structure
783  *
784  *  Store the index for the link active LED. This will be used to support
785  *  blinking the LED.
786  **/
787 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
788 {
789 	struct ixgbe_mac_info *mac = &hw->mac;
790 	u32 led_reg, led_mode;
791 	u16 i;
792 
793 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
794 
795 	/* Get LED link active from the LEDCTL register */
796 	for (i = 0; i < 4; i++) {
797 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
798 
799 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
800 		    IXGBE_LED_LINK_ACTIVE) {
801 			mac->led_link_act = i;
802 			return 0;
803 		}
804 	}
805 
806 	/* If LEDCTL register does not have the LED link active set, then use
807 	 * known MAC defaults.
808 	 */
809 	switch (hw->mac.type) {
810 	case ixgbe_mac_x550em_a:
811 		mac->led_link_act = 0;
812 		break;
813 	case ixgbe_mac_X550EM_x:
814 		mac->led_link_act = 1;
815 		break;
816 	default:
817 		mac->led_link_act = 2;
818 	}
819 
820 	return 0;
821 }
822 
823 /**
824  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
825  *  @hw: pointer to hardware structure
826  *  @index: led number to turn on
827  **/
828 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
829 {
830 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
831 
832 	if (index > 3)
833 		return IXGBE_ERR_PARAM;
834 
835 	/* To turn on the LED, set mode to ON. */
836 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
837 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
838 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
839 	IXGBE_WRITE_FLUSH(hw);
840 
841 	return 0;
842 }
843 
844 /**
845  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
846  *  @hw: pointer to hardware structure
847  *  @index: led number to turn off
848  **/
849 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
850 {
851 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
852 
853 	if (index > 3)
854 		return IXGBE_ERR_PARAM;
855 
856 	/* To turn off the LED, set mode to OFF. */
857 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
858 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
859 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
860 	IXGBE_WRITE_FLUSH(hw);
861 
862 	return 0;
863 }
864 
865 /**
866  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
867  *  @hw: pointer to hardware structure
868  *
869  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
870  *  ixgbe_hw struct in order to set up EEPROM access.
871  **/
872 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
873 {
874 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
875 	u32 eec;
876 	u16 eeprom_size;
877 
878 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
879 		eeprom->type = ixgbe_eeprom_none;
880 		/* Set default semaphore delay to 10ms which is a well
881 		 * tested value */
882 		eeprom->semaphore_delay = 10;
883 		/* Clear EEPROM page size, it will be initialized as needed */
884 		eeprom->word_page_size = 0;
885 
886 		/*
887 		 * Check for EEPROM present first.
888 		 * If not present leave as none
889 		 */
890 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
891 		if (eec & IXGBE_EEC_PRES) {
892 			eeprom->type = ixgbe_eeprom_spi;
893 
894 			/*
895 			 * SPI EEPROM is assumed here.  This code would need to
896 			 * change if a future EEPROM is not SPI.
897 			 */
898 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
899 					    IXGBE_EEC_SIZE_SHIFT);
900 			eeprom->word_size = BIT(eeprom_size +
901 						 IXGBE_EEPROM_WORD_SIZE_SHIFT);
902 		}
903 
904 		if (eec & IXGBE_EEC_ADDR_SIZE)
905 			eeprom->address_bits = 16;
906 		else
907 			eeprom->address_bits = 8;
908 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
909 		       eeprom->type, eeprom->word_size, eeprom->address_bits);
910 	}
911 
912 	return 0;
913 }
914 
915 /**
916  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
917  *  @hw: pointer to hardware structure
918  *  @offset: offset within the EEPROM to write
919  *  @words: number of words
920  *  @data: 16 bit word(s) to write to EEPROM
921  *
922  *  Reads 16 bit word(s) from EEPROM through bit-bang method
923  **/
924 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
925 					       u16 words, u16 *data)
926 {
927 	s32 status;
928 	u16 i, count;
929 
930 	hw->eeprom.ops.init_params(hw);
931 
932 	if (words == 0)
933 		return IXGBE_ERR_INVALID_ARGUMENT;
934 
935 	if (offset + words > hw->eeprom.word_size)
936 		return IXGBE_ERR_EEPROM;
937 
938 	/*
939 	 * The EEPROM page size cannot be queried from the chip. We do lazy
940 	 * initialization. It is worth to do that when we write large buffer.
941 	 */
942 	if ((hw->eeprom.word_page_size == 0) &&
943 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
944 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
945 
946 	/*
947 	 * We cannot hold synchronization semaphores for too long
948 	 * to avoid other entity starvation. However it is more efficient
949 	 * to read in bursts than synchronizing access for each word.
950 	 */
951 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
952 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
953 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
954 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
955 							    count, &data[i]);
956 
957 		if (status != 0)
958 			break;
959 	}
960 
961 	return status;
962 }
963 
964 /**
965  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
966  *  @hw: pointer to hardware structure
967  *  @offset: offset within the EEPROM to be written to
968  *  @words: number of word(s)
969  *  @data: 16 bit word(s) to be written to the EEPROM
970  *
971  *  If ixgbe_eeprom_update_checksum is not called after this function, the
972  *  EEPROM will most likely contain an invalid checksum.
973  **/
974 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
975 					      u16 words, u16 *data)
976 {
977 	s32 status;
978 	u16 word;
979 	u16 page_size;
980 	u16 i;
981 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
982 
983 	/* Prepare the EEPROM for writing  */
984 	status = ixgbe_acquire_eeprom(hw);
985 	if (status)
986 		return status;
987 
988 	if (ixgbe_ready_eeprom(hw) != 0) {
989 		ixgbe_release_eeprom(hw);
990 		return IXGBE_ERR_EEPROM;
991 	}
992 
993 	for (i = 0; i < words; i++) {
994 		ixgbe_standby_eeprom(hw);
995 
996 		/* Send the WRITE ENABLE command (8 bit opcode) */
997 		ixgbe_shift_out_eeprom_bits(hw,
998 					    IXGBE_EEPROM_WREN_OPCODE_SPI,
999 					    IXGBE_EEPROM_OPCODE_BITS);
1000 
1001 		ixgbe_standby_eeprom(hw);
1002 
1003 		/* Some SPI eeproms use the 8th address bit embedded
1004 		 * in the opcode
1005 		 */
1006 		if ((hw->eeprom.address_bits == 8) &&
1007 		    ((offset + i) >= 128))
1008 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1009 
1010 		/* Send the Write command (8-bit opcode + addr) */
1011 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1012 					    IXGBE_EEPROM_OPCODE_BITS);
1013 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1014 					    hw->eeprom.address_bits);
1015 
1016 		page_size = hw->eeprom.word_page_size;
1017 
1018 		/* Send the data in burst via SPI */
1019 		do {
1020 			word = data[i];
1021 			word = (word >> 8) | (word << 8);
1022 			ixgbe_shift_out_eeprom_bits(hw, word, 16);
1023 
1024 			if (page_size == 0)
1025 				break;
1026 
1027 			/* do not wrap around page */
1028 			if (((offset + i) & (page_size - 1)) ==
1029 			    (page_size - 1))
1030 				break;
1031 		} while (++i < words);
1032 
1033 		ixgbe_standby_eeprom(hw);
1034 		usleep_range(10000, 20000);
1035 	}
1036 	/* Done with writing - release the EEPROM */
1037 	ixgbe_release_eeprom(hw);
1038 
1039 	return 0;
1040 }
1041 
1042 /**
1043  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1044  *  @hw: pointer to hardware structure
1045  *  @offset: offset within the EEPROM to be written to
1046  *  @data: 16 bit word to be written to the EEPROM
1047  *
1048  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1049  *  EEPROM will most likely contain an invalid checksum.
1050  **/
1051 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1052 {
1053 	hw->eeprom.ops.init_params(hw);
1054 
1055 	if (offset >= hw->eeprom.word_size)
1056 		return IXGBE_ERR_EEPROM;
1057 
1058 	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1059 }
1060 
1061 /**
1062  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1063  *  @hw: pointer to hardware structure
1064  *  @offset: offset within the EEPROM to be read
1065  *  @words: number of word(s)
1066  *  @data: read 16 bit words(s) from EEPROM
1067  *
1068  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1069  **/
1070 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1071 					      u16 words, u16 *data)
1072 {
1073 	s32 status;
1074 	u16 i, count;
1075 
1076 	hw->eeprom.ops.init_params(hw);
1077 
1078 	if (words == 0)
1079 		return IXGBE_ERR_INVALID_ARGUMENT;
1080 
1081 	if (offset + words > hw->eeprom.word_size)
1082 		return IXGBE_ERR_EEPROM;
1083 
1084 	/*
1085 	 * We cannot hold synchronization semaphores for too long
1086 	 * to avoid other entity starvation. However it is more efficient
1087 	 * to read in bursts than synchronizing access for each word.
1088 	 */
1089 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1090 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1091 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1092 
1093 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1094 							   count, &data[i]);
1095 
1096 		if (status)
1097 			return status;
1098 	}
1099 
1100 	return 0;
1101 }
1102 
1103 /**
1104  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1105  *  @hw: pointer to hardware structure
1106  *  @offset: offset within the EEPROM to be read
1107  *  @words: number of word(s)
1108  *  @data: read 16 bit word(s) from EEPROM
1109  *
1110  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1111  **/
1112 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1113 					     u16 words, u16 *data)
1114 {
1115 	s32 status;
1116 	u16 word_in;
1117 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1118 	u16 i;
1119 
1120 	/* Prepare the EEPROM for reading  */
1121 	status = ixgbe_acquire_eeprom(hw);
1122 	if (status)
1123 		return status;
1124 
1125 	if (ixgbe_ready_eeprom(hw) != 0) {
1126 		ixgbe_release_eeprom(hw);
1127 		return IXGBE_ERR_EEPROM;
1128 	}
1129 
1130 	for (i = 0; i < words; i++) {
1131 		ixgbe_standby_eeprom(hw);
1132 		/* Some SPI eeproms use the 8th address bit embedded
1133 		 * in the opcode
1134 		 */
1135 		if ((hw->eeprom.address_bits == 8) &&
1136 		    ((offset + i) >= 128))
1137 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1138 
1139 		/* Send the READ command (opcode + addr) */
1140 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1141 					    IXGBE_EEPROM_OPCODE_BITS);
1142 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1143 					    hw->eeprom.address_bits);
1144 
1145 		/* Read the data. */
1146 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1147 		data[i] = (word_in >> 8) | (word_in << 8);
1148 	}
1149 
1150 	/* End this read operation */
1151 	ixgbe_release_eeprom(hw);
1152 
1153 	return 0;
1154 }
1155 
1156 /**
1157  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1158  *  @hw: pointer to hardware structure
1159  *  @offset: offset within the EEPROM to be read
1160  *  @data: read 16 bit value from EEPROM
1161  *
1162  *  Reads 16 bit value from EEPROM through bit-bang method
1163  **/
1164 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1165 				       u16 *data)
1166 {
1167 	hw->eeprom.ops.init_params(hw);
1168 
1169 	if (offset >= hw->eeprom.word_size)
1170 		return IXGBE_ERR_EEPROM;
1171 
1172 	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1173 }
1174 
1175 /**
1176  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1177  *  @hw: pointer to hardware structure
1178  *  @offset: offset of word in the EEPROM to read
1179  *  @words: number of word(s)
1180  *  @data: 16 bit word(s) from the EEPROM
1181  *
1182  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1183  **/
1184 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1185 				   u16 words, u16 *data)
1186 {
1187 	u32 eerd;
1188 	s32 status;
1189 	u32 i;
1190 
1191 	hw->eeprom.ops.init_params(hw);
1192 
1193 	if (words == 0)
1194 		return IXGBE_ERR_INVALID_ARGUMENT;
1195 
1196 	if (offset >= hw->eeprom.word_size)
1197 		return IXGBE_ERR_EEPROM;
1198 
1199 	for (i = 0; i < words; i++) {
1200 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1201 		       IXGBE_EEPROM_RW_REG_START;
1202 
1203 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1204 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1205 
1206 		if (status == 0) {
1207 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1208 				   IXGBE_EEPROM_RW_REG_DATA);
1209 		} else {
1210 			hw_dbg(hw, "Eeprom read timed out\n");
1211 			return status;
1212 		}
1213 	}
1214 
1215 	return 0;
1216 }
1217 
1218 /**
1219  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1220  *  @hw: pointer to hardware structure
1221  *  @offset: offset within the EEPROM to be used as a scratch pad
1222  *
1223  *  Discover EEPROM page size by writing marching data at given offset.
