1 /******************************************************************************* 2 3 Intel 10 Gigabit PCI Express Linux driver 4 Copyright(c) 1999 - 2011 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 25 26 *******************************************************************************/ 27 28 #include <linux/pci.h> 29 #include <linux/delay.h> 30 #include <linux/sched.h> 31 32 #include "ixgbe.h" 33 #include "ixgbe_phy.h" 34 #include "ixgbe_mbx.h" 35 36 #define IXGBE_82599_MAX_TX_QUEUES 128 37 #define IXGBE_82599_MAX_RX_QUEUES 128 38 #define IXGBE_82599_RAR_ENTRIES 128 39 #define IXGBE_82599_MC_TBL_SIZE 128 40 #define IXGBE_82599_VFT_TBL_SIZE 128 41 #define IXGBE_82599_RX_PB_SIZE 512 42 43 static void ixgbe_disable_tx_laser_multispeed_fiber(struct ixgbe_hw *hw); 44 static void ixgbe_enable_tx_laser_multispeed_fiber(struct ixgbe_hw *hw); 45 static void ixgbe_flap_tx_laser_multispeed_fiber(struct ixgbe_hw *hw); 46 static s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw, 47 ixgbe_link_speed speed, 48 bool autoneg, 49 bool autoneg_wait_to_complete); 50 static s32 ixgbe_setup_mac_link_smartspeed(struct ixgbe_hw *hw, 51 ixgbe_link_speed speed, 52 bool autoneg, 53 bool autoneg_wait_to_complete); 54 static s32 ixgbe_start_mac_link_82599(struct ixgbe_hw *hw, 55 bool autoneg_wait_to_complete); 56 static s32 ixgbe_setup_mac_link_82599(struct ixgbe_hw *hw, 57 ixgbe_link_speed speed, 58 bool autoneg, 59 bool autoneg_wait_to_complete); 60 static s32 ixgbe_setup_copper_link_82599(struct ixgbe_hw *hw, 61 ixgbe_link_speed speed, 62 bool autoneg, 63 bool autoneg_wait_to_complete); 64 static s32 ixgbe_verify_fw_version_82599(struct ixgbe_hw *hw); 65 static bool ixgbe_verify_lesm_fw_enabled_82599(struct ixgbe_hw *hw); 66 67 static void ixgbe_init_mac_link_ops_82599(struct ixgbe_hw *hw) 68 { 69 struct ixgbe_mac_info *mac = &hw->mac; 70 71 /* enable the laser control functions for SFP+ fiber */ 72 if (mac->ops.get_media_type(hw) == ixgbe_media_type_fiber) { 73 mac->ops.disable_tx_laser = 74 &ixgbe_disable_tx_laser_multispeed_fiber; 75 mac->ops.enable_tx_laser = 76 &ixgbe_enable_tx_laser_multispeed_fiber; 77 mac->ops.flap_tx_laser = &ixgbe_flap_tx_laser_multispeed_fiber; 78 } else { 79 mac->ops.disable_tx_laser = NULL; 80 mac->ops.enable_tx_laser = NULL; 81 mac->ops.flap_tx_laser = NULL; 82 } 83 84 if (hw->phy.multispeed_fiber) { 85 /* Set up dual speed SFP+ support */ 86 mac->ops.setup_link = &ixgbe_setup_mac_link_multispeed_fiber; 87 } else { 88 if ((mac->ops.get_media_type(hw) == 89 ixgbe_media_type_backplane) && 90 (hw->phy.smart_speed == ixgbe_smart_speed_auto || 91 hw->phy.smart_speed == ixgbe_smart_speed_on) && 92 !ixgbe_verify_lesm_fw_enabled_82599(hw)) 93 mac->ops.setup_link = &ixgbe_setup_mac_link_smartspeed; 94 else 95 mac->ops.setup_link = &ixgbe_setup_mac_link_82599; 96 } 97 } 98 99 static s32 ixgbe_setup_sfp_modules_82599(struct ixgbe_hw *hw) 100 { 101 s32 ret_val = 0; 102 u32 reg_anlp1 = 0; 103 u32 i = 0; 104 u16 list_offset, data_offset, data_value; 105 106 if (hw->phy.sfp_type != ixgbe_sfp_type_unknown) { 107 ixgbe_init_mac_link_ops_82599(hw); 108 109 hw->phy.ops.reset = NULL; 110 111 ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset, 112 &data_offset); 113 if (ret_val != 0) 114 goto setup_sfp_out; 115 116 /* PHY config will finish before releasing the semaphore */ 117 ret_val = hw->mac.ops.acquire_swfw_sync(hw, 118 IXGBE_GSSR_MAC_CSR_SM); 119 if (ret_val != 0) { 120 ret_val = IXGBE_ERR_SWFW_SYNC; 121 goto setup_sfp_out; 122 } 123 124 hw->eeprom.ops.read(hw, ++data_offset, &data_value); 125 while (data_value != 0xffff) { 126 IXGBE_WRITE_REG(hw, IXGBE_CORECTL, data_value); 127 IXGBE_WRITE_FLUSH(hw); 128 hw->eeprom.ops.read(hw, ++data_offset, &data_value); 129 } 130 131 /* Release the semaphore */ 132 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM); 133 /* 134 * Delay obtaining semaphore again to allow FW access, 135 * semaphore_delay is in ms usleep_range needs us. 136 */ 137 usleep_range(hw->eeprom.semaphore_delay * 1000, 138 hw->eeprom.semaphore_delay * 2000); 139 140 /* Now restart DSP by setting Restart_AN and clearing LMS */ 141 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, ((IXGBE_READ_REG(hw, 142 IXGBE_AUTOC) & ~IXGBE_AUTOC_LMS_MASK) | 143 IXGBE_AUTOC_AN_RESTART)); 144 145 /* Wait for AN to leave state 0 */ 146 for (i = 0; i < 10; i++) { 147 usleep_range(4000, 8000); 148 reg_anlp1 = IXGBE_READ_REG(hw, IXGBE_ANLP1); 149 if (reg_anlp1 & IXGBE_ANLP1_AN_STATE_MASK) 150 break; 151 } 152 if (!(reg_anlp1 & IXGBE_ANLP1_AN_STATE_MASK)) { 153 hw_dbg(hw, "sfp module setup not complete\n"); 154 ret_val = IXGBE_ERR_SFP_SETUP_NOT_COMPLETE; 155 goto setup_sfp_out; 156 } 157 158 /* Restart DSP by setting Restart_AN and return to SFI mode */ 159 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, (IXGBE_READ_REG(hw, 160 IXGBE_AUTOC) | IXGBE_AUTOC_LMS_10G_SERIAL | 161 IXGBE_AUTOC_AN_RESTART)); 162 } 163 164 setup_sfp_out: 165 return ret_val; 166 } 167 168 static s32 ixgbe_get_invariants_82599(struct ixgbe_hw *hw) 169 { 170 struct ixgbe_mac_info *mac = &hw->mac; 171 172 ixgbe_init_mac_link_ops_82599(hw); 173 174 mac->mcft_size = IXGBE_82599_MC_TBL_SIZE; 175 mac->vft_size = IXGBE_82599_VFT_TBL_SIZE; 176 mac->num_rar_entries = IXGBE_82599_RAR_ENTRIES; 177 mac->max_rx_queues = IXGBE_82599_MAX_RX_QUEUES; 178 mac->max_tx_queues = IXGBE_82599_MAX_TX_QUEUES; 179 mac->max_msix_vectors = ixgbe_get_pcie_msix_count_generic(hw); 180 181 return 0; 182 } 183 184 /** 185 * ixgbe_init_phy_ops_82599 - PHY/SFP specific init 186 * @hw: pointer to hardware structure 187 * 188 * Initialize any function pointers that were not able to be 189 * set during get_invariants because the PHY/SFP type was 190 * not known. Perform the SFP init if necessary. 191 * 192 **/ 193 static s32 ixgbe_init_phy_ops_82599(struct ixgbe_hw *hw) 194 { 195 struct ixgbe_mac_info *mac = &hw->mac; 196 struct ixgbe_phy_info *phy = &hw->phy; 197 s32 ret_val = 0; 198 199 /* Identify the PHY or SFP module */ 200 ret_val = phy->ops.identify(hw); 201 202 /* Setup function pointers based on detected SFP module and speeds */ 203 ixgbe_init_mac_link_ops_82599(hw); 204 205 /* If copper media, overwrite with copper function pointers */ 206 if (mac->ops.get_media_type(hw) == ixgbe_media_type_copper) { 207 mac->ops.setup_link = &ixgbe_setup_copper_link_82599; 208 mac->ops.get_link_capabilities = 209 &ixgbe_get_copper_link_capabilities_generic; 210 } 211 212 /* Set necessary function pointers based on phy type */ 213 switch (hw->phy.type) { 214 case ixgbe_phy_tn: 215 phy->ops.check_link = &ixgbe_check_phy_link_tnx; 216 phy->ops.setup_link = &ixgbe_setup_phy_link_tnx; 217 phy->ops.get_firmware_version = 218 &ixgbe_get_phy_firmware_version_tnx; 219 break; 220 default: 221 break; 222 } 223 224 return ret_val; 225 } 226 227 /** 228 * ixgbe_get_link_capabilities_82599 - Determines link capabilities 229 * @hw: pointer to hardware structure 230 * @speed: pointer to link speed 231 * @negotiation: true when autoneg or autotry is enabled 232 * 233 * Determines the link capabilities by reading the AUTOC register. 234 **/ 235 static s32 ixgbe_get_link_capabilities_82599(struct ixgbe_hw *hw, 236 ixgbe_link_speed *speed, 237 bool *negotiation) 238 { 239 s32 status = 0; 240 u32 autoc = 0; 241 242 /* Determine 1G link capabilities off of SFP+ type */ 243 if (hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 || 244 hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1) { 245 *speed = IXGBE_LINK_SPEED_1GB_FULL; 246 *negotiation = true; 247 goto out; 248 } 249 250 /* 251 * Determine link capabilities based on the stored value of AUTOC, 252 * which represents EEPROM defaults. If AUTOC value has not been 253 * stored, use the current register value. 254 */ 255 if (hw->mac.orig_link_settings_stored) 256 autoc = hw->mac.orig_autoc; 257 else 258 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC); 259 260 switch (autoc & IXGBE_AUTOC_LMS_MASK) { 261 case IXGBE_AUTOC_LMS_1G_LINK_NO_AN: 262 *speed = IXGBE_LINK_SPEED_1GB_FULL; 263 *negotiation = false; 264 break; 265 266 case IXGBE_AUTOC_LMS_10G_LINK_NO_AN: 267 *speed = IXGBE_LINK_SPEED_10GB_FULL; 268 *negotiation = false; 269 break; 270 271 case IXGBE_AUTOC_LMS_1G_AN: 272 *speed = IXGBE_LINK_SPEED_1GB_FULL; 273 *negotiation = true; 274 break; 275 276 case IXGBE_AUTOC_LMS_10G_SERIAL: 277 *speed = IXGBE_LINK_SPEED_10GB_FULL; 278 *negotiation = false; 279 break; 280 281 case IXGBE_AUTOC_LMS_KX4_KX_KR: 282 case IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN: 283 *speed = IXGBE_LINK_SPEED_UNKNOWN; 284 if (autoc & IXGBE_AUTOC_KR_SUPP) 285 *speed |= IXGBE_LINK_SPEED_10GB_FULL; 286 if (autoc & IXGBE_AUTOC_KX4_SUPP) 287 *speed |= IXGBE_LINK_SPEED_10GB_FULL; 288 if (autoc & IXGBE_AUTOC_KX_SUPP) 289 *speed |= IXGBE_LINK_SPEED_1GB_FULL; 290 *negotiation = true; 291 break; 292 293 case IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII: 294 *speed = IXGBE_LINK_SPEED_100_FULL; 295 if (autoc & IXGBE_AUTOC_KR_SUPP) 296 *speed |= IXGBE_LINK_SPEED_10GB_FULL; 297 if (autoc & IXGBE_AUTOC_KX4_SUPP) 298 *speed |= IXGBE_LINK_SPEED_10GB_FULL; 299 if (autoc & IXGBE_AUTOC_KX_SUPP) 300 *speed |= IXGBE_LINK_SPEED_1GB_FULL; 301 *negotiation = true; 302 break; 303 304 case IXGBE_AUTOC_LMS_SGMII_1G_100M: 305 *speed = IXGBE_LINK_SPEED_1GB_FULL | IXGBE_LINK_SPEED_100_FULL; 306 *negotiation = false; 307 break; 308 309 default: 310 status = IXGBE_ERR_LINK_SETUP; 311 goto out; 312 break; 313 } 314 315 if (hw->phy.multispeed_fiber) { 316 *speed |= IXGBE_LINK_SPEED_10GB_FULL | 317 IXGBE_LINK_SPEED_1GB_FULL; 318 *negotiation = true; 319 } 320 321 out: 322 return status; 323 } 324 325 /** 326 * ixgbe_get_media_type_82599 - Get media type 327 * @hw: pointer to hardware structure 328 * 329 * Returns the media type (fiber, copper, backplane) 330 **/ 331 static enum ixgbe_media_type ixgbe_get_media_type_82599(struct ixgbe_hw *hw) 332 { 333 enum ixgbe_media_type media_type; 334 335 /* Detect if there is a copper PHY attached. */ 336 switch (hw->phy.type) { 337 case ixgbe_phy_cu_unknown: 338 case ixgbe_phy_tn: 339 media_type = ixgbe_media_type_copper; 340 goto out; 341 default: 342 break; 343 } 344 345 switch (hw->device_id) { 346 case IXGBE_DEV_ID_82599_KX4: 347 case IXGBE_DEV_ID_82599_KX4_MEZZ: 348 case IXGBE_DEV_ID_82599_COMBO_BACKPLANE: 349 case IXGBE_DEV_ID_82599_KR: 350 case IXGBE_DEV_ID_82599_BACKPLANE_FCOE: 351 case IXGBE_DEV_ID_82599_XAUI_LOM: 352 /* Default device ID is mezzanine card KX/KX4 */ 353 media_type = ixgbe_media_type_backplane; 354 break; 355 case IXGBE_DEV_ID_82599_SFP: 356 case IXGBE_DEV_ID_82599_SFP_FCOE: 357 case IXGBE_DEV_ID_82599_SFP_EM: 358 case IXGBE_DEV_ID_82599_SFP_SF2: 359 case IXGBE_DEV_ID_82599_SFP_SF_QP: 360 case IXGBE_DEV_ID_82599EN_SFP: 361 media_type = ixgbe_media_type_fiber; 362 break; 363 case IXGBE_DEV_ID_82599_CX4: 364 media_type = ixgbe_media_type_cx4; 365 break; 366 case IXGBE_DEV_ID_82599_T3_LOM: 367 media_type = ixgbe_media_type_copper; 368 break; 369 case IXGBE_DEV_ID_82599_LS: 370 media_type = ixgbe_media_type_fiber_lco; 371 break; 372 default: 373 media_type = ixgbe_media_type_unknown; 374 break; 375 } 376 out: 377 return media_type; 378 } 379 380 /** 381 * ixgbe_start_mac_link_82599 - Setup MAC link settings 382 * @hw: pointer to hardware structure 383 * @autoneg_wait_to_complete: true when waiting for completion is needed 384 * 385 * Configures link settings based on values in the ixgbe_hw struct. 386 * Restarts the link. Performs autonegotiation if needed. 387 **/ 388 static s32 ixgbe_start_mac_link_82599(struct ixgbe_hw *hw, 389 bool autoneg_wait_to_complete) 390 { 391 u32 autoc_reg; 392 u32 links_reg; 393 u32 i; 394 s32 status = 0; 395 396 /* Restart link */ 397 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); 398 autoc_reg |= IXGBE_AUTOC_AN_RESTART; 399 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg); 400 401 /* Only poll for autoneg to complete if specified to do so */ 402 if (autoneg_wait_to_complete) { 403 if ((autoc_reg & IXGBE_AUTOC_LMS_MASK) == 404 IXGBE_AUTOC_LMS_KX4_KX_KR || 405 (autoc_reg & IXGBE_AUTOC_LMS_MASK) == 406 IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN || 407 (autoc_reg & IXGBE_AUTOC_LMS_MASK) == 408 IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) { 409 links_reg = 0; /* Just in case Autoneg time = 0 */ 410 for (i = 0; i < IXGBE_AUTO_NEG_TIME; i++) { 411 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS); 412 if (links_reg & IXGBE_LINKS_KX_AN_COMP) 413 break; 414 msleep(100); 415 } 416 if (!(links_reg & IXGBE_LINKS_KX_AN_COMP)) { 417 status = IXGBE_ERR_AUTONEG_NOT_COMPLETE; 418 hw_dbg(hw, "Autoneg did not complete.\n"); 419 } 420 } 421 } 422 423 /* Add delay to filter out noises during initial link setup */ 424 msleep(50); 425 426 return status; 427 } 428 429 /** 430 * ixgbe_disable_tx_laser_multispeed_fiber - Disable Tx laser 431 * @hw: pointer to hardware structure 432 * 433 * The base drivers may require better control over SFP+ module 434 * PHY states. This includes selectively shutting down the Tx 435 * laser on the PHY, effectively halting physical link. 436 **/ 437 static void ixgbe_disable_tx_laser_multispeed_fiber(struct ixgbe_hw *hw) 438 { 439 u32 esdp_reg = IXGBE_READ_REG(hw, IXGBE_ESDP); 440 441 /* Disable tx laser; allow 100us to go dark per spec */ 442 esdp_reg |= IXGBE_ESDP_SDP3; 443 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg); 444 IXGBE_WRITE_FLUSH(hw); 445 udelay(100); 446 } 447 448 /** 449 * ixgbe_enable_tx_laser_multispeed_fiber - Enable Tx laser 450 * @hw: pointer to hardware structure 451 * 452 * The base drivers may require better control over SFP+ module 453 * PHY states. This includes selectively turning on the Tx 454 * laser on the PHY, effectively starting physical link. 455 **/ 456 static void ixgbe_enable_tx_laser_multispeed_fiber(struct ixgbe_hw *hw) 457 { 458 u32 esdp_reg = IXGBE_READ_REG(hw, IXGBE_ESDP); 459 460 /* Enable tx laser; allow 100ms to light up */ 461 esdp_reg &= ~IXGBE_ESDP_SDP3; 462 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg); 463 IXGBE_WRITE_FLUSH(hw); 464 msleep(100); 465 } 466 467 /** 468 * ixgbe_flap_tx_laser_multispeed_fiber - Flap Tx laser 469 * @hw: pointer to hardware structure 470 * 471 * When the driver changes the link speeds that it can support, 472 * it sets autotry_restart to true to indicate that we need to 473 * initiate a new autotry session with the link partner. To do 474 * so, we set the speed then disable and re-enable the tx laser, to 475 * alert the link partner that it also needs to restart autotry on its 476 * end. This is consistent with true clause 37 autoneg, which also 477 * involves a loss of signal. 478 **/ 479 static void ixgbe_flap_tx_laser_multispeed_fiber(struct ixgbe_hw *hw) 480 { 481 if (hw->mac.autotry_restart) { 482 ixgbe_disable_tx_laser_multispeed_fiber(hw); 483 ixgbe_enable_tx_laser_multispeed_fiber(hw); 484 hw->mac.autotry_restart = false; 485 } 486 } 487 488 /** 489 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed 490 * @hw: pointer to hardware structure 491 * @speed: new link speed 492 * @autoneg: true if autonegotiation enabled 493 * @autoneg_wait_to_complete: true when waiting for completion is needed 494 * 495 * Set the link speed in the AUTOC register and restarts link. 496 **/ 497 static s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw, 498 ixgbe_link_speed speed, 499 bool autoneg, 500 bool autoneg_wait_to_complete) 501 { 502 s32 status = 0; 503 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN; 504 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN; 505 u32 speedcnt = 0; 506 u32 esdp_reg = IXGBE_READ_REG(hw, IXGBE_ESDP); 507 u32 i = 0; 508 bool link_up = false; 509 bool negotiation; 510 511 /* Mask off requested but non-supported speeds */ 512 status = hw->mac.ops.get_link_capabilities(hw, &link_speed, 513 &negotiation); 514 if (status != 0) 515 return status; 516 517 speed &= link_speed; 518 519 /* 520 * Try each speed one by one, highest priority first. We do this in 521 * software because 10gb fiber doesn't support speed autonegotiation. 522 */ 523 if (speed & IXGBE_LINK_SPEED_10GB_FULL) { 524 speedcnt++; 525 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL; 526 527 /* If we already have link at this speed, just jump out */ 528 status = hw->mac.ops.check_link(hw, &link_speed, &link_up, 529 false); 530 if (status != 0) 531 return status; 532 533 if ((link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up) 534 goto out; 535 536 /* Set the module link speed */ 537 esdp_reg |= (IXGBE_ESDP_SDP5_DIR | IXGBE_ESDP_SDP5); 538 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg); 539 IXGBE_WRITE_FLUSH(hw); 540 541 /* Allow module to change analog characteristics (1G->10G) */ 542 msleep(40); 543 544 status = ixgbe_setup_mac_link_82599(hw, 545 IXGBE_LINK_SPEED_10GB_FULL, 546 autoneg, 547 autoneg_wait_to_complete); 548 if (status != 0) 549 return status; 550 551 /* Flap the tx laser if it has not already been done */ 552 hw->mac.ops.flap_tx_laser(hw); 553 554 /* 555 * Wait for the controller to acquire link. Per IEEE 802.3ap, 556 * Section 73.10.2, we may have to wait up to 500ms if KR is 557 * attempted. 82599 uses the same timing for 10g SFI. 558 */ 559 for (i = 0; i < 5; i++) { 560 /* Wait for the link partner to also set speed */ 561 msleep(100); 562 563 /* If we have link, just jump out */ 564 status = hw->mac.ops.check_link(hw, &link_speed, 565 &link_up, false); 566 if (status != 0) 567 return status; 568 569 if (link_up) 570 goto out; 571 } 572 } 573 574 if (speed & IXGBE_LINK_SPEED_1GB_FULL) { 575 speedcnt++; 576 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN) 577 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL; 578 579 /* If we already have link at this speed, just jump out */ 580 status = hw->mac.ops.check_link(hw, &link_speed, &link_up, 581 false); 582 if (status != 0) 583 return status; 584 585 if ((link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up) 586 goto out; 587 588 /* Set the module link speed */ 589 esdp_reg &= ~IXGBE_ESDP_SDP5; 590 esdp_reg |= IXGBE_ESDP_SDP5_DIR; 591 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg); 592 IXGBE_WRITE_FLUSH(hw); 593 594 /* Allow module to change analog characteristics (10G->1G) */ 595 msleep(40); 596 597 status = ixgbe_setup_mac_link_82599(hw, 598 IXGBE_LINK_SPEED_1GB_FULL, 599 autoneg, 600 autoneg_wait_to_complete); 601 if (status != 0) 602 return status; 603 604 /* Flap the tx laser if it has not already been done */ 605 hw->mac.ops.flap_tx_laser(hw); 606 607 /* Wait for the link partner to also set speed */ 608 msleep(100); 609 610 /* If we have link, just jump out */ 611 status = hw->mac.ops.check_link(hw, &link_speed, &link_up, 612 false); 613 if (status != 0) 614 return status; 615 616 if (link_up) 617 goto out; 618 } 619 620 /* 621 * We didn't get link. Configure back to the highest speed we tried, 622 * (if there was more than one). We call ourselves back with just the 623 * single highest speed that the user requested. 