xref: /linux/drivers/net/ethernet/intel/ixgbe/ixgbe_common.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2014 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
33 
34 #include "ixgbe.h"
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 					u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 					     u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 					     u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 						 u16 offset);
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59 
60 /**
61  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
62  *  control
63  *  @hw: pointer to hardware structure
64  *
65  *  There are several phys that do not support autoneg flow control. This
66  *  function check the device id to see if the associated phy supports
67  *  autoneg flow control.
68  **/
69 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
70 {
71 	bool supported = false;
72 	ixgbe_link_speed speed;
73 	bool link_up;
74 
75 	switch (hw->phy.media_type) {
76 	case ixgbe_media_type_fiber:
77 		hw->mac.ops.check_link(hw, &speed, &link_up, false);
78 		/* if link is down, assume supported */
79 		if (link_up)
80 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
81 				true : false;
82 		else
83 			supported = true;
84 		break;
85 	case ixgbe_media_type_backplane:
86 		supported = true;
87 		break;
88 	case ixgbe_media_type_copper:
89 		/* only some copper devices support flow control autoneg */
90 		switch (hw->device_id) {
91 		case IXGBE_DEV_ID_82599_T3_LOM:
92 		case IXGBE_DEV_ID_X540T:
93 		case IXGBE_DEV_ID_X540T1:
94 			supported = true;
95 			break;
96 		default:
97 			break;
98 		}
99 	default:
100 		break;
101 	}
102 
103 	return supported;
104 }
105 
106 /**
107  *  ixgbe_setup_fc - Set up flow control
108  *  @hw: pointer to hardware structure
109  *
110  *  Called at init time to set up flow control.
111  **/
112 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
113 {
114 	s32 ret_val = 0;
115 	u32 reg = 0, reg_bp = 0;
116 	u16 reg_cu = 0;
117 	bool locked = false;
118 
119 	/*
120 	 * Validate the requested mode.  Strict IEEE mode does not allow
121 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
122 	 */
123 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
124 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
125 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
126 	}
127 
128 	/*
129 	 * 10gig parts do not have a word in the EEPROM to determine the
130 	 * default flow control setting, so we explicitly set it to full.
131 	 */
132 	if (hw->fc.requested_mode == ixgbe_fc_default)
133 		hw->fc.requested_mode = ixgbe_fc_full;
134 
135 	/*
136 	 * Set up the 1G and 10G flow control advertisement registers so the
137 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
138 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
139 	 */
140 	switch (hw->phy.media_type) {
141 	case ixgbe_media_type_backplane:
142 		/* some MAC's need RMW protection on AUTOC */
143 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
144 		if (ret_val)
145 			return ret_val;
146 
147 		/* only backplane uses autoc so fall though */
148 	case ixgbe_media_type_fiber:
149 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
150 
151 		break;
152 	case ixgbe_media_type_copper:
153 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
154 					MDIO_MMD_AN, &reg_cu);
155 		break;
156 	default:
157 		break;
158 	}
159 
160 	/*
161 	 * The possible values of fc.requested_mode are:
162 	 * 0: Flow control is completely disabled
163 	 * 1: Rx flow control is enabled (we can receive pause frames,
164 	 *    but not send pause frames).
165 	 * 2: Tx flow control is enabled (we can send pause frames but
166 	 *    we do not support receiving pause frames).
167 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
168 	 * other: Invalid.
169 	 */
170 	switch (hw->fc.requested_mode) {
171 	case ixgbe_fc_none:
172 		/* Flow control completely disabled by software override. */
173 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
174 		if (hw->phy.media_type == ixgbe_media_type_backplane)
175 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
176 				    IXGBE_AUTOC_ASM_PAUSE);
177 		else if (hw->phy.media_type == ixgbe_media_type_copper)
178 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
179 		break;
180 	case ixgbe_fc_tx_pause:
181 		/*
182 		 * Tx Flow control is enabled, and Rx Flow control is
183 		 * disabled by software override.
184 		 */
185 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
186 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
187 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
188 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
189 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
190 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
191 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
192 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
193 		}
194 		break;
195 	case ixgbe_fc_rx_pause:
196 		/*
197 		 * Rx Flow control is enabled and Tx Flow control is
198 		 * disabled by software override. Since there really
199 		 * isn't a way to advertise that we are capable of RX
200 		 * Pause ONLY, we will advertise that we support both
201 		 * symmetric and asymmetric Rx PAUSE, as such we fall
202 		 * through to the fc_full statement.  Later, we will
203 		 * disable the adapter's ability to send PAUSE frames.
204 		 */
205 	case ixgbe_fc_full:
206 		/* Flow control (both Rx and Tx) is enabled by SW override. */
207 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
208 		if (hw->phy.media_type == ixgbe_media_type_backplane)
209 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
210 				  IXGBE_AUTOC_ASM_PAUSE;
211 		else if (hw->phy.media_type == ixgbe_media_type_copper)
212 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
213 		break;
214 	default:
215 		hw_dbg(hw, "Flow control param set incorrectly\n");
216 		return IXGBE_ERR_CONFIG;
217 	}
218 
219 	if (hw->mac.type != ixgbe_mac_X540) {
220 		/*
221 		 * Enable auto-negotiation between the MAC & PHY;
222 		 * the MAC will advertise clause 37 flow control.
223 		 */
224 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
225 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
226 
227 		/* Disable AN timeout */
228 		if (hw->fc.strict_ieee)
229 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
230 
231 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
232 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
233 	}
234 
235 	/*
236 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
237 	 * and copper. There is no need to set the PCS1GCTL register.
238 	 *
239 	 */
240 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
241 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
242 		 * LESM is on, likewise reset_pipeline requries the lock as
243 		 * it also writes AUTOC.
244 		 */
245 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
246 		if (ret_val)
247 			return ret_val;
248 
249 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
250 		   ixgbe_device_supports_autoneg_fc(hw)) {
251 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
252 				      MDIO_MMD_AN, reg_cu);
253 	}
254 
255 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
256 	return ret_val;
257 }
258 
259 /**
260  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
261  *  @hw: pointer to hardware structure
262  *
263  *  Starts the hardware by filling the bus info structure and media type, clears
264  *  all on chip counters, initializes receive address registers, multicast
265  *  table, VLAN filter table, calls routine to set up link and flow control
266  *  settings, and leaves transmit and receive units disabled and uninitialized
267  **/
268 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
269 {
270 	s32 ret_val;
271 	u32 ctrl_ext;
272 
273 	/* Set the media type */
274 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
275 
276 	/* Identify the PHY */
277 	hw->phy.ops.identify(hw);
278 
279 	/* Clear the VLAN filter table */
280 	hw->mac.ops.clear_vfta(hw);
281 
282 	/* Clear statistics registers */
283 	hw->mac.ops.clear_hw_cntrs(hw);
284 
285 	/* Set No Snoop Disable */
286 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
287 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
288 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
289 	IXGBE_WRITE_FLUSH(hw);
290 
291 	/* Setup flow control */
292 	ret_val = ixgbe_setup_fc(hw);
293 	if (!ret_val)
294 		return 0;
295 
296 	/* Clear adapter stopped flag */
297 	hw->adapter_stopped = false;
298 
299 	return ret_val;
300 }
301 
302 /**
303  *  ixgbe_start_hw_gen2 - Init sequence for common device family
304  *  @hw: pointer to hw structure
305  *
306  * Performs the init sequence common to the second generation
307  * of 10 GbE devices.
308  * Devices in the second generation:
309  *     82599
310  *     X540
311  **/
312 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
313 {
314 	u32 i;
315 	u32 regval;
316 
317 	/* Clear the rate limiters */
318 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
319 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
320 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
321 	}
322 	IXGBE_WRITE_FLUSH(hw);
323 
324 	/* Disable relaxed ordering */
325 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
326 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
327 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
328 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
329 	}
330 
331 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
332 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
333 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
334 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
335 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
336 	}
337 
338 	return 0;
339 }
340 
341 /**
342  *  ixgbe_init_hw_generic - Generic hardware initialization
343  *  @hw: pointer to hardware structure
344  *
345  *  Initialize the hardware by resetting the hardware, filling the bus info
346  *  structure and media type, clears all on chip counters, initializes receive
347  *  address registers, multicast table, VLAN filter table, calls routine to set
348  *  up link and flow control settings, and leaves transmit and receive units
349  *  disabled and uninitialized
350  **/
351 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
352 {
353 	s32 status;
354 
355 	/* Reset the hardware */
356 	status = hw->mac.ops.reset_hw(hw);
357 
358 	if (status == 0) {
359 		/* Start the HW */
360 		status = hw->mac.ops.start_hw(hw);
361 	}
362 
363 	return status;
364 }
365 
366 /**
367  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
368  *  @hw: pointer to hardware structure
369  *
370  *  Clears all hardware statistics counters by reading them from the hardware
371  *  Statistics counters are clear on read.
372  **/
373 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
374 {
375 	u16 i = 0;
376 
377 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
378 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
379 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
380 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
381 	for (i = 0; i < 8; i++)
382 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
383 
384 	IXGBE_READ_REG(hw, IXGBE_MLFC);
385 	IXGBE_READ_REG(hw, IXGBE_MRFC);
386 	IXGBE_READ_REG(hw, IXGBE_RLEC);
387 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
388 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
389 	if (hw->mac.type >= ixgbe_mac_82599EB) {
390 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
391 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
392 	} else {
393 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
394 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
395 	}
396 
397 	for (i = 0; i < 8; i++) {
398 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
399 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
400 		if (hw->mac.type >= ixgbe_mac_82599EB) {
401 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
402 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
403 		} else {
404 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
405 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
406 		}
407 	}
408 	if (hw->mac.type >= ixgbe_mac_82599EB)
409 		for (i = 0; i < 8; i++)
410 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
411 	IXGBE_READ_REG(hw, IXGBE_PRC64);
412 	IXGBE_READ_REG(hw, IXGBE_PRC127);
413 	IXGBE_READ_REG(hw, IXGBE_PRC255);
414 	IXGBE_READ_REG(hw, IXGBE_PRC511);
415 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
416 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
417 	IXGBE_READ_REG(hw, IXGBE_GPRC);
418 	IXGBE_READ_REG(hw, IXGBE_BPRC);
419 	IXGBE_READ_REG(hw, IXGBE_MPRC);
420 	IXGBE_READ_REG(hw, IXGBE_GPTC);
421 	IXGBE_READ_REG(hw, IXGBE_GORCL);
422 	IXGBE_READ_REG(hw, IXGBE_GORCH);
423 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
424 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
425 	if (hw->mac.type == ixgbe_mac_82598EB)
426 		for (i = 0; i < 8; i++)
427 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
428 	IXGBE_READ_REG(hw, IXGBE_RUC);
429 	IXGBE_READ_REG(hw, IXGBE_RFC);
430 	IXGBE_READ_REG(hw, IXGBE_ROC);
431 	IXGBE_READ_REG(hw, IXGBE_RJC);
432 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
433 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
434 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
435 	IXGBE_READ_REG(hw, IXGBE_TORL);
436 	IXGBE_READ_REG(hw, IXGBE_TORH);
437 	IXGBE_READ_REG(hw, IXGBE_TPR);
438 	IXGBE_READ_REG(hw, IXGBE_TPT);
439 	IXGBE_READ_REG(hw, IXGBE_PTC64);
440 	IXGBE_READ_REG(hw, IXGBE_PTC127);
441 	IXGBE_READ_REG(hw, IXGBE_PTC255);
442 	IXGBE_READ_REG(hw, IXGBE_PTC511);
443 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
444 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
445 	IXGBE_READ_REG(hw, IXGBE_MPTC);
446 	IXGBE_READ_REG(hw, IXGBE_BPTC);
447 	for (i = 0; i < 16; i++) {
448 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
449 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
450 		if (hw->mac.type >= ixgbe_mac_82599EB) {
451 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
452 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
453 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
454 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
455 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
456 		} else {
457 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
458 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
459 		}
460 	}
461 
462 	if (hw->mac.type == ixgbe_mac_X540) {
463 		if (hw->phy.id == 0)
464 			hw->phy.ops.identify(hw);
465 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
466 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
467 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
468 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
469 	}
470 
471 	return 0;
472 }
473 
474 /**
475  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
476  *  @hw: pointer to hardware structure
477  *  @pba_num: stores the part number string from the EEPROM
478  *  @pba_num_size: part number string buffer length
479  *
480  *  Reads the part number string from the EEPROM.
