1 /******************************************************************************* 2 3 Intel 10 Gigabit PCI Express Linux driver 4 Copyright(c) 1999 - 2014 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 #include <linux/pci.h> 30 #include <linux/delay.h> 31 #include <linux/sched.h> 32 #include <linux/netdevice.h> 33 34 #include "ixgbe.h" 35 #include "ixgbe_common.h" 36 #include "ixgbe_phy.h" 37 38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw); 39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw); 40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw); 41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw); 42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw); 43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, 44 u16 count); 45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count); 46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); 47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec); 48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw); 49 50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr); 51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg); 52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 53 u16 words, u16 *data); 54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 55 u16 words, u16 *data); 56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw, 57 u16 offset); 58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw); 59 60 /* Base table for registers values that change by MAC */ 61 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = { 62 IXGBE_MVALS_INIT(8259X) 63 }; 64 65 /** 66 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow 67 * control 68 * @hw: pointer to hardware structure 69 * 70 * There are several phys that do not support autoneg flow control. This 71 * function check the device id to see if the associated phy supports 72 * autoneg flow control. 73 **/ 74 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw) 75 { 76 bool supported = false; 77 ixgbe_link_speed speed; 78 bool link_up; 79 80 switch (hw->phy.media_type) { 81 case ixgbe_media_type_fiber: 82 hw->mac.ops.check_link(hw, &speed, &link_up, false); 83 /* if link is down, assume supported */ 84 if (link_up) 85 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ? 86 true : false; 87 else 88 supported = true; 89 break; 90 case ixgbe_media_type_backplane: 91 supported = true; 92 break; 93 case ixgbe_media_type_copper: 94 /* only some copper devices support flow control autoneg */ 95 switch (hw->device_id) { 96 case IXGBE_DEV_ID_82599_T3_LOM: 97 case IXGBE_DEV_ID_X540T: 98 case IXGBE_DEV_ID_X540T1: 99 case IXGBE_DEV_ID_X550T: 100 case IXGBE_DEV_ID_X550EM_X_10G_T: 101 supported = true; 102 break; 103 default: 104 break; 105 } 106 default: 107 break; 108 } 109 110 return supported; 111 } 112 113 /** 114 * ixgbe_setup_fc - Set up flow control 115 * @hw: pointer to hardware structure 116 * 117 * Called at init time to set up flow control. 118 **/ 119 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw) 120 { 121 s32 ret_val = 0; 122 u32 reg = 0, reg_bp = 0; 123 u16 reg_cu = 0; 124 bool locked = false; 125 126 /* 127 * Validate the requested mode. Strict IEEE mode does not allow 128 * ixgbe_fc_rx_pause because it will cause us to fail at UNH. 129 */ 130 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) { 131 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n"); 132 return IXGBE_ERR_INVALID_LINK_SETTINGS; 133 } 134 135 /* 136 * 10gig parts do not have a word in the EEPROM to determine the 137 * default flow control setting, so we explicitly set it to full. 138 */ 139 if (hw->fc.requested_mode == ixgbe_fc_default) 140 hw->fc.requested_mode = ixgbe_fc_full; 141 142 /* 143 * Set up the 1G and 10G flow control advertisement registers so the 144 * HW will be able to do fc autoneg once the cable is plugged in. If 145 * we link at 10G, the 1G advertisement is harmless and vice versa. 146 */ 147 switch (hw->phy.media_type) { 148 case ixgbe_media_type_backplane: 149 /* some MAC's need RMW protection on AUTOC */ 150 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, ®_bp); 151 if (ret_val) 152 return ret_val; 153 154 /* only backplane uses autoc so fall though */ 155 case ixgbe_media_type_fiber: 156 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); 157 158 break; 159 case ixgbe_media_type_copper: 160 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, 161 MDIO_MMD_AN, ®_cu); 162 break; 163 default: 164 break; 165 } 166 167 /* 168 * The possible values of fc.requested_mode are: 169 * 0: Flow control is completely disabled 170 * 1: Rx flow control is enabled (we can receive pause frames, 171 * but not send pause frames). 172 * 2: Tx flow control is enabled (we can send pause frames but 173 * we do not support receiving pause frames). 174 * 3: Both Rx and Tx flow control (symmetric) are enabled. 175 * other: Invalid. 176 */ 177 switch (hw->fc.requested_mode) { 178 case ixgbe_fc_none: 179 /* Flow control completely disabled by software override. */ 180 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE); 181 if (hw->phy.media_type == ixgbe_media_type_backplane) 182 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE | 183 IXGBE_AUTOC_ASM_PAUSE); 184 else if (hw->phy.media_type == ixgbe_media_type_copper) 185 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE); 186 break; 187 case ixgbe_fc_tx_pause: 188 /* 189 * Tx Flow control is enabled, and Rx Flow control is 190 * disabled by software override. 191 */ 192 reg |= IXGBE_PCS1GANA_ASM_PAUSE; 193 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE; 194 if (hw->phy.media_type == ixgbe_media_type_backplane) { 195 reg_bp |= IXGBE_AUTOC_ASM_PAUSE; 196 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE; 197 } else if (hw->phy.media_type == ixgbe_media_type_copper) { 198 reg_cu |= IXGBE_TAF_ASM_PAUSE; 199 reg_cu &= ~IXGBE_TAF_SYM_PAUSE; 200 } 201 break; 202 case ixgbe_fc_rx_pause: 203 /* 204 * Rx Flow control is enabled and Tx Flow control is 205 * disabled by software override. Since there really 206 * isn't a way to advertise that we are capable of RX 207 * Pause ONLY, we will advertise that we support both 208 * symmetric and asymmetric Rx PAUSE, as such we fall 209 * through to the fc_full statement. Later, we will 210 * disable the adapter's ability to send PAUSE frames. 211 */ 212 case ixgbe_fc_full: 213 /* Flow control (both Rx and Tx) is enabled by SW override. */ 214 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE; 215 if (hw->phy.media_type == ixgbe_media_type_backplane) 216 reg_bp |= IXGBE_AUTOC_SYM_PAUSE | 217 IXGBE_AUTOC_ASM_PAUSE; 218 else if (hw->phy.media_type == ixgbe_media_type_copper) 219 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE; 220 break; 221 default: 222 hw_dbg(hw, "Flow control param set incorrectly\n"); 223 return IXGBE_ERR_CONFIG; 224 } 225 226 if (hw->mac.type != ixgbe_mac_X540) { 227 /* 228 * Enable auto-negotiation between the MAC & PHY; 229 * the MAC will advertise clause 37 flow control. 230 */ 231 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg); 232 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL); 233 234 /* Disable AN timeout */ 235 if (hw->fc.strict_ieee) 236 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN; 237 238 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg); 239 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg); 240 } 241 242 /* 243 * AUTOC restart handles negotiation of 1G and 10G on backplane 244 * and copper. There is no need to set the PCS1GCTL register. 245 * 246 */ 247 if (hw->phy.media_type == ixgbe_media_type_backplane) { 248 /* Need the SW/FW semaphore around AUTOC writes if 82599 and 249 * LESM is on, likewise reset_pipeline requries the lock as 250 * it also writes AUTOC. 251 */ 252 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked); 253 if (ret_val) 254 return ret_val; 255 256 } else if ((hw->phy.media_type == ixgbe_media_type_copper) && 257 ixgbe_device_supports_autoneg_fc(hw)) { 258 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, 259 MDIO_MMD_AN, reg_cu); 260 } 261 262 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg); 263 return ret_val; 264 } 265 266 /** 267 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx 268 * @hw: pointer to hardware structure 269 * 270 * Starts the hardware by filling the bus info structure and media type, clears 271 * all on chip counters, initializes receive address registers, multicast 272 * table, VLAN filter table, calls routine to set up link and flow control 273 * settings, and leaves transmit and receive units disabled and uninitialized 274 **/ 275 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw) 276 { 277 s32 ret_val; 278 u32 ctrl_ext; 279 280 /* Set the media type */ 281 hw->phy.media_type = hw->mac.ops.get_media_type(hw); 282 283 /* Identify the PHY */ 284 hw->phy.ops.identify(hw); 285 286 /* Clear the VLAN filter table */ 287 hw->mac.ops.clear_vfta(hw); 288 289 /* Clear statistics registers */ 290 hw->mac.ops.clear_hw_cntrs(hw); 291 292 /* Set No Snoop Disable */ 293 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT); 294 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS; 295 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext); 296 IXGBE_WRITE_FLUSH(hw); 297 298 /* Setup flow control */ 299 ret_val = ixgbe_setup_fc(hw); 300 if (!ret_val) 301 return 0; 302 303 /* Clear adapter stopped flag */ 304 hw->adapter_stopped = false; 305 306 return ret_val; 307 } 308 309 /** 310 * ixgbe_start_hw_gen2 - Init sequence for common device family 311 * @hw: pointer to hw structure 312 * 313 * Performs the init sequence common to the second generation 314 * of 10 GbE devices. 315 * Devices in the second generation: 316 * 82599 317 * X540 318 **/ 319 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw) 320 { 321 u32 i; 322 323 /* Clear the rate limiters */ 324 for (i = 0; i < hw->mac.max_tx_queues; i++) { 325 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i); 326 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0); 327 } 328 IXGBE_WRITE_FLUSH(hw); 329 330 #ifndef CONFIG_SPARC 331 /* Disable relaxed ordering */ 332 for (i = 0; i < hw->mac.max_tx_queues; i++) { 333 u32 regval; 334 335 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i)); 336 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN; 337 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval); 338 } 339 340 for (i = 0; i < hw->mac.max_rx_queues; i++) { 341 u32 regval; 342 343 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i)); 344 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN | 345 IXGBE_DCA_RXCTRL_HEAD_WRO_EN); 346 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval); 347 } 348 #endif 349 return 0; 350 } 351 352 /** 353 * ixgbe_init_hw_generic - Generic hardware initialization 354 * @hw: pointer to hardware structure 355 * 356 * Initialize the hardware by resetting the hardware, filling the bus info 357 * structure and media type, clears all on chip counters, initializes receive 358 * address registers, multicast table, VLAN filter table, calls routine to set 359 * up link and flow control settings, and leaves transmit and receive units 360 * disabled and uninitialized 361 **/ 362 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw) 363 { 364 s32 status; 365 366 /* Reset the hardware */ 367 status = hw->mac.ops.reset_hw(hw); 368 369 if (status == 0) { 370 /* Start the HW */ 371 status = hw->mac.ops.start_hw(hw); 372 } 373 374 return status; 375 } 376 377 /** 378 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters 379 * @hw: pointer to hardware structure 380 * 381 * Clears all hardware statistics counters by reading them from the hardware 382 * Statistics counters are clear on read. 383 **/ 384 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw) 385 { 386 u16 i = 0; 387 388 IXGBE_READ_REG(hw, IXGBE_CRCERRS); 389 IXGBE_READ_REG(hw, IXGBE_ILLERRC); 390 IXGBE_READ_REG(hw, IXGBE_ERRBC); 391 IXGBE_READ_REG(hw, IXGBE_MSPDC); 392 for (i = 0; i < 8; i++) 393 IXGBE_READ_REG(hw, IXGBE_MPC(i)); 394 395 IXGBE_READ_REG(hw, IXGBE_MLFC); 396 IXGBE_READ_REG(hw, IXGBE_MRFC); 397 IXGBE_READ_REG(hw, IXGBE_RLEC); 398 IXGBE_READ_REG(hw, IXGBE_LXONTXC); 399 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC); 400 if (hw->mac.type >= ixgbe_mac_82599EB) { 401 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT); 402 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT); 403 } else { 404 IXGBE_READ_REG(hw, IXGBE_LXONRXC); 405 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC); 406 } 407 408 for (i = 0; i < 8; i++) { 409 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i)); 410 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i)); 411 if (hw->mac.type >= ixgbe_mac_82599EB) { 412 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i)); 413 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i)); 414 } else { 415 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i)); 416 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i)); 417 } 418 } 419 if (hw->mac.type >= ixgbe_mac_82599EB) 420 for (i = 0; i < 8; i++) 421 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i)); 422 IXGBE_READ_REG(hw, IXGBE_PRC64); 423 IXGBE_READ_REG(hw, IXGBE_PRC127); 424 IXGBE_READ_REG(hw, IXGBE_PRC255); 425 IXGBE_READ_REG(hw, IXGBE_PRC511); 426 IXGBE_READ_REG(hw, IXGBE_PRC1023); 427 IXGBE_READ_REG(hw, IXGBE_PRC1522); 428 IXGBE_READ_REG(hw, IXGBE_GPRC); 429 IXGBE_READ_REG(hw, IXGBE_BPRC); 430 IXGBE_READ_REG(hw, IXGBE_MPRC); 431 IXGBE_READ_REG(hw, IXGBE_GPTC); 432 IXGBE_READ_REG(hw, IXGBE_GORCL); 433 IXGBE_READ_REG(hw, IXGBE_GORCH); 434 IXGBE_READ_REG(hw, IXGBE_GOTCL); 435 IXGBE_READ_REG(hw, IXGBE_GOTCH); 436 if (hw->mac.type == ixgbe_mac_82598EB) 437 for (i = 0; i < 8; i++) 438 IXGBE_READ_REG(hw, IXGBE_RNBC(i)); 439 IXGBE_READ_REG(hw, IXGBE_RUC); 440 IXGBE_READ_REG(hw, IXGBE_RFC); 441 IXGBE_READ_REG(hw, IXGBE_ROC); 442 IXGBE_READ_REG(hw, IXGBE_RJC); 443 IXGBE_READ_REG(hw, IXGBE_MNGPRC); 444 IXGBE_READ_REG(hw, IXGBE_MNGPDC); 445 IXGBE_READ_REG(hw, IXGBE_MNGPTC); 446 IXGBE_READ_REG(hw, IXGBE_TORL); 447 IXGBE_READ_REG(hw, IXGBE_TORH); 448 IXGBE_READ_REG(hw, IXGBE_TPR); 449 IXGBE_READ_REG(hw, IXGBE_TPT); 450 IXGBE_READ_REG(hw, IXGBE_PTC64); 451 IXGBE_READ_REG(hw, IXGBE_PTC127); 452 IXGBE_READ_REG(hw, IXGBE_PTC255); 453 IXGBE_READ_REG(hw, IXGBE_PTC511); 454 IXGBE_READ_REG(hw, IXGBE_PTC1023); 455 IXGBE_READ_REG(hw, IXGBE_PTC1522); 456 IXGBE_READ_REG(hw, IXGBE_MPTC); 457 IXGBE_READ_REG(hw, IXGBE_BPTC); 458 for (i = 0; i < 16; i++) { 459 IXGBE_READ_REG(hw, IXGBE_QPRC(i)); 460 IXGBE_READ_REG(hw, IXGBE_QPTC(i)); 461 if (hw->mac.type >= ixgbe_mac_82599EB) { 462 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i)); 463 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i)); 464 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i)); 465 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i)); 466 IXGBE_READ_REG(hw, IXGBE_QPRDC(i)); 467 } else { 468 IXGBE_READ_REG(hw, IXGBE_QBRC(i)); 469 IXGBE_READ_REG(hw, IXGBE_QBTC(i)); 470 } 471 } 472 473 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) { 474 if (hw->phy.id == 0) 475 hw->phy.ops.identify(hw); 476 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i); 477 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i); 478 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i); 479 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i); 480 } 481 482 return 0; 483 } 484 485 /** 486 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM 487 * @hw: pointer to hardware structure 488 * @pba_num: stores the part number string from the EEPROM 489 * @pba_num_size: part number string buffer length 490 * 491 * Reads the part number string from the EEPROM. 