xref: /linux/drivers/net/ethernet/intel/ixgbe/ixgbe_common.c (revision 4e73826089ce899357580bbf6e0afe4e6f9900b7)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #include <linux/pci.h>
5 #include <linux/delay.h>
6 #include <linux/sched.h>
7 #include <linux/netdevice.h>
8 
9 #include "ixgbe.h"
10 #include "ixgbe_common.h"
11 #include "ixgbe_phy.h"
12 
13 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
14 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
15 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
16 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
17 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
18 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
19 					u16 count);
20 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
21 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
22 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
23 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
24 
25 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
26 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
27 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
28 					     u16 words, u16 *data);
29 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
30 					     u16 words, u16 *data);
31 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
32 						 u16 offset);
33 static s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw);
34 
35 /* Base table for registers values that change by MAC */
36 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
37 	IXGBE_MVALS_INIT(8259X)
38 };
39 
40 /**
41  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
42  *  control
43  *  @hw: pointer to hardware structure
44  *
45  *  There are several phys that do not support autoneg flow control. This
46  *  function check the device id to see if the associated phy supports
47  *  autoneg flow control.
48  **/
49 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
50 {
51 	bool supported = false;
52 	ixgbe_link_speed speed;
53 	bool link_up;
54 
55 	switch (hw->phy.media_type) {
56 	case ixgbe_media_type_fiber:
57 		/* flow control autoneg black list */
58 		switch (hw->device_id) {
59 		case IXGBE_DEV_ID_X550EM_A_SFP:
60 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
61 			supported = false;
62 			break;
63 		default:
64 			hw->mac.ops.check_link(hw, &speed, &link_up, false);
65 			/* if link is down, assume supported */
66 			if (link_up)
67 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL;
68 			else
69 				supported = true;
70 		}
71 
72 		break;
73 	case ixgbe_media_type_backplane:
74 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
75 			supported = false;
76 		else
77 			supported = true;
78 		break;
79 	case ixgbe_media_type_copper:
80 		/* only some copper devices support flow control autoneg */
81 		switch (hw->device_id) {
82 		case IXGBE_DEV_ID_82599_T3_LOM:
83 		case IXGBE_DEV_ID_X540T:
84 		case IXGBE_DEV_ID_X540T1:
85 		case IXGBE_DEV_ID_X550T:
86 		case IXGBE_DEV_ID_X550T1:
87 		case IXGBE_DEV_ID_X550EM_X_10G_T:
88 		case IXGBE_DEV_ID_X550EM_A_10G_T:
89 		case IXGBE_DEV_ID_X550EM_A_1G_T:
90 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
91 			supported = true;
92 			break;
93 		default:
94 			break;
95 		}
96 		break;
97 	default:
98 		break;
99 	}
100 
101 	if (!supported)
102 		hw_dbg(hw, "Device %x does not support flow control autoneg\n",
103 		       hw->device_id);
104 
105 	return supported;
106 }
107 
108 /**
109  *  ixgbe_setup_fc_generic - Set up flow control
110  *  @hw: pointer to hardware structure
111  *
112  *  Called at init time to set up flow control.
113  **/
114 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
115 {
116 	s32 ret_val = 0;
117 	u32 reg = 0, reg_bp = 0;
118 	u16 reg_cu = 0;
119 	bool locked = false;
120 
121 	/*
122 	 * Validate the requested mode.  Strict IEEE mode does not allow
123 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
124 	 */
125 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
126 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
127 		return -EINVAL;
128 	}
129 
130 	/*
131 	 * 10gig parts do not have a word in the EEPROM to determine the
132 	 * default flow control setting, so we explicitly set it to full.
133 	 */
134 	if (hw->fc.requested_mode == ixgbe_fc_default)
135 		hw->fc.requested_mode = ixgbe_fc_full;
136 
137 	/*
138 	 * Set up the 1G and 10G flow control advertisement registers so the
139 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
140 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
141 	 */
142 	switch (hw->phy.media_type) {
143 	case ixgbe_media_type_backplane:
144 		/* some MAC's need RMW protection on AUTOC */
145 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
146 		if (ret_val)
147 			return ret_val;
148 
149 		fallthrough; /* only backplane uses autoc */
150 	case ixgbe_media_type_fiber:
151 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
152 
153 		break;
154 	case ixgbe_media_type_copper:
155 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
156 					MDIO_MMD_AN, &reg_cu);
157 		break;
158 	default:
159 		break;
160 	}
161 
162 	/*
163 	 * The possible values of fc.requested_mode are:
164 	 * 0: Flow control is completely disabled
165 	 * 1: Rx flow control is enabled (we can receive pause frames,
166 	 *    but not send pause frames).
167 	 * 2: Tx flow control is enabled (we can send pause frames but
168 	 *    we do not support receiving pause frames).
169 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
170 	 * other: Invalid.
171 	 */
172 	switch (hw->fc.requested_mode) {
173 	case ixgbe_fc_none:
174 		/* Flow control completely disabled by software override. */
175 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
176 		if (hw->phy.media_type == ixgbe_media_type_backplane)
177 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
178 				    IXGBE_AUTOC_ASM_PAUSE);
179 		else if (hw->phy.media_type == ixgbe_media_type_copper)
180 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
181 		break;
182 	case ixgbe_fc_tx_pause:
183 		/*
184 		 * Tx Flow control is enabled, and Rx Flow control is
185 		 * disabled by software override.
186 		 */
187 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
188 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
189 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
190 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
191 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
192 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
193 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
194 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
195 		}
196 		break;
197 	case ixgbe_fc_rx_pause:
198 		/*
199 		 * Rx Flow control is enabled and Tx Flow control is
200 		 * disabled by software override. Since there really
201 		 * isn't a way to advertise that we are capable of RX
202 		 * Pause ONLY, we will advertise that we support both
203 		 * symmetric and asymmetric Rx PAUSE, as such we fall
204 		 * through to the fc_full statement.  Later, we will
205 		 * disable the adapter's ability to send PAUSE frames.
206 		 */
207 	case ixgbe_fc_full:
208 		/* Flow control (both Rx and Tx) is enabled by SW override. */
209 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
210 		if (hw->phy.media_type == ixgbe_media_type_backplane)
211 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
212 				  IXGBE_AUTOC_ASM_PAUSE;
213 		else if (hw->phy.media_type == ixgbe_media_type_copper)
214 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
215 		break;
216 	default:
217 		hw_dbg(hw, "Flow control param set incorrectly\n");
218 		return -EIO;
219 	}
220 
221 	if (hw->mac.type != ixgbe_mac_X540) {
222 		/*
223 		 * Enable auto-negotiation between the MAC & PHY;
224 		 * the MAC will advertise clause 37 flow control.
225 		 */
226 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
227 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
228 
229 		/* Disable AN timeout */
230 		if (hw->fc.strict_ieee)
231 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
232 
233 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
234 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
235 	}
236 
237 	/*
238 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
239 	 * and copper. There is no need to set the PCS1GCTL register.
240 	 *
241 	 */
242 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
243 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
244 		 * LESM is on, likewise reset_pipeline requries the lock as
245 		 * it also writes AUTOC.
246 		 */
247 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
248 		if (ret_val)
249 			return ret_val;
250 
251 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
252 		   ixgbe_device_supports_autoneg_fc(hw)) {
253 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
254 				      MDIO_MMD_AN, reg_cu);
255 	}
256 
257 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
258 	return ret_val;
259 }
260 
261 /**
262  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
263  *  @hw: pointer to hardware structure
264  *
265  *  Starts the hardware by filling the bus info structure and media type, clears
266  *  all on chip counters, initializes receive address registers, multicast
267  *  table, VLAN filter table, calls routine to set up link and flow control
268  *  settings, and leaves transmit and receive units disabled and uninitialized
269  **/
270 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
271 {
272 	s32 ret_val;
273 	u32 ctrl_ext;
274 	u16 device_caps;
275 
276 	/* Set the media type */
277 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
278 
279 	/* Identify the PHY */
280 	hw->phy.ops.identify(hw);
281 
282 	/* Clear the VLAN filter table */
283 	hw->mac.ops.clear_vfta(hw);
284 
285 	/* Clear statistics registers */
286 	hw->mac.ops.clear_hw_cntrs(hw);
287 
288 	/* Set No Snoop Disable */
289 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
290 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
291 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
292 	IXGBE_WRITE_FLUSH(hw);
293 
294 	/* Setup flow control if method for doing so */
295 	if (hw->mac.ops.setup_fc) {
296 		ret_val = hw->mac.ops.setup_fc(hw);
297 		if (ret_val)
298 			return ret_val;
299 	}
300 
301 	/* Cashe bit indicating need for crosstalk fix */
302 	switch (hw->mac.type) {
303 	case ixgbe_mac_82599EB:
304 	case ixgbe_mac_X550EM_x:
305 	case ixgbe_mac_x550em_a:
306 		hw->mac.ops.get_device_caps(hw, &device_caps);
307 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
308 			hw->need_crosstalk_fix = false;
309 		else
310 			hw->need_crosstalk_fix = true;
311 		break;
312 	default:
313 		hw->need_crosstalk_fix = false;
314 		break;
315 	}
316 
317 	/* Clear adapter stopped flag */
318 	hw->adapter_stopped = false;
319 
320 	return 0;
321 }
322 
323 /**
324  *  ixgbe_start_hw_gen2 - Init sequence for common device family
325  *  @hw: pointer to hw structure
326  *
327  * Performs the init sequence common to the second generation
328  * of 10 GbE devices.
329  * Devices in the second generation:
330  *     82599
331  *     X540
332  **/
333 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
334 {
335 	u32 i;
336 
337 	/* Clear the rate limiters */
338 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
339 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
340 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
341 	}
342 	IXGBE_WRITE_FLUSH(hw);
343 
344 	return 0;
345 }
346 
347 /**
348  *  ixgbe_init_hw_generic - Generic hardware initialization
349  *  @hw: pointer to hardware structure
350  *
351  *  Initialize the hardware by resetting the hardware, filling the bus info
352  *  structure and media type, clears all on chip counters, initializes receive
353  *  address registers, multicast table, VLAN filter table, calls routine to set
354  *  up link and flow control settings, and leaves transmit and receive units
355  *  disabled and uninitialized
356  **/
357 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
358 {
359 	s32 status;
360 
361 	/* Reset the hardware */
362 	status = hw->mac.ops.reset_hw(hw);
363 
364 	if (status == 0) {
365 		/* Start the HW */
366 		status = hw->mac.ops.start_hw(hw);
367 	}
368 
369 	/* Initialize the LED link active for LED blink support */
370 	if (hw->mac.ops.init_led_link_act)
371 		hw->mac.ops.init_led_link_act(hw);
372 
373 	return status;
374 }
375 
376 /**
377  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
378  *  @hw: pointer to hardware structure
379  *
380  *  Clears all hardware statistics counters by reading them from the hardware
381  *  Statistics counters are clear on read.
382  **/
383 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
384 {
385 	u16 i = 0;
386 
387 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
388 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
389 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
390 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
391 	for (i = 0; i < 8; i++)
392 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
393 
394 	IXGBE_READ_REG(hw, IXGBE_MLFC);
395 	IXGBE_READ_REG(hw, IXGBE_MRFC);
396 	IXGBE_READ_REG(hw, IXGBE_RLEC);
397 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
398 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
399 	if (hw->mac.type >= ixgbe_mac_82599EB) {
400 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
401 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
402 	} else {
403 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
404 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
405 	}
406 
407 	for (i = 0; i < 8; i++) {
408 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
409 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
410 		if (hw->mac.type >= ixgbe_mac_82599EB) {
411 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
412 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
413 		} else {
414 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
415 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
416 		}
417 	}
418 	if (hw->mac.type >= ixgbe_mac_82599EB)
419 		for (i = 0; i < 8; i++)
420 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
421 	IXGBE_READ_REG(hw, IXGBE_PRC64);
422 	IXGBE_READ_REG(hw, IXGBE_PRC127);
423 	IXGBE_READ_REG(hw, IXGBE_PRC255);
424 	IXGBE_READ_REG(hw, IXGBE_PRC511);
425 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
426 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
427 	IXGBE_READ_REG(hw, IXGBE_GPRC);
428 	IXGBE_READ_REG(hw, IXGBE_BPRC);
429 	IXGBE_READ_REG(hw, IXGBE_MPRC);
430 	IXGBE_READ_REG(hw, IXGBE_GPTC);
431 	IXGBE_READ_REG(hw, IXGBE_GORCL);
432 	IXGBE_READ_REG(hw, IXGBE_GORCH);
433 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
434 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
435 	if (hw->mac.type == ixgbe_mac_82598EB)
436 		for (i = 0; i < 8; i++)
437 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
438 	IXGBE_READ_REG(hw, IXGBE_RUC);
439 	IXGBE_READ_REG(hw, IXGBE_RFC);
440 	IXGBE_READ_REG(hw, IXGBE_ROC);
441 	IXGBE_READ_REG(hw, IXGBE_RJC);
442 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
443 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
444 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
445 	IXGBE_READ_REG(hw, IXGBE_TORL);
446 	IXGBE_READ_REG(hw, IXGBE_TORH);
447 	IXGBE_READ_REG(hw, IXGBE_TPR);
448 	IXGBE_READ_REG(hw, IXGBE_TPT);
449 	IXGBE_READ_REG(hw, IXGBE_PTC64);
450 	IXGBE_READ_REG(hw, IXGBE_PTC127);
451 	IXGBE_READ_REG(hw, IXGBE_PTC255);
452 	IXGBE_READ_REG(hw, IXGBE_PTC511);
453 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
454 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
455 	IXGBE_READ_REG(hw, IXGBE_MPTC);
456 	IXGBE_READ_REG(hw, IXGBE_BPTC);
457 	for (i = 0; i < 16; i++) {
458 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
459 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
460 		if (hw->mac.type >= ixgbe_mac_82599EB) {
461 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
462 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
463 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
464 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
465 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
466 		} else {
467 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
468 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
469 		}
470 	}
471 
472 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
473 		if (hw->phy.id == 0)
474 			hw->phy.ops.identify(hw);
475 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
476 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
477 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
478 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
479 	}
480 
481 	return 0;
482 }
483 
484 /**
485  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
486  *  @hw: pointer to hardware structure
487  *  @pba_num: stores the part number string from the EEPROM
488  *  @pba_num_size: part number string buffer length
489  *
490  *  Reads the part number string from the EEPROM.