481  **/
482 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
483 				  u32 pba_num_size)
484 {
485 	s32 ret_val;
486 	u16 data;
487 	u16 pba_ptr;
488 	u16 offset;
489 	u16 length;
490 
491 	if (pba_num == NULL) {
492 		hw_dbg(hw, "PBA string buffer was null\n");
493 		return IXGBE_ERR_INVALID_ARGUMENT;
494 	}
495 
496 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
497 	if (ret_val) {
498 		hw_dbg(hw, "NVM Read Error\n");
499 		return ret_val;
500 	}
501 
502 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
503 	if (ret_val) {
504 		hw_dbg(hw, "NVM Read Error\n");
505 		return ret_val;
506 	}
507 
508 	/*
509 	 * if data is not ptr guard the PBA must be in legacy format which
510 	 * means pba_ptr is actually our second data word for the PBA number
511 	 * and we can decode it into an ascii string
512 	 */
513 	if (data != IXGBE_PBANUM_PTR_GUARD) {
514 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
515 
516 		/* we will need 11 characters to store the PBA */
517 		if (pba_num_size < 11) {
518 			hw_dbg(hw, "PBA string buffer too small\n");
519 			return IXGBE_ERR_NO_SPACE;
520 		}
521 
522 		/* extract hex string from data and pba_ptr */
523 		pba_num[0] = (data >> 12) & 0xF;
524 		pba_num[1] = (data >> 8) & 0xF;
525 		pba_num[2] = (data >> 4) & 0xF;
526 		pba_num[3] = data & 0xF;
527 		pba_num[4] = (pba_ptr >> 12) & 0xF;
528 		pba_num[5] = (pba_ptr >> 8) & 0xF;
529 		pba_num[6] = '-';
530 		pba_num[7] = 0;
531 		pba_num[8] = (pba_ptr >> 4) & 0xF;
532 		pba_num[9] = pba_ptr & 0xF;
533 
534 		/* put a null character on the end of our string */
535 		pba_num[10] = '\0';
536 
537 		/* switch all the data but the '-' to hex char */
538 		for (offset = 0; offset < 10; offset++) {
539 			if (pba_num[offset] < 0xA)
540 				pba_num[offset] += '0';
541 			else if (pba_num[offset] < 0x10)
542 				pba_num[offset] += 'A' - 0xA;
543 		}
544 
545 		return 0;
546 	}
547 
548 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
549 	if (ret_val) {
550 		hw_dbg(hw, "NVM Read Error\n");
551 		return ret_val;
552 	}
553 
554 	if (length == 0xFFFF || length == 0) {
555 		hw_dbg(hw, "NVM PBA number section invalid length\n");
556 		return IXGBE_ERR_PBA_SECTION;
557 	}
558 
559 	/* check if pba_num buffer is big enough */
560 	if (pba_num_size  < (((u32)length * 2) - 1)) {
561 		hw_dbg(hw, "PBA string buffer too small\n");
562 		return IXGBE_ERR_NO_SPACE;
563 	}
564 
565 	/* trim pba length from start of string */
566 	pba_ptr++;
567 	length--;
568 
569 	for (offset = 0; offset < length; offset++) {
570 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
571 		if (ret_val) {
572 			hw_dbg(hw, "NVM Read Error\n");
573 			return ret_val;
574 		}
575 		pba_num[offset * 2] = (u8)(data >> 8);
576 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
577 	}
578 	pba_num[offset * 2] = '\0';
579 
580 	return 0;
581 }
582 
583 /**
584  *  ixgbe_get_mac_addr_generic - Generic get MAC address
585  *  @hw: pointer to hardware structure
586  *  @mac_addr: Adapter MAC address
587  *
588  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
589  *  A reset of the adapter must be performed prior to calling this function
590  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
591  **/
592 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
593 {
594 	u32 rar_high;
595 	u32 rar_low;
596 	u16 i;
597 
598 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
599 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
600 
601 	for (i = 0; i < 4; i++)
602 		mac_addr[i] = (u8)(rar_low >> (i*8));
603 
604 	for (i = 0; i < 2; i++)
605 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
606 
607 	return 0;
608 }
609 
610 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
611 {
612 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
613 	case IXGBE_PCI_LINK_WIDTH_1:
614 		return ixgbe_bus_width_pcie_x1;
615 	case IXGBE_PCI_LINK_WIDTH_2:
616 		return ixgbe_bus_width_pcie_x2;
617 	case IXGBE_PCI_LINK_WIDTH_4:
618 		return ixgbe_bus_width_pcie_x4;
619 	case IXGBE_PCI_LINK_WIDTH_8:
620 		return ixgbe_bus_width_pcie_x8;
621 	default:
622 		return ixgbe_bus_width_unknown;
623 	}
624 }
625 
626 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
627 {
628 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
629 	case IXGBE_PCI_LINK_SPEED_2500:
630 		return ixgbe_bus_speed_2500;
631 	case IXGBE_PCI_LINK_SPEED_5000:
632 		return ixgbe_bus_speed_5000;
633 	case IXGBE_PCI_LINK_SPEED_8000:
634 		return ixgbe_bus_speed_8000;
635 	default:
636 		return ixgbe_bus_speed_unknown;
637 	}
638 }
639 
640 /**
641  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
642  *  @hw: pointer to hardware structure
643  *
644  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
645  **/
646 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
647 {
648 	u16 link_status;
649 
650 	hw->bus.type = ixgbe_bus_type_pci_express;
651 
652 	/* Get the negotiated link width and speed from PCI config space */
653 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
654 
655 	hw->bus.width = ixgbe_convert_bus_width(link_status);
656 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
657 
658 	hw->mac.ops.set_lan_id(hw);
659 
660 	return 0;
661 }
662 
663 /**
664  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
665  *  @hw: pointer to the HW structure
666  *
667  *  Determines the LAN function id by reading memory-mapped registers
668  *  and swaps the port value if requested.
669  **/
670 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
671 {
672 	struct ixgbe_bus_info *bus = &hw->bus;
673 	u32 reg;
674 
675 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
676 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
677 	bus->lan_id = bus->func;
678 
679 	/* check for a port swap */
680 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
681 	if (reg & IXGBE_FACTPS_LFS)
682 		bus->func ^= 0x1;
683 }
684 
685 /**
686  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
687  *  @hw: pointer to hardware structure
688  *
689  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
690  *  disables transmit and receive units. The adapter_stopped flag is used by
691  *  the shared code and drivers to determine if the adapter is in a stopped
692  *  state and should not touch the hardware.
693  **/
694 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
695 {
696 	u32 reg_val;
697 	u16 i;
698 
699 	/*
700 	 * Set the adapter_stopped flag so other driver functions stop touching
701 	 * the hardware
702 	 */
703 	hw->adapter_stopped = true;
704 
705 	/* Disable the receive unit */
706 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
707 
708 	/* Clear interrupt mask to stop interrupts from being generated */
709 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
710 
711 	/* Clear any pending interrupts, flush previous writes */
712 	IXGBE_READ_REG(hw, IXGBE_EICR);
713 
714 	/* Disable the transmit unit.  Each queue must be disabled. */
715 	for (i = 0; i < hw->mac.max_tx_queues; i++)
716 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
717 
718 	/* Disable the receive unit by stopping each queue */
719 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
720 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
721 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
722 		reg_val |= IXGBE_RXDCTL_SWFLSH;
723 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
724 	}
725 
726 	/* flush all queues disables */
727 	IXGBE_WRITE_FLUSH(hw);
728 	usleep_range(1000, 2000);
729 
730 	/*
731 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
732 	 * access and verify no pending requests
733 	 */
734 	return ixgbe_disable_pcie_master(hw);
735 }
736 
737 /**
738  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
739  *  @hw: pointer to hardware structure
740  *  @index: led number to turn on
741  **/
742 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
743 {
744 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
745 
746 	/* To turn on the LED, set mode to ON. */
747 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
748 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
749 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
750 	IXGBE_WRITE_FLUSH(hw);
751 
752 	return 0;
753 }
754 
755 /**
756  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
757  *  @hw: pointer to hardware structure
758  *  @index: led number to turn off
759  **/
760 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
761 {
762 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
763 
764 	/* To turn off the LED, set mode to OFF. */
765 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
766 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
767 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
768 	IXGBE_WRITE_FLUSH(hw);
769 
770 	return 0;
771 }
772 
773 /**
774  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
775  *  @hw: pointer to hardware structure
776  *
777  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
778  *  ixgbe_hw struct in order to set up EEPROM access.
779  **/
780 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
781 {
782 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
783 	u32 eec;
784 	u16 eeprom_size;
785 
786 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
787 		eeprom->type = ixgbe_eeprom_none;
788 		/* Set default semaphore delay to 10ms which is a well
789 		 * tested value */
790 		eeprom->semaphore_delay = 10;
791 		/* Clear EEPROM page size, it will be initialized as needed */
792 		eeprom->word_page_size = 0;
793 
794 		/*
795 		 * Check for EEPROM present first.
796 		 * If not present leave as none
797 		 */
798 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
799 		if (eec & IXGBE_EEC_PRES) {
800 			eeprom->type = ixgbe_eeprom_spi;
801 
802 			/*
803 			 * SPI EEPROM is assumed here.  This code would need to
804 			 * change if a future EEPROM is not SPI.
805 			 */
806 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
807 					    IXGBE_EEC_SIZE_SHIFT);
808 			eeprom->word_size = 1 << (eeprom_size +
809 						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
810 		}
811 
812 		if (eec & IXGBE_EEC_ADDR_SIZE)
813 			eeprom->address_bits = 16;
814 		else
815 			eeprom->address_bits = 8;
816 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
817 		       eeprom->type, eeprom->word_size, eeprom->address_bits);
818 	}
819 
820 	return 0;
821 }
822 
823 /**
824  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
825  *  @hw: pointer to hardware structure
826  *  @offset: offset within the EEPROM to write
827  *  @words: number of words
828  *  @data: 16 bit word(s) to write to EEPROM
829  *
830  *  Reads 16 bit word(s) from EEPROM through bit-bang method
831  **/
832 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
833 					       u16 words, u16 *data)
834 {
835 	s32 status;
836 	u16 i, count;
837 
838 	hw->eeprom.ops.init_params(hw);
839 
840 	if (words == 0)
841 		return IXGBE_ERR_INVALID_ARGUMENT;
842 
843 	if (offset + words > hw->eeprom.word_size)
844 		return IXGBE_ERR_EEPROM;
845 
846 	/*
847 	 * The EEPROM page size cannot be queried from the chip. We do lazy
848 	 * initialization. It is worth to do that when we write large buffer.
849 	 */
850 	if ((hw->eeprom.word_page_size == 0) &&
851 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
852 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
853 
854 	/*
855 	 * We cannot hold synchronization semaphores for too long
856 	 * to avoid other entity starvation. However it is more efficient
857 	 * to read in bursts than synchronizing access for each word.
858 	 */
859 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
860 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
861 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
862 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
863 							    count, &data[i]);
864 
865 		if (status != 0)
866 			break;
867 	}
868 
869 	return status;
870 }
871 
872 /**
873  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
874  *  @hw: pointer to hardware structure
875  *  @offset: offset within the EEPROM to be written to
876  *  @words: number of word(s)
877  *  @data: 16 bit word(s) to be written to the EEPROM
878  *
879  *  If ixgbe_eeprom_update_checksum is not called after this function, the
880  *  EEPROM will most likely contain an invalid checksum.
881  **/
882 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
883 					      u16 words, u16 *data)
884 {
885 	s32 status;
886 	u16 word;
887 	u16 page_size;
888 	u16 i;
889 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
890 
891 	/* Prepare the EEPROM for writing  */
892 	status = ixgbe_acquire_eeprom(hw);
893 	if (status)
894 		return status;
895 
896 	if (ixgbe_ready_eeprom(hw) != 0) {
897 		ixgbe_release_eeprom(hw);
898 		return IXGBE_ERR_EEPROM;
899 	}
900 
901 	for (i = 0; i < words; i++) {
902 		ixgbe_standby_eeprom(hw);
903 
904 		/* Send the WRITE ENABLE command (8 bit opcode) */
905 		ixgbe_shift_out_eeprom_bits(hw,
906 					    IXGBE_EEPROM_WREN_OPCODE_SPI,
907 					    IXGBE_EEPROM_OPCODE_BITS);
908 
909 		ixgbe_standby_eeprom(hw);
910 
911 		/* Some SPI eeproms use the 8th address bit embedded
912 		 * in the opcode
913 		 */
914 		if ((hw->eeprom.address_bits == 8) &&
915 		    ((offset + i) >= 128))
916 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
917 
918 		/* Send the Write command (8-bit opcode + addr) */
919 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
920 					    IXGBE_EEPROM_OPCODE_BITS);
921 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
922 					    hw->eeprom.address_bits);
923 
924 		page_size = hw->eeprom.word_page_size;
925 
926 		/* Send the data in burst via SPI */
927 		do {
928 			word = data[i];
929 			word = (word >> 8) | (word << 8);
930 			ixgbe_shift_out_eeprom_bits(hw, word, 16);
931 
932 			if (page_size == 0)
933 				break;
934 
935 			/* do not wrap around page */
936 			if (((offset + i) & (page_size - 1)) ==
937 			    (page_size - 1))
938 				break;
939 		} while (++i < words);
940 
941 		ixgbe_standby_eeprom(hw);
942 		usleep_range(10000, 20000);
943 	}
944 	/* Done with writing - release the EEPROM */
945 	ixgbe_release_eeprom(hw);
946 
947 	return 0;
948 }
949 
950 /**
951  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
952  *  @hw: pointer to hardware structure
953  *  @offset: offset within the EEPROM to be written to
954  *  @data: 16 bit word to be written to the EEPROM
955  *
956  *  If ixgbe_eeprom_update_checksum is not called after this function, the
957  *  EEPROM will most likely contain an invalid checksum.
