xref: /linux/drivers/net/ethernet/intel/ixgbe/ixgbe_common.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2014 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
33 
34 #include "ixgbe.h"
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 					u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 					     u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 					     u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 						 u16 offset);
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59 
60 /**
61  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
62  *  control
63  *  @hw: pointer to hardware structure
64  *
65  *  There are several phys that do not support autoneg flow control. This
66  *  function check the device id to see if the associated phy supports
67  *  autoneg flow control.
68  **/
69 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
70 {
71 	bool supported = false;
72 	ixgbe_link_speed speed;
73 	bool link_up;
74 
75 	switch (hw->phy.media_type) {
76 	case ixgbe_media_type_fiber:
77 		hw->mac.ops.check_link(hw, &speed, &link_up, false);
78 		/* if link is down, assume supported */
79 		if (link_up)
80 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
81 				true : false;
82 		else
83 			supported = true;
84 		break;
85 	case ixgbe_media_type_backplane:
86 		supported = true;
87 		break;
88 	case ixgbe_media_type_copper:
89 		/* only some copper devices support flow control autoneg */
90 		switch (hw->device_id) {
91 		case IXGBE_DEV_ID_82599_T3_LOM:
92 		case IXGBE_DEV_ID_X540T:
93 		case IXGBE_DEV_ID_X540T1:
94 			supported = true;
95 			break;
96 		default:
97 			break;
98 		}
99 	default:
100 		break;
101 	}
102 
103 	return supported;
104 }
105 
106 /**
107  *  ixgbe_setup_fc - Set up flow control
108  *  @hw: pointer to hardware structure
109  *
110  *  Called at init time to set up flow control.
111  **/
112 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
113 {
114 	s32 ret_val = 0;
115 	u32 reg = 0, reg_bp = 0;
116 	u16 reg_cu = 0;
117 	bool locked = false;
118 
119 	/*
120 	 * Validate the requested mode.  Strict IEEE mode does not allow
121 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
122 	 */
123 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
124 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
125 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
126 	}
127 
128 	/*
129 	 * 10gig parts do not have a word in the EEPROM to determine the
130 	 * default flow control setting, so we explicitly set it to full.
131 	 */
132 	if (hw->fc.requested_mode == ixgbe_fc_default)
133 		hw->fc.requested_mode = ixgbe_fc_full;
134 
135 	/*
136 	 * Set up the 1G and 10G flow control advertisement registers so the
137 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
138 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
139 	 */
140 	switch (hw->phy.media_type) {
141 	case ixgbe_media_type_backplane:
142 		/* some MAC's need RMW protection on AUTOC */
143 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
144 		if (ret_val)
145 			return ret_val;
146 
147 		/* only backplane uses autoc so fall though */
148 	case ixgbe_media_type_fiber:
149 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
150 
151 		break;
152 	case ixgbe_media_type_copper:
153 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
154 					MDIO_MMD_AN, &reg_cu);
155 		break;
156 	default:
157 		break;
158 	}
159 
160 	/*
161 	 * The possible values of fc.requested_mode are:
162 	 * 0: Flow control is completely disabled
163 	 * 1: Rx flow control is enabled (we can receive pause frames,
164 	 *    but not send pause frames).
165 	 * 2: Tx flow control is enabled (we can send pause frames but
166 	 *    we do not support receiving pause frames).
167 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
168 	 * other: Invalid.
169 	 */
170 	switch (hw->fc.requested_mode) {
171 	case ixgbe_fc_none:
172 		/* Flow control completely disabled by software override. */
173 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
174 		if (hw->phy.media_type == ixgbe_media_type_backplane)
175 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
176 				    IXGBE_AUTOC_ASM_PAUSE);
177 		else if (hw->phy.media_type == ixgbe_media_type_copper)
178 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
179 		break;
180 	case ixgbe_fc_tx_pause:
181 		/*
182 		 * Tx Flow control is enabled, and Rx Flow control is
183 		 * disabled by software override.
184 		 */
185 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
186 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
187 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
188 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
189 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
190 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
191 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
192 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
193 		}
194 		break;
195 	case ixgbe_fc_rx_pause:
196 		/*
197 		 * Rx Flow control is enabled and Tx Flow control is
198 		 * disabled by software override. Since there really
199 		 * isn't a way to advertise that we are capable of RX
200 		 * Pause ONLY, we will advertise that we support both
201 		 * symmetric and asymmetric Rx PAUSE, as such we fall
202 		 * through to the fc_full statement.  Later, we will
203 		 * disable the adapter's ability to send PAUSE frames.
204 		 */
205 	case ixgbe_fc_full:
206 		/* Flow control (both Rx and Tx) is enabled by SW override. */
207 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
208 		if (hw->phy.media_type == ixgbe_media_type_backplane)
209 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
210 				  IXGBE_AUTOC_ASM_PAUSE;
211 		else if (hw->phy.media_type == ixgbe_media_type_copper)
212 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
213 		break;
214 	default:
215 		hw_dbg(hw, "Flow control param set incorrectly\n");
216 		return IXGBE_ERR_CONFIG;
217 	}
218 
219 	if (hw->mac.type != ixgbe_mac_X540) {
220 		/*
221 		 * Enable auto-negotiation between the MAC & PHY;
222 		 * the MAC will advertise clause 37 flow control.
223 		 */
224 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
225 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
226 
227 		/* Disable AN timeout */
228 		if (hw->fc.strict_ieee)
229 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
230 
231 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
232 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
233 	}
234 
235 	/*
236 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
237 	 * and copper. There is no need to set the PCS1GCTL register.
238 	 *
239 	 */
240 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
241 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
242 		 * LESM is on, likewise reset_pipeline requries the lock as
243 		 * it also writes AUTOC.
244 		 */
245 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
246 		if (ret_val)
247 			return ret_val;
248 
249 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
250 		   ixgbe_device_supports_autoneg_fc(hw)) {
251 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
252 				      MDIO_MMD_AN, reg_cu);
253 	}
254 
255 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
256 	return ret_val;
257 }
258 
259 /**
260  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
261  *  @hw: pointer to hardware structure
262  *
263  *  Starts the hardware by filling the bus info structure and media type, clears
264  *  all on chip counters, initializes receive address registers, multicast
265  *  table, VLAN filter table, calls routine to set up link and flow control
266  *  settings, and leaves transmit and receive units disabled and uninitialized
267  **/
268 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
269 {
270 	s32 ret_val;
271 	u32 ctrl_ext;
272 
273 	/* Set the media type */
274 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
275 
276 	/* Identify the PHY */
277 	hw->phy.ops.identify(hw);
278 
279 	/* Clear the VLAN filter table */
280 	hw->mac.ops.clear_vfta(hw);
281 
282 	/* Clear statistics registers */
283 	hw->mac.ops.clear_hw_cntrs(hw);
284 
285 	/* Set No Snoop Disable */
286 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
287 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
288 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
289 	IXGBE_WRITE_FLUSH(hw);
290 
291 	/* Setup flow control */
292 	ret_val = ixgbe_setup_fc(hw);
293 	if (!ret_val)
294 		return 0;
295 
296 	/* Clear adapter stopped flag */
297 	hw->adapter_stopped = false;
298 
299 	return ret_val;
300 }
301 
302 /**
303  *  ixgbe_start_hw_gen2 - Init sequence for common device family
304  *  @hw: pointer to hw structure
305  *
306  * Performs the init sequence common to the second generation
307  * of 10 GbE devices.
308  * Devices in the second generation:
309  *     82599
310  *     X540
311  **/
312 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
313 {
314 	u32 i;
315 	u32 regval;
316 
317 	/* Clear the rate limiters */
318 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
319 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
320 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
321 	}
322 	IXGBE_WRITE_FLUSH(hw);
323 
324 	/* Disable relaxed ordering */
325 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
326 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
327 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
328 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
329 	}
330 
331 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
332 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
333 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
334 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
335 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
336 	}
337 
338 	return 0;
339 }
340 
341 /**
342  *  ixgbe_init_hw_generic - Generic hardware initialization
343  *  @hw: pointer to hardware structure
344  *
345  *  Initialize the hardware by resetting the hardware, filling the bus info
346  *  structure and media type, clears all on chip counters, initializes receive
347  *  address registers, multicast table, VLAN filter table, calls routine to set
348  *  up link and flow control settings, and leaves transmit and receive units
349  *  disabled and uninitialized
350  **/
351 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
352 {
353 	s32 status;
354 
355 	/* Reset the hardware */
356 	status = hw->mac.ops.reset_hw(hw);
357 
358 	if (status == 0) {
359 		/* Start the HW */
360 		status = hw->mac.ops.start_hw(hw);
361 	}
362 
363 	return status;
364 }
365 
366 /**
367  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
368  *  @hw: pointer to hardware structure
369  *
370  *  Clears all hardware statistics counters by reading them from the hardware
371  *  Statistics counters are clear on read.
372  **/
373 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
374 {
375 	u16 i = 0;
376 
377 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
378 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
379 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
380 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
381 	for (i = 0; i < 8; i++)
382 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
383 
384 	IXGBE_READ_REG(hw, IXGBE_MLFC);
385 	IXGBE_READ_REG(hw, IXGBE_MRFC);
386 	IXGBE_READ_REG(hw, IXGBE_RLEC);
387 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
388 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
389 	if (hw->mac.type >= ixgbe_mac_82599EB) {
390 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
391 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
392 	} else {
393 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
394 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
395 	}
396 
397 	for (i = 0; i < 8; i++) {
398 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
399 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
400 		if (hw->mac.type >= ixgbe_mac_82599EB) {
401 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
402 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
403 		} else {
404 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
405 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
406 		}
407 	}
408 	if (hw->mac.type >= ixgbe_mac_82599EB)
409 		for (i = 0; i < 8; i++)
410 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
411 	IXGBE_READ_REG(hw, IXGBE_PRC64);
412 	IXGBE_READ_REG(hw, IXGBE_PRC127);
413 	IXGBE_READ_REG(hw, IXGBE_PRC255);
414 	IXGBE_READ_REG(hw, IXGBE_PRC511);
415 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
416 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
417 	IXGBE_READ_REG(hw, IXGBE_GPRC);
418 	IXGBE_READ_REG(hw, IXGBE_BPRC);
419 	IXGBE_READ_REG(hw, IXGBE_MPRC);
420 	IXGBE_READ_REG(hw, IXGBE_GPTC);
421 	IXGBE_READ_REG(hw, IXGBE_GORCL);
422 	IXGBE_READ_REG(hw, IXGBE_GORCH);
423 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
424 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
425 	if (hw->mac.type == ixgbe_mac_82598EB)
426 		for (i = 0; i < 8; i++)
427 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
428 	IXGBE_READ_REG(hw, IXGBE_RUC);
429 	IXGBE_READ_REG(hw, IXGBE_RFC);
430 	IXGBE_READ_REG(hw, IXGBE_ROC);
431 	IXGBE_READ_REG(hw, IXGBE_RJC);
432 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
433 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
434 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
435 	IXGBE_READ_REG(hw, IXGBE_TORL);
436 	IXGBE_READ_REG(hw, IXGBE_TORH);
437 	IXGBE_READ_REG(hw, IXGBE_TPR);
438 	IXGBE_READ_REG(hw, IXGBE_TPT);
439 	IXGBE_READ_REG(hw, IXGBE_PTC64);
440 	IXGBE_READ_REG(hw, IXGBE_PTC127);
441 	IXGBE_READ_REG(hw, IXGBE_PTC255);
442 	IXGBE_READ_REG(hw, IXGBE_PTC511);
443 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
444 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
445 	IXGBE_READ_REG(hw, IXGBE_MPTC);
446 	IXGBE_READ_REG(hw, IXGBE_BPTC);
447 	for (i = 0; i < 16; i++) {
448 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
449 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
450 		if (hw->mac.type >= ixgbe_mac_82599EB) {
451 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
452 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
453 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
454 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
455 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
456 		} else {
457 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
458 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
459 		}
460 	}
461 
462 	if (hw->mac.type == ixgbe_mac_X540) {
463 		if (hw->phy.id == 0)
464 			hw->phy.ops.identify(hw);
465 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
466 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
467 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
468 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
469 	}
470 
471 	return 0;
472 }
473 
474 /**
475  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
476  *  @hw: pointer to hardware structure
477  *  @pba_num: stores the part number string from the EEPROM
478  *  @pba_num_size: part number string buffer length
479  *
480  *  Reads the part number string from the EEPROM.