491  **/
492 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
493 				  u32 pba_num_size)
494 {
495 	s32 ret_val;
496 	u16 data;
497 	u16 pba_ptr;
498 	u16 offset;
499 	u16 length;
500 
501 	if (pba_num == NULL) {
502 		hw_dbg(hw, "PBA string buffer was null\n");
503 		return -EINVAL;
504 	}
505 
506 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
507 	if (ret_val) {
508 		hw_dbg(hw, "NVM Read Error\n");
509 		return ret_val;
510 	}
511 
512 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
513 	if (ret_val) {
514 		hw_dbg(hw, "NVM Read Error\n");
515 		return ret_val;
516 	}
517 
518 	/*
519 	 * if data is not ptr guard the PBA must be in legacy format which
520 	 * means pba_ptr is actually our second data word for the PBA number
521 	 * and we can decode it into an ascii string
522 	 */
523 	if (data != IXGBE_PBANUM_PTR_GUARD) {
524 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
525 
526 		/* we will need 11 characters to store the PBA */
527 		if (pba_num_size < 11) {
528 			hw_dbg(hw, "PBA string buffer too small\n");
529 			return -ENOSPC;
530 		}
531 
532 		/* extract hex string from data and pba_ptr */
533 		pba_num[0] = (data >> 12) & 0xF;
534 		pba_num[1] = (data >> 8) & 0xF;
535 		pba_num[2] = (data >> 4) & 0xF;
536 		pba_num[3] = data & 0xF;
537 		pba_num[4] = (pba_ptr >> 12) & 0xF;
538 		pba_num[5] = (pba_ptr >> 8) & 0xF;
539 		pba_num[6] = '-';
540 		pba_num[7] = 0;
541 		pba_num[8] = (pba_ptr >> 4) & 0xF;
542 		pba_num[9] = pba_ptr & 0xF;
543 
544 		/* put a null character on the end of our string */
545 		pba_num[10] = '\0';
546 
547 		/* switch all the data but the '-' to hex char */
548 		for (offset = 0; offset < 10; offset++) {
549 			if (pba_num[offset] < 0xA)
550 				pba_num[offset] += '0';
551 			else if (pba_num[offset] < 0x10)
552 				pba_num[offset] += 'A' - 0xA;
553 		}
554 
555 		return 0;
556 	}
557 
558 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
559 	if (ret_val) {
560 		hw_dbg(hw, "NVM Read Error\n");
561 		return ret_val;
562 	}
563 
564 	if (length == 0xFFFF || length == 0) {
565 		hw_dbg(hw, "NVM PBA number section invalid length\n");
566 		return -EIO;
567 	}
568 
569 	/* check if pba_num buffer is big enough */
570 	if (pba_num_size  < (((u32)length * 2) - 1)) {
571 		hw_dbg(hw, "PBA string buffer too small\n");
572 		return -ENOSPC;
573 	}
574 
575 	/* trim pba length from start of string */
576 	pba_ptr++;
577 	length--;
578 
579 	for (offset = 0; offset < length; offset++) {
580 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
581 		if (ret_val) {
582 			hw_dbg(hw, "NVM Read Error\n");
583 			return ret_val;
584 		}
585 		pba_num[offset * 2] = (u8)(data >> 8);
586 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
587 	}
588 	pba_num[offset * 2] = '\0';
589 
590 	return 0;
591 }
592 
593 /**
594  *  ixgbe_get_mac_addr_generic - Generic get MAC address
595  *  @hw: pointer to hardware structure
596  *  @mac_addr: Adapter MAC address
597  *
598  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
599  *  A reset of the adapter must be performed prior to calling this function
600  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
601  **/
602 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
603 {
604 	u32 rar_high;
605 	u32 rar_low;
606 	u16 i;
607 
608 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
609 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
610 
611 	for (i = 0; i < 4; i++)
612 		mac_addr[i] = (u8)(rar_low >> (i*8));
613 
614 	for (i = 0; i < 2; i++)
615 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
616 
617 	return 0;
618 }
619 
620 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
621 {
622 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
623 	case IXGBE_PCI_LINK_WIDTH_1:
624 		return ixgbe_bus_width_pcie_x1;
625 	case IXGBE_PCI_LINK_WIDTH_2:
626 		return ixgbe_bus_width_pcie_x2;
627 	case IXGBE_PCI_LINK_WIDTH_4:
628 		return ixgbe_bus_width_pcie_x4;
629 	case IXGBE_PCI_LINK_WIDTH_8:
630 		return ixgbe_bus_width_pcie_x8;
631 	default:
632 		return ixgbe_bus_width_unknown;
633 	}
634 }
635 
636 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
637 {
638 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
639 	case IXGBE_PCI_LINK_SPEED_2500:
640 		return ixgbe_bus_speed_2500;
641 	case IXGBE_PCI_LINK_SPEED_5000:
642 		return ixgbe_bus_speed_5000;
643 	case IXGBE_PCI_LINK_SPEED_8000:
644 		return ixgbe_bus_speed_8000;
645 	default:
646 		return ixgbe_bus_speed_unknown;
647 	}
648 }
649 
650 /**
651  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
652  *  @hw: pointer to hardware structure
653  *
654  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
655  **/
656 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
657 {
658 	u16 link_status;
659 
660 	hw->bus.type = ixgbe_bus_type_pci_express;
661 
662 	/* Get the negotiated link width and speed from PCI config space */
663 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
664 
665 	hw->bus.width = ixgbe_convert_bus_width(link_status);
666 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
667 
668 	hw->mac.ops.set_lan_id(hw);
669 
670 	return 0;
671 }
672 
673 /**
674  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
675  *  @hw: pointer to the HW structure
676  *
677  *  Determines the LAN function id by reading memory-mapped registers
678  *  and swaps the port value if requested.
679  **/
680 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
681 {
682 	struct ixgbe_bus_info *bus = &hw->bus;
683 	u16 ee_ctrl_4;
684 	u32 reg;
685 
686 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
687 	bus->func = FIELD_GET(IXGBE_STATUS_LAN_ID, reg);
688 	bus->lan_id = bus->func;
689 
690 	/* check for a port swap */
691 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
692 	if (reg & IXGBE_FACTPS_LFS)
693 		bus->func ^= 0x1;
694 
695 	/* Get MAC instance from EEPROM for configuring CS4227 */
696 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
697 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
698 		bus->instance_id = FIELD_GET(IXGBE_EE_CTRL_4_INST_ID,
699 					     ee_ctrl_4);
700 	}
701 }
702 
703 /**
704  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
705  *  @hw: pointer to hardware structure
706  *
707  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
708  *  disables transmit and receive units. The adapter_stopped flag is used by
709  *  the shared code and drivers to determine if the adapter is in a stopped
710  *  state and should not touch the hardware.
711  **/
712 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
713 {
714 	u32 reg_val;
715 	u16 i;
716 
717 	/*
718 	 * Set the adapter_stopped flag so other driver functions stop touching
719 	 * the hardware
720 	 */
721 	hw->adapter_stopped = true;
722 
723 	/* Disable the receive unit */
724 	hw->mac.ops.disable_rx(hw);
725 
726 	/* Clear interrupt mask to stop interrupts from being generated */
727 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
728 
729 	/* Clear any pending interrupts, flush previous writes */
730 	IXGBE_READ_REG(hw, IXGBE_EICR);
731 
732 	/* Disable the transmit unit.  Each queue must be disabled. */
733 	for (i = 0; i < hw->mac.max_tx_queues; i++)
734 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
735 
736 	/* Disable the receive unit by stopping each queue */
737 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
738 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
739 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
740 		reg_val |= IXGBE_RXDCTL_SWFLSH;
741 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
742 	}
743 
744 	/* flush all queues disables */
745 	IXGBE_WRITE_FLUSH(hw);
746 	usleep_range(1000, 2000);
747 
748 	/*
749 	 * Prevent the PCI-E bus from hanging by disabling PCI-E primary
750 	 * access and verify no pending requests
751 	 */
752 	return ixgbe_disable_pcie_primary(hw);
753 }
754 
755 /**
756  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
757  *  @hw: pointer to hardware structure
758  *
759  *  Store the index for the link active LED. This will be used to support
760  *  blinking the LED.
761  **/
762 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
763 {
764 	struct ixgbe_mac_info *mac = &hw->mac;
765 	u32 led_reg, led_mode;
766 	u16 i;
767 
768 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
769 
770 	/* Get LED link active from the LEDCTL register */
771 	for (i = 0; i < 4; i++) {
772 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
773 
774 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
775 		    IXGBE_LED_LINK_ACTIVE) {
776 			mac->led_link_act = i;
777 			return 0;
778 		}
779 	}
780 
781 	/* If LEDCTL register does not have the LED link active set, then use
782 	 * known MAC defaults.
783 	 */
784 	switch (hw->mac.type) {
785 	case ixgbe_mac_x550em_a:
786 		mac->led_link_act = 0;
787 		break;
788 	case ixgbe_mac_X550EM_x:
789 		mac->led_link_act = 1;
790 		break;
791 	default:
792 		mac->led_link_act = 2;
793 	}
794 
795 	return 0;
796 }
797 
798 /**
799  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
800  *  @hw: pointer to hardware structure
801  *  @index: led number to turn on
802  **/
803 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
804 {
805 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
806 
807 	if (index > 3)
808 		return -EINVAL;
809 
810 	/* To turn on the LED, set mode to ON. */
811 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
812 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
813 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
814 	IXGBE_WRITE_FLUSH(hw);
815 
816 	return 0;
817 }
818 
819 /**
820  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
821  *  @hw: pointer to hardware structure
822  *  @index: led number to turn off
823  **/
824 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
825 {
826 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
827 
828 	if (index > 3)
829 		return -EINVAL;
830 
831 	/* To turn off the LED, set mode to OFF. */
832 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
833 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
834 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
835 	IXGBE_WRITE_FLUSH(hw);
836 
837 	return 0;
838 }
839 
840 /**
841  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
842  *  @hw: pointer to hardware structure
843  *
844  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
845  *  ixgbe_hw struct in order to set up EEPROM access.
846  **/
847 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
848 {
849 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
850 	u32 eec;
851 	u16 eeprom_size;
852 
853 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
854 		eeprom->type = ixgbe_eeprom_none;
855 		/* Set default semaphore delay to 10ms which is a well
856 		 * tested value */
857 		eeprom->semaphore_delay = 10;
858 		/* Clear EEPROM page size, it will be initialized as needed */
859 		eeprom->word_page_size = 0;
860 
861 		/*
862 		 * Check for EEPROM present first.
863 		 * If not present leave as none
864 		 */
865 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
866 		if (eec & IXGBE_EEC_PRES) {
867 			eeprom->type = ixgbe_eeprom_spi;
868 
869 			/*
870 			 * SPI EEPROM is assumed here.  This code would need to
871 			 * change if a future EEPROM is not SPI.
872 			 */
873 			eeprom_size = FIELD_GET(IXGBE_EEC_SIZE, eec);
874 			eeprom->word_size = BIT(eeprom_size +
875 						IXGBE_EEPROM_WORD_SIZE_SHIFT);
876 		}
877 
878 		if (eec & IXGBE_EEC_ADDR_SIZE)
879 			eeprom->address_bits = 16;
880 		else
881 			eeprom->address_bits = 8;
882 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
883 		       eeprom->type, eeprom->word_size, eeprom->address_bits);
884 	}
885 
886 	return 0;
887 }
888 
889 /**
890  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
891  *  @hw: pointer to hardware structure
892  *  @offset: offset within the EEPROM to write
893  *  @words: number of words
894  *  @data: 16 bit word(s) to write to EEPROM
895  *
896  *  Reads 16 bit word(s) from EEPROM through bit-bang method
897  **/
898 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
899 					       u16 words, u16 *data)
900 {
901 	s32 status;
902 	u16 i, count;
903 
904 	hw->eeprom.ops.init_params(hw);
905 
906 	if (words == 0 || (offset + words > hw->eeprom.word_size))
907 		return -EINVAL;
908 
909 	/*
910 	 * The EEPROM page size cannot be queried from the chip. We do lazy
911 	 * initialization. It is worth to do that when we write large buffer.
912 	 */
913 	if ((hw->eeprom.word_page_size == 0) &&
914 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
915 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
916 
917 	/*
918 	 * We cannot hold synchronization semaphores for too long
919 	 * to avoid other entity starvation. However it is more efficient
920 	 * to read in bursts than synchronizing access for each word.
921 	 */
922 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
923 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
924 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
925 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
926 							    count, &data[i]);
927 
928 		if (status != 0)
929 			break;
930 	}
931 
932 	return status;
933 }
934 
935 /**
936  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
937  *  @hw: pointer to hardware structure
938  *  @offset: offset within the EEPROM to be written to
939  *  @words: number of word(s)
940  *  @data: 16 bit word(s) to be written to the EEPROM
941  *
942  *  If ixgbe_eeprom_update_checksum is not called after this function, the
943  *  EEPROM will most likely contain an invalid checksum.
944  **/
945 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
946 					      u16 words, u16 *data)
947 {
948 	s32 status;
949 	u16 word;
950 	u16 page_size;
951 	u16 i;
952 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
953 
954 	/* Prepare the EEPROM for writing  */
955 	status = ixgbe_acquire_eeprom(hw);
956 	if (status)
957 		return status;
958 
959 	if (ixgbe_ready_eeprom(hw) != 0) {
960 		ixgbe_release_eeprom(hw);
961 		return -EIO;
962 	}
963 
964 	for (i = 0; i < words; i++) {
965 		ixgbe_standby_eeprom(hw);
966 
967 		/* Send the WRITE ENABLE command (8 bit opcode) */
968 		ixgbe_shift_out_eeprom_bits(hw,
969 					    IXGBE_EEPROM_WREN_OPCODE_SPI,
970 					    IXGBE_EEPROM_OPCODE_BITS);
971 
972 		ixgbe_standby_eeprom(hw);
973 
974 		/* Some SPI eeproms use the 8th address bit embedded
975 		 * in the opcode
976 		 */
977 		if ((hw->eeprom.address_bits == 8) &&
978 		    ((offset + i) >= 128))
979 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
980 
981 		/* Send the Write command (8-bit opcode + addr) */
982 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
983 					    IXGBE_EEPROM_OPCODE_BITS);
984 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
985 					    hw->eeprom.address_bits);
986 
987 		page_size = hw->eeprom.word_page_size;
988 
989 		/* Send the data in burst via SPI */
990 		do {
991 			word = data[i];
992 			word = (word >> 8) | (word << 8);
993 			ixgbe_shift_out_eeprom_bits(hw, word, 16);
994 
995 			if (page_size == 0)
996 				break;
997 
998 			/* do not wrap around page */
999 			if (((offset + i) & (page_size - 1)) ==
1000 			    (page_size - 1))
1001 				break;
1002 		} while (++i < words);
1003 
1004 		ixgbe_standby_eeprom(hw);
1005 		usleep_range(10000, 20000);
1006 	}
1007 	/* Done with writing - release the EEPROM */
1008 	ixgbe_release_eeprom(hw);
1009 
1010 	return 0;
1011 }
1012 
1013 /**
1014  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1015  *  @hw: pointer to hardware structure
1016  *  @offset: offset within the EEPROM to be written to
1017  *  @data: 16 bit word to be written to the EEPROM
1018  *
1019  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1020  *  EEPROM will most likely contain an invalid checksum.
1021  **/
1022 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1023 {
1024 	hw->eeprom.ops.init_params(hw);
1025 
1026 	if (offset >= hw->eeprom.word_size)
1027 		return -EINVAL;
1028 
1029 	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1030 }
1031 
1032 /**
1033  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1034  *  @hw: pointer to hardware structure
1035  *  @offset: offset within the EEPROM to be read
1036  *  @words: number of word(s)
1037  *  @data: read 16 bit words(s) from EEPROM
1038  *
1039  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1040  **/
1041 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1042 					      u16 words, u16 *data)
1043 {
1044 	s32 status;
1045 	u16 i, count;
1046 
1047 	hw->eeprom.ops.init_params(hw);
1048 
1049 	if (words == 0 || (offset + words > hw->eeprom.word_size))
1050 		return -EINVAL;
1051 
1052 	/*
1053 	 * We cannot hold synchronization semaphores for too long
1054 	 * to avoid other entity starvation. However it is more efficient
1055 	 * to read in bursts than synchronizing access for each word.