1224  *  This function is called only when we are writing a new large buffer
1225  *  at given offset so the data would be overwritten anyway.
1226  **/
1227 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1228 						 u16 offset)
1229 {
1230 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1231 	s32 status;
1232 	u16 i;
1233 
1234 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1235 		data[i] = i;
1236 
1237 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1238 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1239 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1240 	hw->eeprom.word_page_size = 0;
1241 	if (status)
1242 		return status;
1243 
1244 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1245 	if (status)
1246 		return status;
1247 
1248 	/*
1249 	 * When writing in burst more than the actual page size
1250 	 * EEPROM address wraps around current page.
1251 	 */
1252 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1253 
1254 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1255 	       hw->eeprom.word_page_size);
1256 	return 0;
1257 }
1258 
1259 /**
1260  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1261  *  @hw: pointer to hardware structure
1262  *  @offset: offset of  word in the EEPROM to read
1263  *  @data: word read from the EEPROM
1264  *
1265  *  Reads a 16 bit word from the EEPROM using the EERD register.
1266  **/
1267 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1268 {
1269 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1270 }
1271 
1272 /**
1273  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1274  *  @hw: pointer to hardware structure
1275  *  @offset: offset of  word in the EEPROM to write
1276  *  @words: number of words
1277  *  @data: word(s) write to the EEPROM
1278  *
1279  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1280  **/
1281 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1282 				    u16 words, u16 *data)
1283 {
1284 	u32 eewr;
1285 	s32 status;
1286 	u16 i;
1287 
1288 	hw->eeprom.ops.init_params(hw);
1289 
1290 	if (words == 0)
1291 		return IXGBE_ERR_INVALID_ARGUMENT;
1292 
1293 	if (offset >= hw->eeprom.word_size)
1294 		return IXGBE_ERR_EEPROM;
1295 
1296 	for (i = 0; i < words; i++) {
1297 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1298 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1299 		       IXGBE_EEPROM_RW_REG_START;
1300 
1301 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1302 		if (status) {
1303 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1304 			return status;
1305 		}
1306 
1307 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1308 
1309 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1310 		if (status) {
1311 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1312 			return status;
1313 		}
1314 	}
1315 
1316 	return 0;
1317 }
1318 
1319 /**
1320  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1321  *  @hw: pointer to hardware structure
1322  *  @offset: offset of  word in the EEPROM to write
1323  *  @data: word write to the EEPROM
1324  *
1325  *  Write a 16 bit word to the EEPROM using the EEWR register.
1326  **/
1327 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1328 {
1329 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1330 }
1331 
1332 /**
1333  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1334  *  @hw: pointer to hardware structure
1335  *  @ee_reg: EEPROM flag for polling
1336  *
1337  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1338  *  read or write is done respectively.
1339  **/
1340 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1341 {
1342 	u32 i;
1343 	u32 reg;
1344 
1345 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1346 		if (ee_reg == IXGBE_NVM_POLL_READ)
1347 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1348 		else
1349 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1350 
1351 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1352 			return 0;
1353 		}
1354 		udelay(5);
1355 	}
1356 	return IXGBE_ERR_EEPROM;
1357 }
1358 
1359 /**
1360  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1361  *  @hw: pointer to hardware structure
1362  *
1363  *  Prepares EEPROM for access using bit-bang method. This function should
1364  *  be called before issuing a command to the EEPROM.
1365  **/
1366 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1367 {
1368 	u32 eec;
1369 	u32 i;
1370 
1371 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1372 		return IXGBE_ERR_SWFW_SYNC;
1373 
1374 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1375 
1376 	/* Request EEPROM Access */
1377 	eec |= IXGBE_EEC_REQ;
1378 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1379 
1380 	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1381 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1382 		if (eec & IXGBE_EEC_GNT)
1383 			break;
1384 		udelay(5);
1385 	}
1386 
1387 	/* Release if grant not acquired */
1388 	if (!(eec & IXGBE_EEC_GNT)) {
1389 		eec &= ~IXGBE_EEC_REQ;
1390 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1391 		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1392 
1393 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1394 		return IXGBE_ERR_EEPROM;
1395 	}
1396 
1397 	/* Setup EEPROM for Read/Write */
1398 	/* Clear CS and SK */
1399 	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1400 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1401 	IXGBE_WRITE_FLUSH(hw);
1402 	udelay(1);
1403 	return 0;
1404 }
1405 
1406 /**
1407  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1408  *  @hw: pointer to hardware structure
1409  *
1410  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1411  **/
1412 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1413 {
1414 	u32 timeout = 2000;
1415 	u32 i;
1416 	u32 swsm;
1417 
1418 	/* Get SMBI software semaphore between device drivers first */
1419 	for (i = 0; i < timeout; i++) {
1420 		/*
1421 		 * If the SMBI bit is 0 when we read it, then the bit will be
1422 		 * set and we have the semaphore
1423 		 */
1424 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1425 		if (!(swsm & IXGBE_SWSM_SMBI))
1426 			break;
1427 		usleep_range(50, 100);
1428 	}
1429 
1430 	if (i == timeout) {
1431 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1432 		/* this release is particularly important because our attempts
1433 		 * above to get the semaphore may have succeeded, and if there
1434 		 * was a timeout, we should unconditionally clear the semaphore
1435 		 * bits to free the driver to make progress
1436 		 */
1437 		ixgbe_release_eeprom_semaphore(hw);
1438 
1439 		usleep_range(50, 100);
1440 		/* one last try
1441 		 * If the SMBI bit is 0 when we read it, then the bit will be
1442 		 * set and we have the semaphore
1443 		 */
1444 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1445 		if (swsm & IXGBE_SWSM_SMBI) {
1446 			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1447 			return IXGBE_ERR_EEPROM;
1448 		}
1449 	}
1450 
1451 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1452 	for (i = 0; i < timeout; i++) {
1453 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1454 
1455 		/* Set the SW EEPROM semaphore bit to request access */
1456 		swsm |= IXGBE_SWSM_SWESMBI;
1457 		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1458 
1459 		/* If we set the bit successfully then we got the
1460 		 * semaphore.
1461 		 */
1462 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1463 		if (swsm & IXGBE_SWSM_SWESMBI)
1464 			break;
1465 
1466 		usleep_range(50, 100);
1467 	}
1468 
1469 	/* Release semaphores and return error if SW EEPROM semaphore
1470 	 * was not granted because we don't have access to the EEPROM
1471 	 */
1472 	if (i >= timeout) {
1473 		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1474 		ixgbe_release_eeprom_semaphore(hw);
1475 		return IXGBE_ERR_EEPROM;
1476 	}
1477 
1478 	return 0;
1479 }
1480 
1481 /**
1482  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1483  *  @hw: pointer to hardware structure
1484  *
1485  *  This function clears hardware semaphore bits.
1486  **/
1487 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1488 {
1489 	u32 swsm;
1490 
1491 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1492 
1493 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1494 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1495 	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1496 	IXGBE_WRITE_FLUSH(hw);
1497 }
1498 
1499 /**
1500  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1501  *  @hw: pointer to hardware structure
1502  **/
1503 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1504 {
1505 	u16 i;
1506 	u8 spi_stat_reg;
1507 
1508 	/*
1509 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1510 	 * EEPROM will signal that the command has been completed by clearing
1511 	 * bit 0 of the internal status register.  If it's not cleared within
1512 	 * 5 milliseconds, then error out.
1513 	 */
1514 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1515 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1516 					    IXGBE_EEPROM_OPCODE_BITS);
1517 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1518 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1519 			break;
1520 
1521 		udelay(5);
1522 		ixgbe_standby_eeprom(hw);
1523 	}
1524 
1525 	/*
1526 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1527 	 * devices (and only 0-5mSec on 5V devices)
1528 	 */
1529 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1530 		hw_dbg(hw, "SPI EEPROM Status error\n");
1531 		return IXGBE_ERR_EEPROM;
1532 	}
1533 
1534 	return 0;
1535 }
1536 
1537 /**
1538  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1539  *  @hw: pointer to hardware structure
1540  **/
1541 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1542 {
1543 	u32 eec;
1544 
1545 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1546 
1547 	/* Toggle CS to flush commands */
1548 	eec |= IXGBE_EEC_CS;
1549 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1550 	IXGBE_WRITE_FLUSH(hw);
1551 	udelay(1);
1552 	eec &= ~IXGBE_EEC_CS;
1553 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1554 	IXGBE_WRITE_FLUSH(hw);
1555 	udelay(1);
1556 }
1557 
1558 /**
1559  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1560  *  @hw: pointer to hardware structure
1561  *  @data: data to send to the EEPROM
1562  *  @count: number of bits to shift out
1563  **/
1564 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1565 					u16 count)
1566 {
1567 	u32 eec;
1568 	u32 mask;
1569 	u32 i;
1570 
1571 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1572 
1573 	/*
1574 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1575 	 * one bit at a time.  Determine the starting bit based on count
1576 	 */
1577 	mask = BIT(count - 1);
1578 
1579 	for (i = 0; i < count; i++) {
1580 		/*
1581 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1582 		 * "1", and then raising and then lowering the clock (the SK
1583 		 * bit controls the clock input to the EEPROM).  A "0" is
1584 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1585 		 * raising and then lowering the clock.
1586 		 */
1587 		if (data & mask)
1588 			eec |= IXGBE_EEC_DI;
1589 		else
1590 			eec &= ~IXGBE_EEC_DI;
1591 
1592 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1593 		IXGBE_WRITE_FLUSH(hw);
1594 
1595 		udelay(1);
1596 
1597 		ixgbe_raise_eeprom_clk(hw, &eec);
1598 		ixgbe_lower_eeprom_clk(hw, &eec);
1599 
1600 		/*
1601 		 * Shift mask to signify next bit of data to shift in to the
1602 		 * EEPROM
1603 		 */
1604 		mask = mask >> 1;
1605 	}
1606 
1607 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1608 	eec &= ~IXGBE_EEC_DI;
1609 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1610 	IXGBE_WRITE_FLUSH(hw);
1611 }
1612 
1613 /**
1614  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1615  *  @hw: pointer to hardware structure
1616  **/
1617 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1618 {
1619 	u32 eec;
1620 	u32 i;
1621 	u16 data = 0;
1622 
1623 	/*
1624 	 * In order to read a register from the EEPROM, we need to shift
1625 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1626 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1627 	 * the value of the "DO" bit.  During this "shifting in" process the
1628 	 * "DI" bit should always be clear.
