xref: /linux/drivers/net/ethernet/intel/ixgbe/ixgbe_common.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2016 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
33 
34 #include "ixgbe.h"
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 					u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 					     u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 					     u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 						 u16 offset);
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59 
60 /* Base table for registers values that change by MAC */
61 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
62 	IXGBE_MVALS_INIT(8259X)
63 };
64 
65 /**
66  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
67  *  control
68  *  @hw: pointer to hardware structure
69  *
70  *  There are several phys that do not support autoneg flow control. This
71  *  function check the device id to see if the associated phy supports
72  *  autoneg flow control.
73  **/
74 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
75 {
76 	bool supported = false;
77 	ixgbe_link_speed speed;
78 	bool link_up;
79 
80 	switch (hw->phy.media_type) {
81 	case ixgbe_media_type_fiber:
82 		hw->mac.ops.check_link(hw, &speed, &link_up, false);
83 		/* if link is down, assume supported */
84 		if (link_up)
85 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
86 				true : false;
87 		else
88 			supported = true;
89 		break;
90 	case ixgbe_media_type_backplane:
91 		supported = true;
92 		break;
93 	case ixgbe_media_type_copper:
94 		/* only some copper devices support flow control autoneg */
95 		switch (hw->device_id) {
96 		case IXGBE_DEV_ID_82599_T3_LOM:
97 		case IXGBE_DEV_ID_X540T:
98 		case IXGBE_DEV_ID_X540T1:
99 		case IXGBE_DEV_ID_X550T:
100 		case IXGBE_DEV_ID_X550T1:
101 		case IXGBE_DEV_ID_X550EM_X_10G_T:
102 			supported = true;
103 			break;
104 		default:
105 			break;
106 		}
107 	default:
108 		break;
109 	}
110 
111 	return supported;
112 }
113 
114 /**
115  *  ixgbe_setup_fc_generic - Set up flow control
116  *  @hw: pointer to hardware structure
117  *
118  *  Called at init time to set up flow control.
119  **/
120 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
121 {
122 	s32 ret_val = 0;
123 	u32 reg = 0, reg_bp = 0;
124 	u16 reg_cu = 0;
125 	bool locked = false;
126 
127 	/*
128 	 * Validate the requested mode.  Strict IEEE mode does not allow
129 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
130 	 */
131 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
132 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
133 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
134 	}
135 
136 	/*
137 	 * 10gig parts do not have a word in the EEPROM to determine the
138 	 * default flow control setting, so we explicitly set it to full.
139 	 */
140 	if (hw->fc.requested_mode == ixgbe_fc_default)
141 		hw->fc.requested_mode = ixgbe_fc_full;
142 
143 	/*
144 	 * Set up the 1G and 10G flow control advertisement registers so the
145 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
146 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
147 	 */
148 	switch (hw->phy.media_type) {
149 	case ixgbe_media_type_backplane:
150 		/* some MAC's need RMW protection on AUTOC */
151 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
152 		if (ret_val)
153 			return ret_val;
154 
155 		/* only backplane uses autoc so fall though */
156 	case ixgbe_media_type_fiber:
157 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
158 
159 		break;
160 	case ixgbe_media_type_copper:
161 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
162 					MDIO_MMD_AN, &reg_cu);
163 		break;
164 	default:
165 		break;
166 	}
167 
168 	/*
169 	 * The possible values of fc.requested_mode are:
170 	 * 0: Flow control is completely disabled
171 	 * 1: Rx flow control is enabled (we can receive pause frames,
172 	 *    but not send pause frames).
173 	 * 2: Tx flow control is enabled (we can send pause frames but
174 	 *    we do not support receiving pause frames).
175 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
176 	 * other: Invalid.
177 	 */
178 	switch (hw->fc.requested_mode) {
179 	case ixgbe_fc_none:
180 		/* Flow control completely disabled by software override. */
181 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
182 		if (hw->phy.media_type == ixgbe_media_type_backplane)
183 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
184 				    IXGBE_AUTOC_ASM_PAUSE);
185 		else if (hw->phy.media_type == ixgbe_media_type_copper)
186 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
187 		break;
188 	case ixgbe_fc_tx_pause:
189 		/*
190 		 * Tx Flow control is enabled, and Rx Flow control is
191 		 * disabled by software override.
192 		 */
193 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
194 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
195 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
196 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
197 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
198 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
199 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
200 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
201 		}
202 		break;
203 	case ixgbe_fc_rx_pause:
204 		/*
205 		 * Rx Flow control is enabled and Tx Flow control is
206 		 * disabled by software override. Since there really
207 		 * isn't a way to advertise that we are capable of RX
208 		 * Pause ONLY, we will advertise that we support both
209 		 * symmetric and asymmetric Rx PAUSE, as such we fall
210 		 * through to the fc_full statement.  Later, we will
211 		 * disable the adapter's ability to send PAUSE frames.
212 		 */
213 	case ixgbe_fc_full:
214 		/* Flow control (both Rx and Tx) is enabled by SW override. */
215 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
216 		if (hw->phy.media_type == ixgbe_media_type_backplane)
217 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
218 				  IXGBE_AUTOC_ASM_PAUSE;
219 		else if (hw->phy.media_type == ixgbe_media_type_copper)
220 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
221 		break;
222 	default:
223 		hw_dbg(hw, "Flow control param set incorrectly\n");
224 		return IXGBE_ERR_CONFIG;
225 	}
226 
227 	if (hw->mac.type != ixgbe_mac_X540) {
228 		/*
229 		 * Enable auto-negotiation between the MAC & PHY;
230 		 * the MAC will advertise clause 37 flow control.
231 		 */
232 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
233 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
234 
235 		/* Disable AN timeout */
236 		if (hw->fc.strict_ieee)
237 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
238 
239 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
240 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
241 	}
242 
243 	/*
244 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
245 	 * and copper. There is no need to set the PCS1GCTL register.
246 	 *
247 	 */
248 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
249 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
250 		 * LESM is on, likewise reset_pipeline requries the lock as
251 		 * it also writes AUTOC.
252 		 */
253 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
254 		if (ret_val)
255 			return ret_val;
256 
257 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
258 		   ixgbe_device_supports_autoneg_fc(hw)) {
259 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
260 				      MDIO_MMD_AN, reg_cu);
261 	}
262 
263 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
264 	return ret_val;
265 }
266 
267 /**
268  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
269  *  @hw: pointer to hardware structure
270  *
271  *  Starts the hardware by filling the bus info structure and media type, clears
272  *  all on chip counters, initializes receive address registers, multicast
273  *  table, VLAN filter table, calls routine to set up link and flow control
274  *  settings, and leaves transmit and receive units disabled and uninitialized
275  **/
276 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
277 {
278 	s32 ret_val;
279 	u32 ctrl_ext;
280 
281 	/* Set the media type */
282 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
283 
284 	/* Identify the PHY */
285 	hw->phy.ops.identify(hw);
286 
287 	/* Clear the VLAN filter table */
288 	hw->mac.ops.clear_vfta(hw);
289 
290 	/* Clear statistics registers */
291 	hw->mac.ops.clear_hw_cntrs(hw);
292 
293 	/* Set No Snoop Disable */
294 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
295 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
296 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
297 	IXGBE_WRITE_FLUSH(hw);
298 
299 	/* Setup flow control */
300 	ret_val = hw->mac.ops.setup_fc(hw);
301 	if (ret_val)
302 		return ret_val;
303 
304 	/* Clear adapter stopped flag */
305 	hw->adapter_stopped = false;
306 
307 	return 0;
308 }
309 
310 /**
311  *  ixgbe_start_hw_gen2 - Init sequence for common device family
312  *  @hw: pointer to hw structure
313  *
314  * Performs the init sequence common to the second generation
315  * of 10 GbE devices.
316  * Devices in the second generation:
317  *     82599
318  *     X540
319  **/
320 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
321 {
322 	u32 i;
323 
324 	/* Clear the rate limiters */
325 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
326 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
327 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
328 	}
329 	IXGBE_WRITE_FLUSH(hw);
330 
331 #ifndef CONFIG_SPARC
332 	/* Disable relaxed ordering */
333 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
334 		u32 regval;
335 
336 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
337 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
338 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
339 	}
340 
341 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
342 		u32 regval;
343 
344 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
345 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
346 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
347 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
348 	}
349 #endif
350 	return 0;
351 }
352 
353 /**
354  *  ixgbe_init_hw_generic - Generic hardware initialization
355  *  @hw: pointer to hardware structure
356  *
357  *  Initialize the hardware by resetting the hardware, filling the bus info
358  *  structure and media type, clears all on chip counters, initializes receive
359  *  address registers, multicast table, VLAN filter table, calls routine to set
360  *  up link and flow control settings, and leaves transmit and receive units
361  *  disabled and uninitialized
362  **/
363 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
364 {
365 	s32 status;
366 
367 	/* Reset the hardware */
368 	status = hw->mac.ops.reset_hw(hw);
369 
370 	if (status == 0) {
371 		/* Start the HW */
372 		status = hw->mac.ops.start_hw(hw);
373 	}
374 
375 	return status;
376 }
377 
378 /**
379  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
380  *  @hw: pointer to hardware structure
381  *
382  *  Clears all hardware statistics counters by reading them from the hardware
383  *  Statistics counters are clear on read.
384  **/
385 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
386 {
387 	u16 i = 0;
388 
389 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
390 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
391 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
392 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
393 	for (i = 0; i < 8; i++)
394 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
395 
396 	IXGBE_READ_REG(hw, IXGBE_MLFC);
397 	IXGBE_READ_REG(hw, IXGBE_MRFC);
398 	IXGBE_READ_REG(hw, IXGBE_RLEC);
399 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
400 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
401 	if (hw->mac.type >= ixgbe_mac_82599EB) {
402 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
403 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
404 	} else {
405 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
406 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
407 	}
408 
409 	for (i = 0; i < 8; i++) {
410 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
411 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
412 		if (hw->mac.type >= ixgbe_mac_82599EB) {
413 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
414 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
415 		} else {
416 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
417 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
418 		}
419 	}
420 	if (hw->mac.type >= ixgbe_mac_82599EB)
421 		for (i = 0; i < 8; i++)
422 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
423 	IXGBE_READ_REG(hw, IXGBE_PRC64);
424 	IXGBE_READ_REG(hw, IXGBE_PRC127);
425 	IXGBE_READ_REG(hw, IXGBE_PRC255);
426 	IXGBE_READ_REG(hw, IXGBE_PRC511);
427 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
428 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
429 	IXGBE_READ_REG(hw, IXGBE_GPRC);
430 	IXGBE_READ_REG(hw, IXGBE_BPRC);
431 	IXGBE_READ_REG(hw, IXGBE_MPRC);
432 	IXGBE_READ_REG(hw, IXGBE_GPTC);
433 	IXGBE_READ_REG(hw, IXGBE_GORCL);
434 	IXGBE_READ_REG(hw, IXGBE_GORCH);
435 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
436 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
437 	if (hw->mac.type == ixgbe_mac_82598EB)
438 		for (i = 0; i < 8; i++)
439 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
440 	IXGBE_READ_REG(hw, IXGBE_RUC);
441 	IXGBE_READ_REG(hw, IXGBE_RFC);
442 	IXGBE_READ_REG(hw, IXGBE_ROC);
443 	IXGBE_READ_REG(hw, IXGBE_RJC);
444 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
445 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
446 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
447 	IXGBE_READ_REG(hw, IXGBE_TORL);
448 	IXGBE_READ_REG(hw, IXGBE_TORH);
449 	IXGBE_READ_REG(hw, IXGBE_TPR);
450 	IXGBE_READ_REG(hw, IXGBE_TPT);
451 	IXGBE_READ_REG(hw, IXGBE_PTC64);
452 	IXGBE_READ_REG(hw, IXGBE_PTC127);
453 	IXGBE_READ_REG(hw, IXGBE_PTC255);
454 	IXGBE_READ_REG(hw, IXGBE_PTC511);
455 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
456 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
457 	IXGBE_READ_REG(hw, IXGBE_MPTC);
458 	IXGBE_READ_REG(hw, IXGBE_BPTC);
459 	for (i = 0; i < 16; i++) {
460 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
461 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
462 		if (hw->mac.type >= ixgbe_mac_82599EB) {
463 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
464 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
465 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
466 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
467 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
468 		} else {
469 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
470 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
471 		}
472 	}
473 
474 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
475 		if (hw->phy.id == 0)
476 			hw->phy.ops.identify(hw);
477 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
478 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
479 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
480 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
481 	}
482 
483 	return 0;
484 }
485 
486 /**
487  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
488  *  @hw: pointer to hardware structure
489  *  @pba_num: stores the part number string from the EEPROM
490  *  @pba_num_size: part number string buffer length
491  *
492  *  Reads the part number string from the EEPROM.