1056 	 */
1057 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1058 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1059 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1060 
1061 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1062 							   count, &data[i]);
1063 
1064 		if (status)
1065 			return status;
1066 	}
1067 
1068 	return 0;
1069 }
1070 
1071 /**
1072  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1073  *  @hw: pointer to hardware structure
1074  *  @offset: offset within the EEPROM to be read
1075  *  @words: number of word(s)
1076  *  @data: read 16 bit word(s) from EEPROM
1077  *
1078  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1079  **/
1080 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1081 					     u16 words, u16 *data)
1082 {
1083 	s32 status;
1084 	u16 word_in;
1085 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1086 	u16 i;
1087 
1088 	/* Prepare the EEPROM for reading  */
1089 	status = ixgbe_acquire_eeprom(hw);
1090 	if (status)
1091 		return status;
1092 
1093 	if (ixgbe_ready_eeprom(hw) != 0) {
1094 		ixgbe_release_eeprom(hw);
1095 		return -EIO;
1096 	}
1097 
1098 	for (i = 0; i < words; i++) {
1099 		ixgbe_standby_eeprom(hw);
1100 		/* Some SPI eeproms use the 8th address bit embedded
1101 		 * in the opcode
1102 		 */
1103 		if ((hw->eeprom.address_bits == 8) &&
1104 		    ((offset + i) >= 128))
1105 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1106 
1107 		/* Send the READ command (opcode + addr) */
1108 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1109 					    IXGBE_EEPROM_OPCODE_BITS);
1110 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1111 					    hw->eeprom.address_bits);
1112 
1113 		/* Read the data. */
1114 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1115 		data[i] = (word_in >> 8) | (word_in << 8);
1116 	}
1117 
1118 	/* End this read operation */
1119 	ixgbe_release_eeprom(hw);
1120 
1121 	return 0;
1122 }
1123 
1124 /**
1125  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1126  *  @hw: pointer to hardware structure
1127  *  @offset: offset within the EEPROM to be read
1128  *  @data: read 16 bit value from EEPROM
1129  *
1130  *  Reads 16 bit value from EEPROM through bit-bang method
1131  **/
1132 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1133 				       u16 *data)
1134 {
1135 	hw->eeprom.ops.init_params(hw);
1136 
1137 	if (offset >= hw->eeprom.word_size)
1138 		return -EINVAL;
1139 
1140 	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1141 }
1142 
1143 /**
1144  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1145  *  @hw: pointer to hardware structure
1146  *  @offset: offset of word in the EEPROM to read
1147  *  @words: number of word(s)
1148  *  @data: 16 bit word(s) from the EEPROM
1149  *
1150  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1151  **/
1152 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1153 				   u16 words, u16 *data)
1154 {
1155 	u32 eerd;
1156 	s32 status;
1157 	u32 i;
1158 
1159 	hw->eeprom.ops.init_params(hw);
1160 
1161 	if (words == 0 || offset >= hw->eeprom.word_size)
1162 		return -EINVAL;
1163 
1164 	for (i = 0; i < words; i++) {
1165 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1166 		       IXGBE_EEPROM_RW_REG_START;
1167 
1168 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1169 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1170 
1171 		if (status == 0) {
1172 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1173 				   IXGBE_EEPROM_RW_REG_DATA);
1174 		} else {
1175 			hw_dbg(hw, "Eeprom read timed out\n");
1176 			return status;
1177 		}
1178 	}
1179 
1180 	return 0;
1181 }
1182 
1183 /**
1184  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1185  *  @hw: pointer to hardware structure
1186  *  @offset: offset within the EEPROM to be used as a scratch pad
1187  *
1188  *  Discover EEPROM page size by writing marching data at given offset.
1189  *  This function is called only when we are writing a new large buffer
1190  *  at given offset so the data would be overwritten anyway.
1191  **/
1192 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1193 						 u16 offset)
1194 {
1195 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1196 	s32 status;
1197 	u16 i;
1198 
1199 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1200 		data[i] = i;
1201 
1202 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1203 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1204 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1205 	hw->eeprom.word_page_size = 0;
1206 	if (status)
1207 		return status;
1208 
1209 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1210 	if (status)
1211 		return status;
1212 
1213 	/*
1214 	 * When writing in burst more than the actual page size
1215 	 * EEPROM address wraps around current page.
1216 	 */
1217 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1218 
1219 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1220 	       hw->eeprom.word_page_size);
1221 	return 0;
1222 }
1223 
1224 /**
1225  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1226  *  @hw: pointer to hardware structure
1227  *  @offset: offset of  word in the EEPROM to read
1228  *  @data: word read from the EEPROM
1229  *
1230  *  Reads a 16 bit word from the EEPROM using the EERD register.
1231  **/
1232 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1233 {
1234 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1235 }
1236 
1237 /**
1238  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1239  *  @hw: pointer to hardware structure
1240  *  @offset: offset of  word in the EEPROM to write
1241  *  @words: number of words
1242  *  @data: word(s) write to the EEPROM
1243  *
1244  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1245  **/
1246 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1247 				    u16 words, u16 *data)
1248 {
1249 	u32 eewr;
1250 	s32 status;
1251 	u16 i;
1252 
1253 	hw->eeprom.ops.init_params(hw);
1254 
1255 	if (words == 0 || offset >= hw->eeprom.word_size)
1256 		return -EINVAL;
1257 
1258 	for (i = 0; i < words; i++) {
1259 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1260 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1261 		       IXGBE_EEPROM_RW_REG_START;
1262 
1263 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1264 		if (status) {
1265 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1266 			return status;
1267 		}
1268 
1269 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1270 
1271 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1272 		if (status) {
1273 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1274 			return status;
1275 		}
1276 	}
1277 
1278 	return 0;
1279 }
1280 
1281 /**
1282  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1283  *  @hw: pointer to hardware structure
1284  *  @offset: offset of  word in the EEPROM to write
1285  *  @data: word write to the EEPROM
1286  *
1287  *  Write a 16 bit word to the EEPROM using the EEWR register.
1288  **/
1289 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1290 {
1291 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1292 }
1293 
1294 /**
1295  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1296  *  @hw: pointer to hardware structure
1297  *  @ee_reg: EEPROM flag for polling
1298  *
1299  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1300  *  read or write is done respectively.
1301  **/
1302 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1303 {
1304 	u32 i;
1305 	u32 reg;
1306 
1307 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1308 		if (ee_reg == IXGBE_NVM_POLL_READ)
1309 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1310 		else
1311 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1312 
1313 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1314 			return 0;
1315 		}
1316 		udelay(5);
1317 	}
1318 	return -EIO;
1319 }
1320 
1321 /**
1322  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1323  *  @hw: pointer to hardware structure
1324  *
1325  *  Prepares EEPROM for access using bit-bang method. This function should
1326  *  be called before issuing a command to the EEPROM.
1327  **/
1328 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1329 {
1330 	u32 eec;
1331 	u32 i;
1332 
1333 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1334 		return -EBUSY;
1335 
1336 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1337 
1338 	/* Request EEPROM Access */
1339 	eec |= IXGBE_EEC_REQ;
1340 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1341 
1342 	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1343 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1344 		if (eec & IXGBE_EEC_GNT)
1345 			break;
1346 		udelay(5);
1347 	}
1348 
1349 	/* Release if grant not acquired */
1350 	if (!(eec & IXGBE_EEC_GNT)) {
1351 		eec &= ~IXGBE_EEC_REQ;
1352 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1353 		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1354 
1355 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1356 		return -EIO;
1357 	}
1358 
1359 	/* Setup EEPROM for Read/Write */
1360 	/* Clear CS and SK */
1361 	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1362 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1363 	IXGBE_WRITE_FLUSH(hw);
1364 	udelay(1);
1365 	return 0;
1366 }
1367 
1368 /**
1369  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1370  *  @hw: pointer to hardware structure
1371  *
1372  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1373  **/
1374 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1375 {
1376 	u32 timeout = 2000;
1377 	u32 i;
1378 	u32 swsm;
1379 
1380 	/* Get SMBI software semaphore between device drivers first */
1381 	for (i = 0; i < timeout; i++) {
1382 		/*
1383 		 * If the SMBI bit is 0 when we read it, then the bit will be
1384 		 * set and we have the semaphore
1385 		 */
1386 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1387 		if (!(swsm & IXGBE_SWSM_SMBI))
1388 			break;
1389 		usleep_range(50, 100);
1390 	}
1391 
1392 	if (i == timeout) {
1393 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1394 		/* this release is particularly important because our attempts
1395 		 * above to get the semaphore may have succeeded, and if there
1396 		 * was a timeout, we should unconditionally clear the semaphore
1397 		 * bits to free the driver to make progress
1398 		 */
1399 		ixgbe_release_eeprom_semaphore(hw);
1400 
1401 		usleep_range(50, 100);
1402 		/* one last try
1403 		 * If the SMBI bit is 0 when we read it, then the bit will be
1404 		 * set and we have the semaphore
1405 		 */
1406 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1407 		if (swsm & IXGBE_SWSM_SMBI) {
1408 			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1409 			return -EIO;
1410 		}
1411 	}
1412 
1413 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1414 	for (i = 0; i < timeout; i++) {
1415 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1416 
1417 		/* Set the SW EEPROM semaphore bit to request access */
1418 		swsm |= IXGBE_SWSM_SWESMBI;
1419 		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1420 
1421 		/* If we set the bit successfully then we got the
1422 		 * semaphore.
1423 		 */
1424 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1425 		if (swsm & IXGBE_SWSM_SWESMBI)
1426 			break;
1427 
1428 		usleep_range(50, 100);
1429 	}
1430 
1431 	/* Release semaphores and return error if SW EEPROM semaphore
1432 	 * was not granted because we don't have access to the EEPROM
1433 	 */
1434 	if (i >= timeout) {
1435 		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1436 		ixgbe_release_eeprom_semaphore(hw);
1437 		return -EIO;
1438 	}
1439 
1440 	return 0;
1441 }
1442 
1443 /**
1444  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1445  *  @hw: pointer to hardware structure
1446  *
1447  *  This function clears hardware semaphore bits.
1448  **/
1449 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1450 {
1451 	u32 swsm;
1452 
1453 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1454 
1455 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1456 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1457 	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1458 	IXGBE_WRITE_FLUSH(hw);
1459 }
1460 
1461 /**
1462  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1463  *  @hw: pointer to hardware structure
1464  **/
1465 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1466 {
1467 	u16 i;
1468 	u8 spi_stat_reg;
1469 
1470 	/*
1471 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1472 	 * EEPROM will signal that the command has been completed by clearing
1473 	 * bit 0 of the internal status register.  If it's not cleared within
1474 	 * 5 milliseconds, then error out.
1475 	 */
1476 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1477 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1478 					    IXGBE_EEPROM_OPCODE_BITS);
1479 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1480 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1481 			break;
1482 
1483 		udelay(5);
1484 		ixgbe_standby_eeprom(hw);
1485 	}
1486 
1487 	/*
1488 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1489 	 * devices (and only 0-5mSec on 5V devices)
1490 	 */
1491 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1492 		hw_dbg(hw, "SPI EEPROM Status error\n");
1493 		return -EIO;
1494 	}
1495 
1496 	return 0;
1497 }
1498 
1499 /**
1500  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1501  *  @hw: pointer to hardware structure
1502  **/
1503 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1504 {
1505 	u32 eec;
1506 
1507 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1508 
1509 	/* Toggle CS to flush commands */
1510 	eec |= IXGBE_EEC_CS;
1511 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1512 	IXGBE_WRITE_FLUSH(hw);
1513 	udelay(1);
1514 	eec &= ~IXGBE_EEC_CS;
1515 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1516 	IXGBE_WRITE_FLUSH(hw);
1517 	udelay(1);
1518 }
1519 
1520 /**
1521  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1522  *  @hw: pointer to hardware structure
1523  *  @data: data to send to the EEPROM
1524  *  @count: number of bits to shift out
1525  **/
1526 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1527 					u16 count)
1528 {
1529 	u32 eec;
1530 	u32 mask;
1531 	u32 i;
1532 
1533 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1534 
1535 	/*
1536 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1537 	 * one bit at a time.  Determine the starting bit based on count
1538 	 */
1539 	mask = BIT(count - 1);
1540 
1541 	for (i = 0; i < count; i++) {
1542 		/*
1543 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1544 		 * "1", and then raising and then lowering the clock (the SK
1545 		 * bit controls the clock input to the EEPROM).  A "0" is
1546 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1547 		 * raising and then lowering the clock.
1548 		 */
1549 		if (data & mask)
1550 			eec |= IXGBE_EEC_DI;
1551 		else
1552 			eec &= ~IXGBE_EEC_DI;
1553 
1554 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1555 		IXGBE_WRITE_FLUSH(hw);
1556 
1557 		udelay(1);
1558 
1559 		ixgbe_raise_eeprom_clk(hw, &eec);
1560 		ixgbe_lower_eeprom_clk(hw, &eec);
1561 
1562 		/*
1563 		 * Shift mask to signify next bit of data to shift in to the
1564 		 * EEPROM
1565 		 */
1566 		mask = mask >> 1;
1567 	}
1568 
1569 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1570 	eec &= ~IXGBE_EEC_DI;
1571 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1572 	IXGBE_WRITE_FLUSH(hw);
1573 }
1574 
1575 /**
1576  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1577  *  @hw: pointer to hardware structure
1578  *  @count: number of bits to shift
1579  **/
1580 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1581 {
1582 	u32 eec;
1583 	u32 i;
1584 	u16 data = 0;
1585 
1586 	/*
1587 	 * In order to read a register from the EEPROM, we need to shift
1588 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1589 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1590 	 * the value of the "DO" bit.  During this "shifting in" process the
1591 	 * "DI" bit should always be clear.
1592 	 */
1593 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1594 
1595 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1596 
1597 	for (i = 0; i < count; i++) {
1598 		data = data << 1;
1599 		ixgbe_raise_eeprom_clk(hw, &eec);
1600 
1601 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1602 
1603 		eec &= ~(IXGBE_EEC_DI);
1604 		if (eec & IXGBE_EEC_DO)
1605 			data |= 1;
1606 
1607 		ixgbe_lower_eeprom_clk(hw, &eec);
1608 	}
1609 
1610 	return data;
1611 }
1612 
1613 /**
1614  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1615  *  @hw: pointer to hardware structure
1616  *  @eec: EEC register's current value
1617  **/
1618 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1619 {
1620 	/*
1621 	 * Raise the clock input to the EEPROM
1622 	 * (setting the SK bit), then delay
1623 	 */
1624 	*eec = *eec | IXGBE_EEC_SK;
1625 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1626 	IXGBE_WRITE_FLUSH(hw);
1627 	udelay(1);
1628 }
1629 
1630 /**
1631  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1632  *  @hw: pointer to hardware structure
1633  *  @eec: EEC's current value
1634  **/
1635 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1636 {
1637 	/*
1638 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1639 	 * delay
1640 	 */
1641 	*eec = *eec & ~IXGBE_EEC_SK;
1642 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1643 	IXGBE_WRITE_FLUSH(hw);
1644 	udelay(1);
1645 }
1646 
1647 /**
1648  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1649  *  @hw: pointer to hardware structure
1650  **/
1651 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1652 {
1653 	u32 eec;
1654 
1655 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1656 
1657 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1658 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1659 
1660 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1661 	IXGBE_WRITE_FLUSH(hw);
1662 
1663 	udelay(1);
1664 
1665 	/* Stop requesting EEPROM access */
1666 	eec &= ~IXGBE_EEC_REQ;
1667 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1668 
1669 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1670 
1671 	/*
1672 	 * Delay before attempt to obtain semaphore again to allow FW
1673 	 * access. semaphore_delay is in ms we need us for usleep_range
1674 	 */
1675 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1676 		     hw->eeprom.semaphore_delay * 2000);
1677 }
1678 
1679 /**
1680  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1681  *  @hw: pointer to hardware structure
1682  **/
1683 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1684 {
1685 	u16 i;
1686 	u16 j;
1687 	u16 checksum = 0;
1688 	u16 length = 0;
1689 	u16 pointer = 0;
1690 	u16 word = 0;
1691 
1692 	/* Include 0x0-0x3F in the checksum */
1693 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1694 		if (hw->eeprom.ops.read(hw, i, &word)) {
1695 			hw_dbg(hw, "EEPROM read failed\n");
1696 			break;
1697 		}
1698 		checksum += word;
1699 	}
1700 
1701 	/* Include all data from pointers except for the fw pointer */
1702 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1703 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1704 			hw_dbg(hw, "EEPROM read failed\n");
1705 			return -EIO;
1706 		}
1707 
1708 		/* If the pointer seems invalid */
1709 		if (pointer == 0xFFFF || pointer == 0)
1710 			continue;
1711 
1712 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1713 			hw_dbg(hw, "EEPROM read failed\n");
1714 			return -EIO;
1715 		}
1716 
1717 		if (length == 0xFFFF || length == 0)
1718 			continue;
1719 
1720 		for (j = pointer + 1; j <= pointer + length; j++) {
1721 			if (hw->eeprom.ops.read(hw, j, &word)) {
1722 				hw_dbg(hw, "EEPROM read failed\n");
1723 				return -EIO;
1724 			}
1725 			checksum += word;
1726 		}
1727 	}
1728 
1729 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1730 
1731 	return (s32)checksum;
1732 }
1733 
1734 /**
1735  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1736  *  @hw: pointer to hardware structure
1737  *  @checksum_val: calculated checksum
1738  *
1739  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1740  *  caller does not need checksum_val, the value can be NULL.