492 **/ 493 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num, 494 u32 pba_num_size) 495 { 496 s32 ret_val; 497 u16 data; 498 u16 pba_ptr; 499 u16 offset; 500 u16 length; 501 502 if (pba_num == NULL) { 503 hw_dbg(hw, "PBA string buffer was null\n"); 504 return IXGBE_ERR_INVALID_ARGUMENT; 505 } 506 507 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data); 508 if (ret_val) { 509 hw_dbg(hw, "NVM Read Error\n"); 510 return ret_val; 511 } 512 513 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr); 514 if (ret_val) { 515 hw_dbg(hw, "NVM Read Error\n"); 516 return ret_val; 517 } 518 519 /* 520 * if data is not ptr guard the PBA must be in legacy format which 521 * means pba_ptr is actually our second data word for the PBA number 522 * and we can decode it into an ascii string 523 */ 524 if (data != IXGBE_PBANUM_PTR_GUARD) { 525 hw_dbg(hw, "NVM PBA number is not stored as string\n"); 526 527 /* we will need 11 characters to store the PBA */ 528 if (pba_num_size < 11) { 529 hw_dbg(hw, "PBA string buffer too small\n"); 530 return IXGBE_ERR_NO_SPACE; 531 } 532 533 /* extract hex string from data and pba_ptr */ 534 pba_num[0] = (data >> 12) & 0xF; 535 pba_num[1] = (data >> 8) & 0xF; 536 pba_num[2] = (data >> 4) & 0xF; 537 pba_num[3] = data & 0xF; 538 pba_num[4] = (pba_ptr >> 12) & 0xF; 539 pba_num[5] = (pba_ptr >> 8) & 0xF; 540 pba_num[6] = '-'; 541 pba_num[7] = 0; 542 pba_num[8] = (pba_ptr >> 4) & 0xF; 543 pba_num[9] = pba_ptr & 0xF; 544 545 /* put a null character on the end of our string */ 546 pba_num[10] = '\0'; 547 548 /* switch all the data but the '-' to hex char */ 549 for (offset = 0; offset < 10; offset++) { 550 if (pba_num[offset] < 0xA) 551 pba_num[offset] += '0'; 552 else if (pba_num[offset] < 0x10) 553 pba_num[offset] += 'A' - 0xA; 554 } 555 556 return 0; 557 } 558 559 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length); 560 if (ret_val) { 561 hw_dbg(hw, "NVM Read Error\n"); 562 return ret_val; 563 } 564 565 if (length == 0xFFFF || length == 0) { 566 hw_dbg(hw, "NVM PBA number section invalid length\n"); 567 return IXGBE_ERR_PBA_SECTION; 568 } 569 570 /* check if pba_num buffer is big enough */ 571 if (pba_num_size < (((u32)length * 2) - 1)) { 572 hw_dbg(hw, "PBA string buffer too small\n"); 573 return IXGBE_ERR_NO_SPACE; 574 } 575 576 /* trim pba length from start of string */ 577 pba_ptr++; 578 length--; 579 580 for (offset = 0; offset < length; offset++) { 581 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data); 582 if (ret_val) { 583 hw_dbg(hw, "NVM Read Error\n"); 584 return ret_val; 585 } 586 pba_num[offset * 2] = (u8)(data >> 8); 587 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF); 588 } 589 pba_num[offset * 2] = '\0'; 590 591 return 0; 592 } 593 594 /** 595 * ixgbe_get_mac_addr_generic - Generic get MAC address 596 * @hw: pointer to hardware structure 597 * @mac_addr: Adapter MAC address 598 * 599 * Reads the adapter's MAC address from first Receive Address Register (RAR0) 600 * A reset of the adapter must be performed prior to calling this function 601 * in order for the MAC address to have been loaded from the EEPROM into RAR0 602 **/ 603 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr) 604 { 605 u32 rar_high; 606 u32 rar_low; 607 u16 i; 608 609 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0)); 610 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0)); 611 612 for (i = 0; i < 4; i++) 613 mac_addr[i] = (u8)(rar_low >> (i*8)); 614 615 for (i = 0; i < 2; i++) 616 mac_addr[i+4] = (u8)(rar_high >> (i*8)); 617 618 return 0; 619 } 620 621 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status) 622 { 623 switch (link_status & IXGBE_PCI_LINK_WIDTH) { 624 case IXGBE_PCI_LINK_WIDTH_1: 625 return ixgbe_bus_width_pcie_x1; 626 case IXGBE_PCI_LINK_WIDTH_2: 627 return ixgbe_bus_width_pcie_x2; 628 case IXGBE_PCI_LINK_WIDTH_4: 629 return ixgbe_bus_width_pcie_x4; 630 case IXGBE_PCI_LINK_WIDTH_8: 631 return ixgbe_bus_width_pcie_x8; 632 default: 633 return ixgbe_bus_width_unknown; 634 } 635 } 636 637 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status) 638 { 639 switch (link_status & IXGBE_PCI_LINK_SPEED) { 640 case IXGBE_PCI_LINK_SPEED_2500: 641 return ixgbe_bus_speed_2500; 642 case IXGBE_PCI_LINK_SPEED_5000: 643 return ixgbe_bus_speed_5000; 644 case IXGBE_PCI_LINK_SPEED_8000: 645 return ixgbe_bus_speed_8000; 646 default: 647 return ixgbe_bus_speed_unknown; 648 } 649 } 650 651 /** 652 * ixgbe_get_bus_info_generic - Generic set PCI bus info 653 * @hw: pointer to hardware structure 654 * 655 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure 656 **/ 657 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw) 658 { 659 u16 link_status; 660 661 hw->bus.type = ixgbe_bus_type_pci_express; 662 663 /* Get the negotiated link width and speed from PCI config space */ 664 link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS); 665 666 hw->bus.width = ixgbe_convert_bus_width(link_status); 667 hw->bus.speed = ixgbe_convert_bus_speed(link_status); 668 669 hw->mac.ops.set_lan_id(hw); 670 671 return 0; 672 } 673 674 /** 675 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices 676 * @hw: pointer to the HW structure 677 * 678 * Determines the LAN function id by reading memory-mapped registers 679 * and swaps the port value if requested. 680 **/ 681 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw) 682 { 683 struct ixgbe_bus_info *bus = &hw->bus; 684 u32 reg; 685 686 reg = IXGBE_READ_REG(hw, IXGBE_STATUS); 687 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT; 688 bus->lan_id = bus->func; 689 690 /* check for a port swap */ 691 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw)); 692 if (reg & IXGBE_FACTPS_LFS) 693 bus->func ^= 0x1; 694 } 695 696 /** 697 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units 698 * @hw: pointer to hardware structure 699 * 700 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts, 701 * disables transmit and receive units. The adapter_stopped flag is used by 702 * the shared code and drivers to determine if the adapter is in a stopped 703 * state and should not touch the hardware. 704 **/ 705 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw) 706 { 707 u32 reg_val; 708 u16 i; 709 710 /* 711 * Set the adapter_stopped flag so other driver functions stop touching 712 * the hardware 713 */ 714 hw->adapter_stopped = true; 715 716 /* Disable the receive unit */ 717 hw->mac.ops.disable_rx(hw); 718 719 /* Clear interrupt mask to stop interrupts from being generated */ 720 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK); 721 722 /* Clear any pending interrupts, flush previous writes */ 723 IXGBE_READ_REG(hw, IXGBE_EICR); 724 725 /* Disable the transmit unit. Each queue must be disabled. */ 726 for (i = 0; i < hw->mac.max_tx_queues; i++) 727 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH); 728 729 /* Disable the receive unit by stopping each queue */ 730 for (i = 0; i < hw->mac.max_rx_queues; i++) { 731 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i)); 732 reg_val &= ~IXGBE_RXDCTL_ENABLE; 733 reg_val |= IXGBE_RXDCTL_SWFLSH; 734 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val); 735 } 736 737 /* flush all queues disables */ 738 IXGBE_WRITE_FLUSH(hw); 739 usleep_range(1000, 2000); 740 741 /* 742 * Prevent the PCI-E bus from from hanging by disabling PCI-E master 743 * access and verify no pending requests 744 */ 745 return ixgbe_disable_pcie_master(hw); 746 } 747 748 /** 749 * ixgbe_led_on_generic - Turns on the software controllable LEDs. 750 * @hw: pointer to hardware structure 751 * @index: led number to turn on 752 **/ 753 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index) 754 { 755 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 756 757 /* To turn on the LED, set mode to ON. */ 758 led_reg &= ~IXGBE_LED_MODE_MASK(index); 759 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index); 760 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 761 IXGBE_WRITE_FLUSH(hw); 762 763 return 0; 764 } 765 766 /** 767 * ixgbe_led_off_generic - Turns off the software controllable LEDs. 768 * @hw: pointer to hardware structure 769 * @index: led number to turn off 770 **/ 771 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index) 772 { 773 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 774 775 /* To turn off the LED, set mode to OFF. */ 776 led_reg &= ~IXGBE_LED_MODE_MASK(index); 777 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index); 778 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 779 IXGBE_WRITE_FLUSH(hw); 780 781 return 0; 782 } 783 784 /** 785 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params 786 * @hw: pointer to hardware structure 787 * 788 * Initializes the EEPROM parameters ixgbe_eeprom_info within the 789 * ixgbe_hw struct in order to set up EEPROM access. 790 **/ 791 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw) 792 { 793 struct ixgbe_eeprom_info *eeprom = &hw->eeprom; 794 u32 eec; 795 u16 eeprom_size; 796 797 if (eeprom->type == ixgbe_eeprom_uninitialized) { 798 eeprom->type = ixgbe_eeprom_none; 799 /* Set default semaphore delay to 10ms which is a well 800 * tested value */ 801 eeprom->semaphore_delay = 10; 802 /* Clear EEPROM page size, it will be initialized as needed */ 803 eeprom->word_page_size = 0; 804 805 /* 806 * Check for EEPROM present first. 807 * If not present leave as none 808 */ 809 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw)); 810 if (eec & IXGBE_EEC_PRES) { 811 eeprom->type = ixgbe_eeprom_spi; 812 813 /* 814 * SPI EEPROM is assumed here. This code would need to 815 * change if a future EEPROM is not SPI. 816 */ 817 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >> 818 IXGBE_EEC_SIZE_SHIFT); 819 eeprom->word_size = 1 << (eeprom_size + 820 IXGBE_EEPROM_WORD_SIZE_SHIFT); 821 } 822 823 if (eec & IXGBE_EEC_ADDR_SIZE) 824 eeprom->address_bits = 16; 825 else 826 eeprom->address_bits = 8; 827 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n", 828 eeprom->type, eeprom->word_size, eeprom->address_bits); 829 } 830 831 return 0; 832 } 833 834 /** 835 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang 836 * @hw: pointer to hardware structure 837 * @offset: offset within the EEPROM to write 838 * @words: number of words 839 * @data: 16 bit word(s) to write to EEPROM 840 * 841 * Reads 16 bit word(s) from EEPROM through bit-bang method 842 **/ 843 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, 844 u16 words, u16 *data) 845 { 846 s32 status; 847 u16 i, count; 848 849 hw->eeprom.ops.init_params(hw); 850 851 if (words == 0) 852 return IXGBE_ERR_INVALID_ARGUMENT; 853 854 if (offset + words > hw->eeprom.word_size) 855 return IXGBE_ERR_EEPROM; 856 857 /* 858 * The EEPROM page size cannot be queried from the chip. We do lazy 859 * initialization. It is worth to do that when we write large buffer. 860 */ 861 if ((hw->eeprom.word_page_size == 0) && 862 (words > IXGBE_EEPROM_PAGE_SIZE_MAX)) 863 ixgbe_detect_eeprom_page_size_generic(hw, offset); 864 865 /* 866 * We cannot hold synchronization semaphores for too long 867 * to avoid other entity starvation. However it is more efficient 868 * to read in bursts than synchronizing access for each word. 869 */ 870 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) { 871 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ? 872 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i); 873 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i, 874 count, &data[i]); 875 876 if (status != 0) 877 break; 878 } 879 880 return status; 881 } 882 883 /** 884 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM 885 * @hw: pointer to hardware structure 886 * @offset: offset within the EEPROM to be written to 887 * @words: number of word(s) 888 * @data: 16 bit word(s) to be written to the EEPROM 889 * 890 * If ixgbe_eeprom_update_checksum is not called after this function, the 891 * EEPROM will most likely contain an invalid checksum. 892 **/ 893 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 894 u16 words, u16 *data) 895 { 896 s32 status; 897 u16 word; 898 u16 page_size; 899 u16 i; 900 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI; 901 902 /* Prepare the EEPROM for writing */ 903 status = ixgbe_acquire_eeprom(hw); 904 if (status) 905 return status; 906 907 if (ixgbe_ready_eeprom(hw) != 0) { 908 ixgbe_release_eeprom(hw); 909 return IXGBE_ERR_EEPROM; 910 } 911 912 for (i = 0; i < words; i++) { 913 ixgbe_standby_eeprom(hw); 914 915 /* Send the WRITE ENABLE command (8 bit opcode) */ 916 ixgbe_shift_out_eeprom_bits(hw, 917 IXGBE_EEPROM_WREN_OPCODE_SPI, 918 IXGBE_EEPROM_OPCODE_BITS); 919 920 ixgbe_standby_eeprom(hw); 921 922 /* Some SPI eeproms use the 8th address bit embedded 923 * in the opcode 924 */ 925 if ((hw->eeprom.address_bits == 8) && 926 ((offset + i) >= 128)) 927 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; 928 929 /* Send the Write command (8-bit opcode + addr) */ 930 ixgbe_shift_out_eeprom_bits(hw, write_opcode, 931 IXGBE_EEPROM_OPCODE_BITS); 932 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2), 933 hw->eeprom.address_bits); 934 935 page_size = hw->eeprom.word_page_size; 936 937 /* Send the data in burst via SPI */ 938 do { 939 word = data[i]; 940 word = (word >> 8) | (word << 8); 941 ixgbe_shift_out_eeprom_bits(hw, word, 16); 942 943 if (page_size == 0) 944 break; 945 946 /* do not wrap around page */ 947 if (((offset + i) & (page_size - 1)) == 948 (page_size - 1)) 949 break; 950 } while (++i < words); 951 952 ixgbe_standby_eeprom(hw); 953 usleep_range(10000, 20000); 954 } 955 /* Done with writing - release the EEPROM */ 956 ixgbe_release_eeprom(hw); 957 958 return 0; 959 } 960 961 /** 962 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM 963 * @hw: pointer to hardware structure 964 * @offset: offset within the EEPROM to be written to 965 * @data: 16 bit word to be written to the EEPROM 966 * 967 * If ixgbe_eeprom_update_checksum is not called after this function, the 968 * EEPROM will most likely contain an invalid checksum. 969 **/ 970 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data) 971 { 972 hw->eeprom.ops.init_params(hw); 973 974 if (offset >= hw->eeprom.word_size) 975 return IXGBE_ERR_EEPROM; 976 977 return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data); 978 } 979 980 /** 981 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang 982 * @hw: pointer to hardware structure 983 * @offset: offset within the EEPROM to be read 984 * @words: number of word(s) 985 * @data: read 16 bit words(s) from EEPROM 986 * 987 * Reads 16 bit word(s) from EEPROM through bit-bang method 988 **/ 989 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, 990 u16 words, u16 *data) 991 { 992 s32 status; 993 u16 i, count; 994 995 hw->eeprom.ops.init_params(hw); 996 997 if (words == 0) 998 return IXGBE_ERR_INVALID_ARGUMENT; 999 1000 if (offset + words > hw->eeprom.word_size) 1001 return IXGBE_ERR_EEPROM; 1002 1003 /* 1004 * We cannot hold synchronization semaphores for too long 1005 * to avoid other entity starvation. However it is more efficient 1006 * to read in bursts than synchronizing access for each word. 1007 */ 1008 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) { 1009 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ? 