493  **/
494 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
495 				  u32 pba_num_size)
496 {
497 	s32 ret_val;
498 	u16 data;
499 	u16 pba_ptr;
500 	u16 offset;
501 	u16 length;
502 
503 	if (pba_num == NULL) {
504 		hw_dbg(hw, "PBA string buffer was null\n");
505 		return IXGBE_ERR_INVALID_ARGUMENT;
506 	}
507 
508 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
509 	if (ret_val) {
510 		hw_dbg(hw, "NVM Read Error\n");
511 		return ret_val;
512 	}
513 
514 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
515 	if (ret_val) {
516 		hw_dbg(hw, "NVM Read Error\n");
517 		return ret_val;
518 	}
519 
520 	/*
521 	 * if data is not ptr guard the PBA must be in legacy format which
522 	 * means pba_ptr is actually our second data word for the PBA number
523 	 * and we can decode it into an ascii string
524 	 */
525 	if (data != IXGBE_PBANUM_PTR_GUARD) {
526 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
527 
528 		/* we will need 11 characters to store the PBA */
529 		if (pba_num_size < 11) {
530 			hw_dbg(hw, "PBA string buffer too small\n");
531 			return IXGBE_ERR_NO_SPACE;
532 		}
533 
534 		/* extract hex string from data and pba_ptr */
535 		pba_num[0] = (data >> 12) & 0xF;
536 		pba_num[1] = (data >> 8) & 0xF;
537 		pba_num[2] = (data >> 4) & 0xF;
538 		pba_num[3] = data & 0xF;
539 		pba_num[4] = (pba_ptr >> 12) & 0xF;
540 		pba_num[5] = (pba_ptr >> 8) & 0xF;
541 		pba_num[6] = '-';
542 		pba_num[7] = 0;
543 		pba_num[8] = (pba_ptr >> 4) & 0xF;
544 		pba_num[9] = pba_ptr & 0xF;
545 
546 		/* put a null character on the end of our string */
547 		pba_num[10] = '\0';
548 
549 		/* switch all the data but the '-' to hex char */
550 		for (offset = 0; offset < 10; offset++) {
551 			if (pba_num[offset] < 0xA)
552 				pba_num[offset] += '0';
553 			else if (pba_num[offset] < 0x10)
554 				pba_num[offset] += 'A' - 0xA;
555 		}
556 
557 		return 0;
558 	}
559 
560 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
561 	if (ret_val) {
562 		hw_dbg(hw, "NVM Read Error\n");
563 		return ret_val;
564 	}
565 
566 	if (length == 0xFFFF || length == 0) {
567 		hw_dbg(hw, "NVM PBA number section invalid length\n");
568 		return IXGBE_ERR_PBA_SECTION;
569 	}
570 
571 	/* check if pba_num buffer is big enough */
572 	if (pba_num_size  < (((u32)length * 2) - 1)) {
573 		hw_dbg(hw, "PBA string buffer too small\n");
574 		return IXGBE_ERR_NO_SPACE;
575 	}
576 
577 	/* trim pba length from start of string */
578 	pba_ptr++;
579 	length--;
580 
581 	for (offset = 0; offset < length; offset++) {
582 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
583 		if (ret_val) {
584 			hw_dbg(hw, "NVM Read Error\n");
585 			return ret_val;
586 		}
587 		pba_num[offset * 2] = (u8)(data >> 8);
588 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
589 	}
590 	pba_num[offset * 2] = '\0';
591 
592 	return 0;
593 }
594 
595 /**
596  *  ixgbe_get_mac_addr_generic - Generic get MAC address
597  *  @hw: pointer to hardware structure
598  *  @mac_addr: Adapter MAC address
599  *
600  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
601  *  A reset of the adapter must be performed prior to calling this function
602  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
603  **/
604 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
605 {
606 	u32 rar_high;
607 	u32 rar_low;
608 	u16 i;
609 
610 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
611 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
612 
613 	for (i = 0; i < 4; i++)
614 		mac_addr[i] = (u8)(rar_low >> (i*8));
615 
616 	for (i = 0; i < 2; i++)
617 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
618 
619 	return 0;
620 }
621 
622 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
623 {
624 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
625 	case IXGBE_PCI_LINK_WIDTH_1:
626 		return ixgbe_bus_width_pcie_x1;
627 	case IXGBE_PCI_LINK_WIDTH_2:
628 		return ixgbe_bus_width_pcie_x2;
629 	case IXGBE_PCI_LINK_WIDTH_4:
630 		return ixgbe_bus_width_pcie_x4;
631 	case IXGBE_PCI_LINK_WIDTH_8:
632 		return ixgbe_bus_width_pcie_x8;
633 	default:
634 		return ixgbe_bus_width_unknown;
635 	}
636 }
637 
638 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
639 {
640 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
641 	case IXGBE_PCI_LINK_SPEED_2500:
642 		return ixgbe_bus_speed_2500;
643 	case IXGBE_PCI_LINK_SPEED_5000:
644 		return ixgbe_bus_speed_5000;
645 	case IXGBE_PCI_LINK_SPEED_8000:
646 		return ixgbe_bus_speed_8000;
647 	default:
648 		return ixgbe_bus_speed_unknown;
649 	}
650 }
651 
652 /**
653  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
654  *  @hw: pointer to hardware structure
655  *
656  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
657  **/
658 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
659 {
660 	u16 link_status;
661 
662 	hw->bus.type = ixgbe_bus_type_pci_express;
663 
664 	/* Get the negotiated link width and speed from PCI config space */
665 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
666 
667 	hw->bus.width = ixgbe_convert_bus_width(link_status);
668 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
669 
670 	hw->mac.ops.set_lan_id(hw);
671 
672 	return 0;
673 }
674 
675 /**
676  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
677  *  @hw: pointer to the HW structure
678  *
679  *  Determines the LAN function id by reading memory-mapped registers
680  *  and swaps the port value if requested.
681  **/
682 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
683 {
684 	struct ixgbe_bus_info *bus = &hw->bus;
685 	u16 ee_ctrl_4;
686 	u32 reg;
687 
688 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
689 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
690 	bus->lan_id = bus->func;
691 
692 	/* check for a port swap */
693 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
694 	if (reg & IXGBE_FACTPS_LFS)
695 		bus->func ^= 0x1;
696 
697 	/* Get MAC instance from EEPROM for configuring CS4227 */
698 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
699 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
700 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
701 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
702 	}
703 }
704 
705 /**
706  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
707  *  @hw: pointer to hardware structure
708  *
709  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
710  *  disables transmit and receive units. The adapter_stopped flag is used by
711  *  the shared code and drivers to determine if the adapter is in a stopped
712  *  state and should not touch the hardware.
713  **/
714 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
715 {
716 	u32 reg_val;
717 	u16 i;
718 
719 	/*
720 	 * Set the adapter_stopped flag so other driver functions stop touching
721 	 * the hardware
722 	 */
723 	hw->adapter_stopped = true;
724 
725 	/* Disable the receive unit */
726 	hw->mac.ops.disable_rx(hw);
727 
728 	/* Clear interrupt mask to stop interrupts from being generated */
729 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
730 
731 	/* Clear any pending interrupts, flush previous writes */
732 	IXGBE_READ_REG(hw, IXGBE_EICR);
733 
734 	/* Disable the transmit unit.  Each queue must be disabled. */
735 	for (i = 0; i < hw->mac.max_tx_queues; i++)
736 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
737 
738 	/* Disable the receive unit by stopping each queue */
739 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
740 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
741 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
742 		reg_val |= IXGBE_RXDCTL_SWFLSH;
743 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
744 	}
745 
746 	/* flush all queues disables */
747 	IXGBE_WRITE_FLUSH(hw);
748 	usleep_range(1000, 2000);
749 
750 	/*
751 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
752 	 * access and verify no pending requests
753 	 */
754 	return ixgbe_disable_pcie_master(hw);
755 }
756 
757 /**
758  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
759  *  @hw: pointer to hardware structure
760  *  @index: led number to turn on
761  **/
762 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
763 {
764 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
765 
766 	/* To turn on the LED, set mode to ON. */
767 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
768 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
769 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
770 	IXGBE_WRITE_FLUSH(hw);
771 
772 	return 0;
773 }
774 
775 /**
776  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
777  *  @hw: pointer to hardware structure
778  *  @index: led number to turn off
779  **/
780 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
781 {
782 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
783 
784 	/* To turn off the LED, set mode to OFF. */
785 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
786 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
787 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
788 	IXGBE_WRITE_FLUSH(hw);
789 
790 	return 0;
791 }
792 
793 /**
794  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
795  *  @hw: pointer to hardware structure
796  *
797  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
798  *  ixgbe_hw struct in order to set up EEPROM access.
799  **/
800 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
801 {
802 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
803 	u32 eec;
804 	u16 eeprom_size;
805 
806 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
807 		eeprom->type = ixgbe_eeprom_none;
808 		/* Set default semaphore delay to 10ms which is a well
809 		 * tested value */
810 		eeprom->semaphore_delay = 10;
811 		/* Clear EEPROM page size, it will be initialized as needed */
812 		eeprom->word_page_size = 0;
813 
814 		/*
815 		 * Check for EEPROM present first.
816 		 * If not present leave as none
817 		 */
818 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
819 		if (eec & IXGBE_EEC_PRES) {
820 			eeprom->type = ixgbe_eeprom_spi;
821 
822 			/*
823 			 * SPI EEPROM is assumed here.  This code would need to
824 			 * change if a future EEPROM is not SPI.
825 			 */
826 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
827 					    IXGBE_EEC_SIZE_SHIFT);
828 			eeprom->word_size = BIT(eeprom_size +
829 						 IXGBE_EEPROM_WORD_SIZE_SHIFT);
830 		}
831 
832 		if (eec & IXGBE_EEC_ADDR_SIZE)
833 			eeprom->address_bits = 16;
834 		else
835 			eeprom->address_bits = 8;
836 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
837 		       eeprom->type, eeprom->word_size, eeprom->address_bits);
838 	}
839 
840 	return 0;
841 }
842 
843 /**
844  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
845  *  @hw: pointer to hardware structure
846  *  @offset: offset within the EEPROM to write
847  *  @words: number of words
848  *  @data: 16 bit word(s) to write to EEPROM
849  *
850  *  Reads 16 bit word(s) from EEPROM through bit-bang method
851  **/
852 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
853 					       u16 words, u16 *data)
854 {
855 	s32 status;
856 	u16 i, count;
857 
858 	hw->eeprom.ops.init_params(hw);
859 
860 	if (words == 0)
861 		return IXGBE_ERR_INVALID_ARGUMENT;
862 
863 	if (offset + words > hw->eeprom.word_size)
864 		return IXGBE_ERR_EEPROM;
865 
866 	/*
867 	 * The EEPROM page size cannot be queried from the chip. We do lazy
868 	 * initialization. It is worth to do that when we write large buffer.
869 	 */
870 	if ((hw->eeprom.word_page_size == 0) &&
871 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
872 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
873 
874 	/*
875 	 * We cannot hold synchronization semaphores for too long
876 	 * to avoid other entity starvation. However it is more efficient
877 	 * to read in bursts than synchronizing access for each word.
878 	 */
879 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
880 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
881 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
882 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
883 							    count, &data[i]);
884 
885 		if (status != 0)
886 			break;
887 	}
888 
889 	return status;
890 }
891 
892 /**
893  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
894  *  @hw: pointer to hardware structure
895  *  @offset: offset within the EEPROM to be written to
896  *  @words: number of word(s)
897  *  @data: 16 bit word(s) to be written to the EEPROM
898  *
899  *  If ixgbe_eeprom_update_checksum is not called after this function, the
900  *  EEPROM will most likely contain an invalid checksum.
901  **/
902 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
903 					      u16 words, u16 *data)
904 {
905 	s32 status;
906 	u16 word;
907 	u16 page_size;
908 	u16 i;
909 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
910 
911 	/* Prepare the EEPROM for writing  */
912 	status = ixgbe_acquire_eeprom(hw);
913 	if (status)
914 		return status;
915 
916 	if (ixgbe_ready_eeprom(hw) != 0) {
917 		ixgbe_release_eeprom(hw);
918 		return IXGBE_ERR_EEPROM;
919 	}
920 
921 	for (i = 0; i < words; i++) {
922 		ixgbe_standby_eeprom(hw);
923 
924 		/* Send the WRITE ENABLE command (8 bit opcode) */
925 		ixgbe_shift_out_eeprom_bits(hw,
926 					    IXGBE_EEPROM_WREN_OPCODE_SPI,
927 					    IXGBE_EEPROM_OPCODE_BITS);
928 
929 		ixgbe_standby_eeprom(hw);
930 
931 		/* Some SPI eeproms use the 8th address bit embedded
932 		 * in the opcode
933 		 */
934 		if ((hw->eeprom.address_bits == 8) &&
935 		    ((offset + i) >= 128))
936 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
937 
938 		/* Send the Write command (8-bit opcode + addr) */
939 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
940 					    IXGBE_EEPROM_OPCODE_BITS);
941 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
942 					    hw->eeprom.address_bits);
943 
944 		page_size = hw->eeprom.word_page_size;
945 
946 		/* Send the data in burst via SPI */
947 		do {
948 			word = data[i];
949 			word = (word >> 8) | (word << 8);
950 			ixgbe_shift_out_eeprom_bits(hw, word, 16);
951 
952 			if (page_size == 0)
953 				break;
954 
955 			/* do not wrap around page */
956 			if (((offset + i) & (page_size - 1)) ==
957 			    (page_size - 1))
958 				break;
959 		} while (++i < words);
960 
961 		ixgbe_standby_eeprom(hw);
962 		usleep_range(10000, 20000);
963 	}
964 	/* Done with writing - release the EEPROM */
965 	ixgbe_release_eeprom(hw);
966 
967 	return 0;
968 }
969 
970 /**
971  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
972  *  @hw: pointer to hardware structure
973  *  @offset: offset within the EEPROM to be written to
974  *  @data: 16 bit word to be written to the EEPROM
975  *
976  *  If ixgbe_eeprom_update_checksum is not called after this function, the
977  *  EEPROM will most likely contain an invalid checksum.
978  **/
979 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
980 {
981 	hw->eeprom.ops.init_params(hw);
982 
983 	if (offset >= hw->eeprom.word_size)
984 		return IXGBE_ERR_EEPROM;
985 
986 	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
987 }
988 
989 /**
990  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
991  *  @hw: pointer to hardware structure
992  *  @offset: offset within the EEPROM to be read
993  *  @words: number of word(s)
994  *  @data: read 16 bit words(s) from EEPROM
995  *
996  *  Reads 16 bit word(s) from EEPROM through bit-bang method
997  **/
998 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
999 					      u16 words, u16 *data)
1000 {
1001 	s32 status;
1002 	u16 i, count;
1003 
1004 	hw->eeprom.ops.init_params(hw);
1005 
1006 	if (words == 0)
1007 		return IXGBE_ERR_INVALID_ARGUMENT;
1008 
1009 	if (offset + words > hw->eeprom.word_size)
1010 		return IXGBE_ERR_EEPROM;
1011 
1012 	/*
1013 	 * We cannot hold synchronization semaphores for too long
1014 	 * to avoid other entity starvation. However it is more efficient
1015 	 * to read in bursts than synchronizing access for each word.