481  **/
482 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
483 				  u32 pba_num_size)
484 {
485 	s32 ret_val;
486 	u16 data;
487 	u16 pba_ptr;
488 	u16 offset;
489 	u16 length;
490 
491 	if (pba_num == NULL) {
492 		hw_dbg(hw, "PBA string buffer was null\n");
493 		return IXGBE_ERR_INVALID_ARGUMENT;
494 	}
495 
496 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
497 	if (ret_val) {
498 		hw_dbg(hw, "NVM Read Error\n");
499 		return ret_val;
500 	}
501 
502 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
503 	if (ret_val) {
504 		hw_dbg(hw, "NVM Read Error\n");
505 		return ret_val;
506 	}
507 
508 	/*
509 	 * if data is not ptr guard the PBA must be in legacy format which
510 	 * means pba_ptr is actually our second data word for the PBA number
511 	 * and we can decode it into an ascii string
512 	 */
513 	if (data != IXGBE_PBANUM_PTR_GUARD) {
514 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
515 
516 		/* we will need 11 characters to store the PBA */
517 		if (pba_num_size < 11) {
518 			hw_dbg(hw, "PBA string buffer too small\n");
519 			return IXGBE_ERR_NO_SPACE;
520 		}
521 
522 		/* extract hex string from data and pba_ptr */
523 		pba_num[0] = (data >> 12) & 0xF;
524 		pba_num[1] = (data >> 8) & 0xF;
525 		pba_num[2] = (data >> 4) & 0xF;
526 		pba_num[3] = data & 0xF;
527 		pba_num[4] = (pba_ptr >> 12) & 0xF;
528 		pba_num[5] = (pba_ptr >> 8) & 0xF;
529 		pba_num[6] = '-';
530 		pba_num[7] = 0;
531 		pba_num[8] = (pba_ptr >> 4) & 0xF;
532 		pba_num[9] = pba_ptr & 0xF;
533 
534 		/* put a null character on the end of our string */
535 		pba_num[10] = '\0';
536 
537 		/* switch all the data but the '-' to hex char */
538 		for (offset = 0; offset < 10; offset++) {
539 			if (pba_num[offset] < 0xA)
540 				pba_num[offset] += '0';
541 			else if (pba_num[offset] < 0x10)
542 				pba_num[offset] += 'A' - 0xA;
543 		}
544 
545 		return 0;
546 	}
547 
548 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
549 	if (ret_val) {
550 		hw_dbg(hw, "NVM Read Error\n");
551 		return ret_val;
552 	}
553 
554 	if (length == 0xFFFF || length == 0) {
555 		hw_dbg(hw, "NVM PBA number section invalid length\n");
556 		return IXGBE_ERR_PBA_SECTION;
557 	}
558 
559 	/* check if pba_num buffer is big enough */
560 	if (pba_num_size  < (((u32)length * 2) - 1)) {
561 		hw_dbg(hw, "PBA string buffer too small\n");
562 		return IXGBE_ERR_NO_SPACE;
563 	}
564 
565 	/* trim pba length from start of string */
566 	pba_ptr++;
567 	length--;
568 
569 	for (offset = 0; offset < length; offset++) {
570 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
571 		if (ret_val) {
572 			hw_dbg(hw, "NVM Read Error\n");
573 			return ret_val;
574 		}
575 		pba_num[offset * 2] = (u8)(data >> 8);
576 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
577 	}
578 	pba_num[offset * 2] = '\0';
579 
580 	return 0;
581 }
582 
583 /**
584  *  ixgbe_get_mac_addr_generic - Generic get MAC address
585  *  @hw: pointer to hardware structure
586  *  @mac_addr: Adapter MAC address
587  *
588  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
589  *  A reset of the adapter must be performed prior to calling this function
590  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
591  **/
592 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
593 {
594 	u32 rar_high;
595 	u32 rar_low;
596 	u16 i;
597 
598 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
599 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
600 
601 	for (i = 0; i < 4; i++)
602 		mac_addr[i] = (u8)(rar_low >> (i*8));
603 
604 	for (i = 0; i < 2; i++)
605 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
606 
607 	return 0;
608 }
609 
610 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
611 {
612 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
613 	case IXGBE_PCI_LINK_WIDTH_1:
614 		return ixgbe_bus_width_pcie_x1;
615 	case IXGBE_PCI_LINK_WIDTH_2:
616 		return ixgbe_bus_width_pcie_x2;
617 	case IXGBE_PCI_LINK_WIDTH_4:
618 		return ixgbe_bus_width_pcie_x4;
619 	case IXGBE_PCI_LINK_WIDTH_8:
620 		return ixgbe_bus_width_pcie_x8;
621 	default:
622 		return ixgbe_bus_width_unknown;
623 	}
624 }
625 
626 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
627 {
628 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
629 	case IXGBE_PCI_LINK_SPEED_2500:
630 		return ixgbe_bus_speed_2500;
631 	case IXGBE_PCI_LINK_SPEED_5000:
632 		return ixgbe_bus_speed_5000;
633 	case IXGBE_PCI_LINK_SPEED_8000:
634 		return ixgbe_bus_speed_8000;
635 	default:
636 		return ixgbe_bus_speed_unknown;
637 	}
638 }
639 
640 /**
641  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
642  *  @hw: pointer to hardware structure
643  *
644  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
645  **/
646 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
647 {
648 	u16 link_status;
649 
650 	hw->bus.type = ixgbe_bus_type_pci_express;
651 
652 	/* Get the negotiated link width and speed from PCI config space */
653 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
654 
655 	hw->bus.width = ixgbe_convert_bus_width(link_status);
656 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
657 
658 	hw->mac.ops.set_lan_id(hw);
659 
660 	return 0;
661 }
662 
663 /**
664  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
665  *  @hw: pointer to the HW structure
666  *
667  *  Determines the LAN function id by reading memory-mapped registers
668  *  and swaps the port value if requested.
669  **/
670 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
671 {
672 	struct ixgbe_bus_info *bus = &hw->bus;
673 	u32 reg;
674 
675 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
676 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
677 	bus->lan_id = bus->func;
678 
679 	/* check for a port swap */
680 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
681 	if (reg & IXGBE_FACTPS_LFS)
682 		bus->func ^= 0x1;
683 }
684 
685 /**
686  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
687  *  @hw: pointer to hardware structure
688  *
689  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
690  *  disables transmit and receive units. The adapter_stopped flag is used by
691  *  the shared code and drivers to determine if the adapter is in a stopped
692  *  state and should not touch the hardware.
693  **/
694 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
695 {
696 	u32 reg_val;
697 	u16 i;
698 
699 	/*
700 	 * Set the adapter_stopped flag so other driver functions stop touching
701 	 * the hardware
702 	 */
703 	hw->adapter_stopped = true;
704 
705 	/* Disable the receive unit */
706 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
707 
708 	/* Clear interrupt mask to stop interrupts from being generated */
709 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
710 
711 	/* Clear any pending interrupts, flush previous writes */
712 	IXGBE_READ_REG(hw, IXGBE_EICR);
713 
714 	/* Disable the transmit unit.  Each queue must be disabled. */
715 	for (i = 0; i < hw->mac.max_tx_queues; i++)
716 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
717 
718 	/* Disable the receive unit by stopping each queue */
719 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
720 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
721 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
722 		reg_val |= IXGBE_RXDCTL_SWFLSH;
723 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
724 	}
725 
726 	/* flush all queues disables */
727 	IXGBE_WRITE_FLUSH(hw);
728 	usleep_range(1000, 2000);
729 
730 	/*
731 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
732 	 * access and verify no pending requests
733 	 */
734 	return ixgbe_disable_pcie_master(hw);
735 }
736 
737 /**
738  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
739  *  @hw: pointer to hardware structure
740  *  @index: led number to turn on
741  **/
742 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
743 {
744 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
745 
746 	/* To turn on the LED, set mode to ON. */
747 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
748 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
749 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
750 	IXGBE_WRITE_FLUSH(hw);
751 
752 	return 0;
753 }
754 
755 /**
756  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
757  *  @hw: pointer to hardware structure
758  *  @index: led number to turn off
759  **/
760 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
761 {
762 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
763 
764 	/* To turn off the LED, set mode to OFF. */
765 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
766 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
767 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
768 	IXGBE_WRITE_FLUSH(hw);
769 
770 	return 0;
771 }
772 
773 /**
774  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
775  *  @hw: pointer to hardware structure
776  *
777  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
778  *  ixgbe_hw struct in order to set up EEPROM access.
779  **/
780 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
781 {
782 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
783 	u32 eec;
784 	u16 eeprom_size;
785 
786 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
787 		eeprom->type = ixgbe_eeprom_none;
788 		/* Set default semaphore delay to 10ms which is a well
789 		 * tested value */
790 		eeprom->semaphore_delay = 10;
791 		/* Clear EEPROM page size, it will be initialized as needed */
792 		eeprom->word_page_size = 0;
793 
794 		/*
795 		 * Check for EEPROM present first.
796 		 * If not present leave as none
797 		 */
798 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
799 		if (eec & IXGBE_EEC_PRES) {
800 			eeprom->type = ixgbe_eeprom_spi;
801 
802 			/*
803 			 * SPI EEPROM is assumed here.  This code would need to
804 			 * change if a future EEPROM is not SPI.
805 			 */
806 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
807 					    IXGBE_EEC_SIZE_SHIFT);
808 			eeprom->word_size = 1 << (eeprom_size +
809 						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
810 		}
811 
812 		if (eec & IXGBE_EEC_ADDR_SIZE)
813 			eeprom->address_bits = 16;
814 		else
815 			eeprom->address_bits = 8;
816 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
817 		       eeprom->type, eeprom->word_size, eeprom->address_bits);
818 	}
819 
820 	return 0;
821 }
822 
823 /**
824  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
825  *  @hw: pointer to hardware structure
826  *  @offset: offset within the EEPROM to write
827  *  @words: number of words
828  *  @data: 16 bit word(s) to write to EEPROM
829  *
830  *  Reads 16 bit word(s) from EEPROM through bit-bang method
831  **/
832 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
833 					       u16 words, u16 *data)
834 {
835 	s32 status;
836 	u16 i, count;
837 
838 	hw->eeprom.ops.init_params(hw);
839 
840 	if (words == 0)
841 		return IXGBE_ERR_INVALID_ARGUMENT;
842 
843 	if (offset + words > hw->eeprom.word_size)
844 		return IXGBE_ERR_EEPROM;
845 
846 	/*
847 	 * The EEPROM page size cannot be queried from the chip. We do lazy
848 	 * initialization. It is worth to do that when we write large buffer.
849 	 */
850 	if ((hw->eeprom.word_page_size == 0) &&
851 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
852 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
853 
854 	/*
855 	 * We cannot hold synchronization semaphores for too long
856 	 * to avoid other entity starvation. However it is more efficient
857 	 * to read in bursts than synchronizing access for each word.
858 	 */
859 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
860 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
861 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
862 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
863 							    count, &data[i]);
864 
865 		if (status != 0)
866 			break;
867 	}
868 
869 	return status;
870 }
871 
872 /**
873  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
874  *  @hw: pointer to hardware structure
875  *  @offset: offset within the EEPROM to be written to
876  *  @words: number of word(s)
877  *  @data: 16 bit word(s) to be written to the EEPROM
878  *
879  *  If ixgbe_eeprom_update_checksum is not called after this function, the
880  *  EEPROM will most likely contain an invalid checksum.
881  **/
882 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
883 					      u16 words, u16 *data)
884 {
885 	s32 status;
886 	u16 word;
887 	u16 page_size;
888 	u16 i;
889 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
890 
891 	/* Prepare the EEPROM for writing  */
892 	status = ixgbe_acquire_eeprom(hw);
893 	if (status)
894 		return status;
895 
896 	if (ixgbe_ready_eeprom(hw) != 0) {
897 		ixgbe_release_eeprom(hw);
898 		return IXGBE_ERR_EEPROM;
899 	}
900 
901 	for (i = 0; i < words; i++) {
902 		ixgbe_standby_eeprom(hw);
903 
904 		/* Send the WRITE ENABLE command (8 bit opcode) */
905 		ixgbe_shift_out_eeprom_bits(hw,
906 					    IXGBE_EEPROM_WREN_OPCODE_SPI,
907 					    IXGBE_EEPROM_OPCODE_BITS);
908 
909 		ixgbe_standby_eeprom(hw);
910 
911 		/* Some SPI eeproms use the 8th address bit embedded
912 		 * in the opcode
913 		 */
914 		if ((hw->eeprom.address_bits == 8) &&
915 		    ((offset + i) >= 128))
916 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
917 
918 		/* Send the Write command (8-bit opcode + addr) */
919 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
920 					    IXGBE_EEPROM_OPCODE_BITS);
921 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
922 					    hw->eeprom.address_bits);
923 
924 		page_size = hw->eeprom.word_page_size;
925 
926 		/* Send the data in burst via SPI */
927 		do {
928 			word = data[i];
929 			word = (word >> 8) | (word << 8);
930 			ixgbe_shift_out_eeprom_bits(hw, word, 16);
931 
932 			if (page_size == 0)
933 				break;
934 
935 			/* do not wrap around page */
936 			if (((offset + i) & (page_size - 1)) ==
937 			    (page_size - 1))
938 				break;
939 		} while (++i < words);
940 
941 		ixgbe_standby_eeprom(hw);
942 		usleep_range(10000, 20000);
943 	}
944 	/* Done with writing - release the EEPROM */
945 	ixgbe_release_eeprom(hw);
946 
947 	return 0;
948 }
949 
950 /**
951  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
952  *  @hw: pointer to hardware structure
953  *  @offset: offset within the EEPROM to be written to
954  *  @data: 16 bit word to be written to the EEPROM
955  *
956  *  If ixgbe_eeprom_update_checksum is not called after this function, the
957  *  EEPROM will most likely contain an invalid checksum.