1741  **/
1742 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1743 					   u16 *checksum_val)
1744 {
1745 	s32 status;
1746 	u16 checksum;
1747 	u16 read_checksum = 0;
1748 
1749 	/*
1750 	 * Read the first word from the EEPROM. If this times out or fails, do
1751 	 * not continue or we could be in for a very long wait while every
1752 	 * EEPROM read fails
1753 	 */
1754 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1755 	if (status) {
1756 		hw_dbg(hw, "EEPROM read failed\n");
1757 		return status;
1758 	}
1759 
1760 	status = hw->eeprom.ops.calc_checksum(hw);
1761 	if (status < 0)
1762 		return status;
1763 
1764 	checksum = (u16)(status & 0xffff);
1765 
1766 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1767 	if (status) {
1768 		hw_dbg(hw, "EEPROM read failed\n");
1769 		return status;
1770 	}
1771 
1772 	/* Verify read checksum from EEPROM is the same as
1773 	 * calculated checksum
1774 	 */
1775 	if (read_checksum != checksum)
1776 		status = -EIO;
1777 
1778 	/* If the user cares, return the calculated checksum */
1779 	if (checksum_val)
1780 		*checksum_val = checksum;
1781 
1782 	return status;
1783 }
1784 
1785 /**
1786  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1787  *  @hw: pointer to hardware structure
1788  **/
1789 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1790 {
1791 	s32 status;
1792 	u16 checksum;
1793 
1794 	/*
1795 	 * Read the first word from the EEPROM. If this times out or fails, do
1796 	 * not continue or we could be in for a very long wait while every
1797 	 * EEPROM read fails
1798 	 */
1799 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1800 	if (status) {
1801 		hw_dbg(hw, "EEPROM read failed\n");
1802 		return status;
1803 	}
1804 
1805 	status = hw->eeprom.ops.calc_checksum(hw);
1806 	if (status < 0)
1807 		return status;
1808 
1809 	checksum = (u16)(status & 0xffff);
1810 
1811 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1812 
1813 	return status;
1814 }
1815 
1816 /**
1817  *  ixgbe_set_rar_generic - Set Rx address register
1818  *  @hw: pointer to hardware structure
1819  *  @index: Receive address register to write
1820  *  @addr: Address to put into receive address register
1821  *  @vmdq: VMDq "set" or "pool" index
1822  *  @enable_addr: set flag that address is active
1823  *
1824  *  Puts an ethernet address into a receive address register.
1825  **/
1826 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1827 			  u32 enable_addr)
1828 {
1829 	u32 rar_low, rar_high;
1830 	u32 rar_entries = hw->mac.num_rar_entries;
1831 
1832 	/* Make sure we are using a valid rar index range */
1833 	if (index >= rar_entries) {
1834 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1835 		return -EINVAL;
1836 	}
1837 
1838 	/* setup VMDq pool selection before this RAR gets enabled */
1839 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1840 
1841 	/*
1842 	 * HW expects these in little endian so we reverse the byte
1843 	 * order from network order (big endian) to little endian
1844 	 */
1845 	rar_low = ((u32)addr[0] |
1846 		   ((u32)addr[1] << 8) |
1847 		   ((u32)addr[2] << 16) |
1848 		   ((u32)addr[3] << 24));
1849 	/*
1850 	 * Some parts put the VMDq setting in the extra RAH bits,
1851 	 * so save everything except the lower 16 bits that hold part
1852 	 * of the address and the address valid bit.
1853 	 */
1854 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1855 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1856 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1857 
1858 	if (enable_addr != 0)
1859 		rar_high |= IXGBE_RAH_AV;
1860 
1861 	/* Record lower 32 bits of MAC address and then make
1862 	 * sure that write is flushed to hardware before writing
1863 	 * the upper 16 bits and setting the valid bit.
1864 	 */
1865 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1866 	IXGBE_WRITE_FLUSH(hw);
1867 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1868 
1869 	return 0;
1870 }
1871 
1872 /**
1873  *  ixgbe_clear_rar_generic - Remove Rx address register
1874  *  @hw: pointer to hardware structure
1875  *  @index: Receive address register to write
1876  *
1877  *  Clears an ethernet address from a receive address register.
1878  **/
1879 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1880 {
1881 	u32 rar_high;
1882 	u32 rar_entries = hw->mac.num_rar_entries;
1883 
1884 	/* Make sure we are using a valid rar index range */
1885 	if (index >= rar_entries) {
1886 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1887 		return -EINVAL;
1888 	}
1889 
1890 	/*
1891 	 * Some parts put the VMDq setting in the extra RAH bits,
1892 	 * so save everything except the lower 16 bits that hold part
1893 	 * of the address and the address valid bit.
1894 	 */
1895 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1896 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1897 
1898 	/* Clear the address valid bit and upper 16 bits of the address
1899 	 * before clearing the lower bits. This way we aren't updating
1900 	 * a live filter.
1901 	 */
1902 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1903 	IXGBE_WRITE_FLUSH(hw);
1904 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1905 
1906 	/* clear VMDq pool/queue selection for this RAR */
1907 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1908 
1909 	return 0;
1910 }
1911 
1912 /**
1913  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1914  *  @hw: pointer to hardware structure
1915  *
1916  *  Places the MAC address in receive address register 0 and clears the rest
1917  *  of the receive address registers. Clears the multicast table. Assumes
1918  *  the receiver is in reset when the routine is called.
1919  **/
1920 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1921 {
1922 	u32 i;
1923 	u32 rar_entries = hw->mac.num_rar_entries;
1924 
1925 	/*
1926 	 * If the current mac address is valid, assume it is a software override
1927 	 * to the permanent address.
1928 	 * Otherwise, use the permanent address from the eeprom.
1929 	 */
1930 	if (!is_valid_ether_addr(hw->mac.addr)) {
1931 		/* Get the MAC address from the RAR0 for later reference */
1932 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1933 
1934 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1935 	} else {
1936 		/* Setup the receive address. */
1937 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1938 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1939 
1940 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1941 	}
1942 
1943 	/*  clear VMDq pool/queue selection for RAR 0 */
1944 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1945 
1946 	hw->addr_ctrl.overflow_promisc = 0;
1947 
1948 	hw->addr_ctrl.rar_used_count = 1;
1949 
1950 	/* Zero out the other receive addresses. */
1951 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1952 	for (i = 1; i < rar_entries; i++) {
1953 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1954 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1955 	}
1956 
1957 	/* Clear the MTA */
1958 	hw->addr_ctrl.mta_in_use = 0;
1959 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1960 
1961 	hw_dbg(hw, " Clearing MTA\n");
1962 	for (i = 0; i < hw->mac.mcft_size; i++)
1963 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1964 
1965 	if (hw->mac.ops.init_uta_tables)
1966 		hw->mac.ops.init_uta_tables(hw);
1967 
1968 	return 0;
1969 }
1970 
1971 /**
1972  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1973  *  @hw: pointer to hardware structure
1974  *  @mc_addr: the multicast address
1975  *
1976  *  Extracts the 12 bits, from a multicast address, to determine which
1977  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1978  *  incoming rx multicast addresses, to determine the bit-vector to check in
1979  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1980  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1981  *  to mc_filter_type.
1982  **/
1983 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1984 {
1985 	u32 vector = 0;
1986 
1987 	switch (hw->mac.mc_filter_type) {
1988 	case 0:   /* use bits [47:36] of the address */
1989 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1990 		break;
1991 	case 1:   /* use bits [46:35] of the address */
1992 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1993 		break;
1994 	case 2:   /* use bits [45:34] of the address */
1995 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1996 		break;
1997 	case 3:   /* use bits [43:32] of the address */
1998 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1999 		break;
2000 	default:  /* Invalid mc_filter_type */
2001 		hw_dbg(hw, "MC filter type param set incorrectly\n");
2002 		break;
2003 	}
2004 
2005 	/* vector can only be 12-bits or boundary will be exceeded */
2006 	vector &= 0xFFF;
2007 	return vector;
2008 }
2009 
2010 /**
2011  *  ixgbe_set_mta - Set bit-vector in multicast table
2012  *  @hw: pointer to hardware structure
2013  *  @mc_addr: Multicast address
2014  *
2015  *  Sets the bit-vector in the multicast table.
2016  **/
2017 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2018 {
2019 	u32 vector;
2020 	u32 vector_bit;
2021 	u32 vector_reg;
2022 
2023 	hw->addr_ctrl.mta_in_use++;
2024 
2025 	vector = ixgbe_mta_vector(hw, mc_addr);
2026 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2027 
2028 	/*
2029 	 * The MTA is a register array of 128 32-bit registers. It is treated
2030 	 * like an array of 4096 bits.  We want to set bit
2031 	 * BitArray[vector_value]. So we figure out what register the bit is
2032 	 * in, read it, OR in the new bit, then write back the new value.  The
2033 	 * register is determined by the upper 7 bits of the vector value and
2034 	 * the bit within that register are determined by the lower 5 bits of
2035 	 * the value.
2036 	 */
2037 	vector_reg = (vector >> 5) & 0x7F;
2038 	vector_bit = vector & 0x1F;
2039 	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2040 }
2041 
2042 /**
2043  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2044  *  @hw: pointer to hardware structure
2045  *  @netdev: pointer to net device structure
2046  *
2047  *  The given list replaces any existing list. Clears the MC addrs from receive
2048  *  address registers and the multicast table. Uses unused receive address
2049  *  registers for the first multicast addresses, and hashes the rest into the
2050  *  multicast table.
2051  **/
2052 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2053 				      struct net_device *netdev)
2054 {
2055 	struct netdev_hw_addr *ha;
2056 	u32 i;
2057 
2058 	/*
2059 	 * Set the new number of MC addresses that we are being requested to
2060 	 * use.
2061 	 */
2062 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2063 	hw->addr_ctrl.mta_in_use = 0;
2064 
2065 	/* Clear mta_shadow */
2066 	hw_dbg(hw, " Clearing MTA\n");
2067 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2068 
2069 	/* Update mta shadow */
2070 	netdev_for_each_mc_addr(ha, netdev) {
2071 		hw_dbg(hw, " Adding the multicast addresses:\n");
2072 		ixgbe_set_mta(hw, ha->addr);
2073 	}
2074 
2075 	/* Enable mta */
2076 	for (i = 0; i < hw->mac.mcft_size; i++)
2077 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2078 				      hw->mac.mta_shadow[i]);
2079 
2080 	if (hw->addr_ctrl.mta_in_use > 0)
2081 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2082 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2083 
2084 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2085 	return 0;
2086 }
2087 
2088 /**
2089  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2090  *  @hw: pointer to hardware structure
2091  *
2092  *  Enables multicast address in RAR and the use of the multicast hash table.
2093  **/
2094 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2095 {
2096 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2097 
2098 	if (a->mta_in_use > 0)
2099 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2100 				hw->mac.mc_filter_type);
2101 
2102 	return 0;
2103 }
2104 
2105 /**
2106  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2107  *  @hw: pointer to hardware structure
2108  *
2109  *  Disables multicast address in RAR and the use of the multicast hash table.
2110  **/
2111 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2112 {
2113 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2114 
2115 	if (a->mta_in_use > 0)
2116 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2117 
2118 	return 0;
2119 }
2120 
2121 /**
2122  *  ixgbe_fc_enable_generic - Enable flow control
2123  *  @hw: pointer to hardware structure
2124  *
2125  *  Enable flow control according to the current settings.
2126  **/
2127 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2128 {
2129 	u32 mflcn_reg, fccfg_reg;
2130 	u32 reg;
2131 	u32 fcrtl, fcrth;
2132 	int i;
2133 
2134 	/* Validate the water mark configuration. */
2135 	if (!hw->fc.pause_time)
2136 		return -EINVAL;
2137 
2138 	/* Low water mark of zero causes XOFF floods */
2139 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2140 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2141 		    hw->fc.high_water[i]) {
2142 			if (!hw->fc.low_water[i] ||
2143 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2144 				hw_dbg(hw, "Invalid water mark configuration\n");
2145 				return -EINVAL;
2146 			}
2147 		}
2148 	}
2149 
2150 	/* Negotiate the fc mode to use */
2151 	hw->mac.ops.fc_autoneg(hw);
2152 
2153 	/* Disable any previous flow control settings */
2154 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2155 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2156 
2157 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2158 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2159 
2160 	/*
2161 	 * The possible values of fc.current_mode are:
2162 	 * 0: Flow control is completely disabled
2163 	 * 1: Rx flow control is enabled (we can receive pause frames,
2164 	 *    but not send pause frames).
2165 	 * 2: Tx flow control is enabled (we can send pause frames but
2166 	 *    we do not support receiving pause frames).
2167 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2168 	 * other: Invalid.
2169 	 */
2170 	switch (hw->fc.current_mode) {
2171 	case ixgbe_fc_none:
2172 		/*
2173 		 * Flow control is disabled by software override or autoneg.
2174 		 * The code below will actually disable it in the HW.
2175 		 */
2176 		break;
2177 	case ixgbe_fc_rx_pause:
2178 		/*
2179 		 * Rx Flow control is enabled and Tx Flow control is
2180 		 * disabled by software override. Since there really
2181 		 * isn't a way to advertise that we are capable of RX
2182 		 * Pause ONLY, we will advertise that we support both
2183 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2184 		 * disable the adapter's ability to send PAUSE frames.
2185 		 */
2186 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2187 		break;
2188 	case ixgbe_fc_tx_pause:
2189 		/*
2190 		 * Tx Flow control is enabled, and Rx Flow control is
2191 		 * disabled by software override.