1016 	 */
1017 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1018 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1019 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1020 
1021 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1022 							   count, &data[i]);
1023 
1024 		if (status)
1025 			return status;
1026 	}
1027 
1028 	return 0;
1029 }
1030 
1031 /**
1032  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1033  *  @hw: pointer to hardware structure
1034  *  @offset: offset within the EEPROM to be read
1035  *  @words: number of word(s)
1036  *  @data: read 16 bit word(s) from EEPROM
1037  *
1038  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1039  **/
1040 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1041 					     u16 words, u16 *data)
1042 {
1043 	s32 status;
1044 	u16 word_in;
1045 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1046 	u16 i;
1047 
1048 	/* Prepare the EEPROM for reading  */
1049 	status = ixgbe_acquire_eeprom(hw);
1050 	if (status)
1051 		return status;
1052 
1053 	if (ixgbe_ready_eeprom(hw) != 0) {
1054 		ixgbe_release_eeprom(hw);
1055 		return IXGBE_ERR_EEPROM;
1056 	}
1057 
1058 	for (i = 0; i < words; i++) {
1059 		ixgbe_standby_eeprom(hw);
1060 		/* Some SPI eeproms use the 8th address bit embedded
1061 		 * in the opcode
1062 		 */
1063 		if ((hw->eeprom.address_bits == 8) &&
1064 		    ((offset + i) >= 128))
1065 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1066 
1067 		/* Send the READ command (opcode + addr) */
1068 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1069 					    IXGBE_EEPROM_OPCODE_BITS);
1070 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1071 					    hw->eeprom.address_bits);
1072 
1073 		/* Read the data. */
1074 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1075 		data[i] = (word_in >> 8) | (word_in << 8);
1076 	}
1077 
1078 	/* End this read operation */
1079 	ixgbe_release_eeprom(hw);
1080 
1081 	return 0;
1082 }
1083 
1084 /**
1085  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1086  *  @hw: pointer to hardware structure
1087  *  @offset: offset within the EEPROM to be read
1088  *  @data: read 16 bit value from EEPROM
1089  *
1090  *  Reads 16 bit value from EEPROM through bit-bang method
1091  **/
1092 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1093 				       u16 *data)
1094 {
1095 	hw->eeprom.ops.init_params(hw);
1096 
1097 	if (offset >= hw->eeprom.word_size)
1098 		return IXGBE_ERR_EEPROM;
1099 
1100 	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1101 }
1102 
1103 /**
1104  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1105  *  @hw: pointer to hardware structure
1106  *  @offset: offset of word in the EEPROM to read
1107  *  @words: number of word(s)
1108  *  @data: 16 bit word(s) from the EEPROM
1109  *
1110  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1111  **/
1112 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1113 				   u16 words, u16 *data)
1114 {
1115 	u32 eerd;
1116 	s32 status;
1117 	u32 i;
1118 
1119 	hw->eeprom.ops.init_params(hw);
1120 
1121 	if (words == 0)
1122 		return IXGBE_ERR_INVALID_ARGUMENT;
1123 
1124 	if (offset >= hw->eeprom.word_size)
1125 		return IXGBE_ERR_EEPROM;
1126 
1127 	for (i = 0; i < words; i++) {
1128 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1129 		       IXGBE_EEPROM_RW_REG_START;
1130 
1131 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1132 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1133 
1134 		if (status == 0) {
1135 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1136 				   IXGBE_EEPROM_RW_REG_DATA);
1137 		} else {
1138 			hw_dbg(hw, "Eeprom read timed out\n");
1139 			return status;
1140 		}
1141 	}
1142 
1143 	return 0;
1144 }
1145 
1146 /**
1147  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1148  *  @hw: pointer to hardware structure
1149  *  @offset: offset within the EEPROM to be used as a scratch pad
1150  *
1151  *  Discover EEPROM page size by writing marching data at given offset.
1152  *  This function is called only when we are writing a new large buffer
1153  *  at given offset so the data would be overwritten anyway.
1154  **/
1155 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1156 						 u16 offset)
1157 {
1158 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1159 	s32 status;
1160 	u16 i;
1161 
1162 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1163 		data[i] = i;
1164 
1165 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1166 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1167 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1168 	hw->eeprom.word_page_size = 0;
1169 	if (status)
1170 		return status;
1171 
1172 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1173 	if (status)
1174 		return status;
1175 
1176 	/*
1177 	 * When writing in burst more than the actual page size
1178 	 * EEPROM address wraps around current page.
1179 	 */
1180 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1181 
1182 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1183 	       hw->eeprom.word_page_size);
1184 	return 0;
1185 }
1186 
1187 /**
1188  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1189  *  @hw: pointer to hardware structure
1190  *  @offset: offset of  word in the EEPROM to read
1191  *  @data: word read from the EEPROM
1192  *
1193  *  Reads a 16 bit word from the EEPROM using the EERD register.
1194  **/
1195 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1196 {
1197 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1198 }
1199 
1200 /**
1201  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1202  *  @hw: pointer to hardware structure
1203  *  @offset: offset of  word in the EEPROM to write
1204  *  @words: number of words
1205  *  @data: word(s) write to the EEPROM
1206  *
1207  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1208  **/
1209 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1210 				    u16 words, u16 *data)
1211 {
1212 	u32 eewr;
1213 	s32 status;
1214 	u16 i;
1215 
1216 	hw->eeprom.ops.init_params(hw);
1217 
1218 	if (words == 0)
1219 		return IXGBE_ERR_INVALID_ARGUMENT;
1220 
1221 	if (offset >= hw->eeprom.word_size)
1222 		return IXGBE_ERR_EEPROM;
1223 
1224 	for (i = 0; i < words; i++) {
1225 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1226 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1227 		       IXGBE_EEPROM_RW_REG_START;
1228 
1229 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1230 		if (status) {
1231 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1232 			return status;
1233 		}
1234 
1235 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1236 
1237 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1238 		if (status) {
1239 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1240 			return status;
1241 		}
1242 	}
1243 
1244 	return 0;
1245 }
1246 
1247 /**
1248  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1249  *  @hw: pointer to hardware structure
1250  *  @offset: offset of  word in the EEPROM to write
1251  *  @data: word write to the EEPROM
1252  *
1253  *  Write a 16 bit word to the EEPROM using the EEWR register.
1254  **/
1255 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1256 {
1257 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1258 }
1259 
1260 /**
1261  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1262  *  @hw: pointer to hardware structure
1263  *  @ee_reg: EEPROM flag for polling
1264  *
1265  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1266  *  read or write is done respectively.
1267  **/
1268 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1269 {
1270 	u32 i;
1271 	u32 reg;
1272 
1273 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1274 		if (ee_reg == IXGBE_NVM_POLL_READ)
1275 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1276 		else
1277 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1278 
1279 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1280 			return 0;
1281 		}
1282 		udelay(5);
1283 	}
1284 	return IXGBE_ERR_EEPROM;
1285 }
1286 
1287 /**
1288  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1289  *  @hw: pointer to hardware structure
1290  *
1291  *  Prepares EEPROM for access using bit-bang method. This function should
1292  *  be called before issuing a command to the EEPROM.
1293  **/
1294 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1295 {
1296 	u32 eec;
1297 	u32 i;
1298 
1299 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1300 		return IXGBE_ERR_SWFW_SYNC;
1301 
1302 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1303 
1304 	/* Request EEPROM Access */
1305 	eec |= IXGBE_EEC_REQ;
1306 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1307 
1308 	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1309 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1310 		if (eec & IXGBE_EEC_GNT)
1311 			break;
1312 		udelay(5);
1313 	}
1314 
1315 	/* Release if grant not acquired */
1316 	if (!(eec & IXGBE_EEC_GNT)) {
1317 		eec &= ~IXGBE_EEC_REQ;
1318 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1319 		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1320 
1321 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1322 		return IXGBE_ERR_EEPROM;
1323 	}
1324 
1325 	/* Setup EEPROM for Read/Write */
1326 	/* Clear CS and SK */
1327 	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1328 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1329 	IXGBE_WRITE_FLUSH(hw);
1330 	udelay(1);
1331 	return 0;
1332 }
1333 
1334 /**
1335  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1336  *  @hw: pointer to hardware structure
1337  *
1338  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1339  **/
1340 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1341 {
1342 	u32 timeout = 2000;
1343 	u32 i;
1344 	u32 swsm;
1345 
1346 	/* Get SMBI software semaphore between device drivers first */
1347 	for (i = 0; i < timeout; i++) {
1348 		/*
1349 		 * If the SMBI bit is 0 when we read it, then the bit will be
1350 		 * set and we have the semaphore
1351 		 */
1352 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1353 		if (!(swsm & IXGBE_SWSM_SMBI))
1354 			break;
1355 		usleep_range(50, 100);
1356 	}
1357 
1358 	if (i == timeout) {
1359 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1360 		/* this release is particularly important because our attempts
1361 		 * above to get the semaphore may have succeeded, and if there
1362 		 * was a timeout, we should unconditionally clear the semaphore
1363 		 * bits to free the driver to make progress
1364 		 */
1365 		ixgbe_release_eeprom_semaphore(hw);
1366 
1367 		usleep_range(50, 100);
1368 		/* one last try
1369 		 * If the SMBI bit is 0 when we read it, then the bit will be
1370 		 * set and we have the semaphore
1371 		 */
1372 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1373 		if (swsm & IXGBE_SWSM_SMBI) {
1374 			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1375 			return IXGBE_ERR_EEPROM;
1376 		}
1377 	}
1378 
1379 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1380 	for (i = 0; i < timeout; i++) {
1381 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1382 
1383 		/* Set the SW EEPROM semaphore bit to request access */
1384 		swsm |= IXGBE_SWSM_SWESMBI;
1385 		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1386 
1387 		/* If we set the bit successfully then we got the
1388 		 * semaphore.
1389 		 */
1390 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1391 		if (swsm & IXGBE_SWSM_SWESMBI)
1392 			break;
1393 
1394 		usleep_range(50, 100);
1395 	}
1396 
1397 	/* Release semaphores and return error if SW EEPROM semaphore
1398 	 * was not granted because we don't have access to the EEPROM
1399 	 */
1400 	if (i >= timeout) {
1401 		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1402 		ixgbe_release_eeprom_semaphore(hw);
1403 		return IXGBE_ERR_EEPROM;
1404 	}
1405 
1406 	return 0;
1407 }
1408 
1409 /**
1410  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1411  *  @hw: pointer to hardware structure
1412  *
1413  *  This function clears hardware semaphore bits.
1414  **/
1415 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1416 {
1417 	u32 swsm;
1418 
1419 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1420 
1421 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1422 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1423 	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1424 	IXGBE_WRITE_FLUSH(hw);
1425 }
1426 
1427 /**
1428  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1429  *  @hw: pointer to hardware structure
1430  **/
1431 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1432 {
1433 	u16 i;
1434 	u8 spi_stat_reg;
1435 
1436 	/*
1437 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1438 	 * EEPROM will signal that the command has been completed by clearing
1439 	 * bit 0 of the internal status register.  If it's not cleared within
1440 	 * 5 milliseconds, then error out.
1441 	 */
1442 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1443 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1444 					    IXGBE_EEPROM_OPCODE_BITS);
1445 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1446 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1447 			break;
1448 
1449 		udelay(5);
1450 		ixgbe_standby_eeprom(hw);
1451 	}
1452 
1453 	/*
1454 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1455 	 * devices (and only 0-5mSec on 5V devices)
1456 	 */
1457 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1458 		hw_dbg(hw, "SPI EEPROM Status error\n");
1459 		return IXGBE_ERR_EEPROM;
1460 	}
1461 
1462 	return 0;
1463 }
1464 
1465 /**
1466  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1467  *  @hw: pointer to hardware structure
1468  **/
1469 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1470 {
1471 	u32 eec;
1472 
1473 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1474 
1475 	/* Toggle CS to flush commands */
1476 	eec |= IXGBE_EEC_CS;
1477 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1478 	IXGBE_WRITE_FLUSH(hw);
1479 	udelay(1);
1480 	eec &= ~IXGBE_EEC_CS;
1481 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1482 	IXGBE_WRITE_FLUSH(hw);
1483 	udelay(1);
1484 }
1485 
1486 /**
1487  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1488  *  @hw: pointer to hardware structure
1489  *  @data: data to send to the EEPROM
1490  *  @count: number of bits to shift out
1491  **/
1492 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1493 					u16 count)
1494 {
1495 	u32 eec;
1496 	u32 mask;
1497 	u32 i;
1498 
1499 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1500 
1501 	/*
1502 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1503 	 * one bit at a time.  Determine the starting bit based on count
1504 	 */
1505 	mask = BIT(count - 1);
1506 
1507 	for (i = 0; i < count; i++) {
1508 		/*
1509 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1510 		 * "1", and then raising and then lowering the clock (the SK
1511 		 * bit controls the clock input to the EEPROM).  A "0" is
1512 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1513 		 * raising and then lowering the clock.
1514 		 */
1515 		if (data & mask)
1516 			eec |= IXGBE_EEC_DI;
1517 		else
1518 			eec &= ~IXGBE_EEC_DI;
1519 
1520 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1521 		IXGBE_WRITE_FLUSH(hw);
1522 
1523 		udelay(1);
1524 
1525 		ixgbe_raise_eeprom_clk(hw, &eec);
1526 		ixgbe_lower_eeprom_clk(hw, &eec);
1527 
1528 		/*
1529 		 * Shift mask to signify next bit of data to shift in to the
1530 		 * EEPROM
1531 		 */
1532 		mask = mask >> 1;
1533 	}
1534 
1535 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1536 	eec &= ~IXGBE_EEC_DI;
1537 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1538 	IXGBE_WRITE_FLUSH(hw);
1539 }
1540 
1541 /**
1542  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1543  *  @hw: pointer to hardware structure
1544  **/
1545 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1546 {
1547 	u32 eec;
1548 	u32 i;
1549 	u16 data = 0;
1550 
1551 	/*
1552 	 * In order to read a register from the EEPROM, we need to shift
1553 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1554 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1555 	 * the value of the "DO" bit.  During this "shifting in" process the
1556 	 * "DI" bit should always be clear.