958  **/
959 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
960 {
961 	hw->eeprom.ops.init_params(hw);
962 
963 	if (offset >= hw->eeprom.word_size)
964 		return IXGBE_ERR_EEPROM;
965 
966 	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
967 }
968 
969 /**
970  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
971  *  @hw: pointer to hardware structure
972  *  @offset: offset within the EEPROM to be read
973  *  @words: number of word(s)
974  *  @data: read 16 bit words(s) from EEPROM
975  *
976  *  Reads 16 bit word(s) from EEPROM through bit-bang method
977  **/
978 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
979 					      u16 words, u16 *data)
980 {
981 	s32 status;
982 	u16 i, count;
983 
984 	hw->eeprom.ops.init_params(hw);
985 
986 	if (words == 0)
987 		return IXGBE_ERR_INVALID_ARGUMENT;
988 
989 	if (offset + words > hw->eeprom.word_size)
990 		return IXGBE_ERR_EEPROM;
991 
992 	/*
993 	 * We cannot hold synchronization semaphores for too long
994 	 * to avoid other entity starvation. However it is more efficient
995 	 * to read in bursts than synchronizing access for each word.
996 	 */
997 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
998 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
999 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1000 
1001 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1002 							   count, &data[i]);
1003 
1004 		if (status)
1005 			return status;
1006 	}
1007 
1008 	return 0;
1009 }
1010 
1011 /**
1012  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1013  *  @hw: pointer to hardware structure
1014  *  @offset: offset within the EEPROM to be read
1015  *  @words: number of word(s)
1016  *  @data: read 16 bit word(s) from EEPROM
1017  *
1018  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1019  **/
1020 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1021 					     u16 words, u16 *data)
1022 {
1023 	s32 status;
1024 	u16 word_in;
1025 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1026 	u16 i;
1027 
1028 	/* Prepare the EEPROM for reading  */
1029 	status = ixgbe_acquire_eeprom(hw);
1030 	if (status)
1031 		return status;
1032 
1033 	if (ixgbe_ready_eeprom(hw) != 0) {
1034 		ixgbe_release_eeprom(hw);
1035 		return IXGBE_ERR_EEPROM;
1036 	}
1037 
1038 	for (i = 0; i < words; i++) {
1039 		ixgbe_standby_eeprom(hw);
1040 		/* Some SPI eeproms use the 8th address bit embedded
1041 		 * in the opcode
1042 		 */
1043 		if ((hw->eeprom.address_bits == 8) &&
1044 		    ((offset + i) >= 128))
1045 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1046 
1047 		/* Send the READ command (opcode + addr) */
1048 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1049 					    IXGBE_EEPROM_OPCODE_BITS);
1050 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1051 					    hw->eeprom.address_bits);
1052 
1053 		/* Read the data. */
1054 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1055 		data[i] = (word_in >> 8) | (word_in << 8);
1056 	}
1057 
1058 	/* End this read operation */
1059 	ixgbe_release_eeprom(hw);
1060 
1061 	return 0;
1062 }
1063 
1064 /**
1065  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1066  *  @hw: pointer to hardware structure
1067  *  @offset: offset within the EEPROM to be read
1068  *  @data: read 16 bit value from EEPROM
1069  *
1070  *  Reads 16 bit value from EEPROM through bit-bang method
1071  **/
1072 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1073 				       u16 *data)
1074 {
1075 	hw->eeprom.ops.init_params(hw);
1076 
1077 	if (offset >= hw->eeprom.word_size)
1078 		return IXGBE_ERR_EEPROM;
1079 
1080 	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1081 }
1082 
1083 /**
1084  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1085  *  @hw: pointer to hardware structure
1086  *  @offset: offset of word in the EEPROM to read
1087  *  @words: number of word(s)
1088  *  @data: 16 bit word(s) from the EEPROM
1089  *
1090  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1091  **/
1092 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1093 				   u16 words, u16 *data)
1094 {
1095 	u32 eerd;
1096 	s32 status;
1097 	u32 i;
1098 
1099 	hw->eeprom.ops.init_params(hw);
1100 
1101 	if (words == 0)
1102 		return IXGBE_ERR_INVALID_ARGUMENT;
1103 
1104 	if (offset >= hw->eeprom.word_size)
1105 		return IXGBE_ERR_EEPROM;
1106 
1107 	for (i = 0; i < words; i++) {
1108 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1109 		       IXGBE_EEPROM_RW_REG_START;
1110 
1111 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1112 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1113 
1114 		if (status == 0) {
1115 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1116 				   IXGBE_EEPROM_RW_REG_DATA);
1117 		} else {
1118 			hw_dbg(hw, "Eeprom read timed out\n");
1119 			return status;
1120 		}
1121 	}
1122 
1123 	return 0;
1124 }
1125 
1126 /**
1127  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1128  *  @hw: pointer to hardware structure
1129  *  @offset: offset within the EEPROM to be used as a scratch pad
1130  *
1131  *  Discover EEPROM page size by writing marching data at given offset.
1132  *  This function is called only when we are writing a new large buffer
1133  *  at given offset so the data would be overwritten anyway.
1134  **/
1135 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1136 						 u16 offset)
1137 {
1138 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1139 	s32 status;
1140 	u16 i;
1141 
1142 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1143 		data[i] = i;
1144 
1145 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1146 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1147 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1148 	hw->eeprom.word_page_size = 0;
1149 	if (status)
1150 		return status;
1151 
1152 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1153 	if (status)
1154 		return status;
1155 
1156 	/*
1157 	 * When writing in burst more than the actual page size
1158 	 * EEPROM address wraps around current page.
1159 	 */
1160 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1161 
1162 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1163 	       hw->eeprom.word_page_size);
1164 	return 0;
1165 }
1166 
1167 /**
1168  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1169  *  @hw: pointer to hardware structure
1170  *  @offset: offset of  word in the EEPROM to read
1171  *  @data: word read from the EEPROM
1172  *
1173  *  Reads a 16 bit word from the EEPROM using the EERD register.
1174  **/
1175 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1176 {
1177 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1178 }
1179 
1180 /**
1181  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1182  *  @hw: pointer to hardware structure
1183  *  @offset: offset of  word in the EEPROM to write
1184  *  @words: number of words
1185  *  @data: word(s) write to the EEPROM
1186  *
1187  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1188  **/
1189 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1190 				    u16 words, u16 *data)
1191 {
1192 	u32 eewr;
1193 	s32 status;
1194 	u16 i;
1195 
1196 	hw->eeprom.ops.init_params(hw);
1197 
1198 	if (words == 0)
1199 		return IXGBE_ERR_INVALID_ARGUMENT;
1200 
1201 	if (offset >= hw->eeprom.word_size)
1202 		return IXGBE_ERR_EEPROM;
1203 
1204 	for (i = 0; i < words; i++) {
1205 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1206 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1207 		       IXGBE_EEPROM_RW_REG_START;
1208 
1209 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1210 		if (status) {
1211 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1212 			return status;
1213 		}
1214 
1215 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1216 
1217 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1218 		if (status) {
1219 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1220 			return status;
1221 		}
1222 	}
1223 
1224 	return 0;
1225 }
1226 
1227 /**
1228  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1229  *  @hw: pointer to hardware structure
1230  *  @offset: offset of  word in the EEPROM to write
1231  *  @data: word write to the EEPROM
1232  *
1233  *  Write a 16 bit word to the EEPROM using the EEWR register.
1234  **/
1235 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1236 {
1237 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1238 }
1239 
1240 /**
1241  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1242  *  @hw: pointer to hardware structure
1243  *  @ee_reg: EEPROM flag for polling
1244  *
1245  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1246  *  read or write is done respectively.
1247  **/
1248 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1249 {
1250 	u32 i;
1251 	u32 reg;
1252 
1253 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1254 		if (ee_reg == IXGBE_NVM_POLL_READ)
1255 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1256 		else
1257 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1258 
1259 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1260 			return 0;
1261 		}
1262 		udelay(5);
1263 	}
1264 	return IXGBE_ERR_EEPROM;
1265 }
1266 
1267 /**
1268  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1269  *  @hw: pointer to hardware structure
1270  *
1271  *  Prepares EEPROM for access using bit-bang method. This function should
1272  *  be called before issuing a command to the EEPROM.
1273  **/
1274 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1275 {
1276 	u32 eec;
1277 	u32 i;
1278 
1279 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1280 		return IXGBE_ERR_SWFW_SYNC;
1281 
1282 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1283 
1284 	/* Request EEPROM Access */
1285 	eec |= IXGBE_EEC_REQ;
1286 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1287 
1288 	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1289 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1290 		if (eec & IXGBE_EEC_GNT)
1291 			break;
1292 		udelay(5);
1293 	}
1294 
1295 	/* Release if grant not acquired */
1296 	if (!(eec & IXGBE_EEC_GNT)) {
1297 		eec &= ~IXGBE_EEC_REQ;
1298 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1299 		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1300 
1301 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1302 		return IXGBE_ERR_EEPROM;
1303 	}
1304 
1305 	/* Setup EEPROM for Read/Write */
1306 	/* Clear CS and SK */
1307 	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1308 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1309 	IXGBE_WRITE_FLUSH(hw);
1310 	udelay(1);
1311 	return 0;
1312 }
1313 
1314 /**
1315  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1316  *  @hw: pointer to hardware structure
1317  *
1318  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1319  **/
1320 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1321 {
1322 	u32 timeout = 2000;
1323 	u32 i;
1324 	u32 swsm;
1325 
1326 	/* Get SMBI software semaphore between device drivers first */
1327 	for (i = 0; i < timeout; i++) {
1328 		/*
1329 		 * If the SMBI bit is 0 when we read it, then the bit will be
1330 		 * set and we have the semaphore
1331 		 */
1332 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1333 		if (!(swsm & IXGBE_SWSM_SMBI))
1334 			break;
1335 		usleep_range(50, 100);
1336 	}
1337 
1338 	if (i == timeout) {
1339 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1340 		/* this release is particularly important because our attempts
1341 		 * above to get the semaphore may have succeeded, and if there
1342 		 * was a timeout, we should unconditionally clear the semaphore
1343 		 * bits to free the driver to make progress
1344 		 */
1345 		ixgbe_release_eeprom_semaphore(hw);
1346 
1347 		usleep_range(50, 100);
1348 		/* one last try
1349 		 * If the SMBI bit is 0 when we read it, then the bit will be
1350 		 * set and we have the semaphore
1351 		 */
1352 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1353 		if (swsm & IXGBE_SWSM_SMBI) {
1354 			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1355 			return IXGBE_ERR_EEPROM;
1356 		}
1357 	}
1358 
1359 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1360 	for (i = 0; i < timeout; i++) {
1361 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1362 
1363 		/* Set the SW EEPROM semaphore bit to request access */
1364 		swsm |= IXGBE_SWSM_SWESMBI;
1365 		IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1366 
1367 		/* If we set the bit successfully then we got the
1368 		 * semaphore.
1369 		 */
1370 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1371 		if (swsm & IXGBE_SWSM_SWESMBI)
1372 			break;
1373 
1374 		usleep_range(50, 100);
1375 	}
1376 
1377 	/* Release semaphores and return error if SW EEPROM semaphore
1378 	 * was not granted because we don't have access to the EEPROM
1379 	 */
1380 	if (i >= timeout) {
1381 		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1382 		ixgbe_release_eeprom_semaphore(hw);
1383 		return IXGBE_ERR_EEPROM;
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 /**
1390  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1391  *  @hw: pointer to hardware structure
1392  *
1393  *  This function clears hardware semaphore bits.
1394  **/
1395 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1396 {
1397 	u32 swsm;
1398 
1399 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1400 
1401 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1402 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1403 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1404 	IXGBE_WRITE_FLUSH(hw);
1405 }
1406 
1407 /**
1408  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1409  *  @hw: pointer to hardware structure
1410  **/
1411 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1412 {
1413 	u16 i;
1414 	u8 spi_stat_reg;
1415 
1416 	/*
1417 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1418 	 * EEPROM will signal that the command has been completed by clearing
1419 	 * bit 0 of the internal status register.  If it's not cleared within
1420 	 * 5 milliseconds, then error out.
1421 	 */
1422 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1423 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1424 					    IXGBE_EEPROM_OPCODE_BITS);
1425 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1426 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1427 			break;
1428 
1429 		udelay(5);
1430 		ixgbe_standby_eeprom(hw);
1431 	}
1432 
1433 	/*
1434 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1435 	 * devices (and only 0-5mSec on 5V devices)
1436 	 */
1437 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1438 		hw_dbg(hw, "SPI EEPROM Status error\n");
1439 		return IXGBE_ERR_EEPROM;
1440 	}
1441 
1442 	return 0;
1443 }
1444 
1445 /**
1446  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1447  *  @hw: pointer to hardware structure
1448  **/
1449 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1450 {
1451 	u32 eec;
1452 
1453 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1454 
1455 	/* Toggle CS to flush commands */
1456 	eec |= IXGBE_EEC_CS;
1457 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1458 	IXGBE_WRITE_FLUSH(hw);
1459 	udelay(1);
1460 	eec &= ~IXGBE_EEC_CS;
1461 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1462 	IXGBE_WRITE_FLUSH(hw);
1463 	udelay(1);
1464 }
1465 
1466 /**
1467  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1468  *  @hw: pointer to hardware structure
1469  *  @data: data to send to the EEPROM
1470  *  @count: number of bits to shift out
1471  **/
1472 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1473 					u16 count)
1474 {
1475 	u32 eec;
1476 	u32 mask;
1477 	u32 i;
1478 
1479 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1480 
1481 	/*
1482 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1483 	 * one bit at a time.  Determine the starting bit based on count
1484 	 */
1485 	mask = 0x01 << (count - 1);
1486 
1487 	for (i = 0; i < count; i++) {
1488 		/*
1489 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1490 		 * "1", and then raising and then lowering the clock (the SK
1491 		 * bit controls the clock input to the EEPROM).  A "0" is
1492 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1493 		 * raising and then lowering the clock.