1629 	 */
1630 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1631 
1632 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1633 
1634 	for (i = 0; i < count; i++) {
1635 		data = data << 1;
1636 		ixgbe_raise_eeprom_clk(hw, &eec);
1637 
1638 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1639 
1640 		eec &= ~(IXGBE_EEC_DI);
1641 		if (eec & IXGBE_EEC_DO)
1642 			data |= 1;
1643 
1644 		ixgbe_lower_eeprom_clk(hw, &eec);
1645 	}
1646 
1647 	return data;
1648 }
1649 
1650 /**
1651  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1652  *  @hw: pointer to hardware structure
1653  *  @eec: EEC register's current value
1654  **/
1655 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1656 {
1657 	/*
1658 	 * Raise the clock input to the EEPROM
1659 	 * (setting the SK bit), then delay
1660 	 */
1661 	*eec = *eec | IXGBE_EEC_SK;
1662 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1663 	IXGBE_WRITE_FLUSH(hw);
1664 	udelay(1);
1665 }
1666 
1667 /**
1668  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1669  *  @hw: pointer to hardware structure
1670  *  @eecd: EECD's current value
1671  **/
1672 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1673 {
1674 	/*
1675 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1676 	 * delay
1677 	 */
1678 	*eec = *eec & ~IXGBE_EEC_SK;
1679 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1680 	IXGBE_WRITE_FLUSH(hw);
1681 	udelay(1);
1682 }
1683 
1684 /**
1685  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1686  *  @hw: pointer to hardware structure
1687  **/
1688 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1689 {
1690 	u32 eec;
1691 
1692 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1693 
1694 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1695 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1696 
1697 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1698 	IXGBE_WRITE_FLUSH(hw);
1699 
1700 	udelay(1);
1701 
1702 	/* Stop requesting EEPROM access */
1703 	eec &= ~IXGBE_EEC_REQ;
1704 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1705 
1706 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1707 
1708 	/*
1709 	 * Delay before attempt to obtain semaphore again to allow FW
1710 	 * access. semaphore_delay is in ms we need us for usleep_range
1711 	 */
1712 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1713 		     hw->eeprom.semaphore_delay * 2000);
1714 }
1715 
1716 /**
1717  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1718  *  @hw: pointer to hardware structure
1719  **/
1720 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1721 {
1722 	u16 i;
1723 	u16 j;
1724 	u16 checksum = 0;
1725 	u16 length = 0;
1726 	u16 pointer = 0;
1727 	u16 word = 0;
1728 
1729 	/* Include 0x0-0x3F in the checksum */
1730 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1731 		if (hw->eeprom.ops.read(hw, i, &word)) {
1732 			hw_dbg(hw, "EEPROM read failed\n");
1733 			break;
1734 		}
1735 		checksum += word;
1736 	}
1737 
1738 	/* Include all data from pointers except for the fw pointer */
1739 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1740 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1741 			hw_dbg(hw, "EEPROM read failed\n");
1742 			return IXGBE_ERR_EEPROM;
1743 		}
1744 
1745 		/* If the pointer seems invalid */
1746 		if (pointer == 0xFFFF || pointer == 0)
1747 			continue;
1748 
1749 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1750 			hw_dbg(hw, "EEPROM read failed\n");
1751 			return IXGBE_ERR_EEPROM;
1752 		}
1753 
1754 		if (length == 0xFFFF || length == 0)
1755 			continue;
1756 
1757 		for (j = pointer + 1; j <= pointer + length; j++) {
1758 			if (hw->eeprom.ops.read(hw, j, &word)) {
1759 				hw_dbg(hw, "EEPROM read failed\n");
1760 				return IXGBE_ERR_EEPROM;
1761 			}
1762 			checksum += word;
1763 		}
1764 	}
1765 
1766 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1767 
1768 	return (s32)checksum;
1769 }
1770 
1771 /**
1772  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1773  *  @hw: pointer to hardware structure
1774  *  @checksum_val: calculated checksum
1775  *
1776  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1777  *  caller does not need checksum_val, the value can be NULL.
1778  **/
1779 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1780 					   u16 *checksum_val)
1781 {
1782 	s32 status;
1783 	u16 checksum;
1784 	u16 read_checksum = 0;
1785 
1786 	/*
1787 	 * Read the first word from the EEPROM. If this times out or fails, do
1788 	 * not continue or we could be in for a very long wait while every
1789 	 * EEPROM read fails
1790 	 */
1791 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1792 	if (status) {
1793 		hw_dbg(hw, "EEPROM read failed\n");
1794 		return status;
1795 	}
1796 
1797 	status = hw->eeprom.ops.calc_checksum(hw);
1798 	if (status < 0)
1799 		return status;
1800 
1801 	checksum = (u16)(status & 0xffff);
1802 
1803 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1804 	if (status) {
1805 		hw_dbg(hw, "EEPROM read failed\n");
1806 		return status;
1807 	}
1808 
1809 	/* Verify read checksum from EEPROM is the same as
1810 	 * calculated checksum
1811 	 */
1812 	if (read_checksum != checksum)
1813 		status = IXGBE_ERR_EEPROM_CHECKSUM;
1814 
1815 	/* If the user cares, return the calculated checksum */
1816 	if (checksum_val)
1817 		*checksum_val = checksum;
1818 
1819 	return status;
1820 }
1821 
1822 /**
1823  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1824  *  @hw: pointer to hardware structure
1825  **/
1826 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1827 {
1828 	s32 status;
1829 	u16 checksum;
1830 
1831 	/*
1832 	 * Read the first word from the EEPROM. If this times out or fails, do
1833 	 * not continue or we could be in for a very long wait while every
1834 	 * EEPROM read fails
1835 	 */
1836 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1837 	if (status) {
1838 		hw_dbg(hw, "EEPROM read failed\n");
1839 		return status;
1840 	}
1841 
1842 	status = hw->eeprom.ops.calc_checksum(hw);
1843 	if (status < 0)
1844 		return status;
1845 
1846 	checksum = (u16)(status & 0xffff);
1847 
1848 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1849 
1850 	return status;
1851 }
1852 
1853 /**
1854  *  ixgbe_set_rar_generic - Set Rx address register
1855  *  @hw: pointer to hardware structure
1856  *  @index: Receive address register to write
1857  *  @addr: Address to put into receive address register
1858  *  @vmdq: VMDq "set" or "pool" index
1859  *  @enable_addr: set flag that address is active
1860  *
1861  *  Puts an ethernet address into a receive address register.
1862  **/
1863 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1864 			  u32 enable_addr)
1865 {
1866 	u32 rar_low, rar_high;
1867 	u32 rar_entries = hw->mac.num_rar_entries;
1868 
1869 	/* Make sure we are using a valid rar index range */
1870 	if (index >= rar_entries) {
1871 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1872 		return IXGBE_ERR_INVALID_ARGUMENT;
1873 	}
1874 
1875 	/* setup VMDq pool selection before this RAR gets enabled */
1876 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1877 
1878 	/*
1879 	 * HW expects these in little endian so we reverse the byte
1880 	 * order from network order (big endian) to little endian
1881 	 */
1882 	rar_low = ((u32)addr[0] |
1883 		   ((u32)addr[1] << 8) |
1884 		   ((u32)addr[2] << 16) |
1885 		   ((u32)addr[3] << 24));
1886 	/*
1887 	 * Some parts put the VMDq setting in the extra RAH bits,
1888 	 * so save everything except the lower 16 bits that hold part
1889 	 * of the address and the address valid bit.
1890 	 */
1891 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1892 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1893 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1894 
1895 	if (enable_addr != 0)
1896 		rar_high |= IXGBE_RAH_AV;
1897 
1898 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1899 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1900 
1901 	return 0;
1902 }
1903 
1904 /**
1905  *  ixgbe_clear_rar_generic - Remove Rx address register
1906  *  @hw: pointer to hardware structure
1907  *  @index: Receive address register to write
1908  *
1909  *  Clears an ethernet address from a receive address register.
1910  **/
1911 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1912 {
1913 	u32 rar_high;
1914 	u32 rar_entries = hw->mac.num_rar_entries;
1915 
1916 	/* Make sure we are using a valid rar index range */
1917 	if (index >= rar_entries) {
1918 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1919 		return IXGBE_ERR_INVALID_ARGUMENT;
1920 	}
1921 
1922 	/*
1923 	 * Some parts put the VMDq setting in the extra RAH bits,
1924 	 * so save everything except the lower 16 bits that hold part
1925 	 * of the address and the address valid bit.
1926 	 */
1927 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1928 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1929 
1930 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1931 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1932 
1933 	/* clear VMDq pool/queue selection for this RAR */
1934 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1935 
1936 	return 0;
1937 }
1938 
1939 /**
1940  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1941  *  @hw: pointer to hardware structure
1942  *
1943  *  Places the MAC address in receive address register 0 and clears the rest
1944  *  of the receive address registers. Clears the multicast table. Assumes
1945  *  the receiver is in reset when the routine is called.
1946  **/
1947 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1948 {
1949 	u32 i;
1950 	u32 rar_entries = hw->mac.num_rar_entries;
1951 
1952 	/*
1953 	 * If the current mac address is valid, assume it is a software override
1954 	 * to the permanent address.
1955 	 * Otherwise, use the permanent address from the eeprom.
1956 	 */
1957 	if (!is_valid_ether_addr(hw->mac.addr)) {
1958 		/* Get the MAC address from the RAR0 for later reference */
1959 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1960 
1961 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1962 	} else {
1963 		/* Setup the receive address. */
1964 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1965 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1966 
1967 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1968 	}
1969 
1970 	/*  clear VMDq pool/queue selection for RAR 0 */
1971 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1972 
1973 	hw->addr_ctrl.overflow_promisc = 0;
1974 
1975 	hw->addr_ctrl.rar_used_count = 1;
1976 
1977 	/* Zero out the other receive addresses. */
1978 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1979 	for (i = 1; i < rar_entries; i++) {
1980 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1981 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1982 	}
1983 
1984 	/* Clear the MTA */
1985 	hw->addr_ctrl.mta_in_use = 0;
1986 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1987 
1988 	hw_dbg(hw, " Clearing MTA\n");
1989 	for (i = 0; i < hw->mac.mcft_size; i++)
1990 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1991 
1992 	if (hw->mac.ops.init_uta_tables)
1993 		hw->mac.ops.init_uta_tables(hw);
1994 
1995 	return 0;
1996 }
1997 
1998 /**
1999  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2000  *  @hw: pointer to hardware structure
2001  *  @mc_addr: the multicast address
2002  *
2003  *  Extracts the 12 bits, from a multicast address, to determine which
2004  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2005  *  incoming rx multicast addresses, to determine the bit-vector to check in
2006  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2007  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2008  *  to mc_filter_type.
2009  **/
2010 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2011 {
2012 	u32 vector = 0;
2013 
2014 	switch (hw->mac.mc_filter_type) {
2015 	case 0:   /* use bits [47:36] of the address */
2016 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2017 		break;
2018 	case 1:   /* use bits [46:35] of the address */
2019 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2020 		break;
2021 	case 2:   /* use bits [45:34] of the address */
2022 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2023 		break;
2024 	case 3:   /* use bits [43:32] of the address */
2025 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2026 		break;
2027 	default:  /* Invalid mc_filter_type */
2028 		hw_dbg(hw, "MC filter type param set incorrectly\n");
2029 		break;
2030 	}
2031 
2032 	/* vector can only be 12-bits or boundary will be exceeded */
2033 	vector &= 0xFFF;
2034 	return vector;
2035 }
2036 
2037 /**
2038  *  ixgbe_set_mta - Set bit-vector in multicast table
2039  *  @hw: pointer to hardware structure
2040  *  @hash_value: Multicast address hash value
2041  *
2042  *  Sets the bit-vector in the multicast table.
2043  **/
2044 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2045 {
2046 	u32 vector;
2047 	u32 vector_bit;
2048 	u32 vector_reg;
2049 
2050 	hw->addr_ctrl.mta_in_use++;
2051 
2052 	vector = ixgbe_mta_vector(hw, mc_addr);
2053 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2054 
2055 	/*
2056 	 * The MTA is a register array of 128 32-bit registers. It is treated
2057 	 * like an array of 4096 bits.  We want to set bit
2058 	 * BitArray[vector_value]. So we figure out what register the bit is
2059 	 * in, read it, OR in the new bit, then write back the new value.  The
2060 	 * register is determined by the upper 7 bits of the vector value and
2061 	 * the bit within that register are determined by the lower 5 bits of
2062 	 * the value.
2063 	 */
2064 	vector_reg = (vector >> 5) & 0x7F;
2065 	vector_bit = vector & 0x1F;
2066 	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2067 }
2068 
2069 /**
2070  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2071  *  @hw: pointer to hardware structure
2072  *  @netdev: pointer to net device structure
2073  *
2074  *  The given list replaces any existing list. Clears the MC addrs from receive
2075  *  address registers and the multicast table. Uses unused receive address
2076  *  registers for the first multicast addresses, and hashes the rest into the
2077  *  multicast table.
2078  **/
2079 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2080 				      struct net_device *netdev)
2081 {
2082 	struct netdev_hw_addr *ha;
2083 	u32 i;
2084 
2085 	/*
2086 	 * Set the new number of MC addresses that we are being requested to
2087 	 * use.