624 */ 625 if (speedcnt > 1) 626 status = ixgbe_setup_mac_link_multispeed_fiber(hw, 627 highest_link_speed, 628 autoneg, 629 autoneg_wait_to_complete); 630 631 out: 632 /* Set autoneg_advertised value based on input link speed */ 633 hw->phy.autoneg_advertised = 0; 634 635 if (speed & IXGBE_LINK_SPEED_10GB_FULL) 636 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL; 637 638 if (speed & IXGBE_LINK_SPEED_1GB_FULL) 639 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL; 640 641 return status; 642 } 643 644 /** 645 * ixgbe_setup_mac_link_smartspeed - Set MAC link speed using SmartSpeed 646 * @hw: pointer to hardware structure 647 * @speed: new link speed 648 * @autoneg: true if autonegotiation enabled 649 * @autoneg_wait_to_complete: true when waiting for completion is needed 650 * 651 * Implements the Intel SmartSpeed algorithm. 652 **/ 653 static s32 ixgbe_setup_mac_link_smartspeed(struct ixgbe_hw *hw, 654 ixgbe_link_speed speed, bool autoneg, 655 bool autoneg_wait_to_complete) 656 { 657 s32 status = 0; 658 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN; 659 s32 i, j; 660 bool link_up = false; 661 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC); 662 663 /* Set autoneg_advertised value based on input link speed */ 664 hw->phy.autoneg_advertised = 0; 665 666 if (speed & IXGBE_LINK_SPEED_10GB_FULL) 667 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL; 668 669 if (speed & IXGBE_LINK_SPEED_1GB_FULL) 670 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL; 671 672 if (speed & IXGBE_LINK_SPEED_100_FULL) 673 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL; 674 675 /* 676 * Implement Intel SmartSpeed algorithm. SmartSpeed will reduce the 677 * autoneg advertisement if link is unable to be established at the 678 * highest negotiated rate. This can sometimes happen due to integrity 679 * issues with the physical media connection. 680 */ 681 682 /* First, try to get link with full advertisement */ 683 hw->phy.smart_speed_active = false; 684 for (j = 0; j < IXGBE_SMARTSPEED_MAX_RETRIES; j++) { 685 status = ixgbe_setup_mac_link_82599(hw, speed, autoneg, 686 autoneg_wait_to_complete); 687 if (status != 0) 688 goto out; 689 690 /* 691 * Wait for the controller to acquire link. Per IEEE 802.3ap, 692 * Section 73.10.2, we may have to wait up to 500ms if KR is 693 * attempted, or 200ms if KX/KX4/BX/BX4 is attempted, per 694 * Table 9 in the AN MAS. 695 */ 696 for (i = 0; i < 5; i++) { 697 mdelay(100); 698 699 /* If we have link, just jump out */ 700 status = hw->mac.ops.check_link(hw, &link_speed, 701 &link_up, false); 702 if (status != 0) 703 goto out; 704 705 if (link_up) 706 goto out; 707 } 708 } 709 710 /* 711 * We didn't get link. If we advertised KR plus one of KX4/KX 712 * (or BX4/BX), then disable KR and try again. 713 */ 714 if (((autoc_reg & IXGBE_AUTOC_KR_SUPP) == 0) || 715 ((autoc_reg & IXGBE_AUTOC_KX4_KX_SUPP_MASK) == 0)) 716 goto out; 717 718 /* Turn SmartSpeed on to disable KR support */ 719 hw->phy.smart_speed_active = true; 720 status = ixgbe_setup_mac_link_82599(hw, speed, autoneg, 721 autoneg_wait_to_complete); 722 if (status != 0) 723 goto out; 724 725 /* 726 * Wait for the controller to acquire link. 600ms will allow for 727 * the AN link_fail_inhibit_timer as well for multiple cycles of 728 * parallel detect, both 10g and 1g. This allows for the maximum 729 * connect attempts as defined in the AN MAS table 73-7. 730 */ 731 for (i = 0; i < 6; i++) { 732 mdelay(100); 733 734 /* If we have link, just jump out */ 735 status = hw->mac.ops.check_link(hw, &link_speed, 736 &link_up, false); 737 if (status != 0) 738 goto out; 739 740 if (link_up) 741 goto out; 742 } 743 744 /* We didn't get link. Turn SmartSpeed back off. */ 745 hw->phy.smart_speed_active = false; 746 status = ixgbe_setup_mac_link_82599(hw, speed, autoneg, 747 autoneg_wait_to_complete); 748 749 out: 750 if (link_up && (link_speed == IXGBE_LINK_SPEED_1GB_FULL)) 751 hw_dbg(hw, "Smartspeed has downgraded the link speed from " 752 "the maximum advertised\n"); 753 return status; 754 } 755 756 /** 757 * ixgbe_setup_mac_link_82599 - Set MAC link speed 758 * @hw: pointer to hardware structure 759 * @speed: new link speed 760 * @autoneg: true if autonegotiation enabled 761 * @autoneg_wait_to_complete: true when waiting for completion is needed 762 * 763 * Set the link speed in the AUTOC register and restarts link. 764 **/ 765 static s32 ixgbe_setup_mac_link_82599(struct ixgbe_hw *hw, 766 ixgbe_link_speed speed, bool autoneg, 767 bool autoneg_wait_to_complete) 768 { 769 s32 status = 0; 770 u32 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC); 771 u32 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2); 772 u32 start_autoc = autoc; 773 u32 orig_autoc = 0; 774 u32 link_mode = autoc & IXGBE_AUTOC_LMS_MASK; 775 u32 pma_pmd_1g = autoc & IXGBE_AUTOC_1G_PMA_PMD_MASK; 776 u32 pma_pmd_10g_serial = autoc2 & IXGBE_AUTOC2_10G_SERIAL_PMA_PMD_MASK; 777 u32 links_reg; 778 u32 i; 779 ixgbe_link_speed link_capabilities = IXGBE_LINK_SPEED_UNKNOWN; 780 781 /* Check to see if speed passed in is supported. */ 782 hw->mac.ops.get_link_capabilities(hw, &link_capabilities, &autoneg); 783 if (status != 0) 784 goto out; 785 786 speed &= link_capabilities; 787 788 if (speed == IXGBE_LINK_SPEED_UNKNOWN) { 789 status = IXGBE_ERR_LINK_SETUP; 790 goto out; 791 } 792 793 /* Use stored value (EEPROM defaults) of AUTOC to find KR/KX4 support*/ 794 if (hw->mac.orig_link_settings_stored) 795 orig_autoc = hw->mac.orig_autoc; 796 else 797 orig_autoc = autoc; 798 799 if (link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR || 800 link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN || 801 link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) { 802 /* Set KX4/KX/KR support according to speed requested */ 803 autoc &= ~(IXGBE_AUTOC_KX4_KX_SUPP_MASK | IXGBE_AUTOC_KR_SUPP); 804 if (speed & IXGBE_LINK_SPEED_10GB_FULL) 805 if (orig_autoc & IXGBE_AUTOC_KX4_SUPP) 806 autoc |= IXGBE_AUTOC_KX4_SUPP; 807 if ((orig_autoc & IXGBE_AUTOC_KR_SUPP) && 808 (hw->phy.smart_speed_active == false)) 809 autoc |= IXGBE_AUTOC_KR_SUPP; 810 if (speed & IXGBE_LINK_SPEED_1GB_FULL) 811 autoc |= IXGBE_AUTOC_KX_SUPP; 812 } else if ((pma_pmd_1g == IXGBE_AUTOC_1G_SFI) && 813 (link_mode == IXGBE_AUTOC_LMS_1G_LINK_NO_AN || 814 link_mode == IXGBE_AUTOC_LMS_1G_AN)) { 815 /* Switch from 1G SFI to 10G SFI if requested */ 816 if ((speed == IXGBE_LINK_SPEED_10GB_FULL) && 817 (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI)) { 818 autoc &= ~IXGBE_AUTOC_LMS_MASK; 819 autoc |= IXGBE_AUTOC_LMS_10G_SERIAL; 820 } 821 } else if ((pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI) && 822 (link_mode == IXGBE_AUTOC_LMS_10G_SERIAL)) { 823 /* Switch from 10G SFI to 1G SFI if requested */ 824 if ((speed == IXGBE_LINK_SPEED_1GB_FULL) && 825 (pma_pmd_1g == IXGBE_AUTOC_1G_SFI)) { 826 autoc &= ~IXGBE_AUTOC_LMS_MASK; 827 if (autoneg) 828 autoc |= IXGBE_AUTOC_LMS_1G_AN; 829 else 830 autoc |= IXGBE_AUTOC_LMS_1G_LINK_NO_AN; 831 } 832 } 833 834 if (autoc != start_autoc) { 835 /* Restart link */ 836 autoc |= IXGBE_AUTOC_AN_RESTART; 837 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc); 838 839 /* Only poll for autoneg to complete if specified to do so */ 840 if (autoneg_wait_to_complete) { 841 if (link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR || 842 link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN || 843 link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) { 844 links_reg = 0; /*Just in case Autoneg time=0*/ 845 for (i = 0; i < IXGBE_AUTO_NEG_TIME; i++) { 846 links_reg = 847 IXGBE_READ_REG(hw, IXGBE_LINKS); 848 if (links_reg & IXGBE_LINKS_KX_AN_COMP) 849 break; 850 msleep(100); 851 } 852 if (!(links_reg & IXGBE_LINKS_KX_AN_COMP)) { 853 status = 854 IXGBE_ERR_AUTONEG_NOT_COMPLETE; 855 hw_dbg(hw, "Autoneg did not " 856 "complete.\n"); 857 } 858 } 859 } 860 861 /* Add delay to filter out noises during initial link setup */ 862 msleep(50); 863 } 864 865 out: 866 return status; 867 } 868 869 /** 870 * ixgbe_setup_copper_link_82599 - Set the PHY autoneg advertised field 871 * @hw: pointer to hardware structure 872 * @speed: new link speed 873 * @autoneg: true if autonegotiation enabled 874 * @autoneg_wait_to_complete: true if waiting is needed to complete 875 * 876 * Restarts link on PHY and MAC based on settings passed in. 877 **/ 878 static s32 ixgbe_setup_copper_link_82599(struct ixgbe_hw *hw, 879 ixgbe_link_speed speed, 880 bool autoneg, 881 bool autoneg_wait_to_complete) 882 { 883 s32 status; 884 885 /* Setup the PHY according to input speed */ 886 status = hw->phy.ops.setup_link_speed(hw, speed, autoneg, 887 autoneg_wait_to_complete); 888 /* Set up MAC */ 889 ixgbe_start_mac_link_82599(hw, autoneg_wait_to_complete); 890 891 return status; 892 } 893 894 /** 895 * ixgbe_reset_hw_82599 - Perform hardware reset 896 * @hw: pointer to hardware structure 897 * 898 * Resets the hardware by resetting the transmit and receive units, masks 899 * and clears all interrupts, perform a PHY reset, and perform a link (MAC) 900 * reset. 