1010 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i); 1011 1012 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i, 1013 count, &data[i]); 1014 1015 if (status) 1016 return status; 1017 } 1018 1019 return 0; 1020 } 1021 1022 /** 1023 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang 1024 * @hw: pointer to hardware structure 1025 * @offset: offset within the EEPROM to be read 1026 * @words: number of word(s) 1027 * @data: read 16 bit word(s) from EEPROM 1028 * 1029 * Reads 16 bit word(s) from EEPROM through bit-bang method 1030 **/ 1031 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset, 1032 u16 words, u16 *data) 1033 { 1034 s32 status; 1035 u16 word_in; 1036 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI; 1037 u16 i; 1038 1039 /* Prepare the EEPROM for reading */ 1040 status = ixgbe_acquire_eeprom(hw); 1041 if (status) 1042 return status; 1043 1044 if (ixgbe_ready_eeprom(hw) != 0) { 1045 ixgbe_release_eeprom(hw); 1046 return IXGBE_ERR_EEPROM; 1047 } 1048 1049 for (i = 0; i < words; i++) { 1050 ixgbe_standby_eeprom(hw); 1051 /* Some SPI eeproms use the 8th address bit embedded 1052 * in the opcode 1053 */ 1054 if ((hw->eeprom.address_bits == 8) && 1055 ((offset + i) >= 128)) 1056 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI; 1057 1058 /* Send the READ command (opcode + addr) */ 1059 ixgbe_shift_out_eeprom_bits(hw, read_opcode, 1060 IXGBE_EEPROM_OPCODE_BITS); 1061 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2), 1062 hw->eeprom.address_bits); 1063 1064 /* Read the data. */ 1065 word_in = ixgbe_shift_in_eeprom_bits(hw, 16); 1066 data[i] = (word_in >> 8) | (word_in << 8); 1067 } 1068 1069 /* End this read operation */ 1070 ixgbe_release_eeprom(hw); 1071 1072 return 0; 1073 } 1074 1075 /** 1076 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang 1077 * @hw: pointer to hardware structure 1078 * @offset: offset within the EEPROM to be read 1079 * @data: read 16 bit value from EEPROM 1080 * 1081 * Reads 16 bit value from EEPROM through bit-bang method 1082 **/ 1083 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset, 1084 u16 *data) 1085 { 1086 hw->eeprom.ops.init_params(hw); 1087 1088 if (offset >= hw->eeprom.word_size) 1089 return IXGBE_ERR_EEPROM; 1090 1091 return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data); 1092 } 1093 1094 /** 1095 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD 1096 * @hw: pointer to hardware structure 1097 * @offset: offset of word in the EEPROM to read 1098 * @words: number of word(s) 1099 * @data: 16 bit word(s) from the EEPROM 1100 * 1101 * Reads a 16 bit word(s) from the EEPROM using the EERD register. 1102 **/ 1103 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset, 1104 u16 words, u16 *data) 1105 { 1106 u32 eerd; 1107 s32 status; 1108 u32 i; 1109 1110 hw->eeprom.ops.init_params(hw); 1111 1112 if (words == 0) 1113 return IXGBE_ERR_INVALID_ARGUMENT; 1114 1115 if (offset >= hw->eeprom.word_size) 1116 return IXGBE_ERR_EEPROM; 1117 1118 for (i = 0; i < words; i++) { 1119 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) | 1120 IXGBE_EEPROM_RW_REG_START; 1121 1122 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd); 1123 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ); 1124 1125 if (status == 0) { 1126 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >> 1127 IXGBE_EEPROM_RW_REG_DATA); 1128 } else { 1129 hw_dbg(hw, "Eeprom read timed out\n"); 1130 return status; 1131 } 1132 } 1133 1134 return 0; 1135 } 1136 1137 /** 1138 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size 1139 * @hw: pointer to hardware structure 1140 * @offset: offset within the EEPROM to be used as a scratch pad 1141 * 1142 * Discover EEPROM page size by writing marching data at given offset. 1143 * This function is called only when we are writing a new large buffer 1144 * at given offset so the data would be overwritten anyway. 1145 **/ 1146 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw, 1147 u16 offset) 1148 { 1149 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX]; 1150 s32 status; 1151 u16 i; 1152 1153 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++) 1154 data[i] = i; 1155 1156 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX; 1157 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1158 IXGBE_EEPROM_PAGE_SIZE_MAX, data); 1159 hw->eeprom.word_page_size = 0; 1160 if (status) 1161 return status; 1162 1163 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data); 1164 if (status) 1165 return status; 1166 1167 /* 1168 * When writing in burst more than the actual page size 1169 * EEPROM address wraps around current page. 1170 */ 1171 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0]; 1172 1173 hw_dbg(hw, "Detected EEPROM page size = %d words.\n", 1174 hw->eeprom.word_page_size); 1175 return 0; 1176 } 1177 1178 /** 1179 * ixgbe_read_eerd_generic - Read EEPROM word using EERD 1180 * @hw: pointer to hardware structure 1181 * @offset: offset of word in the EEPROM to read 1182 * @data: word read from the EEPROM 1183 * 1184 * Reads a 16 bit word from the EEPROM using the EERD register. 1185 **/ 1186 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data) 1187 { 1188 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data); 1189 } 1190 1191 /** 1192 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR 1193 * @hw: pointer to hardware structure 1194 * @offset: offset of word in the EEPROM to write 1195 * @words: number of words 1196 * @data: word(s) write to the EEPROM 1197 * 1198 * Write a 16 bit word(s) to the EEPROM using the EEWR register. 1199 **/ 1200 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset, 1201 u16 words, u16 *data) 1202 { 1203 u32 eewr; 1204 s32 status; 1205 u16 i; 1206 1207 hw->eeprom.ops.init_params(hw); 1208 1209 if (words == 0) 1210 return IXGBE_ERR_INVALID_ARGUMENT; 1211 1212 if (offset >= hw->eeprom.word_size) 1213 return IXGBE_ERR_EEPROM; 1214 1215 for (i = 0; i < words; i++) { 1216 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) | 1217 (data[i] << IXGBE_EEPROM_RW_REG_DATA) | 1218 IXGBE_EEPROM_RW_REG_START; 1219 1220 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE); 1221 if (status) { 1222 hw_dbg(hw, "Eeprom write EEWR timed out\n"); 1223 return status; 1224 } 1225 1226 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr); 1227 1228 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE); 1229 if (status) { 1230 hw_dbg(hw, "Eeprom write EEWR timed out\n"); 1231 return status; 1232 } 1233 } 1234 1235 return 0; 1236 } 1237 1238 /** 1239 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR 1240 * @hw: pointer to hardware structure 1241 * @offset: offset of word in the EEPROM to write 1242 * @data: word write to the EEPROM 1243 * 1244 * Write a 16 bit word to the EEPROM using the EEWR register. 1245 **/ 1246 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data) 1247 { 1248 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data); 1249 } 1250 1251 /** 1252 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status 1253 * @hw: pointer to hardware structure 1254 * @ee_reg: EEPROM flag for polling 1255 * 1256 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the 1257 * read or write is done respectively. 1258 **/ 1259 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg) 1260 { 1261 u32 i; 1262 u32 reg; 1263 1264 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) { 1265 if (ee_reg == IXGBE_NVM_POLL_READ) 1266 reg = IXGBE_READ_REG(hw, IXGBE_EERD); 1267 else 1268 reg = IXGBE_READ_REG(hw, IXGBE_EEWR); 1269 1270 if (reg & IXGBE_EEPROM_RW_REG_DONE) { 1271 return 0; 1272 } 1273 udelay(5); 1274 } 1275 return IXGBE_ERR_EEPROM; 1276 } 1277 1278 /** 1279 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang 1280 * @hw: pointer to hardware structure 1281 * 1282 * Prepares EEPROM for access using bit-bang method. This function should 1283 * be called before issuing a command to the EEPROM. 1284 **/ 1285 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw) 1286 { 1287 u32 eec; 1288 u32 i; 1289 1290 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0) 1291 return IXGBE_ERR_SWFW_SYNC; 1292 1293 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw)); 1294 1295 /* Request EEPROM Access */ 1296 eec |= IXGBE_EEC_REQ; 1297 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec); 1298 1299 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) { 1300 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw)); 1301 if (eec & IXGBE_EEC_GNT) 1302 break; 1303 udelay(5); 1304 } 1305 1306 /* Release if grant not acquired */ 1307 if (!(eec & IXGBE_EEC_GNT)) { 1308 eec &= ~IXGBE_EEC_REQ; 1309 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec); 1310 hw_dbg(hw, "Could not acquire EEPROM grant\n"); 1311 1312 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); 1313 return IXGBE_ERR_EEPROM; 1314 } 1315 1316 /* Setup EEPROM for Read/Write */ 1317 /* Clear CS and SK */ 1318 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK); 1319 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec); 1320 IXGBE_WRITE_FLUSH(hw); 1321 udelay(1); 1322 return 0; 1323 } 1324 1325 /** 1326 * ixgbe_get_eeprom_semaphore - Get hardware semaphore 1327 * @hw: pointer to hardware structure 1328 * 1329 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method 1330 **/ 1331 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw) 1332 { 1333 u32 timeout = 2000; 1334 u32 i; 1335 u32 swsm; 1336 1337 /* Get SMBI software semaphore between device drivers first */ 1338 for (i = 0; i < timeout; i++) { 1339 /* 1340 * If the SMBI bit is 0 when we read it, then the bit will be 1341 * set and we have the semaphore 1342 */ 1343 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw)); 1344 if (!(swsm & IXGBE_SWSM_SMBI)) 1345 break; 1346 usleep_range(50, 100); 1347 } 1348 1349 if (i == timeout) { 1350 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n"); 1351 /* this release is particularly important because our attempts 1352 * above to get the semaphore may have succeeded, and if there 1353 * was a timeout, we should unconditionally clear the semaphore 1354 * bits to free the driver to make progress 1355 */ 1356 ixgbe_release_eeprom_semaphore(hw); 1357 1358 usleep_range(50, 100); 1359 /* one last try 1360 * If the SMBI bit is 0 when we read it, then the bit will be 1361 * set and we have the semaphore 1362 */ 1363 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw)); 1364 if (swsm & IXGBE_SWSM_SMBI) { 1365 hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n"); 1366 return IXGBE_ERR_EEPROM; 1367 } 1368 } 1369 1370 /* Now get the semaphore between SW/FW through the SWESMBI bit */ 1371 for (i = 0; i < timeout; i++) { 1372 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw)); 1373 1374 /* Set the SW EEPROM semaphore bit to request access */ 1375 swsm |= IXGBE_SWSM_SWESMBI; 1376 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm); 1377 1378 /* If we set the bit successfully then we got the 1379 * semaphore. 1380 */ 1381 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw)); 1382 if (swsm & IXGBE_SWSM_SWESMBI) 1383 break; 1384 1385 usleep_range(50, 100); 1386 } 1387 1388 /* Release semaphores and return error if SW EEPROM semaphore 1389 * was not granted because we don't have access to the EEPROM 1390 */ 1391 if (i >= timeout) { 1392 hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n"); 1393 ixgbe_release_eeprom_semaphore(hw); 1394 return IXGBE_ERR_EEPROM; 1395 } 1396 1397 return 0; 1398 } 1399 1400 /** 1401 * ixgbe_release_eeprom_semaphore - Release hardware semaphore 1402 * @hw: pointer to hardware structure 1403 * 1404 * This function clears hardware semaphore bits. 1405 **/ 1406 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw) 1407 { 1408 u32 swsm; 1409 1410 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw)); 1411 1412 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */ 1413 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI); 1414 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm); 1415 IXGBE_WRITE_FLUSH(hw); 1416 } 1417 1418 /** 1419 * ixgbe_ready_eeprom - Polls for EEPROM ready 1420 * @hw: pointer to hardware structure 1421 **/ 1422 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw) 1423 { 1424 u16 i; 1425 u8 spi_stat_reg; 1426 1427 /* 1428 * Read "Status Register" repeatedly until the LSB is cleared. The 1429 * EEPROM will signal that the command has been completed by clearing 1430 * bit 0 of the internal status register. If it's not cleared within 1431 * 5 milliseconds, then error out. 1432 */ 1433 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) { 1434 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI, 1435 IXGBE_EEPROM_OPCODE_BITS); 1436 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8); 1437 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI)) 1438 break; 1439 1440 udelay(5); 1441 ixgbe_standby_eeprom(hw); 1442 } 1443 1444 /* 1445 * On some parts, SPI write time could vary from 0-20mSec on 3.3V 1446 * devices (and only 0-5mSec on 5V devices) 1447 */ 1448 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) { 1449 hw_dbg(hw, "SPI EEPROM Status error\n"); 1450 return IXGBE_ERR_EEPROM; 1451 } 1452 1453 return 0; 1454 } 1455 1456 /** 1457 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state 1458 * @hw: pointer to hardware structure 1459 **/ 1460 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw) 1461 { 1462 u32 eec; 1463 1464 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw)); 1465 1466 /* Toggle CS to flush commands */ 1467 eec |= IXGBE_EEC_CS; 1468 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec); 1469 IXGBE_WRITE_FLUSH(hw); 1470 udelay(1); 1471 eec &= ~IXGBE_EEC_CS; 1472 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec); 1473 IXGBE_WRITE_FLUSH(hw); 1474 udelay(1); 1475 } 1476 1477 /** 1478 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM. 1479 * @hw: pointer to hardware structure 1480 * @data: data to send to the EEPROM 1481 * @count: number of bits to shift out 1482 **/ 1483 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data, 1484 u16 count) 1485 { 1486 u32 eec; 1487 u32 mask; 1488 u32 i; 1489 1490 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw)); 1491 1492 /* 1493 * Mask is used to shift "count" bits of "data" out to the EEPROM 1494 * one bit at a time. Determine the starting bit based on count 1495 */ 1496 mask = 0x01 << (count - 1); 1497 1498 for (i = 0; i < count; i++) { 1499 /* 1500 * A "1" is shifted out to the EEPROM by setting bit "DI" to a 1501 * "1", and then raising and then lowering the clock (the SK 1502 * bit controls the clock input to the EEPROM). A "0" is 1503 * shifted out to the EEPROM by setting "DI" to "0" and then 1504 * raising and then lowering the clock. 