2192 		 */
2193 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2194 		break;
2195 	case ixgbe_fc_full:
2196 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2197 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2198 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2199 		break;
2200 	default:
2201 		hw_dbg(hw, "Flow control param set incorrectly\n");
2202 		return -EIO;
2203 	}
2204 
2205 	/* Set 802.3x based flow control settings. */
2206 	mflcn_reg |= IXGBE_MFLCN_DPF;
2207 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2208 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2209 
2210 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2211 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2212 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2213 		    hw->fc.high_water[i]) {
2214 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2215 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2216 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2217 		} else {
2218 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2219 			/*
2220 			 * In order to prevent Tx hangs when the internal Tx
2221 			 * switch is enabled we must set the high water mark
2222 			 * to the Rx packet buffer size - 24KB.  This allows
2223 			 * the Tx switch to function even under heavy Rx
2224 			 * workloads.
2225 			 */
2226 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2227 		}
2228 
2229 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2230 	}
2231 
2232 	/* Configure pause time (2 TCs per register) */
2233 	reg = hw->fc.pause_time * 0x00010001U;
2234 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2235 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2236 
2237 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2238 
2239 	return 0;
2240 }
2241 
2242 /**
2243  *  ixgbe_negotiate_fc - Negotiate flow control
2244  *  @hw: pointer to hardware structure
2245  *  @adv_reg: flow control advertised settings
2246  *  @lp_reg: link partner's flow control settings
2247  *  @adv_sym: symmetric pause bit in advertisement
2248  *  @adv_asm: asymmetric pause bit in advertisement
2249  *  @lp_sym: symmetric pause bit in link partner advertisement
2250  *  @lp_asm: asymmetric pause bit in link partner advertisement
2251  *
2252  *  Find the intersection between advertised settings and link partner's
2253  *  advertised settings
2254  **/
2255 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2256 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2257 {
2258 	if ((!(adv_reg)) ||  (!(lp_reg)))
2259 		return -EINVAL;
2260 
2261 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2262 		/*
2263 		 * Now we need to check if the user selected Rx ONLY
2264 		 * of pause frames.  In this case, we had to advertise
2265 		 * FULL flow control because we could not advertise RX
2266 		 * ONLY. Hence, we must now check to see if we need to
2267 		 * turn OFF the TRANSMISSION of PAUSE frames.
2268 		 */
2269 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2270 			hw->fc.current_mode = ixgbe_fc_full;
2271 			hw_dbg(hw, "Flow Control = FULL.\n");
2272 		} else {
2273 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2274 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2275 		}
2276 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2277 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2278 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2279 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2280 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2281 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2282 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2283 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2284 	} else {
2285 		hw->fc.current_mode = ixgbe_fc_none;
2286 		hw_dbg(hw, "Flow Control = NONE.\n");
2287 	}
2288 	return 0;
2289 }
2290 
2291 /**
2292  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2293  *  @hw: pointer to hardware structure
2294  *
2295  *  Enable flow control according on 1 gig fiber.
2296  **/
2297 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2298 {
2299 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2300 	s32 ret_val;
2301 
2302 	/*
2303 	 * On multispeed fiber at 1g, bail out if
2304 	 * - link is up but AN did not complete, or if
2305 	 * - link is up and AN completed but timed out
2306 	 */
2307 
2308 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2309 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2310 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2311 		return -EIO;
2312 
2313 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2314 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2315 
2316 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2317 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2318 			       IXGBE_PCS1GANA_ASM_PAUSE,
2319 			       IXGBE_PCS1GANA_SYM_PAUSE,
2320 			       IXGBE_PCS1GANA_ASM_PAUSE);
2321 
2322 	return ret_val;
2323 }
2324 
2325 /**
2326  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2327  *  @hw: pointer to hardware structure
2328  *
2329  *  Enable flow control according to IEEE clause 37.
2330  **/
2331 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2332 {
2333 	u32 links2, anlp1_reg, autoc_reg, links;
2334 	s32 ret_val;
2335 
2336 	/*
2337 	 * On backplane, bail out if
2338 	 * - backplane autoneg was not completed, or if
2339 	 * - we are 82599 and link partner is not AN enabled
2340 	 */
2341 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2342 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2343 		return -EIO;
2344 
2345 	if (hw->mac.type == ixgbe_mac_82599EB) {
2346 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2347 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2348 			return -EIO;
2349 	}
2350 	/*
2351 	 * Read the 10g AN autoc and LP ability registers and resolve
2352 	 * local flow control settings accordingly
2353 	 */
2354 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2355 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2356 
2357 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2358 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2359 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2360 
2361 	return ret_val;
2362 }
2363 
2364 /**
2365  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2366  *  @hw: pointer to hardware structure
2367  *
2368  *  Enable flow control according to IEEE clause 37.
2369  **/
2370 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2371 {
2372 	u16 technology_ability_reg = 0;
2373 	u16 lp_technology_ability_reg = 0;
2374 
2375 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2376 			     MDIO_MMD_AN,
2377 			     &technology_ability_reg);
2378 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2379 			     MDIO_MMD_AN,
2380 			     &lp_technology_ability_reg);
2381 
2382 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2383 				  (u32)lp_technology_ability_reg,
2384 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2385 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2386 }
2387 
2388 /**
2389  *  ixgbe_fc_autoneg - Configure flow control
2390  *  @hw: pointer to hardware structure
2391  *
2392  *  Compares our advertised flow control capabilities to those advertised by
2393  *  our link partner, and determines the proper flow control mode to use.
2394  **/
2395 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2396 {
2397 	ixgbe_link_speed speed;
2398 	s32 ret_val = -EIO;
2399 	bool link_up;
2400 
2401 	/*
2402 	 * AN should have completed when the cable was plugged in.
2403 	 * Look for reasons to bail out.  Bail out if:
2404 	 * - FC autoneg is disabled, or if
2405 	 * - link is not up.
2406 	 *
2407 	 * Since we're being called from an LSC, link is already known to be up.
2408 	 * So use link_up_wait_to_complete=false.
2409 	 */
2410 	if (hw->fc.disable_fc_autoneg)
2411 		goto out;
2412 
2413 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2414 	if (!link_up)
2415 		goto out;
2416 
2417 	switch (hw->phy.media_type) {
2418 	/* Autoneg flow control on fiber adapters */
2419 	case ixgbe_media_type_fiber:
2420 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2421 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2422 		break;
2423 
2424 	/* Autoneg flow control on backplane adapters */
2425 	case ixgbe_media_type_backplane:
2426 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2427 		break;
2428 
2429 	/* Autoneg flow control on copper adapters */
2430 	case ixgbe_media_type_copper:
2431 		if (ixgbe_device_supports_autoneg_fc(hw))
2432 			ret_val = ixgbe_fc_autoneg_copper(hw);
2433 		break;
2434 
2435 	default:
2436 		break;
2437 	}
2438 
2439 out:
2440 	if (ret_val == 0) {
2441 		hw->fc.fc_was_autonegged = true;
2442 	} else {
2443 		hw->fc.fc_was_autonegged = false;
2444 		hw->fc.current_mode = hw->fc.requested_mode;
2445 	}
2446 }
2447 
2448 /**
2449  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2450  * @hw: pointer to hardware structure
2451  *
2452  * System-wide timeout range is encoded in PCIe Device Control2 register.
2453  *
2454  *  Add 10% to specified maximum and return the number of times to poll for
2455  *  completion timeout, in units of 100 microsec.  Never return less than
2456  *  800 = 80 millisec.
2457  **/
2458 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2459 {
2460 	s16 devctl2;
2461 	u32 pollcnt;
2462 
2463 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2464 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2465 
2466 	switch (devctl2) {
2467 	case IXGBE_PCIDEVCTRL2_65_130ms:
2468 		 pollcnt = 1300;         /* 130 millisec */
2469 		break;
2470 	case IXGBE_PCIDEVCTRL2_260_520ms:
2471 		pollcnt = 5200;         /* 520 millisec */
2472 		break;
2473 	case IXGBE_PCIDEVCTRL2_1_2s:
2474 		pollcnt = 20000;        /* 2 sec */
2475 		break;
2476 	case IXGBE_PCIDEVCTRL2_4_8s:
2477 		pollcnt = 80000;        /* 8 sec */
2478 		break;
2479 	case IXGBE_PCIDEVCTRL2_17_34s:
2480 		pollcnt = 34000;        /* 34 sec */
2481 		break;
2482 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2483 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2484 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2485 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2486 	default:
2487 		pollcnt = 800;          /* 80 millisec minimum */
2488 		break;
2489 	}
2490 
2491 	/* add 10% to spec maximum */
2492 	return (pollcnt * 11) / 10;
2493 }
2494 
2495 /**
2496  *  ixgbe_disable_pcie_primary - Disable PCI-express primary access
2497  *  @hw: pointer to hardware structure
2498  *
2499  *  Disables PCI-Express primary access and verifies there are no pending
2500  *  requests. -EALREADY is returned if primary disable
2501  *  bit hasn't caused the primary requests to be disabled, else 0
2502  *  is returned signifying primary requests disabled.
2503  **/
2504 static s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw)
2505 {
2506 	u32 i, poll;
2507 	u16 value;
2508 
2509 	/* Always set this bit to ensure any future transactions are blocked */
2510 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2511 
2512 	/* Poll for bit to read as set */
2513 	for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2514 		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2515 			break;
2516 		usleep_range(100, 120);
2517 	}
2518 	if (i >= IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT) {
2519 		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2520 		goto gio_disable_fail;
2521 	}
2522 
2523 	/* Exit if primary requests are blocked */
2524 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2525 	    ixgbe_removed(hw->hw_addr))
2526 		return 0;
2527 
2528 	/* Poll for primary request bit to clear */
2529 	for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2530 		udelay(100);
2531 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2532 			return 0;
2533 	}
2534 
2535 	/*
2536 	 * Two consecutive resets are required via CTRL.RST per datasheet
2537 	 * 5.2.5.3.2 Primary Disable.  We set a flag to inform the reset routine
2538 	 * of this need.  The first reset prevents new primary requests from
2539 	 * being issued by our device.  We then must wait 1usec or more for any
2540 	 * remaining completions from the PCIe bus to trickle in, and then reset
2541 	 * again to clear out any effects they may have had on our device.
2542 	 */
2543 	hw_dbg(hw, "GIO Primary Disable bit didn't clear - requesting resets\n");
2544 gio_disable_fail:
2545 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2546 
2547 	if (hw->mac.type >= ixgbe_mac_X550)
2548 		return 0;
2549 
2550 	/*
2551 	 * Before proceeding, make sure that the PCIe block does not have
2552 	 * transactions pending.
2553 	 */
2554 	poll = ixgbe_pcie_timeout_poll(hw);
2555 	for (i = 0; i < poll; i++) {
2556 		udelay(100);
2557 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2558 		if (ixgbe_removed(hw->hw_addr))
2559 			return 0;
2560 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2561 			return 0;
2562 	}
2563 
2564 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2565 	return -EALREADY;
2566 }
2567 
2568 /**
2569  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2570  *  @hw: pointer to hardware structure
2571  *  @mask: Mask to specify which semaphore to acquire
2572  *
2573  *  Acquires the SWFW semaphore through the GSSR register for the specified
2574  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2575  **/
2576 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2577 {
2578 	u32 gssr = 0;
2579 	u32 swmask = mask;
2580 	u32 fwmask = mask << 5;
2581 	u32 timeout = 200;
2582 	u32 i;
2583 
2584 	for (i = 0; i < timeout; i++) {
2585 		/*
2586 		 * SW NVM semaphore bit is used for access to all
2587 		 * SW_FW_SYNC bits (not just NVM)
2588 		 */
2589 		if (ixgbe_get_eeprom_semaphore(hw))
2590 			return -EBUSY;
2591 
2592 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2593 		if (!(gssr & (fwmask | swmask))) {
2594 			gssr |= swmask;
2595 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2596 			ixgbe_release_eeprom_semaphore(hw);
2597 			return 0;
2598 		} else {
2599 			/* Resource is currently in use by FW or SW */
2600 			ixgbe_release_eeprom_semaphore(hw);
2601 			usleep_range(5000, 10000);
2602 		}
2603 	}
2604 
2605 	/* If time expired clear the bits holding the lock and retry */
2606 	if (gssr & (fwmask | swmask))
2607 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2608 
2609 	usleep_range(5000, 10000);
2610 	return -EBUSY;
2611 }
2612 
2613 /**
2614  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2615  *  @hw: pointer to hardware structure
2616  *  @mask: Mask to specify which semaphore to release
2617  *
2618  *  Releases the SWFW semaphore through the GSSR register for the specified
2619  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2620  **/
2621 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2622 {
2623 	u32 gssr;
2624 	u32 swmask = mask;
2625 
2626 	ixgbe_get_eeprom_semaphore(hw);
2627 
2628 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2629 	gssr &= ~swmask;
2630 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2631 
2632 	ixgbe_release_eeprom_semaphore(hw);
2633 }
2634 
2635 /**
2636  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2637  * @hw: pointer to hardware structure
2638  * @reg_val: Value we read from AUTOC
2639  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2640  *	    true in this the generic case.
2641  *
2642  * The default case requires no protection so just to the register read.
2643  **/
2644 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2645 {
2646 	*locked = false;
2647 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2648 	return 0;
2649 }
2650 
2651 /**
2652  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2653  * @hw: pointer to hardware structure
2654  * @reg_val: value to write to AUTOC
2655  * @locked: bool to indicate whether the SW/FW lock was already taken by
2656  *	    previous read.
2657  **/
2658 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2659 {
2660 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2661 	return 0;
2662 }
2663 
2664 /**
2665  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2666  *  @hw: pointer to hardware structure
2667  *
2668  *  Stops the receive data path and waits for the HW to internally
2669  *  empty the Rx security block.
2670  **/
2671 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2672 {
2673 #define IXGBE_MAX_SECRX_POLL 40
2674 	int i;
2675 	int secrxreg;
2676 
2677 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2678 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2679 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2680 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2681 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2682 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2683 			break;
2684 		else
2685 			/* Use interrupt-safe sleep just in case */
2686 			udelay(1000);
2687 	}
2688 
2689 	/* For informational purposes only */
2690 	if (i >= IXGBE_MAX_SECRX_POLL)
2691 		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2692 
2693 	return 0;
2694 
2695 }
2696 
2697 /**
2698  *  ixgbe_enable_rx_buff_generic - Enables the receive data path
2699  *  @hw: pointer to hardware structure
2700  *
2701  *  Enables the receive data path
2702  **/
2703 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2704 {
2705 	u32 secrxreg;
2706 
2707 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2708 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2709 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2710 	IXGBE_WRITE_FLUSH(hw);
2711 
2712 	return 0;
2713 }
2714 
2715 /**
2716  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2717  *  @hw: pointer to hardware structure
2718  *  @regval: register value to write to RXCTRL
2719  *
2720  *  Enables the Rx DMA unit
2721  **/
2722 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2723 {
2724 	if (regval & IXGBE_RXCTRL_RXEN)
2725 		hw->mac.ops.enable_rx(hw);
2726 	else
2727 		hw->mac.ops.disable_rx(hw);
2728 
2729 	return 0;
2730 }
2731 
2732 /**
2733  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2734  *  @hw: pointer to hardware structure
2735  *  @index: led number to blink
2736  **/
2737 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2738 {
2739 	ixgbe_link_speed speed = 0;
2740 	bool link_up = false;
2741 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2742 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2743 	bool locked = false;
2744 	s32 ret_val;
2745 
2746 	if (index > 3)
2747 		return -EINVAL;
2748 
2749 	/*
2750 	 * Link must be up to auto-blink the LEDs;
2751 	 * Force it if link is down.