901 **/ 902 static s32 ixgbe_reset_hw_82599(struct ixgbe_hw *hw) 903 { 904 ixgbe_link_speed link_speed; 905 s32 status; 906 u32 ctrl, i, autoc, autoc2; 907 bool link_up = false; 908 909 /* Call adapter stop to disable tx/rx and clear interrupts */ 910 status = hw->mac.ops.stop_adapter(hw); 911 if (status != 0) 912 goto reset_hw_out; 913 914 /* flush pending Tx transactions */ 915 ixgbe_clear_tx_pending(hw); 916 917 /* PHY ops must be identified and initialized prior to reset */ 918 919 /* Identify PHY and related function pointers */ 920 status = hw->phy.ops.init(hw); 921 922 if (status == IXGBE_ERR_SFP_NOT_SUPPORTED) 923 goto reset_hw_out; 924 925 /* Setup SFP module if there is one present. */ 926 if (hw->phy.sfp_setup_needed) { 927 status = hw->mac.ops.setup_sfp(hw); 928 hw->phy.sfp_setup_needed = false; 929 } 930 931 if (status == IXGBE_ERR_SFP_NOT_SUPPORTED) 932 goto reset_hw_out; 933 934 /* Reset PHY */ 935 if (hw->phy.reset_disable == false && hw->phy.ops.reset != NULL) 936 hw->phy.ops.reset(hw); 937 938 mac_reset_top: 939 /* 940 * Issue global reset to the MAC. Needs to be SW reset if link is up. 941 * If link reset is used when link is up, it might reset the PHY when 942 * mng is using it. If link is down or the flag to force full link 943 * reset is set, then perform link reset. 944 */ 945 ctrl = IXGBE_CTRL_LNK_RST; 946 if (!hw->force_full_reset) { 947 hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 948 if (link_up) 949 ctrl = IXGBE_CTRL_RST; 950 } 951 952 ctrl |= IXGBE_READ_REG(hw, IXGBE_CTRL); 953 IXGBE_WRITE_REG(hw, IXGBE_CTRL, ctrl); 954 IXGBE_WRITE_FLUSH(hw); 955 956 /* Poll for reset bit to self-clear indicating reset is complete */ 957 for (i = 0; i < 10; i++) { 958 udelay(1); 959 ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL); 960 if (!(ctrl & IXGBE_CTRL_RST_MASK)) 961 break; 962 } 963 964 if (ctrl & IXGBE_CTRL_RST_MASK) { 965 status = IXGBE_ERR_RESET_FAILED; 966 hw_dbg(hw, "Reset polling failed to complete.\n"); 967 } 968 969 msleep(50); 970 971 /* 972 * Double resets are required for recovery from certain error 973 * conditions. Between resets, it is necessary to stall to allow time 974 * for any pending HW events to complete. 975 */ 976 if (hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED) { 977 hw->mac.flags &= ~IXGBE_FLAGS_DOUBLE_RESET_REQUIRED; 978 goto mac_reset_top; 979 } 980 981 /* 982 * Store the original AUTOC/AUTOC2 values if they have not been 983 * stored off yet. Otherwise restore the stored original 984 * values since the reset operation sets back to defaults. 985 */ 986 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC); 987 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2); 988 if (hw->mac.orig_link_settings_stored == false) { 989 hw->mac.orig_autoc = autoc; 990 hw->mac.orig_autoc2 = autoc2; 991 hw->mac.orig_link_settings_stored = true; 992 } else { 993 if (autoc != hw->mac.orig_autoc) 994 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, (hw->mac.orig_autoc | 995 IXGBE_AUTOC_AN_RESTART)); 996 997 if ((autoc2 & IXGBE_AUTOC2_UPPER_MASK) != 998 (hw->mac.orig_autoc2 & IXGBE_AUTOC2_UPPER_MASK)) { 999 autoc2 &= ~IXGBE_AUTOC2_UPPER_MASK; 1000 autoc2 |= (hw->mac.orig_autoc2 & 1001 IXGBE_AUTOC2_UPPER_MASK); 1002 IXGBE_WRITE_REG(hw, IXGBE_AUTOC2, autoc2); 1003 } 1004 } 1005 1006 /* Store the permanent mac address */ 1007 hw->mac.ops.get_mac_addr(hw, hw->mac.perm_addr); 1008 1009 /* 1010 * Store MAC address from RAR0, clear receive address registers, and 1011 * clear the multicast table. Also reset num_rar_entries to 128, 1012 * since we modify this value when programming the SAN MAC address. 1013 */ 1014 hw->mac.num_rar_entries = 128; 1015 hw->mac.ops.init_rx_addrs(hw); 1016 1017 /* Store the permanent SAN mac address */ 1018 hw->mac.ops.get_san_mac_addr(hw, hw->mac.san_addr); 1019 1020 /* Add the SAN MAC address to the RAR only if it's a valid address */ 1021 if (ixgbe_validate_mac_addr(hw->mac.san_addr) == 0) { 1022 hw->mac.ops.set_rar(hw, hw->mac.num_rar_entries - 1, 1023 hw->mac.san_addr, 0, IXGBE_RAH_AV); 1024 1025 /* Reserve the last RAR for the SAN MAC address */ 1026 hw->mac.num_rar_entries--; 1027 } 1028 1029 /* Store the alternative WWNN/WWPN prefix */ 1030 hw->mac.ops.get_wwn_prefix(hw, &hw->mac.wwnn_prefix, 1031 &hw->mac.wwpn_prefix); 1032 1033 reset_hw_out: 1034 return status; 1035 } 1036 1037 /** 1038 * ixgbe_reinit_fdir_tables_82599 - Reinitialize Flow Director tables. 1039 * @hw: pointer to hardware structure 1040 **/ 1041 s32 ixgbe_reinit_fdir_tables_82599(struct ixgbe_hw *hw) 1042 { 1043 int i; 1044 u32 fdirctrl = IXGBE_READ_REG(hw, IXGBE_FDIRCTRL); 1045 fdirctrl &= ~IXGBE_FDIRCTRL_INIT_DONE; 1046 1047 /* 1048 * Before starting reinitialization process, 1049 * FDIRCMD.CMD must be zero. 1050 */ 1051 for (i = 0; i < IXGBE_FDIRCMD_CMD_POLL; i++) { 1052 if (!(IXGBE_READ_REG(hw, IXGBE_FDIRCMD) & 1053 IXGBE_FDIRCMD_CMD_MASK)) 1054 break; 1055 udelay(10); 1056 } 1057 if (i >= IXGBE_FDIRCMD_CMD_POLL) { 1058 hw_dbg(hw, "Flow Director previous command isn't complete, " 1059 "aborting table re-initialization.\n"); 1060 return IXGBE_ERR_FDIR_REINIT_FAILED; 1061 } 1062 1063 IXGBE_WRITE_REG(hw, IXGBE_FDIRFREE, 0); 1064 IXGBE_WRITE_FLUSH(hw); 1065 /* 1066 * 82599 adapters flow director init flow cannot be restarted, 1067 * Workaround 82599 silicon errata by performing the following steps 1068 * before re-writing the FDIRCTRL control register with the same value. 1069 * - write 1 to bit 8 of FDIRCMD register & 1070 * - write 0 to bit 8 of FDIRCMD register 1071 */ 1072 IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD, 1073 (IXGBE_READ_REG(hw, IXGBE_FDIRCMD) | 1074 IXGBE_FDIRCMD_CLEARHT)); 1075 IXGBE_WRITE_FLUSH(hw); 1076 IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD, 1077 (IXGBE_READ_REG(hw, IXGBE_FDIRCMD) & 1078 ~IXGBE_FDIRCMD_CLEARHT)); 1079 IXGBE_WRITE_FLUSH(hw); 1080 /* 1081 * Clear FDIR Hash register to clear any leftover hashes 1082 * waiting to be programmed. 1083 */ 1084 IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, 0x00); 1085 IXGBE_WRITE_FLUSH(hw); 1086 1087 IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl); 1088 IXGBE_WRITE_FLUSH(hw); 1089 1090 /* Poll init-done after we write FDIRCTRL register */ 1091 for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) { 1092 if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) & 1093 IXGBE_FDIRCTRL_INIT_DONE) 1094 break; 1095 udelay(10); 1096 } 1097 if (i >= IXGBE_FDIR_INIT_DONE_POLL) { 1098 hw_dbg(hw, "Flow Director Signature poll time exceeded!\n"); 1099 return IXGBE_ERR_FDIR_REINIT_FAILED; 1100 } 1101 1102 /* Clear FDIR statistics registers (read to clear) */ 1103 IXGBE_READ_REG(hw, IXGBE_FDIRUSTAT); 1104 IXGBE_READ_REG(hw, IXGBE_FDIRFSTAT); 1105 IXGBE_READ_REG(hw, IXGBE_FDIRMATCH); 1106 IXGBE_READ_REG(hw, IXGBE_FDIRMISS); 1107 IXGBE_READ_REG(hw, IXGBE_FDIRLEN); 1108 1109 return 0; 1110 } 1111 1112 /** 1113 * ixgbe_fdir_enable_82599 - Initialize Flow Director control registers 1114 * @hw: pointer to hardware structure 1115 * @fdirctrl: value to write to flow director control register 1116 **/ 1117 static void ixgbe_fdir_enable_82599(struct ixgbe_hw *hw, u32 fdirctrl) 1118 { 1119 int i; 1120 1121 /* Prime the keys for hashing */ 1122 IXGBE_WRITE_REG(hw, IXGBE_FDIRHKEY, IXGBE_ATR_BUCKET_HASH_KEY); 1123 IXGBE_WRITE_REG(hw, IXGBE_FDIRSKEY, IXGBE_ATR_SIGNATURE_HASH_KEY); 1124 1125 /* 1126 * Poll init-done after we write the register. Estimated times: 1127 * 10G: PBALLOC = 11b, timing is 60us 1128 * 1G: PBALLOC = 11b, timing is 600us 1129 * 100M: PBALLOC = 11b, timing is 6ms 1130 * 1131 * Multiple these timings by 4 if under full Rx load 1132 * 1133 * So we'll poll for IXGBE_FDIR_INIT_DONE_POLL times, sleeping for 1134 * 1 msec per poll time. If we're at line rate and drop to 100M, then 1135 * this might not finish in our poll time, but we can live with that 1136 * for now. 1137 */ 1138 IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl); 1139 IXGBE_WRITE_FLUSH(hw); 1140 for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) { 1141 if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) & 1142 IXGBE_FDIRCTRL_INIT_DONE) 1143 break; 1144 usleep_range(1000, 2000); 1145 } 1146 1147 if (i >= IXGBE_FDIR_INIT_DONE_POLL) 1148 hw_dbg(hw, "Flow Director poll time exceeded!