958  **/
959 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
960 {
961 	hw->eeprom.ops.init_params(hw);
962 
963 	if (offset >= hw->eeprom.word_size)
964 		return IXGBE_ERR_EEPROM;
965 
966 	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
967 }
968 
969 /**
970  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
971  *  @hw: pointer to hardware structure
972  *  @offset: offset within the EEPROM to be read
973  *  @words: number of word(s)
974  *  @data: read 16 bit words(s) from EEPROM
975  *
976  *  Reads 16 bit word(s) from EEPROM through bit-bang method
977  **/
978 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
979 					      u16 words, u16 *data)
980 {
981 	s32 status;
982 	u16 i, count;
983 
984 	hw->eeprom.ops.init_params(hw);
985 
986 	if (words == 0)
987 		return IXGBE_ERR_INVALID_ARGUMENT;
988 
989 	if (offset + words > hw->eeprom.word_size)
990 		return IXGBE_ERR_EEPROM;
991 
992 	/*
993 	 * We cannot hold synchronization semaphores for too long
994 	 * to avoid other entity starvation. However it is more efficient
995 	 * to read in bursts than synchronizing access for each word.
996 	 */
997 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
998 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
999 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1000 
1001 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1002 							   count, &data[i]);
1003 
1004 		if (status)
1005 			return status;
1006 	}
1007 
1008 	return 0;
1009 }
1010 
1011 /**
1012  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1013  *  @hw: pointer to hardware structure
1014  *  @offset: offset within the EEPROM to be read
1015  *  @words: number of word(s)
1016  *  @data: read 16 bit word(s) from EEPROM
1017  *
1018  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1019  **/
1020 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1021 					     u16 words, u16 *data)
1022 {
1023 	s32 status;
1024 	u16 word_in;
1025 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1026 	u16 i;
1027 
1028 	/* Prepare the EEPROM for reading  */
1029 	status = ixgbe_acquire_eeprom(hw);
1030 	if (status)
1031 		return status;
1032 
1033 	if (ixgbe_ready_eeprom(hw) != 0) {
1034 		ixgbe_release_eeprom(hw);
1035 		return IXGBE_ERR_EEPROM;
1036 	}
1037 
1038 	for (i = 0; i < words; i++) {
1039 		ixgbe_standby_eeprom(hw);
1040 		/* Some SPI eeproms use the 8th address bit embedded
1041 		 * in the opcode
1042 		 */
1043 		if ((hw->eeprom.address_bits == 8) &&
1044 		    ((offset + i) >= 128))
1045 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1046 
1047 		/* Send the READ command (opcode + addr) */
1048 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1049 					    IXGBE_EEPROM_OPCODE_BITS);
1050 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1051 					    hw->eeprom.address_bits);
1052 
1053 		/* Read the data. */
1054 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1055 		data[i] = (word_in >> 8) | (word_in << 8);
1056 	}
1057 
1058 	/* End this read operation */
1059 	ixgbe_release_eeprom(hw);
1060 
1061 	return 0;
1062 }
1063 
1064 /**
1065  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1066  *  @hw: pointer to hardware structure
1067  *  @offset: offset within the EEPROM to be read
1068  *  @data: read 16 bit value from EEPROM
1069  *
1070  *  Reads 16 bit value from EEPROM through bit-bang method
1071  **/
1072 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1073 				       u16 *data)
1074 {
1075 	hw->eeprom.ops.init_params(hw);
1076 
1077 	if (offset >= hw->eeprom.word_size)
1078 		return IXGBE_ERR_EEPROM;
1079 
1080 	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1081 }
1082 
1083 /**
1084  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1085  *  @hw: pointer to hardware structure
1086  *  @offset: offset of word in the EEPROM to read
1087  *  @words: number of word(s)
1088  *  @data: 16 bit word(s) from the EEPROM
1089  *
1090  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1091  **/
1092 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1093 				   u16 words, u16 *data)
1094 {
1095 	u32 eerd;
1096 	s32 status;
1097 	u32 i;
1098 
1099 	hw->eeprom.ops.init_params(hw);
1100 
1101 	if (words == 0)
1102 		return IXGBE_ERR_INVALID_ARGUMENT;
1103 
1104 	if (offset >= hw->eeprom.word_size)
1105 		return IXGBE_ERR_EEPROM;
1106 
1107 	for (i = 0; i < words; i++) {
1108 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1109 		       IXGBE_EEPROM_RW_REG_START;
1110 
1111 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1112 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1113 
1114 		if (status == 0) {
1115 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1116 				   IXGBE_EEPROM_RW_REG_DATA);
1117 		} else {
1118 			hw_dbg(hw, "Eeprom read timed out\n");
1119 			return status;
1120 		}
1121 	}
1122 
1123 	return 0;
1124 }
1125 
1126 /**
1127  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1128  *  @hw: pointer to hardware structure
1129  *  @offset: offset within the EEPROM to be used as a scratch pad
1130  *
1131  *  Discover EEPROM page size by writing marching data at given offset.
1132  *  This function is called only when we are writing a new large buffer
1133  *  at given offset so the data would be overwritten anyway.
1134  **/
1135 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1136 						 u16 offset)
1137 {
1138 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1139 	s32 status;
1140 	u16 i;
1141 
1142 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1143 		data[i] = i;
1144 
1145 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1146 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1147 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1148 	hw->eeprom.word_page_size = 0;
1149 	if (status)
1150 		return status;
1151 
1152 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1153 	if (status)
1154 		return status;
1155 
1156 	/*
1157 	 * When writing in burst more than the actual page size
1158 	 * EEPROM address wraps around current page.
1159 	 */
1160 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1161 
1162 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1163 	       hw->eeprom.word_page_size);
1164 	return 0;
1165 }
1166 
1167 /**
1168  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1169  *  @hw: pointer to hardware structure
1170  *  @offset: offset of  word in the EEPROM to read
1171  *  @data: word read from the EEPROM
1172  *
1173  *  Reads a 16 bit word from the EEPROM using the EERD register.
1174  **/
1175 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1176 {
1177 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1178 }
1179 
1180 /**
1181  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1182  *  @hw: pointer to hardware structure
1183  *  @offset: offset of  word in the EEPROM to write
1184  *  @words: number of words
1185  *  @data: word(s) write to the EEPROM
1186  *
1187  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1188  **/
1189 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1190 				    u16 words, u16 *data)
1191 {
1192 	u32 eewr;
1193 	s32 status;
1194 	u16 i;
1195 
1196 	hw->eeprom.ops.init_params(hw);
1197 
1198 	if (words == 0)
1199 		return IXGBE_ERR_INVALID_ARGUMENT;
1200 
1201 	if (offset >= hw->eeprom.word_size)
1202 		return IXGBE_ERR_EEPROM;
1203 
1204 	for (i = 0; i < words; i++) {
1205 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1206 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1207 		       IXGBE_EEPROM_RW_REG_START;
1208 
1209 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1210 		if (status) {
1211 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1212 			return status;
1213 		}
1214 
1215 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1216 
1217 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1218 		if (status) {
1219 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1220 			return status;
1221 		}
1222 	}
1223 
1224 	return 0;
1225 }
1226 
1227 /**
1228  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1229  *  @hw: pointer to hardware structure
1230  *  @offset: offset of  word in the EEPROM to write
1231  *  @data: word write to the EEPROM
1232  *
1233  *  Write a 16 bit word to the EEPROM using the EEWR register.
1234  **/
1235 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1236 {
1237 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1238 }
1239 
1240 /**
1241  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1242  *  @hw: pointer to hardware structure
1243  *  @ee_reg: EEPROM flag for polling
1244  *
1245  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1246  *  read or write is done respectively.
1247  **/
1248 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1249 {
1250 	u32 i;
1251 	u32 reg;
1252 
1253 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1254 		if (ee_reg == IXGBE_NVM_POLL_READ)
1255 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1256 		else
1257 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1258 
1259 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1260 			return 0;
1261 		}
1262 		udelay(5);
1263 	}
1264 	return IXGBE_ERR_EEPROM;
1265 }
1266 
1267 /**
1268  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1269  *  @hw: pointer to hardware structure
1270  *
1271  *  Prepares EEPROM for access using bit-bang method. This function should
1272  *  be called before issuing a command to the EEPROM.
1273  **/
1274 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1275 {
1276 	u32 eec;
1277 	u32 i;
1278 
1279 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1280 		return IXGBE_ERR_SWFW_SYNC;
1281 
1282 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1283 
1284 	/* Request EEPROM Access */
1285 	eec |= IXGBE_EEC_REQ;
1286 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1287 
1288 	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1289 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1290 		if (eec & IXGBE_EEC_GNT)
1291 			break;
1292 		udelay(5);
1293 	}
1294 
1295 	/* Release if grant not acquired */
1296 	if (!(eec & IXGBE_EEC_GNT)) {
1297 		eec &= ~IXGBE_EEC_REQ;
1298 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1299 		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1300 
1301 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1302 		return IXGBE_ERR_EEPROM;
1303 	}
1304 
1305 	/* Setup EEPROM for Read/Write */
1306 	/* Clear CS and SK */
1307 	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1308 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1309 	IXGBE_WRITE_FLUSH(hw);
1310 	udelay(1);
1311 	return 0;
1312 }
1313 
1314 /**
1315  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1316  *  @hw: pointer to hardware structure
1317  *
1318  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1319  **/
1320 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1321 {
1322 	u32 timeout = 2000;
1323 	u32 i;
1324 	u32 swsm;
1325 
1326 	/* Get SMBI software semaphore between device drivers first */
1327 	for (i = 0; i < timeout; i++) {
1328 		/*
1329 		 * If the SMBI bit is 0 when we read it, then the bit will be
1330 		 * set and we have the semaphore
1331 		 */
1332 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1333 		if (!(swsm & IXGBE_SWSM_SMBI))
1334 			break;
1335 		usleep_range(50, 100);
1336 	}
1337 
1338 	if (i == timeout) {
1339 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1340 		/* this release is particularly important because our attempts
1341 		 * above to get the semaphore may have succeeded, and if there
1342 		 * was a timeout, we should unconditionally clear the semaphore
1343 		 * bits to free the driver to make progress
1344 		 */
1345 		ixgbe_release_eeprom_semaphore(hw);
1346 
1347 		usleep_range(50, 100);
1348 		/* one last try
1349 		 * If the SMBI bit is 0 when we read it, then the bit will be
1350 		 * set and we have the semaphore
1351 		 */
1352 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1353 		if (swsm & IXGBE_SWSM_SMBI) {
1354 			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1355 			return IXGBE_ERR_EEPROM;
1356 		}
1357 	}
1358 
1359 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1360 	for (i = 0; i < timeout; i++) {
1361 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1362 
1363 		/* Set the SW EEPROM semaphore bit to request access */
1364 		swsm |= IXGBE_SWSM_SWESMBI;
1365 		IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1366 
1367 		/* If we set the bit successfully then we got the
1368 		 * semaphore.
1369 		 */
1370 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1371 		if (swsm & IXGBE_SWSM_SWESMBI)
1372 			break;
1373 
1374 		usleep_range(50, 100);
1375 	}
1376 
1377 	/* Release semaphores and return error if SW EEPROM semaphore
1378 	 * was not granted because we don't have access to the EEPROM
1379 	 */
1380 	if (i >= timeout) {
1381 		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1382 		ixgbe_release_eeprom_semaphore(hw);
1383 		return IXGBE_ERR_EEPROM;
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 /**
1390  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1391  *  @hw: pointer to hardware structure
1392  *
1393  *  This function clears hardware semaphore bits.
1394  **/
1395 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1396 {
1397 	u32 swsm;
1398 
1399 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1400 
1401 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1402 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1403 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1404 	IXGBE_WRITE_FLUSH(hw);
1405 }
1406 
1407 /**
1408  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1409  *  @hw: pointer to hardware structure
1410  **/
1411 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1412 {
1413 	u16 i;
1414 	u8 spi_stat_reg;
1415 
1416 	/*
1417 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1418 	 * EEPROM will signal that the command has been completed by clearing
1419 	 * bit 0 of the internal status register.  If it's not cleared within
1420 	 * 5 milliseconds, then error out.