2088 	 */
2089 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2090 	hw->addr_ctrl.mta_in_use = 0;
2091 
2092 	/* Clear mta_shadow */
2093 	hw_dbg(hw, " Clearing MTA\n");
2094 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2095 
2096 	/* Update mta shadow */
2097 	netdev_for_each_mc_addr(ha, netdev) {
2098 		hw_dbg(hw, " Adding the multicast addresses:\n");
2099 		ixgbe_set_mta(hw, ha->addr);
2100 	}
2101 
2102 	/* Enable mta */
2103 	for (i = 0; i < hw->mac.mcft_size; i++)
2104 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2105 				      hw->mac.mta_shadow[i]);
2106 
2107 	if (hw->addr_ctrl.mta_in_use > 0)
2108 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2109 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2110 
2111 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2112 	return 0;
2113 }
2114 
2115 /**
2116  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2117  *  @hw: pointer to hardware structure
2118  *
2119  *  Enables multicast address in RAR and the use of the multicast hash table.
2120  **/
2121 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2122 {
2123 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2124 
2125 	if (a->mta_in_use > 0)
2126 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2127 				hw->mac.mc_filter_type);
2128 
2129 	return 0;
2130 }
2131 
2132 /**
2133  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2134  *  @hw: pointer to hardware structure
2135  *
2136  *  Disables multicast address in RAR and the use of the multicast hash table.
2137  **/
2138 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2139 {
2140 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2141 
2142 	if (a->mta_in_use > 0)
2143 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2144 
2145 	return 0;
2146 }
2147 
2148 /**
2149  *  ixgbe_fc_enable_generic - Enable flow control
2150  *  @hw: pointer to hardware structure
2151  *
2152  *  Enable flow control according to the current settings.
2153  **/
2154 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2155 {
2156 	u32 mflcn_reg, fccfg_reg;
2157 	u32 reg;
2158 	u32 fcrtl, fcrth;
2159 	int i;
2160 
2161 	/* Validate the water mark configuration. */
2162 	if (!hw->fc.pause_time)
2163 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2164 
2165 	/* Low water mark of zero causes XOFF floods */
2166 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2167 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2168 		    hw->fc.high_water[i]) {
2169 			if (!hw->fc.low_water[i] ||
2170 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2171 				hw_dbg(hw, "Invalid water mark configuration\n");
2172 				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2173 			}
2174 		}
2175 	}
2176 
2177 	/* Negotiate the fc mode to use */
2178 	hw->mac.ops.fc_autoneg(hw);
2179 
2180 	/* Disable any previous flow control settings */
2181 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2182 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2183 
2184 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2185 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2186 
2187 	/*
2188 	 * The possible values of fc.current_mode are:
2189 	 * 0: Flow control is completely disabled
2190 	 * 1: Rx flow control is enabled (we can receive pause frames,
2191 	 *    but not send pause frames).
2192 	 * 2: Tx flow control is enabled (we can send pause frames but
2193 	 *    we do not support receiving pause frames).
2194 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2195 	 * other: Invalid.
2196 	 */
2197 	switch (hw->fc.current_mode) {
2198 	case ixgbe_fc_none:
2199 		/*
2200 		 * Flow control is disabled by software override or autoneg.
2201 		 * The code below will actually disable it in the HW.
2202 		 */
2203 		break;
2204 	case ixgbe_fc_rx_pause:
2205 		/*
2206 		 * Rx Flow control is enabled and Tx Flow control is
2207 		 * disabled by software override. Since there really
2208 		 * isn't a way to advertise that we are capable of RX
2209 		 * Pause ONLY, we will advertise that we support both
2210 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2211 		 * disable the adapter's ability to send PAUSE frames.
2212 		 */
2213 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2214 		break;
2215 	case ixgbe_fc_tx_pause:
2216 		/*
2217 		 * Tx Flow control is enabled, and Rx Flow control is
2218 		 * disabled by software override.
2219 		 */
2220 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2221 		break;
2222 	case ixgbe_fc_full:
2223 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2224 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2225 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2226 		break;
2227 	default:
2228 		hw_dbg(hw, "Flow control param set incorrectly\n");
2229 		return IXGBE_ERR_CONFIG;
2230 	}
2231 
2232 	/* Set 802.3x based flow control settings. */
2233 	mflcn_reg |= IXGBE_MFLCN_DPF;
2234 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2235 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2236 
2237 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2238 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2239 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2240 		    hw->fc.high_water[i]) {
2241 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2242 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2243 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2244 		} else {
2245 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2246 			/*
2247 			 * In order to prevent Tx hangs when the internal Tx
2248 			 * switch is enabled we must set the high water mark
2249 			 * to the Rx packet buffer size - 24KB.  This allows
2250 			 * the Tx switch to function even under heavy Rx
2251 			 * workloads.
2252 			 */
2253 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2254 		}
2255 
2256 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2257 	}
2258 
2259 	/* Configure pause time (2 TCs per register) */
2260 	reg = hw->fc.pause_time * 0x00010001;
2261 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2262 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2263 
2264 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2265 
2266 	return 0;
2267 }
2268 
2269 /**
2270  *  ixgbe_negotiate_fc - Negotiate flow control
2271  *  @hw: pointer to hardware structure
2272  *  @adv_reg: flow control advertised settings
2273  *  @lp_reg: link partner's flow control settings
2274  *  @adv_sym: symmetric pause bit in advertisement
2275  *  @adv_asm: asymmetric pause bit in advertisement
2276  *  @lp_sym: symmetric pause bit in link partner advertisement
2277  *  @lp_asm: asymmetric pause bit in link partner advertisement
2278  *
2279  *  Find the intersection between advertised settings and link partner's
2280  *  advertised settings
2281  **/
2282 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2283 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2284 {
2285 	if ((!(adv_reg)) ||  (!(lp_reg)))
2286 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2287 
2288 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2289 		/*
2290 		 * Now we need to check if the user selected Rx ONLY
2291 		 * of pause frames.  In this case, we had to advertise
2292 		 * FULL flow control because we could not advertise RX
2293 		 * ONLY. Hence, we must now check to see if we need to
2294 		 * turn OFF the TRANSMISSION of PAUSE frames.
2295 		 */
2296 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2297 			hw->fc.current_mode = ixgbe_fc_full;
2298 			hw_dbg(hw, "Flow Control = FULL.\n");
2299 		} else {
2300 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2301 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2302 		}
2303 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2304 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2305 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2306 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2307 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2308 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2309 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2310 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2311 	} else {
2312 		hw->fc.current_mode = ixgbe_fc_none;
2313 		hw_dbg(hw, "Flow Control = NONE.\n");
2314 	}
2315 	return 0;
2316 }
2317 
2318 /**
2319  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2320  *  @hw: pointer to hardware structure
2321  *
2322  *  Enable flow control according on 1 gig fiber.
2323  **/
2324 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2325 {
2326 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2327 	s32 ret_val;
2328 
2329 	/*
2330 	 * On multispeed fiber at 1g, bail out if
2331 	 * - link is up but AN did not complete, or if
2332 	 * - link is up and AN completed but timed out
2333 	 */
2334 
2335 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2336 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2337 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2338 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2339 
2340 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2341 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2342 
2343 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2344 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2345 			       IXGBE_PCS1GANA_ASM_PAUSE,
2346 			       IXGBE_PCS1GANA_SYM_PAUSE,
2347 			       IXGBE_PCS1GANA_ASM_PAUSE);
2348 
2349 	return ret_val;
2350 }
2351 
2352 /**
2353  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2354  *  @hw: pointer to hardware structure
2355  *
2356  *  Enable flow control according to IEEE clause 37.
2357  **/
2358 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2359 {
2360 	u32 links2, anlp1_reg, autoc_reg, links;
2361 	s32 ret_val;
2362 
2363 	/*
2364 	 * On backplane, bail out if
2365 	 * - backplane autoneg was not completed, or if
2366 	 * - we are 82599 and link partner is not AN enabled
2367 	 */
2368 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2369 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2370 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2371 
2372 	if (hw->mac.type == ixgbe_mac_82599EB) {
2373 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2374 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2375 			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2376 	}
2377 	/*
2378 	 * Read the 10g AN autoc and LP ability registers and resolve
2379 	 * local flow control settings accordingly
2380 	 */
2381 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2382 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2383 
2384 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2385 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2386 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2387 
2388 	return ret_val;
2389 }
2390 
2391 /**
2392  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2393  *  @hw: pointer to hardware structure
2394  *
2395  *  Enable flow control according to IEEE clause 37.
2396  **/
2397 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2398 {
2399 	u16 technology_ability_reg = 0;
2400 	u16 lp_technology_ability_reg = 0;
2401 
2402 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2403 			     MDIO_MMD_AN,
2404 			     &technology_ability_reg);
2405 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2406 			     MDIO_MMD_AN,
2407 			     &lp_technology_ability_reg);
2408 
2409 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2410 				  (u32)lp_technology_ability_reg,
2411 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2412 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2413 }
2414 
2415 /**
2416  *  ixgbe_fc_autoneg - Configure flow control
2417  *  @hw: pointer to hardware structure
2418  *
2419  *  Compares our advertised flow control capabilities to those advertised by
2420  *  our link partner, and determines the proper flow control mode to use.
2421  **/
2422 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2423 {
2424 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2425 	ixgbe_link_speed speed;
2426 	bool link_up;
2427 
2428 	/*
2429 	 * AN should have completed when the cable was plugged in.
2430 	 * Look for reasons to bail out.  Bail out if:
2431 	 * - FC autoneg is disabled, or if
2432 	 * - link is not up.
2433 	 *
2434 	 * Since we're being called from an LSC, link is already known to be up.
2435 	 * So use link_up_wait_to_complete=false.
2436 	 */
2437 	if (hw->fc.disable_fc_autoneg)
2438 		goto out;
2439 
2440 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2441 	if (!link_up)
2442 		goto out;
2443 
2444 	switch (hw->phy.media_type) {
2445 	/* Autoneg flow control on fiber adapters */
2446 	case ixgbe_media_type_fiber:
2447 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2448 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2449 		break;
2450 
2451 	/* Autoneg flow control on backplane adapters */
2452 	case ixgbe_media_type_backplane:
2453 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2454 		break;
2455 
2456 	/* Autoneg flow control on copper adapters */
2457 	case ixgbe_media_type_copper:
2458 		if (ixgbe_device_supports_autoneg_fc(hw))
2459 			ret_val = ixgbe_fc_autoneg_copper(hw);
2460 		break;
2461 
2462 	default:
2463 		break;
2464 	}
2465 
2466 out:
2467 	if (ret_val == 0) {
2468 		hw->fc.fc_was_autonegged = true;
2469 	} else {
2470 		hw->fc.fc_was_autonegged = false;
2471 		hw->fc.current_mode = hw->fc.requested_mode;
2472 	}
2473 }
2474 
2475 /**
2476  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2477  * @hw: pointer to hardware structure
2478  *
2479  * System-wide timeout range is encoded in PCIe Device Control2 register.
2480  *
2481  *  Add 10% to specified maximum and return the number of times to poll for
2482  *  completion timeout, in units of 100 microsec.  Never return less than
2483  *  800 = 80 millisec.
2484  **/
2485 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2486 {
2487 	s16 devctl2;
2488 	u32 pollcnt;
2489 
2490 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2491 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2492 
2493 	switch (devctl2) {
2494 	case IXGBE_PCIDEVCTRL2_65_130ms:
2495 		 pollcnt = 1300;         /* 130 millisec */
2496 		break;
2497 	case IXGBE_PCIDEVCTRL2_260_520ms:
2498 		pollcnt = 5200;         /* 520 millisec */
2499 		break;
2500 	case IXGBE_PCIDEVCTRL2_1_2s:
2501 		pollcnt = 20000;        /* 2 sec */
2502 		break;
2503 	case IXGBE_PCIDEVCTRL2_4_8s:
2504 		pollcnt = 80000;        /* 8 sec */
2505 		break;
2506 	case IXGBE_PCIDEVCTRL2_17_34s:
2507 		pollcnt = 34000;        /* 34 sec */
2508 		break;
2509 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2510 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2511 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2512 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2513 	default:
2514 		pollcnt = 800;          /* 80 millisec minimum */
2515 		break;
2516 	}
2517 
2518 	/* add 10% to spec maximum */
2519 	return (pollcnt * 11) / 10;
2520 }
2521 
2522 /**
2523  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2524  *  @hw: pointer to hardware structure
2525  *
2526  *  Disables PCI-Express master access and verifies there are no pending
2527  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2528  *  bit hasn't caused the master requests to be disabled, else 0
2529  *  is returned signifying master requests disabled.