2752 	 */
2753 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2754 
2755 	if (!link_up) {
2756 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2757 		if (ret_val)
2758 			return ret_val;
2759 
2760 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2761 		autoc_reg |= IXGBE_AUTOC_FLU;
2762 
2763 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2764 		if (ret_val)
2765 			return ret_val;
2766 
2767 		IXGBE_WRITE_FLUSH(hw);
2768 
2769 		usleep_range(10000, 20000);
2770 	}
2771 
2772 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2773 	led_reg |= IXGBE_LED_BLINK(index);
2774 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2775 	IXGBE_WRITE_FLUSH(hw);
2776 
2777 	return 0;
2778 }
2779 
2780 /**
2781  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2782  *  @hw: pointer to hardware structure
2783  *  @index: led number to stop blinking
2784  **/
2785 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2786 {
2787 	u32 autoc_reg = 0;
2788 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2789 	bool locked = false;
2790 	s32 ret_val;
2791 
2792 	if (index > 3)
2793 		return -EINVAL;
2794 
2795 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2796 	if (ret_val)
2797 		return ret_val;
2798 
2799 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2800 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2801 
2802 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2803 	if (ret_val)
2804 		return ret_val;
2805 
2806 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2807 	led_reg &= ~IXGBE_LED_BLINK(index);
2808 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2809 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2810 	IXGBE_WRITE_FLUSH(hw);
2811 
2812 	return 0;
2813 }
2814 
2815 /**
2816  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2817  *  @hw: pointer to hardware structure
2818  *  @san_mac_offset: SAN MAC address offset
2819  *
2820  *  This function will read the EEPROM location for the SAN MAC address
2821  *  pointer, and returns the value at that location.  This is used in both
2822  *  get and set mac_addr routines.
2823  **/
2824 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2825 					u16 *san_mac_offset)
2826 {
2827 	s32 ret_val;
2828 
2829 	/*
2830 	 * First read the EEPROM pointer to see if the MAC addresses are
2831 	 * available.
2832 	 */
2833 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2834 				      san_mac_offset);
2835 	if (ret_val)
2836 		hw_err(hw, "eeprom read at offset %d failed\n",
2837 		       IXGBE_SAN_MAC_ADDR_PTR);
2838 
2839 	return ret_val;
2840 }
2841 
2842 /**
2843  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2844  *  @hw: pointer to hardware structure
2845  *  @san_mac_addr: SAN MAC address
2846  *
2847  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2848  *  per-port, so set_lan_id() must be called before reading the addresses.
2849  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2850  *  upon for non-SFP connections, so we must call it here.
2851  **/
2852 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2853 {
2854 	u16 san_mac_data, san_mac_offset;
2855 	u8 i;
2856 	s32 ret_val;
2857 
2858 	/*
2859 	 * First read the EEPROM pointer to see if the MAC addresses are
2860 	 * available.  If they're not, no point in calling set_lan_id() here.
2861 	 */
2862 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2863 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2864 
2865 		goto san_mac_addr_clr;
2866 
2867 	/* make sure we know which port we need to program */
2868 	hw->mac.ops.set_lan_id(hw);
2869 	/* apply the port offset to the address offset */
2870 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2871 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2872 	for (i = 0; i < 3; i++) {
2873 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2874 					      &san_mac_data);
2875 		if (ret_val) {
2876 			hw_err(hw, "eeprom read at offset %d failed\n",
2877 			       san_mac_offset);
2878 			goto san_mac_addr_clr;
2879 		}
2880 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2881 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2882 		san_mac_offset++;
2883 	}
2884 	return 0;
2885 
2886 san_mac_addr_clr:
2887 	/* No addresses available in this EEPROM.  It's not necessarily an
2888 	 * error though, so just wipe the local address and return.
2889 	 */
2890 	for (i = 0; i < 6; i++)
2891 		san_mac_addr[i] = 0xFF;
2892 	return ret_val;
2893 }
2894 
2895 /**
2896  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2897  *  @hw: pointer to hardware structure
2898  *
2899  *  Read PCIe configuration space, and get the MSI-X vector count from
2900  *  the capabilities table.
2901  **/
2902 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2903 {
2904 	u16 msix_count;
2905 	u16 max_msix_count;
2906 	u16 pcie_offset;
2907 
2908 	switch (hw->mac.type) {
2909 	case ixgbe_mac_82598EB:
2910 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2911 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2912 		break;
2913 	case ixgbe_mac_82599EB:
2914 	case ixgbe_mac_X540:
2915 	case ixgbe_mac_X550:
2916 	case ixgbe_mac_X550EM_x:
2917 	case ixgbe_mac_x550em_a:
2918 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2919 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2920 		break;
2921 	default:
2922 		return 1;
2923 	}
2924 
2925 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2926 	if (ixgbe_removed(hw->hw_addr))
2927 		msix_count = 0;
2928 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2929 
2930 	/* MSI-X count is zero-based in HW */
2931 	msix_count++;
2932 
2933 	if (msix_count > max_msix_count)
2934 		msix_count = max_msix_count;
2935 
2936 	return msix_count;
2937 }
2938 
2939 /**
2940  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2941  *  @hw: pointer to hardware struct
2942  *  @rar: receive address register index to disassociate
2943  *  @vmdq: VMDq pool index to remove from the rar
2944  **/
2945 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2946 {
2947 	u32 mpsar_lo, mpsar_hi;
2948 	u32 rar_entries = hw->mac.num_rar_entries;
2949 
2950 	/* Make sure we are using a valid rar index range */
2951 	if (rar >= rar_entries) {
2952 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2953 		return -EINVAL;
2954 	}
2955 
2956 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2957 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2958 
2959 	if (ixgbe_removed(hw->hw_addr))
2960 		return 0;
2961 
2962 	if (!mpsar_lo && !mpsar_hi)
2963 		return 0;
2964 
2965 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2966 		if (mpsar_lo) {
2967 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2968 			mpsar_lo = 0;
2969 		}
2970 		if (mpsar_hi) {
2971 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2972 			mpsar_hi = 0;
2973 		}
2974 	} else if (vmdq < 32) {
2975 		mpsar_lo &= ~BIT(vmdq);
2976 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2977 	} else {
2978 		mpsar_hi &= ~BIT(vmdq - 32);
2979 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2980 	}
2981 
2982 	/* was that the last pool using this rar? */
2983 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
2984 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
2985 		hw->mac.ops.clear_rar(hw, rar);
2986 
2987 	return 0;
2988 }
2989 
2990 /**
2991  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2992  *  @hw: pointer to hardware struct
2993  *  @rar: receive address register index to associate with a VMDq index
2994  *  @vmdq: VMDq pool index
2995  **/
2996 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2997 {
2998 	u32 mpsar;
2999 	u32 rar_entries = hw->mac.num_rar_entries;
3000 
3001 	/* Make sure we are using a valid rar index range */
3002 	if (rar >= rar_entries) {
3003 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3004 		return -EINVAL;
3005 	}
3006 
3007 	if (vmdq < 32) {
3008 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3009 		mpsar |= BIT(vmdq);
3010 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3011 	} else {
3012 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3013 		mpsar |= BIT(vmdq - 32);
3014 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3015 	}
3016 	return 0;
3017 }
3018 
3019 /**
3020  *  ixgbe_set_vmdq_san_mac_generic - Associate VMDq pool index with a rx address
3021  *  @hw: pointer to hardware struct
3022  *  @vmdq: VMDq pool index
3023  *
3024  *  This function should only be involved in the IOV mode.
3025  *  In IOV mode, Default pool is next pool after the number of
3026  *  VFs advertized and not 0.
3027  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3028  **/
3029 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3030 {
3031 	u32 rar = hw->mac.san_mac_rar_index;
3032 
3033 	if (vmdq < 32) {
3034 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3035 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3036 	} else {
3037 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3038 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3039 	}
3040 
3041 	return 0;
3042 }
3043 
3044 /**
3045  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3046  *  @hw: pointer to hardware structure
3047  **/
3048 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3049 {
3050 	int i;
3051 
3052 	for (i = 0; i < 128; i++)
3053 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3054 
3055 	return 0;
3056 }
3057 
3058 /**
3059  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3060  *  @hw: pointer to hardware structure
3061  *  @vlan: VLAN id to write to VLAN filter
3062  *  @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3063  *		  vlanid not found
3064  *
3065  *  return the VLVF index where this VLAN id should be placed
3066  *
3067  **/
3068 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3069 {
3070 	s32 regindex, first_empty_slot;
3071 	u32 bits;
3072 
3073 	/* short cut the special case */
3074 	if (vlan == 0)
3075 		return 0;
3076 
3077 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3078 	 * will simply bypass the VLVF if there are no entries present in the
3079 	 * VLVF that contain our VLAN
3080 	 */
3081 	first_empty_slot = vlvf_bypass ? -ENOSPC : 0;
3082 
3083 	/* add VLAN enable bit for comparison */
3084 	vlan |= IXGBE_VLVF_VIEN;
3085 
3086 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3087 	 * slot found along the way.
3088 	 *
3089 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3090 	 */
3091 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3092 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3093 		if (bits == vlan)
3094 			return regindex;
3095 		if (!first_empty_slot && !bits)
3096 			first_empty_slot = regindex;
3097 	}
3098 
3099 	/* If we are here then we didn't find the VLAN.  Return first empty
3100 	 * slot we found during our search, else error.
3101 	 */
3102 	if (!first_empty_slot)
3103 		hw_dbg(hw, "No space in VLVF.\n");
3104 
3105 	return first_empty_slot ? : -ENOSPC;
3106 }
3107 
3108 /**
3109  *  ixgbe_set_vfta_generic - Set VLAN filter table
3110  *  @hw: pointer to hardware structure
3111  *  @vlan: VLAN id to write to VLAN filter
3112  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3113  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3114  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3115  *
3116  *  Turn on/off specified VLAN in the VLAN filter table.
3117  **/
3118 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3119 			   bool vlan_on, bool vlvf_bypass)
3120 {
3121 	u32 regidx, vfta_delta, vfta, bits;
3122 	s32 vlvf_index;
3123 
3124 	if ((vlan > 4095) || (vind > 63))
3125 		return -EINVAL;
3126 
3127 	/*
3128 	 * this is a 2 part operation - first the VFTA, then the
3129 	 * VLVF and VLVFB if VT Mode is set
3130 	 * We don't write the VFTA until we know the VLVF part succeeded.
3131 	 */
3132 
3133 	/* Part 1
3134 	 * The VFTA is a bitstring made up of 128 32-bit registers
3135 	 * that enable the particular VLAN id, much like the MTA:
3136 	 *    bits[11-5]: which register
3137 	 *    bits[4-0]:  which bit in the register
3138 	 */
3139 	regidx = vlan / 32;
3140 	vfta_delta = BIT(vlan % 32);
3141 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3142 
3143 	/* vfta_delta represents the difference between the current value
3144 	 * of vfta and the value we want in the register.  Since the diff
3145 	 * is an XOR mask we can just update vfta using an XOR.
3146 	 */
3147 	vfta_delta &= vlan_on ? ~vfta : vfta;
3148 	vfta ^= vfta_delta;
3149 
3150 	/* Part 2
3151 	 * If VT Mode is set
3152 	 *   Either vlan_on
3153 	 *     make sure the vlan is in VLVF
3154 	 *     set the vind bit in the matching VLVFB
3155 	 *   Or !vlan_on
3156 	 *     clear the pool bit and possibly the vind
3157 	 */
3158 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3159 		goto vfta_update;
3160 
3161 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3162 	if (vlvf_index < 0) {
3163 		if (vlvf_bypass)
3164 			goto vfta_update;
3165 		return vlvf_index;
3166 	}
3167 
3168 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3169 
3170 	/* set the pool bit */
3171 	bits |= BIT(vind % 32);
3172 	if (vlan_on)
3173 		goto vlvf_update;
3174 
3175 	/* clear the pool bit */
3176 	bits ^= BIT(vind % 32);
3177 
3178 	if (!bits &&
3179 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3180 		/* Clear VFTA first, then disable VLVF.  Otherwise
3181 		 * we run the risk of stray packets leaking into
3182 		 * the PF via the default pool
3183 		 */
3184 		if (vfta_delta)
3185 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3186 
3187 		/* disable VLVF and clear remaining bit from pool */
3188 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3189 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3190 
3191 		return 0;
3192 	}
3193 
3194 	/* If there are still bits set in the VLVFB registers
3195 	 * for the VLAN ID indicated we need to see if the
3196 	 * caller is requesting that we clear the VFTA entry bit.
3197 	 * If the caller has requested that we clear the VFTA
3198 	 * entry bit but there are still pools/VFs using this VLAN
3199 	 * ID entry then ignore the request.  We're not worried
3200 	 * about the case where we're turning the VFTA VLAN ID
3201 	 * entry bit on, only when requested to turn it off as
3202 	 * there may be multiple pools and/or VFs using the
3203 	 * VLAN ID entry.  In that case we cannot clear the
3204 	 * VFTA bit until all pools/VFs using that VLAN ID have also
3205 	 * been cleared.  This will be indicated by "bits" being
3206 	 * zero.
3207 	 */
3208 	vfta_delta = 0;
3209 
3210 vlvf_update:
3211 	/* record pool change and enable VLAN ID if not already enabled */
3212 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3213 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3214 
3215 vfta_update:
3216 	/* Update VFTA now that we are ready for traffic */
3217 	if (vfta_delta)
3218 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3219 
3220 	return 0;
3221 }
3222 
3223 /**
3224  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3225  *  @hw: pointer to hardware structure
3226  *
3227  *  Clears the VLAN filter table, and the VMDq index associated with the filter
3228  **/
3229 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3230 {
3231 	u32 offset;
3232 
3233 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3234 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3235 
3236 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3237 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3238 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3239 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3240 	}
3241 
3242 	return 0;
3243 }
3244 
3245 /**
3246  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3247  *  @hw: pointer to hardware structure
3248  *
3249  *  Contains the logic to identify if we need to verify link for the
3250  *  crosstalk fix
3251  **/
3252 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3253 {
3254 	/* Does FW say we need the fix */
3255 	if (!hw->need_crosstalk_fix)
3256 		return false;
3257 
3258 	/* Only consider SFP+ PHYs i.e. media type fiber */
3259 	switch (hw->mac.ops.get_media_type(hw)) {
3260 	case ixgbe_media_type_fiber:
3261 	case ixgbe_media_type_fiber_qsfp:
3262 		break;
3263 	default:
3264 		return false;
3265 	}
3266 
3267 	return true;
3268 }
3269 
3270 /**
3271  *  ixgbe_check_mac_link_generic - Determine link and speed status
3272  *  @hw: pointer to hardware structure
3273  *  @speed: pointer to link speed
3274  *  @link_up: true when link is up
3275  *  @link_up_wait_to_complete: bool used to wait for link up or not
3276  *
3277  *  Reads the links register to determine if link is up and the current speed
3278  **/
3279 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3280 				 bool *link_up, bool link_up_wait_to_complete)
3281 {
3282 	bool crosstalk_fix_active = ixgbe_need_crosstalk_fix(hw);
3283 	u32 links_reg, links_orig;
3284 	u32 i;
3285 
3286 	/* If Crosstalk fix enabled do the sanity check of making sure
3287 	 * the SFP+ cage is full.