1421 	 */
1422 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1423 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1424 					    IXGBE_EEPROM_OPCODE_BITS);
1425 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1426 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1427 			break;
1428 
1429 		udelay(5);
1430 		ixgbe_standby_eeprom(hw);
1431 	}
1432 
1433 	/*
1434 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1435 	 * devices (and only 0-5mSec on 5V devices)
1436 	 */
1437 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1438 		hw_dbg(hw, "SPI EEPROM Status error\n");
1439 		return IXGBE_ERR_EEPROM;
1440 	}
1441 
1442 	return 0;
1443 }
1444 
1445 /**
1446  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1447  *  @hw: pointer to hardware structure
1448  **/
1449 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1450 {
1451 	u32 eec;
1452 
1453 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1454 
1455 	/* Toggle CS to flush commands */
1456 	eec |= IXGBE_EEC_CS;
1457 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1458 	IXGBE_WRITE_FLUSH(hw);
1459 	udelay(1);
1460 	eec &= ~IXGBE_EEC_CS;
1461 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1462 	IXGBE_WRITE_FLUSH(hw);
1463 	udelay(1);
1464 }
1465 
1466 /**
1467  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1468  *  @hw: pointer to hardware structure
1469  *  @data: data to send to the EEPROM
1470  *  @count: number of bits to shift out
1471  **/
1472 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1473 					u16 count)
1474 {
1475 	u32 eec;
1476 	u32 mask;
1477 	u32 i;
1478 
1479 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1480 
1481 	/*
1482 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1483 	 * one bit at a time.  Determine the starting bit based on count
1484 	 */
1485 	mask = 0x01 << (count - 1);
1486 
1487 	for (i = 0; i < count; i++) {
1488 		/*
1489 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1490 		 * "1", and then raising and then lowering the clock (the SK
1491 		 * bit controls the clock input to the EEPROM).  A "0" is
1492 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1493 		 * raising and then lowering the clock.
1494 		 */
1495 		if (data & mask)
1496 			eec |= IXGBE_EEC_DI;
1497 		else
1498 			eec &= ~IXGBE_EEC_DI;
1499 
1500 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1501 		IXGBE_WRITE_FLUSH(hw);
1502 
1503 		udelay(1);
1504 
1505 		ixgbe_raise_eeprom_clk(hw, &eec);
1506 		ixgbe_lower_eeprom_clk(hw, &eec);
1507 
1508 		/*
1509 		 * Shift mask to signify next bit of data to shift in to the
1510 		 * EEPROM
1511 		 */
1512 		mask = mask >> 1;
1513 	}
1514 
1515 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1516 	eec &= ~IXGBE_EEC_DI;
1517 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1518 	IXGBE_WRITE_FLUSH(hw);
1519 }
1520 
1521 /**
1522  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1523  *  @hw: pointer to hardware structure
1524  **/
1525 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1526 {
1527 	u32 eec;
1528 	u32 i;
1529 	u16 data = 0;
1530 
1531 	/*
1532 	 * In order to read a register from the EEPROM, we need to shift
1533 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1534 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1535 	 * the value of the "DO" bit.  During this "shifting in" process the
1536 	 * "DI" bit should always be clear.
1537 	 */
1538 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1539 
1540 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1541 
1542 	for (i = 0; i < count; i++) {
1543 		data = data << 1;
1544 		ixgbe_raise_eeprom_clk(hw, &eec);
1545 
1546 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1547 
1548 		eec &= ~(IXGBE_EEC_DI);
1549 		if (eec & IXGBE_EEC_DO)
1550 			data |= 1;
1551 
1552 		ixgbe_lower_eeprom_clk(hw, &eec);
1553 	}
1554 
1555 	return data;
1556 }
1557 
1558 /**
1559  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1560  *  @hw: pointer to hardware structure
1561  *  @eec: EEC register's current value
1562  **/
1563 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1564 {
1565 	/*
1566 	 * Raise the clock input to the EEPROM
1567 	 * (setting the SK bit), then delay
1568 	 */
1569 	*eec = *eec | IXGBE_EEC_SK;
1570 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1571 	IXGBE_WRITE_FLUSH(hw);
1572 	udelay(1);
1573 }
1574 
1575 /**
1576  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1577  *  @hw: pointer to hardware structure
1578  *  @eecd: EECD's current value
1579  **/
1580 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1581 {
1582 	/*
1583 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1584 	 * delay
1585 	 */
1586 	*eec = *eec & ~IXGBE_EEC_SK;
1587 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1588 	IXGBE_WRITE_FLUSH(hw);
1589 	udelay(1);
1590 }
1591 
1592 /**
1593  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1594  *  @hw: pointer to hardware structure
1595  **/
1596 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1597 {
1598 	u32 eec;
1599 
1600 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1601 
1602 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1603 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1604 
1605 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1606 	IXGBE_WRITE_FLUSH(hw);
1607 
1608 	udelay(1);
1609 
1610 	/* Stop requesting EEPROM access */
1611 	eec &= ~IXGBE_EEC_REQ;
1612 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1613 
1614 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1615 
1616 	/*
1617 	 * Delay before attempt to obtain semaphore again to allow FW
1618 	 * access. semaphore_delay is in ms we need us for usleep_range
1619 	 */
1620 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1621 		     hw->eeprom.semaphore_delay * 2000);
1622 }
1623 
1624 /**
1625  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1626  *  @hw: pointer to hardware structure
1627  **/
1628 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1629 {
1630 	u16 i;
1631 	u16 j;
1632 	u16 checksum = 0;
1633 	u16 length = 0;
1634 	u16 pointer = 0;
1635 	u16 word = 0;
1636 
1637 	/* Include 0x0-0x3F in the checksum */
1638 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1639 		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1640 			hw_dbg(hw, "EEPROM read failed\n");
1641 			break;
1642 		}
1643 		checksum += word;
1644 	}
1645 
1646 	/* Include all data from pointers except for the fw pointer */
1647 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1648 		hw->eeprom.ops.read(hw, i, &pointer);
1649 
1650 		/* Make sure the pointer seems valid */
1651 		if (pointer != 0xFFFF && pointer != 0) {
1652 			hw->eeprom.ops.read(hw, pointer, &length);
1653 
1654 			if (length != 0xFFFF && length != 0) {
1655 				for (j = pointer+1; j <= pointer+length; j++) {
1656 					hw->eeprom.ops.read(hw, j, &word);
1657 					checksum += word;
1658 				}
1659 			}
1660 		}
1661 	}
1662 
1663 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1664 
1665 	return checksum;
1666 }
1667 
1668 /**
1669  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1670  *  @hw: pointer to hardware structure
1671  *  @checksum_val: calculated checksum
1672  *
1673  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1674  *  caller does not need checksum_val, the value can be NULL.
1675  **/
1676 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1677 					   u16 *checksum_val)
1678 {
1679 	s32 status;
1680 	u16 checksum;
1681 	u16 read_checksum = 0;
1682 
1683 	/*
1684 	 * Read the first word from the EEPROM. If this times out or fails, do
1685 	 * not continue or we could be in for a very long wait while every
1686 	 * EEPROM read fails
1687 	 */
1688 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1689 
1690 	if (status == 0) {
1691 		checksum = hw->eeprom.ops.calc_checksum(hw);
1692 
1693 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1694 
1695 		/*
1696 		 * Verify read checksum from EEPROM is the same as
1697 		 * calculated checksum
1698 		 */
1699 		if (read_checksum != checksum)
1700 			status = IXGBE_ERR_EEPROM_CHECKSUM;
1701 
1702 		/* If the user cares, return the calculated checksum */
1703 		if (checksum_val)
1704 			*checksum_val = checksum;
1705 	} else {
1706 		hw_dbg(hw, "EEPROM read failed\n");
1707 	}
1708 
1709 	return status;
1710 }
1711 
1712 /**
1713  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1714  *  @hw: pointer to hardware structure
1715  **/
1716 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1717 {
1718 	s32 status;
1719 	u16 checksum;
1720 
1721 	/*
1722 	 * Read the first word from the EEPROM. If this times out or fails, do
1723 	 * not continue or we could be in for a very long wait while every
1724 	 * EEPROM read fails
1725 	 */
1726 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1727 
1728 	if (status == 0) {
1729 		checksum = hw->eeprom.ops.calc_checksum(hw);
1730 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1731 					      checksum);
1732 	} else {
1733 		hw_dbg(hw, "EEPROM read failed\n");
1734 	}
1735 
1736 	return status;
1737 }
1738 
1739 /**
1740  *  ixgbe_set_rar_generic - Set Rx address register
1741  *  @hw: pointer to hardware structure
1742  *  @index: Receive address register to write
1743  *  @addr: Address to put into receive address register
1744  *  @vmdq: VMDq "set" or "pool" index
1745  *  @enable_addr: set flag that address is active
1746  *
1747  *  Puts an ethernet address into a receive address register.
1748  **/
1749 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1750 			  u32 enable_addr)
1751 {
1752 	u32 rar_low, rar_high;
1753 	u32 rar_entries = hw->mac.num_rar_entries;
1754 
1755 	/* Make sure we are using a valid rar index range */
1756 	if (index >= rar_entries) {
1757 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1758 		return IXGBE_ERR_INVALID_ARGUMENT;
1759 	}
1760 
1761 	/* setup VMDq pool selection before this RAR gets enabled */
1762 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1763 
1764 	/*
1765 	 * HW expects these in little endian so we reverse the byte
1766 	 * order from network order (big endian) to little endian
1767 	 */
1768 	rar_low = ((u32)addr[0] |
1769 		   ((u32)addr[1] << 8) |
1770 		   ((u32)addr[2] << 16) |
1771 		   ((u32)addr[3] << 24));
1772 	/*
1773 	 * Some parts put the VMDq setting in the extra RAH bits,
1774 	 * so save everything except the lower 16 bits that hold part
1775 	 * of the address and the address valid bit.
1776 	 */
1777 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1778 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1779 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1780 
1781 	if (enable_addr != 0)
1782 		rar_high |= IXGBE_RAH_AV;
1783 
1784 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1785 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1786 
1787 	return 0;
1788 }
1789 
1790 /**
1791  *  ixgbe_clear_rar_generic - Remove Rx address register
1792  *  @hw: pointer to hardware structure
1793  *  @index: Receive address register to write
1794  *
1795  *  Clears an ethernet address from a receive address register.
1796  **/
1797 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1798 {
1799 	u32 rar_high;
1800 	u32 rar_entries = hw->mac.num_rar_entries;
1801 
1802 	/* Make sure we are using a valid rar index range */
1803 	if (index >= rar_entries) {
1804 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1805 		return IXGBE_ERR_INVALID_ARGUMENT;
1806 	}
1807 
1808 	/*
1809 	 * Some parts put the VMDq setting in the extra RAH bits,
1810 	 * so save everything except the lower 16 bits that hold part
1811 	 * of the address and the address valid bit.
1812 	 */
1813 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1814 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1815 
1816 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1817 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1818 
1819 	/* clear VMDq pool/queue selection for this RAR */
1820 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1821 
1822 	return 0;
1823 }
1824 
1825 /**
1826  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1827  *  @hw: pointer to hardware structure
1828  *
1829  *  Places the MAC address in receive address register 0 and clears the rest
1830  *  of the receive address registers. Clears the multicast table. Assumes
1831  *  the receiver is in reset when the routine is called.
1832  **/
1833 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1834 {
1835 	u32 i;
1836 	u32 rar_entries = hw->mac.num_rar_entries;
1837 
1838 	/*
1839 	 * If the current mac address is valid, assume it is a software override
1840 	 * to the permanent address.
1841 	 * Otherwise, use the permanent address from the eeprom.
1842 	 */
1843 	if (!is_valid_ether_addr(hw->mac.addr)) {
1844 		/* Get the MAC address from the RAR0 for later reference */
1845 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1846 
1847 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1848 	} else {
1849 		/* Setup the receive address. */
1850 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1851 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1852 
1853 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1854 
1855 		/*  clear VMDq pool/queue selection for RAR 0 */
1856 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1857 	}
1858 	hw->addr_ctrl.overflow_promisc = 0;
1859 
1860 	hw->addr_ctrl.rar_used_count = 1;
1861 
1862 	/* Zero out the other receive addresses. */
1863 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1864 	for (i = 1; i < rar_entries; i++) {
1865 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1866 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1867 	}
1868 
1869 	/* Clear the MTA */
1870 	hw->addr_ctrl.mta_in_use = 0;
1871 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1872 
1873 	hw_dbg(hw, " Clearing MTA\n");
1874 	for (i = 0; i < hw->mac.mcft_size; i++)
1875 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1876 
1877 	if (hw->mac.ops.init_uta_tables)
1878 		hw->mac.ops.init_uta_tables(hw);
1879 
1880 	return 0;
1881 }
1882 
1883 /**
1884  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1885  *  @hw: pointer to hardware structure
1886  *  @mc_addr: the multicast address
1887  *
1888  *  Extracts the 12 bits, from a multicast address, to determine which
1889  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1890  *  incoming rx multicast addresses, to determine the bit-vector to check in
1891  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1892  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1893  *  to mc_filter_type.
1894  **/
1895 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1896 {
1897 	u32 vector = 0;
1898 
1899 	switch (hw->mac.mc_filter_type) {
1900 	case 0:   /* use bits [47:36] of the address */
1901 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1902 		break;
1903 	case 1:   /* use bits [46:35] of the address */
1904 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1905 		break;
1906 	case 2:   /* use bits [45:34] of the address */
1907 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1908 		break;
1909 	case 3:   /* use bits [43:32] of the address */
1910 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1911 		break;
1912 	default:  /* Invalid mc_filter_type */
1913 		hw_dbg(hw, "MC filter type param set incorrectly\n");
1914 		break;
1915 	}
1916 
1917 	/* vector can only be 12-bits or boundary will be exceeded */
1918 	vector &= 0xFFF;
1919 	return vector;
1920 }
1921 
1922 /**
1923  *  ixgbe_set_mta - Set bit-vector in multicast table
1924  *  @hw: pointer to hardware structure
1925  *  @hash_value: Multicast address hash value
1926  *
1927  *  Sets the bit-vector in the multicast table.