2530  **/
2531 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2532 {
2533 	u32 i, poll;
2534 	u16 value;
2535 
2536 	/* Always set this bit to ensure any future transactions are blocked */
2537 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2538 
2539 	/* Poll for bit to read as set */
2540 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2541 		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2542 			break;
2543 		usleep_range(100, 120);
2544 	}
2545 	if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2546 		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2547 		goto gio_disable_fail;
2548 	}
2549 
2550 	/* Exit if master requests are blocked */
2551 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2552 	    ixgbe_removed(hw->hw_addr))
2553 		return 0;
2554 
2555 	/* Poll for master request bit to clear */
2556 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2557 		udelay(100);
2558 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2559 			return 0;
2560 	}
2561 
2562 	/*
2563 	 * Two consecutive resets are required via CTRL.RST per datasheet
2564 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2565 	 * of this need.  The first reset prevents new master requests from
2566 	 * being issued by our device.  We then must wait 1usec or more for any
2567 	 * remaining completions from the PCIe bus to trickle in, and then reset
2568 	 * again to clear out any effects they may have had on our device.
2569 	 */
2570 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2571 gio_disable_fail:
2572 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2573 
2574 	if (hw->mac.type >= ixgbe_mac_X550)
2575 		return 0;
2576 
2577 	/*
2578 	 * Before proceeding, make sure that the PCIe block does not have
2579 	 * transactions pending.
2580 	 */
2581 	poll = ixgbe_pcie_timeout_poll(hw);
2582 	for (i = 0; i < poll; i++) {
2583 		udelay(100);
2584 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2585 		if (ixgbe_removed(hw->hw_addr))
2586 			return 0;
2587 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2588 			return 0;
2589 	}
2590 
2591 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2592 	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2593 }
2594 
2595 /**
2596  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2597  *  @hw: pointer to hardware structure
2598  *  @mask: Mask to specify which semaphore to acquire
2599  *
2600  *  Acquires the SWFW semaphore through the GSSR register for the specified
2601  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2602  **/
2603 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2604 {
2605 	u32 gssr = 0;
2606 	u32 swmask = mask;
2607 	u32 fwmask = mask << 5;
2608 	u32 timeout = 200;
2609 	u32 i;
2610 
2611 	for (i = 0; i < timeout; i++) {
2612 		/*
2613 		 * SW NVM semaphore bit is used for access to all
2614 		 * SW_FW_SYNC bits (not just NVM)
2615 		 */
2616 		if (ixgbe_get_eeprom_semaphore(hw))
2617 			return IXGBE_ERR_SWFW_SYNC;
2618 
2619 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2620 		if (!(gssr & (fwmask | swmask))) {
2621 			gssr |= swmask;
2622 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2623 			ixgbe_release_eeprom_semaphore(hw);
2624 			return 0;
2625 		} else {
2626 			/* Resource is currently in use by FW or SW */
2627 			ixgbe_release_eeprom_semaphore(hw);
2628 			usleep_range(5000, 10000);
2629 		}
2630 	}
2631 
2632 	/* If time expired clear the bits holding the lock and retry */
2633 	if (gssr & (fwmask | swmask))
2634 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2635 
2636 	usleep_range(5000, 10000);
2637 	return IXGBE_ERR_SWFW_SYNC;
2638 }
2639 
2640 /**
2641  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2642  *  @hw: pointer to hardware structure
2643  *  @mask: Mask to specify which semaphore to release
2644  *
2645  *  Releases the SWFW semaphore through the GSSR register for the specified
2646  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2647  **/
2648 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2649 {
2650 	u32 gssr;
2651 	u32 swmask = mask;
2652 
2653 	ixgbe_get_eeprom_semaphore(hw);
2654 
2655 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2656 	gssr &= ~swmask;
2657 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2658 
2659 	ixgbe_release_eeprom_semaphore(hw);
2660 }
2661 
2662 /**
2663  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2664  * @hw: pointer to hardware structure
2665  * @reg_val: Value we read from AUTOC
2666  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2667  *	    true in this the generic case.
2668  *
2669  * The default case requires no protection so just to the register read.
2670  **/
2671 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2672 {
2673 	*locked = false;
2674 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2675 	return 0;
2676 }
2677 
2678 /**
2679  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2680  * @hw: pointer to hardware structure
2681  * @reg_val: value to write to AUTOC
2682  * @locked: bool to indicate whether the SW/FW lock was already taken by
2683  *	    previous read.
2684  **/
2685 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2686 {
2687 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2688 	return 0;
2689 }
2690 
2691 /**
2692  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2693  *  @hw: pointer to hardware structure
2694  *
2695  *  Stops the receive data path and waits for the HW to internally
2696  *  empty the Rx security block.
2697  **/
2698 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2699 {
2700 #define IXGBE_MAX_SECRX_POLL 40
2701 	int i;
2702 	int secrxreg;
2703 
2704 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2705 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2706 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2707 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2708 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2709 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2710 			break;
2711 		else
2712 			/* Use interrupt-safe sleep just in case */
2713 			udelay(1000);
2714 	}
2715 
2716 	/* For informational purposes only */
2717 	if (i >= IXGBE_MAX_SECRX_POLL)
2718 		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2719 
2720 	return 0;
2721 
2722 }
2723 
2724 /**
2725  *  ixgbe_enable_rx_buff - Enables the receive data path
2726  *  @hw: pointer to hardware structure
2727  *
2728  *  Enables the receive data path
2729  **/
2730 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2731 {
2732 	u32 secrxreg;
2733 
2734 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2735 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2736 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2737 	IXGBE_WRITE_FLUSH(hw);
2738 
2739 	return 0;
2740 }
2741 
2742 /**
2743  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2744  *  @hw: pointer to hardware structure
2745  *  @regval: register value to write to RXCTRL
2746  *
2747  *  Enables the Rx DMA unit
2748  **/
2749 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2750 {
2751 	if (regval & IXGBE_RXCTRL_RXEN)
2752 		hw->mac.ops.enable_rx(hw);
2753 	else
2754 		hw->mac.ops.disable_rx(hw);
2755 
2756 	return 0;
2757 }
2758 
2759 /**
2760  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2761  *  @hw: pointer to hardware structure
2762  *  @index: led number to blink
2763  **/
2764 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2765 {
2766 	ixgbe_link_speed speed = 0;
2767 	bool link_up = false;
2768 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2769 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2770 	bool locked = false;
2771 	s32 ret_val;
2772 
2773 	if (index > 3)
2774 		return IXGBE_ERR_PARAM;
2775 
2776 	/*
2777 	 * Link must be up to auto-blink the LEDs;
2778 	 * Force it if link is down.
2779 	 */
2780 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2781 
2782 	if (!link_up) {
2783 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2784 		if (ret_val)
2785 			return ret_val;
2786 
2787 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2788 		autoc_reg |= IXGBE_AUTOC_FLU;
2789 
2790 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2791 		if (ret_val)
2792 			return ret_val;
2793 
2794 		IXGBE_WRITE_FLUSH(hw);
2795 
2796 		usleep_range(10000, 20000);
2797 	}
2798 
2799 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2800 	led_reg |= IXGBE_LED_BLINK(index);
2801 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2802 	IXGBE_WRITE_FLUSH(hw);
2803 
2804 	return 0;
2805 }
2806 
2807 /**
2808  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2809  *  @hw: pointer to hardware structure
2810  *  @index: led number to stop blinking
2811  **/
2812 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2813 {
2814 	u32 autoc_reg = 0;
2815 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2816 	bool locked = false;
2817 	s32 ret_val;
2818 
2819 	if (index > 3)
2820 		return IXGBE_ERR_PARAM;
2821 
2822 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2823 	if (ret_val)
2824 		return ret_val;
2825 
2826 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2827 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2828 
2829 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2830 	if (ret_val)
2831 		return ret_val;
2832 
2833 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2834 	led_reg &= ~IXGBE_LED_BLINK(index);
2835 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2836 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2837 	IXGBE_WRITE_FLUSH(hw);
2838 
2839 	return 0;
2840 }
2841 
2842 /**
2843  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2844  *  @hw: pointer to hardware structure
2845  *  @san_mac_offset: SAN MAC address offset
2846  *
2847  *  This function will read the EEPROM location for the SAN MAC address
2848  *  pointer, and returns the value at that location.  This is used in both
2849  *  get and set mac_addr routines.
2850  **/
2851 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2852 					u16 *san_mac_offset)
2853 {
2854 	s32 ret_val;
2855 
2856 	/*
2857 	 * First read the EEPROM pointer to see if the MAC addresses are
2858 	 * available.
2859 	 */
2860 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2861 				      san_mac_offset);
2862 	if (ret_val)
2863 		hw_err(hw, "eeprom read at offset %d failed\n",
2864 		       IXGBE_SAN_MAC_ADDR_PTR);
2865 
2866 	return ret_val;
2867 }
2868 
2869 /**
2870  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2871  *  @hw: pointer to hardware structure
2872  *  @san_mac_addr: SAN MAC address
2873  *
2874  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2875  *  per-port, so set_lan_id() must be called before reading the addresses.
2876  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2877  *  upon for non-SFP connections, so we must call it here.
2878  **/
2879 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2880 {
2881 	u16 san_mac_data, san_mac_offset;
2882 	u8 i;
2883 	s32 ret_val;
2884 
2885 	/*
2886 	 * First read the EEPROM pointer to see if the MAC addresses are
2887 	 * available.  If they're not, no point in calling set_lan_id() here.
2888 	 */
2889 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2890 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2891 
2892 		goto san_mac_addr_clr;
2893 
2894 	/* make sure we know which port we need to program */
2895 	hw->mac.ops.set_lan_id(hw);
2896 	/* apply the port offset to the address offset */
2897 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2898 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2899 	for (i = 0; i < 3; i++) {
2900 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2901 					      &san_mac_data);
2902 		if (ret_val) {
2903 			hw_err(hw, "eeprom read at offset %d failed\n",
2904 			       san_mac_offset);
2905 			goto san_mac_addr_clr;
2906 		}
2907 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2908 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2909 		san_mac_offset++;
2910 	}
2911 	return 0;
2912 
2913 san_mac_addr_clr:
2914 	/* No addresses available in this EEPROM.  It's not necessarily an
2915 	 * error though, so just wipe the local address and return.
2916 	 */
2917 	for (i = 0; i < 6; i++)
2918 		san_mac_addr[i] = 0xFF;
2919 	return ret_val;
2920 }
2921 
2922 /**
2923  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2924  *  @hw: pointer to hardware structure
2925  *
2926  *  Read PCIe configuration space, and get the MSI-X vector count from
2927  *  the capabilities table.