\n"); 1149 } 1150 1151 /** 1152 * ixgbe_init_fdir_signature_82599 - Initialize Flow Director signature filters 1153 * @hw: pointer to hardware structure 1154 * @fdirctrl: value to write to flow director control register, initially 1155 * contains just the value of the Rx packet buffer allocation 1156 **/ 1157 s32 ixgbe_init_fdir_signature_82599(struct ixgbe_hw *hw, u32 fdirctrl) 1158 { 1159 /* 1160 * Continue setup of fdirctrl register bits: 1161 * Move the flexible bytes to use the ethertype - shift 6 words 1162 * Set the maximum length per hash bucket to 0xA filters 1163 * Send interrupt when 64 filters are left 1164 */ 1165 fdirctrl |= (0x6 << IXGBE_FDIRCTRL_FLEX_SHIFT) | 1166 (0xA << IXGBE_FDIRCTRL_MAX_LENGTH_SHIFT) | 1167 (4 << IXGBE_FDIRCTRL_FULL_THRESH_SHIFT); 1168 1169 /* write hashes and fdirctrl register, poll for completion */ 1170 ixgbe_fdir_enable_82599(hw, fdirctrl); 1171 1172 return 0; 1173 } 1174 1175 /** 1176 * ixgbe_init_fdir_perfect_82599 - Initialize Flow Director perfect filters 1177 * @hw: pointer to hardware structure 1178 * @fdirctrl: value to write to flow director control register, initially 1179 * contains just the value of the Rx packet buffer allocation 1180 **/ 1181 s32 ixgbe_init_fdir_perfect_82599(struct ixgbe_hw *hw, u32 fdirctrl) 1182 { 1183 /* 1184 * Continue setup of fdirctrl register bits: 1185 * Turn perfect match filtering on 1186 * Report hash in RSS field of Rx wb descriptor 1187 * Initialize the drop queue 1188 * Move the flexible bytes to use the ethertype - shift 6 words 1189 * Set the maximum length per hash bucket to 0xA filters 1190 * Send interrupt when 64 (0x4 * 16) filters are left 1191 */ 1192 fdirctrl |= IXGBE_FDIRCTRL_PERFECT_MATCH | 1193 IXGBE_FDIRCTRL_REPORT_STATUS | 1194 (IXGBE_FDIR_DROP_QUEUE << IXGBE_FDIRCTRL_DROP_Q_SHIFT) | 1195 (0x6 << IXGBE_FDIRCTRL_FLEX_SHIFT) | 1196 (0xA << IXGBE_FDIRCTRL_MAX_LENGTH_SHIFT) | 1197 (4 << IXGBE_FDIRCTRL_FULL_THRESH_SHIFT); 1198 1199 /* write hashes and fdirctrl register, poll for completion */ 1200 ixgbe_fdir_enable_82599(hw, fdirctrl); 1201 1202 return 0; 1203 } 1204 1205 /* 1206 * These defines allow us to quickly generate all of the necessary instructions 1207 * in the function below by simply calling out IXGBE_COMPUTE_SIG_HASH_ITERATION 1208 * for values 0 through 15 1209 */ 1210 #define IXGBE_ATR_COMMON_HASH_KEY \ 1211 (IXGBE_ATR_BUCKET_HASH_KEY & IXGBE_ATR_SIGNATURE_HASH_KEY) 1212 #define IXGBE_COMPUTE_SIG_HASH_ITERATION(_n) \ 1213 do { \ 1214 u32 n = (_n); \ 1215 if (IXGBE_ATR_COMMON_HASH_KEY & (0x01 << n)) \ 1216 common_hash ^= lo_hash_dword >> n; \ 1217 else if (IXGBE_ATR_BUCKET_HASH_KEY & (0x01 << n)) \ 1218 bucket_hash ^= lo_hash_dword >> n; \ 1219 else if (IXGBE_ATR_SIGNATURE_HASH_KEY & (0x01 << n)) \ 1220 sig_hash ^= lo_hash_dword << (16 - n); \ 1221 if (IXGBE_ATR_COMMON_HASH_KEY & (0x01 << (n + 16))) \ 1222 common_hash ^= hi_hash_dword >> n; \ 1223 else if (IXGBE_ATR_BUCKET_HASH_KEY & (0x01 << (n + 16))) \ 1224 bucket_hash ^= hi_hash_dword >> n; \ 1225 else if (IXGBE_ATR_SIGNATURE_HASH_KEY & (0x01 << (n + 16))) \ 1226 sig_hash ^= hi_hash_dword << (16 - n); \ 1227 } while (0); 1228 1229 /** 1230 * ixgbe_atr_compute_sig_hash_82599 - Compute the signature hash 1231 * @stream: input bitstream to compute the hash on 1232 * 1233 * This function is almost identical to the function above but contains 1234 * several optomizations such as unwinding all of the loops, letting the 1235 * compiler work out all of the conditional ifs since the keys are static 1236 * defines, and computing two keys at once since the hashed dword stream 1237 * will be the same for both keys. 1238 **/ 1239 static u32 ixgbe_atr_compute_sig_hash_82599(union ixgbe_atr_hash_dword input, 1240 union ixgbe_atr_hash_dword common) 1241 { 1242 u32 hi_hash_dword, lo_hash_dword, flow_vm_vlan; 1243 u32 sig_hash = 0, bucket_hash = 0, common_hash = 0; 1244 1245 /* record the flow_vm_vlan bits as they are a key part to the hash */ 1246 flow_vm_vlan = ntohl(input.dword); 1247 1248 /* generate common hash dword */ 1249 hi_hash_dword = ntohl(common.dword); 1250 1251 /* low dword is word swapped version of common */ 1252 lo_hash_dword = (hi_hash_dword >> 16) | (hi_hash_dword << 16); 1253 1254 /* apply flow ID/VM pool/VLAN ID bits to hash words */ 1255 hi_hash_dword ^= flow_vm_vlan ^ (flow_vm_vlan >> 16); 1256 1257 /* Process bits 0 and 16 */ 1258 IXGBE_COMPUTE_SIG_HASH_ITERATION(0); 1259 1260 /* 1261 * apply flow ID/VM pool/VLAN ID bits to lo hash dword, we had to 1262 * delay this because bit 0 of the stream should not be processed 1263 * so we do not add the vlan until after bit 0 was processed 1264 */ 1265 lo_hash_dword ^= flow_vm_vlan ^ (flow_vm_vlan << 16); 1266 1267 /* Process remaining 30 bit of the key */ 1268 IXGBE_COMPUTE_SIG_HASH_ITERATION(1); 1269 IXGBE_COMPUTE_SIG_HASH_ITERATION(2); 1270 IXGBE_COMPUTE_SIG_HASH_ITERATION(3); 1271 IXGBE_COMPUTE_SIG_HASH_ITERATION(4); 1272 IXGBE_COMPUTE_SIG_HASH_ITERATION(5); 1273 IXGBE_COMPUTE_SIG_HASH_ITERATION(6); 1274 IXGBE_COMPUTE_SIG_HASH_ITERATION(7); 1275 IXGBE_COMPUTE_SIG_HASH_ITERATION(8); 1276 IXGBE_COMPUTE_SIG_HASH_ITERATION(9); 1277 IXGBE_COMPUTE_SIG_HASH_ITERATION(10); 1278 IXGBE_COMPUTE_SIG_HASH_ITERATION(11); 1279 IXGBE_COMPUTE_SIG_HASH_ITERATION(12); 1280 IXGBE_COMPUTE_SIG_HASH_ITERATION(13); 1281 IXGBE_COMPUTE_SIG_HASH_ITERATION(14); 1282 IXGBE_COMPUTE_SIG_HASH_ITERATION(15); 1283 1284 /* combine common_hash result with signature and bucket hashes */ 1285 bucket_hash ^= common_hash; 1286 bucket_hash &= IXGBE_ATR_HASH_MASK; 1287 1288 sig_hash ^= common_hash << 16; 1289 sig_hash &= IXGBE_ATR_HASH_MASK << 16; 1290 1291 /* return completed signature hash */ 1292 return sig_hash ^ bucket_hash; 1293 } 1294 1295 /** 1296 * ixgbe_atr_add_signature_filter_82599 - Adds a signature hash filter 1297 * @hw: pointer to hardware structure 1298 * @input: unique input dword 1299 * @common: compressed common input dword 1300 * @queue: queue index to direct traffic to 1301 **/ 1302 s32 ixgbe_fdir_add_signature_filter_82599(struct ixgbe_hw *hw, 1303 union ixgbe_atr_hash_dword input, 1304 union ixgbe_atr_hash_dword common, 1305 u8 queue) 1306 { 1307 u64 fdirhashcmd; 1308 u32 fdircmd; 1309 1310 /* 1311 * Get the flow_type in order to program FDIRCMD properly 1312 * lowest 2 bits are FDIRCMD.L4TYPE, third lowest bit is FDIRCMD.IPV6 1313 */ 1314 switch (input.formatted.flow_type) { 1315 case IXGBE_ATR_FLOW_TYPE_TCPV4: 1316 case IXGBE_ATR_FLOW_TYPE_UDPV4: 1317 case IXGBE_ATR_FLOW_TYPE_SCTPV4: 1318 case IXGBE_ATR_FLOW_TYPE_TCPV6: 1319 case IXGBE_ATR_FLOW_TYPE_UDPV6: 1320 case IXGBE_ATR_FLOW_TYPE_SCTPV6: 1321 break; 1322 default: 1323 hw_dbg(hw, " Error on flow type input\n"); 1324 return IXGBE_ERR_CONFIG; 1325 } 1326 1327 /* configure FDIRCMD register */ 1328 fdircmd = IXGBE_FDIRCMD_CMD_ADD_FLOW | IXGBE_FDIRCMD_FILTER_UPDATE | 1329 IXGBE_FDIRCMD_LAST | IXGBE_FDIRCMD_QUEUE_EN; 1330 fdircmd |= input.formatted.flow_type << IXGBE_FDIRCMD_FLOW_TYPE_SHIFT; 1331 fdircmd |= (u32)queue << IXGBE_FDIRCMD_RX_QUEUE_SHIFT; 1332 1333 /* 1334 * The lower 32-bits of fdirhashcmd is for FDIRHASH, the upper 32-bits 1335 * is for FDIRCMD. Then do a 64-bit register write from FDIRHASH. 1336 */ 1337 fdirhashcmd = (u64)fdircmd << 32; 1338 fdirhashcmd |= ixgbe_atr_compute_sig_hash_82599(input, common); 1339 IXGBE_WRITE_REG64(hw, IXGBE_FDIRHASH, fdirhashcmd); 1340 1341 hw_dbg(hw, "Tx Queue=%x hash=%x\n", queue, (u32)fdirhashcmd); 1342 1343 return 0; 1344 } 1345 1346 #define IXGBE_COMPUTE_BKT_HASH_ITERATION(_n) \ 1347 do { \ 1348 u32 n = (_n); \ 1349 if (IXGBE_ATR_BUCKET_HASH_KEY & (0x01 << n)) \ 1350 bucket_hash ^= lo_hash_dword >> n; \ 1351 if (IXGBE_ATR_BUCKET_HASH_KEY & (0x01 << (n + 16))) \ 1352 bucket_hash ^= hi_hash_dword >> n; \ 1353 } while (0); 1354 1355 /** 1356 * ixgbe_atr_compute_perfect_hash_82599 - Compute the perfect filter hash 1357 * @atr_input: input bitstream to compute the hash on 1358 * @input_mask: mask for the input bitstream 1359 * 1360 * This function serves two main purposes. First it applys the input_mask 1361 * to the atr_input resulting in a cleaned up atr_input data stream. 1362 * Secondly it computes the hash and stores it in the bkt_hash field at 1363 * the end of the input byte stream. This way it will be available for 1364 * future use without needing to recompute the hash. 1365 **/ 1366 void ixgbe_atr_compute_perfect_hash_82599(union ixgbe_atr_input *input, 1367 union ixgbe_atr_input *input_mask) 1368 { 1369 1370 u32 hi_hash_dword, lo_hash_dword, flow_vm_vlan; 1371 u32 bucket_hash = 0; 1372 1373 /* Apply masks to input data */ 1374 input->dword_stream[0] &= input_mask->dword_stream[0]; 1375 input->dword_stream[1] &= input_mask->dword_stream[1]; 1376 input->dword_stream[2] &= input_mask->dword_stream[2]; 1377 input->dword_stream[3] &= input_mask->dword_stream[3]; 1378 input->dword_stream[4] &= input_mask->dword_stream[4]; 1379 input->dword_stream[5] &= input_mask->dword_stream[5]; 1380 input->dword_stream[6] &= input_mask->dword_stream[6]; 1381 input->dword_stream[7] &= input_mask->dword_stream[7]; 1382 input->dword_stream[8] &= input_mask->dword_stream[8]; 1383 input->dword_stream[9] &= input_mask->dword_stream[9]; 1384 input->dword_stream[10] &= input_mask->dword_stream[10]; 1385 1386 /* record the flow_vm_vlan bits as they are a key part to the hash */ 1387 flow_vm_vlan = ntohl(input->dword_stream[0]); 1388 1389 /* generate common hash dword */ 1390 hi_hash_dword = ntohl(input->dword_stream[1] ^ 1391 input->dword_stream[2] ^ 1392 input->dword_stream[3] ^ 1393 input->dword_stream[4] ^ 1394 input->dword_stream[5] ^ 1395 input->dword_stream[6] ^ 1396 