1928  **/
1929 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1930 {
1931 	u32 vector;
1932 	u32 vector_bit;
1933 	u32 vector_reg;
1934 
1935 	hw->addr_ctrl.mta_in_use++;
1936 
1937 	vector = ixgbe_mta_vector(hw, mc_addr);
1938 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1939 
1940 	/*
1941 	 * The MTA is a register array of 128 32-bit registers. It is treated
1942 	 * like an array of 4096 bits.  We want to set bit
1943 	 * BitArray[vector_value]. So we figure out what register the bit is
1944 	 * in, read it, OR in the new bit, then write back the new value.  The
1945 	 * register is determined by the upper 7 bits of the vector value and
1946 	 * the bit within that register are determined by the lower 5 bits of
1947 	 * the value.
1948 	 */
1949 	vector_reg = (vector >> 5) & 0x7F;
1950 	vector_bit = vector & 0x1F;
1951 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1952 }
1953 
1954 /**
1955  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1956  *  @hw: pointer to hardware structure
1957  *  @netdev: pointer to net device structure
1958  *
1959  *  The given list replaces any existing list. Clears the MC addrs from receive
1960  *  address registers and the multicast table. Uses unused receive address
1961  *  registers for the first multicast addresses, and hashes the rest into the
1962  *  multicast table.
1963  **/
1964 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1965 				      struct net_device *netdev)
1966 {
1967 	struct netdev_hw_addr *ha;
1968 	u32 i;
1969 
1970 	/*
1971 	 * Set the new number of MC addresses that we are being requested to
1972 	 * use.
1973 	 */
1974 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1975 	hw->addr_ctrl.mta_in_use = 0;
1976 
1977 	/* Clear mta_shadow */
1978 	hw_dbg(hw, " Clearing MTA\n");
1979 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
1980 
1981 	/* Update mta shadow */
1982 	netdev_for_each_mc_addr(ha, netdev) {
1983 		hw_dbg(hw, " Adding the multicast addresses:\n");
1984 		ixgbe_set_mta(hw, ha->addr);
1985 	}
1986 
1987 	/* Enable mta */
1988 	for (i = 0; i < hw->mac.mcft_size; i++)
1989 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
1990 				      hw->mac.mta_shadow[i]);
1991 
1992 	if (hw->addr_ctrl.mta_in_use > 0)
1993 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1994 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1995 
1996 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
1997 	return 0;
1998 }
1999 
2000 /**
2001  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2002  *  @hw: pointer to hardware structure
2003  *
2004  *  Enables multicast address in RAR and the use of the multicast hash table.
2005  **/
2006 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2007 {
2008 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2009 
2010 	if (a->mta_in_use > 0)
2011 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2012 				hw->mac.mc_filter_type);
2013 
2014 	return 0;
2015 }
2016 
2017 /**
2018  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2019  *  @hw: pointer to hardware structure
2020  *
2021  *  Disables multicast address in RAR and the use of the multicast hash table.
2022  **/
2023 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2024 {
2025 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2026 
2027 	if (a->mta_in_use > 0)
2028 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2029 
2030 	return 0;
2031 }
2032 
2033 /**
2034  *  ixgbe_fc_enable_generic - Enable flow control
2035  *  @hw: pointer to hardware structure
2036  *
2037  *  Enable flow control according to the current settings.
2038  **/
2039 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2040 {
2041 	u32 mflcn_reg, fccfg_reg;
2042 	u32 reg;
2043 	u32 fcrtl, fcrth;
2044 	int i;
2045 
2046 	/* Validate the water mark configuration. */
2047 	if (!hw->fc.pause_time)
2048 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2049 
2050 	/* Low water mark of zero causes XOFF floods */
2051 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2052 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2053 		    hw->fc.high_water[i]) {
2054 			if (!hw->fc.low_water[i] ||
2055 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2056 				hw_dbg(hw, "Invalid water mark configuration\n");
2057 				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2058 			}
2059 		}
2060 	}
2061 
2062 	/* Negotiate the fc mode to use */
2063 	ixgbe_fc_autoneg(hw);
2064 
2065 	/* Disable any previous flow control settings */
2066 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2067 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2068 
2069 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2070 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2071 
2072 	/*
2073 	 * The possible values of fc.current_mode are:
2074 	 * 0: Flow control is completely disabled
2075 	 * 1: Rx flow control is enabled (we can receive pause frames,
2076 	 *    but not send pause frames).
2077 	 * 2: Tx flow control is enabled (we can send pause frames but
2078 	 *    we do not support receiving pause frames).
2079 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2080 	 * other: Invalid.
2081 	 */
2082 	switch (hw->fc.current_mode) {
2083 	case ixgbe_fc_none:
2084 		/*
2085 		 * Flow control is disabled by software override or autoneg.
2086 		 * The code below will actually disable it in the HW.
2087 		 */
2088 		break;
2089 	case ixgbe_fc_rx_pause:
2090 		/*
2091 		 * Rx Flow control is enabled and Tx Flow control is
2092 		 * disabled by software override. Since there really
2093 		 * isn't a way to advertise that we are capable of RX
2094 		 * Pause ONLY, we will advertise that we support both
2095 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2096 		 * disable the adapter's ability to send PAUSE frames.
2097 		 */
2098 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2099 		break;
2100 	case ixgbe_fc_tx_pause:
2101 		/*
2102 		 * Tx Flow control is enabled, and Rx Flow control is
2103 		 * disabled by software override.
2104 		 */
2105 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2106 		break;
2107 	case ixgbe_fc_full:
2108 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2109 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2110 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2111 		break;
2112 	default:
2113 		hw_dbg(hw, "Flow control param set incorrectly\n");
2114 		return IXGBE_ERR_CONFIG;
2115 	}
2116 
2117 	/* Set 802.3x based flow control settings. */
2118 	mflcn_reg |= IXGBE_MFLCN_DPF;
2119 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2120 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2121 
2122 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2123 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2124 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2125 		    hw->fc.high_water[i]) {
2126 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2127 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2128 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2129 		} else {
2130 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2131 			/*
2132 			 * In order to prevent Tx hangs when the internal Tx
2133 			 * switch is enabled we must set the high water mark
2134 			 * to the maximum FCRTH value.  This allows the Tx
2135 			 * switch to function even under heavy Rx workloads.
2136 			 */
2137 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2138 		}
2139 
2140 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2141 	}
2142 
2143 	/* Configure pause time (2 TCs per register) */
2144 	reg = hw->fc.pause_time * 0x00010001;
2145 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2146 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2147 
2148 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2149 
2150 	return 0;
2151 }
2152 
2153 /**
2154  *  ixgbe_negotiate_fc - Negotiate flow control
2155  *  @hw: pointer to hardware structure
2156  *  @adv_reg: flow control advertised settings
2157  *  @lp_reg: link partner's flow control settings
2158  *  @adv_sym: symmetric pause bit in advertisement
2159  *  @adv_asm: asymmetric pause bit in advertisement
2160  *  @lp_sym: symmetric pause bit in link partner advertisement
2161  *  @lp_asm: asymmetric pause bit in link partner advertisement
2162  *
2163  *  Find the intersection between advertised settings and link partner's
2164  *  advertised settings
2165  **/
2166 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2167 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2168 {
2169 	if ((!(adv_reg)) ||  (!(lp_reg)))
2170 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2171 
2172 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2173 		/*
2174 		 * Now we need to check if the user selected Rx ONLY
2175 		 * of pause frames.  In this case, we had to advertise
2176 		 * FULL flow control because we could not advertise RX
2177 		 * ONLY. Hence, we must now check to see if we need to
2178 		 * turn OFF the TRANSMISSION of PAUSE frames.
2179 		 */
2180 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2181 			hw->fc.current_mode = ixgbe_fc_full;
2182 			hw_dbg(hw, "Flow Control = FULL.\n");
2183 		} else {
2184 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2185 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2186 		}
2187 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2188 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2189 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2190 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2191 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2192 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2193 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2194 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2195 	} else {
2196 		hw->fc.current_mode = ixgbe_fc_none;
2197 		hw_dbg(hw, "Flow Control = NONE.\n");
2198 	}
2199 	return 0;
2200 }
2201 
2202 /**
2203  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2204  *  @hw: pointer to hardware structure
2205  *
2206  *  Enable flow control according on 1 gig fiber.
2207  **/
2208 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2209 {
2210 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2211 	s32 ret_val;
2212 
2213 	/*
2214 	 * On multispeed fiber at 1g, bail out if
2215 	 * - link is up but AN did not complete, or if
2216 	 * - link is up and AN completed but timed out
2217 	 */
2218 
2219 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2220 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2221 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2222 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2223 
2224 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2225 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2226 
2227 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2228 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2229 			       IXGBE_PCS1GANA_ASM_PAUSE,
2230 			       IXGBE_PCS1GANA_SYM_PAUSE,
2231 			       IXGBE_PCS1GANA_ASM_PAUSE);
2232 
2233 	return ret_val;
2234 }
2235 
2236 /**
2237  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2238  *  @hw: pointer to hardware structure
2239  *
2240  *  Enable flow control according to IEEE clause 37.
2241  **/
2242 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2243 {
2244 	u32 links2, anlp1_reg, autoc_reg, links;
2245 	s32 ret_val;
2246 
2247 	/*
2248 	 * On backplane, bail out if
2249 	 * - backplane autoneg was not completed, or if
2250 	 * - we are 82599 and link partner is not AN enabled
2251 	 */
2252 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2253 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2254 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2255 
2256 	if (hw->mac.type == ixgbe_mac_82599EB) {
2257 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2258 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2259 			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2260 	}
2261 	/*
2262 	 * Read the 10g AN autoc and LP ability registers and resolve
2263 	 * local flow control settings accordingly
2264 	 */
2265 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2266 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2267 
2268 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2269 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2270 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2271 
2272 	return ret_val;
2273 }
2274 
2275 /**
2276  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2277  *  @hw: pointer to hardware structure
2278  *
2279  *  Enable flow control according to IEEE clause 37.
2280  **/
2281 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2282 {
2283 	u16 technology_ability_reg = 0;
2284 	u16 lp_technology_ability_reg = 0;
2285 
2286 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2287 			     MDIO_MMD_AN,
2288 			     &technology_ability_reg);
2289 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2290 			     MDIO_MMD_AN,
2291 			     &lp_technology_ability_reg);
2292 
2293 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2294 				  (u32)lp_technology_ability_reg,
2295 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2296 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2297 }
2298 
2299 /**
2300  *  ixgbe_fc_autoneg - Configure flow control
2301  *  @hw: pointer to hardware structure
2302  *
2303  *  Compares our advertised flow control capabilities to those advertised by
2304  *  our link partner, and determines the proper flow control mode to use.
2305  **/
2306 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2307 {
2308 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2309 	ixgbe_link_speed speed;
2310 	bool link_up;
2311 
2312 	/*
2313 	 * AN should have completed when the cable was plugged in.
2314 	 * Look for reasons to bail out.  Bail out if:
2315 	 * - FC autoneg is disabled, or if
2316 	 * - link is not up.
2317 	 *
2318 	 * Since we're being called from an LSC, link is already known to be up.
2319 	 * So use link_up_wait_to_complete=false.
2320 	 */
2321 	if (hw->fc.disable_fc_autoneg)
2322 		goto out;
2323 
2324 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2325 	if (!link_up)
2326 		goto out;
2327 
2328 	switch (hw->phy.media_type) {
2329 	/* Autoneg flow control on fiber adapters */
2330 	case ixgbe_media_type_fiber:
2331 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2332 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2333 		break;
2334 
2335 	/* Autoneg flow control on backplane adapters */
2336 	case ixgbe_media_type_backplane:
2337 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2338 		break;
2339 
2340 	/* Autoneg flow control on copper adapters */
2341 	case ixgbe_media_type_copper:
2342 		if (ixgbe_device_supports_autoneg_fc(hw))
2343 			ret_val = ixgbe_fc_autoneg_copper(hw);
2344 		break;
2345 
2346 	default:
2347 		break;
2348 	}
2349 
2350 out:
2351 	if (ret_val == 0) {
2352 		hw->fc.fc_was_autonegged = true;
2353 	} else {
2354 		hw->fc.fc_was_autonegged = false;
2355 		hw->fc.current_mode = hw->fc.requested_mode;
2356 	}
2357 }
2358 
2359 /**
2360  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2361  * @hw: pointer to hardware structure
2362  *
2363  * System-wide timeout range is encoded in PCIe Device Control2 register.
2364  *
2365  *  Add 10% to specified maximum and return the number of times to poll for
2366  *  completion timeout, in units of 100 microsec.  Never return less than
2367  *  800 = 80 millisec.