1494 		 */
1495 		if (data & mask)
1496 			eec |= IXGBE_EEC_DI;
1497 		else
1498 			eec &= ~IXGBE_EEC_DI;
1499 
1500 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1501 		IXGBE_WRITE_FLUSH(hw);
1502 
1503 		udelay(1);
1504 
1505 		ixgbe_raise_eeprom_clk(hw, &eec);
1506 		ixgbe_lower_eeprom_clk(hw, &eec);
1507 
1508 		/*
1509 		 * Shift mask to signify next bit of data to shift in to the
1510 		 * EEPROM
1511 		 */
1512 		mask = mask >> 1;
1513 	}
1514 
1515 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1516 	eec &= ~IXGBE_EEC_DI;
1517 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1518 	IXGBE_WRITE_FLUSH(hw);
1519 }
1520 
1521 /**
1522  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1523  *  @hw: pointer to hardware structure
1524  **/
1525 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1526 {
1527 	u32 eec;
1528 	u32 i;
1529 	u16 data = 0;
1530 
1531 	/*
1532 	 * In order to read a register from the EEPROM, we need to shift
1533 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1534 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1535 	 * the value of the "DO" bit.  During this "shifting in" process the
1536 	 * "DI" bit should always be clear.
1537 	 */
1538 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1539 
1540 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1541 
1542 	for (i = 0; i < count; i++) {
1543 		data = data << 1;
1544 		ixgbe_raise_eeprom_clk(hw, &eec);
1545 
1546 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1547 
1548 		eec &= ~(IXGBE_EEC_DI);
1549 		if (eec & IXGBE_EEC_DO)
1550 			data |= 1;
1551 
1552 		ixgbe_lower_eeprom_clk(hw, &eec);
1553 	}
1554 
1555 	return data;
1556 }
1557 
1558 /**
1559  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1560  *  @hw: pointer to hardware structure
1561  *  @eec: EEC register's current value
1562  **/
1563 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1564 {
1565 	/*
1566 	 * Raise the clock input to the EEPROM
1567 	 * (setting the SK bit), then delay
1568 	 */
1569 	*eec = *eec | IXGBE_EEC_SK;
1570 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1571 	IXGBE_WRITE_FLUSH(hw);
1572 	udelay(1);
1573 }
1574 
1575 /**
1576  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1577  *  @hw: pointer to hardware structure
1578  *  @eecd: EECD's current value
1579  **/
1580 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1581 {
1582 	/*
1583 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1584 	 * delay
1585 	 */
1586 	*eec = *eec & ~IXGBE_EEC_SK;
1587 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1588 	IXGBE_WRITE_FLUSH(hw);
1589 	udelay(1);
1590 }
1591 
1592 /**
1593  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1594  *  @hw: pointer to hardware structure
1595  **/
1596 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1597 {
1598 	u32 eec;
1599 
1600 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1601 
1602 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1603 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1604 
1605 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1606 	IXGBE_WRITE_FLUSH(hw);
1607 
1608 	udelay(1);
1609 
1610 	/* Stop requesting EEPROM access */
1611 	eec &= ~IXGBE_EEC_REQ;
1612 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1613 
1614 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1615 
1616 	/*
1617 	 * Delay before attempt to obtain semaphore again to allow FW
1618 	 * access. semaphore_delay is in ms we need us for usleep_range
1619 	 */
1620 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1621 		     hw->eeprom.semaphore_delay * 2000);
1622 }
1623 
1624 /**
1625  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1626  *  @hw: pointer to hardware structure
1627  **/
1628 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1629 {
1630 	u16 i;
1631 	u16 j;
1632 	u16 checksum = 0;
1633 	u16 length = 0;
1634 	u16 pointer = 0;
1635 	u16 word = 0;
1636 
1637 	/* Include 0x0-0x3F in the checksum */
1638 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1639 		if (hw->eeprom.ops.read(hw, i, &word)) {
1640 			hw_dbg(hw, "EEPROM read failed\n");
1641 			break;
1642 		}
1643 		checksum += word;
1644 	}
1645 
1646 	/* Include all data from pointers except for the fw pointer */
1647 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1648 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1649 			hw_dbg(hw, "EEPROM read failed\n");
1650 			return IXGBE_ERR_EEPROM;
1651 		}
1652 
1653 		/* If the pointer seems invalid */
1654 		if (pointer == 0xFFFF || pointer == 0)
1655 			continue;
1656 
1657 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1658 			hw_dbg(hw, "EEPROM read failed\n");
1659 			return IXGBE_ERR_EEPROM;
1660 		}
1661 
1662 		if (length == 0xFFFF || length == 0)
1663 			continue;
1664 
1665 		for (j = pointer + 1; j <= pointer + length; j++) {
1666 			if (hw->eeprom.ops.read(hw, j, &word)) {
1667 				hw_dbg(hw, "EEPROM read failed\n");
1668 				return IXGBE_ERR_EEPROM;
1669 			}
1670 			checksum += word;
1671 		}
1672 	}
1673 
1674 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1675 
1676 	return (s32)checksum;
1677 }
1678 
1679 /**
1680  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1681  *  @hw: pointer to hardware structure
1682  *  @checksum_val: calculated checksum
1683  *
1684  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1685  *  caller does not need checksum_val, the value can be NULL.
1686  **/
1687 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1688 					   u16 *checksum_val)
1689 {
1690 	s32 status;
1691 	u16 checksum;
1692 	u16 read_checksum = 0;
1693 
1694 	/*
1695 	 * Read the first word from the EEPROM. If this times out or fails, do
1696 	 * not continue or we could be in for a very long wait while every
1697 	 * EEPROM read fails
1698 	 */
1699 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1700 	if (status) {
1701 		hw_dbg(hw, "EEPROM read failed\n");
1702 		return status;
1703 	}
1704 
1705 	status = hw->eeprom.ops.calc_checksum(hw);
1706 	if (status < 0)
1707 		return status;
1708 
1709 	checksum = (u16)(status & 0xffff);
1710 
1711 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1712 	if (status) {
1713 		hw_dbg(hw, "EEPROM read failed\n");
1714 		return status;
1715 	}
1716 
1717 	/* Verify read checksum from EEPROM is the same as
1718 	 * calculated checksum
1719 	 */
1720 	if (read_checksum != checksum)
1721 		status = IXGBE_ERR_EEPROM_CHECKSUM;
1722 
1723 	/* If the user cares, return the calculated checksum */
1724 	if (checksum_val)
1725 		*checksum_val = checksum;
1726 
1727 	return status;
1728 }
1729 
1730 /**
1731  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1732  *  @hw: pointer to hardware structure
1733  **/
1734 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1735 {
1736 	s32 status;
1737 	u16 checksum;
1738 
1739 	/*
1740 	 * Read the first word from the EEPROM. If this times out or fails, do
1741 	 * not continue or we could be in for a very long wait while every
1742 	 * EEPROM read fails
1743 	 */
1744 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1745 	if (status) {
1746 		hw_dbg(hw, "EEPROM read failed\n");
1747 		return status;
1748 	}
1749 
1750 	status = hw->eeprom.ops.calc_checksum(hw);
1751 	if (status < 0)
1752 		return status;
1753 
1754 	checksum = (u16)(status & 0xffff);
1755 
1756 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1757 
1758 	return status;
1759 }
1760 
1761 /**
1762  *  ixgbe_set_rar_generic - Set Rx address register
1763  *  @hw: pointer to hardware structure
1764  *  @index: Receive address register to write
1765  *  @addr: Address to put into receive address register
1766  *  @vmdq: VMDq "set" or "pool" index
1767  *  @enable_addr: set flag that address is active
1768  *
1769  *  Puts an ethernet address into a receive address register.
1770  **/
1771 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1772 			  u32 enable_addr)
1773 {
1774 	u32 rar_low, rar_high;
1775 	u32 rar_entries = hw->mac.num_rar_entries;
1776 
1777 	/* Make sure we are using a valid rar index range */
1778 	if (index >= rar_entries) {
1779 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1780 		return IXGBE_ERR_INVALID_ARGUMENT;
1781 	}
1782 
1783 	/* setup VMDq pool selection before this RAR gets enabled */
1784 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1785 
1786 	/*
1787 	 * HW expects these in little endian so we reverse the byte
1788 	 * order from network order (big endian) to little endian
1789 	 */
1790 	rar_low = ((u32)addr[0] |
1791 		   ((u32)addr[1] << 8) |
1792 		   ((u32)addr[2] << 16) |
1793 		   ((u32)addr[3] << 24));
1794 	/*
1795 	 * Some parts put the VMDq setting in the extra RAH bits,
1796 	 * so save everything except the lower 16 bits that hold part
1797 	 * of the address and the address valid bit.
1798 	 */
1799 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1800 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1801 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1802 
1803 	if (enable_addr != 0)
1804 		rar_high |= IXGBE_RAH_AV;
1805 
1806 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1807 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1808 
1809 	return 0;
1810 }
1811 
1812 /**
1813  *  ixgbe_clear_rar_generic - Remove Rx address register
1814  *  @hw: pointer to hardware structure
1815  *  @index: Receive address register to write
1816  *
1817  *  Clears an ethernet address from a receive address register.
1818  **/
1819 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1820 {
1821 	u32 rar_high;
1822 	u32 rar_entries = hw->mac.num_rar_entries;
1823 
1824 	/* Make sure we are using a valid rar index range */
1825 	if (index >= rar_entries) {
1826 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1827 		return IXGBE_ERR_INVALID_ARGUMENT;
1828 	}
1829 
1830 	/*
1831 	 * Some parts put the VMDq setting in the extra RAH bits,
1832 	 * so save everything except the lower 16 bits that hold part
1833 	 * of the address and the address valid bit.
1834 	 */
1835 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1836 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1837 
1838 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1839 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1840 
1841 	/* clear VMDq pool/queue selection for this RAR */
1842 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1843 
1844 	return 0;
1845 }
1846 
1847 /**
1848  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1849  *  @hw: pointer to hardware structure
1850  *
1851  *  Places the MAC address in receive address register 0 and clears the rest
1852  *  of the receive address registers. Clears the multicast table. Assumes
1853  *  the receiver is in reset when the routine is called.
1854  **/
1855 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1856 {
1857 	u32 i;
1858 	u32 rar_entries = hw->mac.num_rar_entries;
1859 
1860 	/*
1861 	 * If the current mac address is valid, assume it is a software override
1862 	 * to the permanent address.
1863 	 * Otherwise, use the permanent address from the eeprom.
1864 	 */
1865 	if (!is_valid_ether_addr(hw->mac.addr)) {
1866 		/* Get the MAC address from the RAR0 for later reference */
1867 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1868 
1869 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1870 	} else {
1871 		/* Setup the receive address. */
1872 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1873 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1874 
1875 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1876 
1877 		/*  clear VMDq pool/queue selection for RAR 0 */
1878 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1879 	}
1880 	hw->addr_ctrl.overflow_promisc = 0;
1881 
1882 	hw->addr_ctrl.rar_used_count = 1;
1883 
1884 	/* Zero out the other receive addresses. */
1885 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1886 	for (i = 1; i < rar_entries; i++) {
1887 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1888 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1889 	}
1890 
1891 	/* Clear the MTA */
1892 	hw->addr_ctrl.mta_in_use = 0;
1893 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1894 
1895 	hw_dbg(hw, " Clearing MTA\n");
1896 	for (i = 0; i < hw->mac.mcft_size; i++)
1897 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1898 
1899 	if (hw->mac.ops.init_uta_tables)
1900 		hw->mac.ops.init_uta_tables(hw);
1901 
1902 	return 0;
1903 }
1904 
1905 /**
1906  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1907  *  @hw: pointer to hardware structure
1908  *  @mc_addr: the multicast address
1909  *
1910  *  Extracts the 12 bits, from a multicast address, to determine which
1911  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1912  *  incoming rx multicast addresses, to determine the bit-vector to check in
1913  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1914  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1915  *  to mc_filter_type.
1916  **/
1917 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1918 {
1919 	u32 vector = 0;
1920 
1921 	switch (hw->mac.mc_filter_type) {
1922 	case 0:   /* use bits [47:36] of the address */
1923 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1924 		break;
1925 	case 1:   /* use bits [46:35] of the address */
1926 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1927 		break;
1928 	case 2:   /* use bits [45:34] of the address */
1929 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1930 		break;
1931 	case 3:   /* use bits [43:32] of the address */
1932 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1933 		break;
1934 	default:  /* Invalid mc_filter_type */
1935 		hw_dbg(hw, "MC filter type param set incorrectly\n");
1936 		break;
1937 	}
1938 
1939 	/* vector can only be 12-bits or boundary will be exceeded */
1940 	vector &= 0xFFF;
1941 	return vector;
1942 }
1943 
1944 /**
1945  *  ixgbe_set_mta - Set bit-vector in multicast table
1946  *  @hw: pointer to hardware structure
1947  *  @hash_value: Multicast address hash value
1948  *
1949  *  Sets the bit-vector in the multicast table.