1505 */ 1506 if (data & mask) 1507 eec |= IXGBE_EEC_DI; 1508 else 1509 eec &= ~IXGBE_EEC_DI; 1510 1511 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec); 1512 IXGBE_WRITE_FLUSH(hw); 1513 1514 udelay(1); 1515 1516 ixgbe_raise_eeprom_clk(hw, &eec); 1517 ixgbe_lower_eeprom_clk(hw, &eec); 1518 1519 /* 1520 * Shift mask to signify next bit of data to shift in to the 1521 * EEPROM 1522 */ 1523 mask = mask >> 1; 1524 } 1525 1526 /* We leave the "DI" bit set to "0" when we leave this routine. */ 1527 eec &= ~IXGBE_EEC_DI; 1528 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec); 1529 IXGBE_WRITE_FLUSH(hw); 1530 } 1531 1532 /** 1533 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM 1534 * @hw: pointer to hardware structure 1535 **/ 1536 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count) 1537 { 1538 u32 eec; 1539 u32 i; 1540 u16 data = 0; 1541 1542 /* 1543 * In order to read a register from the EEPROM, we need to shift 1544 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising 1545 * the clock input to the EEPROM (setting the SK bit), and then reading 1546 * the value of the "DO" bit. During this "shifting in" process the 1547 * "DI" bit should always be clear. 1548 */ 1549 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw)); 1550 1551 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI); 1552 1553 for (i = 0; i < count; i++) { 1554 data = data << 1; 1555 ixgbe_raise_eeprom_clk(hw, &eec); 1556 1557 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw)); 1558 1559 eec &= ~(IXGBE_EEC_DI); 1560 if (eec & IXGBE_EEC_DO) 1561 data |= 1; 1562 1563 ixgbe_lower_eeprom_clk(hw, &eec); 1564 } 1565 1566 return data; 1567 } 1568 1569 /** 1570 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input. 1571 * @hw: pointer to hardware structure 1572 * @eec: EEC register's current value 1573 **/ 1574 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) 1575 { 1576 /* 1577 * Raise the clock input to the EEPROM 1578 * (setting the SK bit), then delay 1579 */ 1580 *eec = *eec | IXGBE_EEC_SK; 1581 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec); 1582 IXGBE_WRITE_FLUSH(hw); 1583 udelay(1); 1584 } 1585 1586 /** 1587 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input. 1588 * @hw: pointer to hardware structure 1589 * @eecd: EECD's current value 1590 **/ 1591 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec) 1592 { 1593 /* 1594 * Lower the clock input to the EEPROM (clearing the SK bit), then 1595 * delay 1596 */ 1597 *eec = *eec & ~IXGBE_EEC_SK; 1598 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec); 1599 IXGBE_WRITE_FLUSH(hw); 1600 udelay(1); 1601 } 1602 1603 /** 1604 * ixgbe_release_eeprom - Release EEPROM, release semaphores 1605 * @hw: pointer to hardware structure 1606 **/ 1607 static void ixgbe_release_eeprom(struct ixgbe_hw *hw) 1608 { 1609 u32 eec; 1610 1611 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw)); 1612 1613 eec |= IXGBE_EEC_CS; /* Pull CS high */ 1614 eec &= ~IXGBE_EEC_SK; /* Lower SCK */ 1615 1616 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec); 1617 IXGBE_WRITE_FLUSH(hw); 1618 1619 udelay(1); 1620 1621 /* Stop requesting EEPROM access */ 1622 eec &= ~IXGBE_EEC_REQ; 1623 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec); 1624 1625 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM); 1626 1627 /* 1628 * Delay before attempt to obtain semaphore again to allow FW 1629 * access. semaphore_delay is in ms we need us for usleep_range 1630 */ 1631 usleep_range(hw->eeprom.semaphore_delay * 1000, 1632 hw->eeprom.semaphore_delay * 2000); 1633 } 1634 1635 /** 1636 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum 1637 * @hw: pointer to hardware structure 1638 **/ 1639 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw) 1640 { 1641 u16 i; 1642 u16 j; 1643 u16 checksum = 0; 1644 u16 length = 0; 1645 u16 pointer = 0; 1646 u16 word = 0; 1647 1648 /* Include 0x0-0x3F in the checksum */ 1649 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) { 1650 if (hw->eeprom.ops.read(hw, i, &word)) { 1651 hw_dbg(hw, "EEPROM read failed\n"); 1652 break; 1653 } 1654 checksum += word; 1655 } 1656 1657 /* Include all data from pointers except for the fw pointer */ 1658 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) { 1659 if (hw->eeprom.ops.read(hw, i, &pointer)) { 1660 hw_dbg(hw, "EEPROM read failed\n"); 1661 return IXGBE_ERR_EEPROM; 1662 } 1663 1664 /* If the pointer seems invalid */ 1665 if (pointer == 0xFFFF || pointer == 0) 1666 continue; 1667 1668 if (hw->eeprom.ops.read(hw, pointer, &length)) { 1669 hw_dbg(hw, "EEPROM read failed\n"); 1670 return IXGBE_ERR_EEPROM; 1671 } 1672 1673 if (length == 0xFFFF || length == 0) 1674 continue; 1675 1676 for (j = pointer + 1; j <= pointer + length; j++) { 1677 if (hw->eeprom.ops.read(hw, j, &word)) { 1678 hw_dbg(hw, "EEPROM read failed\n"); 1679 return IXGBE_ERR_EEPROM; 1680 } 1681 checksum += word; 1682 } 1683 } 1684 1685 checksum = (u16)IXGBE_EEPROM_SUM - checksum; 1686 1687 return (s32)checksum; 1688 } 1689 1690 /** 1691 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum 1692 * @hw: pointer to hardware structure 1693 * @checksum_val: calculated checksum 1694 * 1695 * Performs checksum calculation and validates the EEPROM checksum. If the 1696 * caller does not need checksum_val, the value can be NULL. 1697 **/ 1698 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw, 1699 u16 *checksum_val) 1700 { 1701 s32 status; 1702 u16 checksum; 1703 u16 read_checksum = 0; 1704 1705 /* 1706 * Read the first word from the EEPROM. If this times out or fails, do 1707 * not continue or we could be in for a very long wait while every 1708 * EEPROM read fails 1709 */ 1710 status = hw->eeprom.ops.read(hw, 0, &checksum); 1711 if (status) { 1712 hw_dbg(hw, "EEPROM read failed\n"); 1713 return status; 1714 } 1715 1716 status = hw->eeprom.ops.calc_checksum(hw); 1717 if (status < 0) 1718 return status; 1719 1720 checksum = (u16)(status & 0xffff); 1721 1722 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum); 1723 if (status) { 1724 hw_dbg(hw, "EEPROM read failed\n"); 1725 return status; 1726 } 1727 1728 /* Verify read checksum from EEPROM is the same as 1729 * calculated checksum 1730 */ 1731 if (read_checksum != checksum) 1732 status = IXGBE_ERR_EEPROM_CHECKSUM; 1733 1734 /* If the user cares, return the calculated checksum */ 1735 if (checksum_val) 1736 *checksum_val = checksum; 1737 1738 return status; 1739 } 1740 1741 /** 1742 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum 1743 * @hw: pointer to hardware structure 1744 **/ 1745 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw) 1746 { 1747 s32 status; 1748 u16 checksum; 1749 1750 /* 1751 * Read the first word from the EEPROM. If this times out or fails, do 1752 * not continue or we could be in for a very long wait while every 1753 * EEPROM read fails 1754 */ 1755 status = hw->eeprom.ops.read(hw, 0, &checksum); 1756 if (status) { 1757 hw_dbg(hw, "EEPROM read failed\n"); 1758 return status; 1759 } 1760 1761 status = hw->eeprom.ops.calc_checksum(hw); 1762 if (status < 0) 1763 return status; 1764 1765 checksum = (u16)(status & 0xffff); 1766 1767 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum); 1768 1769 return status; 1770 } 1771 1772 /** 1773 * ixgbe_set_rar_generic - Set Rx address register 1774 * @hw: pointer to hardware structure 1775 * @index: Receive address register to write 1776 * @addr: Address to put into receive address register 1777 * @vmdq: VMDq "set" or "pool" index 1778 * @enable_addr: set flag that address is active 1779 * 1780 * Puts an ethernet address into a receive address register. 1781 **/ 1782 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq, 1783 u32 enable_addr) 1784 { 1785 u32 rar_low, rar_high; 1786 u32 rar_entries = hw->mac.num_rar_entries; 1787 1788 /* Make sure we are using a valid rar index range */ 1789 if (index >= rar_entries) { 1790 hw_dbg(hw, "RAR index %d is out of range.\n", index); 1791 return IXGBE_ERR_INVALID_ARGUMENT; 1792 } 1793 1794 /* setup VMDq pool selection before this RAR gets enabled */ 1795 hw->mac.ops.set_vmdq(hw, index, vmdq); 1796 1797 /* 1798 * HW expects these in little endian so we reverse the byte 1799 * order from network order (big endian) to little endian 1800 */ 1801 rar_low = ((u32)addr[0] | 1802 ((u32)addr[1] << 8) | 1803 ((u32)addr[2] << 16) | 1804 ((u32)addr[3] << 24)); 1805 /* 1806 * Some parts put the VMDq setting in the extra RAH bits, 1807 * so save everything except the lower 16 bits that hold part 1808 * of the address and the address valid bit. 1809 */ 1810 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); 1811 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); 1812 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8)); 1813 1814 if (enable_addr != 0) 1815 rar_high |= IXGBE_RAH_AV; 1816 1817 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low); 1818 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); 1819 1820 return 0; 1821 } 1822 1823 /** 1824 * ixgbe_clear_rar_generic - Remove Rx address register 1825 * @hw: pointer to hardware structure 1826 * @index: Receive address register to write 1827 * 1828 * Clears an ethernet address from a receive address register. 1829 **/ 1830 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index) 1831 { 1832 u32 rar_high; 1833 u32 rar_entries = hw->mac.num_rar_entries; 1834 1835 /* Make sure we are using a valid rar index range */ 1836 if (index >= rar_entries) { 1837 hw_dbg(hw, "RAR index %d is out of range.\n", index); 1838 return IXGBE_ERR_INVALID_ARGUMENT; 1839 } 1840 1841 /* 1842 * Some parts put the VMDq setting in the extra RAH bits, 1843 * so save everything except the lower 16 bits that hold part 1844 * of the address and the address valid bit. 1845 */ 1846 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index)); 1847 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV); 1848 1849 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0); 1850 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high); 1851 1852 /* clear VMDq pool/queue selection for this RAR */ 1853 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL); 1854 1855 return 0; 1856 } 1857 1858 /** 1859 * ixgbe_init_rx_addrs_generic - Initializes receive address filters. 1860 * @hw: pointer to hardware structure 1861 * 1862 * Places the MAC address in receive address register 0 and clears the rest 1863 * of the receive address registers. Clears the multicast table. Assumes 1864 * the receiver is in reset when the routine is called. 1865 **/ 1866 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw) 1867 { 1868 u32 i; 1869 u32 rar_entries = hw->mac.num_rar_entries; 1870 1871 /* 1872 * If the current mac address is valid, assume it is a software override 1873 * to the permanent address. 1874 * Otherwise, use the permanent address from the eeprom. 1875 */ 1876 if (!is_valid_ether_addr(hw->mac.addr)) { 1877 /* Get the MAC address from the RAR0 for later reference */ 1878 hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 1879 1880 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr); 1881 } else { 1882 /* Setup the receive address. */ 1883 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n"); 1884 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr); 1885 1886 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV); 1887 1888 /* clear VMDq pool/queue selection for RAR 0 */ 1889 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL); 1890 } 1891 hw->addr_ctrl.overflow_promisc = 0; 1892 1893 hw->addr_ctrl.rar_used_count = 1; 1894 1895 /* Zero out the other receive addresses. */ 1896 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1); 1897 for (i = 1; i < rar_entries; i++) { 1898 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0); 1899 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0); 1900 } 1901 1902 /* Clear the MTA */ 1903 hw->addr_ctrl.mta_in_use = 0; 1904 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); 1905 1906 hw_dbg(hw, " Clearing MTA\n"); 1907 for (i = 0; i < hw->mac.mcft_size; i++) 1908 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0); 1909 1910 if (hw->mac.ops.init_uta_tables) 1911 hw->mac.ops.init_uta_tables(hw); 1912 1913 return 0; 1914 } 1915 1916 /** 1917 * ixgbe_mta_vector - Determines bit-vector in multicast table to set 1918 * @hw: pointer to hardware structure 1919 * @mc_addr: the multicast address 1920 * 1921 * Extracts the 12 bits, from a multicast address, to determine which 1922 * bit-vector to set in the multicast table. The hardware uses 12 bits, from 1923 * incoming rx multicast addresses, to determine the bit-vector to check in 1924 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set 1925 * by the MO field of the MCSTCTRL. The MO field is set during initialization 1926 * to mc_filter_type. 1927 **/ 1928 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr) 1929 { 1930 u32 vector = 0; 1931 1932 switch (hw->mac.mc_filter_type) { 1933 case 0: /* use bits [47:36] of the address */ 1934 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); 1935 break; 1936 case 1: /* use bits [46:35] of the address */ 1937 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); 1938 break; 1939 case 2: /* use bits [45:34] of the address */ 1940 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); 1941 break; 1942 case 3: /* use bits [43:32] of the address */ 1943 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); 1944 break; 1945 default: /* Invalid mc_filter_type */ 1946 hw_dbg(hw, "MC filter type param set incorrectly\n"); 1947 break; 1948 } 1949 1950 /* vector can only be 12-bits or boundary will be exceeded */ 1951 vector &= 0xFFF; 1952 return vector; 1953 } 1954 1955 /** 1956 * ixgbe_set_mta - Set bit-vector in multicast table 1957 * @hw: pointer to hardware structure 1958 * @hash_value: Multicast address hash value 1959 * 1960 * Sets the bit-vector in the multicast table. 1961 **/ 1962 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr) 1963 { 1964 u32 vector; 1965 u32 vector_bit; 1966 u32 vector_reg; 1967 1968 hw->addr_ctrl.mta_in_use++; 1969 1970 vector = ixgbe_mta_vector(hw, mc_addr); 1971 hw_dbg(hw, " bit-vector = 0x%03X\n", vector); 1972 1973 /* 1974 * The MTA is a register array of 128 32-bit registers. It is treated 1975 * like an array of 4096 bits. We want to set bit 1976 * BitArray[vector_value]. So we figure out what register the bit is 1977 * in, read it, OR in the new bit, then write back the new value. The 1978 * register is determined by the upper 7 bits of the vector value and 1979 * the bit within that register are determined by the lower 5 bits of 1980 * the value. 1981 */ 1982 vector_reg = (vector >> 5) & 0x7F; 1983 vector_bit = vector & 0x1F; 1984 hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit); 1985 } 1986 1987 /** 1988 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses 1989 * @hw: pointer to hardware structure 1990 * @netdev: pointer to net device structure 1991 * 1992 * The given list replaces any existing list. Clears the MC addrs from receive 1993 * address registers and the multicast table. Uses unused receive address 1994 * registers for the first multicast addresses, and hashes the rest into the 1995 * multicast table. 