2368  **/
2369 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2370 {
2371 	s16 devctl2;
2372 	u32 pollcnt;
2373 
2374 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2375 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2376 
2377 	switch (devctl2) {
2378 	case IXGBE_PCIDEVCTRL2_65_130ms:
2379 		 pollcnt = 1300;         /* 130 millisec */
2380 		break;
2381 	case IXGBE_PCIDEVCTRL2_260_520ms:
2382 		pollcnt = 5200;         /* 520 millisec */
2383 		break;
2384 	case IXGBE_PCIDEVCTRL2_1_2s:
2385 		pollcnt = 20000;        /* 2 sec */
2386 		break;
2387 	case IXGBE_PCIDEVCTRL2_4_8s:
2388 		pollcnt = 80000;        /* 8 sec */
2389 		break;
2390 	case IXGBE_PCIDEVCTRL2_17_34s:
2391 		pollcnt = 34000;        /* 34 sec */
2392 		break;
2393 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2394 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2395 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2396 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2397 	default:
2398 		pollcnt = 800;          /* 80 millisec minimum */
2399 		break;
2400 	}
2401 
2402 	/* add 10% to spec maximum */
2403 	return (pollcnt * 11) / 10;
2404 }
2405 
2406 /**
2407  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2408  *  @hw: pointer to hardware structure
2409  *
2410  *  Disables PCI-Express master access and verifies there are no pending
2411  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2412  *  bit hasn't caused the master requests to be disabled, else 0
2413  *  is returned signifying master requests disabled.
2414  **/
2415 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2416 {
2417 	u32 i, poll;
2418 	u16 value;
2419 
2420 	/* Always set this bit to ensure any future transactions are blocked */
2421 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2422 
2423 	/* Exit if master requests are blocked */
2424 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2425 	    ixgbe_removed(hw->hw_addr))
2426 		return 0;
2427 
2428 	/* Poll for master request bit to clear */
2429 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2430 		udelay(100);
2431 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2432 			return 0;
2433 	}
2434 
2435 	/*
2436 	 * Two consecutive resets are required via CTRL.RST per datasheet
2437 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2438 	 * of this need.  The first reset prevents new master requests from
2439 	 * being issued by our device.  We then must wait 1usec or more for any
2440 	 * remaining completions from the PCIe bus to trickle in, and then reset
2441 	 * again to clear out any effects they may have had on our device.
2442 	 */
2443 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2444 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2445 
2446 	/*
2447 	 * Before proceeding, make sure that the PCIe block does not have
2448 	 * transactions pending.
2449 	 */
2450 	poll = ixgbe_pcie_timeout_poll(hw);
2451 	for (i = 0; i < poll; i++) {
2452 		udelay(100);
2453 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2454 		if (ixgbe_removed(hw->hw_addr))
2455 			return 0;
2456 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2457 			return 0;
2458 	}
2459 
2460 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2461 	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2462 }
2463 
2464 /**
2465  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2466  *  @hw: pointer to hardware structure
2467  *  @mask: Mask to specify which semaphore to acquire
2468  *
2469  *  Acquires the SWFW semaphore through the GSSR register for the specified
2470  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2471  **/
2472 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2473 {
2474 	u32 gssr = 0;
2475 	u32 swmask = mask;
2476 	u32 fwmask = mask << 5;
2477 	u32 timeout = 200;
2478 	u32 i;
2479 
2480 	for (i = 0; i < timeout; i++) {
2481 		/*
2482 		 * SW NVM semaphore bit is used for access to all
2483 		 * SW_FW_SYNC bits (not just NVM)
2484 		 */
2485 		if (ixgbe_get_eeprom_semaphore(hw))
2486 			return IXGBE_ERR_SWFW_SYNC;
2487 
2488 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2489 		if (!(gssr & (fwmask | swmask))) {
2490 			gssr |= swmask;
2491 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2492 			ixgbe_release_eeprom_semaphore(hw);
2493 			return 0;
2494 		} else {
2495 			/* Resource is currently in use by FW or SW */
2496 			ixgbe_release_eeprom_semaphore(hw);
2497 			usleep_range(5000, 10000);
2498 		}
2499 	}
2500 
2501 	/* If time expired clear the bits holding the lock and retry */
2502 	if (gssr & (fwmask | swmask))
2503 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2504 
2505 	usleep_range(5000, 10000);
2506 	return IXGBE_ERR_SWFW_SYNC;
2507 }
2508 
2509 /**
2510  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2511  *  @hw: pointer to hardware structure
2512  *  @mask: Mask to specify which semaphore to release
2513  *
2514  *  Releases the SWFW semaphore through the GSSR register for the specified
2515  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2516  **/
2517 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2518 {
2519 	u32 gssr;
2520 	u32 swmask = mask;
2521 
2522 	ixgbe_get_eeprom_semaphore(hw);
2523 
2524 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2525 	gssr &= ~swmask;
2526 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2527 
2528 	ixgbe_release_eeprom_semaphore(hw);
2529 }
2530 
2531 /**
2532  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2533  * @hw: pointer to hardware structure
2534  * @reg_val: Value we read from AUTOC
2535  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2536  *	    true in this the generic case.
2537  *
2538  * The default case requires no protection so just to the register read.
2539  **/
2540 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2541 {
2542 	*locked = false;
2543 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2544 	return 0;
2545 }
2546 
2547 /**
2548  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2549  * @hw: pointer to hardware structure
2550  * @reg_val: value to write to AUTOC
2551  * @locked: bool to indicate whether the SW/FW lock was already taken by
2552  *	    previous read.
2553  **/
2554 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2555 {
2556 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2557 	return 0;
2558 }
2559 
2560 /**
2561  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2562  *  @hw: pointer to hardware structure
2563  *
2564  *  Stops the receive data path and waits for the HW to internally
2565  *  empty the Rx security block.
2566  **/
2567 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2568 {
2569 #define IXGBE_MAX_SECRX_POLL 40
2570 	int i;
2571 	int secrxreg;
2572 
2573 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2574 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2575 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2576 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2577 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2578 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2579 			break;
2580 		else
2581 			/* Use interrupt-safe sleep just in case */
2582 			udelay(1000);
2583 	}
2584 
2585 	/* For informational purposes only */
2586 	if (i >= IXGBE_MAX_SECRX_POLL)
2587 		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2588 
2589 	return 0;
2590 
2591 }
2592 
2593 /**
2594  *  ixgbe_enable_rx_buff - Enables the receive data path
2595  *  @hw: pointer to hardware structure
2596  *
2597  *  Enables the receive data path
2598  **/
2599 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2600 {
2601 	int secrxreg;
2602 
2603 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2604 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2605 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2606 	IXGBE_WRITE_FLUSH(hw);
2607 
2608 	return 0;
2609 }
2610 
2611 /**
2612  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2613  *  @hw: pointer to hardware structure
2614  *  @regval: register value to write to RXCTRL
2615  *
2616  *  Enables the Rx DMA unit
2617  **/
2618 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2619 {
2620 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2621 
2622 	return 0;
2623 }
2624 
2625 /**
2626  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2627  *  @hw: pointer to hardware structure
2628  *  @index: led number to blink
2629  **/
2630 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2631 {
2632 	ixgbe_link_speed speed = 0;
2633 	bool link_up = false;
2634 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2635 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2636 	bool locked = false;
2637 	s32 ret_val;
2638 
2639 	/*
2640 	 * Link must be up to auto-blink the LEDs;
2641 	 * Force it if link is down.
2642 	 */
2643 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2644 
2645 	if (!link_up) {
2646 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2647 		if (ret_val)
2648 			return ret_val;
2649 
2650 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2651 		autoc_reg |= IXGBE_AUTOC_FLU;
2652 
2653 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2654 		if (ret_val)
2655 			return ret_val;
2656 
2657 		IXGBE_WRITE_FLUSH(hw);
2658 
2659 		usleep_range(10000, 20000);
2660 	}
2661 
2662 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2663 	led_reg |= IXGBE_LED_BLINK(index);
2664 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2665 	IXGBE_WRITE_FLUSH(hw);
2666 
2667 	return 0;
2668 }
2669 
2670 /**
2671  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2672  *  @hw: pointer to hardware structure
2673  *  @index: led number to stop blinking
2674  **/
2675 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2676 {
2677 	u32 autoc_reg = 0;
2678 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2679 	bool locked = false;
2680 	s32 ret_val;
2681 
2682 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2683 	if (ret_val)
2684 		return ret_val;
2685 
2686 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2687 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2688 
2689 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2690 	if (ret_val)
2691 		return ret_val;
2692 
2693 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2694 	led_reg &= ~IXGBE_LED_BLINK(index);
2695 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2696 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2697 	IXGBE_WRITE_FLUSH(hw);
2698 
2699 	return 0;
2700 }
2701 
2702 /**
2703  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2704  *  @hw: pointer to hardware structure
2705  *  @san_mac_offset: SAN MAC address offset
2706  *
2707  *  This function will read the EEPROM location for the SAN MAC address
2708  *  pointer, and returns the value at that location.  This is used in both
2709  *  get and set mac_addr routines.
2710  **/
2711 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2712 					u16 *san_mac_offset)
2713 {
2714 	s32 ret_val;
2715 
2716 	/*
2717 	 * First read the EEPROM pointer to see if the MAC addresses are
2718 	 * available.
2719 	 */
2720 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2721 				      san_mac_offset);
2722 	if (ret_val)
2723 		hw_err(hw, "eeprom read at offset %d failed\n",
2724 		       IXGBE_SAN_MAC_ADDR_PTR);
2725 
2726 	return ret_val;
2727 }
2728 
2729 /**
2730  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2731  *  @hw: pointer to hardware structure
2732  *  @san_mac_addr: SAN MAC address
2733  *
2734  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2735  *  per-port, so set_lan_id() must be called before reading the addresses.
2736  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2737  *  upon for non-SFP connections, so we must call it here.
2738  **/
2739 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2740 {
2741 	u16 san_mac_data, san_mac_offset;
2742 	u8 i;
2743 	s32 ret_val;
2744 
2745 	/*
2746 	 * First read the EEPROM pointer to see if the MAC addresses are
2747 	 * available.  If they're not, no point in calling set_lan_id() here.
2748 	 */
2749 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2750 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2751 
2752 		goto san_mac_addr_clr;
2753 
2754 	/* make sure we know which port we need to program */
2755 	hw->mac.ops.set_lan_id(hw);
2756 	/* apply the port offset to the address offset */
2757 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2758 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2759 	for (i = 0; i < 3; i++) {
2760 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2761 					      &san_mac_data);
2762 		if (ret_val) {
2763 			hw_err(hw, "eeprom read at offset %d failed\n",
2764 			       san_mac_offset);
2765 			goto san_mac_addr_clr;
2766 		}
2767 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2768 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2769 		san_mac_offset++;
2770 	}
2771 	return 0;
2772 
2773 san_mac_addr_clr:
2774 	/* No addresses available in this EEPROM.  It's not necessarily an
2775 	 * error though, so just wipe the local address and return.
2776 	 */
2777 	for (i = 0; i < 6; i++)
2778 		san_mac_addr[i] = 0xFF;
2779 	return ret_val;
2780 }
2781 
2782 /**
2783  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2784  *  @hw: pointer to hardware structure
2785  *
2786  *  Read PCIe configuration space, and get the MSI-X vector count from
2787  *  the capabilities table.
2788  **/
2789 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2790 {
2791 	u16 msix_count;
2792 	u16 max_msix_count;
2793 	u16 pcie_offset;
2794 
2795 	switch (hw->mac.type) {
2796 	case ixgbe_mac_82598EB:
2797 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2798 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2799 		break;
2800 	case ixgbe_mac_82599EB:
2801 	case ixgbe_mac_X540:
2802 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2803 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2804 		break;
2805 	default:
2806 		return 1;
2807 	}
2808 
2809 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2810 	if (ixgbe_removed(hw->hw_addr))
2811 		msix_count = 0;
2812 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2813 
2814 	/* MSI-X count is zero-based in HW */
2815 	msix_count++;
2816 
2817 	if (msix_count > max_msix_count)
2818 		msix_count = max_msix_count;
2819 
2820 	return msix_count;
2821 }
2822 
2823 /**
2824  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2825  *  @hw: pointer to hardware struct
2826  *  @rar: receive address register index to disassociate
2827  *  @vmdq: VMDq pool index to remove from the rar
2828  **/
2829 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2830 {
2831 	u32 mpsar_lo, mpsar_hi;
2832 	u32 rar_entries = hw->mac.num_rar_entries;
2833 
2834 	/* Make sure we are using a valid rar index range */
2835 	if (rar >= rar_entries) {
2836 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2837 		return IXGBE_ERR_INVALID_ARGUMENT;
2838 	}
2839 
2840 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2841 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2842 
2843 	if (ixgbe_removed(hw->hw_addr))
2844 		return 0;
2845 
2846 	if (!mpsar_lo && !mpsar_hi)
2847 		return 0;
2848 
2849 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2850 		if (mpsar_lo) {
2851 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2852 			mpsar_lo = 0;
2853 		}
2854 		if (mpsar_hi) {
2855 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2856 			mpsar_hi = 0;
2857 		}
2858 	} else if (vmdq < 32) {
2859 		mpsar_lo &= ~(1 << vmdq);
2860 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2861 	} else {
2862 		mpsar_hi &= ~(1 << (vmdq - 32));
2863 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2864 	}
2865 
2866 	/* was that the last pool using this rar? */
2867 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2868 		hw->mac.ops.clear_rar(hw, rar);
2869 	return 0;
2870 }
2871 
2872 /**
2873  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2874  *  @hw: pointer to hardware struct
2875  *  @rar: receive address register index to associate with a VMDq index
2876  *  @vmdq: VMDq pool index
2877  **/
2878 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2879 {
2880 	u32 mpsar;
2881 	u32 rar_entries = hw->mac.num_rar_entries;
2882 
2883 	/* Make sure we are using a valid rar index range */
2884 	if (rar >= rar_entries) {
2885 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2886 		return IXGBE_ERR_INVALID_ARGUMENT;
2887 	}
2888 
2889 	if (vmdq < 32) {
2890 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2891 		mpsar |= 1 << vmdq;
2892 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2893 	} else {
2894 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2895 		mpsar |= 1 << (vmdq - 32);
2896 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2897 	}
2898 	return 0;
2899 }
2900 
2901 /**
2902  *  This function should only be involved in the IOV mode.