1557 	 */
1558 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1559 
1560 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1561 
1562 	for (i = 0; i < count; i++) {
1563 		data = data << 1;
1564 		ixgbe_raise_eeprom_clk(hw, &eec);
1565 
1566 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1567 
1568 		eec &= ~(IXGBE_EEC_DI);
1569 		if (eec & IXGBE_EEC_DO)
1570 			data |= 1;
1571 
1572 		ixgbe_lower_eeprom_clk(hw, &eec);
1573 	}
1574 
1575 	return data;
1576 }
1577 
1578 /**
1579  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1580  *  @hw: pointer to hardware structure
1581  *  @eec: EEC register's current value
1582  **/
1583 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1584 {
1585 	/*
1586 	 * Raise the clock input to the EEPROM
1587 	 * (setting the SK bit), then delay
1588 	 */
1589 	*eec = *eec | IXGBE_EEC_SK;
1590 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1591 	IXGBE_WRITE_FLUSH(hw);
1592 	udelay(1);
1593 }
1594 
1595 /**
1596  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1597  *  @hw: pointer to hardware structure
1598  *  @eecd: EECD's current value
1599  **/
1600 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1601 {
1602 	/*
1603 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1604 	 * delay
1605 	 */
1606 	*eec = *eec & ~IXGBE_EEC_SK;
1607 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1608 	IXGBE_WRITE_FLUSH(hw);
1609 	udelay(1);
1610 }
1611 
1612 /**
1613  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1614  *  @hw: pointer to hardware structure
1615  **/
1616 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1617 {
1618 	u32 eec;
1619 
1620 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1621 
1622 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1623 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1624 
1625 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1626 	IXGBE_WRITE_FLUSH(hw);
1627 
1628 	udelay(1);
1629 
1630 	/* Stop requesting EEPROM access */
1631 	eec &= ~IXGBE_EEC_REQ;
1632 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1633 
1634 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1635 
1636 	/*
1637 	 * Delay before attempt to obtain semaphore again to allow FW
1638 	 * access. semaphore_delay is in ms we need us for usleep_range
1639 	 */
1640 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1641 		     hw->eeprom.semaphore_delay * 2000);
1642 }
1643 
1644 /**
1645  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1646  *  @hw: pointer to hardware structure
1647  **/
1648 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1649 {
1650 	u16 i;
1651 	u16 j;
1652 	u16 checksum = 0;
1653 	u16 length = 0;
1654 	u16 pointer = 0;
1655 	u16 word = 0;
1656 
1657 	/* Include 0x0-0x3F in the checksum */
1658 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1659 		if (hw->eeprom.ops.read(hw, i, &word)) {
1660 			hw_dbg(hw, "EEPROM read failed\n");
1661 			break;
1662 		}
1663 		checksum += word;
1664 	}
1665 
1666 	/* Include all data from pointers except for the fw pointer */
1667 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1668 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1669 			hw_dbg(hw, "EEPROM read failed\n");
1670 			return IXGBE_ERR_EEPROM;
1671 		}
1672 
1673 		/* If the pointer seems invalid */
1674 		if (pointer == 0xFFFF || pointer == 0)
1675 			continue;
1676 
1677 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1678 			hw_dbg(hw, "EEPROM read failed\n");
1679 			return IXGBE_ERR_EEPROM;
1680 		}
1681 
1682 		if (length == 0xFFFF || length == 0)
1683 			continue;
1684 
1685 		for (j = pointer + 1; j <= pointer + length; j++) {
1686 			if (hw->eeprom.ops.read(hw, j, &word)) {
1687 				hw_dbg(hw, "EEPROM read failed\n");
1688 				return IXGBE_ERR_EEPROM;
1689 			}
1690 			checksum += word;
1691 		}
1692 	}
1693 
1694 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1695 
1696 	return (s32)checksum;
1697 }
1698 
1699 /**
1700  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1701  *  @hw: pointer to hardware structure
1702  *  @checksum_val: calculated checksum
1703  *
1704  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1705  *  caller does not need checksum_val, the value can be NULL.
1706  **/
1707 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1708 					   u16 *checksum_val)
1709 {
1710 	s32 status;
1711 	u16 checksum;
1712 	u16 read_checksum = 0;
1713 
1714 	/*
1715 	 * Read the first word from the EEPROM. If this times out or fails, do
1716 	 * not continue or we could be in for a very long wait while every
1717 	 * EEPROM read fails
1718 	 */
1719 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1720 	if (status) {
1721 		hw_dbg(hw, "EEPROM read failed\n");
1722 		return status;
1723 	}
1724 
1725 	status = hw->eeprom.ops.calc_checksum(hw);
1726 	if (status < 0)
1727 		return status;
1728 
1729 	checksum = (u16)(status & 0xffff);
1730 
1731 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1732 	if (status) {
1733 		hw_dbg(hw, "EEPROM read failed\n");
1734 		return status;
1735 	}
1736 
1737 	/* Verify read checksum from EEPROM is the same as
1738 	 * calculated checksum
1739 	 */
1740 	if (read_checksum != checksum)
1741 		status = IXGBE_ERR_EEPROM_CHECKSUM;
1742 
1743 	/* If the user cares, return the calculated checksum */
1744 	if (checksum_val)
1745 		*checksum_val = checksum;
1746 
1747 	return status;
1748 }
1749 
1750 /**
1751  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1752  *  @hw: pointer to hardware structure
1753  **/
1754 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1755 {
1756 	s32 status;
1757 	u16 checksum;
1758 
1759 	/*
1760 	 * Read the first word from the EEPROM. If this times out or fails, do
1761 	 * not continue or we could be in for a very long wait while every
1762 	 * EEPROM read fails
1763 	 */
1764 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1765 	if (status) {
1766 		hw_dbg(hw, "EEPROM read failed\n");
1767 		return status;
1768 	}
1769 
1770 	status = hw->eeprom.ops.calc_checksum(hw);
1771 	if (status < 0)
1772 		return status;
1773 
1774 	checksum = (u16)(status & 0xffff);
1775 
1776 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1777 
1778 	return status;
1779 }
1780 
1781 /**
1782  *  ixgbe_set_rar_generic - Set Rx address register
1783  *  @hw: pointer to hardware structure
1784  *  @index: Receive address register to write
1785  *  @addr: Address to put into receive address register
1786  *  @vmdq: VMDq "set" or "pool" index
1787  *  @enable_addr: set flag that address is active
1788  *
1789  *  Puts an ethernet address into a receive address register.
1790  **/
1791 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1792 			  u32 enable_addr)
1793 {
1794 	u32 rar_low, rar_high;
1795 	u32 rar_entries = hw->mac.num_rar_entries;
1796 
1797 	/* Make sure we are using a valid rar index range */
1798 	if (index >= rar_entries) {
1799 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1800 		return IXGBE_ERR_INVALID_ARGUMENT;
1801 	}
1802 
1803 	/* setup VMDq pool selection before this RAR gets enabled */
1804 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1805 
1806 	/*
1807 	 * HW expects these in little endian so we reverse the byte
1808 	 * order from network order (big endian) to little endian
1809 	 */
1810 	rar_low = ((u32)addr[0] |
1811 		   ((u32)addr[1] << 8) |
1812 		   ((u32)addr[2] << 16) |
1813 		   ((u32)addr[3] << 24));
1814 	/*
1815 	 * Some parts put the VMDq setting in the extra RAH bits,
1816 	 * so save everything except the lower 16 bits that hold part
1817 	 * of the address and the address valid bit.
1818 	 */
1819 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1820 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1821 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1822 
1823 	if (enable_addr != 0)
1824 		rar_high |= IXGBE_RAH_AV;
1825 
1826 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1827 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1828 
1829 	return 0;
1830 }
1831 
1832 /**
1833  *  ixgbe_clear_rar_generic - Remove Rx address register
1834  *  @hw: pointer to hardware structure
1835  *  @index: Receive address register to write
1836  *
1837  *  Clears an ethernet address from a receive address register.
1838  **/
1839 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1840 {
1841 	u32 rar_high;
1842 	u32 rar_entries = hw->mac.num_rar_entries;
1843 
1844 	/* Make sure we are using a valid rar index range */
1845 	if (index >= rar_entries) {
1846 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1847 		return IXGBE_ERR_INVALID_ARGUMENT;
1848 	}
1849 
1850 	/*
1851 	 * Some parts put the VMDq setting in the extra RAH bits,
1852 	 * so save everything except the lower 16 bits that hold part
1853 	 * of the address and the address valid bit.
1854 	 */
1855 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1856 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1857 
1858 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1859 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1860 
1861 	/* clear VMDq pool/queue selection for this RAR */
1862 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1863 
1864 	return 0;
1865 }
1866 
1867 /**
1868  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1869  *  @hw: pointer to hardware structure
1870  *
1871  *  Places the MAC address in receive address register 0 and clears the rest
1872  *  of the receive address registers. Clears the multicast table. Assumes
1873  *  the receiver is in reset when the routine is called.
1874  **/
1875 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1876 {
1877 	u32 i;
1878 	u32 rar_entries = hw->mac.num_rar_entries;
1879 
1880 	/*
1881 	 * If the current mac address is valid, assume it is a software override
1882 	 * to the permanent address.
1883 	 * Otherwise, use the permanent address from the eeprom.
1884 	 */
1885 	if (!is_valid_ether_addr(hw->mac.addr)) {
1886 		/* Get the MAC address from the RAR0 for later reference */
1887 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1888 
1889 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1890 	} else {
1891 		/* Setup the receive address. */
1892 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1893 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1894 
1895 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1896 	}
1897 
1898 	/*  clear VMDq pool/queue selection for RAR 0 */
1899 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1900 
1901 	hw->addr_ctrl.overflow_promisc = 0;
1902 
1903 	hw->addr_ctrl.rar_used_count = 1;
1904 
1905 	/* Zero out the other receive addresses. */
1906 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1907 	for (i = 1; i < rar_entries; i++) {
1908 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1909 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1910 	}
1911 
1912 	/* Clear the MTA */
1913 	hw->addr_ctrl.mta_in_use = 0;
1914 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1915 
1916 	hw_dbg(hw, " Clearing MTA\n");
1917 	for (i = 0; i < hw->mac.mcft_size; i++)
1918 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1919 
1920 	if (hw->mac.ops.init_uta_tables)
1921 		hw->mac.ops.init_uta_tables(hw);
1922 
1923 	return 0;
1924 }
1925 
1926 /**
1927  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1928  *  @hw: pointer to hardware structure
1929  *  @mc_addr: the multicast address
1930  *
1931  *  Extracts the 12 bits, from a multicast address, to determine which
1932  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1933  *  incoming rx multicast addresses, to determine the bit-vector to check in
1934  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1935  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1936  *  to mc_filter_type.
1937  **/
1938 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1939 {
1940 	u32 vector = 0;
1941 
1942 	switch (hw->mac.mc_filter_type) {
1943 	case 0:   /* use bits [47:36] of the address */
1944 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1945 		break;
1946 	case 1:   /* use bits [46:35] of the address */
1947 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1948 		break;
1949 	case 2:   /* use bits [45:34] of the address */
1950 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1951 		break;
1952 	case 3:   /* use bits [43:32] of the address */
1953 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1954 		break;
1955 	default:  /* Invalid mc_filter_type */
1956 		hw_dbg(hw, "MC filter type param set incorrectly\n");
1957 		break;
1958 	}
1959 
1960 	/* vector can only be 12-bits or boundary will be exceeded */
1961 	vector &= 0xFFF;
1962 	return vector;
1963 }
1964 
1965 /**
1966  *  ixgbe_set_mta - Set bit-vector in multicast table
1967  *  @hw: pointer to hardware structure
1968  *  @hash_value: Multicast address hash value
1969  *
1970  *  Sets the bit-vector in the multicast table.
1971  **/
1972 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1973 {
1974 	u32 vector;
1975 	u32 vector_bit;
1976 	u32 vector_reg;
1977 
1978 	hw->addr_ctrl.mta_in_use++;
1979 
1980 	vector = ixgbe_mta_vector(hw, mc_addr);
1981 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1982 
1983 	/*
1984 	 * The MTA is a register array of 128 32-bit registers. It is treated
1985 	 * like an array of 4096 bits.  We want to set bit
1986 	 * BitArray[vector_value]. So we figure out what register the bit is
1987 	 * in, read it, OR in the new bit, then write back the new value.  The
1988 	 * register is determined by the upper 7 bits of the vector value and
1989 	 * the bit within that register are determined by the lower 5 bits of
1990 	 * the value.
1991 	 */
1992 	vector_reg = (vector >> 5) & 0x7F;
1993 	vector_bit = vector & 0x1F;
1994 	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
1995 }
1996 
1997 /**
1998  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1999  *  @hw: pointer to hardware structure
2000  *  @netdev: pointer to net device structure
2001  *
2002  *  The given list replaces any existing list. Clears the MC addrs from receive
2003  *  address registers and the multicast table. Uses unused receive address
2004  *  registers for the first multicast addresses, and hashes the rest into the
2005  *  multicast table.
2006  **/
2007 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2008 				      struct net_device *netdev)
2009 {
2010 	struct netdev_hw_addr *ha;
2011 	u32 i;
2012 
2013 	/*
2014 	 * Set the new number of MC addresses that we are being requested to
2015 	 * use.
2016 	 */
2017 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2018 	hw->addr_ctrl.mta_in_use = 0;
2019 
2020 	/* Clear mta_shadow */
2021 	hw_dbg(hw, " Clearing MTA\n");
2022 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2023 
2024 	/* Update mta shadow */
2025 	netdev_for_each_mc_addr(ha, netdev) {
2026 		hw_dbg(hw, " Adding the multicast addresses:\n");
2027 		ixgbe_set_mta(hw, ha->addr);
2028 	}
2029 
2030 	/* Enable mta */
2031 	for (i = 0; i < hw->mac.mcft_size; i++)
2032 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2033 				      hw->mac.mta_shadow[i]);
2034 
2035 	if (hw->addr_ctrl.mta_in_use > 0)
2036 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2037 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2038 
2039 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2040 	return 0;
2041 }
2042 
2043 /**
2044  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2045  *  @hw: pointer to hardware structure
2046  *
2047  *  Enables multicast address in RAR and the use of the multicast hash table.
2048  **/
2049 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2050 {
2051 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2052 
2053 	if (a->mta_in_use > 0)
2054 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2055 				hw->mac.mc_filter_type);
2056 
2057 	return 0;
2058 }
2059 
2060 /**
2061  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2062  *  @hw: pointer to hardware structure
2063  *
2064  *  Disables multicast address in RAR and the use of the multicast hash table.
2065  **/
2066 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2067 {
2068 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2069 
2070 	if (a->mta_in_use > 0)
2071 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2072 
2073 	return 0;
2074 }
2075 
2076 /**
2077  *  ixgbe_fc_enable_generic - Enable flow control
2078  *  @hw: pointer to hardware structure
2079  *
2080  *  Enable flow control according to the current settings.