1996 **/ 1997 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, 1998 struct net_device *netdev) 1999 { 2000 struct netdev_hw_addr *ha; 2001 u32 i; 2002 2003 /* 2004 * Set the new number of MC addresses that we are being requested to 2005 * use. 2006 */ 2007 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev); 2008 hw->addr_ctrl.mta_in_use = 0; 2009 2010 /* Clear mta_shadow */ 2011 hw_dbg(hw, " Clearing MTA\n"); 2012 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); 2013 2014 /* Update mta shadow */ 2015 netdev_for_each_mc_addr(ha, netdev) { 2016 hw_dbg(hw, " Adding the multicast addresses:\n"); 2017 ixgbe_set_mta(hw, ha->addr); 2018 } 2019 2020 /* Enable mta */ 2021 for (i = 0; i < hw->mac.mcft_size; i++) 2022 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i, 2023 hw->mac.mta_shadow[i]); 2024 2025 if (hw->addr_ctrl.mta_in_use > 0) 2026 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, 2027 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type); 2028 2029 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n"); 2030 return 0; 2031 } 2032 2033 /** 2034 * ixgbe_enable_mc_generic - Enable multicast address in RAR 2035 * @hw: pointer to hardware structure 2036 * 2037 * Enables multicast address in RAR and the use of the multicast hash table. 2038 **/ 2039 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw) 2040 { 2041 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; 2042 2043 if (a->mta_in_use > 0) 2044 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE | 2045 hw->mac.mc_filter_type); 2046 2047 return 0; 2048 } 2049 2050 /** 2051 * ixgbe_disable_mc_generic - Disable multicast address in RAR 2052 * @hw: pointer to hardware structure 2053 * 2054 * Disables multicast address in RAR and the use of the multicast hash table. 2055 **/ 2056 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw) 2057 { 2058 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl; 2059 2060 if (a->mta_in_use > 0) 2061 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type); 2062 2063 return 0; 2064 } 2065 2066 /** 2067 * ixgbe_fc_enable_generic - Enable flow control 2068 * @hw: pointer to hardware structure 2069 * 2070 * Enable flow control according to the current settings. 2071 **/ 2072 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw) 2073 { 2074 u32 mflcn_reg, fccfg_reg; 2075 u32 reg; 2076 u32 fcrtl, fcrth; 2077 int i; 2078 2079 /* Validate the water mark configuration. */ 2080 if (!hw->fc.pause_time) 2081 return IXGBE_ERR_INVALID_LINK_SETTINGS; 2082 2083 /* Low water mark of zero causes XOFF floods */ 2084 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) { 2085 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) && 2086 hw->fc.high_water[i]) { 2087 if (!hw->fc.low_water[i] || 2088 hw->fc.low_water[i] >= hw->fc.high_water[i]) { 2089 hw_dbg(hw, "Invalid water mark configuration\n"); 2090 return IXGBE_ERR_INVALID_LINK_SETTINGS; 2091 } 2092 } 2093 } 2094 2095 /* Negotiate the fc mode to use */ 2096 ixgbe_fc_autoneg(hw); 2097 2098 /* Disable any previous flow control settings */ 2099 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN); 2100 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE); 2101 2102 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG); 2103 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY); 2104 2105 /* 2106 * The possible values of fc.current_mode are: 2107 * 0: Flow control is completely disabled 2108 * 1: Rx flow control is enabled (we can receive pause frames, 2109 * but not send pause frames). 2110 * 2: Tx flow control is enabled (we can send pause frames but 2111 * we do not support receiving pause frames). 2112 * 3: Both Rx and Tx flow control (symmetric) are enabled. 2113 * other: Invalid. 2114 */ 2115 switch (hw->fc.current_mode) { 2116 case ixgbe_fc_none: 2117 /* 2118 * Flow control is disabled by software override or autoneg. 2119 * The code below will actually disable it in the HW. 2120 */ 2121 break; 2122 case ixgbe_fc_rx_pause: 2123 /* 2124 * Rx Flow control is enabled and Tx Flow control is 2125 * disabled by software override. Since there really 2126 * isn't a way to advertise that we are capable of RX 2127 * Pause ONLY, we will advertise that we support both 2128 * symmetric and asymmetric Rx PAUSE. Later, we will 2129 * disable the adapter's ability to send PAUSE frames. 2130 */ 2131 mflcn_reg |= IXGBE_MFLCN_RFCE; 2132 break; 2133 case ixgbe_fc_tx_pause: 2134 /* 2135 * Tx Flow control is enabled, and Rx Flow control is 2136 * disabled by software override. 2137 */ 2138 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; 2139 break; 2140 case ixgbe_fc_full: 2141 /* Flow control (both Rx and Tx) is enabled by SW override. */ 2142 mflcn_reg |= IXGBE_MFLCN_RFCE; 2143 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X; 2144 break; 2145 default: 2146 hw_dbg(hw, "Flow control param set incorrectly\n"); 2147 return IXGBE_ERR_CONFIG; 2148 } 2149 2150 /* Set 802.3x based flow control settings. */ 2151 mflcn_reg |= IXGBE_MFLCN_DPF; 2152 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg); 2153 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg); 2154 2155 /* Set up and enable Rx high/low water mark thresholds, enable XON. */ 2156 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) { 2157 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) && 2158 hw->fc.high_water[i]) { 2159 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE; 2160 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl); 2161 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN; 2162 } else { 2163 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0); 2164 /* 2165 * In order to prevent Tx hangs when the internal Tx 2166 * switch is enabled we must set the high water mark 2167 * to the maximum FCRTH value. This allows the Tx 2168 * switch to function even under heavy Rx workloads. 2169 */ 2170 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32; 2171 } 2172 2173 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth); 2174 } 2175 2176 /* Configure pause time (2 TCs per register) */ 2177 reg = hw->fc.pause_time * 0x00010001; 2178 for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++) 2179 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg); 2180 2181 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2); 2182 2183 return 0; 2184 } 2185 2186 /** 2187 * ixgbe_negotiate_fc - Negotiate flow control 2188 * @hw: pointer to hardware structure 2189 * @adv_reg: flow control advertised settings 2190 * @lp_reg: link partner's flow control settings 2191 * @adv_sym: symmetric pause bit in advertisement 2192 * @adv_asm: asymmetric pause bit in advertisement 2193 * @lp_sym: symmetric pause bit in link partner advertisement 2194 * @lp_asm: asymmetric pause bit in link partner advertisement 2195 * 2196 * Find the intersection between advertised settings and link partner's 2197 * advertised settings 2198 **/ 2199 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg, 2200 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm) 2201 { 2202 if ((!(adv_reg)) || (!(lp_reg))) 2203 return IXGBE_ERR_FC_NOT_NEGOTIATED; 2204 2205 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) { 2206 /* 2207 * Now we need to check if the user selected Rx ONLY 2208 * of pause frames. In this case, we had to advertise 2209 * FULL flow control because we could not advertise RX 2210 * ONLY. Hence, we must now check to see if we need to 2211 * turn OFF the TRANSMISSION of PAUSE frames. 2212 */ 2213 if (hw->fc.requested_mode == ixgbe_fc_full) { 2214 hw->fc.current_mode = ixgbe_fc_full; 2215 hw_dbg(hw, "Flow Control = FULL.\n"); 2216 } else { 2217 hw->fc.current_mode = ixgbe_fc_rx_pause; 2218 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n"); 2219 } 2220 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) && 2221 (lp_reg & lp_sym) && (lp_reg & lp_asm)) { 2222 hw->fc.current_mode = ixgbe_fc_tx_pause; 2223 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n"); 2224 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) && 2225 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) { 2226 hw->fc.current_mode = ixgbe_fc_rx_pause; 2227 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n"); 2228 } else { 2229 hw->fc.current_mode = ixgbe_fc_none; 2230 hw_dbg(hw, "Flow Control = NONE.\n"); 2231 } 2232 return 0; 2233 } 2234 2235 /** 2236 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber 2237 * @hw: pointer to hardware structure 2238 * 2239 * Enable flow control according on 1 gig fiber. 2240 **/ 2241 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw) 2242 { 2243 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat; 2244 s32 ret_val; 2245 2246 /* 2247 * On multispeed fiber at 1g, bail out if 2248 * - link is up but AN did not complete, or if 2249 * - link is up and AN completed but timed out 2250 */ 2251 2252 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA); 2253 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) || 2254 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) 2255 return IXGBE_ERR_FC_NOT_NEGOTIATED; 2256 2257 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA); 2258 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP); 2259 2260 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg, 2261 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE, 2262 IXGBE_PCS1GANA_ASM_PAUSE, 2263 IXGBE_PCS1GANA_SYM_PAUSE, 2264 IXGBE_PCS1GANA_ASM_PAUSE); 2265 2266 return ret_val; 2267 } 2268 2269 /** 2270 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37 2271 * @hw: pointer to hardware structure 2272 * 2273 * Enable flow control according to IEEE clause 37. 2274 **/ 2275 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw) 2276 { 2277 u32 links2, anlp1_reg, autoc_reg, links; 2278 s32 ret_val; 2279 2280 /* 2281 * On backplane, bail out if 2282 * - backplane autoneg was not completed, or if 2283 * - we are 82599 and link partner is not AN enabled 2284 */ 2285 links = IXGBE_READ_REG(hw, IXGBE_LINKS); 2286 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) 2287 return IXGBE_ERR_FC_NOT_NEGOTIATED; 2288 2289 if (hw->mac.type == ixgbe_mac_82599EB) { 2290 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2); 2291 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) 2292 return IXGBE_ERR_FC_NOT_NEGOTIATED; 2293 } 2294 /* 2295 * Read the 10g AN autoc and LP ability registers and resolve 2296 * local flow control settings accordingly 2297 */ 2298 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); 2299 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1); 2300 2301 ret_val = ixgbe_negotiate_fc(hw, autoc_reg, 2302 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE, 2303 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE); 2304 2305 return ret_val; 2306 } 2307 2308 /** 2309 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37 2310 * @hw: pointer to hardware structure 2311 * 2312 * Enable flow control according to IEEE clause 37. 2313 **/ 2314 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw) 2315 { 2316 u16 technology_ability_reg = 0; 2317 u16 lp_technology_ability_reg = 0; 2318 2319 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, 2320 MDIO_MMD_AN, 2321 &technology_ability_reg); 2322 hw->phy.ops.read_reg(hw, MDIO_AN_LPA, 2323 MDIO_MMD_AN, 2324 &lp_technology_ability_reg); 2325 2326 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg, 2327 (u32)lp_technology_ability_reg, 2328 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE, 2329 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE); 2330 } 2331 2332 /** 2333 * ixgbe_fc_autoneg - Configure flow control 2334 * @hw: pointer to hardware structure 2335 * 2336 * Compares our advertised flow control capabilities to those advertised by 2337 * our link partner, and determines the proper flow control mode to use. 2338 **/ 2339 void ixgbe_fc_autoneg(struct ixgbe_hw *hw) 2340 { 2341 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED; 2342 ixgbe_link_speed speed; 2343 bool link_up; 2344 2345 /* 2346 * AN should have completed when the cable was plugged in. 2347 * Look for reasons to bail out. Bail out if: 2348 * - FC autoneg is disabled, or if 2349 * - link is not up. 2350 * 2351 * Since we're being called from an LSC, link is already known to be up. 2352 * So use link_up_wait_to_complete=false. 2353 */ 2354 if (hw->fc.disable_fc_autoneg) 2355 goto out; 2356 2357 hw->mac.ops.check_link(hw, &speed, &link_up, false); 2358 if (!link_up) 2359 goto out; 2360 2361 switch (hw->phy.media_type) { 2362 /* Autoneg flow control on fiber adapters */ 2363 case ixgbe_media_type_fiber: 2364 if (speed == IXGBE_LINK_SPEED_1GB_FULL) 2365 ret_val = ixgbe_fc_autoneg_fiber(hw); 2366 break; 2367 2368 /* Autoneg flow control on backplane adapters */ 2369 case ixgbe_media_type_backplane: 2370 ret_val = ixgbe_fc_autoneg_backplane(hw); 2371 break; 2372 2373 /* Autoneg flow control on copper adapters */ 2374 case ixgbe_media_type_copper: 2375 if (ixgbe_device_supports_autoneg_fc(hw)) 2376 ret_val = ixgbe_fc_autoneg_copper(hw); 2377 break; 2378 2379 default: 2380 break; 2381 } 2382 2383 out: 2384 if (ret_val == 0) { 2385 hw->fc.fc_was_autonegged = true; 2386 } else { 2387 hw->fc.fc_was_autonegged = false; 2388 hw->fc.current_mode = hw->fc.requested_mode; 2389 } 2390 } 2391 2392 /** 2393 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion 2394 * @hw: pointer to hardware structure 2395 * 2396 * System-wide timeout range is encoded in PCIe Device Control2 register. 2397 * 2398 * Add 10% to specified maximum and return the number of times to poll for 2399 * completion timeout, in units of 100 microsec. Never return less than 2400 * 800 = 80 millisec. 2401 **/ 2402 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw) 2403 { 2404 s16 devctl2; 2405 u32 pollcnt; 2406 2407 devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2); 2408 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK; 2409 2410 switch (devctl2) { 2411 case IXGBE_PCIDEVCTRL2_65_130ms: 2412 pollcnt = 1300; /* 130 millisec */ 2413 break; 2414 case IXGBE_PCIDEVCTRL2_260_520ms: 2415 pollcnt = 5200; /* 520 millisec */ 2416 break; 2417 case IXGBE_PCIDEVCTRL2_1_2s: 2418 pollcnt = 20000; /* 2 sec */ 2419 break; 2420 case IXGBE_PCIDEVCTRL2_4_8s: 2421 pollcnt = 80000; /* 8 sec */ 2422 break; 2423 case IXGBE_PCIDEVCTRL2_17_34s: 2424 pollcnt = 34000; /* 34 sec */ 2425 break; 2426 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */ 2427 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */ 2428 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */ 2429 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */ 2430 default: 2431 pollcnt = 800; /* 80 millisec minimum */ 2432 break; 2433 } 2434 2435 /* add 10% to spec maximum */ 2436 return (pollcnt * 11) / 10; 2437 } 2438 2439 /** 2440 * ixgbe_disable_pcie_master - Disable PCI-express master access 2441 * @hw: pointer to hardware structure 2442 * 2443 * Disables PCI-Express master access and verifies there are no pending 2444 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable 2445 * bit hasn't caused the master requests to be disabled, else 0 2446 * is returned signifying master requests disabled. 