1950  **/
1951 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1952 {
1953 	u32 vector;
1954 	u32 vector_bit;
1955 	u32 vector_reg;
1956 
1957 	hw->addr_ctrl.mta_in_use++;
1958 
1959 	vector = ixgbe_mta_vector(hw, mc_addr);
1960 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1961 
1962 	/*
1963 	 * The MTA is a register array of 128 32-bit registers. It is treated
1964 	 * like an array of 4096 bits.  We want to set bit
1965 	 * BitArray[vector_value]. So we figure out what register the bit is
1966 	 * in, read it, OR in the new bit, then write back the new value.  The
1967 	 * register is determined by the upper 7 bits of the vector value and
1968 	 * the bit within that register are determined by the lower 5 bits of
1969 	 * the value.
1970 	 */
1971 	vector_reg = (vector >> 5) & 0x7F;
1972 	vector_bit = vector & 0x1F;
1973 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1974 }
1975 
1976 /**
1977  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1978  *  @hw: pointer to hardware structure
1979  *  @netdev: pointer to net device structure
1980  *
1981  *  The given list replaces any existing list. Clears the MC addrs from receive
1982  *  address registers and the multicast table. Uses unused receive address
1983  *  registers for the first multicast addresses, and hashes the rest into the
1984  *  multicast table.
1985  **/
1986 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1987 				      struct net_device *netdev)
1988 {
1989 	struct netdev_hw_addr *ha;
1990 	u32 i;
1991 
1992 	/*
1993 	 * Set the new number of MC addresses that we are being requested to
1994 	 * use.
1995 	 */
1996 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1997 	hw->addr_ctrl.mta_in_use = 0;
1998 
1999 	/* Clear mta_shadow */
2000 	hw_dbg(hw, " Clearing MTA\n");
2001 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2002 
2003 	/* Update mta shadow */
2004 	netdev_for_each_mc_addr(ha, netdev) {
2005 		hw_dbg(hw, " Adding the multicast addresses:\n");
2006 		ixgbe_set_mta(hw, ha->addr);
2007 	}
2008 
2009 	/* Enable mta */
2010 	for (i = 0; i < hw->mac.mcft_size; i++)
2011 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2012 				      hw->mac.mta_shadow[i]);
2013 
2014 	if (hw->addr_ctrl.mta_in_use > 0)
2015 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2016 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2017 
2018 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2019 	return 0;
2020 }
2021 
2022 /**
2023  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2024  *  @hw: pointer to hardware structure
2025  *
2026  *  Enables multicast address in RAR and the use of the multicast hash table.
2027  **/
2028 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2029 {
2030 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2031 
2032 	if (a->mta_in_use > 0)
2033 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2034 				hw->mac.mc_filter_type);
2035 
2036 	return 0;
2037 }
2038 
2039 /**
2040  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2041  *  @hw: pointer to hardware structure
2042  *
2043  *  Disables multicast address in RAR and the use of the multicast hash table.
2044  **/
2045 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2046 {
2047 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2048 
2049 	if (a->mta_in_use > 0)
2050 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2051 
2052 	return 0;
2053 }
2054 
2055 /**
2056  *  ixgbe_fc_enable_generic - Enable flow control
2057  *  @hw: pointer to hardware structure
2058  *
2059  *  Enable flow control according to the current settings.
2060  **/
2061 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2062 {
2063 	u32 mflcn_reg, fccfg_reg;
2064 	u32 reg;
2065 	u32 fcrtl, fcrth;
2066 	int i;
2067 
2068 	/* Validate the water mark configuration. */
2069 	if (!hw->fc.pause_time)
2070 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2071 
2072 	/* Low water mark of zero causes XOFF floods */
2073 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2074 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2075 		    hw->fc.high_water[i]) {
2076 			if (!hw->fc.low_water[i] ||
2077 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2078 				hw_dbg(hw, "Invalid water mark configuration\n");
2079 				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2080 			}
2081 		}
2082 	}
2083 
2084 	/* Negotiate the fc mode to use */
2085 	ixgbe_fc_autoneg(hw);
2086 
2087 	/* Disable any previous flow control settings */
2088 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2089 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2090 
2091 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2092 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2093 
2094 	/*
2095 	 * The possible values of fc.current_mode are:
2096 	 * 0: Flow control is completely disabled
2097 	 * 1: Rx flow control is enabled (we can receive pause frames,
2098 	 *    but not send pause frames).
2099 	 * 2: Tx flow control is enabled (we can send pause frames but
2100 	 *    we do not support receiving pause frames).
2101 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2102 	 * other: Invalid.
2103 	 */
2104 	switch (hw->fc.current_mode) {
2105 	case ixgbe_fc_none:
2106 		/*
2107 		 * Flow control is disabled by software override or autoneg.
2108 		 * The code below will actually disable it in the HW.
2109 		 */
2110 		break;
2111 	case ixgbe_fc_rx_pause:
2112 		/*
2113 		 * Rx Flow control is enabled and Tx Flow control is
2114 		 * disabled by software override. Since there really
2115 		 * isn't a way to advertise that we are capable of RX
2116 		 * Pause ONLY, we will advertise that we support both
2117 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2118 		 * disable the adapter's ability to send PAUSE frames.
2119 		 */
2120 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2121 		break;
2122 	case ixgbe_fc_tx_pause:
2123 		/*
2124 		 * Tx Flow control is enabled, and Rx Flow control is
2125 		 * disabled by software override.
2126 		 */
2127 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2128 		break;
2129 	case ixgbe_fc_full:
2130 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2131 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2132 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2133 		break;
2134 	default:
2135 		hw_dbg(hw, "Flow control param set incorrectly\n");
2136 		return IXGBE_ERR_CONFIG;
2137 	}
2138 
2139 	/* Set 802.3x based flow control settings. */
2140 	mflcn_reg |= IXGBE_MFLCN_DPF;
2141 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2142 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2143 
2144 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2145 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2146 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2147 		    hw->fc.high_water[i]) {
2148 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2149 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2150 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2151 		} else {
2152 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2153 			/*
2154 			 * In order to prevent Tx hangs when the internal Tx
2155 			 * switch is enabled we must set the high water mark
2156 			 * to the maximum FCRTH value.  This allows the Tx
2157 			 * switch to function even under heavy Rx workloads.
2158 			 */
2159 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2160 		}
2161 
2162 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2163 	}
2164 
2165 	/* Configure pause time (2 TCs per register) */
2166 	reg = hw->fc.pause_time * 0x00010001;
2167 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2168 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2169 
2170 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2171 
2172 	return 0;
2173 }
2174 
2175 /**
2176  *  ixgbe_negotiate_fc - Negotiate flow control
2177  *  @hw: pointer to hardware structure
2178  *  @adv_reg: flow control advertised settings
2179  *  @lp_reg: link partner's flow control settings
2180  *  @adv_sym: symmetric pause bit in advertisement
2181  *  @adv_asm: asymmetric pause bit in advertisement
2182  *  @lp_sym: symmetric pause bit in link partner advertisement
2183  *  @lp_asm: asymmetric pause bit in link partner advertisement
2184  *
2185  *  Find the intersection between advertised settings and link partner's
2186  *  advertised settings
2187  **/
2188 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2189 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2190 {
2191 	if ((!(adv_reg)) ||  (!(lp_reg)))
2192 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2193 
2194 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2195 		/*
2196 		 * Now we need to check if the user selected Rx ONLY
2197 		 * of pause frames.  In this case, we had to advertise
2198 		 * FULL flow control because we could not advertise RX
2199 		 * ONLY. Hence, we must now check to see if we need to
2200 		 * turn OFF the TRANSMISSION of PAUSE frames.
2201 		 */
2202 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2203 			hw->fc.current_mode = ixgbe_fc_full;
2204 			hw_dbg(hw, "Flow Control = FULL.\n");
2205 		} else {
2206 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2207 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2208 		}
2209 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2210 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2211 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2212 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2213 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2214 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2215 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2216 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2217 	} else {
2218 		hw->fc.current_mode = ixgbe_fc_none;
2219 		hw_dbg(hw, "Flow Control = NONE.\n");
2220 	}
2221 	return 0;
2222 }
2223 
2224 /**
2225  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2226  *  @hw: pointer to hardware structure
2227  *
2228  *  Enable flow control according on 1 gig fiber.
2229  **/
2230 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2231 {
2232 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2233 	s32 ret_val;
2234 
2235 	/*
2236 	 * On multispeed fiber at 1g, bail out if
2237 	 * - link is up but AN did not complete, or if
2238 	 * - link is up and AN completed but timed out
2239 	 */
2240 
2241 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2242 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2243 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2244 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2245 
2246 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2247 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2248 
2249 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2250 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2251 			       IXGBE_PCS1GANA_ASM_PAUSE,
2252 			       IXGBE_PCS1GANA_SYM_PAUSE,
2253 			       IXGBE_PCS1GANA_ASM_PAUSE);
2254 
2255 	return ret_val;
2256 }
2257 
2258 /**
2259  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2260  *  @hw: pointer to hardware structure
2261  *
2262  *  Enable flow control according to IEEE clause 37.
2263  **/
2264 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2265 {
2266 	u32 links2, anlp1_reg, autoc_reg, links;
2267 	s32 ret_val;
2268 
2269 	/*
2270 	 * On backplane, bail out if
2271 	 * - backplane autoneg was not completed, or if
2272 	 * - we are 82599 and link partner is not AN enabled
2273 	 */
2274 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2275 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2276 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2277 
2278 	if (hw->mac.type == ixgbe_mac_82599EB) {
2279 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2280 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2281 			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2282 	}
2283 	/*
2284 	 * Read the 10g AN autoc and LP ability registers and resolve
2285 	 * local flow control settings accordingly
2286 	 */
2287 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2288 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2289 
2290 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2291 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2292 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2293 
2294 	return ret_val;
2295 }
2296 
2297 /**
2298  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2299  *  @hw: pointer to hardware structure
2300  *
2301  *  Enable flow control according to IEEE clause 37.
2302  **/
2303 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2304 {
2305 	u16 technology_ability_reg = 0;
2306 	u16 lp_technology_ability_reg = 0;
2307 
2308 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2309 			     MDIO_MMD_AN,
2310 			     &technology_ability_reg);
2311 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2312 			     MDIO_MMD_AN,
2313 			     &lp_technology_ability_reg);
2314 
2315 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2316 				  (u32)lp_technology_ability_reg,
2317 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2318 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2319 }
2320 
2321 /**
2322  *  ixgbe_fc_autoneg - Configure flow control
2323  *  @hw: pointer to hardware structure
2324  *
2325  *  Compares our advertised flow control capabilities to those advertised by
2326  *  our link partner, and determines the proper flow control mode to use.
2327  **/
2328 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2329 {
2330 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2331 	ixgbe_link_speed speed;
2332 	bool link_up;
2333 
2334 	/*
2335 	 * AN should have completed when the cable was plugged in.
2336 	 * Look for reasons to bail out.  Bail out if:
2337 	 * - FC autoneg is disabled, or if
2338 	 * - link is not up.
2339 	 *
2340 	 * Since we're being called from an LSC, link is already known to be up.
2341 	 * So use link_up_wait_to_complete=false.
2342 	 */
2343 	if (hw->fc.disable_fc_autoneg)
2344 		goto out;
2345 
2346 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2347 	if (!link_up)
2348 		goto out;
2349 
2350 	switch (hw->phy.media_type) {
2351 	/* Autoneg flow control on fiber adapters */
2352 	case ixgbe_media_type_fiber:
2353 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2354 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2355 		break;
2356 
2357 	/* Autoneg flow control on backplane adapters */
2358 	case ixgbe_media_type_backplane:
2359 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2360 		break;
2361 
2362 	/* Autoneg flow control on copper adapters */
2363 	case ixgbe_media_type_copper:
2364 		if (ixgbe_device_supports_autoneg_fc(hw))
2365 			ret_val = ixgbe_fc_autoneg_copper(hw);
2366 		break;
2367 
2368 	default:
2369 		break;
2370 	}
2371 
2372 out:
2373 	if (ret_val == 0) {
2374 		hw->fc.fc_was_autonegged = true;
2375 	} else {
2376 		hw->fc.fc_was_autonegged = false;
2377 		hw->fc.current_mode = hw->fc.requested_mode;
2378 	}
2379 }
2380 
2381 /**
2382  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2383  * @hw: pointer to hardware structure
2384  *
2385  * System-wide timeout range is encoded in PCIe Device Control2 register.
2386  *
2387  *  Add 10% to specified maximum and return the number of times to poll for
2388  *  completion timeout, in units of 100 microsec.  Never return less than
2389  *  800 = 80 millisec.
2390  **/
2391 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2392 {
2393 	s16 devctl2;
2394 	u32 pollcnt;
2395 
2396 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2397 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2398 
2399 	switch (devctl2) {
2400 	case IXGBE_PCIDEVCTRL2_65_130ms:
2401 		 pollcnt = 1300;         /* 130 millisec */
2402 		break;
2403 	case IXGBE_PCIDEVCTRL2_260_520ms:
2404 		pollcnt = 5200;         /* 520 millisec */
2405 		break;
2406 	case IXGBE_PCIDEVCTRL2_1_2s:
2407 		pollcnt = 20000;        /* 2 sec */
2408 		break;
2409 	case IXGBE_PCIDEVCTRL2_4_8s:
2410 		pollcnt = 80000;        /* 8 sec */
2411 		break;
2412 	case IXGBE_PCIDEVCTRL2_17_34s:
2413 		pollcnt = 34000;        /* 34 sec */
2414 		break;
2415 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2416 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2417 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2418 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2419 	default:
2420 		pollcnt = 800;          /* 80 millisec minimum */
2421 		break;
2422 	}
2423 
2424 	/* add 10% to spec maximum */
2425 	return (pollcnt * 11) / 10;
2426 }
2427 
2428 /**
2429  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2430  *  @hw: pointer to hardware structure
2431  *
2432  *  Disables PCI-Express master access and verifies there are no pending
2433  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2434  *  bit hasn't caused the master requests to be disabled, else 0
2435  *  is returned signifying master requests disabled.