input->dword_stream[7] ^ 1397 input->dword_stream[8] ^ 1398 input->dword_stream[9] ^ 1399 input->dword_stream[10]); 1400 1401 /* low dword is word swapped version of common */ 1402 lo_hash_dword = (hi_hash_dword >> 16) | (hi_hash_dword << 16); 1403 1404 /* apply flow ID/VM pool/VLAN ID bits to hash words */ 1405 hi_hash_dword ^= flow_vm_vlan ^ (flow_vm_vlan >> 16); 1406 1407 /* Process bits 0 and 16 */ 1408 IXGBE_COMPUTE_BKT_HASH_ITERATION(0); 1409 1410 /* 1411 * apply flow ID/VM pool/VLAN ID bits to lo hash dword, we had to 1412 * delay this because bit 0 of the stream should not be processed 1413 * so we do not add the vlan until after bit 0 was processed 1414 */ 1415 lo_hash_dword ^= flow_vm_vlan ^ (flow_vm_vlan << 16); 1416 1417 /* Process remaining 30 bit of the key */ 1418 IXGBE_COMPUTE_BKT_HASH_ITERATION(1); 1419 IXGBE_COMPUTE_BKT_HASH_ITERATION(2); 1420 IXGBE_COMPUTE_BKT_HASH_ITERATION(3); 1421 IXGBE_COMPUTE_BKT_HASH_ITERATION(4); 1422 IXGBE_COMPUTE_BKT_HASH_ITERATION(5); 1423 IXGBE_COMPUTE_BKT_HASH_ITERATION(6); 1424 IXGBE_COMPUTE_BKT_HASH_ITERATION(7); 1425 IXGBE_COMPUTE_BKT_HASH_ITERATION(8); 1426 IXGBE_COMPUTE_BKT_HASH_ITERATION(9); 1427 IXGBE_COMPUTE_BKT_HASH_ITERATION(10); 1428 IXGBE_COMPUTE_BKT_HASH_ITERATION(11); 1429 IXGBE_COMPUTE_BKT_HASH_ITERATION(12); 1430 IXGBE_COMPUTE_BKT_HASH_ITERATION(13); 1431 IXGBE_COMPUTE_BKT_HASH_ITERATION(14); 1432 IXGBE_COMPUTE_BKT_HASH_ITERATION(15); 1433 1434 /* 1435 * Limit hash to 13 bits since max bucket count is 8K. 1436 * Store result at the end of the input stream. 1437 */ 1438 input->formatted.bkt_hash = bucket_hash & 0x1FFF; 1439 } 1440 1441 /** 1442 * ixgbe_get_fdirtcpm_82599 - generate a tcp port from atr_input_masks 1443 * @input_mask: mask to be bit swapped 1444 * 1445 * The source and destination port masks for flow director are bit swapped 1446 * in that bit 15 effects bit 0, 14 effects 1, 13, 2 etc. In order to 1447 * generate a correctly swapped value we need to bit swap the mask and that 1448 * is what is accomplished by this function. 1449 **/ 1450 static u32 ixgbe_get_fdirtcpm_82599(union ixgbe_atr_input *input_mask) 1451 { 1452 u32 mask = ntohs(input_mask->formatted.dst_port); 1453 mask <<= IXGBE_FDIRTCPM_DPORTM_SHIFT; 1454 mask |= ntohs(input_mask->formatted.src_port); 1455 mask = ((mask & 0x55555555) << 1) | ((mask & 0xAAAAAAAA) >> 1); 1456 mask = ((mask & 0x33333333) << 2) | ((mask & 0xCCCCCCCC) >> 2); 1457 mask = ((mask & 0x0F0F0F0F) << 4) | ((mask & 0xF0F0F0F0) >> 4); 1458 return ((mask & 0x00FF00FF) << 8) | ((mask & 0xFF00FF00) >> 8); 1459 } 1460 1461 /* 1462 * These two macros are meant to address the fact that we have registers 1463 * that are either all or in part big-endian. As a result on big-endian 1464 * systems we will end up byte swapping the value to little-endian before 1465 * it is byte swapped again and written to the hardware in the original 1466 * big-endian format. 1467 */ 1468 #define IXGBE_STORE_AS_BE32(_value) \ 1469 (((u32)(_value) >> 24) | (((u32)(_value) & 0x00FF0000) >> 8) | \ 1470 (((u32)(_value) & 0x0000FF00) << 8) | ((u32)(_value) << 24)) 1471 1472 #define IXGBE_WRITE_REG_BE32(a, reg, value) \ 1473 IXGBE_WRITE_REG((a), (reg), IXGBE_STORE_AS_BE32(ntohl(value))) 1474 1475 #define IXGBE_STORE_AS_BE16(_value) \ 1476 ntohs(((u16)(_value) >> 8) | ((u16)(_value) << 8)) 1477 1478 s32 ixgbe_fdir_set_input_mask_82599(struct ixgbe_hw *hw, 1479 union ixgbe_atr_input *input_mask) 1480 { 1481 /* mask IPv6 since it is currently not supported */ 1482 u32 fdirm = IXGBE_FDIRM_DIPv6; 1483 u32 fdirtcpm; 1484 1485 /* 1486 * Program the relevant mask registers. If src/dst_port or src/dst_addr 1487 * are zero, then assume a full mask for that field. Also assume that 1488 * a VLAN of 0 is unspecified, so mask that out as well. L4type 1489 * cannot be masked out in this implementation. 1490 * 1491 * This also assumes IPv4 only. IPv6 masking isn't supported at this 1492 * point in time. 1493 */ 1494 1495 /* verify bucket hash is cleared on hash generation */ 1496 if (input_mask->formatted.bkt_hash) 1497 hw_dbg(hw, " bucket hash should always be 0 in mask\n"); 1498 1499 /* Program FDIRM and verify partial masks */ 1500 switch (input_mask->formatted.vm_pool & 0x7F) { 1501 case 0x0: 1502 fdirm |= IXGBE_FDIRM_POOL; 1503 case 0x7F: 1504 break; 1505 default: 1506 hw_dbg(hw, " Error on vm pool mask\n"); 1507 return IXGBE_ERR_CONFIG; 1508 } 1509 1510 switch (input_mask->formatted.flow_type & IXGBE_ATR_L4TYPE_MASK) { 1511 case 0x0: 1512 fdirm |= IXGBE_FDIRM_L4P; 1513 if (input_mask->formatted.dst_port || 1514 input_mask->formatted.src_port) { 1515 hw_dbg(hw, " Error on src/dst port mask\n"); 1516 return IXGBE_ERR_CONFIG; 1517 } 1518 case IXGBE_ATR_L4TYPE_MASK: 1519 break; 1520 default: 1521 hw_dbg(hw, " Error on flow type mask\n"); 1522 return IXGBE_ERR_CONFIG; 1523 } 1524 1525 switch (ntohs(input_mask->formatted.vlan_id) & 0xEFFF) { 1526 case 0x0000: 1527 /* mask VLAN ID, fall through to mask VLAN priority */ 1528 fdirm |= IXGBE_FDIRM_VLANID; 1529 case 0x0FFF: 1530 /* mask VLAN priority */ 1531 fdirm |= IXGBE_FDIRM_VLANP; 1532 break; 1533 case 0xE000: 1534 /* mask VLAN ID only, fall through */ 1535 fdirm |= IXGBE_FDIRM_VLANID; 1536 case 0xEFFF: 1537 /* no VLAN fields masked */ 1538 break; 1539 default: 1540 hw_dbg(hw, " Error on VLAN mask\n"); 1541 return IXGBE_ERR_CONFIG; 1542 } 1543 1544 switch (input_mask->formatted.flex_bytes & 0xFFFF) { 1545 case 0x0000: 1546 /* Mask Flex Bytes, fall through */ 1547 fdirm |= IXGBE_FDIRM_FLEX; 1548 case 0xFFFF: 1549 break; 1550 default: 1551 hw_dbg(hw, " Error on flexible byte mask\n"); 1552 return IXGBE_ERR_CONFIG; 1553 } 1554 1555 /* Now mask VM pool and destination IPv6 - bits 5 and 2 */ 1556 IXGBE_WRITE_REG(hw, IXGBE_FDIRM, fdirm); 1557 1558 /* store the TCP/UDP port masks, bit reversed from port layout */ 1559 fdirtcpm = ixgbe_get_fdirtcpm_82599(input_mask); 1560 1561 /* write both the same so that UDP and TCP use the same mask */ 1562 IXGBE_WRITE_REG(hw, IXGBE_FDIRTCPM, ~fdirtcpm); 1563 IXGBE_WRITE_REG(hw, IXGBE_FDIRUDPM, ~fdirtcpm); 1564 1565 /* store source and destination IP masks (big-enian) */ 1566 IXGBE_WRITE_REG_BE32(hw, IXGBE_FDIRSIP4M, 1567 ~input_mask->formatted.src_ip[0]); 1568 IXGBE_WRITE_REG_BE32(hw, IXGBE_FDIRDIP4M, 1569 ~input_mask->formatted.dst_ip[0]); 1570 1571 return 0; 1572 } 1573 1574 s32 ixgbe_fdir_write_perfect_filter_82599(struct ixgbe_hw *hw, 1575 union ixgbe_atr_input *input, 1576 u16 soft_id, u8 queue) 1577 { 1578 u32 fdirport, fdirvlan, fdirhash, fdircmd; 1579 1580 /* currently IPv6 is not supported, must be programmed with 0 */ 1581 IXGBE_WRITE_REG_BE32(hw, IXGBE_FDIRSIPv6(0), 1582 input->formatted.src_ip[0]); 1583 IXGBE_WRITE_REG_BE32(hw, IXGBE_FDIRSIPv6(1), 1584 input->formatted.src_ip[1]); 1585 IXGBE_WRITE_REG_BE32(hw, IXGBE_FDIRSIPv6(2), 1586 input->formatted.src_ip[2]); 1587 1588 /* record the source address (big-endian) */ 1589 IXGBE_WRITE_REG_BE32(hw, IXGBE_FDIRIPSA, input->formatted.src_ip[0]); 1590 1591 /* record the first 32 bits of the destination address (big-endian) */ 1592 IXGBE_WRITE_REG_BE32(hw, IXGBE_FDIRIPDA, input->formatted.dst_ip[0]); 1593 1594 /* record source and destination port (little-endian)*/ 1595 fdirport = ntohs(input->formatted.dst_port); 1596 fdirport <<= IXGBE_FDIRPORT_DESTINATION_SHIFT; 1597 fdirport |= ntohs(input->formatted.src_port); 1598 IXGBE_WRITE_REG(hw, IXGBE_FDIRPORT, fdirport); 1599 1600 /* record vlan (little-endian) and flex_bytes(big-endian) */ 1601 fdirvlan = IXGBE_STORE_AS_BE16(input->formatted.flex_bytes); 1602 fdirvlan <<= IXGBE_FDIRVLAN_FLEX_SHIFT; 1603 fdirvlan |= ntohs(input->formatted.vlan_id); 1604 IXGBE_WRITE_REG(hw, IXGBE_FDIRVLAN, fdirvlan); 1605 1606 /* configure FDIRHASH register */ 1607 fdirhash = input->formatted.bkt_hash; 1608 fdirhash |= soft_id << IXGBE_FDIRHASH_SIG_SW_INDEX_SHIFT; 1609 IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, fdirhash); 1610 1611 /* 1612 * flush all previous writes to make certain registers are 1613 * programmed prior to issuing the command 1614 */ 1615 IXGBE_WRITE_FLUSH(hw); 1616 1617 /* configure FDIRCMD register */ 1618 fdircmd = IXGBE_FDIRCMD_CMD_ADD_FLOW | IXGBE_FDIRCMD_FILTER_UPDATE | 1619 IXGBE_FDIRCMD_LAST | IXGBE_FDIRCMD_QUEUE_EN; 1620 if (queue == IXGBE_FDIR_DROP_QUEUE) 1621 fdircmd |= IXGBE_FDIRCMD_DROP; 1622 fdircmd |= input->formatted.flow_type << IXGBE_FDIRCMD_FLOW_TYPE_SHIFT; 1623 fdircmd |= (u32)queue << IXGBE_FDIRCMD_RX_QUEUE_SHIFT; 1624 fdircmd |= (u32)input->formatted.vm_pool << IXGBE_FDIRCMD_VT_POOL_SHIFT; 1625 1626 IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD, fdircmd); 1627 1628 return 0; 1629 } 1630 1631 s32 ixgbe_fdir_erase_perfect_filter_82599(struct ixgbe_hw *hw, 1632 union ixgbe_atr_input *input, 1633 u16 soft_id) 1634 { 1635 u32 fdirhash; 1636 u32 fdircmd = 0; 1637 u32 retry_count; 1638 s32 err = 0; 1639 1640 /* configure FDIRHASH register */ 1641 fdirhash = input->formatted.bkt_hash; 1642 fdirhash |= soft_id << IXGBE_FDIRHASH_SIG_SW_INDEX_SHIFT; 1643 IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, fdirhash); 1644 1645 /* flush hash to HW */ 1646 IXGBE_WRITE_FLUSH(hw); 1647 1648 /* Query if filter is present */ 1649 IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD, IXGBE_FDIRCMD_CMD_QUERY_REM_FILT); 1650 1651 for (retry_count = 10; retry_count; retry_count--) { 1652 /* allow 10us for query to process */ 1653 udelay(10); 1654 /* verify query completed successfully */ 1655 fdircmd = IXGBE_READ_REG(hw, IXGBE_FDIRCMD); 1656 if (!