2081  **/
2082 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2083 {
2084 	u32 mflcn_reg, fccfg_reg;
2085 	u32 reg;
2086 	u32 fcrtl, fcrth;
2087 	int i;
2088 
2089 	/* Validate the water mark configuration. */
2090 	if (!hw->fc.pause_time)
2091 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2092 
2093 	/* Low water mark of zero causes XOFF floods */
2094 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2095 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2096 		    hw->fc.high_water[i]) {
2097 			if (!hw->fc.low_water[i] ||
2098 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2099 				hw_dbg(hw, "Invalid water mark configuration\n");
2100 				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2101 			}
2102 		}
2103 	}
2104 
2105 	/* Negotiate the fc mode to use */
2106 	ixgbe_fc_autoneg(hw);
2107 
2108 	/* Disable any previous flow control settings */
2109 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2110 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2111 
2112 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2113 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2114 
2115 	/*
2116 	 * The possible values of fc.current_mode are:
2117 	 * 0: Flow control is completely disabled
2118 	 * 1: Rx flow control is enabled (we can receive pause frames,
2119 	 *    but not send pause frames).
2120 	 * 2: Tx flow control is enabled (we can send pause frames but
2121 	 *    we do not support receiving pause frames).
2122 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2123 	 * other: Invalid.
2124 	 */
2125 	switch (hw->fc.current_mode) {
2126 	case ixgbe_fc_none:
2127 		/*
2128 		 * Flow control is disabled by software override or autoneg.
2129 		 * The code below will actually disable it in the HW.
2130 		 */
2131 		break;
2132 	case ixgbe_fc_rx_pause:
2133 		/*
2134 		 * Rx Flow control is enabled and Tx Flow control is
2135 		 * disabled by software override. Since there really
2136 		 * isn't a way to advertise that we are capable of RX
2137 		 * Pause ONLY, we will advertise that we support both
2138 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2139 		 * disable the adapter's ability to send PAUSE frames.
2140 		 */
2141 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2142 		break;
2143 	case ixgbe_fc_tx_pause:
2144 		/*
2145 		 * Tx Flow control is enabled, and Rx Flow control is
2146 		 * disabled by software override.
2147 		 */
2148 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2149 		break;
2150 	case ixgbe_fc_full:
2151 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2152 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2153 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2154 		break;
2155 	default:
2156 		hw_dbg(hw, "Flow control param set incorrectly\n");
2157 		return IXGBE_ERR_CONFIG;
2158 	}
2159 
2160 	/* Set 802.3x based flow control settings. */
2161 	mflcn_reg |= IXGBE_MFLCN_DPF;
2162 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2163 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2164 
2165 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2166 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2167 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2168 		    hw->fc.high_water[i]) {
2169 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2170 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2171 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2172 		} else {
2173 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2174 			/*
2175 			 * In order to prevent Tx hangs when the internal Tx
2176 			 * switch is enabled we must set the high water mark
2177 			 * to the Rx packet buffer size - 24KB.  This allows
2178 			 * the Tx switch to function even under heavy Rx
2179 			 * workloads.
2180 			 */
2181 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2182 		}
2183 
2184 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2185 	}
2186 
2187 	/* Configure pause time (2 TCs per register) */
2188 	reg = hw->fc.pause_time * 0x00010001;
2189 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2190 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2191 
2192 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2193 
2194 	return 0;
2195 }
2196 
2197 /**
2198  *  ixgbe_negotiate_fc - Negotiate flow control
2199  *  @hw: pointer to hardware structure
2200  *  @adv_reg: flow control advertised settings
2201  *  @lp_reg: link partner's flow control settings
2202  *  @adv_sym: symmetric pause bit in advertisement
2203  *  @adv_asm: asymmetric pause bit in advertisement
2204  *  @lp_sym: symmetric pause bit in link partner advertisement
2205  *  @lp_asm: asymmetric pause bit in link partner advertisement
2206  *
2207  *  Find the intersection between advertised settings and link partner's
2208  *  advertised settings
2209  **/
2210 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2211 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2212 {
2213 	if ((!(adv_reg)) ||  (!(lp_reg)))
2214 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2215 
2216 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2217 		/*
2218 		 * Now we need to check if the user selected Rx ONLY
2219 		 * of pause frames.  In this case, we had to advertise
2220 		 * FULL flow control because we could not advertise RX
2221 		 * ONLY. Hence, we must now check to see if we need to
2222 		 * turn OFF the TRANSMISSION of PAUSE frames.
2223 		 */
2224 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2225 			hw->fc.current_mode = ixgbe_fc_full;
2226 			hw_dbg(hw, "Flow Control = FULL.\n");
2227 		} else {
2228 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2229 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2230 		}
2231 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2232 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2233 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2234 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2235 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2236 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2237 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2238 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2239 	} else {
2240 		hw->fc.current_mode = ixgbe_fc_none;
2241 		hw_dbg(hw, "Flow Control = NONE.\n");
2242 	}
2243 	return 0;
2244 }
2245 
2246 /**
2247  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2248  *  @hw: pointer to hardware structure
2249  *
2250  *  Enable flow control according on 1 gig fiber.
2251  **/
2252 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2253 {
2254 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2255 	s32 ret_val;
2256 
2257 	/*
2258 	 * On multispeed fiber at 1g, bail out if
2259 	 * - link is up but AN did not complete, or if
2260 	 * - link is up and AN completed but timed out
2261 	 */
2262 
2263 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2264 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2265 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2266 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2267 
2268 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2269 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2270 
2271 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2272 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2273 			       IXGBE_PCS1GANA_ASM_PAUSE,
2274 			       IXGBE_PCS1GANA_SYM_PAUSE,
2275 			       IXGBE_PCS1GANA_ASM_PAUSE);
2276 
2277 	return ret_val;
2278 }
2279 
2280 /**
2281  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2282  *  @hw: pointer to hardware structure
2283  *
2284  *  Enable flow control according to IEEE clause 37.
2285  **/
2286 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2287 {
2288 	u32 links2, anlp1_reg, autoc_reg, links;
2289 	s32 ret_val;
2290 
2291 	/*
2292 	 * On backplane, bail out if
2293 	 * - backplane autoneg was not completed, or if
2294 	 * - we are 82599 and link partner is not AN enabled
2295 	 */
2296 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2297 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2298 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2299 
2300 	if (hw->mac.type == ixgbe_mac_82599EB) {
2301 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2302 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2303 			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2304 	}
2305 	/*
2306 	 * Read the 10g AN autoc and LP ability registers and resolve
2307 	 * local flow control settings accordingly
2308 	 */
2309 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2310 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2311 
2312 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2313 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2314 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2315 
2316 	return ret_val;
2317 }
2318 
2319 /**
2320  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2321  *  @hw: pointer to hardware structure
2322  *
2323  *  Enable flow control according to IEEE clause 37.
2324  **/
2325 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2326 {
2327 	u16 technology_ability_reg = 0;
2328 	u16 lp_technology_ability_reg = 0;
2329 
2330 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2331 			     MDIO_MMD_AN,
2332 			     &technology_ability_reg);
2333 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2334 			     MDIO_MMD_AN,
2335 			     &lp_technology_ability_reg);
2336 
2337 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2338 				  (u32)lp_technology_ability_reg,
2339 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2340 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2341 }
2342 
2343 /**
2344  *  ixgbe_fc_autoneg - Configure flow control
2345  *  @hw: pointer to hardware structure
2346  *
2347  *  Compares our advertised flow control capabilities to those advertised by
2348  *  our link partner, and determines the proper flow control mode to use.
2349  **/
2350 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2351 {
2352 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2353 	ixgbe_link_speed speed;
2354 	bool link_up;
2355 
2356 	/*
2357 	 * AN should have completed when the cable was plugged in.
2358 	 * Look for reasons to bail out.  Bail out if:
2359 	 * - FC autoneg is disabled, or if
2360 	 * - link is not up.
2361 	 *
2362 	 * Since we're being called from an LSC, link is already known to be up.
2363 	 * So use link_up_wait_to_complete=false.
2364 	 */
2365 	if (hw->fc.disable_fc_autoneg)
2366 		goto out;
2367 
2368 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2369 	if (!link_up)
2370 		goto out;
2371 
2372 	switch (hw->phy.media_type) {
2373 	/* Autoneg flow control on fiber adapters */
2374 	case ixgbe_media_type_fiber:
2375 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2376 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2377 		break;
2378 
2379 	/* Autoneg flow control on backplane adapters */
2380 	case ixgbe_media_type_backplane:
2381 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2382 		break;
2383 
2384 	/* Autoneg flow control on copper adapters */
2385 	case ixgbe_media_type_copper:
2386 		if (ixgbe_device_supports_autoneg_fc(hw))
2387 			ret_val = ixgbe_fc_autoneg_copper(hw);
2388 		break;
2389 
2390 	default:
2391 		break;
2392 	}
2393 
2394 out:
2395 	if (ret_val == 0) {
2396 		hw->fc.fc_was_autonegged = true;
2397 	} else {
2398 		hw->fc.fc_was_autonegged = false;
2399 		hw->fc.current_mode = hw->fc.requested_mode;
2400 	}
2401 }
2402 
2403 /**
2404  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2405  * @hw: pointer to hardware structure
2406  *
2407  * System-wide timeout range is encoded in PCIe Device Control2 register.
2408  *
2409  *  Add 10% to specified maximum and return the number of times to poll for
2410  *  completion timeout, in units of 100 microsec.  Never return less than
2411  *  800 = 80 millisec.
2412  **/
2413 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2414 {
2415 	s16 devctl2;
2416 	u32 pollcnt;
2417 
2418 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2419 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2420 
2421 	switch (devctl2) {
2422 	case IXGBE_PCIDEVCTRL2_65_130ms:
2423 		 pollcnt = 1300;         /* 130 millisec */
2424 		break;
2425 	case IXGBE_PCIDEVCTRL2_260_520ms:
2426 		pollcnt = 5200;         /* 520 millisec */
2427 		break;
2428 	case IXGBE_PCIDEVCTRL2_1_2s:
2429 		pollcnt = 20000;        /* 2 sec */
2430 		break;
2431 	case IXGBE_PCIDEVCTRL2_4_8s:
2432 		pollcnt = 80000;        /* 8 sec */
2433 		break;
2434 	case IXGBE_PCIDEVCTRL2_17_34s:
2435 		pollcnt = 34000;        /* 34 sec */
2436 		break;
2437 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2438 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2439 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2440 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2441 	default:
2442 		pollcnt = 800;          /* 80 millisec minimum */
2443 		break;
2444 	}
2445 
2446 	/* add 10% to spec maximum */
2447 	return (pollcnt * 11) / 10;
2448 }
2449 
2450 /**
2451  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2452  *  @hw: pointer to hardware structure
2453  *
2454  *  Disables PCI-Express master access and verifies there are no pending
2455  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2456  *  bit hasn't caused the master requests to be disabled, else 0
2457  *  is returned signifying master requests disabled.
2458  **/
2459 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2460 {
2461 	u32 i, poll;
2462 	u16 value;
2463 
2464 	/* Always set this bit to ensure any future transactions are blocked */
2465 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2466 
2467 	/* Poll for bit to read as set */
2468 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2469 		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2470 			break;
2471 		usleep_range(100, 120);
2472 	}
2473 	if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2474 		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2475 		goto gio_disable_fail;
2476 	}
2477 
2478 	/* Exit if master requests are blocked */
2479 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2480 	    ixgbe_removed(hw->hw_addr))
2481 		return 0;
2482 
2483 	/* Poll for master request bit to clear */
2484 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2485 		udelay(100);
2486 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2487 			return 0;
2488 	}
2489 
2490 	/*
2491 	 * Two consecutive resets are required via CTRL.RST per datasheet
2492 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2493 	 * of this need.  The first reset prevents new master requests from
2494 	 * being issued by our device.  We then must wait 1usec or more for any
2495 	 * remaining completions from the PCIe bus to trickle in, and then reset
2496 	 * again to clear out any effects they may have had on our device.
2497 	 */
2498 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2499 gio_disable_fail:
2500 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2501 
2502 	if (hw->mac.type >= ixgbe_mac_X550)
2503 		return 0;
2504 
2505 	/*
2506 	 * Before proceeding, make sure that the PCIe block does not have
2507 	 * transactions pending.
2508 	 */
2509 	poll = ixgbe_pcie_timeout_poll(hw);
2510 	for (i = 0; i < poll; i++) {
2511 		udelay(100);
2512 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2513 		if (ixgbe_removed(hw->hw_addr))
2514 			return 0;
2515 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2516 			return 0;
2517 	}
2518 
2519 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2520 	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2521 }
2522 
2523 /**
2524  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2525  *  @hw: pointer to hardware structure
2526  *  @mask: Mask to specify which semaphore to acquire
2527  *
2528  *  Acquires the SWFW semaphore through the GSSR register for the specified
2529  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2530  **/
2531 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2532 {
2533 	u32 gssr = 0;
2534 	u32 swmask = mask;
2535 	u32 fwmask = mask << 5;
2536 	u32 timeout = 200;
2537 	u32 i;
2538 
2539 	for (i = 0; i < timeout; i++) {
2540 		/*
2541 		 * SW NVM semaphore bit is used for access to all
2542 		 * SW_FW_SYNC bits (not just NVM)
2543 		 */
2544 		if (ixgbe_get_eeprom_semaphore(hw))
2545 			return IXGBE_ERR_SWFW_SYNC;
2546 
2547 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2548 		if (!(gssr & (fwmask | swmask))) {
2549 			gssr |= swmask;
2550 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2551 			ixgbe_release_eeprom_semaphore(hw);
2552 			return 0;
2553 		} else {
2554 			/* Resource is currently in use by FW or SW */
2555 			ixgbe_release_eeprom_semaphore(hw);
2556 			usleep_range(5000, 10000);
2557 		}
2558 	}
2559 
2560 	/* If time expired clear the bits holding the lock and retry */
2561 	if (gssr & (fwmask | swmask))
2562 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2563 
2564 	usleep_range(5000, 10000);
2565 	return IXGBE_ERR_SWFW_SYNC;
2566 }
2567 
2568 /**
2569  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2570  *  @hw: pointer to hardware structure
2571  *  @mask: Mask to specify which semaphore to release
2572  *
2573  *  Releases the SWFW semaphore through the GSSR register for the specified
2574  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2575  **/
2576 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2577 {
2578 	u32 gssr;
2579 	u32 swmask = mask;
2580 
2581 	ixgbe_get_eeprom_semaphore(hw);
2582 
2583 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2584 	gssr &= ~swmask;
2585 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2586 
2587 	ixgbe_release_eeprom_semaphore(hw);
2588 }
2589 
2590 /**
2591  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2592  * @hw: pointer to hardware structure
2593  * @reg_val: Value we read from AUTOC
2594  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2595  *	    true in this the generic case.