2447 **/ 2448 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw) 2449 { 2450 u32 i, poll; 2451 u16 value; 2452 2453 /* Always set this bit to ensure any future transactions are blocked */ 2454 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS); 2455 2456 /* Exit if master requests are blocked */ 2457 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) || 2458 ixgbe_removed(hw->hw_addr)) 2459 return 0; 2460 2461 /* Poll for master request bit to clear */ 2462 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) { 2463 udelay(100); 2464 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) 2465 return 0; 2466 } 2467 2468 /* 2469 * Two consecutive resets are required via CTRL.RST per datasheet 2470 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine 2471 * of this need. The first reset prevents new master requests from 2472 * being issued by our device. We then must wait 1usec or more for any 2473 * remaining completions from the PCIe bus to trickle in, and then reset 2474 * again to clear out any effects they may have had on our device. 2475 */ 2476 hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n"); 2477 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED; 2478 2479 /* 2480 * Before proceeding, make sure that the PCIe block does not have 2481 * transactions pending. 2482 */ 2483 poll = ixgbe_pcie_timeout_poll(hw); 2484 for (i = 0; i < poll; i++) { 2485 udelay(100); 2486 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS); 2487 if (ixgbe_removed(hw->hw_addr)) 2488 return 0; 2489 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING)) 2490 return 0; 2491 } 2492 2493 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n"); 2494 return IXGBE_ERR_MASTER_REQUESTS_PENDING; 2495 } 2496 2497 /** 2498 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore 2499 * @hw: pointer to hardware structure 2500 * @mask: Mask to specify which semaphore to acquire 2501 * 2502 * Acquires the SWFW semaphore through the GSSR register for the specified 2503 * function (CSR, PHY0, PHY1, EEPROM, Flash) 2504 **/ 2505 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask) 2506 { 2507 u32 gssr = 0; 2508 u32 swmask = mask; 2509 u32 fwmask = mask << 5; 2510 u32 timeout = 200; 2511 u32 i; 2512 2513 for (i = 0; i < timeout; i++) { 2514 /* 2515 * SW NVM semaphore bit is used for access to all 2516 * SW_FW_SYNC bits (not just NVM) 2517 */ 2518 if (ixgbe_get_eeprom_semaphore(hw)) 2519 return IXGBE_ERR_SWFW_SYNC; 2520 2521 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); 2522 if (!(gssr & (fwmask | swmask))) { 2523 gssr |= swmask; 2524 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); 2525 ixgbe_release_eeprom_semaphore(hw); 2526 return 0; 2527 } else { 2528 /* Resource is currently in use by FW or SW */ 2529 ixgbe_release_eeprom_semaphore(hw); 2530 usleep_range(5000, 10000); 2531 } 2532 } 2533 2534 /* If time expired clear the bits holding the lock and retry */ 2535 if (gssr & (fwmask | swmask)) 2536 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask)); 2537 2538 usleep_range(5000, 10000); 2539 return IXGBE_ERR_SWFW_SYNC; 2540 } 2541 2542 /** 2543 * ixgbe_release_swfw_sync - Release SWFW semaphore 2544 * @hw: pointer to hardware structure 2545 * @mask: Mask to specify which semaphore to release 2546 * 2547 * Releases the SWFW semaphore through the GSSR register for the specified 2548 * function (CSR, PHY0, PHY1, EEPROM, Flash) 2549 **/ 2550 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask) 2551 { 2552 u32 gssr; 2553 u32 swmask = mask; 2554 2555 ixgbe_get_eeprom_semaphore(hw); 2556 2557 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR); 2558 gssr &= ~swmask; 2559 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr); 2560 2561 ixgbe_release_eeprom_semaphore(hw); 2562 } 2563 2564 /** 2565 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read 2566 * @hw: pointer to hardware structure 2567 * @reg_val: Value we read from AUTOC 2568 * @locked: bool to indicate whether the SW/FW lock should be taken. Never 2569 * true in this the generic case. 2570 * 2571 * The default case requires no protection so just to the register read. 2572 **/ 2573 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val) 2574 { 2575 *locked = false; 2576 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC); 2577 return 0; 2578 } 2579 2580 /** 2581 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write 2582 * @hw: pointer to hardware structure 2583 * @reg_val: value to write to AUTOC 2584 * @locked: bool to indicate whether the SW/FW lock was already taken by 2585 * previous read. 2586 **/ 2587 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked) 2588 { 2589 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val); 2590 return 0; 2591 } 2592 2593 /** 2594 * ixgbe_disable_rx_buff_generic - Stops the receive data path 2595 * @hw: pointer to hardware structure 2596 * 2597 * Stops the receive data path and waits for the HW to internally 2598 * empty the Rx security block. 2599 **/ 2600 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw) 2601 { 2602 #define IXGBE_MAX_SECRX_POLL 40 2603 int i; 2604 int secrxreg; 2605 2606 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL); 2607 secrxreg |= IXGBE_SECRXCTRL_RX_DIS; 2608 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg); 2609 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) { 2610 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT); 2611 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY) 2612 break; 2613 else 2614 /* Use interrupt-safe sleep just in case */ 2615 udelay(1000); 2616 } 2617 2618 /* For informational purposes only */ 2619 if (i >= IXGBE_MAX_SECRX_POLL) 2620 hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n"); 2621 2622 return 0; 2623 2624 } 2625 2626 /** 2627 * ixgbe_enable_rx_buff - Enables the receive data path 2628 * @hw: pointer to hardware structure 2629 * 2630 * Enables the receive data path 2631 **/ 2632 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw) 2633 { 2634 int secrxreg; 2635 2636 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL); 2637 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS; 2638 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg); 2639 IXGBE_WRITE_FLUSH(hw); 2640 2641 return 0; 2642 } 2643 2644 /** 2645 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit 2646 * @hw: pointer to hardware structure 2647 * @regval: register value to write to RXCTRL 2648 * 2649 * Enables the Rx DMA unit 2650 **/ 2651 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval) 2652 { 2653 if (regval & IXGBE_RXCTRL_RXEN) 2654 hw->mac.ops.enable_rx(hw); 2655 else 2656 hw->mac.ops.disable_rx(hw); 2657 2658 return 0; 2659 } 2660 2661 /** 2662 * ixgbe_blink_led_start_generic - Blink LED based on index. 2663 * @hw: pointer to hardware structure 2664 * @index: led number to blink 2665 **/ 2666 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index) 2667 { 2668 ixgbe_link_speed speed = 0; 2669 bool link_up = false; 2670 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); 2671 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 2672 bool locked = false; 2673 s32 ret_val; 2674 2675 /* 2676 * Link must be up to auto-blink the LEDs; 2677 * Force it if link is down. 2678 */ 2679 hw->mac.ops.check_link(hw, &speed, &link_up, false); 2680 2681 if (!link_up) { 2682 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg); 2683 if (ret_val) 2684 return ret_val; 2685 2686 autoc_reg |= IXGBE_AUTOC_AN_RESTART; 2687 autoc_reg |= IXGBE_AUTOC_FLU; 2688 2689 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked); 2690 if (ret_val) 2691 return ret_val; 2692 2693 IXGBE_WRITE_FLUSH(hw); 2694 2695 usleep_range(10000, 20000); 2696 } 2697 2698 led_reg &= ~IXGBE_LED_MODE_MASK(index); 2699 led_reg |= IXGBE_LED_BLINK(index); 2700 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 2701 IXGBE_WRITE_FLUSH(hw); 2702 2703 return 0; 2704 } 2705 2706 /** 2707 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index. 2708 * @hw: pointer to hardware structure 2709 * @index: led number to stop blinking 2710 **/ 2711 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index) 2712 { 2713 u32 autoc_reg = 0; 2714 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL); 2715 bool locked = false; 2716 s32 ret_val; 2717 2718 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg); 2719 if (ret_val) 2720 return ret_val; 2721 2722 autoc_reg &= ~IXGBE_AUTOC_FLU; 2723 autoc_reg |= IXGBE_AUTOC_AN_RESTART; 2724 2725 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked); 2726 if (ret_val) 2727 return ret_val; 2728 2729 led_reg &= ~IXGBE_LED_MODE_MASK(index); 2730 led_reg &= ~IXGBE_LED_BLINK(index); 2731 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index); 2732 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg); 2733 IXGBE_WRITE_FLUSH(hw); 2734 2735 return 0; 2736 } 2737 2738 /** 2739 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM 2740 * @hw: pointer to hardware structure 2741 * @san_mac_offset: SAN MAC address offset 2742 * 2743 * This function will read the EEPROM location for the SAN MAC address 2744 * pointer, and returns the value at that location. This is used in both 2745 * get and set mac_addr routines. 2746 **/ 2747 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw, 2748 u16 *san_mac_offset) 2749 { 2750 s32 ret_val; 2751 2752 /* 2753 * First read the EEPROM pointer to see if the MAC addresses are 2754 * available. 2755 */ 2756 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, 2757 san_mac_offset); 2758 if (ret_val) 2759 hw_err(hw, "eeprom read at offset %d failed\n", 2760 IXGBE_SAN_MAC_ADDR_PTR); 2761 2762 return ret_val; 2763 } 2764 2765 /** 2766 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM 2767 * @hw: pointer to hardware structure 2768 * @san_mac_addr: SAN MAC address 2769 * 2770 * Reads the SAN MAC address from the EEPROM, if it's available. This is 2771 * per-port, so set_lan_id() must be called before reading the addresses. 2772 * set_lan_id() is called by identify_sfp(), but this cannot be relied 2773 * upon for non-SFP connections, so we must call it here. 2774 **/ 2775 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr) 2776 { 2777 u16 san_mac_data, san_mac_offset; 2778 u8 i; 2779 s32 ret_val; 2780 2781 /* 2782 * First read the EEPROM pointer to see if the MAC addresses are 2783 * available. If they're not, no point in calling set_lan_id() here. 2784 */ 2785 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset); 2786 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF) 2787 2788 goto san_mac_addr_clr; 2789 2790 /* make sure we know which port we need to program */ 2791 hw->mac.ops.set_lan_id(hw); 2792 /* apply the port offset to the address offset */ 2793 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) : 2794 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET); 2795 for (i = 0; i < 3; i++) { 2796 ret_val = hw->eeprom.ops.read(hw, san_mac_offset, 2797 &san_mac_data); 2798 if (ret_val) { 2799 hw_err(hw, "eeprom read at offset %d failed\n", 2800 san_mac_offset); 2801 goto san_mac_addr_clr; 2802 } 2803 san_mac_addr[i * 2] = (u8)(san_mac_data); 2804 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8); 2805 san_mac_offset++; 2806 } 2807 return 0; 2808 2809 san_mac_addr_clr: 2810 /* No addresses available in this EEPROM. It's not necessarily an 2811 * error though, so just wipe the local address and return. 2812 */ 2813 for (i = 0; i < 6; i++) 2814 san_mac_addr[i] = 0xFF; 2815 return ret_val; 2816 } 2817 2818 /** 2819 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count 2820 * @hw: pointer to hardware structure 2821 * 2822 * Read PCIe configuration space, and get the MSI-X vector count from 2823 * the capabilities table. 2824 **/ 2825 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw) 2826 { 2827 u16 msix_count; 2828 u16 max_msix_count; 2829 u16 pcie_offset; 2830 2831 switch (hw->mac.type) { 2832 case ixgbe_mac_82598EB: 2833 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS; 2834 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598; 2835 break; 2836 case ixgbe_mac_82599EB: 2837 case ixgbe_mac_X540: 2838 case ixgbe_mac_X550: 2839 case ixgbe_mac_X550EM_x: 2840 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS; 2841 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599; 2842 break; 2843 default: 2844 return 1; 2845 } 2846 2847 msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset); 2848 if (ixgbe_removed(hw->hw_addr)) 2849 msix_count = 0; 2850 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK; 2851 2852 /* MSI-X count is zero-based in HW */ 2853 msix_count++; 2854 2855 if (msix_count > max_msix_count) 2856 msix_count = max_msix_count; 2857 2858 return msix_count; 2859 } 2860 2861 /** 2862 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address 2863 * @hw: pointer to hardware struct 2864 * @rar: receive address register index to disassociate 2865 * @vmdq: VMDq pool index to remove from the rar 2866 **/ 2867 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq) 2868 { 2869 u32 mpsar_lo, mpsar_hi; 2870 u32 rar_entries = hw->mac.num_rar_entries; 2871 2872 /* Make sure we are using a valid rar index range */ 2873 if (rar >= rar_entries) { 2874 hw_dbg(hw, "RAR index %d is out of range.\n", rar); 2875 return IXGBE_ERR_INVALID_ARGUMENT; 2876 } 2877 2878 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); 2879 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); 2880 2881 if (ixgbe_removed(hw->hw_addr)) 2882 return 0; 2883 2884 if (!mpsar_lo && !mpsar_hi) 2885 return 0; 2886 2887 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) { 2888 if (mpsar_lo) { 2889 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0); 2890 mpsar_lo = 0; 2891 } 2892 if (mpsar_hi) { 2893 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0); 2894 mpsar_hi = 0; 2895 } 2896 } else if (vmdq < 32) { 2897 mpsar_lo &= ~(1 << vmdq); 2898 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo); 2899 } else { 2900 mpsar_hi &= ~(1 << (vmdq - 32)); 2901 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi); 2902 } 2903 2904 /* was that the last pool using this rar? */ 2905 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0) 2906 hw->mac.ops.clear_rar(hw, rar); 2907 return 0; 2908 } 2909 2910 /** 2911 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address 2912 * @hw: pointer to hardware struct 2913 * @rar: receive address register index to associate with a VMDq index 2914 * @vmdq: VMDq pool index 2915 **/ 2916 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq) 2917 { 2918 u32 mpsar; 2919 u32 rar_entries = hw->mac.num_rar_entries; 2920 2921 /* Make sure we are using a valid rar index range */ 2922 if (rar >= rar_entries) { 2923 hw_dbg(hw, "RAR index %d is out of range.\n", rar); 2924 return IXGBE_ERR_INVALID_ARGUMENT; 2925 } 2926 2927 if (vmdq < 32) { 2928 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar)); 2929 mpsar |= 1 << vmdq; 2930 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar); 2931 } else { 2932 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar)); 2933 mpsar |= 1 << (vmdq - 32); 2934 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar); 2935 } 2936 return 0; 2937 } 2938 2939 /** 2940 * This function should only be involved in the IOV mode. 2941 * In IOV mode, Default pool is next pool after the number of 2942 * VFs advertized and not 0. 