2903  *  In IOV mode, Default pool is next pool after the number of
2904  *  VFs advertized and not 0.
2905  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2906  *
2907  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2908  *  @hw: pointer to hardware struct
2909  *  @vmdq: VMDq pool index
2910  **/
2911 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2912 {
2913 	u32 rar = hw->mac.san_mac_rar_index;
2914 
2915 	if (vmdq < 32) {
2916 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2917 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2918 	} else {
2919 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2920 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2921 	}
2922 
2923 	return 0;
2924 }
2925 
2926 /**
2927  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2928  *  @hw: pointer to hardware structure
2929  **/
2930 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2931 {
2932 	int i;
2933 
2934 	for (i = 0; i < 128; i++)
2935 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2936 
2937 	return 0;
2938 }
2939 
2940 /**
2941  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2942  *  @hw: pointer to hardware structure
2943  *  @vlan: VLAN id to write to VLAN filter
2944  *
2945  *  return the VLVF index where this VLAN id should be placed
2946  *
2947  **/
2948 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2949 {
2950 	u32 bits = 0;
2951 	u32 first_empty_slot = 0;
2952 	s32 regindex;
2953 
2954 	/* short cut the special case */
2955 	if (vlan == 0)
2956 		return 0;
2957 
2958 	/*
2959 	  * Search for the vlan id in the VLVF entries. Save off the first empty
2960 	  * slot found along the way
2961 	  */
2962 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2963 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2964 		if (!bits && !(first_empty_slot))
2965 			first_empty_slot = regindex;
2966 		else if ((bits & 0x0FFF) == vlan)
2967 			break;
2968 	}
2969 
2970 	/*
2971 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2972 	  * in the VLVF. Else use the first empty VLVF register for this
2973 	  * vlan id.
2974 	  */
2975 	if (regindex >= IXGBE_VLVF_ENTRIES) {
2976 		if (first_empty_slot)
2977 			regindex = first_empty_slot;
2978 		else {
2979 			hw_dbg(hw, "No space in VLVF.\n");
2980 			regindex = IXGBE_ERR_NO_SPACE;
2981 		}
2982 	}
2983 
2984 	return regindex;
2985 }
2986 
2987 /**
2988  *  ixgbe_set_vfta_generic - Set VLAN filter table
2989  *  @hw: pointer to hardware structure
2990  *  @vlan: VLAN id to write to VLAN filter
2991  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2992  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
2993  *
2994  *  Turn on/off specified VLAN in the VLAN filter table.
2995  **/
2996 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2997 			   bool vlan_on)
2998 {
2999 	s32 regindex;
3000 	u32 bitindex;
3001 	u32 vfta;
3002 	u32 bits;
3003 	u32 vt;
3004 	u32 targetbit;
3005 	bool vfta_changed = false;
3006 
3007 	if (vlan > 4095)
3008 		return IXGBE_ERR_PARAM;
3009 
3010 	/*
3011 	 * this is a 2 part operation - first the VFTA, then the
3012 	 * VLVF and VLVFB if VT Mode is set
3013 	 * We don't write the VFTA until we know the VLVF part succeeded.
3014 	 */
3015 
3016 	/* Part 1
3017 	 * The VFTA is a bitstring made up of 128 32-bit registers
3018 	 * that enable the particular VLAN id, much like the MTA:
3019 	 *    bits[11-5]: which register
3020 	 *    bits[4-0]:  which bit in the register
3021 	 */
3022 	regindex = (vlan >> 5) & 0x7F;
3023 	bitindex = vlan & 0x1F;
3024 	targetbit = (1 << bitindex);
3025 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3026 
3027 	if (vlan_on) {
3028 		if (!(vfta & targetbit)) {
3029 			vfta |= targetbit;
3030 			vfta_changed = true;
3031 		}
3032 	} else {
3033 		if ((vfta & targetbit)) {
3034 			vfta &= ~targetbit;
3035 			vfta_changed = true;
3036 		}
3037 	}
3038 
3039 	/* Part 2
3040 	 * If VT Mode is set
3041 	 *   Either vlan_on
3042 	 *     make sure the vlan is in VLVF
3043 	 *     set the vind bit in the matching VLVFB
3044 	 *   Or !vlan_on
3045 	 *     clear the pool bit and possibly the vind
3046 	 */
3047 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3048 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3049 		s32 vlvf_index;
3050 
3051 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3052 		if (vlvf_index < 0)
3053 			return vlvf_index;
3054 
3055 		if (vlan_on) {
3056 			/* set the pool bit */
3057 			if (vind < 32) {
3058 				bits = IXGBE_READ_REG(hw,
3059 						IXGBE_VLVFB(vlvf_index*2));
3060 				bits |= (1 << vind);
3061 				IXGBE_WRITE_REG(hw,
3062 						IXGBE_VLVFB(vlvf_index*2),
3063 						bits);
3064 			} else {
3065 				bits = IXGBE_READ_REG(hw,
3066 						IXGBE_VLVFB((vlvf_index*2)+1));
3067 				bits |= (1 << (vind-32));
3068 				IXGBE_WRITE_REG(hw,
3069 						IXGBE_VLVFB((vlvf_index*2)+1),
3070 						bits);
3071 			}
3072 		} else {
3073 			/* clear the pool bit */
3074 			if (vind < 32) {
3075 				bits = IXGBE_READ_REG(hw,
3076 						IXGBE_VLVFB(vlvf_index*2));
3077 				bits &= ~(1 << vind);
3078 				IXGBE_WRITE_REG(hw,
3079 						IXGBE_VLVFB(vlvf_index*2),
3080 						bits);
3081 				bits |= IXGBE_READ_REG(hw,
3082 						IXGBE_VLVFB((vlvf_index*2)+1));
3083 			} else {
3084 				bits = IXGBE_READ_REG(hw,
3085 						IXGBE_VLVFB((vlvf_index*2)+1));
3086 				bits &= ~(1 << (vind-32));
3087 				IXGBE_WRITE_REG(hw,
3088 						IXGBE_VLVFB((vlvf_index*2)+1),
3089 						bits);
3090 				bits |= IXGBE_READ_REG(hw,
3091 						IXGBE_VLVFB(vlvf_index*2));
3092 			}
3093 		}
3094 
3095 		/*
3096 		 * If there are still bits set in the VLVFB registers
3097 		 * for the VLAN ID indicated we need to see if the
3098 		 * caller is requesting that we clear the VFTA entry bit.
3099 		 * If the caller has requested that we clear the VFTA
3100 		 * entry bit but there are still pools/VFs using this VLAN
3101 		 * ID entry then ignore the request.  We're not worried
3102 		 * about the case where we're turning the VFTA VLAN ID
3103 		 * entry bit on, only when requested to turn it off as
3104 		 * there may be multiple pools and/or VFs using the
3105 		 * VLAN ID entry.  In that case we cannot clear the
3106 		 * VFTA bit until all pools/VFs using that VLAN ID have also
3107 		 * been cleared.  This will be indicated by "bits" being
3108 		 * zero.
3109 		 */
3110 		if (bits) {
3111 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3112 					(IXGBE_VLVF_VIEN | vlan));
3113 			if (!vlan_on) {
3114 				/* someone wants to clear the vfta entry
3115 				 * but some pools/VFs are still using it.
3116 				 * Ignore it. */
3117 				vfta_changed = false;
3118 			}
3119 		} else {
3120 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3121 		}
3122 	}
3123 
3124 	if (vfta_changed)
3125 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3126 
3127 	return 0;
3128 }
3129 
3130 /**
3131  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3132  *  @hw: pointer to hardware structure
3133  *
3134  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3135  **/
3136 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3137 {
3138 	u32 offset;
3139 
3140 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3141 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3142 
3143 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3144 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3145 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3146 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3147 	}
3148 
3149 	return 0;
3150 }
3151 
3152 /**
3153  *  ixgbe_check_mac_link_generic - Determine link and speed status
3154  *  @hw: pointer to hardware structure
3155  *  @speed: pointer to link speed
3156  *  @link_up: true when link is up
3157  *  @link_up_wait_to_complete: bool used to wait for link up or not
3158  *
3159  *  Reads the links register to determine if link is up and the current speed
3160  **/
3161 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3162 				 bool *link_up, bool link_up_wait_to_complete)
3163 {
3164 	u32 links_reg, links_orig;
3165 	u32 i;
3166 
3167 	/* clear the old state */
3168 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3169 
3170 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3171 
3172 	if (links_orig != links_reg) {
3173 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3174 		       links_orig, links_reg);
3175 	}
3176 
3177 	if (link_up_wait_to_complete) {
3178 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3179 			if (links_reg & IXGBE_LINKS_UP) {
3180 				*link_up = true;
3181 				break;
3182 			} else {
3183 				*link_up = false;
3184 			}
3185 			msleep(100);
3186 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3187 		}
3188 	} else {
3189 		if (links_reg & IXGBE_LINKS_UP)
3190 			*link_up = true;
3191 		else
3192 			*link_up = false;
3193 	}
3194 
3195 	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3196 	    IXGBE_LINKS_SPEED_10G_82599)
3197 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
3198 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3199 		 IXGBE_LINKS_SPEED_1G_82599)
3200 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3201 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3202 		 IXGBE_LINKS_SPEED_100_82599)
3203 		*speed = IXGBE_LINK_SPEED_100_FULL;
3204 	else
3205 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3206 
3207 	return 0;
3208 }
3209 
3210 /**
3211  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3212  *  the EEPROM
3213  *  @hw: pointer to hardware structure
3214  *  @wwnn_prefix: the alternative WWNN prefix
3215  *  @wwpn_prefix: the alternative WWPN prefix
3216  *
3217  *  This function will read the EEPROM from the alternative SAN MAC address
3218  *  block to check the support for the alternative WWNN/WWPN prefix support.
3219  **/
3220 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3221 					u16 *wwpn_prefix)
3222 {
3223 	u16 offset, caps;
3224 	u16 alt_san_mac_blk_offset;
3225 
3226 	/* clear output first */
3227 	*wwnn_prefix = 0xFFFF;
3228 	*wwpn_prefix = 0xFFFF;
3229 
3230 	/* check if alternative SAN MAC is supported */
3231 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3232 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3233 		goto wwn_prefix_err;
3234 
3235 	if ((alt_san_mac_blk_offset == 0) ||
3236 	    (alt_san_mac_blk_offset == 0xFFFF))
3237 		return 0;
3238 
3239 	/* check capability in alternative san mac address block */
3240 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3241 	if (hw->eeprom.ops.read(hw, offset, &caps))
3242 		goto wwn_prefix_err;
3243 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3244 		return 0;
3245 
3246 	/* get the corresponding prefix for WWNN/WWPN */
3247 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3248 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3249 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3250 
3251 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3252 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3253 		goto wwn_prefix_err;
3254 
3255 	return 0;
3256 
3257 wwn_prefix_err:
3258 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3259 	return 0;
3260 }
3261 
3262 /**
3263  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3264  *  @hw: pointer to hardware structure
3265  *  @enable: enable or disable switch for anti-spoofing
3266  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3267  *
3268  **/
3269 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3270 {
3271 	int j;
3272 	int pf_target_reg = pf >> 3;
3273 	int pf_target_shift = pf % 8;
3274 	u32 pfvfspoof = 0;
3275 
3276 	if (hw->mac.type == ixgbe_mac_82598EB)
3277 		return;
3278 
3279 	if (enable)
3280 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3281 
3282 	/*
3283 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3284 	 * MAC anti-spoof enables in each register array element.
3285 	 */
3286 	for (j = 0; j < pf_target_reg; j++)
3287 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3288 
3289 	/*
3290 	 * The PF should be allowed to spoof so that it can support
3291 	 * emulation mode NICs.  Do not set the bits assigned to the PF
3292 	 */
3293 	pfvfspoof &= (1 << pf_target_shift) - 1;
3294 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3295 
3296 	/*
3297 	 * Remaining pools belong to the PF so they do not need to have
3298 	 * anti-spoofing enabled.