(fdircmd & IXGBE_FDIRCMD_CMD_MASK)) 1657 break; 1658 } 1659 1660 if (!retry_count) 1661 err = IXGBE_ERR_FDIR_REINIT_FAILED; 1662 1663 /* if filter exists in hardware then remove it */ 1664 if (fdircmd & IXGBE_FDIRCMD_FILTER_VALID) { 1665 IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, fdirhash); 1666 IXGBE_WRITE_FLUSH(hw); 1667 IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD, 1668 IXGBE_FDIRCMD_CMD_REMOVE_FLOW); 1669 } 1670 1671 return err; 1672 } 1673 1674 /** 1675 * ixgbe_read_analog_reg8_82599 - Reads 8 bit Omer analog register 1676 * @hw: pointer to hardware structure 1677 * @reg: analog register to read 1678 * @val: read value 1679 * 1680 * Performs read operation to Omer analog register specified. 1681 **/ 1682 static s32 ixgbe_read_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 *val) 1683 { 1684 u32 core_ctl; 1685 1686 IXGBE_WRITE_REG(hw, IXGBE_CORECTL, IXGBE_CORECTL_WRITE_CMD | 1687 (reg << 8)); 1688 IXGBE_WRITE_FLUSH(hw); 1689 udelay(10); 1690 core_ctl = IXGBE_READ_REG(hw, IXGBE_CORECTL); 1691 *val = (u8)core_ctl; 1692 1693 return 0; 1694 } 1695 1696 /** 1697 * ixgbe_write_analog_reg8_82599 - Writes 8 bit Omer analog register 1698 * @hw: pointer to hardware structure 1699 * @reg: atlas register to write 1700 * @val: value to write 1701 * 1702 * Performs write operation to Omer analog register specified. 1703 **/ 1704 static s32 ixgbe_write_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 val) 1705 { 1706 u32 core_ctl; 1707 1708 core_ctl = (reg << 8) | val; 1709 IXGBE_WRITE_REG(hw, IXGBE_CORECTL, core_ctl); 1710 IXGBE_WRITE_FLUSH(hw); 1711 udelay(10); 1712 1713 return 0; 1714 } 1715 1716 /** 1717 * ixgbe_start_hw_82599 - Prepare hardware for Tx/Rx 1718 * @hw: pointer to hardware structure 1719 * 1720 * Starts the hardware using the generic start_hw function 1721 * and the generation start_hw function. 1722 * Then performs revision-specific operations, if any. 1723 **/ 1724 static s32 ixgbe_start_hw_82599(struct ixgbe_hw *hw) 1725 { 1726 s32 ret_val = 0; 1727 1728 ret_val = ixgbe_start_hw_generic(hw); 1729 if (ret_val != 0) 1730 goto out; 1731 1732 ret_val = ixgbe_start_hw_gen2(hw); 1733 if (ret_val != 0) 1734 goto out; 1735 1736 /* We need to run link autotry after the driver loads */ 1737 hw->mac.autotry_restart = true; 1738 hw->mac.rx_pb_size = IXGBE_82599_RX_PB_SIZE; 1739 1740 if (ret_val == 0) 1741 ret_val = ixgbe_verify_fw_version_82599(hw); 1742 out: 1743 return ret_val; 1744 } 1745 1746 /** 1747 * ixgbe_identify_phy_82599 - Get physical layer module 1748 * @hw: pointer to hardware structure 1749 * 1750 * Determines the physical layer module found on the current adapter. 1751 * If PHY already detected, maintains current PHY type in hw struct, 1752 * otherwise executes the PHY detection routine. 1753 **/ 1754 static s32 ixgbe_identify_phy_82599(struct ixgbe_hw *hw) 1755 { 1756 s32 status = IXGBE_ERR_PHY_ADDR_INVALID; 1757 1758 /* Detect PHY if not unknown - returns success if already detected. */ 1759 status = ixgbe_identify_phy_generic(hw); 1760 if (status != 0) { 1761 /* 82599 10GBASE-T requires an external PHY */ 1762 if (hw->mac.ops.get_media_type(hw) == ixgbe_media_type_copper) 1763 goto out; 1764 else 1765 status = ixgbe_identify_sfp_module_generic(hw); 1766 } 1767 1768 /* Set PHY type none if no PHY detected */ 1769 if (hw->phy.type == ixgbe_phy_unknown) { 1770 hw->phy.type = ixgbe_phy_none; 1771 status = 0; 1772 } 1773 1774 /* Return error if SFP module has been detected but is not supported */ 1775 if (hw->phy.type == ixgbe_phy_sfp_unsupported) 1776 status = IXGBE_ERR_SFP_NOT_SUPPORTED; 1777 1778 out: 1779 return status; 1780 } 1781 1782 /** 1783 * ixgbe_get_supported_physical_layer_82599 - Returns physical layer type 1784 * @hw: pointer to hardware structure 1785 * 1786 * Determines physical layer capabilities of the current configuration. 1787 **/ 1788 static u32 ixgbe_get_supported_physical_layer_82599(struct ixgbe_hw *hw) 1789 { 1790 u32 physical_layer = IXGBE_PHYSICAL_LAYER_UNKNOWN; 1791 u32 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC); 1792 u32 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2); 1793 u32 pma_pmd_10g_serial = autoc2 & IXGBE_AUTOC2_10G_SERIAL_PMA_PMD_MASK; 1794 u32 pma_pmd_10g_parallel = autoc & IXGBE_AUTOC_10G_PMA_PMD_MASK; 1795 u32 pma_pmd_1g = autoc & IXGBE_AUTOC_1G_PMA_PMD_MASK; 1796 u16 ext_ability = 0; 1797 u8 comp_codes_10g = 0; 1798 u8 comp_codes_1g = 0; 1799 1800 hw->phy.ops.identify(hw); 1801 1802 switch (hw->phy.type) { 1803 case ixgbe_phy_tn: 1804 case ixgbe_phy_cu_unknown: 1805 hw->phy.ops.read_reg(hw, MDIO_PMA_EXTABLE, MDIO_MMD_PMAPMD, 1806 &ext_ability); 1807 if (ext_ability & MDIO_PMA_EXTABLE_10GBT) 1808 physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_T; 1809 if (ext_ability & MDIO_PMA_EXTABLE_1000BT) 1810 physical_layer |= IXGBE_PHYSICAL_LAYER_1000BASE_T; 1811 if (ext_ability & MDIO_PMA_EXTABLE_100BTX) 1812 physical_layer |= IXGBE_PHYSICAL_LAYER_100BASE_TX; 1813 goto out; 1814 default: 1815 break; 1816 } 1817 1818 switch (autoc & IXGBE_AUTOC_LMS_MASK) { 1819 case IXGBE_AUTOC_LMS_1G_AN: 1820 case IXGBE_AUTOC_LMS_1G_LINK_NO_AN: 1821 if (pma_pmd_1g == IXGBE_AUTOC_1G_KX_BX) { 1822 physical_layer = IXGBE_PHYSICAL_LAYER_1000BASE_KX | 1823 IXGBE_PHYSICAL_LAYER_1000BASE_BX; 1824 goto out; 1825 } else 1826 /* SFI mode so read SFP module */ 1827 goto sfp_check; 1828 break; 1829 case IXGBE_AUTOC_LMS_10G_LINK_NO_AN: 1830 if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_CX4) 1831 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_CX4; 1832 else if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_KX4) 1833 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_KX4; 1834 else if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_XAUI) 1835 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_XAUI; 1836 goto out; 1837 break; 1838 case IXGBE_AUTOC_LMS_10G_SERIAL: 1839 if (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_KR) { 1840 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_KR; 1841 goto out; 1842 } else if (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI) 1843 goto sfp_check; 1844 break; 1845 case IXGBE_AUTOC_LMS_KX4_KX_KR: 1846 case IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN: 1847 if (autoc & IXGBE_AUTOC_KX_SUPP) 1848 physical_layer |= IXGBE_PHYSICAL_LAYER_1000BASE_KX; 1849 if (autoc & IXGBE_AUTOC_KX4_SUPP) 1850 physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_KX4; 1851 if (autoc & IXGBE_AUTOC_KR_SUPP) 1852 physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_KR; 1853 goto out; 1854 break; 1855 default: 1856 goto out; 1857 break; 1858 } 1859 1860 sfp_check: 1861 /* SFP check must be done last since DA modules are sometimes used to 1862 * test KR mode - we need to id KR mode correctly before SFP module. 1863 * Call identify_sfp because the pluggable module may have changed */ 1864 hw->phy.ops.identify_sfp(hw); 1865 if (hw->phy.sfp_type == ixgbe_sfp_type_not_present) 1866 goto out; 1867 1868 switch (hw->phy.type) { 1869 case ixgbe_phy_sfp_passive_tyco: 1870 case ixgbe_phy_sfp_passive_unknown: 1871 physical_layer = IXGBE_PHYSICAL_LAYER_SFP_PLUS_CU; 1872 break; 1873 case ixgbe_phy_sfp_ftl_active: 1874 case ixgbe_phy_sfp_active_unknown: 1875 physical_layer = IXGBE_PHYSICAL_LAYER_SFP_ACTIVE_DA; 1876 break; 1877 case ixgbe_phy_sfp_avago: 1878 case ixgbe_phy_sfp_ftl: 1879 case ixgbe_phy_sfp_intel: 1880 case ixgbe_phy_sfp_unknown: 1881 hw->phy.ops.read_i2c_eeprom(hw, 1882 IXGBE_SFF_1GBE_COMP_CODES, &comp_codes_1g); 1883 hw->phy.ops.read_i2c_eeprom(hw, 1884 IXGBE_SFF_10GBE_COMP_CODES, &comp_codes_10g); 1885 if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE) 1886 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_SR; 1887 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE) 1888 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_LR; 1889 else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) 1890 physical_layer = IXGBE_PHYSICAL_LAYER_1000BASE_T; 1891 break; 1892 default: 1893 break; 1894 } 1895 1896 out: 1897 return physical_layer; 1898 } 1899 1900 /** 1901 * ixgbe_enable_rx_dma_82599 - Enable the Rx DMA unit on 82599 1902 * @hw: pointer to hardware structure 1903 * @regval: register value to write to RXCTRL 1904 * 1905 * Enables the Rx DMA unit for 82599 1906 **/ 1907 static s32 ixgbe_enable_rx_dma_82599(struct ixgbe_hw *hw, u32 regval) 1908 { 1909 #define IXGBE_MAX_SECRX_POLL 30 1910 int i; 1911 int secrxreg; 1912 1913 /* 1914 * Workaround for 82599 silicon errata when enabling the Rx datapath. 