2928  **/
2929 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2930 {
2931 	u16 msix_count;
2932 	u16 max_msix_count;
2933 	u16 pcie_offset;
2934 
2935 	switch (hw->mac.type) {
2936 	case ixgbe_mac_82598EB:
2937 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2938 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2939 		break;
2940 	case ixgbe_mac_82599EB:
2941 	case ixgbe_mac_X540:
2942 	case ixgbe_mac_X550:
2943 	case ixgbe_mac_X550EM_x:
2944 	case ixgbe_mac_x550em_a:
2945 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2946 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2947 		break;
2948 	default:
2949 		return 1;
2950 	}
2951 
2952 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2953 	if (ixgbe_removed(hw->hw_addr))
2954 		msix_count = 0;
2955 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2956 
2957 	/* MSI-X count is zero-based in HW */
2958 	msix_count++;
2959 
2960 	if (msix_count > max_msix_count)
2961 		msix_count = max_msix_count;
2962 
2963 	return msix_count;
2964 }
2965 
2966 /**
2967  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2968  *  @hw: pointer to hardware struct
2969  *  @rar: receive address register index to disassociate
2970  *  @vmdq: VMDq pool index to remove from the rar
2971  **/
2972 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2973 {
2974 	u32 mpsar_lo, mpsar_hi;
2975 	u32 rar_entries = hw->mac.num_rar_entries;
2976 
2977 	/* Make sure we are using a valid rar index range */
2978 	if (rar >= rar_entries) {
2979 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2980 		return IXGBE_ERR_INVALID_ARGUMENT;
2981 	}
2982 
2983 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2984 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2985 
2986 	if (ixgbe_removed(hw->hw_addr))
2987 		return 0;
2988 
2989 	if (!mpsar_lo && !mpsar_hi)
2990 		return 0;
2991 
2992 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2993 		if (mpsar_lo) {
2994 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2995 			mpsar_lo = 0;
2996 		}
2997 		if (mpsar_hi) {
2998 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2999 			mpsar_hi = 0;
3000 		}
3001 	} else if (vmdq < 32) {
3002 		mpsar_lo &= ~BIT(vmdq);
3003 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3004 	} else {
3005 		mpsar_hi &= ~BIT(vmdq - 32);
3006 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3007 	}
3008 
3009 	/* was that the last pool using this rar? */
3010 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
3011 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
3012 		hw->mac.ops.clear_rar(hw, rar);
3013 
3014 	return 0;
3015 }
3016 
3017 /**
3018  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3019  *  @hw: pointer to hardware struct
3020  *  @rar: receive address register index to associate with a VMDq index
3021  *  @vmdq: VMDq pool index
3022  **/
3023 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3024 {
3025 	u32 mpsar;
3026 	u32 rar_entries = hw->mac.num_rar_entries;
3027 
3028 	/* Make sure we are using a valid rar index range */
3029 	if (rar >= rar_entries) {
3030 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3031 		return IXGBE_ERR_INVALID_ARGUMENT;
3032 	}
3033 
3034 	if (vmdq < 32) {
3035 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3036 		mpsar |= BIT(vmdq);
3037 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3038 	} else {
3039 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3040 		mpsar |= BIT(vmdq - 32);
3041 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3042 	}
3043 	return 0;
3044 }
3045 
3046 /**
3047  *  This function should only be involved in the IOV mode.
3048  *  In IOV mode, Default pool is next pool after the number of
3049  *  VFs advertized and not 0.
3050  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3051  *
3052  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3053  *  @hw: pointer to hardware struct
3054  *  @vmdq: VMDq pool index
3055  **/
3056 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3057 {
3058 	u32 rar = hw->mac.san_mac_rar_index;
3059 
3060 	if (vmdq < 32) {
3061 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3062 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3063 	} else {
3064 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3065 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3066 	}
3067 
3068 	return 0;
3069 }
3070 
3071 /**
3072  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3073  *  @hw: pointer to hardware structure
3074  **/
3075 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3076 {
3077 	int i;
3078 
3079 	for (i = 0; i < 128; i++)
3080 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3081 
3082 	return 0;
3083 }
3084 
3085 /**
3086  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3087  *  @hw: pointer to hardware structure
3088  *  @vlan: VLAN id to write to VLAN filter
3089  *
3090  *  return the VLVF index where this VLAN id should be placed
3091  *
3092  **/
3093 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3094 {
3095 	s32 regindex, first_empty_slot;
3096 	u32 bits;
3097 
3098 	/* short cut the special case */
3099 	if (vlan == 0)
3100 		return 0;
3101 
3102 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3103 	 * will simply bypass the VLVF if there are no entries present in the
3104 	 * VLVF that contain our VLAN
3105 	 */
3106 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3107 
3108 	/* add VLAN enable bit for comparison */
3109 	vlan |= IXGBE_VLVF_VIEN;
3110 
3111 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3112 	 * slot found along the way.
3113 	 *
3114 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3115 	 */
3116 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3117 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3118 		if (bits == vlan)
3119 			return regindex;
3120 		if (!first_empty_slot && !bits)
3121 			first_empty_slot = regindex;
3122 	}
3123 
3124 	/* If we are here then we didn't find the VLAN.  Return first empty
3125 	 * slot we found during our search, else error.
3126 	 */
3127 	if (!first_empty_slot)
3128 		hw_dbg(hw, "No space in VLVF.\n");
3129 
3130 	return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3131 }
3132 
3133 /**
3134  *  ixgbe_set_vfta_generic - Set VLAN filter table
3135  *  @hw: pointer to hardware structure
3136  *  @vlan: VLAN id to write to VLAN filter
3137  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3138  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3139  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3140  *
3141  *  Turn on/off specified VLAN in the VLAN filter table.
3142  **/
3143 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3144 			   bool vlan_on, bool vlvf_bypass)
3145 {
3146 	u32 regidx, vfta_delta, vfta, bits;
3147 	s32 vlvf_index;
3148 
3149 	if ((vlan > 4095) || (vind > 63))
3150 		return IXGBE_ERR_PARAM;
3151 
3152 	/*
3153 	 * this is a 2 part operation - first the VFTA, then the
3154 	 * VLVF and VLVFB if VT Mode is set
3155 	 * We don't write the VFTA until we know the VLVF part succeeded.
3156 	 */
3157 
3158 	/* Part 1
3159 	 * The VFTA is a bitstring made up of 128 32-bit registers
3160 	 * that enable the particular VLAN id, much like the MTA:
3161 	 *    bits[11-5]: which register
3162 	 *    bits[4-0]:  which bit in the register
3163 	 */
3164 	regidx = vlan / 32;
3165 	vfta_delta = BIT(vlan % 32);
3166 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3167 
3168 	/* vfta_delta represents the difference between the current value
3169 	 * of vfta and the value we want in the register.  Since the diff
3170 	 * is an XOR mask we can just update vfta using an XOR.
3171 	 */
3172 	vfta_delta &= vlan_on ? ~vfta : vfta;
3173 	vfta ^= vfta_delta;
3174 
3175 	/* Part 2
3176 	 * If VT Mode is set
3177 	 *   Either vlan_on
3178 	 *     make sure the vlan is in VLVF
3179 	 *     set the vind bit in the matching VLVFB
3180 	 *   Or !vlan_on
3181 	 *     clear the pool bit and possibly the vind
3182 	 */
3183 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3184 		goto vfta_update;
3185 
3186 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3187 	if (vlvf_index < 0) {
3188 		if (vlvf_bypass)
3189 			goto vfta_update;
3190 		return vlvf_index;
3191 	}
3192 
3193 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3194 
3195 	/* set the pool bit */
3196 	bits |= BIT(vind % 32);
3197 	if (vlan_on)
3198 		goto vlvf_update;
3199 
3200 	/* clear the pool bit */
3201 	bits ^= BIT(vind % 32);
3202 
3203 	if (!bits &&
3204 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3205 		/* Clear VFTA first, then disable VLVF.  Otherwise
3206 		 * we run the risk of stray packets leaking into
3207 		 * the PF via the default pool
3208 		 */
3209 		if (vfta_delta)
3210 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3211 
3212 		/* disable VLVF and clear remaining bit from pool */
3213 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3214 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3215 
3216 		return 0;
3217 	}
3218 
3219 	/* If there are still bits set in the VLVFB registers
3220 	 * for the VLAN ID indicated we need to see if the
3221 	 * caller is requesting that we clear the VFTA entry bit.
3222 	 * If the caller has requested that we clear the VFTA
3223 	 * entry bit but there are still pools/VFs using this VLAN
3224 	 * ID entry then ignore the request.  We're not worried
3225 	 * about the case where we're turning the VFTA VLAN ID
3226 	 * entry bit on, only when requested to turn it off as
3227 	 * there may be multiple pools and/or VFs using the
3228 	 * VLAN ID entry.  In that case we cannot clear the
3229 	 * VFTA bit until all pools/VFs using that VLAN ID have also
3230 	 * been cleared.  This will be indicated by "bits" being
3231 	 * zero.
3232 	 */
3233 	vfta_delta = 0;
3234 
3235 vlvf_update:
3236 	/* record pool change and enable VLAN ID if not already enabled */
3237 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3238 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3239 
3240 vfta_update:
3241 	/* Update VFTA now that we are ready for traffic */
3242 	if (vfta_delta)
3243 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3244 
3245 	return 0;
3246 }
3247 
3248 /**
3249  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3250  *  @hw: pointer to hardware structure
3251  *
3252  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3253  **/
3254 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3255 {
3256 	u32 offset;
3257 
3258 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3259 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3260 
3261 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3262 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3263 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3264 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3265 	}
3266 
3267 	return 0;
3268 }
3269 
3270 /**
3271  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3272  *  @hw: pointer to hardware structure
3273  *
3274  *  Contains the logic to identify if we need to verify link for the
3275  *  crosstalk fix
3276  **/
3277 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3278 {
3279 	/* Does FW say we need the fix */
3280 	if (!hw->need_crosstalk_fix)
3281 		return false;
3282 
3283 	/* Only consider SFP+ PHYs i.e. media type fiber */
3284 	switch (hw->mac.ops.get_media_type(hw)) {
3285 	case ixgbe_media_type_fiber:
3286 	case ixgbe_media_type_fiber_qsfp:
3287 		break;
3288 	default:
3289 		return false;
3290 	}
3291 
3292 	return true;
3293 }
3294 
3295 /**
3296  *  ixgbe_check_mac_link_generic - Determine link and speed status
3297  *  @hw: pointer to hardware structure
3298  *  @speed: pointer to link speed
3299  *  @link_up: true when link is up
3300  *  @link_up_wait_to_complete: bool used to wait for link up or not
3301  *
3302  *  Reads the links register to determine if link is up and the current speed
3303  **/
3304 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3305 				 bool *link_up, bool link_up_wait_to_complete)
3306 {
3307 	u32 links_reg, links_orig;
3308 	u32 i;
3309 
3310 	/* If Crosstalk fix enabled do the sanity check of making sure
3311 	 * the SFP+ cage is full.
3312 	 */
3313 	if (ixgbe_need_crosstalk_fix(hw)) {
3314 		u32 sfp_cage_full;
3315 
3316 		switch (hw->mac.type) {
3317 		case ixgbe_mac_82599EB:
3318 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3319 					IXGBE_ESDP_SDP2;
3320 			break;
3321 		case ixgbe_mac_X550EM_x:
3322 		case ixgbe_mac_x550em_a:
3323 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3324 					IXGBE_ESDP_SDP0;
3325 			break;
3326 		default:
3327 			/* sanity check - No SFP+ devices here */
3328 			sfp_cage_full = false;
3329 			break;
3330 		}
3331 
3332 		if (!sfp_cage_full) {
3333 			*link_up = false;
3334 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
3335 			return 0;
3336 		}
3337 	}
3338 
3339 	/* clear the old state */
3340 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3341 
3342 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3343 
3344 	if (links_orig != links_reg) {
3345 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3346 		       links_orig, links_reg);
3347 	}
3348 
3349 	if (link_up_wait_to_complete) {
3350 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3351 			if (links_reg & IXGBE_LINKS_UP) {
3352 				*link_up = true;
3353 				break;
3354 			} else {
3355 				*link_up = false;
3356 			}
3357 			msleep(100);
3358 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3359 		}
3360 	} else {
3361 		if (links_reg & IXGBE_LINKS_UP)
3362 			*link_up = true;
3363 		else
3364 			*link_up = false;
3365 	}
3366 
3367 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3368 	case IXGBE_LINKS_SPEED_10G_82599:
3369 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3370 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3371 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3372 		else
3373 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3374 		break;
3375 	case IXGBE_LINKS_SPEED_1G_82599:
3376 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3377 		break;
3378 	case IXGBE_LINKS_SPEED_100_82599:
3379 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3380 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3381 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3382 		else
3383 			*speed = IXGBE_LINK_SPEED_100_FULL;
3384 		break;
3385 	case IXGBE_LINKS_SPEED_10_X550EM_A:
3386 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3387 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3388 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3389 			*speed = IXGBE_LINK_SPEED_10_FULL;
3390 		}
3391 		break;
3392 	default:
3393 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3394 	}
3395 
3396 	return 0;
3397 }
3398 
3399 /**
3400  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3401  *  the EEPROM
3402  *  @hw: pointer to hardware structure
3403  *  @wwnn_prefix: the alternative WWNN prefix
3404  *  @wwpn_prefix: the alternative WWPN prefix
3405  *
3406  *  This function will read the EEPROM from the alternative SAN MAC address
3407  *  block to check the support for the alternative WWNN/WWPN prefix support.