2943 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index] 2944 * 2945 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address 2946 * @hw: pointer to hardware struct 2947 * @vmdq: VMDq pool index 2948 **/ 2949 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq) 2950 { 2951 u32 rar = hw->mac.san_mac_rar_index; 2952 2953 if (vmdq < 32) { 2954 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq); 2955 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0); 2956 } else { 2957 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0); 2958 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32)); 2959 } 2960 2961 return 0; 2962 } 2963 2964 /** 2965 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array 2966 * @hw: pointer to hardware structure 2967 **/ 2968 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw) 2969 { 2970 int i; 2971 2972 for (i = 0; i < 128; i++) 2973 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0); 2974 2975 return 0; 2976 } 2977 2978 /** 2979 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot 2980 * @hw: pointer to hardware structure 2981 * @vlan: VLAN id to write to VLAN filter 2982 * 2983 * return the VLVF index where this VLAN id should be placed 2984 * 2985 **/ 2986 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan) 2987 { 2988 u32 bits = 0; 2989 u32 first_empty_slot = 0; 2990 s32 regindex; 2991 2992 /* short cut the special case */ 2993 if (vlan == 0) 2994 return 0; 2995 2996 /* 2997 * Search for the vlan id in the VLVF entries. Save off the first empty 2998 * slot found along the way 2999 */ 3000 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) { 3001 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex)); 3002 if (!bits && !(first_empty_slot)) 3003 first_empty_slot = regindex; 3004 else if ((bits & 0x0FFF) == vlan) 3005 break; 3006 } 3007 3008 /* 3009 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan 3010 * in the VLVF. Else use the first empty VLVF register for this 3011 * vlan id. 3012 */ 3013 if (regindex >= IXGBE_VLVF_ENTRIES) { 3014 if (first_empty_slot) 3015 regindex = first_empty_slot; 3016 else { 3017 hw_dbg(hw, "No space in VLVF.\n"); 3018 regindex = IXGBE_ERR_NO_SPACE; 3019 } 3020 } 3021 3022 return regindex; 3023 } 3024 3025 /** 3026 * ixgbe_set_vfta_generic - Set VLAN filter table 3027 * @hw: pointer to hardware structure 3028 * @vlan: VLAN id to write to VLAN filter 3029 * @vind: VMDq output index that maps queue to VLAN id in VFVFB 3030 * @vlan_on: boolean flag to turn on/off VLAN in VFVF 3031 * 3032 * Turn on/off specified VLAN in the VLAN filter table. 3033 **/ 3034 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind, 3035 bool vlan_on) 3036 { 3037 s32 regindex; 3038 u32 bitindex; 3039 u32 vfta; 3040 u32 bits; 3041 u32 vt; 3042 u32 targetbit; 3043 bool vfta_changed = false; 3044 3045 if (vlan > 4095) 3046 return IXGBE_ERR_PARAM; 3047 3048 /* 3049 * this is a 2 part operation - first the VFTA, then the 3050 * VLVF and VLVFB if VT Mode is set 3051 * We don't write the VFTA until we know the VLVF part succeeded. 3052 */ 3053 3054 /* Part 1 3055 * The VFTA is a bitstring made up of 128 32-bit registers 3056 * that enable the particular VLAN id, much like the MTA: 3057 * bits[11-5]: which register 3058 * bits[4-0]: which bit in the register 3059 */ 3060 regindex = (vlan >> 5) & 0x7F; 3061 bitindex = vlan & 0x1F; 3062 targetbit = (1 << bitindex); 3063 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex)); 3064 3065 if (vlan_on) { 3066 if (!(vfta & targetbit)) { 3067 vfta |= targetbit; 3068 vfta_changed = true; 3069 } 3070 } else { 3071 if ((vfta & targetbit)) { 3072 vfta &= ~targetbit; 3073 vfta_changed = true; 3074 } 3075 } 3076 3077 /* Part 2 3078 * If VT Mode is set 3079 * Either vlan_on 3080 * make sure the vlan is in VLVF 3081 * set the vind bit in the matching VLVFB 3082 * Or !vlan_on 3083 * clear the pool bit and possibly the vind 3084 */ 3085 vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL); 3086 if (vt & IXGBE_VT_CTL_VT_ENABLE) { 3087 s32 vlvf_index; 3088 3089 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan); 3090 if (vlvf_index < 0) 3091 return vlvf_index; 3092 3093 if (vlan_on) { 3094 /* set the pool bit */ 3095 if (vind < 32) { 3096 bits = IXGBE_READ_REG(hw, 3097 IXGBE_VLVFB(vlvf_index*2)); 3098 bits |= (1 << vind); 3099 IXGBE_WRITE_REG(hw, 3100 IXGBE_VLVFB(vlvf_index*2), 3101 bits); 3102 } else { 3103 bits = IXGBE_READ_REG(hw, 3104 IXGBE_VLVFB((vlvf_index*2)+1)); 3105 bits |= (1 << (vind-32)); 3106 IXGBE_WRITE_REG(hw, 3107 IXGBE_VLVFB((vlvf_index*2)+1), 3108 bits); 3109 } 3110 } else { 3111 /* clear the pool bit */ 3112 if (vind < 32) { 3113 bits = IXGBE_READ_REG(hw, 3114 IXGBE_VLVFB(vlvf_index*2)); 3115 bits &= ~(1 << vind); 3116 IXGBE_WRITE_REG(hw, 3117 IXGBE_VLVFB(vlvf_index*2), 3118 bits); 3119 bits |= IXGBE_READ_REG(hw, 3120 IXGBE_VLVFB((vlvf_index*2)+1)); 3121 } else { 3122 bits = IXGBE_READ_REG(hw, 3123 IXGBE_VLVFB((vlvf_index*2)+1)); 3124 bits &= ~(1 << (vind-32)); 3125 IXGBE_WRITE_REG(hw, 3126 IXGBE_VLVFB((vlvf_index*2)+1), 3127 bits); 3128 bits |= IXGBE_READ_REG(hw, 3129 IXGBE_VLVFB(vlvf_index*2)); 3130 } 3131 } 3132 3133 /* 3134 * If there are still bits set in the VLVFB registers 3135 * for the VLAN ID indicated we need to see if the 3136 * caller is requesting that we clear the VFTA entry bit. 3137 * If the caller has requested that we clear the VFTA 3138 * entry bit but there are still pools/VFs using this VLAN 3139 * ID entry then ignore the request. We're not worried 3140 * about the case where we're turning the VFTA VLAN ID 3141 * entry bit on, only when requested to turn it off as 3142 * there may be multiple pools and/or VFs using the 3143 * VLAN ID entry. In that case we cannot clear the 3144 * VFTA bit until all pools/VFs using that VLAN ID have also 3145 * been cleared. This will be indicated by "bits" being 3146 * zero. 3147 */ 3148 if (bits) { 3149 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 3150 (IXGBE_VLVF_VIEN | vlan)); 3151 if (!vlan_on) { 3152 /* someone wants to clear the vfta entry 3153 * but some pools/VFs are still using it. 3154 * Ignore it. */ 3155 vfta_changed = false; 3156 } 3157 } else { 3158 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0); 3159 } 3160 } 3161 3162 if (vfta_changed) 3163 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta); 3164 3165 return 0; 3166 } 3167 3168 /** 3169 * ixgbe_clear_vfta_generic - Clear VLAN filter table 3170 * @hw: pointer to hardware structure 3171 * 3172 * Clears the VLAN filer table, and the VMDq index associated with the filter 3173 **/ 3174 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw) 3175 { 3176 u32 offset; 3177 3178 for (offset = 0; offset < hw->mac.vft_size; offset++) 3179 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0); 3180 3181 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) { 3182 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0); 3183 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0); 3184 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0); 3185 } 3186 3187 return 0; 3188 } 3189 3190 /** 3191 * ixgbe_check_mac_link_generic - Determine link and speed status 3192 * @hw: pointer to hardware structure 3193 * @speed: pointer to link speed 3194 * @link_up: true when link is up 3195 * @link_up_wait_to_complete: bool used to wait for link up or not 3196 * 3197 * Reads the links register to determine if link is up and the current speed 3198 **/ 3199 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed, 3200 bool *link_up, bool link_up_wait_to_complete) 3201 { 3202 u32 links_reg, links_orig; 3203 u32 i; 3204 3205 /* clear the old state */ 3206 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS); 3207 3208 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); 3209 3210 if (links_orig != links_reg) { 3211 hw_dbg(hw, "LINKS changed from %08X to %08X\n", 3212 links_orig, links_reg); 3213 } 3214 3215 if (link_up_wait_to_complete) { 3216 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) { 3217 if (links_reg & IXGBE_LINKS_UP) { 3218 *link_up = true; 3219 break; 3220 } else { 3221 *link_up = false; 3222 } 3223 msleep(100); 3224 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); 3225 } 3226 } else { 3227 if (links_reg & IXGBE_LINKS_UP) 3228 *link_up = true; 3229 else 3230 *link_up = false; 3231 } 3232 3233 switch (links_reg & IXGBE_LINKS_SPEED_82599) { 3234 case IXGBE_LINKS_SPEED_10G_82599: 3235 if ((hw->mac.type >= ixgbe_mac_X550) && 3236 (links_reg & IXGBE_LINKS_SPEED_NON_STD)) 3237 *speed = IXGBE_LINK_SPEED_2_5GB_FULL; 3238 else 3239 *speed = IXGBE_LINK_SPEED_10GB_FULL; 3240 break; 3241 case IXGBE_LINKS_SPEED_1G_82599: 3242 *speed = IXGBE_LINK_SPEED_1GB_FULL; 3243 break; 3244 case IXGBE_LINKS_SPEED_100_82599: 3245 if ((hw->mac.type >= ixgbe_mac_X550) && 3246 (links_reg & IXGBE_LINKS_SPEED_NON_STD)) 3247 *speed = IXGBE_LINK_SPEED_5GB_FULL; 3248 else 3249 *speed = IXGBE_LINK_SPEED_100_FULL; 3250 break; 3251 default: 3252 *speed = IXGBE_LINK_SPEED_UNKNOWN; 3253 } 3254 3255 return 0; 3256 } 3257 3258 /** 3259 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from 3260 * the EEPROM 3261 * @hw: pointer to hardware structure 3262 * @wwnn_prefix: the alternative WWNN prefix 3263 * @wwpn_prefix: the alternative WWPN prefix 3264 * 3265 * This function will read the EEPROM from the alternative SAN MAC address 3266 * block to check the support for the alternative WWNN/WWPN prefix support. 3267 **/ 3268 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix, 3269 u16 *wwpn_prefix) 3270 { 3271 u16 offset, caps; 3272 u16 alt_san_mac_blk_offset; 3273 3274 /* clear output first */ 3275 *wwnn_prefix = 0xFFFF; 3276 *wwpn_prefix = 0xFFFF; 3277 3278 /* check if alternative SAN MAC is supported */ 3279 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR; 3280 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset)) 3281 goto wwn_prefix_err; 3282 3283 if ((alt_san_mac_blk_offset == 0) || 3284 (alt_san_mac_blk_offset == 0xFFFF)) 3285 return 0; 3286 3287 /* check capability in alternative san mac address block */ 3288 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET; 3289 if (hw->eeprom.ops.read(hw, offset, &caps)) 3290 goto wwn_prefix_err; 3291 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN)) 3292 return 0; 3293 3294 /* get the corresponding prefix for WWNN/WWPN */ 3295 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET; 3296 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix)) 3297 hw_err(hw, "eeprom read at offset %d failed\n", offset); 3298 3299 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET; 3300 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix)) 3301 goto wwn_prefix_err; 3302 3303 return 0; 3304 3305 wwn_prefix_err: 3306 hw_err(hw, "eeprom read at offset %d failed\n", offset); 3307 return 0; 3308 } 3309 3310 /** 3311 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing 3312 * @hw: pointer to hardware structure 3313 * @enable: enable or disable switch for anti-spoofing 3314 * @pf: Physical Function pool - do not enable anti-spoofing for the PF 3315 * 3316 **/ 3317 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf) 3318 { 3319 int j; 3320 int pf_target_reg = pf >> 3; 3321 int pf_target_shift = pf % 8; 3322 u32 pfvfspoof = 0; 3323 3324 if (hw->mac.type == ixgbe_mac_82598EB) 3325 return; 3326 3327 if (enable) 3328 pfvfspoof = IXGBE_SPOOF_MACAS_MASK; 3329 3330 /* 3331 * PFVFSPOOF register array is size 8 with 8 bits assigned to 3332 * MAC anti-spoof enables in each register array element. 3333 */ 3334 for (j = 0; j < pf_target_reg; j++) 3335 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof); 3336 3337 /* 3338 * The PF should be allowed to spoof so that it can support 3339 * emulation mode NICs. Do not set the bits assigned to the PF 3340 */ 3341 pfvfspoof &= (1 << pf_target_shift) - 1; 3342 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof); 3343 3344 /* 3345 * Remaining pools belong to the PF so they do not need to have 3346 * anti-spoofing enabled. 3347 */ 3348 for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++) 3349 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0); 3350 } 3351 3352 /** 3353 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing 3354 * @hw: pointer to hardware structure 3355 * @enable: enable or disable switch for VLAN anti-spoofing 3356 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing 3357 * 3358 **/ 3359 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf) 3360 { 3361 int vf_target_reg = vf >> 3; 3362 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT; 3363 u32 pfvfspoof; 3364 3365 if (hw->mac.type == ixgbe_mac_82598EB) 3366 return; 3367 3368 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg)); 3369 if (enable) 3370 pfvfspoof |= (1 << vf_target_shift); 3371 else 3372 pfvfspoof &= ~(1 << vf_target_shift); 3373 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof); 3374 } 3375 3376 /** 3377 * ixgbe_get_device_caps_generic - Get additional device capabilities 3378 * @hw: pointer to hardware structure 3379 * @device_caps: the EEPROM word with the extra device capabilities 3380 * 3381 * This function will read the EEPROM location for the device capabilities, 3382 * and return the word through device_caps. 3383 **/ 3384 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps) 3385 { 3386 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps); 3387 3388 return 0; 3389 } 3390 3391 /** 3392 * ixgbe_set_rxpba_generic - Initialize RX packet buffer 3393 * @hw: pointer to hardware structure 3394 * @num_pb: number of packet buffers to allocate 3395 * @headroom: reserve n KB of headroom 3396 * @strategy: packet buffer allocation strategy 3397 **/ 3398 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw, 3399 int num_pb, 3400 u32 headroom, 3401 int strategy) 3402 { 3403 u32 pbsize = hw->mac.rx_pb_size; 3404 int i = 0; 3405 u32 rxpktsize, txpktsize, txpbthresh; 3406 3407 /* Reserve headroom */ 3408 pbsize -= headroom; 3409 3410 if (!num_pb) 3411 num_pb = 1; 3412 3413 /* Divide remaining packet buffer space amongst the number 3414 * of packet buffers requested using supplied strategy. 3415 */ 3416 switch (strategy) { 3417 case (PBA_STRATEGY_WEIGHTED): 3418 /* pba_80_48 strategy weight first half of packet buffer with 3419 * 5/8 of the packet buffer space. 3420 */ 3421 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8)); 3422 pbsize -= rxpktsize * (num_pb / 2); 3423 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT; 3424 for (; i < (num_pb / 2); i++) 3425 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize); 3426 /* Fall through to configure remaining packet buffers */ 3427 case (PBA_STRATEGY_EQUAL): 3428 /* Divide the remaining Rx packet buffer evenly among the TCs */ 3429 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT; 3430 for (; i < num_pb; i++) 3431 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize); 3432 break; 3433 default: 3434 break; 3435 } 3436 3437 /* 3438 * Setup Tx packet buffer and threshold equally for all TCs 3439 * TXPBTHRESH register is set in K so divide by 1024 and subtract 3440 * 10 since the largest packet we support is just over 9K. 3441 */ 3442 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb; 3443 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX; 3444 for (i = 0; i < num_pb; i++) { 3445 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize); 3446 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh); 3447 } 3448 3449 /* Clear unused TCs, if any, to zero buffer size*/ 3450 for (; i < IXGBE_MAX_PB; i++) { 3451 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0); 3452 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0); 3453 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0); 3454 } 3455 } 3456 3457 /** 3458 * ixgbe_calculate_checksum - Calculate checksum for buffer 3459 * @buffer: pointer to EEPROM 3460 * @length: size of EEPROM to calculate a checksum for 3461 * 3462 * Calculates the checksum for some buffer on a specified length. The 3463 * checksum calculated is returned. 