2436  **/
2437 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2438 {
2439 	u32 i, poll;
2440 	u16 value;
2441 
2442 	/* Always set this bit to ensure any future transactions are blocked */
2443 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2444 
2445 	/* Exit if master requests are blocked */
2446 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2447 	    ixgbe_removed(hw->hw_addr))
2448 		return 0;
2449 
2450 	/* Poll for master request bit to clear */
2451 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2452 		udelay(100);
2453 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2454 			return 0;
2455 	}
2456 
2457 	/*
2458 	 * Two consecutive resets are required via CTRL.RST per datasheet
2459 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2460 	 * of this need.  The first reset prevents new master requests from
2461 	 * being issued by our device.  We then must wait 1usec or more for any
2462 	 * remaining completions from the PCIe bus to trickle in, and then reset
2463 	 * again to clear out any effects they may have had on our device.
2464 	 */
2465 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2466 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2467 
2468 	/*
2469 	 * Before proceeding, make sure that the PCIe block does not have
2470 	 * transactions pending.
2471 	 */
2472 	poll = ixgbe_pcie_timeout_poll(hw);
2473 	for (i = 0; i < poll; i++) {
2474 		udelay(100);
2475 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2476 		if (ixgbe_removed(hw->hw_addr))
2477 			return 0;
2478 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2479 			return 0;
2480 	}
2481 
2482 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2483 	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2484 }
2485 
2486 /**
2487  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2488  *  @hw: pointer to hardware structure
2489  *  @mask: Mask to specify which semaphore to acquire
2490  *
2491  *  Acquires the SWFW semaphore through the GSSR register for the specified
2492  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2493  **/
2494 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2495 {
2496 	u32 gssr = 0;
2497 	u32 swmask = mask;
2498 	u32 fwmask = mask << 5;
2499 	u32 timeout = 200;
2500 	u32 i;
2501 
2502 	for (i = 0; i < timeout; i++) {
2503 		/*
2504 		 * SW NVM semaphore bit is used for access to all
2505 		 * SW_FW_SYNC bits (not just NVM)
2506 		 */
2507 		if (ixgbe_get_eeprom_semaphore(hw))
2508 			return IXGBE_ERR_SWFW_SYNC;
2509 
2510 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2511 		if (!(gssr & (fwmask | swmask))) {
2512 			gssr |= swmask;
2513 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2514 			ixgbe_release_eeprom_semaphore(hw);
2515 			return 0;
2516 		} else {
2517 			/* Resource is currently in use by FW or SW */
2518 			ixgbe_release_eeprom_semaphore(hw);
2519 			usleep_range(5000, 10000);
2520 		}
2521 	}
2522 
2523 	/* If time expired clear the bits holding the lock and retry */
2524 	if (gssr & (fwmask | swmask))
2525 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2526 
2527 	usleep_range(5000, 10000);
2528 	return IXGBE_ERR_SWFW_SYNC;
2529 }
2530 
2531 /**
2532  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2533  *  @hw: pointer to hardware structure
2534  *  @mask: Mask to specify which semaphore to release
2535  *
2536  *  Releases the SWFW semaphore through the GSSR register for the specified
2537  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2538  **/
2539 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2540 {
2541 	u32 gssr;
2542 	u32 swmask = mask;
2543 
2544 	ixgbe_get_eeprom_semaphore(hw);
2545 
2546 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2547 	gssr &= ~swmask;
2548 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2549 
2550 	ixgbe_release_eeprom_semaphore(hw);
2551 }
2552 
2553 /**
2554  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2555  * @hw: pointer to hardware structure
2556  * @reg_val: Value we read from AUTOC
2557  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2558  *	    true in this the generic case.
2559  *
2560  * The default case requires no protection so just to the register read.
2561  **/
2562 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2563 {
2564 	*locked = false;
2565 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2566 	return 0;
2567 }
2568 
2569 /**
2570  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2571  * @hw: pointer to hardware structure
2572  * @reg_val: value to write to AUTOC
2573  * @locked: bool to indicate whether the SW/FW lock was already taken by
2574  *	    previous read.
2575  **/
2576 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2577 {
2578 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2579 	return 0;
2580 }
2581 
2582 /**
2583  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2584  *  @hw: pointer to hardware structure
2585  *
2586  *  Stops the receive data path and waits for the HW to internally
2587  *  empty the Rx security block.
2588  **/
2589 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2590 {
2591 #define IXGBE_MAX_SECRX_POLL 40
2592 	int i;
2593 	int secrxreg;
2594 
2595 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2596 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2597 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2598 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2599 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2600 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2601 			break;
2602 		else
2603 			/* Use interrupt-safe sleep just in case */
2604 			udelay(1000);
2605 	}
2606 
2607 	/* For informational purposes only */
2608 	if (i >= IXGBE_MAX_SECRX_POLL)
2609 		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2610 
2611 	return 0;
2612 
2613 }
2614 
2615 /**
2616  *  ixgbe_enable_rx_buff - Enables the receive data path
2617  *  @hw: pointer to hardware structure
2618  *
2619  *  Enables the receive data path
2620  **/
2621 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2622 {
2623 	int secrxreg;
2624 
2625 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2626 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2627 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2628 	IXGBE_WRITE_FLUSH(hw);
2629 
2630 	return 0;
2631 }
2632 
2633 /**
2634  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2635  *  @hw: pointer to hardware structure
2636  *  @regval: register value to write to RXCTRL
2637  *
2638  *  Enables the Rx DMA unit
2639  **/
2640 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2641 {
2642 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2643 
2644 	return 0;
2645 }
2646 
2647 /**
2648  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2649  *  @hw: pointer to hardware structure
2650  *  @index: led number to blink
2651  **/
2652 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2653 {
2654 	ixgbe_link_speed speed = 0;
2655 	bool link_up = false;
2656 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2657 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2658 	bool locked = false;
2659 	s32 ret_val;
2660 
2661 	/*
2662 	 * Link must be up to auto-blink the LEDs;
2663 	 * Force it if link is down.
2664 	 */
2665 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2666 
2667 	if (!link_up) {
2668 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2669 		if (ret_val)
2670 			return ret_val;
2671 
2672 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2673 		autoc_reg |= IXGBE_AUTOC_FLU;
2674 
2675 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2676 		if (ret_val)
2677 			return ret_val;
2678 
2679 		IXGBE_WRITE_FLUSH(hw);
2680 
2681 		usleep_range(10000, 20000);
2682 	}
2683 
2684 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2685 	led_reg |= IXGBE_LED_BLINK(index);
2686 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2687 	IXGBE_WRITE_FLUSH(hw);
2688 
2689 	return 0;
2690 }
2691 
2692 /**
2693  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2694  *  @hw: pointer to hardware structure
2695  *  @index: led number to stop blinking
2696  **/
2697 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2698 {
2699 	u32 autoc_reg = 0;
2700 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2701 	bool locked = false;
2702 	s32 ret_val;
2703 
2704 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2705 	if (ret_val)
2706 		return ret_val;
2707 
2708 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2709 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2710 
2711 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2712 	if (ret_val)
2713 		return ret_val;
2714 
2715 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2716 	led_reg &= ~IXGBE_LED_BLINK(index);
2717 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2718 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2719 	IXGBE_WRITE_FLUSH(hw);
2720 
2721 	return 0;
2722 }
2723 
2724 /**
2725  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2726  *  @hw: pointer to hardware structure
2727  *  @san_mac_offset: SAN MAC address offset
2728  *
2729  *  This function will read the EEPROM location for the SAN MAC address
2730  *  pointer, and returns the value at that location.  This is used in both
2731  *  get and set mac_addr routines.
2732  **/
2733 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2734 					u16 *san_mac_offset)
2735 {
2736 	s32 ret_val;
2737 
2738 	/*
2739 	 * First read the EEPROM pointer to see if the MAC addresses are
2740 	 * available.
2741 	 */
2742 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2743 				      san_mac_offset);
2744 	if (ret_val)
2745 		hw_err(hw, "eeprom read at offset %d failed\n",
2746 		       IXGBE_SAN_MAC_ADDR_PTR);
2747 
2748 	return ret_val;
2749 }
2750 
2751 /**
2752  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2753  *  @hw: pointer to hardware structure
2754  *  @san_mac_addr: SAN MAC address
2755  *
2756  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2757  *  per-port, so set_lan_id() must be called before reading the addresses.
2758  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2759  *  upon for non-SFP connections, so we must call it here.
2760  **/
2761 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2762 {
2763 	u16 san_mac_data, san_mac_offset;
2764 	u8 i;
2765 	s32 ret_val;
2766 
2767 	/*
2768 	 * First read the EEPROM pointer to see if the MAC addresses are
2769 	 * available.  If they're not, no point in calling set_lan_id() here.
2770 	 */
2771 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2772 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2773 
2774 		goto san_mac_addr_clr;
2775 
2776 	/* make sure we know which port we need to program */
2777 	hw->mac.ops.set_lan_id(hw);
2778 	/* apply the port offset to the address offset */
2779 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2780 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2781 	for (i = 0; i < 3; i++) {
2782 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2783 					      &san_mac_data);
2784 		if (ret_val) {
2785 			hw_err(hw, "eeprom read at offset %d failed\n",
2786 			       san_mac_offset);
2787 			goto san_mac_addr_clr;
2788 		}
2789 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2790 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2791 		san_mac_offset++;
2792 	}
2793 	return 0;
2794 
2795 san_mac_addr_clr:
2796 	/* No addresses available in this EEPROM.  It's not necessarily an
2797 	 * error though, so just wipe the local address and return.
2798 	 */
2799 	for (i = 0; i < 6; i++)
2800 		san_mac_addr[i] = 0xFF;
2801 	return ret_val;
2802 }
2803 
2804 /**
2805  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2806  *  @hw: pointer to hardware structure
2807  *
2808  *  Read PCIe configuration space, and get the MSI-X vector count from
2809  *  the capabilities table.
2810  **/
2811 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2812 {
2813 	u16 msix_count;
2814 	u16 max_msix_count;
2815 	u16 pcie_offset;
2816 
2817 	switch (hw->mac.type) {
2818 	case ixgbe_mac_82598EB:
2819 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2820 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2821 		break;
2822 	case ixgbe_mac_82599EB:
2823 	case ixgbe_mac_X540:
2824 	case ixgbe_mac_X550:
2825 	case ixgbe_mac_X550EM_x:
2826 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2827 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2828 		break;
2829 	default:
2830 		return 1;
2831 	}
2832 
2833 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2834 	if (ixgbe_removed(hw->hw_addr))
2835 		msix_count = 0;
2836 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2837 
2838 	/* MSI-X count is zero-based in HW */
2839 	msix_count++;
2840 
2841 	if (msix_count > max_msix_count)
2842 		msix_count = max_msix_count;
2843 
2844 	return msix_count;
2845 }
2846 
2847 /**
2848  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2849  *  @hw: pointer to hardware struct
2850  *  @rar: receive address register index to disassociate
2851  *  @vmdq: VMDq pool index to remove from the rar
2852  **/
2853 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2854 {
2855 	u32 mpsar_lo, mpsar_hi;
2856 	u32 rar_entries = hw->mac.num_rar_entries;
2857 
2858 	/* Make sure we are using a valid rar index range */
2859 	if (rar >= rar_entries) {
2860 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2861 		return IXGBE_ERR_INVALID_ARGUMENT;
2862 	}
2863 
2864 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2865 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2866 
2867 	if (ixgbe_removed(hw->hw_addr))
2868 		return 0;
2869 
2870 	if (!mpsar_lo && !mpsar_hi)
2871 		return 0;
2872 
2873 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2874 		if (mpsar_lo) {
2875 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2876 			mpsar_lo = 0;
2877 		}
2878 		if (mpsar_hi) {
2879 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2880 			mpsar_hi = 0;
2881 		}
2882 	} else if (vmdq < 32) {
2883 		mpsar_lo &= ~(1 << vmdq);
2884 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2885 	} else {
2886 		mpsar_hi &= ~(1 << (vmdq - 32));
2887 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2888 	}
2889 
2890 	/* was that the last pool using this rar? */
2891 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2892 		hw->mac.ops.clear_rar(hw, rar);
2893 	return 0;
2894 }
2895 
2896 /**
2897  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2898  *  @hw: pointer to hardware struct
2899  *  @rar: receive address register index to associate with a VMDq index
2900  *  @vmdq: VMDq pool index
2901  **/
2902 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2903 {
2904 	u32 mpsar;
2905 	u32 rar_entries = hw->mac.num_rar_entries;
2906 
2907 	/* Make sure we are using a valid rar index range */
2908 	if (rar >= rar_entries) {
2909 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2910 		return IXGBE_ERR_INVALID_ARGUMENT;
2911 	}
2912 
2913 	if (vmdq < 32) {
2914 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2915 		mpsar |= 1 << vmdq;
2916 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2917 	} else {
2918 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2919 		mpsar |= 1 << (vmdq - 32);
2920 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2921 	}
2922 	return 0;
2923 }
2924 
2925 /**
2926  *  This function should only be involved in the IOV mode.