2596  *
2597  * The default case requires no protection so just to the register read.
2598  **/
2599 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2600 {
2601 	*locked = false;
2602 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2603 	return 0;
2604 }
2605 
2606 /**
2607  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2608  * @hw: pointer to hardware structure
2609  * @reg_val: value to write to AUTOC
2610  * @locked: bool to indicate whether the SW/FW lock was already taken by
2611  *	    previous read.
2612  **/
2613 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2614 {
2615 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2616 	return 0;
2617 }
2618 
2619 /**
2620  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2621  *  @hw: pointer to hardware structure
2622  *
2623  *  Stops the receive data path and waits for the HW to internally
2624  *  empty the Rx security block.
2625  **/
2626 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2627 {
2628 #define IXGBE_MAX_SECRX_POLL 40
2629 	int i;
2630 	int secrxreg;
2631 
2632 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2633 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2634 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2635 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2636 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2637 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2638 			break;
2639 		else
2640 			/* Use interrupt-safe sleep just in case */
2641 			udelay(1000);
2642 	}
2643 
2644 	/* For informational purposes only */
2645 	if (i >= IXGBE_MAX_SECRX_POLL)
2646 		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2647 
2648 	return 0;
2649 
2650 }
2651 
2652 /**
2653  *  ixgbe_enable_rx_buff - Enables the receive data path
2654  *  @hw: pointer to hardware structure
2655  *
2656  *  Enables the receive data path
2657  **/
2658 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2659 {
2660 	int secrxreg;
2661 
2662 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2663 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2664 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2665 	IXGBE_WRITE_FLUSH(hw);
2666 
2667 	return 0;
2668 }
2669 
2670 /**
2671  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2672  *  @hw: pointer to hardware structure
2673  *  @regval: register value to write to RXCTRL
2674  *
2675  *  Enables the Rx DMA unit
2676  **/
2677 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2678 {
2679 	if (regval & IXGBE_RXCTRL_RXEN)
2680 		hw->mac.ops.enable_rx(hw);
2681 	else
2682 		hw->mac.ops.disable_rx(hw);
2683 
2684 	return 0;
2685 }
2686 
2687 /**
2688  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2689  *  @hw: pointer to hardware structure
2690  *  @index: led number to blink
2691  **/
2692 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2693 {
2694 	ixgbe_link_speed speed = 0;
2695 	bool link_up = false;
2696 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2697 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2698 	bool locked = false;
2699 	s32 ret_val;
2700 
2701 	/*
2702 	 * Link must be up to auto-blink the LEDs;
2703 	 * Force it if link is down.
2704 	 */
2705 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2706 
2707 	if (!link_up) {
2708 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2709 		if (ret_val)
2710 			return ret_val;
2711 
2712 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2713 		autoc_reg |= IXGBE_AUTOC_FLU;
2714 
2715 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2716 		if (ret_val)
2717 			return ret_val;
2718 
2719 		IXGBE_WRITE_FLUSH(hw);
2720 
2721 		usleep_range(10000, 20000);
2722 	}
2723 
2724 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2725 	led_reg |= IXGBE_LED_BLINK(index);
2726 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2727 	IXGBE_WRITE_FLUSH(hw);
2728 
2729 	return 0;
2730 }
2731 
2732 /**
2733  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2734  *  @hw: pointer to hardware structure
2735  *  @index: led number to stop blinking
2736  **/
2737 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2738 {
2739 	u32 autoc_reg = 0;
2740 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2741 	bool locked = false;
2742 	s32 ret_val;
2743 
2744 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2745 	if (ret_val)
2746 		return ret_val;
2747 
2748 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2749 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2750 
2751 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2752 	if (ret_val)
2753 		return ret_val;
2754 
2755 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2756 	led_reg &= ~IXGBE_LED_BLINK(index);
2757 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2758 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2759 	IXGBE_WRITE_FLUSH(hw);
2760 
2761 	return 0;
2762 }
2763 
2764 /**
2765  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2766  *  @hw: pointer to hardware structure
2767  *  @san_mac_offset: SAN MAC address offset
2768  *
2769  *  This function will read the EEPROM location for the SAN MAC address
2770  *  pointer, and returns the value at that location.  This is used in both
2771  *  get and set mac_addr routines.
2772  **/
2773 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2774 					u16 *san_mac_offset)
2775 {
2776 	s32 ret_val;
2777 
2778 	/*
2779 	 * First read the EEPROM pointer to see if the MAC addresses are
2780 	 * available.
2781 	 */
2782 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2783 				      san_mac_offset);
2784 	if (ret_val)
2785 		hw_err(hw, "eeprom read at offset %d failed\n",
2786 		       IXGBE_SAN_MAC_ADDR_PTR);
2787 
2788 	return ret_val;
2789 }
2790 
2791 /**
2792  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2793  *  @hw: pointer to hardware structure
2794  *  @san_mac_addr: SAN MAC address
2795  *
2796  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2797  *  per-port, so set_lan_id() must be called before reading the addresses.
2798  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2799  *  upon for non-SFP connections, so we must call it here.
2800  **/
2801 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2802 {
2803 	u16 san_mac_data, san_mac_offset;
2804 	u8 i;
2805 	s32 ret_val;
2806 
2807 	/*
2808 	 * First read the EEPROM pointer to see if the MAC addresses are
2809 	 * available.  If they're not, no point in calling set_lan_id() here.
2810 	 */
2811 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2812 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2813 
2814 		goto san_mac_addr_clr;
2815 
2816 	/* make sure we know which port we need to program */
2817 	hw->mac.ops.set_lan_id(hw);
2818 	/* apply the port offset to the address offset */
2819 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2820 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2821 	for (i = 0; i < 3; i++) {
2822 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2823 					      &san_mac_data);
2824 		if (ret_val) {
2825 			hw_err(hw, "eeprom read at offset %d failed\n",
2826 			       san_mac_offset);
2827 			goto san_mac_addr_clr;
2828 		}
2829 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2830 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2831 		san_mac_offset++;
2832 	}
2833 	return 0;
2834 
2835 san_mac_addr_clr:
2836 	/* No addresses available in this EEPROM.  It's not necessarily an
2837 	 * error though, so just wipe the local address and return.
2838 	 */
2839 	for (i = 0; i < 6; i++)
2840 		san_mac_addr[i] = 0xFF;
2841 	return ret_val;
2842 }
2843 
2844 /**
2845  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2846  *  @hw: pointer to hardware structure
2847  *
2848  *  Read PCIe configuration space, and get the MSI-X vector count from
2849  *  the capabilities table.
2850  **/
2851 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2852 {
2853 	u16 msix_count;
2854 	u16 max_msix_count;
2855 	u16 pcie_offset;
2856 
2857 	switch (hw->mac.type) {
2858 	case ixgbe_mac_82598EB:
2859 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2860 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2861 		break;
2862 	case ixgbe_mac_82599EB:
2863 	case ixgbe_mac_X540:
2864 	case ixgbe_mac_X550:
2865 	case ixgbe_mac_X550EM_x:
2866 	case ixgbe_mac_x550em_a:
2867 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2868 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2869 		break;
2870 	default:
2871 		return 1;
2872 	}
2873 
2874 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2875 	if (ixgbe_removed(hw->hw_addr))
2876 		msix_count = 0;
2877 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2878 
2879 	/* MSI-X count is zero-based in HW */
2880 	msix_count++;
2881 
2882 	if (msix_count > max_msix_count)
2883 		msix_count = max_msix_count;
2884 
2885 	return msix_count;
2886 }
2887 
2888 /**
2889  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2890  *  @hw: pointer to hardware struct
2891  *  @rar: receive address register index to disassociate
2892  *  @vmdq: VMDq pool index to remove from the rar
2893  **/
2894 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2895 {
2896 	u32 mpsar_lo, mpsar_hi;
2897 	u32 rar_entries = hw->mac.num_rar_entries;
2898 
2899 	/* Make sure we are using a valid rar index range */
2900 	if (rar >= rar_entries) {
2901 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2902 		return IXGBE_ERR_INVALID_ARGUMENT;
2903 	}
2904 
2905 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2906 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2907 
2908 	if (ixgbe_removed(hw->hw_addr))
2909 		return 0;
2910 
2911 	if (!mpsar_lo && !mpsar_hi)
2912 		return 0;
2913 
2914 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2915 		if (mpsar_lo) {
2916 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2917 			mpsar_lo = 0;
2918 		}
2919 		if (mpsar_hi) {
2920 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2921 			mpsar_hi = 0;
2922 		}
2923 	} else if (vmdq < 32) {
2924 		mpsar_lo &= ~BIT(vmdq);
2925 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2926 	} else {
2927 		mpsar_hi &= ~BIT(vmdq - 32);
2928 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2929 	}
2930 
2931 	/* was that the last pool using this rar? */
2932 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2933 		hw->mac.ops.clear_rar(hw, rar);
2934 	return 0;
2935 }
2936 
2937 /**
2938  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2939  *  @hw: pointer to hardware struct
2940  *  @rar: receive address register index to associate with a VMDq index
2941  *  @vmdq: VMDq pool index
2942  **/
2943 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2944 {
2945 	u32 mpsar;
2946 	u32 rar_entries = hw->mac.num_rar_entries;
2947 
2948 	/* Make sure we are using a valid rar index range */
2949 	if (rar >= rar_entries) {
2950 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2951 		return IXGBE_ERR_INVALID_ARGUMENT;
2952 	}
2953 
2954 	if (vmdq < 32) {
2955 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2956 		mpsar |= BIT(vmdq);
2957 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2958 	} else {
2959 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2960 		mpsar |= BIT(vmdq - 32);
2961 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2962 	}
2963 	return 0;
2964 }
2965 
2966 /**
2967  *  This function should only be involved in the IOV mode.
2968  *  In IOV mode, Default pool is next pool after the number of
2969  *  VFs advertized and not 0.
2970  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2971  *
2972  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2973  *  @hw: pointer to hardware struct
2974  *  @vmdq: VMDq pool index
2975  **/
2976 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2977 {
2978 	u32 rar = hw->mac.san_mac_rar_index;
2979 
2980 	if (vmdq < 32) {
2981 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
2982 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2983 	} else {
2984 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2985 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
2986 	}
2987 
2988 	return 0;
2989 }
2990 
2991 /**
2992  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2993  *  @hw: pointer to hardware structure
2994  **/
2995 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2996 {
2997 	int i;
2998 
2999 	for (i = 0; i < 128; i++)
3000 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3001 
3002 	return 0;
3003 }
3004 
3005 /**
3006  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3007  *  @hw: pointer to hardware structure
3008  *  @vlan: VLAN id to write to VLAN filter
3009  *
3010  *  return the VLVF index where this VLAN id should be placed
3011  *
3012  **/
3013 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3014 {
3015 	s32 regindex, first_empty_slot;
3016 	u32 bits;
3017 
3018 	/* short cut the special case */
3019 	if (vlan == 0)
3020 		return 0;
3021 
3022 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3023 	 * will simply bypass the VLVF if there are no entries present in the
3024 	 * VLVF that contain our VLAN
3025 	 */
3026 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3027 
3028 	/* add VLAN enable bit for comparison */
3029 	vlan |= IXGBE_VLVF_VIEN;
3030 
3031 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3032 	 * slot found along the way.
3033 	 *
3034 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3035 	 */
3036 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3037 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3038 		if (bits == vlan)
3039 			return regindex;
3040 		if (!first_empty_slot && !bits)
3041 			first_empty_slot = regindex;
3042 	}
3043 
3044 	/* If we are here then we didn't find the VLAN.  Return first empty
3045 	 * slot we found during our search, else error.
3046 	 */
3047 	if (!first_empty_slot)
3048 		hw_dbg(hw, "No space in VLVF.\n");
3049 
3050 	return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3051 }
3052 
3053 /**
3054  *  ixgbe_set_vfta_generic - Set VLAN filter table
3055  *  @hw: pointer to hardware structure
3056  *  @vlan: VLAN id to write to VLAN filter
3057  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3058  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3059  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3060  *
3061  *  Turn on/off specified VLAN in the VLAN filter table.
3062  **/
3063 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3064 			   bool vlan_on, bool vlvf_bypass)
3065 {
3066 	u32 regidx, vfta_delta, vfta, bits;
3067 	s32 vlvf_index;
3068 
3069 	if ((vlan > 4095) || (vind > 63))
3070 		return IXGBE_ERR_PARAM;
3071 
3072 	/*
3073 	 * this is a 2 part operation - first the VFTA, then the
3074 	 * VLVF and VLVFB if VT Mode is set
3075 	 * We don't write the VFTA until we know the VLVF part succeeded.
3076 	 */
3077 
3078 	/* Part 1
3079 	 * The VFTA is a bitstring made up of 128 32-bit registers
3080 	 * that enable the particular VLAN id, much like the MTA:
3081 	 *    bits[11-5]: which register
3082 	 *    bits[4-0]:  which bit in the register
3083 	 */
3084 	regidx = vlan / 32;
3085 	vfta_delta = BIT(vlan % 32);
3086 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3087 
3088 	/* vfta_delta represents the difference between the current value
3089 	 * of vfta and the value we want in the register.  Since the diff
3090 	 * is an XOR mask we can just update vfta using an XOR.