3464 **/ 3465 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length) 3466 { 3467 u32 i; 3468 u8 sum = 0; 3469 3470 if (!buffer) 3471 return 0; 3472 3473 for (i = 0; i < length; i++) 3474 sum += buffer[i]; 3475 3476 return (u8) (0 - sum); 3477 } 3478 3479 /** 3480 * ixgbe_host_interface_command - Issue command to manageability block 3481 * @hw: pointer to the HW structure 3482 * @buffer: contains the command to write and where the return status will 3483 * be placed 3484 * @length: length of buffer, must be multiple of 4 bytes 3485 * @timeout: time in ms to wait for command completion 3486 * @return_data: read and return data from the buffer (true) or not (false) 3487 * Needed because FW structures are big endian and decoding of 3488 * these fields can be 8 bit or 16 bit based on command. Decoding 3489 * is not easily understood without making a table of commands. 3490 * So we will leave this up to the caller to read back the data 3491 * in these cases. 3492 * 3493 * Communicates with the manageability block. On success return 0 3494 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND. 3495 **/ 3496 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer, 3497 u32 length, u32 timeout, 3498 bool return_data) 3499 { 3500 u32 hicr, i, bi, fwsts; 3501 u32 hdr_size = sizeof(struct ixgbe_hic_hdr); 3502 u16 buf_len, dword_len; 3503 3504 if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) { 3505 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length); 3506 return IXGBE_ERR_HOST_INTERFACE_COMMAND; 3507 } 3508 3509 /* Set bit 9 of FWSTS clearing FW reset indication */ 3510 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS); 3511 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI); 3512 3513 /* Check that the host interface is enabled. */ 3514 hicr = IXGBE_READ_REG(hw, IXGBE_HICR); 3515 if ((hicr & IXGBE_HICR_EN) == 0) { 3516 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n"); 3517 return IXGBE_ERR_HOST_INTERFACE_COMMAND; 3518 } 3519 3520 /* Calculate length in DWORDs. We must be DWORD aligned */ 3521 if ((length % (sizeof(u32))) != 0) { 3522 hw_dbg(hw, "Buffer length failure, not aligned to dword"); 3523 return IXGBE_ERR_INVALID_ARGUMENT; 3524 } 3525 3526 dword_len = length >> 2; 3527 3528 /* 3529 * The device driver writes the relevant command block 3530 * into the ram area. 3531 */ 3532 for (i = 0; i < dword_len; i++) 3533 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG, 3534 i, cpu_to_le32(buffer[i])); 3535 3536 /* Setting this bit tells the ARC that a new command is pending. */ 3537 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C); 3538 3539 for (i = 0; i < timeout; i++) { 3540 hicr = IXGBE_READ_REG(hw, IXGBE_HICR); 3541 if (!(hicr & IXGBE_HICR_C)) 3542 break; 3543 usleep_range(1000, 2000); 3544 } 3545 3546 /* Check command successful completion. */ 3547 if ((timeout != 0 && i == timeout) || 3548 (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) { 3549 hw_dbg(hw, "Command has failed with no status valid.\n"); 3550 return IXGBE_ERR_HOST_INTERFACE_COMMAND; 3551 } 3552 3553 if (!return_data) 3554 return 0; 3555 3556 /* Calculate length in DWORDs */ 3557 dword_len = hdr_size >> 2; 3558 3559 /* first pull in the header so we know the buffer length */ 3560 for (bi = 0; bi < dword_len; bi++) { 3561 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi); 3562 le32_to_cpus(&buffer[bi]); 3563 } 3564 3565 /* If there is any thing in data position pull it in */ 3566 buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len; 3567 if (buf_len == 0) 3568 return 0; 3569 3570 if (length < (buf_len + hdr_size)) { 3571 hw_dbg(hw, "Buffer not large enough for reply message.\n"); 3572 return IXGBE_ERR_HOST_INTERFACE_COMMAND; 3573 } 3574 3575 /* Calculate length in DWORDs, add 3 for odd lengths */ 3576 dword_len = (buf_len + 3) >> 2; 3577 3578 /* Pull in the rest of the buffer (bi is where we left off)*/ 3579 for (; bi <= dword_len; bi++) { 3580 buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi); 3581 le32_to_cpus(&buffer[bi]); 3582 } 3583 3584 return 0; 3585 } 3586 3587 /** 3588 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware 3589 * @hw: pointer to the HW structure 3590 * @maj: driver version major number 3591 * @min: driver version minor number 3592 * @build: driver version build number 3593 * @sub: driver version sub build number 3594 * 3595 * Sends driver version number to firmware through the manageability 3596 * block. On success return 0 3597 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring 3598 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails. 3599 **/ 3600 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min, 3601 u8 build, u8 sub) 3602 { 3603 struct ixgbe_hic_drv_info fw_cmd; 3604 int i; 3605 s32 ret_val; 3606 3607 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM)) 3608 return IXGBE_ERR_SWFW_SYNC; 3609 3610 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO; 3611 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN; 3612 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED; 3613 fw_cmd.port_num = (u8)hw->bus.func; 3614 fw_cmd.ver_maj = maj; 3615 fw_cmd.ver_min = min; 3616 fw_cmd.ver_build = build; 3617 fw_cmd.ver_sub = sub; 3618 fw_cmd.hdr.checksum = 0; 3619 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd, 3620 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len)); 3621 fw_cmd.pad = 0; 3622 fw_cmd.pad2 = 0; 3623 3624 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) { 3625 ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd, 3626 sizeof(fw_cmd), 3627 IXGBE_HI_COMMAND_TIMEOUT, 3628 true); 3629 if (ret_val != 0) 3630 continue; 3631 3632 if (fw_cmd.hdr.cmd_or_resp.ret_status == 3633 FW_CEM_RESP_STATUS_SUCCESS) 3634 ret_val = 0; 3635 else 3636 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND; 3637 3638 break; 3639 } 3640 3641 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM); 3642 return ret_val; 3643 } 3644 3645 /** 3646 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo 3647 * @hw: pointer to the hardware structure 3648 * 3649 * The 82599 and x540 MACs can experience issues if TX work is still pending 3650 * when a reset occurs. This function prevents this by flushing the PCIe 3651 * buffers on the system. 3652 **/ 3653 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw) 3654 { 3655 u32 gcr_ext, hlreg0, i, poll; 3656 u16 value; 3657 3658 /* 3659 * If double reset is not requested then all transactions should 3660 * already be clear and as such there is no work to do 3661 */ 3662 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED)) 3663 return; 3664 3665 /* 3666 * Set loopback enable to prevent any transmits from being sent 3667 * should the link come up. This assumes that the RXCTRL.RXEN bit 3668 * has already been cleared. 3669 */ 3670 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0); 3671 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK); 3672 3673 /* wait for a last completion before clearing buffers */ 3674 IXGBE_WRITE_FLUSH(hw); 3675 usleep_range(3000, 6000); 3676 3677 /* Before proceeding, make sure that the PCIe block does not have 3678 * transactions pending. 3679 */ 3680 poll = ixgbe_pcie_timeout_poll(hw); 3681 for (i = 0; i < poll; i++) { 3682 usleep_range(100, 200); 3683 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS); 3684 if (ixgbe_removed(hw->hw_addr)) 3685 break; 3686 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING)) 3687 break; 3688 } 3689 3690 /* initiate cleaning flow for buffers in the PCIe transaction layer */ 3691 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT); 3692 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, 3693 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR); 3694 3695 /* Flush all writes and allow 20usec for all transactions to clear */ 3696 IXGBE_WRITE_FLUSH(hw); 3697 udelay(20); 3698 3699 /* restore previous register values */ 3700 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext); 3701 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0); 3702 } 3703 3704 static const u8 ixgbe_emc_temp_data[4] = { 3705 IXGBE_EMC_INTERNAL_DATA, 3706 IXGBE_EMC_DIODE1_DATA, 3707 IXGBE_EMC_DIODE2_DATA, 3708 IXGBE_EMC_DIODE3_DATA 3709 }; 3710 static const u8 ixgbe_emc_therm_limit[4] = { 3711 IXGBE_EMC_INTERNAL_THERM_LIMIT, 3712 IXGBE_EMC_DIODE1_THERM_LIMIT, 3713 IXGBE_EMC_DIODE2_THERM_LIMIT, 3714 IXGBE_EMC_DIODE3_THERM_LIMIT 3715 }; 3716 3717 /** 3718 * ixgbe_get_ets_data - Extracts the ETS bit data 3719 * @hw: pointer to hardware structure 3720 * @ets_cfg: extected ETS data 3721 * @ets_offset: offset of ETS data 3722 * 3723 * Returns error code. 3724 **/ 3725 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg, 3726 u16 *ets_offset) 3727 { 3728 s32 status; 3729 3730 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset); 3731 if (status) 3732 return status; 3733 3734 if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) 3735 return IXGBE_NOT_IMPLEMENTED; 3736 3737 status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg); 3738 if (status) 3739 return status; 3740 3741 if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) 3742 return IXGBE_NOT_IMPLEMENTED; 3743 3744 return 0; 3745 } 3746 3747 /** 3748 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data 3749 * @hw: pointer to hardware structure 3750 * 3751 * Returns the thermal sensor data structure 3752 **/ 3753 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw) 3754 { 3755 s32 status; 3756 u16 ets_offset; 3757 u16 ets_cfg; 3758 u16 ets_sensor; 3759 u8 num_sensors; 3760 u8 i; 3761 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; 3762 3763 /* Only support thermal sensors attached to physical port 0 */ 3764 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) 3765 return IXGBE_NOT_IMPLEMENTED; 3766 3767 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset); 3768 if (status) 3769 return status; 3770 3771 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK); 3772 if (num_sensors > IXGBE_MAX_SENSORS) 3773 num_sensors = IXGBE_MAX_SENSORS; 3774 3775 for (i = 0; i < num_sensors; i++) { 3776 u8 sensor_index; 3777 u8 sensor_location; 3778 3779 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i), 3780 &ets_sensor); 3781 if (status) 3782 return status; 3783 3784 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >> 3785 IXGBE_ETS_DATA_INDEX_SHIFT); 3786 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >> 3787 IXGBE_ETS_DATA_LOC_SHIFT); 3788 3789 if (sensor_location != 0) { 3790 status = hw->phy.ops.read_i2c_byte(hw, 3791 ixgbe_emc_temp_data[sensor_index], 3792 IXGBE_I2C_THERMAL_SENSOR_ADDR, 3793 &data->sensor[i].temp); 3794 if (status) 3795 return status; 3796 } 3797 } 3798 3799 return 0; 3800 } 3801 3802 /** 3803 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds 3804 * @hw: pointer to hardware structure 3805 * 3806 * Inits the thermal sensor thresholds according to the NVM map 3807 * and save off the threshold and location values into mac.thermal_sensor_data 3808 **/ 3809 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw) 3810 { 3811 s32 status; 3812 u16 ets_offset; 3813 u16 ets_cfg; 3814 u16 ets_sensor; 3815 u8 low_thresh_delta; 3816 u8 num_sensors; 3817 u8 therm_limit; 3818 u8 i; 3819 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; 3820 3821 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data)); 3822 3823 /* Only support thermal sensors attached to physical port 0 */ 3824 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) 3825 return IXGBE_NOT_IMPLEMENTED; 3826 3827 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset); 3828 if (status) 3829 return status; 3830 3831 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >> 3832 IXGBE_ETS_LTHRES_DELTA_SHIFT); 3833 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK); 3834 if (num_sensors > IXGBE_MAX_SENSORS) 3835 num_sensors = IXGBE_MAX_SENSORS; 3836 3837 for (i = 0; i < num_sensors; i++) { 3838 u8 sensor_index; 3839 u8 sensor_location; 3840 3841 if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) { 3842 hw_err(hw, "eeprom read at offset %d failed\n", 3843 ets_offset + 1 + i); 3844 continue; 3845 } 3846 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >> 3847 IXGBE_ETS_DATA_INDEX_SHIFT); 3848 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >> 3849 IXGBE_ETS_DATA_LOC_SHIFT); 3850 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK; 3851 3852 hw->phy.ops.write_i2c_byte(hw, 3853 ixgbe_emc_therm_limit[sensor_index], 3854 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit); 3855 3856 if (sensor_location == 0) 3857 continue; 3858 3859 data->sensor[i].location = sensor_location; 3860 data->sensor[i].caution_thresh = therm_limit; 3861 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta; 3862 } 3863 3864 return 0; 3865 } 3866 3867 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw) 3868 { 3869 u32 rxctrl; 3870 3871 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL); 3872 if (rxctrl & IXGBE_RXCTRL_RXEN) { 3873 if (hw->mac.type != ixgbe_mac_82598EB) { 3874 u32 pfdtxgswc; 3875 3876 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC); 3877 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) { 3878 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN; 3879 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc); 3880 hw->mac.set_lben = true; 3881 } else { 3882 hw->mac.set_lben = false; 3883 } 3884 } 3885 rxctrl &= ~IXGBE_RXCTRL_RXEN; 3886 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl); 3887 } 3888 } 3889 3890 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw) 3891 { 3892 u32 rxctrl; 3893 3894 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL); 3895 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN)); 3896 3897 if (hw->mac.type != ixgbe_mac_82598EB) { 3898 if (hw->mac.set_lben) { 3899 u32 pfdtxgswc; 3900 3901 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC); 3902 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN; 3903 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc); 3904 hw->mac.set_lben = false; 3905 } 3906 } 3907 } 3908 3909 /** ixgbe_mng_present - returns true when management capability is present 3910 * @hw: pointer to hardware structure 3911 **/ 3912 bool ixgbe_mng_present(struct ixgbe_hw *hw) 3913 { 3914 u32 fwsm; 3915 3916 if (hw->mac.type < ixgbe_mac_82599EB) 3917 return false; 3918 3919 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw)); 3920 fwsm &= IXGBE_FWSM_MODE_MASK; 3921 return fwsm == IXGBE_FWSM_FW_MODE_PT; 3922 } 3923