3299 	 */
3300 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3301 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3302 }
3303 
3304 /**
3305  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3306  *  @hw: pointer to hardware structure
3307  *  @enable: enable or disable switch for VLAN anti-spoofing
3308  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3309  *
3310  **/
3311 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3312 {
3313 	int vf_target_reg = vf >> 3;
3314 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3315 	u32 pfvfspoof;
3316 
3317 	if (hw->mac.type == ixgbe_mac_82598EB)
3318 		return;
3319 
3320 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3321 	if (enable)
3322 		pfvfspoof |= (1 << vf_target_shift);
3323 	else
3324 		pfvfspoof &= ~(1 << vf_target_shift);
3325 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3326 }
3327 
3328 /**
3329  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3330  *  @hw: pointer to hardware structure
3331  *  @device_caps: the EEPROM word with the extra device capabilities
3332  *
3333  *  This function will read the EEPROM location for the device capabilities,
3334  *  and return the word through device_caps.
3335  **/
3336 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3337 {
3338 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3339 
3340 	return 0;
3341 }
3342 
3343 /**
3344  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3345  * @hw: pointer to hardware structure
3346  * @num_pb: number of packet buffers to allocate
3347  * @headroom: reserve n KB of headroom
3348  * @strategy: packet buffer allocation strategy
3349  **/
3350 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3351 			     int num_pb,
3352 			     u32 headroom,
3353 			     int strategy)
3354 {
3355 	u32 pbsize = hw->mac.rx_pb_size;
3356 	int i = 0;
3357 	u32 rxpktsize, txpktsize, txpbthresh;
3358 
3359 	/* Reserve headroom */
3360 	pbsize -= headroom;
3361 
3362 	if (!num_pb)
3363 		num_pb = 1;
3364 
3365 	/* Divide remaining packet buffer space amongst the number
3366 	 * of packet buffers requested using supplied strategy.
3367 	 */
3368 	switch (strategy) {
3369 	case (PBA_STRATEGY_WEIGHTED):
3370 		/* pba_80_48 strategy weight first half of packet buffer with
3371 		 * 5/8 of the packet buffer space.
3372 		 */
3373 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3374 		pbsize -= rxpktsize * (num_pb / 2);
3375 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3376 		for (; i < (num_pb / 2); i++)
3377 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3378 		/* Fall through to configure remaining packet buffers */
3379 	case (PBA_STRATEGY_EQUAL):
3380 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3381 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3382 		for (; i < num_pb; i++)
3383 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3384 		break;
3385 	default:
3386 		break;
3387 	}
3388 
3389 	/*
3390 	 * Setup Tx packet buffer and threshold equally for all TCs
3391 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3392 	 * 10 since the largest packet we support is just over 9K.
3393 	 */
3394 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3395 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3396 	for (i = 0; i < num_pb; i++) {
3397 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3398 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3399 	}
3400 
3401 	/* Clear unused TCs, if any, to zero buffer size*/
3402 	for (; i < IXGBE_MAX_PB; i++) {
3403 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3404 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3405 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3406 	}
3407 }
3408 
3409 /**
3410  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3411  *  @buffer: pointer to EEPROM
3412  *  @length: size of EEPROM to calculate a checksum for
3413  *
3414  *  Calculates the checksum for some buffer on a specified length.  The
3415  *  checksum calculated is returned.
3416  **/
3417 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3418 {
3419 	u32 i;
3420 	u8 sum = 0;
3421 
3422 	if (!buffer)
3423 		return 0;
3424 
3425 	for (i = 0; i < length; i++)
3426 		sum += buffer[i];
3427 
3428 	return (u8) (0 - sum);
3429 }
3430 
3431 /**
3432  *  ixgbe_host_interface_command - Issue command to manageability block
3433  *  @hw: pointer to the HW structure
3434  *  @buffer: contains the command to write and where the return status will
3435  *           be placed
3436  *  @length: length of buffer, must be multiple of 4 bytes
3437  *
3438  *  Communicates with the manageability block.  On success return 0
3439  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3440  **/
3441 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3442 					u32 length)
3443 {
3444 	u32 hicr, i, bi;
3445 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3446 	u8 buf_len, dword_len;
3447 
3448 	if (length == 0 || length & 0x3 ||
3449 	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3450 		hw_dbg(hw, "Buffer length failure.\n");
3451 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3452 	}
3453 
3454 	/* Check that the host interface is enabled. */
3455 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3456 	if ((hicr & IXGBE_HICR_EN) == 0) {
3457 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3458 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3459 	}
3460 
3461 	/* Calculate length in DWORDs */
3462 	dword_len = length >> 2;
3463 
3464 	/*
3465 	 * The device driver writes the relevant command block
3466 	 * into the ram area.
3467 	 */
3468 	for (i = 0; i < dword_len; i++)
3469 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3470 				      i, cpu_to_le32(buffer[i]));
3471 
3472 	/* Setting this bit tells the ARC that a new command is pending. */
3473 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3474 
3475 	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3476 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3477 		if (!(hicr & IXGBE_HICR_C))
3478 			break;
3479 		usleep_range(1000, 2000);
3480 	}
3481 
3482 	/* Check command successful completion. */
3483 	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3484 	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3485 		hw_dbg(hw, "Command has failed with no status valid.\n");
3486 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3487 	}
3488 
3489 	/* Calculate length in DWORDs */
3490 	dword_len = hdr_size >> 2;
3491 
3492 	/* first pull in the header so we know the buffer length */
3493 	for (bi = 0; bi < dword_len; bi++) {
3494 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3495 		le32_to_cpus(&buffer[bi]);
3496 	}
3497 
3498 	/* If there is any thing in data position pull it in */
3499 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3500 	if (buf_len == 0)
3501 		return 0;
3502 
3503 	if (length < (buf_len + hdr_size)) {
3504 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3505 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3506 	}
3507 
3508 	/* Calculate length in DWORDs, add 3 for odd lengths */
3509 	dword_len = (buf_len + 3) >> 2;
3510 
3511 	/* Pull in the rest of the buffer (bi is where we left off)*/
3512 	for (; bi <= dword_len; bi++) {
3513 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3514 		le32_to_cpus(&buffer[bi]);
3515 	}
3516 
3517 	return 0;
3518 }
3519 
3520 /**
3521  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3522  *  @hw: pointer to the HW structure
3523  *  @maj: driver version major number
3524  *  @min: driver version minor number
3525  *  @build: driver version build number
3526  *  @sub: driver version sub build number
3527  *
3528  *  Sends driver version number to firmware through the manageability
3529  *  block.  On success return 0
3530  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3531  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3532  **/
3533 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3534 				 u8 build, u8 sub)
3535 {
3536 	struct ixgbe_hic_drv_info fw_cmd;
3537 	int i;
3538 	s32 ret_val;
3539 
3540 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM))
3541 		return IXGBE_ERR_SWFW_SYNC;
3542 
3543 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3544 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3545 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3546 	fw_cmd.port_num = (u8)hw->bus.func;
3547 	fw_cmd.ver_maj = maj;
3548 	fw_cmd.ver_min = min;
3549 	fw_cmd.ver_build = build;
3550 	fw_cmd.ver_sub = sub;
3551 	fw_cmd.hdr.checksum = 0;
3552 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3553 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3554 	fw_cmd.pad = 0;
3555 	fw_cmd.pad2 = 0;
3556 
3557 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3558 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3559 						       sizeof(fw_cmd));
3560 		if (ret_val != 0)
3561 			continue;
3562 
3563 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3564 		    FW_CEM_RESP_STATUS_SUCCESS)
3565 			ret_val = 0;
3566 		else
3567 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3568 
3569 		break;
3570 	}
3571 
3572 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3573 	return ret_val;
3574 }
3575 
3576 /**
3577  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3578  * @hw: pointer to the hardware structure
3579  *
3580  * The 82599 and x540 MACs can experience issues if TX work is still pending
3581  * when a reset occurs.  This function prevents this by flushing the PCIe
3582  * buffers on the system.
3583  **/
3584 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3585 {
3586 	u32 gcr_ext, hlreg0;
3587 
3588 	/*
3589 	 * If double reset is not requested then all transactions should
3590 	 * already be clear and as such there is no work to do
3591 	 */
3592 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3593 		return;
3594 
3595 	/*
3596 	 * Set loopback enable to prevent any transmits from being sent
3597 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3598 	 * has already been cleared.
3599 	 */
3600 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3601 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3602 
3603 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3604 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3605 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3606 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3607 
3608 	/* Flush all writes and allow 20usec for all transactions to clear */
3609 	IXGBE_WRITE_FLUSH(hw);
3610 	udelay(20);
3611 
3612 	/* restore previous register values */
3613 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3614 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3615 }
3616 
3617 static const u8 ixgbe_emc_temp_data[4] = {
3618 	IXGBE_EMC_INTERNAL_DATA,
3619 	IXGBE_EMC_DIODE1_DATA,
3620 	IXGBE_EMC_DIODE2_DATA,
3621 	IXGBE_EMC_DIODE3_DATA
3622 };
3623 static const u8 ixgbe_emc_therm_limit[4] = {
3624 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3625 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3626 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3627 	IXGBE_EMC_DIODE3_THERM_LIMIT
3628 };
3629 
3630 /**
3631  *  ixgbe_get_ets_data - Extracts the ETS bit data
3632  *  @hw: pointer to hardware structure
3633  *  @ets_cfg: extected ETS data
3634  *  @ets_offset: offset of ETS data
3635  *
3636  *  Returns error code.
3637  **/
3638 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3639 			      u16 *ets_offset)
3640 {
3641 	s32 status;
3642 
3643 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3644 	if (status)
3645 		return status;
3646 
3647 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3648 		return IXGBE_NOT_IMPLEMENTED;
3649 
3650 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3651 	if (status)
3652 		return status;
3653 
3654 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3655 		return IXGBE_NOT_IMPLEMENTED;
3656 
3657 	return 0;
3658 }
3659 
3660 /**
3661  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3662  *  @hw: pointer to hardware structure
3663  *
3664  *  Returns the thermal sensor data structure
3665  **/
3666 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3667 {
3668 	s32 status;
3669 	u16 ets_offset;
3670 	u16 ets_cfg;
3671 	u16 ets_sensor;
3672 	u8  num_sensors;
3673 	u8  i;
3674 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3675 
3676 	/* Only support thermal sensors attached to physical port 0 */
3677 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3678 		return IXGBE_NOT_IMPLEMENTED;
3679 
3680 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3681 	if (status)
3682 		return status;
3683 
3684 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3685 	if (num_sensors > IXGBE_MAX_SENSORS)
3686 		num_sensors = IXGBE_MAX_SENSORS;
3687 
3688 	for (i = 0; i < num_sensors; i++) {
3689 		u8  sensor_index;
3690 		u8  sensor_location;
3691 
3692 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3693 					     &ets_sensor);
3694 		if (status)
3695 			return status;
3696 
3697 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3698 				IXGBE_ETS_DATA_INDEX_SHIFT);
3699 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3700 				   IXGBE_ETS_DATA_LOC_SHIFT);
3701 
3702 		if (sensor_location != 0) {
3703 			status = hw->phy.ops.read_i2c_byte(hw,
3704 					ixgbe_emc_temp_data[sensor_index],
3705 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3706 					&data->sensor[i].temp);
3707 			if (status)
3708 				return status;
3709 		}
3710 	}
3711 
3712 	return 0;
3713 }
3714 
3715 /**
3716  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3717  * @hw: pointer to hardware structure
3718  *
3719  * Inits the thermal sensor thresholds according to the NVM map
3720  * and save off the threshold and location values into mac.thermal_sensor_data
3721  **/
3722 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3723 {
3724 	s32 status;
3725 	u16 ets_offset;
3726 	u16 ets_cfg;
3727 	u16 ets_sensor;
3728 	u8  low_thresh_delta;
3729 	u8  num_sensors;
3730 	u8  therm_limit;
3731 	u8  i;
3732 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3733 
3734 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3735 
3736 	/* Only support thermal sensors attached to physical port 0 */
3737 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3738 		return IXGBE_NOT_IMPLEMENTED;
3739 
3740 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3741 	if (status)
3742 		return status;
3743 
3744 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3745 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3746 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3747 	if (num_sensors > IXGBE_MAX_SENSORS)
3748 		num_sensors = IXGBE_MAX_SENSORS;
3749 
3750 	for (i = 0; i < num_sensors; i++) {
3751 		u8  sensor_index;
3752 		u8  sensor_location;
3753 
3754 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3755 			hw_err(hw, "eeprom read at offset %d failed\n",
3756 			       ets_offset + 1 + i);
3757 			continue;
3758 		}
3759 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3760 				IXGBE_ETS_DATA_INDEX_SHIFT);
3761 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3762 				   IXGBE_ETS_DATA_LOC_SHIFT);
3763 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3764 
3765 		hw->phy.ops.write_i2c_byte(hw,
3766 			ixgbe_emc_therm_limit[sensor_index],
3767 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3768 
3769 		if (sensor_location == 0)
3770 			continue;
3771 
3772 		data->sensor[i].location = sensor_location;
3773 		data->sensor[i].caution_thresh = therm_limit;
3774 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3775 	}
3776 
3777 	return 0;
3778 }
3779 
3780