3091 	 */
3092 	vfta_delta &= vlan_on ? ~vfta : vfta;
3093 	vfta ^= vfta_delta;
3094 
3095 	/* Part 2
3096 	 * If VT Mode is set
3097 	 *   Either vlan_on
3098 	 *     make sure the vlan is in VLVF
3099 	 *     set the vind bit in the matching VLVFB
3100 	 *   Or !vlan_on
3101 	 *     clear the pool bit and possibly the vind
3102 	 */
3103 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3104 		goto vfta_update;
3105 
3106 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3107 	if (vlvf_index < 0) {
3108 		if (vlvf_bypass)
3109 			goto vfta_update;
3110 		return vlvf_index;
3111 	}
3112 
3113 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3114 
3115 	/* set the pool bit */
3116 	bits |= BIT(vind % 32);
3117 	if (vlan_on)
3118 		goto vlvf_update;
3119 
3120 	/* clear the pool bit */
3121 	bits ^= BIT(vind % 32);
3122 
3123 	if (!bits &&
3124 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3125 		/* Clear VFTA first, then disable VLVF.  Otherwise
3126 		 * we run the risk of stray packets leaking into
3127 		 * the PF via the default pool
3128 		 */
3129 		if (vfta_delta)
3130 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3131 
3132 		/* disable VLVF and clear remaining bit from pool */
3133 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3134 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3135 
3136 		return 0;
3137 	}
3138 
3139 	/* If there are still bits set in the VLVFB registers
3140 	 * for the VLAN ID indicated we need to see if the
3141 	 * caller is requesting that we clear the VFTA entry bit.
3142 	 * If the caller has requested that we clear the VFTA
3143 	 * entry bit but there are still pools/VFs using this VLAN
3144 	 * ID entry then ignore the request.  We're not worried
3145 	 * about the case where we're turning the VFTA VLAN ID
3146 	 * entry bit on, only when requested to turn it off as
3147 	 * there may be multiple pools and/or VFs using the
3148 	 * VLAN ID entry.  In that case we cannot clear the
3149 	 * VFTA bit until all pools/VFs using that VLAN ID have also
3150 	 * been cleared.  This will be indicated by "bits" being
3151 	 * zero.
3152 	 */
3153 	vfta_delta = 0;
3154 
3155 vlvf_update:
3156 	/* record pool change and enable VLAN ID if not already enabled */
3157 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3158 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3159 
3160 vfta_update:
3161 	/* Update VFTA now that we are ready for traffic */
3162 	if (vfta_delta)
3163 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3164 
3165 	return 0;
3166 }
3167 
3168 /**
3169  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3170  *  @hw: pointer to hardware structure
3171  *
3172  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3173  **/
3174 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3175 {
3176 	u32 offset;
3177 
3178 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3179 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3180 
3181 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3182 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3183 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3184 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3185 	}
3186 
3187 	return 0;
3188 }
3189 
3190 /**
3191  *  ixgbe_check_mac_link_generic - Determine link and speed status
3192  *  @hw: pointer to hardware structure
3193  *  @speed: pointer to link speed
3194  *  @link_up: true when link is up
3195  *  @link_up_wait_to_complete: bool used to wait for link up or not
3196  *
3197  *  Reads the links register to determine if link is up and the current speed
3198  **/
3199 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3200 				 bool *link_up, bool link_up_wait_to_complete)
3201 {
3202 	u32 links_reg, links_orig;
3203 	u32 i;
3204 
3205 	/* clear the old state */
3206 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3207 
3208 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3209 
3210 	if (links_orig != links_reg) {
3211 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3212 		       links_orig, links_reg);
3213 	}
3214 
3215 	if (link_up_wait_to_complete) {
3216 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3217 			if (links_reg & IXGBE_LINKS_UP) {
3218 				*link_up = true;
3219 				break;
3220 			} else {
3221 				*link_up = false;
3222 			}
3223 			msleep(100);
3224 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3225 		}
3226 	} else {
3227 		if (links_reg & IXGBE_LINKS_UP)
3228 			*link_up = true;
3229 		else
3230 			*link_up = false;
3231 	}
3232 
3233 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3234 	case IXGBE_LINKS_SPEED_10G_82599:
3235 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3236 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3237 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3238 		else
3239 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3240 		break;
3241 	case IXGBE_LINKS_SPEED_1G_82599:
3242 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3243 		break;
3244 	case IXGBE_LINKS_SPEED_100_82599:
3245 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3246 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3247 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3248 		else
3249 			*speed = IXGBE_LINK_SPEED_100_FULL;
3250 		break;
3251 	default:
3252 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3253 	}
3254 
3255 	return 0;
3256 }
3257 
3258 /**
3259  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3260  *  the EEPROM
3261  *  @hw: pointer to hardware structure
3262  *  @wwnn_prefix: the alternative WWNN prefix
3263  *  @wwpn_prefix: the alternative WWPN prefix
3264  *
3265  *  This function will read the EEPROM from the alternative SAN MAC address
3266  *  block to check the support for the alternative WWNN/WWPN prefix support.
3267  **/
3268 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3269 					u16 *wwpn_prefix)
3270 {
3271 	u16 offset, caps;
3272 	u16 alt_san_mac_blk_offset;
3273 
3274 	/* clear output first */
3275 	*wwnn_prefix = 0xFFFF;
3276 	*wwpn_prefix = 0xFFFF;
3277 
3278 	/* check if alternative SAN MAC is supported */
3279 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3280 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3281 		goto wwn_prefix_err;
3282 
3283 	if ((alt_san_mac_blk_offset == 0) ||
3284 	    (alt_san_mac_blk_offset == 0xFFFF))
3285 		return 0;
3286 
3287 	/* check capability in alternative san mac address block */
3288 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3289 	if (hw->eeprom.ops.read(hw, offset, &caps))
3290 		goto wwn_prefix_err;
3291 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3292 		return 0;
3293 
3294 	/* get the corresponding prefix for WWNN/WWPN */
3295 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3296 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3297 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3298 
3299 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3300 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3301 		goto wwn_prefix_err;
3302 
3303 	return 0;
3304 
3305 wwn_prefix_err:
3306 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3307 	return 0;
3308 }
3309 
3310 /**
3311  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3312  *  @hw: pointer to hardware structure
3313  *  @enable: enable or disable switch for MAC anti-spoofing
3314  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3315  *
3316  **/
3317 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3318 {
3319 	int vf_target_reg = vf >> 3;
3320 	int vf_target_shift = vf % 8;
3321 	u32 pfvfspoof;
3322 
3323 	if (hw->mac.type == ixgbe_mac_82598EB)
3324 		return;
3325 
3326 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3327 	if (enable)
3328 		pfvfspoof |= BIT(vf_target_shift);
3329 	else
3330 		pfvfspoof &= ~BIT(vf_target_shift);
3331 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3332 }
3333 
3334 /**
3335  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3336  *  @hw: pointer to hardware structure
3337  *  @enable: enable or disable switch for VLAN anti-spoofing
3338  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3339  *
3340  **/
3341 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3342 {
3343 	int vf_target_reg = vf >> 3;
3344 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3345 	u32 pfvfspoof;
3346 
3347 	if (hw->mac.type == ixgbe_mac_82598EB)
3348 		return;
3349 
3350 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3351 	if (enable)
3352 		pfvfspoof |= BIT(vf_target_shift);
3353 	else
3354 		pfvfspoof &= ~BIT(vf_target_shift);
3355 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3356 }
3357 
3358 /**
3359  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3360  *  @hw: pointer to hardware structure
3361  *  @device_caps: the EEPROM word with the extra device capabilities
3362  *
3363  *  This function will read the EEPROM location for the device capabilities,
3364  *  and return the word through device_caps.
3365  **/
3366 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3367 {
3368 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3369 
3370 	return 0;
3371 }
3372 
3373 /**
3374  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3375  * @hw: pointer to hardware structure
3376  * @num_pb: number of packet buffers to allocate
3377  * @headroom: reserve n KB of headroom
3378  * @strategy: packet buffer allocation strategy
3379  **/
3380 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3381 			     int num_pb,
3382 			     u32 headroom,
3383 			     int strategy)
3384 {
3385 	u32 pbsize = hw->mac.rx_pb_size;
3386 	int i = 0;
3387 	u32 rxpktsize, txpktsize, txpbthresh;
3388 
3389 	/* Reserve headroom */
3390 	pbsize -= headroom;
3391 
3392 	if (!num_pb)
3393 		num_pb = 1;
3394 
3395 	/* Divide remaining packet buffer space amongst the number
3396 	 * of packet buffers requested using supplied strategy.
3397 	 */
3398 	switch (strategy) {
3399 	case (PBA_STRATEGY_WEIGHTED):
3400 		/* pba_80_48 strategy weight first half of packet buffer with
3401 		 * 5/8 of the packet buffer space.
3402 		 */
3403 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3404 		pbsize -= rxpktsize * (num_pb / 2);
3405 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3406 		for (; i < (num_pb / 2); i++)
3407 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3408 		/* Fall through to configure remaining packet buffers */
3409 	case (PBA_STRATEGY_EQUAL):
3410 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3411 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3412 		for (; i < num_pb; i++)
3413 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3414 		break;
3415 	default:
3416 		break;
3417 	}
3418 
3419 	/*
3420 	 * Setup Tx packet buffer and threshold equally for all TCs
3421 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3422 	 * 10 since the largest packet we support is just over 9K.
3423 	 */
3424 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3425 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3426 	for (i = 0; i < num_pb; i++) {
3427 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3428 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3429 	}
3430 
3431 	/* Clear unused TCs, if any, to zero buffer size*/
3432 	for (; i < IXGBE_MAX_PB; i++) {
3433 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3434 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3435 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3436 	}
3437 }
3438 
3439 /**
3440  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3441  *  @buffer: pointer to EEPROM
3442  *  @length: size of EEPROM to calculate a checksum for
3443  *
3444  *  Calculates the checksum for some buffer on a specified length.  The
3445  *  checksum calculated is returned.
3446  **/
3447 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3448 {
3449 	u32 i;
3450 	u8 sum = 0;
3451 
3452 	if (!buffer)
3453 		return 0;
3454 
3455 	for (i = 0; i < length; i++)
3456 		sum += buffer[i];
3457 
3458 	return (u8) (0 - sum);
3459 }
3460 
3461 /**
3462  *  ixgbe_host_interface_command - Issue command to manageability block
3463  *  @hw: pointer to the HW structure
3464  *  @buffer: contains the command to write and where the return status will
3465  *           be placed
3466  *  @length: length of buffer, must be multiple of 4 bytes
3467  *  @timeout: time in ms to wait for command completion
3468  *  @return_data: read and return data from the buffer (true) or not (false)
3469  *  Needed because FW structures are big endian and decoding of
3470  *  these fields can be 8 bit or 16 bit based on command. Decoding
3471  *  is not easily understood without making a table of commands.
3472  *  So we will leave this up to the caller to read back the data
3473  *  in these cases.
3474  *
3475  *  Communicates with the manageability block.  On success return 0
3476  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3477  **/
3478 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3479 				 u32 length, u32 timeout,
3480 				 bool return_data)
3481 {
3482 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3483 	u32 hicr, i, bi, fwsts;
3484 	u16 buf_len, dword_len;
3485 	union {
3486 		struct ixgbe_hic_hdr hdr;
3487 		u32 u32arr[1];
3488 	} *bp = buffer;
3489 	s32 status;
3490 
3491 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3492 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3493 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3494 	}
3495 	/* Take management host interface semaphore */
3496 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3497 	if (status)
3498 		return status;
3499 
3500 	/* Set bit 9 of FWSTS clearing FW reset indication */
3501 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3502 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3503 
3504 	/* Check that the host interface is enabled. */
3505 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3506 	if (!(hicr & IXGBE_HICR_EN)) {
3507 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3508 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3509 		goto rel_out;
3510 	}
3511 
3512 	/* Calculate length in DWORDs. We must be DWORD aligned */
3513 	if (length % sizeof(u32)) {
3514 		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3515 		status = IXGBE_ERR_INVALID_ARGUMENT;
3516 		goto rel_out;
3517 	}
3518 
3519 	dword_len = length >> 2;
3520 
3521 	/* The device driver writes the relevant command block
3522 	 * into the ram area.
3523 	 */
3524 	for (i = 0; i < dword_len; i++)
3525 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3526 				      i, cpu_to_le32(bp->u32arr[i]));
3527 
3528 	/* Setting this bit tells the ARC that a new command is pending. */
3529 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3530 
3531 	for (i = 0; i < timeout; i++) {
3532 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3533 		if (!(hicr & IXGBE_HICR_C))
3534 			break;
3535 		usleep_range(1000, 2000);
3536 	}
3537 
3538 	/* Check command successful completion. */
3539 	if ((timeout && i == timeout) ||
3540 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
3541 		hw_dbg(hw, "Command has failed with no status valid.\n");
3542 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3543 		goto rel_out;
3544 	}
3545 
3546 	if (!return_data)
3547 		goto rel_out;
3548 
3549 	/* Calculate length in DWORDs */
3550 	dword_len = hdr_size >> 2;
3551 
3552 	/* first pull in the header so we know the buffer length */
3553 	for (bi = 0; bi < dword_len; bi++) {
3554 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3555 		le32_to_cpus(&bp->u32arr[bi]);
3556 	}
3557 
3558 	/* If there is any thing in data position pull it in */
3559 	buf_len = bp->hdr.buf_len;
3560 	if (!buf_len)
3561 		goto rel_out;
3562 
3563 	if (length < round_up(buf_len, 4) + hdr_size) {
3564 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3565 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3566 		goto rel_out;
3567 	}
3568 
3569 	/* Calculate length in DWORDs, add 3 for odd lengths */
3570 	dword_len = (buf_len + 3) >> 2;
3571 
3572 	/* Pull in the rest of the buffer (bi is where we left off) */
3573 	for (; bi <= dword_len; bi++) {
3574 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3575 		le32_to_cpus(&bp->u32arr[bi]);
3576 	}
3577 
3578 rel_out:
3579 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3580 
3581 	return status;
3582 }
3583 
3584 /**
3585  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3586  *  @hw: pointer to the HW structure
3587  *  @maj: driver version major number
3588  *  @min: driver version minor number
3589  *  @build: driver version build number
3590  *  @sub: driver version sub build number
3591  *
3592  *  Sends driver version number to firmware through the manageability
3593  *  block.  On success return 0
3594  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3595  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3596  **/
3597 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3598 				 u8 build, u8 sub)
3599 {
3600 	struct ixgbe_hic_drv_info fw_cmd;
3601 	int i;
3602 	s32 ret_val;
3603 
3604 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3605 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3606 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3607 	fw_cmd.port_num = hw->bus.func;
3608 	fw_cmd.ver_maj = maj;
3609 	fw_cmd.ver_min = min;
3610 	fw_cmd.ver_build = build;
3611 	fw_cmd.ver_sub = sub;
3612 	fw_cmd.hdr.checksum = 0;
3613 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3614 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3615 	fw_cmd.pad = 0;
3616 	fw_cmd.pad2 = 0;
3617 
3618 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3619 		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3620 						       sizeof(fw_cmd),
3621 						       IXGBE_HI_COMMAND_TIMEOUT,
3622 						       true);
3623 		if (ret_val != 0)
3624 			continue;
3625 
3626 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3627 		    FW_CEM_RESP_STATUS_SUCCESS)
3628 			ret_val = 0;
3629 		else
3630 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3631 
3632 		break;
3633 	}
3634 
3635 	return ret_val;
3636 }
3637 
3638 /**
3639  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3640  * @hw: pointer to the hardware structure
3641  *
3642  * The 82599 and x540 MACs can experience issues if TX work is still pending
3643  * when a reset occurs.  This function prevents this by flushing the PCIe
3644  * buffers on the system.