1915 * If traffic is incoming before we enable the Rx unit, it could hang 1916 * the Rx DMA unit. Therefore, make sure the security engine is 1917 * completely disabled prior to enabling the Rx unit. 1918 */ 1919 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL); 1920 secrxreg |= IXGBE_SECRXCTRL_RX_DIS; 1921 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg); 1922 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) { 1923 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT); 1924 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY) 1925 break; 1926 else 1927 /* Use interrupt-safe sleep just in case */ 1928 udelay(10); 1929 } 1930 1931 /* For informational purposes only */ 1932 if (i >= IXGBE_MAX_SECRX_POLL) 1933 hw_dbg(hw, "Rx unit being enabled before security " 1934 "path fully disabled. Continuing with init.\n"); 1935 1936 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval); 1937 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL); 1938 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS; 1939 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg); 1940 IXGBE_WRITE_FLUSH(hw); 1941 1942 return 0; 1943 } 1944 1945 /** 1946 * ixgbe_verify_fw_version_82599 - verify fw version for 82599 1947 * @hw: pointer to hardware structure 1948 * 1949 * Verifies that installed the firmware version is 0.6 or higher 1950 * for SFI devices. All 82599 SFI devices should have version 0.6 or higher. 1951 * 1952 * Returns IXGBE_ERR_EEPROM_VERSION if the FW is not present or 1953 * if the FW version is not supported. 1954 **/ 1955 static s32 ixgbe_verify_fw_version_82599(struct ixgbe_hw *hw) 1956 { 1957 s32 status = IXGBE_ERR_EEPROM_VERSION; 1958 u16 fw_offset, fw_ptp_cfg_offset; 1959 u16 fw_version = 0; 1960 1961 /* firmware check is only necessary for SFI devices */ 1962 if (hw->phy.media_type != ixgbe_media_type_fiber) { 1963 status = 0; 1964 goto fw_version_out; 1965 } 1966 1967 /* get the offset to the Firmware Module block */ 1968 hw->eeprom.ops.read(hw, IXGBE_FW_PTR, &fw_offset); 1969 1970 if ((fw_offset == 0) || (fw_offset == 0xFFFF)) 1971 goto fw_version_out; 1972 1973 /* get the offset to the Pass Through Patch Configuration block */ 1974 hw->eeprom.ops.read(hw, (fw_offset + 1975 IXGBE_FW_PASSTHROUGH_PATCH_CONFIG_PTR), 1976 &fw_ptp_cfg_offset); 1977 1978 if ((fw_ptp_cfg_offset == 0) || (fw_ptp_cfg_offset == 0xFFFF)) 1979 goto fw_version_out; 1980 1981 /* get the firmware version */ 1982 hw->eeprom.ops.read(hw, (fw_ptp_cfg_offset + 1983 IXGBE_FW_PATCH_VERSION_4), 1984 &fw_version); 1985 1986 if (fw_version > 0x5) 1987 status = 0; 1988 1989 fw_version_out: 1990 return status; 1991 } 1992 1993 /** 1994 * ixgbe_verify_lesm_fw_enabled_82599 - Checks LESM FW module state. 1995 * @hw: pointer to hardware structure 1996 * 1997 * Returns true if the LESM FW module is present and enabled. Otherwise 1998 * returns false. Smart Speed must be disabled if LESM FW module is enabled. 1999 **/ 2000 static bool ixgbe_verify_lesm_fw_enabled_82599(struct ixgbe_hw *hw) 2001 { 2002 bool lesm_enabled = false; 2003 u16 fw_offset, fw_lesm_param_offset, fw_lesm_state; 2004 s32 status; 2005 2006 /* get the offset to the Firmware Module block */ 2007 status = hw->eeprom.ops.read(hw, IXGBE_FW_PTR, &fw_offset); 2008 2009 if ((status != 0) || 2010 (fw_offset == 0) || (fw_offset == 0xFFFF)) 2011 goto out; 2012 2013 /* get the offset to the LESM Parameters block */ 2014 status = hw->eeprom.ops.read(hw, (fw_offset + 2015 IXGBE_FW_LESM_PARAMETERS_PTR), 2016 &fw_lesm_param_offset); 2017 2018 if ((status != 0) || 2019 (fw_lesm_param_offset == 0) || (fw_lesm_param_offset == 0xFFFF)) 2020 goto out; 2021 2022 /* get the lesm state word */ 2023 status = hw->eeprom.ops.read(hw, (fw_lesm_param_offset + 2024 IXGBE_FW_LESM_STATE_1), 2025 &fw_lesm_state); 2026 2027 if ((status == 0) && 2028 (fw_lesm_state & IXGBE_FW_LESM_STATE_ENABLED)) 2029 lesm_enabled = true; 2030 2031 out: 2032 return lesm_enabled; 2033 } 2034 2035 /** 2036 * ixgbe_read_eeprom_buffer_82599 - Read EEPROM word(s) using 2037 * fastest available method 2038 * 2039 * @hw: pointer to hardware structure 2040 * @offset: offset of word in EEPROM to read 2041 * @words: number of words 2042 * @data: word(s) read from the EEPROM 2043 * 2044 * Retrieves 16 bit word(s) read from EEPROM 2045 **/ 2046 static s32 ixgbe_read_eeprom_buffer_82599(struct ixgbe_hw *hw, u16 offset, 2047 u16 words, u16 *data) 2048 { 2049 struct ixgbe_eeprom_info *eeprom = &hw->eeprom; 2050 s32 ret_val = IXGBE_ERR_CONFIG; 2051 2052 /* 2053 * If EEPROM is detected and can be addressed using 14 bits, 2054 * use EERD otherwise use bit bang 2055 */ 2056 if ((eeprom->type == ixgbe_eeprom_spi) && 2057 (offset + (words - 1) <= IXGBE_EERD_MAX_ADDR)) 2058 ret_val = ixgbe_read_eerd_buffer_generic(hw, offset, words, 2059 data); 2060 else 2061 ret_val = ixgbe_read_eeprom_buffer_bit_bang_generic(hw, offset, 2062 words, 2063 data); 2064 2065 return ret_val; 2066 } 2067 2068 /** 2069 * ixgbe_read_eeprom_82599 - Read EEPROM word using 2070 * fastest available method 2071 * 2072 * @hw: pointer to hardware structure 2073 * @offset: offset of word in the EEPROM to read 2074 * @data: word read from the EEPROM 2075 * 2076 * Reads a 16 bit word from the EEPROM 2077 **/ 2078 static s32 ixgbe_read_eeprom_82599(struct ixgbe_hw *hw, 2079 u16 offset, u16 *data) 2080 { 2081 struct ixgbe_eeprom_info *eeprom = &hw->eeprom; 2082 s32 ret_val = IXGBE_ERR_CONFIG; 2083 2084 /* 2085 * If EEPROM is detected and can be addressed using 14 bits, 2086 * use EERD otherwise use bit bang 2087 */ 2088 if ((eeprom->type == ixgbe_eeprom_spi) && 2089 (offset <= IXGBE_EERD_MAX_ADDR)) 2090 ret_val = ixgbe_read_eerd_generic(hw, offset, data); 2091 else 2092 ret_val = ixgbe_read_eeprom_bit_bang_generic(hw, offset, data); 2093 2094 return ret_val; 2095 } 2096 2097 static struct ixgbe_mac_operations mac_ops_82599 = { 2098 .init_hw = &ixgbe_init_hw_generic, 2099 .reset_hw = &ixgbe_reset_hw_82599, 2100 .start_hw = &ixgbe_start_hw_82599, 2101 .clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic, 2102 .get_media_type = &ixgbe_get_media_type_82599, 2103 .get_supported_physical_layer = &ixgbe_get_supported_physical_layer_82599, 2104 .enable_rx_dma = &ixgbe_enable_rx_dma_82599, 2105 .get_mac_addr = &ixgbe_get_mac_addr_generic, 2106 .get_san_mac_addr = &ixgbe_get_san_mac_addr_generic, 2107 .get_device_caps = &ixgbe_get_device_caps_generic, 2108 .get_wwn_prefix = &ixgbe_get_wwn_prefix_generic, 2109 .stop_adapter = &ixgbe_stop_adapter_generic, 2110 .get_bus_info = &ixgbe_get_bus_info_generic, 2111 .set_lan_id = &ixgbe_set_lan_id_multi_port_pcie, 2112 .read_analog_reg8 = &ixgbe_read_analog_reg8_82599, 2113 .write_analog_reg8 = &ixgbe_write_analog_reg8_82599, 2114 .setup_link = &ixgbe_setup_mac_link_82599, 2115 .set_rxpba = &ixgbe_set_rxpba_generic, 2116 .check_link = &ixgbe_check_mac_link_generic, 2117 .get_link_capabilities = &ixgbe_get_link_capabilities_82599, 2118 .led_on = &ixgbe_led_on_generic, 2119 .led_off = &ixgbe_led_off_generic, 2120 .blink_led_start = &ixgbe_blink_led_start_generic, 2121 .blink_led_stop = &ixgbe_blink_led_stop_generic, 2122 .set_rar = &ixgbe_set_rar_generic, 2123 .clear_rar = &ixgbe_clear_rar_generic, 2124 .set_vmdq = &ixgbe_set_vmdq_generic, 2125 .clear_vmdq = &ixgbe_clear_vmdq_generic, 2126 .init_rx_addrs = &ixgbe_init_rx_addrs_generic, 2127 .update_mc_addr_list = &ixgbe_update_mc_addr_list_generic, 2128 .enable_mc = &ixgbe_enable_mc_generic, 2129 .disable_mc = &ixgbe_disable_mc_generic, 2130 .clear_vfta = &ixgbe_clear_vfta_generic, 2131 .set_vfta = &ixgbe_set_vfta_generic, 2132 .fc_enable = &ixgbe_fc_enable_generic, 2133 .set_fw_drv_ver = &ixgbe_set_fw_drv_ver_generic, 2134 .init_uta_tables = &ixgbe_init_uta_tables_generic, 2135 .setup_sfp = &ixgbe_setup_sfp_modules_82599, 2136 .set_mac_anti_spoofing = &ixgbe_set_mac_anti_spoofing, 2137 .set_vlan_anti_spoofing = &ixgbe_set_vlan_anti_spoofing, 2138 .acquire_swfw_sync = &ixgbe_acquire_swfw_sync, 2139 .release_swfw_sync = &ixgbe_release_swfw_sync, 2140 2141 }; 2142 2143 static struct ixgbe_eeprom_operations eeprom_ops_82599 = { 2144 .init_params = &ixgbe_init_eeprom_params_generic, 2145 .read = &ixgbe_read_eeprom_82599, 2146 .read_buffer = &ixgbe_read_eeprom_buffer_82599, 2147 .write = &ixgbe_write_eeprom_generic, 2148 .write_buffer = &ixgbe_write_eeprom_buffer_bit_bang_generic, 2149 .calc_checksum = &ixgbe_calc_eeprom_checksum_generic, 2150 .validate_checksum = &ixgbe_validate_eeprom_checksum_generic, 2151 .update_checksum = &ixgbe_update_eeprom_checksum_generic, 2152 }; 2153 2154 static struct ixgbe_phy_operations phy_ops_82599 = { 2155 .identify = &ixgbe_identify_phy_82599, 2156 .identify_sfp = &ixgbe_identify_sfp_module_generic, 2157 .init = &ixgbe_init_phy_ops_82599, 2158 .reset = &ixgbe_reset_phy_generic, 2159 .read_reg = &ixgbe_read_phy_reg_generic, 2160 .write_reg = &ixgbe_write_phy_reg_generic, 2161 .setup_link = &ixgbe_setup_phy_link_generic, 2162 .setup_link_speed = &ixgbe_setup_phy_link_speed_generic, 2163 .read_i2c_byte = &ixgbe_read_i2c_byte_generic, 2164 .write_i2c_byte = &ixgbe_write_i2c_byte_generic, 2165 .read_i2c_eeprom = &ixgbe_read_i2c_eeprom_generic, 2166 .write_i2c_eeprom = &ixgbe_write_i2c_eeprom_generic, 2167 .check_overtemp = &ixgbe_tn_check_overtemp, 2168 }; 2169 2170 struct ixgbe_info ixgbe_82599_info = { 2171 .mac = ixgbe_mac_82599EB, 2172 .get_invariants = &ixgbe_get_invariants_82599, 2173 .mac_ops = &mac_ops_82599, 2174 .eeprom_ops = &eeprom_ops_82599, 2175 .phy_ops = &phy_ops_82599, 2176 .mbx_ops = &mbx_ops_generic, 2177 }; 2178