3288 	 */
3289 	if (crosstalk_fix_active) {
3290 		u32 sfp_cage_full;
3291 
3292 		switch (hw->mac.type) {
3293 		case ixgbe_mac_82599EB:
3294 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3295 					IXGBE_ESDP_SDP2;
3296 			break;
3297 		case ixgbe_mac_X550EM_x:
3298 		case ixgbe_mac_x550em_a:
3299 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3300 					IXGBE_ESDP_SDP0;
3301 			break;
3302 		default:
3303 			/* sanity check - No SFP+ devices here */
3304 			sfp_cage_full = false;
3305 			break;
3306 		}
3307 
3308 		if (!sfp_cage_full) {
3309 			*link_up = false;
3310 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
3311 			return 0;
3312 		}
3313 	}
3314 
3315 	/* clear the old state */
3316 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3317 
3318 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3319 
3320 	if (links_orig != links_reg) {
3321 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3322 		       links_orig, links_reg);
3323 	}
3324 
3325 	if (link_up_wait_to_complete) {
3326 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3327 			if (links_reg & IXGBE_LINKS_UP) {
3328 				*link_up = true;
3329 				break;
3330 			} else {
3331 				*link_up = false;
3332 			}
3333 			msleep(100);
3334 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3335 		}
3336 	} else {
3337 		if (links_reg & IXGBE_LINKS_UP) {
3338 			if (crosstalk_fix_active) {
3339 				/* Check the link state again after a delay
3340 				 * to filter out spurious link up
3341 				 * notifications.
3342 				 */
3343 				mdelay(5);
3344 				links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3345 				if (!(links_reg & IXGBE_LINKS_UP)) {
3346 					*link_up = false;
3347 					*speed = IXGBE_LINK_SPEED_UNKNOWN;
3348 					return 0;
3349 				}
3350 			}
3351 			*link_up = true;
3352 		} else {
3353 			*link_up = false;
3354 		}
3355 	}
3356 
3357 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3358 	case IXGBE_LINKS_SPEED_10G_82599:
3359 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3360 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3361 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3362 		else
3363 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3364 		break;
3365 	case IXGBE_LINKS_SPEED_1G_82599:
3366 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3367 		break;
3368 	case IXGBE_LINKS_SPEED_100_82599:
3369 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3370 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3371 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3372 		else
3373 			*speed = IXGBE_LINK_SPEED_100_FULL;
3374 		break;
3375 	case IXGBE_LINKS_SPEED_10_X550EM_A:
3376 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3377 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3378 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3379 			*speed = IXGBE_LINK_SPEED_10_FULL;
3380 		}
3381 		break;
3382 	default:
3383 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3384 	}
3385 
3386 	return 0;
3387 }
3388 
3389 /**
3390  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3391  *  the EEPROM
3392  *  @hw: pointer to hardware structure
3393  *  @wwnn_prefix: the alternative WWNN prefix
3394  *  @wwpn_prefix: the alternative WWPN prefix
3395  *
3396  *  This function will read the EEPROM from the alternative SAN MAC address
3397  *  block to check the support for the alternative WWNN/WWPN prefix support.
3398  **/
3399 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3400 					u16 *wwpn_prefix)
3401 {
3402 	u16 offset, caps;
3403 	u16 alt_san_mac_blk_offset;
3404 
3405 	/* clear output first */
3406 	*wwnn_prefix = 0xFFFF;
3407 	*wwpn_prefix = 0xFFFF;
3408 
3409 	/* check if alternative SAN MAC is supported */
3410 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3411 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3412 		goto wwn_prefix_err;
3413 
3414 	if ((alt_san_mac_blk_offset == 0) ||
3415 	    (alt_san_mac_blk_offset == 0xFFFF))
3416 		return 0;
3417 
3418 	/* check capability in alternative san mac address block */
3419 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3420 	if (hw->eeprom.ops.read(hw, offset, &caps))
3421 		goto wwn_prefix_err;
3422 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3423 		return 0;
3424 
3425 	/* get the corresponding prefix for WWNN/WWPN */
3426 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3427 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3428 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3429 
3430 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3431 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3432 		goto wwn_prefix_err;
3433 
3434 	return 0;
3435 
3436 wwn_prefix_err:
3437 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3438 	return 0;
3439 }
3440 
3441 /**
3442  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3443  *  @hw: pointer to hardware structure
3444  *  @enable: enable or disable switch for MAC anti-spoofing
3445  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3446  *
3447  **/
3448 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3449 {
3450 	int vf_target_reg = vf >> 3;
3451 	int vf_target_shift = vf % 8;
3452 	u32 pfvfspoof;
3453 
3454 	if (hw->mac.type == ixgbe_mac_82598EB)
3455 		return;
3456 
3457 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3458 	if (enable)
3459 		pfvfspoof |= BIT(vf_target_shift);
3460 	else
3461 		pfvfspoof &= ~BIT(vf_target_shift);
3462 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3463 }
3464 
3465 /**
3466  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3467  *  @hw: pointer to hardware structure
3468  *  @enable: enable or disable switch for VLAN anti-spoofing
3469  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3470  *
3471  **/
3472 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3473 {
3474 	int vf_target_reg = vf >> 3;
3475 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3476 	u32 pfvfspoof;
3477 
3478 	if (hw->mac.type == ixgbe_mac_82598EB)
3479 		return;
3480 
3481 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3482 	if (enable)
3483 		pfvfspoof |= BIT(vf_target_shift);
3484 	else
3485 		pfvfspoof &= ~BIT(vf_target_shift);
3486 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3487 }
3488 
3489 /**
3490  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3491  *  @hw: pointer to hardware structure
3492  *  @device_caps: the EEPROM word with the extra device capabilities
3493  *
3494  *  This function will read the EEPROM location for the device capabilities,
3495  *  and return the word through device_caps.
3496  **/
3497 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3498 {
3499 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3500 
3501 	return 0;
3502 }
3503 
3504 /**
3505  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3506  * @hw: pointer to hardware structure
3507  * @num_pb: number of packet buffers to allocate
3508  * @headroom: reserve n KB of headroom
3509  * @strategy: packet buffer allocation strategy
3510  **/
3511 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3512 			     int num_pb,
3513 			     u32 headroom,
3514 			     int strategy)
3515 {
3516 	u32 pbsize = hw->mac.rx_pb_size;
3517 	int i = 0;
3518 	u32 rxpktsize, txpktsize, txpbthresh;
3519 
3520 	/* Reserve headroom */
3521 	pbsize -= headroom;
3522 
3523 	if (!num_pb)
3524 		num_pb = 1;
3525 
3526 	/* Divide remaining packet buffer space amongst the number
3527 	 * of packet buffers requested using supplied strategy.
3528 	 */
3529 	switch (strategy) {
3530 	case (PBA_STRATEGY_WEIGHTED):
3531 		/* pba_80_48 strategy weight first half of packet buffer with
3532 		 * 5/8 of the packet buffer space.
3533 		 */
3534 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3535 		pbsize -= rxpktsize * (num_pb / 2);
3536 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3537 		for (; i < (num_pb / 2); i++)
3538 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3539 		fallthrough; /* configure remaining packet buffers */
3540 	case (PBA_STRATEGY_EQUAL):
3541 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3542 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3543 		for (; i < num_pb; i++)
3544 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3545 		break;
3546 	default:
3547 		break;
3548 	}
3549 
3550 	/*
3551 	 * Setup Tx packet buffer and threshold equally for all TCs
3552 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3553 	 * 10 since the largest packet we support is just over 9K.
3554 	 */
3555 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3556 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3557 	for (i = 0; i < num_pb; i++) {
3558 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3559 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3560 	}
3561 
3562 	/* Clear unused TCs, if any, to zero buffer size*/
3563 	for (; i < IXGBE_MAX_PB; i++) {
3564 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3565 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3566 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3567 	}
3568 }
3569 
3570 /**
3571  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3572  *  @buffer: pointer to EEPROM
3573  *  @length: size of EEPROM to calculate a checksum for
3574  *
3575  *  Calculates the checksum for some buffer on a specified length.  The
3576  *  checksum calculated is returned.
3577  **/
3578 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3579 {
3580 	u32 i;
3581 	u8 sum = 0;
3582 
3583 	if (!buffer)
3584 		return 0;
3585 
3586 	for (i = 0; i < length; i++)
3587 		sum += buffer[i];
3588 
3589 	return (u8) (0 - sum);
3590 }
3591 
3592 /**
3593  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3594  *  @hw: pointer to the HW structure
3595  *  @buffer: command to write and where the return status will be placed
3596  *  @length: length of buffer, must be multiple of 4 bytes
3597  *  @timeout: time in ms to wait for command completion
3598  *
3599  *  Communicates with the manageability block. On success return 0
3600  *  else returns semaphore error when encountering an error acquiring
3601  *  semaphore, -EINVAL when incorrect parameters passed or -EIO when
3602  *  command fails.
3603  *
3604  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3605  *  by the caller.
3606  **/
3607 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3608 		       u32 timeout)
3609 {
3610 	u32 hicr, i, fwsts;
3611 	u16 dword_len;
3612 
3613 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3614 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3615 		return -EINVAL;
3616 	}
3617 
3618 	/* Set bit 9 of FWSTS clearing FW reset indication */
3619 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3620 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3621 
3622 	/* Check that the host interface is enabled. */
3623 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3624 	if (!(hicr & IXGBE_HICR_EN)) {
3625 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3626 		return -EIO;
3627 	}
3628 
3629 	/* Calculate length in DWORDs. We must be DWORD aligned */
3630 	if (length % sizeof(u32)) {
3631 		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3632 		return -EINVAL;
3633 	}
3634 
3635 	dword_len = length >> 2;
3636 
3637 	/* The device driver writes the relevant command block
3638 	 * into the ram area.
3639 	 */
3640 	for (i = 0; i < dword_len; i++)
3641 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3642 				      i, (__force u32)cpu_to_le32(buffer[i]));
3643 
3644 	/* Setting this bit tells the ARC that a new command is pending. */
3645 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3646 
3647 	for (i = 0; i < timeout; i++) {
3648 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3649 		if (!(hicr & IXGBE_HICR_C))
3650 			break;
3651 		usleep_range(1000, 2000);
3652 	}
3653 
3654 	/* Check command successful completion. */
3655 	if ((timeout && i == timeout) ||
3656 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3657 		return -EIO;
3658 
3659 	return 0;
3660 }
3661 
3662 /**
3663  *  ixgbe_host_interface_command - Issue command to manageability block
3664  *  @hw: pointer to the HW structure
3665  *  @buffer: contains the command to write and where the return status will
3666  *           be placed
3667  *  @length: length of buffer, must be multiple of 4 bytes
3668  *  @timeout: time in ms to wait for command completion
3669  *  @return_data: read and return data from the buffer (true) or not (false)
3670  *  Needed because FW structures are big endian and decoding of
3671  *  these fields can be 8 bit or 16 bit based on command. Decoding
3672  *  is not easily understood without making a table of commands.
3673  *  So we will leave this up to the caller to read back the data
3674  *  in these cases.
3675  *
3676  *  Communicates with the manageability block.  On success return 0
3677  *  else return -EIO or -EINVAL.
3678  **/
3679 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3680 				 u32 length, u32 timeout,
3681 				 bool return_data)
3682 {
3683 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3684 	struct ixgbe_hic_hdr *hdr = buffer;
3685 	u32 *u32arr = buffer;
3686 	u16 buf_len, dword_len;
3687 	s32 status;
3688 	u32 bi;
3689 
3690 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3691 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3692 		return -EINVAL;
3693 	}
3694 	/* Take management host interface semaphore */
3695 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3696 	if (status)
3697 		return status;
3698 
3699 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3700 	if (status)
3701 		goto rel_out;
3702 
3703 	if (!return_data)
3704 		goto rel_out;
3705 
3706 	/* Calculate length in DWORDs */
3707 	dword_len = hdr_size >> 2;
3708 
3709 	/* first pull in the header so we know the buffer length */
3710 	for (bi = 0; bi < dword_len; bi++) {
3711 		u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3712 		le32_to_cpus(&u32arr[bi]);
3713 	}
3714 
3715 	/* If there is any thing in data position pull it in */
3716 	buf_len = hdr->buf_len;
3717 	if (!buf_len)
3718 		goto rel_out;
3719 
3720 	if (length < round_up(buf_len, 4) + hdr_size) {
3721 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3722 		status = -EIO;
3723 		goto rel_out;
3724 	}
3725 
3726 	/* Calculate length in DWORDs, add 3 for odd lengths */
3727 	dword_len = (buf_len + 3) >> 2;
3728 
3729 	/* Pull in the rest of the buffer (bi is where we left off) */
3730 	for (; bi <= dword_len; bi++) {
3731 		u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3732 		le32_to_cpus(&u32arr[bi]);
3733 	}
3734 
3735 rel_out:
3736 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3737 
3738 	return status;
3739 }
3740 
3741 /**
3742  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3743  *  @hw: pointer to the HW structure
3744  *  @maj: driver version major number
3745  *  @min: driver version minor number
3746  *  @build: driver version build number
3747  *  @sub: driver version sub build number
3748  *  @len: length of driver_ver string
3749  *  @driver_ver: driver string
3750  *
3751  *  Sends driver version number to firmware through the manageability
3752  *  block.  On success return 0
3753  *  else returns -EBUSY when encountering an error acquiring
3754  *  semaphore or -EIO when command fails.
3755  **/
3756 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3757 				 u8 build, u8 sub, __always_unused u16 len,
3758 				 __always_unused const char *driver_ver)
3759 {
3760 	struct ixgbe_hic_drv_info fw_cmd;
3761 	int i;
3762 	s32 ret_val;
3763 
3764 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3765 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3766 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3767 	fw_cmd.port_num = hw->bus.func;
3768 	fw_cmd.ver_maj = maj;
3769 	fw_cmd.ver_min = min;
3770 	fw_cmd.ver_build = build;
3771 	fw_cmd.ver_sub = sub;
3772 	fw_cmd.hdr.checksum = 0;
3773 	fw_cmd.pad = 0;
3774 	fw_cmd.pad2 = 0;
3775 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3776 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3777 
3778 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3779 		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3780 						       sizeof(fw_cmd),
3781 						       IXGBE_HI_COMMAND_TIMEOUT,
3782 						       true);
3783 		if (ret_val != 0)
3784 			continue;
3785 
3786 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3787 		    FW_CEM_RESP_STATUS_SUCCESS)
3788 			ret_val = 0;
3789 		else
3790 			ret_val = -EIO;
3791 
3792 		break;
3793 	}
3794 
3795 	return ret_val;
3796 }
3797 
3798 /**
3799  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3800  * @hw: pointer to the hardware structure
3801  *
3802  * The 82599 and x540 MACs can experience issues if TX work is still pending
3803  * when a reset occurs.  This function prevents this by flushing the PCIe
3804  * buffers on the system.
3805  **/
3806 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3807 {
3808 	u32 gcr_ext, hlreg0, i, poll;
3809 	u16 value;
3810 
3811 	/*
3812 	 * If double reset is not requested then all transactions should
3813 	 * already be clear and as such there is no work to do
3814 	 */
3815 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3816 		return;
3817 
3818 	/*
3819 	 * Set loopback enable to prevent any transmits from being sent
3820 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3821 	 * has already been cleared.
3822 	 */
3823 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3824 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3825 
3826 	/* wait for a last completion before clearing buffers */
3827 	IXGBE_WRITE_FLUSH(hw);
3828 	usleep_range(3000, 6000);
3829 
3830 	/* Before proceeding, make sure that the PCIe block does not have
3831 	 * transactions pending.