3408  **/
3409 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3410 					u16 *wwpn_prefix)
3411 {
3412 	u16 offset, caps;
3413 	u16 alt_san_mac_blk_offset;
3414 
3415 	/* clear output first */
3416 	*wwnn_prefix = 0xFFFF;
3417 	*wwpn_prefix = 0xFFFF;
3418 
3419 	/* check if alternative SAN MAC is supported */
3420 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3421 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3422 		goto wwn_prefix_err;
3423 
3424 	if ((alt_san_mac_blk_offset == 0) ||
3425 	    (alt_san_mac_blk_offset == 0xFFFF))
3426 		return 0;
3427 
3428 	/* check capability in alternative san mac address block */
3429 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3430 	if (hw->eeprom.ops.read(hw, offset, &caps))
3431 		goto wwn_prefix_err;
3432 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3433 		return 0;
3434 
3435 	/* get the corresponding prefix for WWNN/WWPN */
3436 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3437 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3438 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3439 
3440 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3441 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3442 		goto wwn_prefix_err;
3443 
3444 	return 0;
3445 
3446 wwn_prefix_err:
3447 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3448 	return 0;
3449 }
3450 
3451 /**
3452  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3453  *  @hw: pointer to hardware structure
3454  *  @enable: enable or disable switch for MAC anti-spoofing
3455  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3456  *
3457  **/
3458 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3459 {
3460 	int vf_target_reg = vf >> 3;
3461 	int vf_target_shift = vf % 8;
3462 	u32 pfvfspoof;
3463 
3464 	if (hw->mac.type == ixgbe_mac_82598EB)
3465 		return;
3466 
3467 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3468 	if (enable)
3469 		pfvfspoof |= BIT(vf_target_shift);
3470 	else
3471 		pfvfspoof &= ~BIT(vf_target_shift);
3472 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3473 }
3474 
3475 /**
3476  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3477  *  @hw: pointer to hardware structure
3478  *  @enable: enable or disable switch for VLAN anti-spoofing
3479  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3480  *
3481  **/
3482 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3483 {
3484 	int vf_target_reg = vf >> 3;
3485 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3486 	u32 pfvfspoof;
3487 
3488 	if (hw->mac.type == ixgbe_mac_82598EB)
3489 		return;
3490 
3491 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3492 	if (enable)
3493 		pfvfspoof |= BIT(vf_target_shift);
3494 	else
3495 		pfvfspoof &= ~BIT(vf_target_shift);
3496 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3497 }
3498 
3499 /**
3500  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3501  *  @hw: pointer to hardware structure
3502  *  @device_caps: the EEPROM word with the extra device capabilities
3503  *
3504  *  This function will read the EEPROM location for the device capabilities,
3505  *  and return the word through device_caps.
3506  **/
3507 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3508 {
3509 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3510 
3511 	return 0;
3512 }
3513 
3514 /**
3515  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3516  * @hw: pointer to hardware structure
3517  * @num_pb: number of packet buffers to allocate
3518  * @headroom: reserve n KB of headroom
3519  * @strategy: packet buffer allocation strategy
3520  **/
3521 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3522 			     int num_pb,
3523 			     u32 headroom,
3524 			     int strategy)
3525 {
3526 	u32 pbsize = hw->mac.rx_pb_size;
3527 	int i = 0;
3528 	u32 rxpktsize, txpktsize, txpbthresh;
3529 
3530 	/* Reserve headroom */
3531 	pbsize -= headroom;
3532 
3533 	if (!num_pb)
3534 		num_pb = 1;
3535 
3536 	/* Divide remaining packet buffer space amongst the number
3537 	 * of packet buffers requested using supplied strategy.
3538 	 */
3539 	switch (strategy) {
3540 	case (PBA_STRATEGY_WEIGHTED):
3541 		/* pba_80_48 strategy weight first half of packet buffer with
3542 		 * 5/8 of the packet buffer space.
3543 		 */
3544 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3545 		pbsize -= rxpktsize * (num_pb / 2);
3546 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3547 		for (; i < (num_pb / 2); i++)
3548 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3549 		/* fall through - configure remaining packet buffers */
3550 	case (PBA_STRATEGY_EQUAL):
3551 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3552 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3553 		for (; i < num_pb; i++)
3554 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3555 		break;
3556 	default:
3557 		break;
3558 	}
3559 
3560 	/*
3561 	 * Setup Tx packet buffer and threshold equally for all TCs
3562 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3563 	 * 10 since the largest packet we support is just over 9K.
3564 	 */
3565 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3566 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3567 	for (i = 0; i < num_pb; i++) {
3568 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3569 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3570 	}
3571 
3572 	/* Clear unused TCs, if any, to zero buffer size*/
3573 	for (; i < IXGBE_MAX_PB; i++) {
3574 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3575 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3576 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3577 	}
3578 }
3579 
3580 /**
3581  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3582  *  @buffer: pointer to EEPROM
3583  *  @length: size of EEPROM to calculate a checksum for
3584  *
3585  *  Calculates the checksum for some buffer on a specified length.  The
3586  *  checksum calculated is returned.
3587  **/
3588 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3589 {
3590 	u32 i;
3591 	u8 sum = 0;
3592 
3593 	if (!buffer)
3594 		return 0;
3595 
3596 	for (i = 0; i < length; i++)
3597 		sum += buffer[i];
3598 
3599 	return (u8) (0 - sum);
3600 }
3601 
3602 /**
3603  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3604  *  @hw: pointer to the HW structure
3605  *  @buffer: command to write and where the return status will be placed
3606  *  @length: length of buffer, must be multiple of 4 bytes
3607  *  @timeout: time in ms to wait for command completion
3608  *
3609  *  Communicates with the manageability block. On success return 0
3610  *  else returns semaphore error when encountering an error acquiring
3611  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3612  *
3613  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3614  *  by the caller.
3615  **/
3616 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3617 		       u32 timeout)
3618 {
3619 	u32 hicr, i, fwsts;
3620 	u16 dword_len;
3621 
3622 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3623 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3624 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3625 	}
3626 
3627 	/* Set bit 9 of FWSTS clearing FW reset indication */
3628 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3629 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3630 
3631 	/* Check that the host interface is enabled. */
3632 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3633 	if (!(hicr & IXGBE_HICR_EN)) {
3634 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3635 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3636 	}
3637 
3638 	/* Calculate length in DWORDs. We must be DWORD aligned */
3639 	if (length % sizeof(u32)) {
3640 		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3641 		return IXGBE_ERR_INVALID_ARGUMENT;
3642 	}
3643 
3644 	dword_len = length >> 2;
3645 
3646 	/* The device driver writes the relevant command block
3647 	 * into the ram area.
3648 	 */
3649 	for (i = 0; i < dword_len; i++)
3650 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3651 				      i, cpu_to_le32(buffer[i]));
3652 
3653 	/* Setting this bit tells the ARC that a new command is pending. */
3654 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3655 
3656 	for (i = 0; i < timeout; i++) {
3657 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3658 		if (!(hicr & IXGBE_HICR_C))
3659 			break;
3660 		usleep_range(1000, 2000);
3661 	}
3662 
3663 	/* Check command successful completion. */
3664 	if ((timeout && i == timeout) ||
3665 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3666 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3667 
3668 	return 0;
3669 }
3670 
3671 /**
3672  *  ixgbe_host_interface_command - Issue command to manageability block
3673  *  @hw: pointer to the HW structure
3674  *  @buffer: contains the command to write and where the return status will
3675  *           be placed
3676  *  @length: length of buffer, must be multiple of 4 bytes
3677  *  @timeout: time in ms to wait for command completion
3678  *  @return_data: read and return data from the buffer (true) or not (false)
3679  *  Needed because FW structures are big endian and decoding of
3680  *  these fields can be 8 bit or 16 bit based on command. Decoding
3681  *  is not easily understood without making a table of commands.
3682  *  So we will leave this up to the caller to read back the data
3683  *  in these cases.
3684  *
3685  *  Communicates with the manageability block.  On success return 0
3686  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3687  **/
3688 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3689 				 u32 length, u32 timeout,
3690 				 bool return_data)
3691 {
3692 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3693 	union {
3694 		struct ixgbe_hic_hdr hdr;
3695 		u32 u32arr[1];
3696 	} *bp = buffer;
3697 	u16 buf_len, dword_len;
3698 	s32 status;
3699 	u32 bi;
3700 
3701 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3702 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3703 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3704 	}
3705 	/* Take management host interface semaphore */
3706 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3707 	if (status)
3708 		return status;
3709 
3710 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3711 	if (status)
3712 		goto rel_out;
3713 
3714 	if (!return_data)
3715 		goto rel_out;
3716 
3717 	/* Calculate length in DWORDs */
3718 	dword_len = hdr_size >> 2;
3719 
3720 	/* first pull in the header so we know the buffer length */
3721 	for (bi = 0; bi < dword_len; bi++) {
3722 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3723 		le32_to_cpus(&bp->u32arr[bi]);
3724 	}
3725 
3726 	/* If there is any thing in data position pull it in */
3727 	buf_len = bp->hdr.buf_len;
3728 	if (!buf_len)
3729 		goto rel_out;
3730 
3731 	if (length < round_up(buf_len, 4) + hdr_size) {
3732 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3733 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3734 		goto rel_out;
3735 	}
3736 
3737 	/* Calculate length in DWORDs, add 3 for odd lengths */
3738 	dword_len = (buf_len + 3) >> 2;
3739 
3740 	/* Pull in the rest of the buffer (bi is where we left off) */
3741 	for (; bi <= dword_len; bi++) {
3742 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3743 		le32_to_cpus(&bp->u32arr[bi]);
3744 	}
3745 
3746 rel_out:
3747 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3748 
3749 	return status;
3750 }
3751 
3752 /**
3753  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3754  *  @hw: pointer to the HW structure
3755  *  @maj: driver version major number
3756  *  @min: driver version minor number
3757  *  @build: driver version build number
3758  *  @sub: driver version sub build number
3759  *  @len: length of driver_ver string
3760  *  @driver_ver: driver string
3761  *
3762  *  Sends driver version number to firmware through the manageability
3763  *  block.  On success return 0
3764  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3765  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3766  **/
3767 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3768 				 u8 build, u8 sub, __always_unused u16 len,
3769 				 __always_unused const char *driver_ver)
3770 {
3771 	struct ixgbe_hic_drv_info fw_cmd;
3772 	int i;
3773 	s32 ret_val;
3774 
3775 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3776 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3777 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3778 	fw_cmd.port_num = hw->bus.func;
3779 	fw_cmd.ver_maj = maj;
3780 	fw_cmd.ver_min = min;
3781 	fw_cmd.ver_build = build;
3782 	fw_cmd.ver_sub = sub;
3783 	fw_cmd.hdr.checksum = 0;
3784 	fw_cmd.pad = 0;
3785 	fw_cmd.pad2 = 0;
3786 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3787 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3788 
3789 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3790 		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3791 						       sizeof(fw_cmd),
3792 						       IXGBE_HI_COMMAND_TIMEOUT,
3793 						       true);
3794 		if (ret_val != 0)
3795 			continue;
3796 
3797 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3798 		    FW_CEM_RESP_STATUS_SUCCESS)
3799 			ret_val = 0;
3800 		else
3801 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3802 
3803 		break;
3804 	}
3805 
3806 	return ret_val;
3807 }
3808 
3809 /**
3810  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3811  * @hw: pointer to the hardware structure
3812  *
3813  * The 82599 and x540 MACs can experience issues if TX work is still pending
3814  * when a reset occurs.  This function prevents this by flushing the PCIe
3815  * buffers on the system.
3816  **/
3817 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3818 {
3819 	u32 gcr_ext, hlreg0, i, poll;
3820 	u16 value;
3821 
3822 	/*
3823 	 * If double reset is not requested then all transactions should
3824 	 * already be clear and as such there is no work to do
3825 	 */
3826 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3827 		return;
3828 
3829 	/*
3830 	 * Set loopback enable to prevent any transmits from being sent
3831 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3832 	 * has already been cleared.
3833 	 */
3834 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3835 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3836 
3837 	/* wait for a last completion before clearing buffers */
3838 	IXGBE_WRITE_FLUSH(hw);
3839 	usleep_range(3000, 6000);
3840 
3841 	/* Before proceeding, make sure that the PCIe block does not have
3842 	 * transactions pending.