2927  *  In IOV mode, Default pool is next pool after the number of
2928  *  VFs advertized and not 0.
2929  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2930  *
2931  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2932  *  @hw: pointer to hardware struct
2933  *  @vmdq: VMDq pool index
2934  **/
2935 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2936 {
2937 	u32 rar = hw->mac.san_mac_rar_index;
2938 
2939 	if (vmdq < 32) {
2940 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2941 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2942 	} else {
2943 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2944 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2945 	}
2946 
2947 	return 0;
2948 }
2949 
2950 /**
2951  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2952  *  @hw: pointer to hardware structure
2953  **/
2954 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2955 {
2956 	int i;
2957 
2958 	for (i = 0; i < 128; i++)
2959 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2960 
2961 	return 0;
2962 }
2963 
2964 /**
2965  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2966  *  @hw: pointer to hardware structure
2967  *  @vlan: VLAN id to write to VLAN filter
2968  *
2969  *  return the VLVF index where this VLAN id should be placed
2970  *
2971  **/
2972 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2973 {
2974 	u32 bits = 0;
2975 	u32 first_empty_slot = 0;
2976 	s32 regindex;
2977 
2978 	/* short cut the special case */
2979 	if (vlan == 0)
2980 		return 0;
2981 
2982 	/*
2983 	  * Search for the vlan id in the VLVF entries. Save off the first empty
2984 	  * slot found along the way
2985 	  */
2986 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2987 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2988 		if (!bits && !(first_empty_slot))
2989 			first_empty_slot = regindex;
2990 		else if ((bits & 0x0FFF) == vlan)
2991 			break;
2992 	}
2993 
2994 	/*
2995 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2996 	  * in the VLVF. Else use the first empty VLVF register for this
2997 	  * vlan id.
2998 	  */
2999 	if (regindex >= IXGBE_VLVF_ENTRIES) {
3000 		if (first_empty_slot)
3001 			regindex = first_empty_slot;
3002 		else {
3003 			hw_dbg(hw, "No space in VLVF.\n");
3004 			regindex = IXGBE_ERR_NO_SPACE;
3005 		}
3006 	}
3007 
3008 	return regindex;
3009 }
3010 
3011 /**
3012  *  ixgbe_set_vfta_generic - Set VLAN filter table
3013  *  @hw: pointer to hardware structure
3014  *  @vlan: VLAN id to write to VLAN filter
3015  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3016  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3017  *
3018  *  Turn on/off specified VLAN in the VLAN filter table.
3019  **/
3020 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3021 			   bool vlan_on)
3022 {
3023 	s32 regindex;
3024 	u32 bitindex;
3025 	u32 vfta;
3026 	u32 bits;
3027 	u32 vt;
3028 	u32 targetbit;
3029 	bool vfta_changed = false;
3030 
3031 	if (vlan > 4095)
3032 		return IXGBE_ERR_PARAM;
3033 
3034 	/*
3035 	 * this is a 2 part operation - first the VFTA, then the
3036 	 * VLVF and VLVFB if VT Mode is set
3037 	 * We don't write the VFTA until we know the VLVF part succeeded.
3038 	 */
3039 
3040 	/* Part 1
3041 	 * The VFTA is a bitstring made up of 128 32-bit registers
3042 	 * that enable the particular VLAN id, much like the MTA:
3043 	 *    bits[11-5]: which register
3044 	 *    bits[4-0]:  which bit in the register
3045 	 */
3046 	regindex = (vlan >> 5) & 0x7F;
3047 	bitindex = vlan & 0x1F;
3048 	targetbit = (1 << bitindex);
3049 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3050 
3051 	if (vlan_on) {
3052 		if (!(vfta & targetbit)) {
3053 			vfta |= targetbit;
3054 			vfta_changed = true;
3055 		}
3056 	} else {
3057 		if ((vfta & targetbit)) {
3058 			vfta &= ~targetbit;
3059 			vfta_changed = true;
3060 		}
3061 	}
3062 
3063 	/* Part 2
3064 	 * If VT Mode is set
3065 	 *   Either vlan_on
3066 	 *     make sure the vlan is in VLVF
3067 	 *     set the vind bit in the matching VLVFB
3068 	 *   Or !vlan_on
3069 	 *     clear the pool bit and possibly the vind
3070 	 */
3071 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3072 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3073 		s32 vlvf_index;
3074 
3075 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3076 		if (vlvf_index < 0)
3077 			return vlvf_index;
3078 
3079 		if (vlan_on) {
3080 			/* set the pool bit */
3081 			if (vind < 32) {
3082 				bits = IXGBE_READ_REG(hw,
3083 						IXGBE_VLVFB(vlvf_index*2));
3084 				bits |= (1 << vind);
3085 				IXGBE_WRITE_REG(hw,
3086 						IXGBE_VLVFB(vlvf_index*2),
3087 						bits);
3088 			} else {
3089 				bits = IXGBE_READ_REG(hw,
3090 						IXGBE_VLVFB((vlvf_index*2)+1));
3091 				bits |= (1 << (vind-32));
3092 				IXGBE_WRITE_REG(hw,
3093 						IXGBE_VLVFB((vlvf_index*2)+1),
3094 						bits);
3095 			}
3096 		} else {
3097 			/* clear the pool bit */
3098 			if (vind < 32) {
3099 				bits = IXGBE_READ_REG(hw,
3100 						IXGBE_VLVFB(vlvf_index*2));
3101 				bits &= ~(1 << vind);
3102 				IXGBE_WRITE_REG(hw,
3103 						IXGBE_VLVFB(vlvf_index*2),
3104 						bits);
3105 				bits |= IXGBE_READ_REG(hw,
3106 						IXGBE_VLVFB((vlvf_index*2)+1));
3107 			} else {
3108 				bits = IXGBE_READ_REG(hw,
3109 						IXGBE_VLVFB((vlvf_index*2)+1));
3110 				bits &= ~(1 << (vind-32));
3111 				IXGBE_WRITE_REG(hw,
3112 						IXGBE_VLVFB((vlvf_index*2)+1),
3113 						bits);
3114 				bits |= IXGBE_READ_REG(hw,
3115 						IXGBE_VLVFB(vlvf_index*2));
3116 			}
3117 		}
3118 
3119 		/*
3120 		 * If there are still bits set in the VLVFB registers
3121 		 * for the VLAN ID indicated we need to see if the
3122 		 * caller is requesting that we clear the VFTA entry bit.
3123 		 * If the caller has requested that we clear the VFTA
3124 		 * entry bit but there are still pools/VFs using this VLAN
3125 		 * ID entry then ignore the request.  We're not worried
3126 		 * about the case where we're turning the VFTA VLAN ID
3127 		 * entry bit on, only when requested to turn it off as
3128 		 * there may be multiple pools and/or VFs using the
3129 		 * VLAN ID entry.  In that case we cannot clear the
3130 		 * VFTA bit until all pools/VFs using that VLAN ID have also
3131 		 * been cleared.  This will be indicated by "bits" being
3132 		 * zero.
3133 		 */
3134 		if (bits) {
3135 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3136 					(IXGBE_VLVF_VIEN | vlan));
3137 			if (!vlan_on) {
3138 				/* someone wants to clear the vfta entry
3139 				 * but some pools/VFs are still using it.
3140 				 * Ignore it. */
3141 				vfta_changed = false;
3142 			}
3143 		} else {
3144 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3145 		}
3146 	}
3147 
3148 	if (vfta_changed)
3149 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3150 
3151 	return 0;
3152 }
3153 
3154 /**
3155  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3156  *  @hw: pointer to hardware structure
3157  *
3158  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3159  **/
3160 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3161 {
3162 	u32 offset;
3163 
3164 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3165 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3166 
3167 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3168 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3169 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3170 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3171 	}
3172 
3173 	return 0;
3174 }
3175 
3176 /**
3177  *  ixgbe_check_mac_link_generic - Determine link and speed status
3178  *  @hw: pointer to hardware structure
3179  *  @speed: pointer to link speed
3180  *  @link_up: true when link is up
3181  *  @link_up_wait_to_complete: bool used to wait for link up or not
3182  *
3183  *  Reads the links register to determine if link is up and the current speed
3184  **/
3185 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3186 				 bool *link_up, bool link_up_wait_to_complete)
3187 {
3188 	u32 links_reg, links_orig;
3189 	u32 i;
3190 
3191 	/* clear the old state */
3192 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3193 
3194 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3195 
3196 	if (links_orig != links_reg) {
3197 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3198 		       links_orig, links_reg);
3199 	}
3200 
3201 	if (link_up_wait_to_complete) {
3202 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3203 			if (links_reg & IXGBE_LINKS_UP) {
3204 				*link_up = true;
3205 				break;
3206 			} else {
3207 				*link_up = false;
3208 			}
3209 			msleep(100);
3210 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3211 		}
3212 	} else {
3213 		if (links_reg & IXGBE_LINKS_UP)
3214 			*link_up = true;
3215 		else
3216 			*link_up = false;
3217 	}
3218 
3219 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3220 	case IXGBE_LINKS_SPEED_10G_82599:
3221 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3222 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3223 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3224 		else
3225 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3226 		break;
3227 	case IXGBE_LINKS_SPEED_1G_82599:
3228 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3229 		break;
3230 	case IXGBE_LINKS_SPEED_100_82599:
3231 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3232 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3233 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3234 		else
3235 			*speed = IXGBE_LINK_SPEED_100_FULL;
3236 		break;
3237 	default:
3238 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3239 	}
3240 
3241 	return 0;
3242 }
3243 
3244 /**
3245  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3246  *  the EEPROM
3247  *  @hw: pointer to hardware structure
3248  *  @wwnn_prefix: the alternative WWNN prefix
3249  *  @wwpn_prefix: the alternative WWPN prefix
3250  *
3251  *  This function will read the EEPROM from the alternative SAN MAC address
3252  *  block to check the support for the alternative WWNN/WWPN prefix support.
3253  **/
3254 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3255 					u16 *wwpn_prefix)
3256 {
3257 	u16 offset, caps;
3258 	u16 alt_san_mac_blk_offset;
3259 
3260 	/* clear output first */
3261 	*wwnn_prefix = 0xFFFF;
3262 	*wwpn_prefix = 0xFFFF;
3263 
3264 	/* check if alternative SAN MAC is supported */
3265 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3266 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3267 		goto wwn_prefix_err;
3268 
3269 	if ((alt_san_mac_blk_offset == 0) ||
3270 	    (alt_san_mac_blk_offset == 0xFFFF))
3271 		return 0;
3272 
3273 	/* check capability in alternative san mac address block */
3274 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3275 	if (hw->eeprom.ops.read(hw, offset, &caps))
3276 		goto wwn_prefix_err;
3277 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3278 		return 0;
3279 
3280 	/* get the corresponding prefix for WWNN/WWPN */
3281 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3282 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3283 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3284 
3285 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3286 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3287 		goto wwn_prefix_err;
3288 
3289 	return 0;
3290 
3291 wwn_prefix_err:
3292 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3293 	return 0;
3294 }
3295 
3296 /**
3297  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3298  *  @hw: pointer to hardware structure
3299  *  @enable: enable or disable switch for anti-spoofing
3300  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3301  *
3302  **/
3303 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3304 {
3305 	int j;
3306 	int pf_target_reg = pf >> 3;
3307 	int pf_target_shift = pf % 8;
3308 	u32 pfvfspoof = 0;
3309 
3310 	if (hw->mac.type == ixgbe_mac_82598EB)
3311 		return;
3312 
3313 	if (enable)
3314 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3315 
3316 	/*
3317 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3318 	 * MAC anti-spoof enables in each register array element.
3319 	 */
3320 	for (j = 0; j < pf_target_reg; j++)
3321 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3322 
3323 	/*
3324 	 * The PF should be allowed to spoof so that it can support
3325 	 * emulation mode NICs.  Do not set the bits assigned to the PF
3326 	 */
3327 	pfvfspoof &= (1 << pf_target_shift) - 1;
3328 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3329 
3330 	/*
3331 	 * Remaining pools belong to the PF so they do not need to have
3332 	 * anti-spoofing enabled.
3333 	 */
3334 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3335 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3336 }
3337 
3338 /**
3339  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3340  *  @hw: pointer to hardware structure
3341  *  @enable: enable or disable switch for VLAN anti-spoofing
3342  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3343  *
3344  **/
3345 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3346 {
3347 	int vf_target_reg = vf >> 3;
3348 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3349 	u32 pfvfspoof;
3350 
3351 	if (hw->mac.type == ixgbe_mac_82598EB)
3352 		return;
3353 
3354 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3355 	if (enable)
3356 		pfvfspoof |= (1 << vf_target_shift);
3357 	else
3358 		pfvfspoof &= ~(1 << vf_target_shift);
3359 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3360 }
3361 
3362 /**
3363  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3364  *  @hw: pointer to hardware structure
3365  *  @device_caps: the EEPROM word with the extra device capabilities
3366  *
3367  *  This function will read the EEPROM location for the device capabilities,
3368  *  and return the word through device_caps.