3832 	 */
3833 	poll = ixgbe_pcie_timeout_poll(hw);
3834 	for (i = 0; i < poll; i++) {
3835 		usleep_range(100, 200);
3836 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3837 		if (ixgbe_removed(hw->hw_addr))
3838 			break;
3839 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3840 			break;
3841 	}
3842 
3843 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3844 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3845 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3846 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3847 
3848 	/* Flush all writes and allow 20usec for all transactions to clear */
3849 	IXGBE_WRITE_FLUSH(hw);
3850 	udelay(20);
3851 
3852 	/* restore previous register values */
3853 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3854 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3855 }
3856 
3857 static const u8 ixgbe_emc_temp_data[4] = {
3858 	IXGBE_EMC_INTERNAL_DATA,
3859 	IXGBE_EMC_DIODE1_DATA,
3860 	IXGBE_EMC_DIODE2_DATA,
3861 	IXGBE_EMC_DIODE3_DATA
3862 };
3863 static const u8 ixgbe_emc_therm_limit[4] = {
3864 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3865 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3866 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3867 	IXGBE_EMC_DIODE3_THERM_LIMIT
3868 };
3869 
3870 /**
3871  *  ixgbe_get_ets_data - Extracts the ETS bit data
3872  *  @hw: pointer to hardware structure
3873  *  @ets_cfg: extected ETS data
3874  *  @ets_offset: offset of ETS data
3875  *
3876  *  Returns error code.
3877  **/
3878 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3879 			      u16 *ets_offset)
3880 {
3881 	s32 status;
3882 
3883 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3884 	if (status)
3885 		return status;
3886 
3887 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3888 		return -EOPNOTSUPP;
3889 
3890 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3891 	if (status)
3892 		return status;
3893 
3894 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3895 		return -EOPNOTSUPP;
3896 
3897 	return 0;
3898 }
3899 
3900 /**
3901  *  ixgbe_get_thermal_sensor_data_generic - Gathers thermal sensor data
3902  *  @hw: pointer to hardware structure
3903  *
3904  *  Returns the thermal sensor data structure
3905  **/
3906 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3907 {
3908 	s32 status;
3909 	u16 ets_offset;
3910 	u16 ets_cfg;
3911 	u16 ets_sensor;
3912 	u8  num_sensors;
3913 	u8  i;
3914 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3915 
3916 	/* Only support thermal sensors attached to physical port 0 */
3917 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3918 		return -EOPNOTSUPP;
3919 
3920 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3921 	if (status)
3922 		return status;
3923 
3924 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3925 	if (num_sensors > IXGBE_MAX_SENSORS)
3926 		num_sensors = IXGBE_MAX_SENSORS;
3927 
3928 	for (i = 0; i < num_sensors; i++) {
3929 		u8  sensor_index;
3930 		u8  sensor_location;
3931 
3932 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3933 					     &ets_sensor);
3934 		if (status)
3935 			return status;
3936 
3937 		sensor_index = FIELD_GET(IXGBE_ETS_DATA_INDEX_MASK,
3938 					 ets_sensor);
3939 		sensor_location = FIELD_GET(IXGBE_ETS_DATA_LOC_MASK,
3940 					    ets_sensor);
3941 
3942 		if (sensor_location != 0) {
3943 			status = hw->phy.ops.read_i2c_byte(hw,
3944 					ixgbe_emc_temp_data[sensor_index],
3945 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3946 					&data->sensor[i].temp);
3947 			if (status)
3948 				return status;
3949 		}
3950 	}
3951 
3952 	return 0;
3953 }
3954 
3955 /**
3956  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3957  * @hw: pointer to hardware structure
3958  *
3959  * Inits the thermal sensor thresholds according to the NVM map
3960  * and save off the threshold and location values into mac.thermal_sensor_data
3961  **/
3962 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3963 {
3964 	s32 status;
3965 	u16 ets_offset;
3966 	u16 ets_cfg;
3967 	u16 ets_sensor;
3968 	u8  low_thresh_delta;
3969 	u8  num_sensors;
3970 	u8  therm_limit;
3971 	u8  i;
3972 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3973 
3974 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3975 
3976 	/* Only support thermal sensors attached to physical port 0 */
3977 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3978 		return -EOPNOTSUPP;
3979 
3980 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3981 	if (status)
3982 		return status;
3983 
3984 	low_thresh_delta = FIELD_GET(IXGBE_ETS_LTHRES_DELTA_MASK, ets_cfg);
3985 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3986 	if (num_sensors > IXGBE_MAX_SENSORS)
3987 		num_sensors = IXGBE_MAX_SENSORS;
3988 
3989 	for (i = 0; i < num_sensors; i++) {
3990 		u8  sensor_index;
3991 		u8  sensor_location;
3992 
3993 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3994 			hw_err(hw, "eeprom read at offset %d failed\n",
3995 			       ets_offset + 1 + i);
3996 			continue;
3997 		}
3998 		sensor_index = FIELD_GET(IXGBE_ETS_DATA_INDEX_MASK,
3999 					 ets_sensor);
4000 		sensor_location = FIELD_GET(IXGBE_ETS_DATA_LOC_MASK,
4001 					    ets_sensor);
4002 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4003 
4004 		hw->phy.ops.write_i2c_byte(hw,
4005 			ixgbe_emc_therm_limit[sensor_index],
4006 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4007 
4008 		if (sensor_location == 0)
4009 			continue;
4010 
4011 		data->sensor[i].location = sensor_location;
4012 		data->sensor[i].caution_thresh = therm_limit;
4013 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4014 	}
4015 
4016 	return 0;
4017 }
4018 
4019 /**
4020  *  ixgbe_get_orom_version - Return option ROM from EEPROM
4021  *
4022  *  @hw: pointer to hardware structure
4023  *  @nvm_ver: pointer to output structure
4024  *
4025  *  if valid option ROM version, nvm_ver->or_valid set to true
4026  *  else nvm_ver->or_valid is false.
4027  **/
4028 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4029 			    struct ixgbe_nvm_version *nvm_ver)
4030 {
4031 	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4032 
4033 	nvm_ver->or_valid = false;
4034 	/* Option Rom may or may not be present.  Start with pointer */
4035 	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4036 
4037 	/* make sure offset is valid */
4038 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4039 		return;
4040 
4041 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4042 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4043 
4044 	/* option rom exists and is valid */
4045 	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4046 	    eeprom_cfg_blkl == NVM_VER_INVALID ||
4047 	    eeprom_cfg_blkh == NVM_VER_INVALID)
4048 		return;
4049 
4050 	nvm_ver->or_valid = true;
4051 	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4052 	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4053 			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4054 	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4055 }
4056 
4057 /**
4058  *  ixgbe_get_oem_prod_version - Etrack ID from EEPROM
4059  *  @hw: pointer to hardware structure
4060  *  @nvm_ver: pointer to output structure
4061  *
4062  *  if valid OEM product version, nvm_ver->oem_valid set to true
4063  *  else nvm_ver->oem_valid is false.
4064  **/
4065 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4066 				struct ixgbe_nvm_version *nvm_ver)
4067 {
4068 	u16 rel_num, prod_ver, mod_len, cap, offset;
4069 
4070 	nvm_ver->oem_valid = false;
4071 	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4072 
4073 	/* Return is offset to OEM Product Version block is invalid */
4074 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4075 		return;
4076 
4077 	/* Read product version block */
4078 	hw->eeprom.ops.read(hw, offset, &mod_len);
4079 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4080 
4081 	/* Return if OEM product version block is invalid */
4082 	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4083 	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4084 		return;
4085 
4086 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4087 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4088 
4089 	/* Return if version is invalid */
4090 	if ((rel_num | prod_ver) == 0x0 ||
4091 	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4092 		return;
4093 
4094 	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4095 	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4096 	nvm_ver->oem_release = rel_num;
4097 	nvm_ver->oem_valid = true;
4098 }
4099 
4100 /**
4101  *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
4102  *
4103  *  @hw: pointer to hardware structure
4104  *  @nvm_ver: pointer to output structure
4105  *
4106  *  word read errors will return 0xFFFF
4107  **/
4108 void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4109 		      struct ixgbe_nvm_version *nvm_ver)
4110 {
4111 	u16 etk_id_l, etk_id_h;
4112 
4113 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4114 		etk_id_l = NVM_VER_INVALID;
4115 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4116 		etk_id_h = NVM_VER_INVALID;
4117 
4118 	/* The word order for the version format is determined by high order
4119 	 * word bit 15.
4120 	 */
4121 	if ((etk_id_h & NVM_ETK_VALID) == 0) {
4122 		nvm_ver->etk_id = etk_id_h;
4123 		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4124 	} else {
4125 		nvm_ver->etk_id = etk_id_l;
4126 		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4127 	}
4128 }
4129 
4130 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4131 {
4132 	u32 rxctrl;
4133 
4134 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4135 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4136 		if (hw->mac.type != ixgbe_mac_82598EB) {
4137 			u32 pfdtxgswc;
4138 
4139 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4140 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4141 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4142 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4143 				hw->mac.set_lben = true;
4144 			} else {
4145 				hw->mac.set_lben = false;
4146 			}
4147 		}
4148 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4149 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4150 	}
4151 }
4152 
4153 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4154 {
4155 	u32 rxctrl;
4156 
4157 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4158 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4159 
4160 	if (hw->mac.type != ixgbe_mac_82598EB) {
4161 		if (hw->mac.set_lben) {
4162 			u32 pfdtxgswc;
4163 
4164 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4165 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4166 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4167 			hw->mac.set_lben = false;
4168 		}
4169 	}
4170 }
4171 
4172 /** ixgbe_mng_present - returns true when management capability is present
4173  * @hw: pointer to hardware structure
4174  **/
4175 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4176 {
4177 	u32 fwsm;
4178 
4179 	if (hw->mac.type < ixgbe_mac_82599EB)
4180 		return false;
4181 
4182 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4183 
4184 	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4185 }
4186 
4187 /**
4188  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4189  *  @hw: pointer to hardware structure
4190  *  @speed: new link speed
4191  *  @autoneg_wait_to_complete: true when waiting for completion is needed
4192  *
4193  *  Set the link speed in the MAC and/or PHY register and restarts link.
4194  */
4195 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4196 					  ixgbe_link_speed speed,
4197 					  bool autoneg_wait_to_complete)
4198 {
4199 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4200 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4201 	s32 status = 0;
4202 	u32 speedcnt = 0;
4203 	u32 i = 0;
4204 	bool autoneg, link_up = false;
4205 
4206 	/* Mask off requested but non-supported speeds */
4207 	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4208 	if (status)
4209 		return status;
4210 
4211 	speed &= link_speed;
4212 
4213 	/* Try each speed one by one, highest priority first.  We do this in
4214 	 * software because 10Gb fiber doesn't support speed autonegotiation.
4215 	 */
4216 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4217 		speedcnt++;
4218 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4219 
4220 		/* Set the module link speed */
4221 		switch (hw->phy.media_type) {
4222 		case ixgbe_media_type_fiber:
4223 			hw->mac.ops.set_rate_select_speed(hw,
4224 						    IXGBE_LINK_SPEED_10GB_FULL);
4225 			break;
4226 		case ixgbe_media_type_fiber_qsfp:
4227 			/* QSFP module automatically detects MAC link speed */
4228 			break;
4229 		default:
4230 			hw_dbg(hw, "Unexpected media type\n");
4231 			break;
4232 		}
4233 
4234 		/* Allow module to change analog characteristics (1G->10G) */
4235 		msleep(40);
4236 
4237 		status = hw->mac.ops.setup_mac_link(hw,
4238 						    IXGBE_LINK_SPEED_10GB_FULL,
4239 						    autoneg_wait_to_complete);
4240 		if (status)
4241 			return status;
4242 
4243 		/* Flap the Tx laser if it has not already been done */
4244 		if (hw->mac.ops.flap_tx_laser)
4245 			hw->mac.ops.flap_tx_laser(hw);
4246 
4247 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4248 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4249 		 * attempted.  82599 uses the same timing for 10g SFI.
4250 		 */
4251 		for (i = 0; i < 5; i++) {
4252 			/* Wait for the link partner to also set speed */
4253 			msleep(100);
4254 
4255 			/* If we have link, just jump out */
4256 			status = hw->mac.ops.check_link(hw, &link_speed,
4257 							&link_up, false);
4258 			if (status)
4259 				return status;
4260 
4261 			if (link_up)
4262 				goto out;
4263 		}
4264 	}
4265 
4266 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4267 		speedcnt++;
4268 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4269 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4270 
4271 		/* Set the module link speed */
4272 		switch (hw->phy.media_type) {
4273 		case ixgbe_media_type_fiber:
4274 			hw->mac.ops.set_rate_select_speed(hw,
4275 						     IXGBE_LINK_SPEED_1GB_FULL);
4276 			break;
4277 		case ixgbe_media_type_fiber_qsfp:
4278 			/* QSFP module automatically detects link speed */
4279 			break;
4280 		default:
4281 			hw_dbg(hw, "Unexpected media type\n");
4282 			break;
4283 		}
4284 
4285 		/* Allow module to change analog characteristics (10G->1G) */
4286 		msleep(40);
4287 
4288 		status = hw->mac.ops.setup_mac_link(hw,
4289 						    IXGBE_LINK_SPEED_1GB_FULL,
4290 						    autoneg_wait_to_complete);
4291 		if (status)
4292 			return status;
4293 
4294 		/* Flap the Tx laser if it has not already been done */
4295 		if (hw->mac.ops.flap_tx_laser)
4296 			hw->mac.ops.flap_tx_laser(hw);
4297 
4298 		/* Wait for the link partner to also set speed */
4299 		msleep(100);
4300 
4301 		/* If we have link, just jump out */
4302 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4303 						false);
4304 		if (status)
4305 			return status;
4306 
4307 		if (link_up)
4308 			goto out;
4309 	}
4310 
4311 	/* We didn't get link.  Configure back to the highest speed we tried,
4312 	 * (if there was more than one).  We call ourselves back with just the
4313 	 * single highest speed that the user requested.
4314 	 */
4315 	if (speedcnt > 1)
4316 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4317 						      highest_link_speed,
4318 						      autoneg_wait_to_complete);
4319 
4320 out:
4321 	/* Set autoneg_advertised value based on input link speed */
4322 	hw->phy.autoneg_advertised = 0;
4323 
4324 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4325 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4326 
4327 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4328 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4329 
4330 	return status;
4331 }
4332 
4333 /**
4334  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4335  *  @hw: pointer to hardware structure
4336  *  @speed: link speed to set
4337  *
4338  *  Set module link speed via the soft rate select.
4339  */
4340 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4341 				      ixgbe_link_speed speed)
4342 {
4343 	s32 status;
4344 	u8 rs, eeprom_data;
4345 
4346 	switch (speed) {
4347 	case IXGBE_LINK_SPEED_10GB_FULL:
4348 		/* one bit mask same as setting on */
4349 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4350 		break;
4351 	case IXGBE_LINK_SPEED_1GB_FULL:
4352 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4353 		break;
4354 	default:
4355 		hw_dbg(hw, "Invalid fixed module speed\n");
4356 		return;
4357 	}
4358 
4359 	/* Set RS0 */
4360 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4361 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4362 					   &eeprom_data);
4363 	if (status) {
4364 		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4365 		return;
4366 	}
4367 
4368 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4369 
4370 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4371 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4372 					    eeprom_data);
4373 	if (status) {
4374 		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4375 		return;
4376 	}
4377 
4378 	/* Set RS1 */
4379 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4380 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4381 					   &eeprom_data);
4382 	if (status) {
4383 		hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4384 		return;
4385 	}
4386 
4387 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4388 
4389 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4390 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4391 					    eeprom_data);
4392 	if (status) {
4393 		hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4394 		return;
4395 	}
4396 }
4397