3843 	 */
3844 	poll = ixgbe_pcie_timeout_poll(hw);
3845 	for (i = 0; i < poll; i++) {
3846 		usleep_range(100, 200);
3847 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3848 		if (ixgbe_removed(hw->hw_addr))
3849 			break;
3850 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3851 			break;
3852 	}
3853 
3854 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3855 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3856 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3857 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3858 
3859 	/* Flush all writes and allow 20usec for all transactions to clear */
3860 	IXGBE_WRITE_FLUSH(hw);
3861 	udelay(20);
3862 
3863 	/* restore previous register values */
3864 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3865 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3866 }
3867 
3868 static const u8 ixgbe_emc_temp_data[4] = {
3869 	IXGBE_EMC_INTERNAL_DATA,
3870 	IXGBE_EMC_DIODE1_DATA,
3871 	IXGBE_EMC_DIODE2_DATA,
3872 	IXGBE_EMC_DIODE3_DATA
3873 };
3874 static const u8 ixgbe_emc_therm_limit[4] = {
3875 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3876 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3877 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3878 	IXGBE_EMC_DIODE3_THERM_LIMIT
3879 };
3880 
3881 /**
3882  *  ixgbe_get_ets_data - Extracts the ETS bit data
3883  *  @hw: pointer to hardware structure
3884  *  @ets_cfg: extected ETS data
3885  *  @ets_offset: offset of ETS data
3886  *
3887  *  Returns error code.
3888  **/
3889 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3890 			      u16 *ets_offset)
3891 {
3892 	s32 status;
3893 
3894 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3895 	if (status)
3896 		return status;
3897 
3898 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3899 		return IXGBE_NOT_IMPLEMENTED;
3900 
3901 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3902 	if (status)
3903 		return status;
3904 
3905 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3906 		return IXGBE_NOT_IMPLEMENTED;
3907 
3908 	return 0;
3909 }
3910 
3911 /**
3912  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3913  *  @hw: pointer to hardware structure
3914  *
3915  *  Returns the thermal sensor data structure
3916  **/
3917 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3918 {
3919 	s32 status;
3920 	u16 ets_offset;
3921 	u16 ets_cfg;
3922 	u16 ets_sensor;
3923 	u8  num_sensors;
3924 	u8  i;
3925 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3926 
3927 	/* Only support thermal sensors attached to physical port 0 */
3928 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3929 		return IXGBE_NOT_IMPLEMENTED;
3930 
3931 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3932 	if (status)
3933 		return status;
3934 
3935 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3936 	if (num_sensors > IXGBE_MAX_SENSORS)
3937 		num_sensors = IXGBE_MAX_SENSORS;
3938 
3939 	for (i = 0; i < num_sensors; i++) {
3940 		u8  sensor_index;
3941 		u8  sensor_location;
3942 
3943 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3944 					     &ets_sensor);
3945 		if (status)
3946 			return status;
3947 
3948 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3949 				IXGBE_ETS_DATA_INDEX_SHIFT);
3950 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3951 				   IXGBE_ETS_DATA_LOC_SHIFT);
3952 
3953 		if (sensor_location != 0) {
3954 			status = hw->phy.ops.read_i2c_byte(hw,
3955 					ixgbe_emc_temp_data[sensor_index],
3956 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3957 					&data->sensor[i].temp);
3958 			if (status)
3959 				return status;
3960 		}
3961 	}
3962 
3963 	return 0;
3964 }
3965 
3966 /**
3967  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3968  * @hw: pointer to hardware structure
3969  *
3970  * Inits the thermal sensor thresholds according to the NVM map
3971  * and save off the threshold and location values into mac.thermal_sensor_data
3972  **/
3973 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3974 {
3975 	s32 status;
3976 	u16 ets_offset;
3977 	u16 ets_cfg;
3978 	u16 ets_sensor;
3979 	u8  low_thresh_delta;
3980 	u8  num_sensors;
3981 	u8  therm_limit;
3982 	u8  i;
3983 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3984 
3985 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3986 
3987 	/* Only support thermal sensors attached to physical port 0 */
3988 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3989 		return IXGBE_NOT_IMPLEMENTED;
3990 
3991 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3992 	if (status)
3993 		return status;
3994 
3995 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3996 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3997 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3998 	if (num_sensors > IXGBE_MAX_SENSORS)
3999 		num_sensors = IXGBE_MAX_SENSORS;
4000 
4001 	for (i = 0; i < num_sensors; i++) {
4002 		u8  sensor_index;
4003 		u8  sensor_location;
4004 
4005 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
4006 			hw_err(hw, "eeprom read at offset %d failed\n",
4007 			       ets_offset + 1 + i);
4008 			continue;
4009 		}
4010 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
4011 				IXGBE_ETS_DATA_INDEX_SHIFT);
4012 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4013 				   IXGBE_ETS_DATA_LOC_SHIFT);
4014 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4015 
4016 		hw->phy.ops.write_i2c_byte(hw,
4017 			ixgbe_emc_therm_limit[sensor_index],
4018 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4019 
4020 		if (sensor_location == 0)
4021 			continue;
4022 
4023 		data->sensor[i].location = sensor_location;
4024 		data->sensor[i].caution_thresh = therm_limit;
4025 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4026 	}
4027 
4028 	return 0;
4029 }
4030 
4031 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4032 {
4033 	u32 rxctrl;
4034 
4035 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4036 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4037 		if (hw->mac.type != ixgbe_mac_82598EB) {
4038 			u32 pfdtxgswc;
4039 
4040 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4041 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4042 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4043 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4044 				hw->mac.set_lben = true;
4045 			} else {
4046 				hw->mac.set_lben = false;
4047 			}
4048 		}
4049 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4050 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4051 	}
4052 }
4053 
4054 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4055 {
4056 	u32 rxctrl;
4057 
4058 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4059 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4060 
4061 	if (hw->mac.type != ixgbe_mac_82598EB) {
4062 		if (hw->mac.set_lben) {
4063 			u32 pfdtxgswc;
4064 
4065 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4066 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4067 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4068 			hw->mac.set_lben = false;
4069 		}
4070 	}
4071 }
4072 
4073 /** ixgbe_mng_present - returns true when management capability is present
4074  * @hw: pointer to hardware structure
4075  **/
4076 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4077 {
4078 	u32 fwsm;
4079 
4080 	if (hw->mac.type < ixgbe_mac_82599EB)
4081 		return false;
4082 
4083 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4084 
4085 	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4086 }
4087 
4088 /**
4089  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4090  *  @hw: pointer to hardware structure
4091  *  @speed: new link speed
4092  *  @autoneg_wait_to_complete: true when waiting for completion is needed
4093  *
4094  *  Set the link speed in the MAC and/or PHY register and restarts link.
4095  */
4096 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4097 					  ixgbe_link_speed speed,
4098 					  bool autoneg_wait_to_complete)
4099 {
4100 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4101 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4102 	s32 status = 0;
4103 	u32 speedcnt = 0;
4104 	u32 i = 0;
4105 	bool autoneg, link_up = false;
4106 
4107 	/* Mask off requested but non-supported speeds */
4108 	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4109 	if (status)
4110 		return status;
4111 
4112 	speed &= link_speed;
4113 
4114 	/* Try each speed one by one, highest priority first.  We do this in
4115 	 * software because 10Gb fiber doesn't support speed autonegotiation.
4116 	 */
4117 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4118 		speedcnt++;
4119 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4120 
4121 		/* Set the module link speed */
4122 		switch (hw->phy.media_type) {
4123 		case ixgbe_media_type_fiber:
4124 			hw->mac.ops.set_rate_select_speed(hw,
4125 						    IXGBE_LINK_SPEED_10GB_FULL);
4126 			break;
4127 		case ixgbe_media_type_fiber_qsfp:
4128 			/* QSFP module automatically detects MAC link speed */
4129 			break;
4130 		default:
4131 			hw_dbg(hw, "Unexpected media type\n");
4132 			break;
4133 		}
4134 
4135 		/* Allow module to change analog characteristics (1G->10G) */
4136 		msleep(40);
4137 
4138 		status = hw->mac.ops.setup_mac_link(hw,
4139 						    IXGBE_LINK_SPEED_10GB_FULL,
4140 						    autoneg_wait_to_complete);
4141 		if (status)
4142 			return status;
4143 
4144 		/* Flap the Tx laser if it has not already been done */
4145 		if (hw->mac.ops.flap_tx_laser)
4146 			hw->mac.ops.flap_tx_laser(hw);
4147 
4148 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4149 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4150 		 * attempted.  82599 uses the same timing for 10g SFI.
4151 		 */
4152 		for (i = 0; i < 5; i++) {
4153 			/* Wait for the link partner to also set speed */
4154 			msleep(100);
4155 
4156 			/* If we have link, just jump out */
4157 			status = hw->mac.ops.check_link(hw, &link_speed,
4158 							&link_up, false);
4159 			if (status)
4160 				return status;
4161 
4162 			if (link_up)
4163 				goto out;
4164 		}
4165 	}
4166 
4167 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4168 		speedcnt++;
4169 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4170 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4171 
4172 		/* Set the module link speed */
4173 		switch (hw->phy.media_type) {
4174 		case ixgbe_media_type_fiber:
4175 			hw->mac.ops.set_rate_select_speed(hw,
4176 						     IXGBE_LINK_SPEED_1GB_FULL);
4177 			break;
4178 		case ixgbe_media_type_fiber_qsfp:
4179 			/* QSFP module automatically detects link speed */
4180 			break;
4181 		default:
4182 			hw_dbg(hw, "Unexpected media type\n");
4183 			break;
4184 		}
4185 
4186 		/* Allow module to change analog characteristics (10G->1G) */
4187 		msleep(40);
4188 
4189 		status = hw->mac.ops.setup_mac_link(hw,
4190 						    IXGBE_LINK_SPEED_1GB_FULL,
4191 						    autoneg_wait_to_complete);
4192 		if (status)
4193 			return status;
4194 
4195 		/* Flap the Tx laser if it has not already been done */
4196 		if (hw->mac.ops.flap_tx_laser)
4197 			hw->mac.ops.flap_tx_laser(hw);
4198 
4199 		/* Wait for the link partner to also set speed */
4200 		msleep(100);
4201 
4202 		/* If we have link, just jump out */
4203 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4204 						false);
4205 		if (status)
4206 			return status;
4207 
4208 		if (link_up)
4209 			goto out;
4210 	}
4211 
4212 	/* We didn't get link.  Configure back to the highest speed we tried,
4213 	 * (if there was more than one).  We call ourselves back with just the
4214 	 * single highest speed that the user requested.
4215 	 */
4216 	if (speedcnt > 1)
4217 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4218 						      highest_link_speed,
4219 						      autoneg_wait_to_complete);
4220 
4221 out:
4222 	/* Set autoneg_advertised value based on input link speed */
4223 	hw->phy.autoneg_advertised = 0;
4224 
4225 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4226 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4227 
4228 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4229 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4230 
4231 	return status;
4232 }
4233 
4234 /**
4235  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4236  *  @hw: pointer to hardware structure
4237  *  @speed: link speed to set
4238  *
4239  *  Set module link speed via the soft rate select.
4240  */
4241 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4242 				      ixgbe_link_speed speed)
4243 {
4244 	s32 status;
4245 	u8 rs, eeprom_data;
4246 
4247 	switch (speed) {
4248 	case IXGBE_LINK_SPEED_10GB_FULL:
4249 		/* one bit mask same as setting on */
4250 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4251 		break;
4252 	case IXGBE_LINK_SPEED_1GB_FULL:
4253 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4254 		break;
4255 	default:
4256 		hw_dbg(hw, "Invalid fixed module speed\n");
4257 		return;
4258 	}
4259 
4260 	/* Set RS0 */
4261 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4262 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4263 					   &eeprom_data);
4264 	if (status) {
4265 		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4266 		return;
4267 	}
4268 
4269 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4270 
4271 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4272 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4273 					    eeprom_data);
4274 	if (status) {
4275 		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4276 		return;
4277 	}
4278 
4279 	/* Set RS1 */
4280 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4281 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4282 					   &eeprom_data);
4283 	if (status) {
4284 		hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4285 		return;
4286 	}
4287 
4288 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4289 
4290 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4291 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4292 					    eeprom_data);
4293 	if (status) {
4294 		hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4295 		return;
4296 	}
4297 }
4298