3369  **/
3370 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3371 {
3372 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3373 
3374 	return 0;
3375 }
3376 
3377 /**
3378  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3379  * @hw: pointer to hardware structure
3380  * @num_pb: number of packet buffers to allocate
3381  * @headroom: reserve n KB of headroom
3382  * @strategy: packet buffer allocation strategy
3383  **/
3384 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3385 			     int num_pb,
3386 			     u32 headroom,
3387 			     int strategy)
3388 {
3389 	u32 pbsize = hw->mac.rx_pb_size;
3390 	int i = 0;
3391 	u32 rxpktsize, txpktsize, txpbthresh;
3392 
3393 	/* Reserve headroom */
3394 	pbsize -= headroom;
3395 
3396 	if (!num_pb)
3397 		num_pb = 1;
3398 
3399 	/* Divide remaining packet buffer space amongst the number
3400 	 * of packet buffers requested using supplied strategy.
3401 	 */
3402 	switch (strategy) {
3403 	case (PBA_STRATEGY_WEIGHTED):
3404 		/* pba_80_48 strategy weight first half of packet buffer with
3405 		 * 5/8 of the packet buffer space.
3406 		 */
3407 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3408 		pbsize -= rxpktsize * (num_pb / 2);
3409 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3410 		for (; i < (num_pb / 2); i++)
3411 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3412 		/* Fall through to configure remaining packet buffers */
3413 	case (PBA_STRATEGY_EQUAL):
3414 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3415 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3416 		for (; i < num_pb; i++)
3417 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3418 		break;
3419 	default:
3420 		break;
3421 	}
3422 
3423 	/*
3424 	 * Setup Tx packet buffer and threshold equally for all TCs
3425 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3426 	 * 10 since the largest packet we support is just over 9K.
3427 	 */
3428 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3429 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3430 	for (i = 0; i < num_pb; i++) {
3431 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3432 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3433 	}
3434 
3435 	/* Clear unused TCs, if any, to zero buffer size*/
3436 	for (; i < IXGBE_MAX_PB; i++) {
3437 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3438 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3439 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3440 	}
3441 }
3442 
3443 /**
3444  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3445  *  @buffer: pointer to EEPROM
3446  *  @length: size of EEPROM to calculate a checksum for
3447  *
3448  *  Calculates the checksum for some buffer on a specified length.  The
3449  *  checksum calculated is returned.
3450  **/
3451 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3452 {
3453 	u32 i;
3454 	u8 sum = 0;
3455 
3456 	if (!buffer)
3457 		return 0;
3458 
3459 	for (i = 0; i < length; i++)
3460 		sum += buffer[i];
3461 
3462 	return (u8) (0 - sum);
3463 }
3464 
3465 /**
3466  *  ixgbe_host_interface_command - Issue command to manageability block
3467  *  @hw: pointer to the HW structure
3468  *  @buffer: contains the command to write and where the return status will
3469  *           be placed
3470  *  @length: length of buffer, must be multiple of 4 bytes
3471  *  @timeout: time in ms to wait for command completion
3472  *  @return_data: read and return data from the buffer (true) or not (false)
3473  *  Needed because FW structures are big endian and decoding of
3474  *  these fields can be 8 bit or 16 bit based on command. Decoding
3475  *  is not easily understood without making a table of commands.
3476  *  So we will leave this up to the caller to read back the data
3477  *  in these cases.
3478  *
3479  *  Communicates with the manageability block.  On success return 0
3480  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3481  **/
3482 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3483 				 u32 length, u32 timeout,
3484 				 bool return_data)
3485 {
3486 	u32 hicr, i, bi, fwsts;
3487 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3488 	u16 buf_len, dword_len;
3489 
3490 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3491 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3492 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3493 	}
3494 
3495 	/* Set bit 9 of FWSTS clearing FW reset indication */
3496 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3497 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3498 
3499 	/* Check that the host interface is enabled. */
3500 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3501 	if ((hicr & IXGBE_HICR_EN) == 0) {
3502 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3503 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3504 	}
3505 
3506 	/* Calculate length in DWORDs. We must be DWORD aligned */
3507 	if ((length % (sizeof(u32))) != 0) {
3508 		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3509 		return IXGBE_ERR_INVALID_ARGUMENT;
3510 	}
3511 
3512 	dword_len = length >> 2;
3513 
3514 	/*
3515 	 * The device driver writes the relevant command block
3516 	 * into the ram area.
3517 	 */
3518 	for (i = 0; i < dword_len; i++)
3519 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3520 				      i, cpu_to_le32(buffer[i]));
3521 
3522 	/* Setting this bit tells the ARC that a new command is pending. */
3523 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3524 
3525 	for (i = 0; i < timeout; i++) {
3526 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3527 		if (!(hicr & IXGBE_HICR_C))
3528 			break;
3529 		usleep_range(1000, 2000);
3530 	}
3531 
3532 	/* Check command successful completion. */
3533 	if ((timeout != 0 && i == timeout) ||
3534 	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3535 		hw_dbg(hw, "Command has failed with no status valid.\n");
3536 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3537 	}
3538 
3539 	if (!return_data)
3540 		return 0;
3541 
3542 	/* Calculate length in DWORDs */
3543 	dword_len = hdr_size >> 2;
3544 
3545 	/* first pull in the header so we know the buffer length */
3546 	for (bi = 0; bi < dword_len; bi++) {
3547 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3548 		le32_to_cpus(&buffer[bi]);
3549 	}
3550 
3551 	/* If there is any thing in data position pull it in */
3552 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3553 	if (buf_len == 0)
3554 		return 0;
3555 
3556 	if (length < (buf_len + hdr_size)) {
3557 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3558 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3559 	}
3560 
3561 	/* Calculate length in DWORDs, add 3 for odd lengths */
3562 	dword_len = (buf_len + 3) >> 2;
3563 
3564 	/* Pull in the rest of the buffer (bi is where we left off)*/
3565 	for (; bi <= dword_len; bi++) {
3566 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3567 		le32_to_cpus(&buffer[bi]);
3568 	}
3569 
3570 	return 0;
3571 }
3572 
3573 /**
3574  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3575  *  @hw: pointer to the HW structure
3576  *  @maj: driver version major number
3577  *  @min: driver version minor number
3578  *  @build: driver version build number
3579  *  @sub: driver version sub build number
3580  *
3581  *  Sends driver version number to firmware through the manageability
3582  *  block.  On success return 0
3583  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3584  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3585  **/
3586 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3587 				 u8 build, u8 sub)
3588 {
3589 	struct ixgbe_hic_drv_info fw_cmd;
3590 	int i;
3591 	s32 ret_val;
3592 
3593 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM))
3594 		return IXGBE_ERR_SWFW_SYNC;
3595 
3596 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3597 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3598 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3599 	fw_cmd.port_num = (u8)hw->bus.func;
3600 	fw_cmd.ver_maj = maj;
3601 	fw_cmd.ver_min = min;
3602 	fw_cmd.ver_build = build;
3603 	fw_cmd.ver_sub = sub;
3604 	fw_cmd.hdr.checksum = 0;
3605 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3606 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3607 	fw_cmd.pad = 0;
3608 	fw_cmd.pad2 = 0;
3609 
3610 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3611 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3612 						       sizeof(fw_cmd),
3613 						       IXGBE_HI_COMMAND_TIMEOUT,
3614 						       true);
3615 		if (ret_val != 0)
3616 			continue;
3617 
3618 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3619 		    FW_CEM_RESP_STATUS_SUCCESS)
3620 			ret_val = 0;
3621 		else
3622 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3623 
3624 		break;
3625 	}
3626 
3627 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3628 	return ret_val;
3629 }
3630 
3631 /**
3632  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3633  * @hw: pointer to the hardware structure
3634  *
3635  * The 82599 and x540 MACs can experience issues if TX work is still pending
3636  * when a reset occurs.  This function prevents this by flushing the PCIe
3637  * buffers on the system.
3638  **/
3639 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3640 {
3641 	u32 gcr_ext, hlreg0, i, poll;
3642 	u16 value;
3643 
3644 	/*
3645 	 * If double reset is not requested then all transactions should
3646 	 * already be clear and as such there is no work to do
3647 	 */
3648 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3649 		return;
3650 
3651 	/*
3652 	 * Set loopback enable to prevent any transmits from being sent
3653 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3654 	 * has already been cleared.
3655 	 */
3656 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3657 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3658 
3659 	/* wait for a last completion before clearing buffers */
3660 	IXGBE_WRITE_FLUSH(hw);
3661 	usleep_range(3000, 6000);
3662 
3663 	/* Before proceeding, make sure that the PCIe block does not have
3664 	 * transactions pending.
3665 	 */
3666 	poll = ixgbe_pcie_timeout_poll(hw);
3667 	for (i = 0; i < poll; i++) {
3668 		usleep_range(100, 200);
3669 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3670 		if (ixgbe_removed(hw->hw_addr))
3671 			break;
3672 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3673 			break;
3674 	}
3675 
3676 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3677 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3678 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3679 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3680 
3681 	/* Flush all writes and allow 20usec for all transactions to clear */
3682 	IXGBE_WRITE_FLUSH(hw);
3683 	udelay(20);
3684 
3685 	/* restore previous register values */
3686 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3687 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3688 }
3689 
3690 static const u8 ixgbe_emc_temp_data[4] = {
3691 	IXGBE_EMC_INTERNAL_DATA,
3692 	IXGBE_EMC_DIODE1_DATA,
3693 	IXGBE_EMC_DIODE2_DATA,
3694 	IXGBE_EMC_DIODE3_DATA
3695 };
3696 static const u8 ixgbe_emc_therm_limit[4] = {
3697 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3698 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3699 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3700 	IXGBE_EMC_DIODE3_THERM_LIMIT
3701 };
3702 
3703 /**
3704  *  ixgbe_get_ets_data - Extracts the ETS bit data
3705  *  @hw: pointer to hardware structure
3706  *  @ets_cfg: extected ETS data
3707  *  @ets_offset: offset of ETS data
3708  *
3709  *  Returns error code.
3710  **/
3711 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3712 			      u16 *ets_offset)
3713 {
3714 	s32 status;
3715 
3716 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3717 	if (status)
3718 		return status;
3719 
3720 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3721 		return IXGBE_NOT_IMPLEMENTED;
3722 
3723 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3724 	if (status)
3725 		return status;
3726 
3727 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3728 		return IXGBE_NOT_IMPLEMENTED;
3729 
3730 	return 0;
3731 }
3732 
3733 /**
3734  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3735  *  @hw: pointer to hardware structure
3736  *
3737  *  Returns the thermal sensor data structure
3738  **/
3739 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3740 {
3741 	s32 status;
3742 	u16 ets_offset;
3743 	u16 ets_cfg;
3744 	u16 ets_sensor;
3745 	u8  num_sensors;
3746 	u8  i;
3747 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3748 
3749 	/* Only support thermal sensors attached to physical port 0 */
3750 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3751 		return IXGBE_NOT_IMPLEMENTED;
3752 
3753 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3754 	if (status)
3755 		return status;
3756 
3757 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3758 	if (num_sensors > IXGBE_MAX_SENSORS)
3759 		num_sensors = IXGBE_MAX_SENSORS;
3760 
3761 	for (i = 0; i < num_sensors; i++) {
3762 		u8  sensor_index;
3763 		u8  sensor_location;
3764 
3765 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3766 					     &ets_sensor);
3767 		if (status)
3768 			return status;
3769 
3770 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3771 				IXGBE_ETS_DATA_INDEX_SHIFT);
3772 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3773 				   IXGBE_ETS_DATA_LOC_SHIFT);
3774 
3775 		if (sensor_location != 0) {
3776 			status = hw->phy.ops.read_i2c_byte(hw,
3777 					ixgbe_emc_temp_data[sensor_index],
3778 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3779 					&data->sensor[i].temp);
3780 			if (status)
3781 				return status;
3782 		}
3783 	}
3784 
3785 	return 0;
3786 }
3787 
3788 /**
3789  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3790  * @hw: pointer to hardware structure
3791  *
3792  * Inits the thermal sensor thresholds according to the NVM map
3793  * and save off the threshold and location values into mac.thermal_sensor_data
3794  **/
3795 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3796 {
3797 	s32 status;
3798 	u16 ets_offset;
3799 	u16 ets_cfg;
3800 	u16 ets_sensor;
3801 	u8  low_thresh_delta;
3802 	u8  num_sensors;
3803 	u8  therm_limit;
3804 	u8  i;
3805 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3806 
3807 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3808 
3809 	/* Only support thermal sensors attached to physical port 0 */
3810 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3811 		return IXGBE_NOT_IMPLEMENTED;
3812 
3813 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3814 	if (status)
3815 		return status;
3816 
3817 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3818 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3819 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3820 	if (num_sensors > IXGBE_MAX_SENSORS)
3821 		num_sensors = IXGBE_MAX_SENSORS;
3822 
3823 	for (i = 0; i < num_sensors; i++) {
3824 		u8  sensor_index;
3825 		u8  sensor_location;
3826 
3827 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3828 			hw_err(hw, "eeprom read at offset %d failed\n",
3829 			       ets_offset + 1 + i);
3830 			continue;
3831 		}
3832 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3833 				IXGBE_ETS_DATA_INDEX_SHIFT);
3834 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3835 				   IXGBE_ETS_DATA_LOC_SHIFT);
3836 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3837 
3838 		hw->phy.ops.write_i2c_byte(hw,
3839 			ixgbe_emc_therm_limit[sensor_index],
3840 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3841 
3842 		if (sensor_location == 0)
3843 			continue;
3844 
3845 		data->sensor[i].location = sensor_location;
3846 		data->sensor[i].caution_thresh = therm_limit;
3847 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3848 	}
3849 
3850 	return 0;
3851 }
3852 
3853