3645  **/
3646 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3647 {
3648 	u32 gcr_ext, hlreg0, i, poll;
3649 	u16 value;
3650 
3651 	/*
3652 	 * If double reset is not requested then all transactions should
3653 	 * already be clear and as such there is no work to do
3654 	 */
3655 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3656 		return;
3657 
3658 	/*
3659 	 * Set loopback enable to prevent any transmits from being sent
3660 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3661 	 * has already been cleared.
3662 	 */
3663 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3664 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3665 
3666 	/* wait for a last completion before clearing buffers */
3667 	IXGBE_WRITE_FLUSH(hw);
3668 	usleep_range(3000, 6000);
3669 
3670 	/* Before proceeding, make sure that the PCIe block does not have
3671 	 * transactions pending.
3672 	 */
3673 	poll = ixgbe_pcie_timeout_poll(hw);
3674 	for (i = 0; i < poll; i++) {
3675 		usleep_range(100, 200);
3676 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3677 		if (ixgbe_removed(hw->hw_addr))
3678 			break;
3679 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3680 			break;
3681 	}
3682 
3683 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3684 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3685 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3686 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3687 
3688 	/* Flush all writes and allow 20usec for all transactions to clear */
3689 	IXGBE_WRITE_FLUSH(hw);
3690 	udelay(20);
3691 
3692 	/* restore previous register values */
3693 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3694 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3695 }
3696 
3697 static const u8 ixgbe_emc_temp_data[4] = {
3698 	IXGBE_EMC_INTERNAL_DATA,
3699 	IXGBE_EMC_DIODE1_DATA,
3700 	IXGBE_EMC_DIODE2_DATA,
3701 	IXGBE_EMC_DIODE3_DATA
3702 };
3703 static const u8 ixgbe_emc_therm_limit[4] = {
3704 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3705 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3706 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3707 	IXGBE_EMC_DIODE3_THERM_LIMIT
3708 };
3709 
3710 /**
3711  *  ixgbe_get_ets_data - Extracts the ETS bit data
3712  *  @hw: pointer to hardware structure
3713  *  @ets_cfg: extected ETS data
3714  *  @ets_offset: offset of ETS data
3715  *
3716  *  Returns error code.
3717  **/
3718 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3719 			      u16 *ets_offset)
3720 {
3721 	s32 status;
3722 
3723 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3724 	if (status)
3725 		return status;
3726 
3727 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3728 		return IXGBE_NOT_IMPLEMENTED;
3729 
3730 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3731 	if (status)
3732 		return status;
3733 
3734 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3735 		return IXGBE_NOT_IMPLEMENTED;
3736 
3737 	return 0;
3738 }
3739 
3740 /**
3741  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3742  *  @hw: pointer to hardware structure
3743  *
3744  *  Returns the thermal sensor data structure
3745  **/
3746 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3747 {
3748 	s32 status;
3749 	u16 ets_offset;
3750 	u16 ets_cfg;
3751 	u16 ets_sensor;
3752 	u8  num_sensors;
3753 	u8  i;
3754 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3755 
3756 	/* Only support thermal sensors attached to physical port 0 */
3757 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3758 		return IXGBE_NOT_IMPLEMENTED;
3759 
3760 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3761 	if (status)
3762 		return status;
3763 
3764 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3765 	if (num_sensors > IXGBE_MAX_SENSORS)
3766 		num_sensors = IXGBE_MAX_SENSORS;
3767 
3768 	for (i = 0; i < num_sensors; i++) {
3769 		u8  sensor_index;
3770 		u8  sensor_location;
3771 
3772 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3773 					     &ets_sensor);
3774 		if (status)
3775 			return status;
3776 
3777 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3778 				IXGBE_ETS_DATA_INDEX_SHIFT);
3779 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3780 				   IXGBE_ETS_DATA_LOC_SHIFT);
3781 
3782 		if (sensor_location != 0) {
3783 			status = hw->phy.ops.read_i2c_byte(hw,
3784 					ixgbe_emc_temp_data[sensor_index],
3785 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3786 					&data->sensor[i].temp);
3787 			if (status)
3788 				return status;
3789 		}
3790 	}
3791 
3792 	return 0;
3793 }
3794 
3795 /**
3796  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3797  * @hw: pointer to hardware structure
3798  *
3799  * Inits the thermal sensor thresholds according to the NVM map
3800  * and save off the threshold and location values into mac.thermal_sensor_data
3801  **/
3802 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3803 {
3804 	s32 status;
3805 	u16 ets_offset;
3806 	u16 ets_cfg;
3807 	u16 ets_sensor;
3808 	u8  low_thresh_delta;
3809 	u8  num_sensors;
3810 	u8  therm_limit;
3811 	u8  i;
3812 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3813 
3814 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3815 
3816 	/* Only support thermal sensors attached to physical port 0 */
3817 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3818 		return IXGBE_NOT_IMPLEMENTED;
3819 
3820 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3821 	if (status)
3822 		return status;
3823 
3824 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3825 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3826 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3827 	if (num_sensors > IXGBE_MAX_SENSORS)
3828 		num_sensors = IXGBE_MAX_SENSORS;
3829 
3830 	for (i = 0; i < num_sensors; i++) {
3831 		u8  sensor_index;
3832 		u8  sensor_location;
3833 
3834 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3835 			hw_err(hw, "eeprom read at offset %d failed\n",
3836 			       ets_offset + 1 + i);
3837 			continue;
3838 		}
3839 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3840 				IXGBE_ETS_DATA_INDEX_SHIFT);
3841 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3842 				   IXGBE_ETS_DATA_LOC_SHIFT);
3843 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3844 
3845 		hw->phy.ops.write_i2c_byte(hw,
3846 			ixgbe_emc_therm_limit[sensor_index],
3847 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3848 
3849 		if (sensor_location == 0)
3850 			continue;
3851 
3852 		data->sensor[i].location = sensor_location;
3853 		data->sensor[i].caution_thresh = therm_limit;
3854 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3855 	}
3856 
3857 	return 0;
3858 }
3859 
3860 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
3861 {
3862 	u32 rxctrl;
3863 
3864 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3865 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
3866 		if (hw->mac.type != ixgbe_mac_82598EB) {
3867 			u32 pfdtxgswc;
3868 
3869 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3870 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
3871 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
3872 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3873 				hw->mac.set_lben = true;
3874 			} else {
3875 				hw->mac.set_lben = false;
3876 			}
3877 		}
3878 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
3879 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
3880 	}
3881 }
3882 
3883 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
3884 {
3885 	u32 rxctrl;
3886 
3887 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3888 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
3889 
3890 	if (hw->mac.type != ixgbe_mac_82598EB) {
3891 		if (hw->mac.set_lben) {
3892 			u32 pfdtxgswc;
3893 
3894 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3895 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
3896 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3897 			hw->mac.set_lben = false;
3898 		}
3899 	}
3900 }
3901 
3902 /** ixgbe_mng_present - returns true when management capability is present
3903  * @hw: pointer to hardware structure
3904  **/
3905 bool ixgbe_mng_present(struct ixgbe_hw *hw)
3906 {
3907 	u32 fwsm;
3908 
3909 	if (hw->mac.type < ixgbe_mac_82599EB)
3910 		return false;
3911 
3912 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
3913 	fwsm &= IXGBE_FWSM_MODE_MASK;
3914 	return fwsm == IXGBE_FWSM_FW_MODE_PT;
3915 }
3916 
3917 /**
3918  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
3919  *  @hw: pointer to hardware structure
3920  *  @speed: new link speed
3921  *  @autoneg_wait_to_complete: true when waiting for completion is needed
3922  *
3923  *  Set the link speed in the MAC and/or PHY register and restarts link.
3924  */
3925 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
3926 					  ixgbe_link_speed speed,
3927 					  bool autoneg_wait_to_complete)
3928 {
3929 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
3930 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
3931 	s32 status = 0;
3932 	u32 speedcnt = 0;
3933 	u32 i = 0;
3934 	bool autoneg, link_up = false;
3935 
3936 	/* Mask off requested but non-supported speeds */
3937 	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
3938 	if (status)
3939 		return status;
3940 
3941 	speed &= link_speed;
3942 
3943 	/* Try each speed one by one, highest priority first.  We do this in
3944 	 * software because 10Gb fiber doesn't support speed autonegotiation.
3945 	 */
3946 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
3947 		speedcnt++;
3948 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
3949 
3950 		/* If we already have link at this speed, just jump out */
3951 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
3952 						false);
3953 		if (status)
3954 			return status;
3955 
3956 		if (link_speed == IXGBE_LINK_SPEED_10GB_FULL && link_up)
3957 			goto out;
3958 
3959 		/* Set the module link speed */
3960 		switch (hw->phy.media_type) {
3961 		case ixgbe_media_type_fiber:
3962 			hw->mac.ops.set_rate_select_speed(hw,
3963 						    IXGBE_LINK_SPEED_10GB_FULL);
3964 			break;
3965 		case ixgbe_media_type_fiber_qsfp:
3966 			/* QSFP module automatically detects MAC link speed */
3967 			break;
3968 		default:
3969 			hw_dbg(hw, "Unexpected media type\n");
3970 			break;
3971 		}
3972 
3973 		/* Allow module to change analog characteristics (1G->10G) */
3974 		msleep(40);
3975 
3976 		status = hw->mac.ops.setup_mac_link(hw,
3977 						    IXGBE_LINK_SPEED_10GB_FULL,
3978 						    autoneg_wait_to_complete);
3979 		if (status)
3980 			return status;
3981 
3982 		/* Flap the Tx laser if it has not already been done */
3983 		if (hw->mac.ops.flap_tx_laser)
3984 			hw->mac.ops.flap_tx_laser(hw);
3985 
3986 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
3987 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
3988 		 * attempted.  82599 uses the same timing for 10g SFI.
3989 		 */
3990 		for (i = 0; i < 5; i++) {
3991 			/* Wait for the link partner to also set speed */
3992 			msleep(100);
3993 
3994 			/* If we have link, just jump out */
3995 			status = hw->mac.ops.check_link(hw, &link_speed,
3996 							&link_up, false);
3997 			if (status)
3998 				return status;
3999 
4000 			if (link_up)
4001 				goto out;
4002 		}
4003 	}
4004 
4005 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4006 		speedcnt++;
4007 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4008 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4009 
4010 		/* If we already have link at this speed, just jump out */
4011 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4012 						false);
4013 		if (status)
4014 			return status;
4015 
4016 		if (link_speed == IXGBE_LINK_SPEED_1GB_FULL && link_up)
4017 			goto out;
4018 
4019 		/* Set the module link speed */
4020 		switch (hw->phy.media_type) {
4021 		case ixgbe_media_type_fiber:
4022 			hw->mac.ops.set_rate_select_speed(hw,
4023 						     IXGBE_LINK_SPEED_1GB_FULL);
4024 			break;
4025 		case ixgbe_media_type_fiber_qsfp:
4026 			/* QSFP module automatically detects link speed */
4027 			break;
4028 		default:
4029 			hw_dbg(hw, "Unexpected media type\n");
4030 			break;
4031 		}
4032 
4033 		/* Allow module to change analog characteristics (10G->1G) */
4034 		msleep(40);
4035 
4036 		status = hw->mac.ops.setup_mac_link(hw,
4037 						    IXGBE_LINK_SPEED_1GB_FULL,
4038 						    autoneg_wait_to_complete);
4039 		if (status)
4040 			return status;
4041 
4042 		/* Flap the Tx laser if it has not already been done */
4043 		if (hw->mac.ops.flap_tx_laser)
4044 			hw->mac.ops.flap_tx_laser(hw);
4045 
4046 		/* Wait for the link partner to also set speed */
4047 		msleep(100);
4048 
4049 		/* If we have link, just jump out */
4050 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4051 						false);
4052 		if (status)
4053 			return status;
4054 
4055 		if (link_up)
4056 			goto out;
4057 	}
4058 
4059 	/* We didn't get link.  Configure back to the highest speed we tried,
4060 	 * (if there was more than one).  We call ourselves back with just the
4061 	 * single highest speed that the user requested.
4062 	 */
4063 	if (speedcnt > 1)
4064 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4065 						      highest_link_speed,
4066 						      autoneg_wait_to_complete);
4067 
4068 out:
4069 	/* Set autoneg_advertised value based on input link speed */
4070 	hw->phy.autoneg_advertised = 0;
4071 
4072 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4073 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4074 
4075 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4076 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4077 
4078 	return status;
4079 }
4080 
4081 /**
4082  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4083  *  @hw: pointer to hardware structure
4084  *  @speed: link speed to set
4085  *
4086  *  Set module link speed via the soft rate select.
4087  */
4088 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4089 				      ixgbe_link_speed speed)
4090 {
4091 	s32 status;
4092 	u8 rs, eeprom_data;
4093 
4094 	switch (speed) {
4095 	case IXGBE_LINK_SPEED_10GB_FULL:
4096 		/* one bit mask same as setting on */
4097 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4098 		break;
4099 	case IXGBE_LINK_SPEED_1GB_FULL:
4100 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4101 		break;
4102 	default:
4103 		hw_dbg(hw, "Invalid fixed module speed\n");
4104 		return;
4105 	}
4106 
4107 	/* Set RS0 */
4108 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4109 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4110 					   &eeprom_data);
4111 	if (status) {
4112 		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4113 		return;
4114 	}
4115 
4116 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4117 
4118 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4119 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4120 					    eeprom_data);
4121 	if (status) {
4122 		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4123 		return;
4124 	}
4125 }
4126